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Abstract 

Vascular contributions to cognitive impairment and dementia (VCID) are the second 

leading cause of dementia and increasing in prevalence as lifespans increase. Clinical MRI 

traditionally relies on structural abnormalities to identify this vascular dysfunction but lacks 

microstructure and functional information that could be critical for early identification and 

assessment of disease. Cerebrovascular dysfunction is one of the only contributors to dementia 

that can currently be treated, and therefore, earlier identification and subsequent intervention 

could prevent irreversible structural changes that lead to cognitive decline. 

Magnetic resonance fingerprinting (MRF) is a novel approach to MRI acquisition and 

reconstruction using biophysical modeling in parallel to image acquisition for the simultaneous 

collection of quantitative, multiparametric brain maps. MRF can be adapted to specifically 

measure cerebrovascular parameters via MR vascular fingerprinting (MRvF), which produces 

quantitative cerebral blood volume (CBV), microvascular vessel radius (R), and tissue oxygen 

saturation maps (SO2) of the whole brain. This dissertation aims to advance MRvF for contrast-

free, dynamic mapping of cerebrovascular function. 

First, we compare MRvF to another quantitative MRI method, quantitative blood oxygen 

level dependent (BOLD) imaging, and show consistency between the techniques, reliable oxygen 

extraction fraction (OEF) measurements, and expected changes in OEF in response to hypoxia 

and hyperoxia. Next, we describe a new MRvF pattern-matching algorithm developed for 

improved mapping without contrast agents, investigate the tradeoffs between SNR, sensitivity, 

and temporal resolution, and optimize an accelerated spin- and gradient-echo (SAGE) sequence 

for dynamic MRvF. We show adequate SNR with the SAGE sequence from just one repetition for 

robust whole-brain vascular parameter mapping every 4.5 seconds. Following this, we 

demonstrate a novel protocol in which this optimized SAGE sequence allows for dynamic and 

simultaneous acquisition of MRvF and BOLD measures. By combining this with a tailored 

hypercapnic (5% CO2) breathing paradigm, we show parameter consistency over time and 

regional changes in BOLD, CBV, R, and SO2 in response to this stimulus, enabling the calculation 

of cerebrovascular reactivity (CVR). Finally, we use this newly developed imaging paradigm to 

compare differences in MRvF-derived CVR measurements in healthy young and healthy old 

adults. We juxtapose these CVR results against more commonly utilized techniques of measuring 

CVR to compare and validate our MRvF metrics. 

Collectively, we demonstrate the development of dynamic MRvF in an ongoing effort 

toward new quantitative functional imaging biomarkers of cerebrovascular dysfunction with the 

potential to enable better understanding and earlier diagnoses of diseases like VCID.  
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Chapter 1 – Motivation, Introduction, and Overview 

Increasing lifespans and aging populations are leading to an increased prevalence of 

dementia, with over 50 million people afflicted worldwide and almost 10 million new cases a year.1 

Vascular contributions to cognitive impairment and dementia (VCID) is the second most common 

cause of dementia, but the heterogeneous mechanisms by which vascular risk factors lead to 

cognitive decline in VCID are not well understood.2 Current neuroimaging biomarkers of VCID 

using magnetic resonance imaging (MRI) rely on structural changes like white matter 

hyperintensities (WMH).3,4 There are limitations with this approach to diagnosis and subsequent 

treatment as physiological changes from vascular disease may precede structural abnormalities, 

and WMH are non-specific and may reflect many underlying processes. Noninvasive imaging of 

cerebrovascular function, therefore, may offer an opportunity for earlier detection and intervention. 

Current hemodynamic MRI scans are acquired separately and often require contrast 

agents, leading to a lack of translatable physiological imaging methods to understand and 

diagnose cerebrovascular diseases. MRI in clinical practice relies almost exclusively on 

qualitatively weighted images (e.g., T1-weighted, T2-weighted). These images have provided 

tremendous value since their inception, but their qualitative nature limits their potential. The 

importance of reproducibility and repeatability are becoming more prevalent as medicine moves 

further into an era of computational radiology, and qualitative images lack the ability to be 

precisely compared across time points, scanners, locations, or different subjects.5–7 Some 

techniques like quantitative MRI relaxation mapping and arterial spin labeling (ASL) have been 

developed to produce quantitative data, but these still suffer from other limitations, including low 

signal-to-noise ratio (SNR) and motion artifacts. Additionally, from a practical standpoint, MRIs 

are typically long in duration, as each contrast collected requires a separate sequence. This 

increased scan length is unpleasant or exclusionary for subjects averse to being in tight spaces 
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for long periods of time, increases the likelihood of subject motion, and increases the cost per 

patient. 

Magnetic resonance fingerprinting (MRF) is a relatively new technique that innovatively 

leverages MRI acquisition and reconstruction in order to overcome some of these limitations of 

traditional MRI.8 MRF utilizes image acquisition in combination with computational magnetic 

resonance (MR) signal simulations for quantitative multiparametric mapping. The technical 

benefits of MRF demonstrate a significant advancement, with high translational and clinical 

potential impact. The ability to generate quantitative maps, as opposed to contrast-weighted 

images, makes imaging more reproducible and improves the ability for direct intra- and inter-

patient comparisons. Reliable quantitative measures will improve patient monitoring over time 

and provide more useful metrics for comparison while also reducing bias across different sites or 

scanners in future research. Generating multiparametric maps from a single scan will decrease 

total scan time, lower costs, and increase ease of access for patients. Faster scans also 

specifically benefit pediatric, geriatric, cognitively impaired, and other populations who may 

struggle to lay still in a scanner for upwards of an hour at a time. 

MRF was initially implemented to generate quantitative T1 and T2 relaxation maps and 

other common clinical MR metrics. However, another advantageous aspect of MRF is its flexibility 

to look at a wide variety of both structural and functional parameters. Essentially, if a parameter 

that affects MR signal can be described with a biophysical equation for computational modeling, 

the parameter can be incorporated into the simulations and ultimately extracted from the collected 

images. MR vascular fingerprinting (MRvF) leveraged this framework to extract cerebrovascular 

information from MR signals sensitive to oxygenation using the fingerprinting method.9  

In this dissertation, we describe our contributions to and applications of MRvF and a set 

of novel techniques and protocols that enable acquisition of multiple quantitative physiological 

metrics of cerebrovascular function. The long-term goal is to increase the pathophysiological 

understanding of cerebrovascular diseases and advance the capabilities of the MRvF framework 
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to be robust for contrast-free and dynamic imaging with the hope of eventually developing MRvF-

based imaging biomarkers of cerebrovascular diseases, like VCID.  

This dissertation is organized into eight chapters, including this introduction: 

Chapter 2 provides necessary background information on brain anatomy and physiology and how 

cerebrovascular function changes with age and disease. It also details physiological responses 

to specific gas stimuli, how those are measured, and how they serve as biomarkers of diseases. 

Chapter 3 broadly reviews different modalities used in brain imaging before discussing specific 

MRI techniques for imaging cerebrovascular structure and function. It then introduces quantitative 

MRI techniques and the advantages and principles of magnetic resonance fingerprinting.  

Chapter 4 compares quantitative techniques for measuring brain oxygenation with MRI and 

performs a retrospective analysis validating those techniques in a study of healthy volunteers 

experiencing acute hypoxia and hyperoxia. 

Chapter 5 describes the optimization of MRvF acquisition and processing to enable dynamic 

studies of cerebrovascular function through simulations, retrospective analyses, and prospective 

analyses that improve accuracy, sensitivity, and temporal resolution. 

Chapter 6 introduces a hypercapnic imaging paradigm that demonstrates the ability of MRvF to 

measure meaningful changes in cerebrovascular reactivity due to a prescribed hypercapnic 

stimulus. 

Chapter 7 utilizes the hypercapnic imaging paradigm described in Chapter 6 to investigate how 

metrics of cerebrovascular reactivity differ between a young cohort and an old cohort of healthy 

subjects. 

Chapter 8 highlights the key findings and contributions made through this work, gives 

perspectives on expansions of the work, provides thoughts on future directions of the field, and 

summarizes the overall significance of the dissertation.  
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Chapter 2 – Cerebrovascular Structure and Function 

2.1 | Cerebrovascular Anatomy and Physiology 

Cerebrovascular anatomy and physiology form the basis for how the brain is nourished, 

how it responds to various physiological demands, and how pathologies affect its function. This 

chapter will cover the critical aspects of cerebrovascular structure and function, setting the stage 

for the value of imaging studies based on cerebrovascular physiology. 

The cerebrovascular system encompasses arteries, veins, and capillaries and is pivotal in 

delivering oxygen-rich blood to the brain and removing carbon dioxide and metabolic waste. This 

intricate network is sustained by two major pairs of vessels, the internal carotid arteries (ICAs) 

and the vertebral arteries (VAs). The ICAs branch into the anterior and middle cerebral arteries 

(ACAs and MCAs), which supply blood to the frontal, parietal, and temporal lobes of the brain. 

The VAs merge to form the basilar artery, giving rise to the posterior cerebral arteries (PCAs) that 

provide circulation to the occipital and inferior temporal lobes. A key component of this network is 

the Circle of Willis, a connected ring at the base of the brain where the ACAs meet with a posterior 

communicating artery from the PCAs, allowing for collateral circulation in the event of blockage 

or narrowing in any part of the system. As these arteries disperse throughout the brain, they split 

and penetrate deeper tissues as smaller vessels called arterioles and eventually capillaries where 

oxygen is extracted from the blood by the surrounding brain tissues. 

The proportion of oxygen that is extracted from the blood as it traverses through the 

capillaries is known as the oxygen extraction fraction (OEF). The OEF reflects the efficiency of 

oxygen utilization by brain tissue and is therefore proportional to the cerebral metabolic rate of 

oxygen consumption (CMRO2) and inversely proportional to the cerebral blood flow (CBF).10 This 

oxygen metabolism within the cerebrovascular system involves the intricate process of oxygen 

being carried by hemoglobin in red blood cells before diffusing across the blood-brain barrier 

(BBB) and into neurons and glial cells for aerobic metabolism.11 This diffusion process is driven 
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by the oxygen concentration gradient between blood and brain tissue and directs the delivery of 

oxygen to areas of high metabolic demand. Glucose, the brain's primary energy source, follows 

a similar path but is transported across the BBB via specific glucose transporters, and then utilized 

in cellular respiration to generate ATP, with oxygen acting as the final electron acceptor in the 

mitochondrial electron transport chain.12 After these nutrients are extracted from the blood within 

the capillaries, the venous system drains the deoxygenated blood back towards the heart. The 

venous drainage is facilitated from capillaries into venules that converge into the dural venous 

sinuses, leading to the internal jugular veins and completing the cerebral circulation loop. 

A unique aspect of cerebrovascular physiology is the aforementioned BBB, which acts as 

a selectively permeable divider to protect the brain from pathogens and regulate the exchange of 

materials between the bloodstream and the brain tissue. It is maintained by endothelial cells, 

astrocytes, and pericytes. These cells, along with neurons, are components of the neurovascular 

unit (NVU) that ensure adequate CBF to meet neuronal metabolic demands (Figure 2.1). Through 

neurovascular coupling, the NVU dynamically adjusts vascular tone in response to neuronal 

activity. The NVU also plays a crucial role in the formation and maintenance of the BBB, which is 

vital for protecting the brain from systemic influences and maintaining the ionic balance necessary 

for neuronal activity. The CBF quantifying the blood passing through 100 grams of brain tissue 

per minute, is finely tuned to about 50 mL/100g/min on average in healthy adults, with higher CBF 

(~80 mL/100g/min) in gray matter and lower CBF (~20 mL/100g/min) in white matter, 

demonstrating the brain’s regulatory precision.13,14 This regulation is achieved through cerebral 

autoregulation, a homeostatic mechanism that allows consistent blood flow despite fluctuations 

in systemic blood pressure, and is influenced by factors such as carbon dioxide levels, oxygen 

levels, and the metabolic demands of brain tissue. 
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Figure 2.1. The Neurovascular Unit (from Quick et al.15). The neurovascular unit (NVU) is an intricate cellular 
assembly essential for maintaining cerebral homeostasis, regulating blood-brain barrier (BBB) permeability, and 
ensuring proper cerebral blood flow (CBF) in response to neuronal activity. The NVU's components include endothelial 
cells, astrocytes, pericytes, neurons, and the extracellular matrix, each playing a distinct role in cerebrovascular 
physiology and pathology. Endothelial cells line the interior surface of blood vessels and are pivotal in forming the BBB. 
They regulate exchange between the bloodstream and the brain, maintaining a selective barrier that protects neural 
tissue from toxins and pathogens while allowing essential nutrients to pass. Astrocyte cells extend their end-feet to 
envelop blood vessels, facilitating communication between neurons and the vascular system. Pericytes are contractile 
cells located on the capillary walls, closely associated with endothelial cells. Neuron cells are the functional units of the 
brain, responsible for processing and transmitting information. They communicate with astrocytes and endothelial cells 
to regulate CBF according to metabolic demands, a process known as neurovascular coupling. While not directly part 
of the NVU, microglia and oligodendrocytes support, maintain, and protect neurons.   

Neurovascular coupling enables the dynamic relationship between neuronal activity and 

CBF, where increased brain activity prompts enhanced blood flow to specific regions in the brain. 

Therefore, proper cerebrovascular function is critical to cognitive function, and dysfunction can 

lead to severe pathologies, including stroke, aneurysms, and, with chronic conditions, to 

hypertension and diabetes. For instance, stroke can emerge from arterial blockage (ischemic) or 

vessel rupture (hemorrhagic), leading to significant brain tissue damage and eventual cognitive 

decline due to inadequate blood supply. 
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The cerebrovascular system's anatomy and physiology are intricate, with anatomical 

variety and asymmetry across the population, yet have precise mechanisms to ensure constant 

supply of nutrients and oxygen. This system's complexity and its role in maintaining cerebral 

homeostasis underscore the importance of advanced, non-invasive imaging techniques to 

understand brain vascular function and diagnosing when there is dysfunction. Understanding 

cerebral hemodynamics, vascular integrity, and metabolic demands is indispensable for 

developing new methods to diagnose, treat, and prevent cerebrovascular diseases and providing 

deeper insights into brain function and its response to pathological conditions. 

 

2.2 | Cerebrovascular Function with Aging 

The cerebrovascular system undergoes significant changes as part of the normal aging 

process. These alterations can affect the brain's structure and function, influencing cognitive 

abilities and the risk of cerebrovascular diseases. Here we will discuss some common cellular, 

molecular, and tissue-level changes associated with normal aging, how they are observed, and 

their impact on cerebrovascular anatomy and physiology. 

Aging is associated with endothelial dysfunction in cerebral vessels, characterized by 

reduced endothelium-dependent vasodilation and altered BBB function. This is partly due to 

decreased production of nitric oxide, an essential vasodilator, and increased oxidative stress, 

leading to the accumulation of reactive oxygen species. These changes can compromise the BBB 

integrity, affecting cerebral blood flow regulation and nutrient transport.16 Aging can also bring 

about pro-inflammatory responses within the cerebrovascular system. The upregulation of 

inflammatory markers, like cytokines and adhesion molecules, facilitates the adherence of 

leukocytes to the endothelium and impairs vascular function.17 This chronic low-grade 

inflammation contributes to the progression of atherosclerosis and other vascular pathologies.18 

One of the most significant tissue-level changes is the increased stiffness of large arteries, 

due to cellular and molecular alterations.19 The smooth muscle cells (SMCs) in the vascular wall 
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experience changes in their contractile and structural proteins, impacting their ability to regulate 

vessel tone. This can lead to arterial stiffness, reduce the compliance of cerebral vessels, and 

affect the brain's autoregulatory capacity. Alterations in the extracellular matrix of the vascular 

wall, including increased collagen deposition and changes in elastin fibers , contribute to arterial 

stiffness and can alter the microvascular architecture, impacting blood flow distribution within the 

brain. Arterial stiffness affects pulse wave velocity, leading to poor timing of blood flow to the 

brain.19  

Aging is also associated with a reduction in microvascular density, known as 

microvascular rarefaction. This process reduces the overall surface area available for nutrient and 

oxygen exchange, which in turn can reduce OEF, and potentially lead to hypoxic conditions within 

the brain tissue.18 In some individuals, there is an accumulation of amyloid-beta protein 

aggregates within the walls of cerebral arteries and arterioles. While more commonly associated 

with Alzheimer's disease, this can also occur in healthy aging, contributing to vascular dysfunction 

and increasing the risk of stroke.20 

Advanced imaging techniques, play a crucial role in observing the cerebrovascular 

changes associated with aging. Techniques measuring cerebral blood flow and vascular reactivity 

can assess the impact of these changes on cerebral autoregulation and neurovascular coupling. 

Some ways in which these are measured include transcranial doppler ultrasound that measures 

blood flow velocity in the major cerebral arteries, near-infrared spectroscopy that measures 

changes in oxygenated and deoxygenated hemoglobin concentrations in cortical tissues, positron 

emission tomography (PET) which can assess cerebral metabolism and blood flow, and MRI 

which can provide information on the structure and function of the deep brain vasculature.21 In 

normal aging, these techniques directly and indirectly detect reduced cerebral blood flow22, 

reduced reactivity23, increased arterial stiffness24, and reduced cerebral metabolic rates.25 

Combining these diverse techniques can offer a comprehensive picture of how aging affects the 
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cerebrovascular system, facilitate early detection of dysfunction, and help us better understand 

the aging process itself. 

Overall, the cumulative effect of these aging-related changes is a gradual reduction in the 

cerebrovascular system's resilience and adaptability. The diminished capacity for vasodilation, 

along with arterial stiffness and microvascular changes, challenges the ability to maintain stable 

blood flow under varying metabolic demands. This can lead to increased risk of ischemia and 

potentially contribute to cognitive decline with aging. Understanding these vascular changes is 

essential for interpreting data from advanced neuroimaging techniques and for developing  

improved diagnostic methods to allow for earlier detection of cerebrovascular dysfunction and 

maintaining good cerebrovascular health into old age. 

 

2.3 | Cerebrovascular Pathophysiology in Disease 

Cerebrovascular dysfunction plays a pivotal role in the pathophysiology of many diseases. 

Understanding these changes is crucial for developing strategies for appropriate diagnosis, 

prevention, and treatment. In this section we will discuss some common pathological changes 

associated with cerebrovascular diseases (e.g., stroke, carotid stenosis, small vessel disease 

(SVD), intracranial atherosclerotic disease (ICAD)), with a deeper dive specifically into how 

dementia relates to cerebrovascular diseases. 

Endothelial dysfunction is a common feature of cerebrovascular diseases, characterized 

by a reduced ability to produce vasodilators like nitric oxide, increased oxidative stress, and an 

enhanced inflammatory response. As in normal aging, this dysfunction can lead to altered 

cerebral blood flow, increased vascular permeability, and thrombosis, contributing to stroke and 

other cerebrovascular complications, however, in disease these present more acutely or 

severely.19 Chronic inflammation is a hallmark of many cerebrovascular diseases, involving the 

activation of microglia and the infiltration of immune cells from the circulation. This inflammation 

can lead to further endothelial damage, contribute to the formation of atherosclerotic plaques, and 
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exacerbate brain injury following ischemic events.26 Excessive production of reactive oxygen 

species leads to oxidative stress, damaging cellular components, including DNA, proteins, and 

lipids. In cerebrovascular diseases, oxidative stress is both a cause and a consequence of 

endothelial dysfunction and inflammation, perpetuating the cycle of vascular damage.16  

Atherosclerosis, the buildup of plaques in the arterial walls, is another primary cause of 

cerebrovascular diseases. Plaque formation narrows and stiffens the arteries, impeding blood 

flow to the brain and increasing the risk of ischemic stroke. Plaque rupture can also lead to 

thrombosis and embolic strokes. Beyond atherosclerosis, the arteries can become stiff due to the 

loss of elastin and the accumulation of collagen in the vascular wall, a process that is accelerated 

by hypertension and diabetes. This stiffness reduces the arteries' ability to buffer the pulsatile 

blood flow from the heart, challenging the cerebral autoregulation mechanisms.27 In 

cerebrovascular diseases, the brain's microvasculature undergoes excessive degeneration 

beyond that associated with normal aging, that result in reduced blood flow, impaired nutrient 

delivery, and increased susceptibility to toxins. These pathophysiological factors effectively 

reduce the tissue’s ability to obtain oxygen (i.e., decrease OEF), which causes neuronal damage 

and can eventually lead to cognitive dysfunction.  

Advanced imaging techniques, like MRI, are instrumental in diagnosing cerebrovascular 

diseases by visualizing the brain's vascular structure and detecting regions of degeneration, 

ischemia, hemorrhage, or arterial blockage. These symptoms have various presentations in 

structural MRI, often as hypo- or hyperintensities, depending on the physiological phenomenon 

and the MRI technique being utilized as seen in Figure 2.2. These techniques can detect a wide 

variety of diseases and help differentiate degeneration or dysfunction associated with normal 

aging versus abnormal pathophysiology. 
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Figure 2.2. MRI of Cerebrovascular Disease (from Vemuri et al.28). Examples of various MRI contrasts, vascular 
disease presentations, and how those signals indicate disease in an image. Diffusion-weighted imaging (DWI) shows 
hyperintense subcortical infarcts. Fluid-attenuated inversion recovery (FLAIR) images display white matter 
hyperintensities and hypointense lacunes. Susceptibility-weighted imaging (SWI) exposes hypointense microbleeds. 
T2*-weighted images can reveal superficial siderosis. Lastly, combining multiple co-localized contrasts can indicate and 
differentiate healthy tissue from abnormalities like microinfarcts. 

Preventive strategies for cerebrovascular diseases focus on controlling vascular risk 

factors. These include managing hypertension, diabetes, and high cholesterol with medications, 

regular exercise and a balanced diet, and reducing smoking.29 Treatments for cerebrovascular 

diseases vary depending on the specific condition but generally include medications to manage 

symptoms and prevent disease progression, interventions to restore blood flow, and rehabilitation 

to recover lost functions.30 These treatments are critical to consider early before an individual 

experiences an event like a stroke that may cause irreversible damage. 

The motivation of the work to follow aims to develop better tools for improving 

understanding and earlier diagnosis of cerebrovascular-linked dementia. Dementia is a 

neurological disorder in which there is a decline in cognitive function beyond what is associated 

with normal aging and may include deterioration of memory, cognition, and the ability to perform 

everyday activities.2 The World Health Organization estimates that there are around 50 million 

people in the world currently living with dementia, and that there will be an as many as 82 million 

by the year 2030.1 With these staggering numbers there are immense costs of care associated 

with dementia totaling an estimated $818 billion global cost in 2015 alone, which equates to ~1% 
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of the global gross domestic product (GDP).1 In addition, there is a massive social and societal 

burden for the families and caregivers of those suffering from dementia. 

There are a variety of different clinical presentations that can lead to a dementia diagnosis 

and multiple proposed pathobiological underpinnings for each type of dementia. While 

Alzheimer’s Disease (AD) is generally considered to be the most common cause of dementia, 

accounting for about 60% of all dementia cases, vascular-related dementias are the second most 

common accounting for about 25%.31 In addition, there is increasing evidence that mixed 

dementia, in which more than one clinical classification criteria are met, is much more prevalent 

than previous research has indicated, with some studies even suggesting that mixed dementia 

consisting of AD and vascular pathologies may be the single most prevalent form of age-related 

cognitive impairment.32,33 This finding could be especially important as the vascular risk factors 

(e.g., atherosclerosis, hypertension, diabetes, etc.) associated with some dementias are currently 

the only preventable and treatable contributors. Improved understanding and early identification 

of the vascular contributors leading to dementia could therefore lead to fewer cases, better 

treatments, reduced speed of disease progression, and increased quality of life.  

For vascular contributions to cognitive impairment and dementia (VCID), there are 

heterogenous clinical presentations that likely contribute to cognitive decline and the underlying 

mechanisms are not well understood. Observance of structural vascular indicators in MRI (Figure 

2.2), such as recent stroke34, microinfarcts35, white matter hyperintensities (WMH)3, or intracranial 

atherosclerosis36, in conjunction with cognitive decline, can result in a diagnosis of VCID. 

Currently, a diagnosis of VCID is given when a patient presents with cognitive impairment 

and some molecular or neuroradiological biomarker of cerebrovascular disease.37 The most 

common neuroradiological modality utilized for this neuroimaging is MRI. MRI is prevalent in 

neurological care and research largely due to its ability to obtain non-invasive images of the whole 

brain with excellent soft tissue contrast and without ionizing radiation used in other imaging 

modalities, such as computed tomography (CT) and positron emission tomography (PET). MRI is 
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also quite flexible, and by adapting the acquisition sequence of an MRI, one can obtain images 

weighted to display contrast of specific brain structures of interest, such as grey matter, white 

matter, or cerebral vessels. The problem with most current MRI diagnostics, however, is that they 

depend on large structural changes (Figure 2.2) that are observable only after significant disease 

progression or injury, rather than the physiological changes that may precede them. The ability to 

accurately detect these early, sub-clinical changes in cerebrovascular physiology represents 

huge potential for better VCID care and outcomes.  

 

2.4 | Cerebrovascular Reactivity 

One emerging imaging biomarker for detecting changes in cerebrovascular physiology 

responses is cerebrovascular reactivity (CVR).38,39 CVR refers to the ability of cerebral blood 

vessels to dilate or constrict in response to a vasoactive stimulus, such as changes in blood 

pressure, metabolic demand, and blood carbon dioxide levels. CVR is a critical measure for 

understanding the functional integrity of the cerebrovascular system and reflects the health of the 

vascular endothelium, smooth muscle cells, and the NVU as a whole. Here we will briefly review 

the cellular mechanisms underpinning tissue-level CVR changes, the impact of normal aging and 

disease on CVR, and the methodologies for measuring CVR. 

CVR is primarily mediated by the endothelial cells on the interior surface of blood vessels. 

These cells respond to stimuli by releasing vasodilators such as nitric oxide (NO), prostacyclin, 

and endothelium-derived hyperpolarizing factor, or vasoconstrictors like endothelin-1.40 NO plays 

a pivotal role in CVR by diffusing to vascular smooth muscle cells and inducing relaxation through 

the activation of guanylate cyclase and the subsequent production of cyclic guanosine 

monophosphate (cGMP). Astrocytes also contribute to CVR by transmitting signals from neurons 

to the vasculature, thus linking neuronal activity with cerebral blood flow adjustments. Changes 

in intracellular calcium concentrations within astrocytes can trigger the release of vasoactive 

substances that influence vascular tone.40 On a tissue level, CVR encompasses the coordinated 
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response of the entire cerebrovascular network, from large arteries to arterioles, ensuring 

adequate blood flow distribution throughout the brain. This is demonstrated in Figure 2.3, where 

the vessels go from a baseline state to dilated after the introduction of a hypercapnic stimulus, 

and then return to their baseline state after the vasodilatory stimulus is removed.41 

 
Figure 2.3. Tissue Response to Hypercapnic Stimulus (from Bhogal et al.41). Schematic of how cerebral vasculature 
responds to CO2 stimulus. A) Normal blood distribution (B) increases with the introduction of hypercapnic gas (C) until 
reaching some maximal response and (D) returns to normal after hypercapnic gas is removed. 
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Normal aging is sometimes associated with a decline in CVR.42 This decline is attributed 

to several factors, including increased arterial stiffness, reduced endothelial nitric oxide 

availability, and diminished smooth muscle cell responsiveness. These changes result in a 

decreased capacity of the cerebrovascular system to adequately adjust blood flow in response to 

metabolic demands and contribute to the increased risk of developing cerebrovascular diseases 

and cognitive decline observed in the elderly population.43 

Pathological conditions that affect the vasculature, such as atherosclerosis, hypertension, 

and diabetes, can lead to structural changes like vessel stiffening, endothelial damage, and 

impaired autoregulation, ultimately reducing CVR.42,44,45 In cerebrovascular diseases such as 

Alzheimer's disease46–48  and small vessel disease24, CVR is often significantly impaired. This 

impairment can be localized, affecting specific brain regions, or more global, impacting the entire 

cerebrovascular network. For instance, in stroke patients, the ischemic regions may exhibit 

reduced responses to vasodilatory stimuli49, while in Alzheimer's disease, widespread endothelial 

dysfunction can lead to globally reduced CVR.46 

MRI is a tool commonly used in research to measure CVR in a relatively non-invasive 

manner. MRI techniques that can detect changes in blood flow (Figure 2.4A) acquire images 

while a global stimulus, like CO2 gas inhalation, breath modulation, or acetazolamide (Figure 

2.4B), that actively induce a whole-brain cerebrovascular response. By comparing the images 

acquired at a baseline to the images acquired during the vascular response caused by stimulus 

administration, the extent of CVR can be determined. 
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Figure 2.4. Methods for Imaging Cerebrovascular Reactivity (from Sleight et al.39). A) Prevalence of MR techniques 
used in cerebrovascular reactivity (CVR) studies. B) Prevalence of different stimuli used in CVR studies. 

CVR is a fundamental aspect of cerebrovascular physiology, reflecting the health and 

functional integrity of the cerebrovascular system. Understanding the mechanisms underlying 

CVR, its alterations with aging and in disease, and the methods for its assessment are crucial for 

advancing our knowledge of cerebrovascular function and developing better diagnostics and 

targeted interventions to preserve cognitive health. 

 

2.5 | Effects of Gas Inhalation on Vascular Physiology 

Hypoxia and Hyperoxia Effects on Hemodynamics 

The brain consumes 20% of the total oxygen we breathe, more than any other single 

organ, despite only making up 2% of total body weight, highlighting its strong dependence on 

consistent delivery of blood.50 The oxygen dissociation curve describes how oxygen is transported 

by hemoglobin in the blood and how it is released to tissues, including the brain.51 The curve plots 

the saturation of hemoglobin with oxygen against the partial pressure of oxygen (PO2) in the 

blood. As hemoglobin becomes more saturated with oxygen, the curve plateaus, indicating that 

additional increases in PO2 result in smaller increases in arterial oxygen saturation (SaO2).51,52 

This property allows hemoglobin to load oxygen efficiently in the high-oxygen environment of the 

lungs and to release it in the lower-oxygen environment of the tissues. 
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PO2 and the partial pressure of carbon dioxide (PCO2) are key determinants of this 

oxygen-hemoglobin binding and release process. PO2 in arterial blood of ~100 mmHg allows for 

about 98% saturation of hemoglobin with oxygen.53,54 As blood reaches tissues where PO2 is 

lower due to ongoing oxygen metabolism, oxygen is released from hemoglobin. PCO2 in the blood 

influences the carbonic acid-bicarbonate buffer system, which is pivotal in maintaining blood pH 

and facilitating CO2 removal from the body.55 An increase in PCO2 in the blood from metabolism 

in brain tissues causes a decrease in blood pH and promotes the release of oxygen from 

hemoglobin. Conversely, in the lungs, where CO2 is being expelled, the decrease in PCO2 leads 

to an increase in pH, enhancing hemoglobin's oxygen-binding capacity, and saturating the blood 

with oxygen prior to being pumped to the rest of the body from the heart.54,55 

If there are disruptions in normal oxygen delivery to the brain, like during hypoxia, there 

are compensatory mechanisms to offset the reduced blood oxygen content, like elevations in 

CBF. Increased CBF is made possible through dilation of intracranial vessels, therefore increasing 

the blood vessel radii and cerebral blood distribution. Some biological mechanisms that have 

been proposed to explain this vasodilation during hypoxia include increases in nitric oxide, 

prostaglandins, adenosine, and sympathetic nerve activity.56 There has also been found to be 

impaired neurovascular coupling as a result of alterations in local hemodynamics from changes 

in oxygen availability.57 Conversely, increases in blood oxygen content due to hyperoxia have 

yielded mixed conclusions. While hypoxia leads to a significant decrease in arterial oxygen 

saturation (SaO2), hyperoxia leads to a much smaller percent increase in SaO2, as the normal 

physiological range in healthy adults is already near 100%. Despite the small change, hyperoxia 

may benefit ischemic tissue and cause subtle changes in tissue oxygenation.58 

These changes in hemodynamics have been studied in various pathologies of 

cerebrovascular disease in which there can be states of acute or chronic hypoxia. Lewis et al.56 

were able to induce significant decreases in SaO2 (-16-20%) and used ultrasound to observe 

significant increases in global CBF (+19-28%), arterial CBF (+18-45%), and arterial vessel 



18 
 

diameter (+7-13%) during hypoxia. Xu et al.58 used MRI to find that when healthy subjects inhaled 

14% O2 gas, decreases in SaO2 (-11±0.8%) led to significant increases in CBF (+9.8±2.3%%).  

This study also looked at hyperoxia with a 98% O2 gas inhalation condition and found that a 

modest increase in SaO2 (+1±0.05%) led to slight, but non-significant decreases in CBF. While 

these studies primarily looked at CBF, Christen et al.59 previously looked at tissue oxygen 

saturation, blood volume fraction, and vessel radius under hypoxia and hyperoxia using MRI 

methods. They found significant changes in oxygen saturation of the brain when comparing 

images acquired during hypoxia against those during normoxia or hyperoxia.  

 

Hypercapnia Effects on Hemodynamics 

The state of high carbon dioxide intake is referred to as hypercapnia. During hypercapnia 

the vascular smooth muscle cells (SMCs) surrounding brain vessels relax due to the increased 

concentration of CO2 in the extracellular space and endothelial cells.60 This increased CO2 content 

leads to a decrease in pH, SMC relaxation, and ultimately vasodilation. Specifically, increased 

interstitial CO2 and decreased interstitial pH causes an increase of open SMC and endothelial cell 

potassium channels, leading to hyperpolarization of those cells. Hyperpolarization leads to 

decreased activity of voltage-dependent calcium channels and altered membrane potentials in 

SMCs and therefore vasodilation. Additionally, increased CO2 and decreased pH can cause an 

increase in nitric oxide synthesis also contributing to SMC relaxation and vasodilation (Figure 

2.5).60 This physiological process of SMCs reacting to a CO2 stimulus in the brain is a specific 

example of CVR as discussed in the prior section and shown previously in Figure 2.3. 
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Figure 2.5. Cellular Response to Hypercapnia (from Liu et al.60). When CO2 is introduced, there is an associated 
increase in H+ that causes hyperpolarization of smooth muscle cells, relaxation of the adjacent endothelial cells, and a 
dilation of blood vessels. 

Numerous studies have reported CVR changes in response to CO2 gas which lay the 

foundation for expected CVR changes in healthy individuals and those with cerebrovascular 

diseases or cognitive impairment. Key methods and results from four of these studies are laid out 

in Table 2.1 and will serve as partial reference to the results that are presented in later chapters 

of this work. In general, these studies demonstrated an ability to detect changes in CVR using 

MRI via the introduction of CO2 inhalation. The specifics of the imaging methods and gas 

paradigms in Table 2.1 will be expanded upon in later chapters. 
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Table 2.1. Summary of Results from Previous MRI Hypercapnia CVR Studies 

Authors Subject Condition Imaging Method Gas Paradigm Region-of-interest CVR Response 

Bhogal et al.41 Healthy BOLD MRI 
Targeted EtCO2 Gray Matter 0.4 %ΔBOLD/mmHg 

Targeted EtCO2 White Matter 0.21 %ΔBOLD/mmHg 

Hare et al.61 Healthy 

BOLD MRI 
5% CO2 in air 

Gray Matter 

0.11 %ΔBOLD/mmHg 

ASL MRI 4.46 %ΔCBF/mmHg 

BOLD MRI 
5% CO2 in oxygen 

0.36 %ΔBOLD/mmHg 

ASL MRI 4.97 %ΔCBF/mmHg 

Cantin et al.47 

Healthy 

BOLD MRI 

7% CO2 in oxygen Gray Matter 0.62 %ΔBOLD/mmHg 

MCI 7% CO2 in oxygen Gray Matter 0.36 %ΔBOLD/mmHg 

AD 7% CO2 in oxygen Gray Matter 0.36 %ΔBOLD/mmHg 

Liu et al.62 

Healthy 

BOLD MRI 5% CO2 in air 

Gray Matter 0.23 %ΔBOLD/mmHg 

White Matter 0.11 %ΔBOLD/mmHg 

Moyamoya 
Proximal Gray Matter 0.12 %ΔBOLD/mmHg 

Distal Gray Matter 0.21 %ΔBOLD/mmHg 

CVR = cerebrovascular reactivity, EtCO2 = end-tidal carbon dioxide, BOLD = blood oxygen level dependent, ASL = 
arterial spin labeling, CBF = cerebral blood flow, MCI = mild cognitive impairment, AD = Alzheimer’s disease 

In this dissertation, we utilize modulations of both O2 and CO2 in healthy volunteers to 

develop new imaging tools and techniques to observe the associated physiological changes. 

These previous studies provide us a useful framework for which to compare the measures we 

observe and validate our new techniques.  

 

2.6 | Conclusions 

This chapter lays the foundational anatomy and physiology knowledge necessary to 

understand and appreciate the studies and developments described later in this dissertation. By 

exploring critical structural and functional aspects of the cerebrovascular system, the changes it 

undergoes with aging, the alterations induced by diseases, and the mechanisms of CVR, this 

dissertation contextualizes the significance of quantifying cerebrovascular function. Finally, the 

cerebrovascular responses to hypoxia, hyperoxia, and hypercapnia represent useful indicators of 

the vascular system’s adaptability and resilience and underscore the potential for gaining a better 

understanding of cerebrovascular function by advancing imaging capabilities.  
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Chapter 3 – Neuroimaging of Cerebrovascular Function 

3.1 | Imaging Background and Basics 

Neuroimaging is a pivotal tool in the study of cerebrovascular physiology, providing 

insights into the structural, functional, and metabolic aspects of the brain. In the context of 

cerebrovascular physiology, these techniques are instrumental in diagnosing diseases, 

understanding cerebral hemodynamics, and evaluating the effects of therapeutic interventions.  

Neuroimaging techniques utilize diverse physical principles that dictate the capabilities, 

limitations, and applications of each modality in studying cerebrovascular physiology. In this 

section, we discuss the physics and applications for the major neuroimaging modalities. 

Computed Tomography (CT) is a rapid imaging technique that uses X-rays to create 

cross-sectional images. CT works by emitting X-rays from a source that pass through the body 

and are detected at various angles. The attenuation of the X-rays varies with the density of the 

materials they pass through, creating a map of tissue density. This information can be 

computationally reconstructed into cross-sectional images. CT is highly effective in detecting 

hemorrhages, skull fractures, and large brain lesions, making it a crucial tool in the acute 

assessment of stroke and head injuries.63 However, its use is limited by low contrast resolution 

for soft tissues and the exposure to ionizing radiation. One specific type of CT, CT angiography, 

involves injecting a contrast into the blood to visualize cerebral vessels and assess for aneurysms, 

vascular malformations, and occlusions.64 

Positron Emission Tomography (PET) is a molecularly-specific imaging modality that most 

commonly measures metabolic processes in the brain but can also be used to measure cerebral 

blood flow and oxygenation.65,66 PET imaging is based on the detection of gamma rays produced 

by positron emission. A radioactively labeled tracer emits a positron as it decays that promptly 

annihilates with a nearby electron and produces pairs of photons traveling in opposite directions. 

The simultaneous detection of these photon pairs allows for the reconstruction of the tracer's 
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distribution, reflecting metabolic and molecular processes. Upon injection of radiotracers, PET 

can visualize cellular level activities and provide insights into brain function and the 

pathophysiology of diseases. Two prime examples of this are with the radiotracers [18F]-

fluorodeoxyglucose (FDG) and [15O]-oxygen. FDG resembles a glucose substrate and when 

injected into the bloodstream is able to provide information on brain metabolism.67 After inhalation, 

[15O]-oxygen gas traverses the systemic physiology just as normal, unlabeled O2, and is able to 

provide information related to brain OEF and CMRO2.68 With tracers like these, PET is particularly 

useful in identifying areas of the brain functionally affected by stroke, evaluating brain tumors, and 

studying metabolic change in neurodegenerative disorders.69 Despite this high specificity for 

metabolic function, PET’s use is limited by the need for ionizing radioactive tracers, low spatial 

resolution, high costs, and long scan times.  

Similar to PET, Single Photon Emission Computed Tomography (SPECT) uses gamma 

rays emitted by injected radiotracers to create images of cerebral blood flow and metabolism.70 

In contrast to PET, SPECT tracers emit a single gamma photon directly, rather than through 

positron-electron annihilation. The use of a rotating gamma camera and collimators focuses on 

photons from specific directions, enabling the reconstruction of 3D images. Although SPECT 

typically has a lower spatial resolution than PET, it is more widely available and less expensive, 

making it a useful tool for assessing cerebral blood flow, especially in stroke and dementia.71  

Magnetic Resonance Imaging (MRI) is a versatile imaging modality that uses strong 

magnetic fields and radio frequency waves to generate detailed images of the brain. MRI is based 

on the principles of nuclear magnetic resonance (NMR), a phenomenon where nuclei in a 

magnetic field respond to prescribed radiofrequency (RF) pulses. Hydrogen nuclei, primarily 

present in the body in water molecules, are aligned by a powerful external magnetic field, 

disturbed by an RF pulse, and then recorded as they return to their baseline state. The contrast 

in MRI images arises from differences in tissue properties that affect how quickly the transient 

excited magnetization signal decays and how quickly these nuclei return to their baseline 
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positions, allowing for detailed images of soft tissue structures. Unlike CT, PET, or SPECT, MRI 

does not employ ionizing radiation, making it a safer alternative for repeated imaging. MRI is 

particularly valuable in neuroimaging due to its high spatial resolution and contrast between 

different types of soft tissues, which enables detailed visualization of brain anatomy. Due to these 

inherent advantages, the next sections will explore the contrast mechanisms and quantification 

of MRI in more depth. 

 

3.2 | Magnetic Resonance Imaging 

Nuclear Magnetic Resonance (NMR) is the physical phenomenon central to MRI. NMR 

involves the interaction between atomic nuclei and external magnetic fields, along with the 

application of RF waves. This section will briefly lay out fundamental principles of NMR and how 

those are translated to MRI to form images. 

NMR is based on the quantum mechanical properties of atomic nuclei. Certain nuclei 

possess a property known as spin, which makes them behave like tiny magnets. When placed in 

an external magnetic field (B0), these spinning nuclei align with or against the direction of B0. The 

net magnetization of these spins tends to align with the applied magnetic field, but because the 

difference in spins parallel and anti-parallel to B0 is on the order of ppm, a very strong magnetic 

field is required. The nuclei primarily observed in MRI is the hydrogen nucleus, aka proton, due 

to its abundance in water and fat in the human body and its high sensitivity to magnetic fields.  

The alignment of these protons with the external field is not exact as they precess around 

the direction of the magnetic field at a specific frequency known as the Larmor frequency (Figure 

3.1A) This frequency is directly proportional to the strength of the magnetic field as in Eq. 3.1.  

Equation 3.1:     𝜔 = 𝛾𝐵0 

Where ω is the Larmor frequency, γ is the gyromagnetic ratio (γ = 42.58 MHz/T for 1H), and B0 is 

the strength of the external magnetic field. By applying a RF pulse at the Larmor frequency, it is 
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possible to perturb the alignment of 1H nuclei and cause them to absorb energy and move into a 

higher energy state (Figure 3.1B). 

 
Figure 3.1. Nuclear Magnetic Resonance (from Radiology Café72,73). A) A hydrogen molecule with intrinsic spin and 
the same hydrogen molecule precessing about the axis of an applied magnetic field (red dotted line). B) When that 
molecule is precessing in a magnetic field in the z-direction and a 90° excitation radiofrequency pulse is played at its 
Larmor frequency, the molecule tips into a higher energy state in the xy-plane. 

Once the RF pulse is turned off, these protons begin to relax back to their original state, 

during which their potential energy is released and RF signal can be detected by receive coils. 

There are two types of relaxation processes: T1 (longitudinal recovery) relaxation, where protons 

realign with the magnetic field, and T2 (transverse decay) relaxation, where protons lose phase 

coherence with one another. Additionally, while T2 defines the transverse decay, in practice this 

transverse magnetization decays faster than what T2 would indicate. This faster decay rate is 

described by T2*, and is the result of magnetic field inhomogeneities, The evolutions of net 

magnetization due to relaxation were first described by Bloch in Eq. 3.274, where magnetization 

M(t) is affected by the γ, the total magnetic field B(t), T2 in the transverse plane, and the 

equilibrium magnetization M0 and T1 in the direction of B0. 

Equation 3.2a:     
𝑑𝑀𝑥(𝑡)

𝑑𝑡
= 𝛾(𝑴(𝑡) × 𝑩(𝑡))

𝑥
−

𝑀𝑥(𝑡)

𝑇2
 

Equation 3.2b:     
𝑑𝑀𝑦(𝑡)

𝑑𝑡
= 𝛾(𝑴(𝑡) × 𝑩(𝑡))

𝑦
−

𝑀𝑦(𝑡)

𝑇2
 

Equation 3.2c:     
𝑑𝑀𝑧(𝑡)

𝑑𝑡
= 𝛾(𝑴(𝑡) ×𝑩(𝑡))

𝑧
−

𝑀𝑧(𝑡)−𝑀0

𝑇1
 

The signals generated during these relaxation processes are influenced by their local 

environments, and thus, different tissues result in different relaxation rates and create the contrast 

seen in MRI. The ability to distinguish tissue contrasts is what enables MRI to produce detailed 

images of internal structures in the brain and provide insights into anatomy and pathology. 
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The transition from observing the NMR phenomena to generating MRI involves spatially 

encoding the NMR signals to create images. As mentioned, when the nuclei return to their 

equilibrium state, their emitted signals are detected by receive coils and used to reconstruct 

images. Without spatial encoding all protons in the body would have the same Larmor frequency, 

be excited by the same RF pulses, and then relax to equilibrium simultaneously, making it 

impossible to decipher where any signal recorded specifically originated. Spatial encoding in MRI 

is achieved using gradient magnetic fields, which are superimposed on the primary magnetic field. 

By varying the magnetic field strength linearly across the body, each slice (Figure 3.2A), row, 

and column within the body experiences a slightly different Larmor frequency. The gradients that 

cause these slight differences in total magnetic field are typically referred to as slice selection, 

phase encoding, and frequency encoding gradients, with each being turned on at prescribed times 

to enable 3D spatial encoding (Figure 3.2B). This variation allows for the localization of the NMR 

signal to specific regions within the body, enabling the reconstruction of detailed image volumes.  

 
Figure 3.2. NMR to MRI with Spatial Encoding (from Radiology Café73,75,76). A) Schematic of how the slice selection 
gradient changes Larmor frequencies in space and the region that is excited by an applied RF. B) Visualization of how 
slice selection, phase encoding, and frequency encoding gradients relate to spatial positioning in image space. 

The application of NMR principles in MRI revolutionized neuroimaging, offering a powerful 

and versatile tool for exploring cerebral physiology. Through the careful manipulation of magnetic 

fields and RF pulses, MRI provides an open and malleable canvas to investigate the brain. 
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3.3 | Imaging Perfusion and Cerebrovascular Function 

In studying cerebrovascular physiology, MRI techniques leverage the sensitivity of NMR 

to measure blood flow and oxygenation. Imaging perfusion and cerebrovascular function is pivotal 

for understanding the complex dynamics of blood flow in the brain and is crucial for diagnosing 

and managing cerebrovascular diseases. This section explores common MRI techniques used 

for vascular imaging and each technique’s specific physical principles, unique outputs, and 

tailored applications. 

 

Vascular Anatomy MRI 

Magnetic Resonance Angiography (MRA) is a technique that images the blood vessels 

using MRI. It can be performed with or without contrast agents. Non-contrast techniques, such as 

Time-of-Flight (TOF) MRA and Phase-Contrast (PC) MRA, rely on the inflow-related 

enhancement of moving blood spins and the signal phase shift induced by blood flow. Contrast-

enhanced MRA uses gadolinium-based agents to increase the signal from blood, improving the 

visualization of the vascular structures.77 TOF MRA sequences are sensitive to the flow of blood, 

making stationary tissue appear dark while enhancing flowing blood. PC MRA sequences are 

designed to measure the velocity of moving blood, creating images that can map the direction 

and speed of blood flow. Contrast-enhanced MRA involves the administration of a gadolinium-

based contrast agent and the acquisition of T1-weighted images to visualize the vascular 

system.78 MRA provides high-resolution images of blood vessels, allowing for the assessment of 

vessel anatomy, integrity, and the detection of abnormalities. MRA is extensively used clinically 

in the evaluation of cerebrovascular diseases, including stroke, aneurysms, and vascular 

malformations.77,78 
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Contrast-based Perfusion MRI 

Dynamic Susceptibility Contrast (DSC) MRI utilizes contrast agents (typically gadolinium-

based) that cause a transient decrease in the MR signal due to T2* relaxation effects when the 

contrast agents pass through the cerebral vasculature. This technique measures changes in 

blood volume and flow dynamics as the contrast agent passes through the brain to generate a 

signal intensity-time curve, from which cerebral blood volume (CBV), cerebral blood flow (CBF), 

and mean transit time (MTT; the average amount of time it takes blood to travel through a volume) 

maps can be extracted.79 The technique employs rapid, T2*-weighted gradient-echo sequences 

to capture the passage of the contrast agent through the brain's vasculature. DSC-MRI is widely 

used for stroke evaluation, assessing tumor vascularity, and guiding therapeutic interventions.80 

Dynamic Contrast-Enhanced (DCE) MRI also involves the use of gadolinium-based 

contrast agents but focuses on T1 relaxation effects. The contrast agent enhances the signal 

intensity in areas with increased perfusion and permeability, allowing for the quantification of 

these parameters over time. DCE-MRI yields information on tissue permeability, including the 

transfer constant (Ktrans), which reflects the rate at which the contrast agent moves between the 

blood plasma and the extravascular space.81 It employs T1-weighted sequences that are sensitive 

to the contrast agent's presence, enabling detailed analysis of the contrast uptake and washout 

kinetics. DCE-MRI is particularly useful for assessing tumor blood supply, blood-brain barrier 

disruption, and the effects of anti-angiogenic treatments.82 

 

Non-contrast Vascular MRI 

Blood oxygen level dependent (BOLD) MRI is based on the magnetic properties of 

deoxyhemoglobin. Changes in the concentration of deoxyhemoglobin alter the local magnetic 

field, affecting the T2* relaxation time, and thus the MR signal. BOLD imaging utilizes the 

relationship of the neurovascular unit that couples increased neuronal activity to increased blood 

delivery to that region of the brain. The BOLD effect can be imaged with MRI due to the unique 
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nature of oxyhemoglobin (Hb) and deoxyhemoglobin (dHb) in red blood cells. The conformational 

difference between the two forms causes only the deoxygenated state of Hb to be paramagnetic, 

which decreases the MRI signal in its local vicinity (Figure 3.3). As an active region of the brain 

consumes oxygen, it converts Hb to dHb. While this oxygen consumption decreases the MR 

signal in the active region of the brain, simultaneous blood flow into that region of the brain 

increases (to supply oxygenated blood) to a greater percentage than the change in oxygen 

consumption. This decreases the overall dHb fraction in that active area and increases the BOLD 

signal that can be imaged, indirectly reflecting changes in blood flow and oxygenation associated 

with neuronal activity. BOLD imaging typically employs T2*-weighted gradient-echo sequences 

that are sensitive to the magnetic susceptibility effects of deoxyhemoglobin. While primarily known 

for its role in functional MRI (fMRI) to study neuronal activity, BOLD contrasts can also be used 

to assess cerebrovascular reactivity and oxygenation.9 

 
Figure 3.3. Imaging the BOLD Effect with MRI (from MRIquestions.com83). A) The conformational change that occurs 
when oxyhemoglobin (diamagnetic) is unbound from oxygen and becomes deoxyhemoglobin (paramagnetic). B) The 
paramagnetic deoxyhemoglobin (purple) causes a susceptibility difference in the micro-vessel (red) relative to the 
surrounding tissue and induces a change in local magnetic field. 

While each of these methods can yield critical insights into cerebral hemodynamics, they 

all have unique limitations. These include only providing large structural cerebrovascular 

information as in MRA, reducing accessibility with the need for contrast agents as in DCE and 

DSC, or producing qualitative information as in BOLD. MRI techniques capable of generating a 

variety of vascular metrics quantitatively and without contrast have the potential to be important 

translational technical developments. 
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3.4 | Quantitative MRI of Cerebrovascular Function 

Quantitative MRI (qMRI) of cerebrovascular function encompasses a range of techniques 

to measure the physical and functional properties of brain tissues in a quantitative manner. The 

ability to produce quantitative measures is critical for improved longitudinal monitoring, inter-

subject comparisons, and standardization of imaging biomarkers.84 Co-localized and 

individualized qMRI-derived maps of various parameters, like in Figure 3.4, have the potential to 

exponentially improve differential diagnoses with the increased prevalence of computational 

radiology and artificial intelligence in medical imaging.85,86 This section delves into a few relevant 

qMRI methods, highlighting their physical principles, acquisition and processing protocols, 

analytical approaches, and clinical applications in cerebrovascular physiology.  

 
Figure 3.4. Examples of Quantitative MRI (from Granziera et al.86). An example of how quantitative MRI techniques 
have been used to study multiple sclerosis. The plethora of approaches and contrasts can provide information about 
healthy tissue (top left), structural changes (right), normal function (bottom left), and abnormal function (bottom middle).  

Arterial Spin Labeling (ASL) MRI is a non-invasive MRI technique that uses magnetically 

labeled arterial blood as an endogenous tracer to measure CBF. The labeling is achieved by 

inverting the magnetization of incoming arterial blood upstream of the imaging slice and creating 
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a difference in magnetization between labeled blood and downstream tissue. This difference in 

magnetization results in a difference in signal intensity that can be incorporated into a kinetic 

model to directly measure CBF and provide quantitative maps of blood flow. ASL is used for 

evaluating cerebral perfusion in various pathologies, including stroke, dementia, and tumors, 

without the need for contrast agents, making it safe for patients with renal impairment.87 

Vascular Space Occupancy (VASO) MRI is a technique that quantifies relative changes 

in CBV by utilizing inversion recovery sequences timed to null the signal from blood and highlight 

the signal from the extravascular tissue.88 The difference in signal intensity corresponds to 

changes in blood volume and is used to generate CBV maps. VASO MRI has been used to map 

relative changes in blood volume associated with neuronal activity and respiratory challenges 

without the need for exogenous contrast agents, however, it still requires contrast agents to 

achieve absolute quantification.89  

Quantitative Susceptibility Mapping (QSM) utilizes the magnetic susceptibility differences 

between tissues, which are influenced by their biochemical composition like iron and myelin 

content. Susceptibility differences lead to phase variations in the MRI signal, which QSM 

algorithms convert into quantitative maps of tissue magnetic susceptibility.  This offers insights 

into localized susceptibility, which can be indicators of various neurodegenerative diseases, 

hemorrhages, and other pathologies.90 The process involves acquiring gradient-echoes to capture 

phase information followed by mathematical dipole inversion to quantify the susceptibility 

contributions from different tissues. QSM is particularly valuable for quantifying brain iron levels, 

which can aid in the diagnosis and monitoring of neurodegenerative diseases like Parkinson's 

and Alzheimer's diseases. It's also used in identifying calcifications, microbleeds, and evaluating 

venous oxygen saturation.90  

Quantitative blood oxygen level dependent (qBOLD) imaging extends the conventional 

BOLD technique by quantitatively assessing the oxygen saturation level in cerebral tissue via 

MRI. It relies on the same magnetic susceptibility differences between Hb and dHb as traditional 
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BOLD, which influence the relaxation rates of blood and surrounding tissues.91 The qBOLD 

method requires a multi-echo acquisition, such as a gradient and spin echo or asymmetric spin 

echo sequence, to quantify both T2* and T2 decay which are then used to estimate the 

oxygenation level. Two-tissue compartment modeling is applied to separate the contributions of 

intravascular and extravascular signals. The analysis involves fitting the acquired data to a 

biophysical model that describes the relationship between transverse decay and blood 

oxygenation, yielding maps of OEF and deoxygenated blood volume. The qBOLD method has 

been able to provide valuable neurometabolic information to better understand cerebrovascular 

responses in diseases like ischemic stroke.92,93 

qMRI offers significant value in diagnosing and monitoring cerebrovascular diseases by 

providing precise, objective measurements of tissue properties and enabling the detection of 

subtle changes that may not be visible with conventional  qualitative MRI. Moreover, the qMRI 

techniques described in this section allow for repeated vascular measurements over time without 

exposing subjects to contrast agents, making them ideal for longitudinal studies. However, most 

current qMRI techniques also face limitations. The acquisition and processing of qMRI data can 

be time-consuming and require sophisticated software and technical expertise, which may limit 

accessibility and potential for clinical translation. Additionally, the interpretation of qMRI metrics 

can be complicated and influenced by a range of physiological and technical factors, illustrating 

the necessity for careful standardization and validation across different MRI systems and study 

protocols. Despite these challenges, the potential of qMRI to enhance our understanding of 

cerebrovascular diseases and improve the metrics used for diagnoses and treatments remains 

substantial. 
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3.5 | Magnetic Resonance Fingerprinting 

Principles of Magnetic Resonance Fingerprinting 

Another qMRI technique that can address some of these is magnetic resonance 

fingerprinting (MRF). MRF was introduced in 2013 by Ma et al.8 as a novel approach to MRI 

acquisition and reconstruction with the capability to transform the way in which MRI is performed. 

MRF enables non-invasive, simultaneous, and quantitative mapping of multiple tissue properties 

from a single acquisition scan. This technique has potential to bring quantitative MRI to routine 

clinical use due to its inherent time efficiency, repeatability, and robustness to noise and motion. 

Traditional MRI relies largely on qualitatively “weighted” images (e.g., T1-weighted, T2-

weighted). This is done by playing a standard sequence with appropriate timings to achieve the 

contrast of interest before acquiring the image. These images are then examined, with many 

clinical diagnoses relying on hypo- or hyperintense regions relative to other surrounding tissues 

rather than a quantitative measure of the difference. This procedure has been the norm due to 

MR signal intensity not being quantitative itself, as it is a factor of the magnetic field strength, RF 

pulse profile, gradient strength and heterogeneity, noise, and many other factors aside from tissue 

properties. Additionally, existing quantitative MRI techniques provide information on a single 

parameter for each scan resulting in prohibitively long scan times and high sensitivity to external 

system characteristics.5 MRF was therefore developed to overcome these shortcomings of 

conventional MRI and existing qMRI techniques. 

MRF uses the assumption that unique tissue properties will generate a unique MRI signal 

evolution, akin to a fingerprint, when an adequately designed MR pulse sequence is utilized. By 

varying parameters such as flip angle, repetition time (TR), or echo time (TE), MRF acquires a 

series of signals that are sensitive to different tissue properties. Rather than using full resolution 

images of one contrast weighting, MRF compares the signal evolution of each voxel 

independently to simulated signal evolutions, which reveals the underlying parameters of interest. 

These simulated signal evolutions are the key aspect in allowing MRF to generate multiparametric 
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and quantitative metrics. The simulations are centered around the Bloch equations mentioned 

previously that describe magnetization and relaxation as shown in the combined form in Eq. 3.3.74 

Equation 3.3:     
𝑑𝑴

𝑑𝑡
= 𝑴× 𝛾𝑩−

𝑀𝑥𝒊+𝑀𝑦𝒋

𝑇2
−

(𝑀𝑧−𝑀𝑜)𝒌

𝑇1
 

The change in magnetization (dM/dt) is dependent on system properties that affect magnetization 

(M) and magnetic fields (B) (i.e., flip angle, RF pulse profile, TR, magnetic field strength, etc.) and 

tissue properties of T2 decay affecting transverse magnetization (Mxy) and T1 recovery affecting 

longitudinal relaxation (Mz). While conventional MRI waits different amounts of time to acquire 

images that weight the T1 or T2 component more heavily, MRF uses the Bloch equation to 

prospectively model how various combinations of tissue properties affect signal decay over time. 

This also enables MRF to consider multiple parameters that affect signal decay simultaneously.  

MRF has three key components: image acquisition (Figure 3.5A, B, and C), dictionary 

generation (Figure 3.5D), and pattern matching for reconstruction (Figure 3.5E, F, and G).94 A 

specialized pulse sequence sensitive to changes in tissue parameters of interest is first developed 

and implemented in parallel into both numerical simulations for dictionary generation and image 

acquisition (Figure 3.5A and B). The pulse sequence is used on the scanner to acquire highly 

under sampled images at multiple timepoints with different signals intensities (Figure 3.5C). This 

allows the signal intensity of each individual voxel to be extracted over time for a unique voxel 

‘fingerprint’ (Figure 3.5F). The pulse sequence is also used in parallel for the numerical 

simulations. With knowledge of the sequence parameters, simulated signal time courses can be 

calculated with varying values of parameters of interest that represent possible tissue voxels. The 

range and spacing of parameter values to use in simulations is set by the user and should be 

dictated by the expected physiological range of those parameters. The entire dictionary is 

generated by simulating every combination of varied parameters. Figure 3.5D shows an example 

of what four dictionary entries look like with parameters that could be expected in cerebrospinal 

fluid (T1=5000 ms, T2=500 ms), fat (T1=400 ms, T2=53 ms), white matter (T1=850 ms, T2=50 ms), 
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and gray matter (T1=1300 ms, T2=85 ms). The last of the three components of MRF is the 

matching algorithm. Each voxel fingerprint is compared to every dictionary entry, and the single 

dictionary entry that produces the closest fit as determined by the pattern matching algorithm is 

deemed that voxel’s match (Figure 3.5E). This best match can then be traced back to how it was 

simulated, and the parameter values used for its simulation are then assigned spatially to that 

specific voxel. To illustrate this, in Figure 3.5G the specific T1, T2, M0, and B0 values used in the 

simulation of the yellow signal evolution are assigned to the corresponding voxel in the blue box 

of each map. This can then be repeated, matching every single voxel fingerprint to the entire 

dictionary, to find each fingerprint’s best match, allowing for simultaneous, multiparametric, and 

quantitative reconstruction of the whole brain. 

 
Figure 3.5. Overview of Magnetic Resonance Fingerprinting (from Panda et al.94). (A) The same, specialized pulse 
sequence is used in both the acquisition and the simulation framework. The sequence depicted here uses variable 
pseudo-random flip angles (FA) and repetition times (TR) to maximize parameter sensitivity. (B) This sequence is 
implemented onto the scanner for image acquisition with appropriate radiofrequency (RF) pulses, gradients, and 
readouts to traverse k-space for each TR and produce (C) under-sampled images at each of these TRs. (D) This 
sequence is also implemented into numerical simulations to generate a dictionary of signal evolutions with every 
combination of varied tissue parameters. The different colors here demonstrate how tissue types with different physical 
properties result in different simulated signal evolutions. (E) The entire dictionary (every possible parameter 
combination) is then compared to (F) the signal evolution of a single voxel (or voxel fingerprint) across all timepoints. 
The dictionary entry that most closely matches that voxel fingerprint based on a pattern matching algorithm is then 
selected as that voxel fingerprint’s match. This is repeated for every voxel in the image so that there is a dictionary 
entry that best fits each voxel. (G) Since the underlying parameters used to generate the simulated dictionary are 
known, the multiple parameters for each voxel can be extracted to produce multiple quantitative parameter maps. 
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The key to MRF is the sensitivity of MRI signals to tissue-specific properties under varied 

acquisition parameters. The variations in the pulse sequences and parameters induces a wide 

range of signal evolutions that are dependent on the intrinsic properties of the tissue. The 

complexity of the sequences causes the signals from subtly different tissue types to evolve 

increasingly differently, making the resulting signal evolutions highly specific to the underlying 

tissue properties. This specificity is crucial for generating the fingerprints that can be identified in 

the matching process. Additionally, this framework of matching to signal progression makes MRF 

very insensitive to noise8,95, motion96,97, and under-sampling.98,99 

Ultimately, the two primary advantages that MRF delivers are the ability to generate (1) 

multiple and (2) quantitative tissue parameter maps from a single MRI scan. These advantages 

make MRF a compelling candidate to translate quantitative MRI to the clinic and may allow for 

shorter scan times or more contrasts in the same amount of scan time previously required. 

Additionally, the quantitative component will allow for improved intra- and inter-patient 

comparisons across multiple timepoints, as well as improved comparisons across different sites 

and scanners100 allowing for the development of imaging-based standards for clinical diagnoses, 

treatments, and research. 

 

Reliability, Repeatability, and Reproducibility with MRF 

Quantitative MRF measurements have been assessed for reliability and reproducibility 

across time, subjects, scanners, sites, field strengths, and vendors in many studies that have 

looked at one or more of these factors.5–7,101–104 Significantly reducing or entirely eliminating the 

effect of these listed factors would benefit intra-subject comparisons across time, inter-subject 

comparisons across patient groups, and accessibility across scanners (i.e., sites, vendors, 

countries). 

Konar et al.101 performed an international, multisite, dual-field strength, reliability and 

repeatability study using the ISMRM/NIST system phantom. The key advantage of performing a 
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phantom study is that the ground truth values of relaxation time are known. The first method this 

study used to evaluate repeatability was calculating the mean T1 and T2 values imaged using 

MRF in each of the phantom’s sections over 30 days at each scanner site. The second method 

they employed was calculating the coefficient-of-variation (CV) of the mean T1 and T2 values of 

each section of the phantom. Both methods provided strong indications of accurate, consistent, 

and high precision estimates of T1 and T2 with within-case CVs of less than 4% and 7% for T1 and 

T2, respectively. 

Buoniconti et al.102 and Fujita et al.104 also published scan-rescan MRF repeatability 

studies looking at human subjects as opposed to a phantom. Both studies had a single “retest” 

scan. Buoniconti performed a “traveling head” study in which their healthy volunteers were 

scanned and rescanned on multiple scanners and sites. Test-retest MRF of T1, T2, and proton 

density (PD) resulted in gray and white matter regions with high repeatability (T1 CVs from 0.7-

1.3%, T2 CVs from 2.0-7.8, and PD CVs from 1.4-2.5%) and reproducibility (T1 CVs from 2.0-

5.8%, T2 CVs from 7.4-10.2, and PD CVs from 5.2-9.2%). Fujita focused on looking at the 

reliability of MRF parameters in smaller brain regions of interest (ROIs). The primary metric used 

in this study was also within-subject CV of T1 and T2, and their model also demonstrated more 

repeatable measures of T1 than T2 across all their ROIs. 

In summary, MRF’s capacity to non-invasively quantify multiple tissue properties 

simultaneously opens a wide array of applications, but prior to clinical adoption, ensuring the 

reliability of metrics is critical.  

 

3.6 | Magnetic Resonance Vascular Fingerprinting 

Overview of MRvF 

Another key advantage of MRF is its flexibility to be adapted to any physiological 

parameters of interest, if those parameters can be computationally modeled in such a way that 

influences net magnetization from the Bloch equations. One of the earliest demonstrations of that 
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flexibility was with Christen et al.9 developing magnetic resonance vascular fingerprinting (MRvF). 

MRvF operates on the principle that the BOLD effect influences the local magnetization signal of 

tissue over time. Therefore, by prospectively biophysically modeling parameters that affect the 

magnetic susceptibility related to the BOLD signal in a voxel, you can then compare those 

modeled signals to acquired images and extract vascular parameters of interest using the MRF 

framework. 

Vascular parameters that effect the BOLD signal modeled in MRvF are cerebral blood 

volume (CBV) which reflects the relative amount of blood in a voxel, microvascular vessel radius 

(R) reflecting the geometry and size of the vessels, and tissue oxygen saturation (SO2). Variations 

in these parameters can provide significant information about cerebrovascular function and be 

indicators of diseases like stroke, epilepsy, and brain tumors.105–107 More recent studies108,109 have 

expanded MRvF to include additional parameter dimensions of T2 and apparent diffusion 

coefficient (ADC). While T2 and ADC are not directly related to the BOLD response, they 

contribute to the overall signal. By including these additional parameters into the dictionary 

simulations, variations to the signal can be better accounted for and provide even more metrics 

for characterizing tissue. 

 The ability of MRvF to simultaneously provide quantitative maps of CBV, R, SO2, T2, and 

ADC from a single scan has tremendous potential for improving the understanding of a wide 

variety of cerebrovascular phenomenon. Additionally, although still in early development, if a rapid 

scan that acquired multiple quantitative vascular metrics were possible, it could be used as a tool 

to better measure and understand cerebrovascular dysfunction at early stages of disease.  

 

Microvascular Biophysical Simulations and Dictionary Generation 

The biophysical simulation engine used to model signal evolutions for MRvF is the 

MRVox2D toolkit in MATLAB.110 This toolbox allows for the user to define a voxel with a 

microstructure, set MR pulse sequence parameters, and then simulate the MR signal progression 
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considering the effect of susceptibility inclusions and water diffusion. The user can specifically 

control the geometry of the voxel (voxel size, size/number of blood vessels and cells, spacing, 

etc.), the MR-related properties of all compartments (i.e., T1, T2, M0, and susceptibility of the blood, 

tissue, and cells), and the magnetic field and its variation (B0 strength and orientation, linear 

gradients). 

The algorithm of this toolbox is outlined in Figure A3.1. Specifically, MRVox first asks for 

the blood volume fraction, number of micro vessels, and radius of the micro vessels to generate 

the geometry of the virtual voxel on which the biophysical simulations will be performed. For cases 

where a contrast agent is considered, the user also sets the contrast agent’s magnetic 

susceptibility, diffusivity, an arterial input function, blood flow, and permeability rate. In this work 

we sought to remove the need for contrast agents and thus excluded these portions of the model. 

Next, the vessel lattice generated from the first step incorporates the static magnetic field 

corresponding to the field of the scanner, the magnetic susceptibility difference between blood 

and tissue, and constant relaxation rates of blood and tissue. The magnetic susceptibility 

difference between blood and tissue (Δχ) is given by the oxygen saturation level (SO2) as 

described by Eq. 3.4:  

Equation 3.4:     Δ𝜒 = Δ𝜒0 ∙ 𝐻𝑐𝑡 ∙ (1 − 𝑆𝑂2) 

Where Δχ is also a factor of the susceptibility difference between fully deoxygenated and fully 

oxygenated red blood cells (Δχ0, assumed to be 0.264 ppm)9 and Hct represents the 

microvascular hematocrit, which was set to 0.36.9 Radiofrequency pulses corresponding to the 

timings, flip angles, and phase angles of the same sequence implemented on the scanner are 

played with respect to these relaxation lattices, resulting in longitudinal and transverse 

magnetization progression which leads to a description of signal evolution over time. In this work, 

we primarily focused on changing blood volume fraction, microvascular vessel radii, and oxygen 

saturation while holding all other simulated inputs constant.  
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The model uses a simplified 2D plane to represent the voxel being simulated and randomly 

disperses 2D disks in the plane to represent the magnetic inclusions from blood vessels. This 

results in a 2D square lattice with a specified side length (that matches the in-plane voxel size) 

containing vessels of uniform predefined radii. Figure 3.6A shows an example of a lattice with 

disks during a simulation with magnetic field perturbations surrounding each vessel. 

 
Figure 3.6. Biophysical Simulations with MRVox. Example outputs from the MRVox simulation engine. (A) A lattice 
of the change in local magnetic gradients outside of vessels perpendicular to B0. This represents an example of a 
simulated 256 μm isotropic 2D voxel with a 256 by 256 lattice for numerical computations. A cerebral blood volume of 
5%, 42 vessels with radii of 5 μm, and an oxygen saturation of 70% was used here. (B) The magnitude and (C) phase 
of the simulated signal over time with a sequence that has a 180° refocusing pulse at 50 ms. 

This virtual voxel, in combination with the system parameters, can then be used to model 

the expected MR signal decay. Eq. 3.5111 describes the magnetic field lattice (ΔB) induced by the 

virtual voxel where B0 is the main magnetic field, kx and ky are the wave vectors in Fourier space, 

Equation 3.5:     𝚫𝑩 = 𝐵0 ×𝐹𝑇−1 {(
1

3
−

𝑘𝑥
2 sin2 𝜃)

𝑘𝑥
2+𝑘𝑦

2 )𝐹𝑇{𝚫𝛘}} 

θ is the angle between the normal of the plane and B0, and Δχ is the magnetic susceptibility lattice. 

FT and FT-1 stand for Fourier transform and inverse Fourier transform, respectively. The ΔB lattice 

is then utilized as part of the deterministic approach to model magnetization changes112 as 

illustrated in Eq. 3.6111: 

Equation 3.6:     𝑴(𝑡 + 𝑑𝑡) = 𝑴(𝑡) × 𝑒−𝑖𝛾𝚫𝑩𝑑𝑡 
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The transverse magnetization lattice, M(t), is iteratively calculated with the exponential dephasing 

factor across the lattice. From this, the signal at each time point can be determined and complex 

signal time course generated. 

 

Pulse Sequences for MRvF 

There are two primary pulse sequences we used for MRvF modeling and acquisition in 

this dissertation: a gradient-echo sampling of free induction decay and echo (GESFIDE) 

sequence and a spin- and gradient-echo (SAGE) sequence. The GESFIDE sequence was first 

introduced by Ma and Wehrli113 as a means of measuring both reversible (R2’) and irreversible 

(R2) relaxation rates in a single scan. Effective relaxation rate (R2*) is described with Eq. 3.7:114 

Equation 3.7:    𝑅2
∗ = 𝑅2 +𝑅2

′  

These relaxation rates are sensitive to sources of susceptibility, including the susceptibility 

effect of paramagnetic dHb. As a result, a sequence sensitive to these changes in brain 

oxygenation is a prime candidate for mapping vascular function with MRvF. Additionally, MRF 

requires an imaging scheme that acquires multiple images at different signal intensities in a single 

scan. The GESFIDE sequence typically acquires 30-40 brain volumes9,115,116 with sampling during 

the free induction decay (FID), refocusing period after a 180° RF, and after the spin echo (Figure 

A3.2). These echoes are dispersed throughout the signal evolution to get portions of the 

sequence that are sensitive to each of the relaxation rates. The specific version of GESFIDE we 

used in this work has 14 TEs immediately after the initial 90° excitation RF pulse, 16 TEs during 

the refocusing period including the spin echo at 100 ms, and 10 TEs after the spin echo.59,116 

GESFIDE also employs a fast-imaging technique known as echo planar imaging (EPI). 

With EPI, k-space is traversed multiple times within a single excitation, capturing several echoes 

to encode the different image contrasts associated with signal decay and refocusing. The way in 

which k-space is traversed in GESFIDE is illustrated in the pulse sequence diagram displayed in 

Figure A3.2. Concurrent with the 90° RF excitation pulse, a slice selection gradient is applied to 
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excite a specific slice of tissue. After this initial RF excitation, an EPI gradient scheme is employed. 

For multi-echo sequences, like GESFIDE, the scheme is adjusted to allow for the acquisition of 

multiple echoes within a single shot. Before each readout, a phase-encoding (PE) gradient is 

momentarily applied. The strength of this gradient is varied in a systematic way across successive 

excitations to fill different rows of k-space. The frequency-encoding (FE) gradient is applied during 

the acquisition of the echo, facilitating the rapid capture of data along rows of k-space. For each 

echo, the frequency encoding gradient is applied, allowing the MRI system to capture the signal 

and fill a line of k-space. Additionally, the GESFIDE sequence employs a crusher gradient around 

the 180° RF excitation pulse. In sequences like GESFIDE that involve multiple gradients, 

stimulated echoes can arise and contribute unwanted signal variations. Crusher gradients disrupt 

the phase coherence necessary for the formation of stimulated echoes, thereby minimizing their 

contribution to the overall MRI signal. 

Overall, each echo fills k-space in a similar pattern but at different times relative to the 

excitation, capturing varying contrasts based on T2* and T2 properties. This allows for good in-

plane spatial resolution (1-2 mm) with relatively short acquisition times (3-5 minutes). Additionally, 

by capturing multiple echoes, it's possible to use the GESFIDE sequence in an MRF paradigm. 

The second sequence we utilized for MRvF is the SAGE sequence. The SAGE sequence 

was first introduced by Schmiedeskamp et al.117 in an effort to estimate susceptibility-contrast 

perfusion-weighted brain imaging parameters from combined spin-echo (SE) and gradient-echo 

(GRE) acquisitions. Like GESFIDE, acquisition of both GRE and SE signals allows for 

measurements of R2, R2*, R2’ and their associated tissue susceptibility effects (Figure A3.3).118 

The SAGE sequence collects the full volume of the brain at fewer TEs, but with a much quicker 

total scan time than GESFIDE by acquiring all of k-space during a single TR. 

An interleaved EPI readout with GRAPPA acceleration allows for all necessary PE lines 

of k-space in a slice to be captured during a single readout pass. Effectively, this is what allows 

all k-space data needed for reconstruction of all TEs to be collected in just a few seconds. With 
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GRAPPA119, the MRI scanner acquires fewer lines of k-space than is typically necessary for the 

desired image resolution. This is achieved by undersampling which reduces the total scan time, 

however, undersampling also introduces aliasing artifacts. To accurately reconstruct the 

undersampled data, GRAPPA uses calibration scans, which are fully sampled central k-space 

regions. The calibration data gives the relationships between the signals received by different 

coils for the undersampled and the fully sampled lines in k-space. It then applies these 

relationships to predict and fill in the missing k-space lines for the undersampled data. Once the 

missing k-space data are reconstructed, a standard Fourier transform is used to convert the now-

complete k-space data into image space. This accelerated acquisition with GRAPPA 

reconstruction can achieve reduced acquisition time but typically comes at the expense of lower 

SNR compared to full k-space acquisition. 

The specific SAGE sequence used in the following work has two TEs after the initial 90° 

excitation RF pulse, a 180° refocusing RF, two TEs during this refocusing period, and a fifth TE 

near the spin echo.120 The pulse sequence diagram for this SAGE is shown in Figure A3.3, and 

shows the EPI trains at each TE that traverse in-plane k-space, a similar crusher gradient to the 

GESFIDE, and a 90° spectral-spatial excitation pulse with associated oscillating slice-select 

gradients. Spectral-excitation pulses are highly selective in space and frequency making them 

selective for exciting only water protons in a given slice, effective at robustly suppressing signal 

contributions from lipids, and ideal for scans where many slices are acquired during a single TR, 

as each slice is only excited once per TR.121 Previous uses of SAGE117,118,120 have also used 

additional simultaneous multi-slice acceleration (SMS), which accelerate the sequence even 

more by a factor of the SMS. This method allows for rapid acquisition of images with different 

contrasts in a short time, making it highly effective for dynamic studies like contrast perfusion 

imaging, where changes over time are critical. 

While multi-echo gradient and spin echo sequences like these have been used for nearly all 

previous MRvF studies thus far9,107,109,115,122, most general MRF studies have been performed with 
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sequences designed specifically for MRF.6,8,94,123,124 These MRF-specific sequences employ 

pseudorandom acquisitions with varied parameters, such as flip angles, TRs, and TEs, acquired 

with high undersampling for rapid collection of multiple time points. This acquisition scheme is 

meant to maximize sensitivity of fingerprints; however, they have been primarily designed for 

more traditional qMRI metrics like T1, T2, and M0. Sequences like GESFIDE and SAGE are 

specifically designed for sensitivity of parameters related to oxygenation and vascular function 

while still acquiring the multiple time points necessary for fingerprinting analysis. The following 

chapters will investigate some of these tradeoffs of echo train length, undersampling, and 

sequence sensitivity with these two sequences for MRvF. 

 

3.7 | Conclusions  

 In this chapter, imaging modalities, techniques, physics, and applications were reviewed 

to provide background, context, and motivations for the work done in the rest of this dissertation. 

While numerous imaging modalities are used for neuroimaging applications, MRI has distinct 

advantages of being non-invasive, not requiring ionizing radiation, sensitivity to soft tissues (like 

those in the brain), and adaptability to various contrast mechanisms (like those utilized for 

vascular imaging with MRI). The two biggest limitations with MRI have historically been its 

qualitative nature and long scan times. Although many qMRI techniques have been developed to 

address the qualitative limitation, MRF enables both quantitative and fast imaging. Additionally, 

MRF is flexible to adaptation, like with MRvF, which has the potential to enable fast, 

multiparametric, quantitative measures of cerebrovascular function and disease. The rest of this 

dissertation presents studies we performed to advance this technique towards providing 

translationally and clinically relevant biomarkers of cerebrovascular function.  
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Chapter 4 – Magnetic Resonance Fingerprinting of Oxygenation 

4.1 | Introduction and Background 

Adequate tissue oxygenation is critically important for overall brain health and function, 

and inadequate oxygen delivery, saturation, extraction, and consumption are all indicators of 

cerebral pathophysiology.69,125,126 As such, there have been several techniques developed to 

study brain oxygenation quantitatively and non-invasively with MRI.  

MRI's sensitivity to tissue oxygenation stems from the magnetic properties of 

deoxyhemoglobin. Oxygenated hemoglobin (oxyhemoglobin) is weakly diamagnetic, meaning it 

does not distort the external magnetic field significantly. In contrast, deoxygenated hemoglobin 

(deoxyhemoglobin) is paramagnetic, creating local magnetic field inhomogeneities that can 

influence MRI signal characteristics, particularly affecting the transverse relaxation rates of water 

protons in surrounding tissues. 

This blood oxygen level dependent (BOLD) phenomenon is the basis for functional MRI 

(fMRI) and has been used widely in neuroscience research for decades. In fMRI, the premise is 

that as a certain region of the brain is active, the local neurons consume more oxygen, and Hb is 

converted to dHb. This triggers an increase of oxygenated blood to flow that region, which 

outweighs the increase in oxygen consumption, leading to an overall decrease in the relative 

concentration of dHb in that region. This decreased dHb concentration causes an increased T2*-

weighted MRI signal in that local region, termed the BOLD effect, and thus provides an indirect 

measure of neuronal activity.  

While fMRI is the most common imaging method that takes advantage of the BOLD effect, 

significant work has been done to use baseline BOLD scans to extract oxygenation information 

quantitatively. This is referred to as quantitative BOLD (qBOLD) and takes advantage of the local 

susceptibility effects that dHb has on transverse relaxation rates. By utilizing a multi-echo 

sequence with gradient and spin echoes, R2*, R2, and R2’ can be determined and used to 
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retrospectively calculate various physiological measures like deoxygenated blood volume and 

oxygen extraction fraction. 

Magnetic resonance vascular fingerprinting (MRvF) is a relatively new approach that uses 

the magnetic resonance fingerprinting (MRF) framework first introduced by Ma et al.8 to 

prospectively model qBOLD signals that would result from deoxygenated cerebral vasculature 

with a specific MR pulse sequence. These prospectively generated signals can be compared to 

actual images acquired with the same sequence, and then vascular measures like cerebral blood 

volume (CBV), microvascular vessel radii (R), and oxygen saturation (SO2) can be estimated per 

voxel. These MRvF metrics offer an alternative to the analytical qBOLD models, with related 

vascular measures. 

Both MRvF and qBOLD offer enticing techniques to produce quantitative measures of 

oxygenation that can provide better understating and diagnoses of cerebrovascular function and 

diseases. This chapter describes our work to: (1) investigate different modeling and matching 

approaches for MRvF, (2) compare MRvF- and qBOLD-derived measures of oxygenation, and 

(3) validate both methods through retrospective analysis of scans collected during a controlled 

hypoxic and hyperoxic respiratory gas challenge. 

 

4.2 | Signal Evolution Modeling and Pattern Matching Considerations 

MRvF relies on biophysically simulating how MR signal is affected by a virtual voxel, and 

understanding how the vasculature influences MR signal is important for selecting an appropriate 

sequence and matching algorithm. When a voxel in the brain has a higher CBV, there will be more 

dHb in that voxel and a faster decay of signal magnitude (Figure 4.1; top left). Similarly, a voxel 

with lower SO2 will have more dHb relative to Hb and a faster signal magnitude decay (Figure 

4.1; top right). Variations in signal magnitude decay due to vessel radii (R) has been shown to 

effect transverse relaxation rates (R2 and R2*) and the ratio of ΔR2*/ΔR2 is indicative of average 

vessel size in the voxel.105,127 This can be visualized particularly after the refocusing pulse (Figure 
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4.1; top middle). The signal phase evolution can also be used in the pattern matching step of 

MRvF. The phase shift in a voxel is dependent on the magnetic field in that voxel which is affected 

by the local magnetic susceptibility of the tissue. The difference in magnetic susceptibility between 

Hb and dHb leads to differences in signal phase126 that may help disentangle the similar signal 

magnitude effects of increasing CBV and decreasing SO2. Higher CBV values result in much 

greater signal phase changes relative to the signal phase changes observed when varying R or 

SO2 (Figure 4.1, bottom). 

 
Figure 4.1. Signal Magnitude and Phase Progression. Magnitude (top) and phase (bottom) signal time-courses from 
an MRvF dictionary generated with biophysical simulations using different combinations of vascular parameters. 
Varying cerebral blood volume (CBV; left), vessel radius (R; middle), and oxygen saturation (SO2; right) result in signal 
evolution differences that enable the sensitivity of MRvF. 

 The new premise here is then to utilize this phase information that is acquired innately as 

part of the complex-valued MRI signals to increase sensitivity of MRvF. This approach requires a 

different matching algorithm, as the coefficient-of-determination (R2) method used in previous 

MRvF9,107 studies utilizes only the magnitude of the signal to determine a best match between the 

voxel fingerprint and dictionary. A common method for other non-vascular MRF studies that 

incorporates both magnitude and phase components into matching is inner product (IP).8,128–130 

Simply, the vector dot product (Eq. 4.1) between every dictionary (M) entry (j) and an image (s) 
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voxel (xi) is computed at corresponding time points (tn). The dictionary entry that produces the 

highest sum across timepoints (n) is selected as the best fit (IPmatch) for that voxel and the multiple 

parameters used to generate that entry are extracted. Repeating this for every voxel results in full 

brain mapping.  

Equation 4.1:     𝐼𝑃𝑚𝑎𝑡𝑐ℎ = 𝑚𝑎𝑥𝑗 |∑ 𝑀𝑗(𝑡𝑛) ∙ 𝑠(𝑥𝑖 , 𝑡𝑛)𝑛 | 

While the flexibility of MRF to be adapted to the physiological range of any parameter that 

can be biophysically modeled is great for examining different tissue properties and processes, 

one significant drawback is that anything that is not modeled in the simulations cannot be 

reconstructed. If the tissue properties of a certain disease are not simulated, then MRF will not be 

able to accurately detect those abnormalities. This can be mitigated through expansion of the 

dictionary with greater parameter ranges and diversity of virtual voxels, however, increasing 

dictionary size and complexity increases computational time required to both generate the 

dictionary and perform matching. Another mitigation strategy is to expand the dimensionality of 

the dictionary by increasing the number and type of parameters that are varied. Recent MRvF 

work has shown that adding T2 and ADC as modifiable parameters in the dictionary produces 

more accurate physiology, alters the signal evolutions to be more representative of tissues, and 

improves parameter mapping accuracy.108  

The simulation model used previously for MRvF has previously been validated through 

simulation studies9,105,110, phantom studies111, comparison to alternative quantitative parameter 

mapping MRI59,107,131, and through expected in vivo physiological tissue changes.59,107,108,131 There 

are two different ways that the virtual voxels have been previously designed for modeling. The 

first method has the user specify the number (N) of vessels in the virtual voxel and then the field-

of-view (FOV) is determined based on N in combination with the vessel radius (R) and cerebral 

blood volume (CBV) in that simulation as shown in Eq. 4.2.105  

Equation 4.2:     𝐹𝑂𝑉 = 𝑅√
𝜋𝑁

𝐶𝐵𝑉
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A limitation with performing the biophysical simulations with this method is that the FOV, 

which is in essence the voxel size, varies with every unique combination of R and N. Therefore, 

a second method was developed that has the user specify their FOV to match the in-plane voxel 

size of their acquired image, and then N in the virtual voxel is automatically calculated based on 

the R and CBV specified as shown in Eq. 4.3.105  

Equation 4.3:     𝑁 =
𝐶𝐵𝑉∙𝐹𝑂𝑉2

𝜋𝑅2
 

 While this method is more representative of the image voxel size; it has its own potential 

issues. Modeling only small vessels in a large piece of tissue is unrealistic and there are failed 

cases when trying to simulate large CBV with small R or large R with small CBV. Additionally, 

when utilizing the method based off Eq. 4.3, the simulation software only provides magnitude 

signal progression and no phase information. In this work we perform both methods of biophysical 

modeling and compare the results obtained. 

 

4.3 | Noise Considerations for Simulations 

The MRI simulation studies conducted here require the addition of noise to idealized 

signals to evaluate MRvF modeling and matching implementations across different SNR settings. 

Before adding this noise, it is important to understand contributors to noise in an MRI and how to 

appropriately model it. Noise in an MRI system can come from the system hardware, the 

participant in the scanner, and outside interfering contributors. System hardware induced noise 

include thermal noise due to motion of free electrons in the system, gradient and magnetic field 

instability, and resistance of the RF receive coils. Subject induced noise can be the result of 

movements interacting with the magnetic field or physiological effects.132 While some these 

contributors are more readily addressed prior to and during scan acquisition, it is impossible to 

eliminate all sources of noise in an image. 
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The statistical characteristics of noise in MRI have been extensively investigated and 

mathematically modeled with the general conclusion that thermal noise can be statistically 

modeled as a zero-mean Gaussian distribution that is independent with equal variance in real and 

imaginary components.132–135 This is simplified in Eq. 4.4 where the MR signal acquired, 

Equation 4.4:     𝑆(𝑓) = 𝑆𝑅(𝑓) + 𝑁𝑅(𝑓) + 𝑖(𝑆𝐼(𝑓)+ 𝑁𝐼(𝑓)),     𝑖 = √−1 

S(f), is dependent on uncorrelated complex noise, N(f), in the real and imaginary domains. 

Therefore SR(f) and SI(f) represent the real and imaginary true (noise-free) signals respectively, 

and NR(f) and NI(f) represent the real and imaginary Gaussian noise contributions. An inverse 

discrete Fourier transform of S(f) converts the signal to image-space. Since the Fourier transform 

of a Gaussian is another Gaussian, the noise in the image can continue to be described with 

independent normal distributions in the real and imaginary parts with equal variances.  

While this is helpful for describing noise in real and imaginary images, the typical MRI is 

displayed as a magnitude image, and for this work it is also vital to understand noise properties 

in the phase image as well. It has been previously derived then that the distribution of pixel 

intensities observed in magnitude images with noise can be described with a Rician probability 

density function.133–135 Additionally, it has been shown that in the presence of no magnitude signal, 

this Rician distribution reduces to the Rayleigh distribution, and with high SNR (>2) the distribution 

can be approximated as Gaussian.133–135 The deviation of the phase angle due to noise has been 

derived and demonstrated to be represented by a random distribution of all angles when there is 

no underlying signal and a Gaussian distribution when the signal is significantly higher than the 

standard deviation of the noise.133 

Here, simulations in which noise is introduced must closely consider the target SNR and 

the components (real/imaginary or magnitude/phase) to which the noise will be added to 

appropriately model the noisy MR signal. Since the noise in areas where there is no tissue is not 

relevant in the simulation framework, the Rayleigh distribution for signal magnitude can be 
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ignored. Additionally, images acquired with the GESFIDE sequence that is utilized here have 

demonstrated high SNR (~80-100) and therefore the pixel intensities and phases are expected to 

fall into the Gaussian distribution.  

Many initial implementations of MRF have used highly under sampled images across the 

signal evolution timepoints which can result in very poor SNR and parallel imaging techniques 

that complicate the derivation of the noise distribution functions.8,95,136 The GESFIDE sequence 

retrospectively analyzed here, however, acquires fully sampled data and does not utilize 

multiband techniques, therefore not introducing these additional noise considerations. Another 

concern with MRF is intra-scan subject motion that causes voxels in the brain to move relative to 

their initial position.96,97 While MRF is robust to a random movement and return to initial position, 

it is not impervious to a mid-scan or gradual movement by the subject. Mitigation of the influence 

of noise on images and parameter maps can be addressed at multiple levels: prospectively 

through scanner quality control, appropriate sequence design, and minimizing subject movement, 

and retrospectively, if necessary, through spatial or temporal signal filtering, denoising algorithms, 

or other preprocessing steps. 

 

4.4 | Testing Model and Algorithm Combinations 

To explore various modeling and matching strategies as laid out in Section 4.2, we 

performed Monte Carlo simulations on noisy signals. First we generated four vascular 

fingerprinting dictionaries for the simulated sequence using the MRVox110,111 toolkit in MATLAB 

with 2D virtual voxels. The first dictionary used the model from Eq 4.2 and the second used Eq 

4.3. The third and fourth dictionary were identical to the first two, but with an added T2 dimension. 

Matching was performed on the complex or magnitude signal, and with a typical inner product 

algorithm (Eq 4.1) or a 2-step iterative inner product. All ten of these various model/matching 

combinations are detailed in Table A4.1. The sequence used in simulations was the multi-echo 

sequence with both gradient and spin echo sampling, GESFIDE, described previously. 
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Biophysical simulations used combinations of 40 values of SO2 from 0 to 100%, 40 values of CBV 

from 0.1 to 25%, 40 values of R from 2 to 24 µm, and when applicable, 40 values of T2 from 40-

140 ms for a total of 64,000 unique signal evolutions for the first two dictionaries and 2,560,000 

unique signal evolutions for the last two dictionaries. 

We added Gaussian noise at an SNR of 100 (based off the first TE) independently to the 

real and imaginary components of a randomly selected dictionary entry to create a test signal 

before matching it against the entire dictionary. We calculated the root-mean-squared error 

(RMSE) between the estimated parameters from the best match and the true underlying 

parameters and repeated this with a random dictionary entry 1,000 times, for each of the 10 

modeling/matching combinations. 

 
Figure 4.2. GESFIDE Simulations with Varying Models and Matching Strategies. Root-mean-square error (RMSE) 
between the actual parameter values and the predicted values from the noisy signal using each of the ten methods 
described in Table A4.1. Each boxplot represents 1,000 Monte Carlo simulations with Gaussian noise added to 
simulated signals at a signal-to-noise ratio of 100. Outliers were removed with the ROUT method and Q set to 1%. 

The most noticeable observations from these simulations (Figure 4.2) were that the 

methods based on Eq. 4.3 (G-K) had lower average error for CBV and significantly lower 
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estimation errors of T2. In contrast, the methods based on Eq. 4.2 without the additional T2 

dimension (A-D) had lower average error for R. 

After simulations, we performed retrospective MRvF analysis on 12 healthy volunteers 

(33±6 years) that had been scanned at 3T (MR 750, GE Healthcare Systems) with the GESFIDE 

sequence (TR=2000 ms, 40 TEs, spin echo=100 ms, in-plane resolution=1.5×1.5 mm, slice 

thickness=2.5 mm, matrix=128×128, 12 slices, scan time=4 min). In addition to the GESFIDE 

imaging for oxygenation measurements, a T1-weighted image for structural information and 

registration was also collected. GESFIDE acquisitions were acquired while participants inhaled 

hypoxic gas (14% O2), normal air (21% O2), and hyperoxic gas (100% O2) using a custom gas 

delivery setup (Figure A4.1) with the goal of measuring the effects of inhaled oxygen with MRvF. 

Each of the GESFIDE images was used in MRvF with each of the ten different methods from 

Table A4.1 to reconstruct CBV, R, SO2, and T2 parameter maps. 

 
Figure 4.3. Average Parameter Values in Gray Matter Across Conditions and Methods. Group average maps 
across each method and inhalation condition were created for each parameter. One-way ANOVA with Bonferroni 
correction was performed independently within each method to observe significant differences between inhalation 
conditions (*=p<0.05, **=p<0.01, ***=p<0.001, ****=p<0.0001). Shapes and error bars represent mean and standard 
deviation, respectively. 
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We linearly registered the first echo of the GESFIDE image for each breathing condition 

to each subject’s T1-weighted image (FLIRT137,138), and nonlinearly registered each T1-weighted 

image to the MNI structural atlas (FNIRT139). These two transformations were applied to all MRvF 

parameters to get all subjects’ maps into the same standard space. We then averaged those 

maps in MNI space across parameter, oxygen condition, and method to create group averages 

of CBV (Figure A4.2), R (Figure A4.3), SO2 (Figure A4.4), and T2 (Figure A4.5). With just 12 

slices and limited brain coverage in the z-direction, we used the frontal and parietal cortical gray 

matter as the region-of-interest (ROI), since it was where the most subjects had overlapping 

volumes. Finally, we calculated the mean and standard deviation from each group average in this 

ROI (Figure 4.3). 

We compared the ability to detect the changes in brain physiology due to different oxygen 

inhalation conditions across MRvF methods using one-way ANOVA within each method for each 

parameter. We found minimal differences due to gas breathing across any of CBV, R, or T2, but 

most MRvF methods showed significance for SO2 changes with different gas conditions. Group 

average MRvF-derived SO2 was significantly different between hyperoxia and hypoxia for 

methods B-J, hyperoxia and normoxia for methods D and H, and normoxia and hypoxia for 

methods E and J (Figure 4.3).  

 

4.5 | Comparison of MRvF and Quantitative BOLD 

Several different MRI methods to measure brain oxygenation (specifically oxygen 

extraction fraction) have been demonstrated and compared.50,126 Both qBOLD91,140,141 and MRvF9 

represent promising approaches, so next we directly compared these oxygenation methods in the 

same healthy, young participants described in the previous section during the various oxygen 

inhalation conditions.  

For MRvF analysis, method F was used for comparison as it was the best performing 

method using Eq. 4.2 based on numerical simulations in the previous section. For qBOLD 
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analysis, GESFIDE data were first motion corrected with MCFLIRT138 and smoothed with a 

Gaussian kernel (σ=1.5mm) to mitigate the effect of noisy voxels (Figure 4.4). R2’ was calculated 

by using the free induction decay (FID) denoted as regime A of signal evolution, with decay rate 

of R2,*A, and refocusing echoes (regime B) with decay rate R2,*B (Eq. 4.5).  

Equation 4.5:     𝑅2
′ =

𝑅2,𝐴
∗ −𝑅2,𝐵

∗

2
 

 We implemented the linear qBOLD model142 in MATLAB to apply a linear fit of the 

GESFIDE signal echoes after a spin echo displacement time of τ > 15ms (total of 5 data points). 

Deoxygenated blood volume (DBV) was then estimated directly from the linear model, where DBV 

is the offset between the linear intercept and the spin echo data. 

Equation 4.6:     𝑂𝐸𝐹 =
3∙𝑅2

′

𝐷𝐵𝑉∙𝛾∙4𝜋∙Δ𝜒0 ∙𝐻𝑐𝑡∙𝐵0  
 

OEF was calculated by known constant of proportionality (Eq. 4.6), where γ is the proton 

gyromagnetic ratio, Δχ0 is the susceptibility difference between Hb and dHb, Hct is the hematocrit, 

and B0 is the external magnetic field strength. 

 
Figure 4.4. Quantitative BOLD Method. Schematic of the quantitative BOLD (qBOLD) linear model applied to the 
GESFIDE sequence. After preprocessing involving motion correction and smoothing, oxygen extraction fraction (OEF) 
is calculated by known constants of proportionality from deoxygenated blood volume (DBV) and R2’. 

When comparing linear qBOLD and MRvF, qBOLD R2’ is calculated from the free induction 

decay and refocusing echoes, while DBV is calculated from the post-spin echo TEs. These are 



55 
 

then combined to calculate OEF using Eq. 4.6. In contrast, for MRvF the entire signal (all TEs) is 

used to calculate all parameters simultaneously (Figure 4.5). While both qBOLD and MRvF 

generate parameter values for each voxel independently, the parameters themselves differ as 

qBOLD produces maps of R2’, DBV, and OEF while MRvF generates maps of CBV, R, and SO2. 

OEF reflects the relative difference in the oxygen saturation of arterial and venous blood, whereas 

SO2 reflects the oxygenation in the tissue. Therefore, these two metrics are very closely related, 

as the level of tissue oxygenation is dependent on the OEF from the capillaries and can be 

converted to one another for direct comparison. 

 
Figure 4.5. Comparison of MRvF and qBOLD Signals and Outputs. The GESFIDE sequence (middle) with example 
group average parameter maps generated from two different approaches, MRvF (bottom) and qBOLD (top). MRvF 
uses all 40 echoes available in the imaging data to reconstruct its four parameter maps, while the qBOLD method here 
uses the free induction decay and refocusing signal to produce R2’ maps, and the post spin echo signal to produce 
deoxygenated blood volume (DBV) and oxygen extraction fraction (OEF) maps. 
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4.6 | Validating Oxygenation Measurements with Hypo-, Norm-, and Hyperoxia 

For this direct comparison of MRvF and qBOLD metrics, we converted SO2 measurements 

acquired using MRvF to OEF using Eq. 4.7: 

Equation 4.7:     𝑂𝐸𝐹 =  
𝑆𝑎𝑂2−𝑆𝑣𝑂2

𝑆𝑎𝑂2
 

Here, SvO2 stands for venous oxygen saturation and represents the measurements obtained from 

SO2 from MRvF for each voxel, and SaO2 is the average arterial oxygen saturation recorded via 

pulse oximeter throughout each scan. OEF maps from both MRvF and qBOLD were transformed 

into MNI space as in the previous section, to create group average maps. A linear mixed-effects 

model adjusted for subject clustering was generated for the OEF for each subject and oxygen 

condition using the same ROI as in the previous section. Values of OEF from qBOLD and MRvF 

were demonstrated to be directly correlated, although MRvF tended to estimate slightly higher 

results (Figure 4.6). 

 
Figure 4.6. Correlation Between MRvF- and qBOLD-derived OEF Measurements. The correlation between MRvF-
derived OEF and qBOLD-derived OEF during different oxygen inhalation conditions in gray matter of the frontal and 
parietal lobes. A linear mixed-effects model adjusted for subject clustering was fit to all participants across all conditions 
(purple line). 
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To verify the physiological effect of the induced hyperoxia and hypoxia conditions, arterial 

blood oxygenation was measured via pulse oximeter throughout scans. We calculated the change 

in OEF from normal air to hypoxia and hyperoxia in relation to the change in average SaO2 from 

the pulse oximeter during normal air compared to hyperoxia and hypoxia with another linear mixed 

effects model adjusted for subject clustering. Both qBOLD and MRvF showed significant 

increases in OEF as the arterial blood oxygenation decreased as expected (Figure 4.7). 

 
Figure 4.7. Validation of OEF Measures from MRvF and qBOLD Against Pulse Oximeter. A linear mixed effects 
model adjusted for subject clustering was fit to the change in OEF (measured with either MRvF or qBOLD) in gray 
matter and the change in arterial oxygen saturation (SaO2) measured by pulse oximetry. ΔOEF and ΔSaO2 refer to the 
change from normoxia for each participant independently. 

While there is not a “gold-standard” MRI method to measure oxygen extraction fraction in 

the brain, the ability to detect expected changes during controlled physiological experiments can 

be a useful validator for a new technique. Therefore, the average regional OEF measurements 

using both techniques were compared. Both qBOLD and MRvF showed significant changes in 

OEF during hypoxia compared to the normal air and hyperoxia conditions (Figure 4.8). However, 

the OEF values from MRvF under all three conditions were higher, and OEF during hypoxia 

compared to normoxia or hyperoxia was much more elevated using MRvF (Figure 4.8). 
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Figure 4.8. Oxygen Extraction Fraction Across Oxygen Conditions with MRvF and qBOLD. OEF values derived 
using MRvF and qBOLD during different oxygen inhalation conditions in gray matter of the frontal and parietal lobes for 
all subjects. 

 

4.7 | Discussion and Conclusions  

The findings of this study reveal that brain OEF measurements from both qBOLD and 

MRvF provide sensitivity to physiological changes across hypoxic and hyperoxic inhalation 

conditions. OEF maps from MRvF visually showed higher SNR and more significant changes 

during different gas conditions, potentially reflecting the robustness of fingerprint matching to 

noise. Another possible reason the MRvF OEF has more significant changes in relation to 

changes in SaO2 could be due to the way we indirectly calculated OEF from MRvF using Eq. 4.7. 

By including SaO2 in the calculation, we may bias MRvF OEF to be related to SaO2. Theoretically, 

the SO2 measurement from MRvF should be almost exclusively driven by venous blood, however, 

during hypoxia the SaO2 decreases significantly, likely also influencing the SO2 measurements, 

and in turn making Eq. 4.7 more biased. 

For this work, a linear qBOLD model was utilized due to its simplicity of implementation 

and the GESFIDE sequence containing just five usable echoes after the spin echo for DBV 

calculations. However, more sophisticated qBOLD analytical models with 2-tissue compartments 

and Bayesian priors have been introduced and showed increased accuracy and reliability.142 This 

limitation is especially noticeable in the group average OEF map (Figure 4.5) where we observe 
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considerable noise and unphysiological values. Recent studies have shown these Bayesian 

approaches to qBOLD mapping reduce inhomogeneity in OEF maps while providing more 

physiologically reasonable measures.143 

A consistent limitation for this work, and the field of MRI-based oxygenation measures, is 

the lack of an easily accessible baseline validator for measures of cerebral oxygenation and 

oxygen consumption. The “gold-standard” for these experiments would be 15O-PET imaging, but 

practically this is rarely performed as PET imaging uses ionizing radiation and the 15O isotope has 

a half-life of only 2 minutes, which requires a very close cyclotron.50 In the absence of an available 

“gold standard”, a common practice is to induce a respiratory challenge to see if an expected 

change can be observed as we did here. Specifically, given the proportional relationships between 

CBF, CMRO2, and OEF144, during hypoxia less oxygenated blood is delivered58,145 and therefore 

the proportion extracted from the blood increases. This is consistent with our results in Figure 4.7 

for both MRvF and qBOLD. 

To summarize, in this chapter we investigated the effects of MRvF modeling and matching 

on parameter accuracy and reliability in silico and in vivo. Through a comparison with qBOLD, we 

demonstrated consistency between the techniques, reliable brain OEF measurements when 

compared against changes in SaO2 from a pulse oximeter, and expected changes in OEF in 

relation to hypoxia, normal air, and hyperoxia breathing conditions during scanning. Future 

studies can utilize these MRvF models to assess oxygenation changes in pathologies that affect 

neurovascular physiology. Finally, MRvF techniques effectively map brain hemodynamic 

parameters, including OEF, and are sensitive to changes in hypoxic and hyperoxic gas inhalation.  
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Chapter 5 – Development and Optimization of Dynamic, Contrast-free 

Magnetic Resonance Vascular Fingerprinting 

5.1 | Introduction and Background 

Advanced MRI techniques continue to be developed to measure brain perfusion146, 

oxygenation126, oxygen metabolism147, and vascular reactivity39 to better understand normal 

cerebrovascular function and indicate dysfunction. Magnetic resonance fingerprinting (MRF) is a 

relatively new technique that innovatively leverages MRI acquisition and reconstruction in order 

to overcome limitations of existing MRI techniques for quantitative, and multiparametric mapping.8 

MRF can also improve reproducibility101–104 while being more robust to motion96,97, noise95,148, and 

under-sampling.148–151 MRF is flexible to different biophysical models and ideally suited for 

quantification of parameters that are otherwise subtle or hard to measure, such as physiology 

corresponding to a small blood compartment. MRF has been performed with ASL sequences to 

produce maps of cerebral blood flow (CBF) and arterial transit time152–154, and other fingerprinting 

studies have used combined gradient- and spin-echo sequences to simultaneously measure 

cerebral blood volume (CBV), microvascular radius (R), and oxygen saturation (SO2).9  

The latter has been referred to as MR vascular fingerprinting (MRvF) and leverages this 

framework to extract vascular parameters from BOLD signals using the fingerprinting method.9 

By varying microvascular parameters in a voxel tissue model, a dictionary containing the signal 

evolution of every combination of CBV, R, and SO2 can be generated. A pattern-matching 

algorithm matches the closest virtual voxel in the dictionary to the measured signal time-course 

(obtained from each voxel in the images) and allows the underlying parameters from the closest 

simulation to be extracted to produce multiple quantitative vascular maps (Figure 5.1). 
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Figure 5.1. Magnetic Resonance Vascular Fingerprinting Schematic. A pulse sequence that samples both gradient 
and spin echoes and is sensitive to the vascular parameters of interest is utilized for both imaging and MR physics 
simulations. Physiological ranges of cerebral blood volume (CBV), micro vessel radius (R), and tissue oxygen saturation 
(SO2) are used to simulate the MR signal in a 2D or 3D virtual voxel with each combination of those parameters. After 
the images are acquired, the time-course signal evolution of each voxel is compared to all dictionary entries. The closest 
match between the fingerprint and dictionary, as determined by the maximum inner product, allows for the extraction 
of the underlying parameters for quantitative parameter mapping.  

Thus far, MRvF techniques have been utilized to examine stroke and brain tumors and 

produced vascular parameter maps similar to those produced with existing, validated 

methods.9,107 Initial MRvF studies have all utilized either gadolinium or superparamagnetic iron 

oxide (USPIO) nanoparticle contrast agents to enhance the sensitivity of parameter matching. 

While often helpful for the visualization of vasculature and perfusion, exogenous contrast agents 

like gadolinium exclude patients that are allergic or have renal failure, and there is concern about 

the long-term deposition and toxicity of using such agents.155 Contrast agents also prevent 

dynamic, repeated studies from being possible as once the agent is injected, the patient cannot 

be imaged at baseline until the agent is cleared. Accurate brain mapping of vascular parameters 

using MRvF methods has not yet been achieved in the absence of exogenous contrast agents. 

Due to the paradigm shift of using signal progression to reconstruct images in MRF, 

pseudo-random and fast, under-sampled imaging has been used to generate reliable signal time 

courses for sensitive and accurate matching. Many of the first MRF studies8,129,156 for relaxometry 

used thousands of consecutive images to generate these time courses, but recent studies9,157 

have shown that using fewer, fully sampled images with longer TR and higher signal-to-noise ratio 
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(SNR) can achieve comparable accuracy with similar scan time. In the context of vascular 

parameters, sequences that are known to be sensitive to vascular tissue properties can be 

adopted and accelerated. A recent fast spin- and gradient-echo (SAGE) pulse sequence provides 

entire brain volumes at five echo times (TEs), is sensitive to quantitative perfusion metrics118,120, 

and could allow for dynamic vascular parameter mapping on the order of seconds. Like the 

gradient-echo sampling of the free induction decay and echo (GESFIDE) sequence used in the 

previous section and previous MRvF studies, the SAGE sequence samples signal during both the 

gradient and spin echoes, making it appropriate for qBOLD models of tissue oxygenation and 

blood volume. The SAGE sequence utilized in this work uses single shot echo planar imaging 

(EPI) readouts to allow for the full volume of the brain to be captured about every five seconds 

with five echoes collected per volume. While five TEs provide limited timepoints for an MRF 

pattern matching algorithm, a sequence with multiple TEs and very short acquisition time would 

be highly desirable for investigating rapid cerebrovascular processes and would represent a 

significant advancement from previous MRvF and MRF-ASL techniques that acquired the full 

brain on the order of 3-6 minutes.9,107,152,153,158,159 

Overall, the recent introduction of MRF advances the capabilities of MRI and can be 

specifically used to probe vascular tissue properties of interest with MRvF. This chapter describes 

our work to advance dynamic MRvF by: (1) developing contrast-free MRvF using a novel 

matching algorithm and (2) optimizing a fast combined gradient- and spin-echo acquisition 

specifically for MRvF through numerical simulations and retrospective subsampling of a longer 

GESFIDE acquisition to ultimately enable future dynamic MRvF studies. 

 

5.2 | Contrast-free Matching Algorithms for Gradient and Spin Echo Signal Curves 

A key component of MRvF is to identify a suitable algorithm to match the simulated 

dictionary to each voxel in the acquired signals. Previous studies with contrast found that certain 

vascular parameters have better sensitivity pre-contrast at certain TEs and post-contrast at other 
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TEs.9,108,131 Similarly to what was demonstrated in Chapter 4, here we proposed two ideas to 

increase the contrast-free sensitivity and accuracy of fingerprint matching: (1) using phase 

information from the signals and (2) performing multistep matching. Previous MRvF methods have 

relied entirely on the signal magnitude of the images, but the complex-valued MRI signal also 

includes relevant signal phase information that has not been exploited. The difference in magnetic 

susceptibility between hemoglobin and deoxyhemoglobin could, for instance, lead to 

physiologically meaningful differences in signal phase and improve contrast-free sensitivity.126 

Alternatively, these same studies have also demonstrated that the earlier gradient echoes are 

most sensitive to bulk tissue oxygenation and could therefore be weighted more heavily to 

estimate SO2 in MRvF. The key distinction between this matching optimization and Chapter 4’s is 

the focus here on using fewer TEs for matching to enable accelerated, dynamic acquisitions as 

will be discussed later in this chapter. 

These matching approaches were directly compared with the 40-echo GESFIDE 

sequence framework previously used for MRvF. We generated vascular fingerprinting dictionaries 

for the simulated GESFIDE sequence using the MRVox110,111 toolkit in MATLAB with 2D virtual 

voxels. The dictionary contained 64,000 signal entries through simulating combinations of 40 

values of SO2 from 0 to 100%, 40 values of CBV from 0.1 to 25%, and 40 values of R from 2 to 

24 microns (Table A5.1).  

Matching, and subsequent parameter extraction were determined by selecting the 

simulated dictionary entry that had the maximum inner product with each acquired signal. Four 

matching algorithms (Figure 5.2) were implemented utilizing the magnitude or complex signal, 

and a 1-step or 2-step matching algorithm. The first step of the 2-step methods uses only the 

gradient echoes to identify an initial range of SO2, as this signal regime is most sensitive to SO2. 

The second step uses all echoes but limits the dictionary range in the SO2 dimension to ±5% of 

the best match from the first step. We performed Monte Carlo simulations by randomly selecting 

a dictionary entry, adding Gaussian noise at a SNR of 160 independently to the real and imaginary 
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components, and then matching it against the entire dictionary. SNR was calculated using the 

first echo. We calculated the root-mean-squared error (RMSE) between the estimated parameters 

from the best match and the true underlying parameters. This was repeated 1,000 times, with a 

random dictionary entry (i.e., different vascular parameter values) each time, using each of the 

four matching algorithms on every noisy simulation. 

 
Figure 5.2. Matching Algorithms and Simulation Estimation Error. The 1-step algorithm includes Euclidean 
normalization of each dictionary entry (j) and each voxel (i) before taking the dot product between the two across all 
echoes (nTE) using (A) the magnitude of the signal or (B) the complex signal. The 2-step iterative method first uses the 
free induction decay regime (nTEA) and takes the dot product between the Euclidean normalized dictionary entries (jA) 
and each voxel (iA). The second step considers all echoes but limits the dictionary (jnew) to ±5% the SO2 match 
determined from the first step. Both steps use either (C) just the magnitude of the signal or (D) the complex signal. E) 
Numerical simulation results: The root-mean-square error (RMSE) between the actual parameter values and the 
estimated values using each of the four matching algorithms. Each bar represents 1,000 Monte Carlo simulations with 
Gaussian noise added to simulated signals at a signal-to-noise ratio of 160. RMSE was calculated by simulating the 
40-echo GESFIDE sequence and a subsampled 5-echo GESFIDE sequence. One-way ANOVA was performed to 
compare algorithm performance for 40- and 5-echoes independently. 

We then retrospectively evaluated the four matching algorithms on an in vivo GESFIDE 

acquisition in a young, healthy volunteer. The GESFIDE sequence (TR=2000 ms, 40 TEs, spin 
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echo=100 ms, field-of-view=20×20 cm2, slice thickness=2.5 mm, matrix=128×128, 12 slices, scan 

time=4 min) was acquired on a 3T scanner (MR 750, GE Healthcare Systems). We performed 

phase unwrapping and background phase removal160,161 on the GESFIDE images and then 

matched the signal time course of each voxel to the GESFIDE dictionary described above, which 

was consistent with the imaging parameters from this in vivo acquisition. 

 

5.3 | Noise Levels and Retrospective Subsampling of Echoes 

We aimed to improve the temporal resolution for vascular fingerprint mapping by 

decreasing the number of TEs acquired. MRF utilizes the signal evolution across multiple TEs, 

therefore the tradeoff between mapping accuracy and number of TEs was investigated through a 

retrospective subsampling of the GESFIDE dataset.  

We first took the previously simulated GESFIDE dictionary and subsampled in the TE 

dimension to generate new dictionaries with 20, 10, and 5 TE signal progressions. The purpose 

of this was to examine the effect of echo train length at various SNRs, as the target SAGE 

sequence has 5 TEs. Therefore, we subsampled the simulated GESFIDE dictionary signal curves 

to most closely mirror the SAGE sequence (Figure 5.3). We again randomly selected a dictionary 

entry, added Gaussian noise at SNRs of 160, 80, 40, 20, and 10, and matched it against each of 

the four dictionaries using the 2-step magnitude method. We calculated the RMSE between the 

estimated parameters and the true underlying parameters and repeated this with 1,000 random 

dictionary entries for each SNR/TE combination. 
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Figure 5.3. Schematic of GESFIDE Subsampling. GESFIDE scan and dictionary simulations with 40 echo times (TE) 
were subsampled to produce signals with 20, 10, and 5 TE, respectively. 

The retrospective in vivo GESFIDE acquisition containing 40 TEs from the same subject 

as in Section 5.2 was also subsampled to include only 20, 10, and 5 TEs. We matched the 

subsampled imaging datasets to their equivalently subsampled GESFIDE dictionaries and 

reconstructed the MRvF parameter maps with the 2-step magnitude method. The first echo of the 

GESFIDE images were registered to the subject’s T1-weighted structural scan (FSL FLIRT137,138), 

and these transforms were applied to the corresponding MRvF parameter maps from the same 

data. We segmented gray and white matter masks (FSL FAST162) from the T1-weighted image for 

calculating tissue-specific parameter averages. 

 

5.4 | Optimization of SAGE Sequence Parameters for Vascular Fingerprinting 

Our next goal was to optimize the SAGE sequence for prospective acquisition with only 

five echoes. Biophysical signal simulations were again performed using the MRVox toolkit in 

MATLAB but this time with the SAGE imaging sequence. An example of a simulated SAGE signal 

is shown in Figure 5.4, illustrating the free induction decay after the initial 90° RF pulse, the 
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refocusing after the 180° RF, and the signal dephasing after the spin echo. Eight TE patterns and 

imaging parameters were evaluated for both simulations and in vivo imaging (Figure 5.4). 

 
Figure 5.4. Optimization of SAGE Sequence Imaging Parameters. A) An example simulated signal from the spin 
and gradient echo (SAGE) sequence with the 180° refocusing pulse at 75 ms. B) Imaging parameters implemented in 
simulations and in vivo with colors indicating whether the sampled echo time is in the free induction decay (green), 
refocusing (orange), or post spin echo dephasing (blue) portion. 

We generated eight simulated dictionaries, one for each set of imaging parameters, using 

the same vascular parameter ranges as described above for a total of 64,000 entries per 

dictionary. We selected the same random combination of vascular parameters from each 
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dictionary, added Gaussian noise at an SNR of 160, and then matched the noisy signals to their 

appropriate dictionary. This was repeated with 1,000 random parameter combinations, and the 

average RMSE was calculated for each of the eight imaging TE patterns.  

To assess these SAGE imaging parameters in vivo, we scanned a healthy subject at 3T 

(Siemens Skyra) with each of the eight TE patterns in the same session. All other sequence 

parameters were kept the same (TR=4500 ms, 5 TEs, in-plane resolution=2×2 mm, slice 

thickness=5 mm, matrix size=110×110, 24 slices, in-plane GRAPPA acceleration=3). We 

matched the images from each TE pattern to the appropriate dictionary using the 2-step 

magnitude method to reconstruct CBV, R, and SO2 maps. With the optimized SAGE parameters, 

we then used numerical simulations to perform an analogous SNR analysis to what was described 

for the GESFIDE simulations. 

 

5.5 | Temporal Resolution and Noise Evaluation 

With an increase in acquisition speed and temporal resolution, there can be limitations in 

SNR. If the SNR achieved from one TR were deemed inadequate for good MRvF reconstruction, 

the sequence could be repeated, and multiple scans averaged to produce a single, higher SNR 

image. Therefore, the number of averages to reach this SNR threshold for accurate fingerprint 

matching dictates the achievable time resolution with this sequence and, ultimately, the types of 

rapid physiological changes in the brain that could be observed.  

To examine whether the SNR achieved with the optimized SAGE sequence would be 

adequate for vascular fingerprinting, we collected SAGE images from the same healthy subject 

as in the previous section and performed signal averaging on 4, 16, and 64 consecutive repetitions 

of the sequence (TR=4.5s) to achieve relative SNR (rSNR) of 2x, 4x, and 8x respectively prior to 

fingerprint matching. The total acquisition time for each of these levels of rSNR were 18, 72, and 

288 seconds, respectively. These higher rSNR images, in comparison to a single-TR image with 

no averaging, were matched to the SAGE dictionary to produce vascular parameter maps. 
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5.6 | Contrast-free Matching Accuracy, Sensitivity, and Subsampling 

The average RMSE between the estimates from the noisy signal and the true underlying 

parameters were calculated for simulated GESFIDE signals with 40 and 5 TEs (Figure 5.2). For 

the 5 TE simulations, the 2-step magnitude method had significantly lower RMSE than at least 

one other method for all three MRvF parameters. Parameter maps generated using the single 

step matching methods show unphysiologically high estimates of CBV and low estimates for SO2, 

which were improved using our iterative method (Figure 5.5).  

 
Figure 5.5. Matching Algorithms with GESFIDE Images. Parameter maps reconstructed from fingerprint matching 
a representative GESFIDE scan to the same dictionary using each matching algorithm in Figure 5.2. Maps were 
generated using (A) the 1-step magnitude method, (B) the 1-step complex method, (C) the 2-step magnitude method, 
and (D) the 2-step complex method. 

The ability of the 2-step magnitude algorithm to distinguish the best match at different 

levels of SNR and number of TEs was assessed further for each of CBV, R, and SO2 (Figure 

5.6). Twenty combinations of SNR level (160, 80, 40, 20, and 10) and echo train length (40, 20, 

10, and 5) were compared. The average RMSE for all parameters increased with decreasing 

SNR. With decreasing number of TEs, the highest RMSE was found for the 10-TE sequence for 

the majority of the simulations. 
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Figure 5.6. Effects of Signal-to-noise Ratio and Echo Train Length on GESFIDE Simulations. Mean root-mean-
squared-error (RMSE) of vascular parameters predicted from matching noisy signals and the simulated signals true 
underlying parameter values at five signal-to-noise ratios (SNR) and with five echo train lengths (TE). A random 
parameter combination was independently taken 1,000 times, and the RMSE at each SNR/TE combination was 
calculated and then averaged. 

The sensitivity of the technique was evaluated by showing the inner product matching 

metric for an example parameter combination (CBV=5%, R=5 μm, SO2=65%) and all dictionary 

entries at varying levels of SNR (Figure A5.1). In this sensitivity plot, the matching metric after 

the first step of the magnitude matching method is displayed to show the entire range of the 

dictionary. The ability to localize good potential matches (i.e., dark bands in the figures) decreases 

sharply with decreasing SNR. This was also done with the same example parameter combination 

and varying the number of TEs, but only at an SNR of 160 (Figure A5.2). Unlike with the varying 

levels of SNR, decreasing the number of TEs did not substantially change the ability to match to 

a general region of the dictionary. 
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Figure 5.7. Parameter Mapping of Subsampled GESFIDE Images. A) Cerebral blood volume (CBV), vessel radius 
(R), and tissue oxygen saturation (SO2) maps that were generated from a representative GESFIDE scan in a healthy 
volunteer. Matching was performed using all 40 echoes or to retrospective subsampled data with 20, 10, or 5 echoes 
for matching. Parameter values were averaged in the gray matter (B) and white matter (C) for maps with each number 
of acquired echoes. 

For the retrospective in vivo TE subsampling of the GESFIDE acquisition (Figure 5.7A), 

R remains visually consistent, while CBV and SO2 values overall appear to increase with fewer 

TEs. In this representative participant, quantitative regional analysis also shows that CBV and 

SO2 estimates had an increasing trend with decreasing number of TEs in both gray (Figure 5.7B) 

and white matter (Figure 5.7C). 

 

 



72 
 

5.7 | Sensitivity, Accuracy, and Temporal Resolution with SAGE Sequence 

Simulations with the eight SAGE echo patterns (Figure 5.4) generally saw reduced RMSE 

for R and SO2 matching using the sequences with the shortest first TE (patterns A, B, and SE). 

The lowest RMSE for both R and SO2 parameters was the SE pattern, which had the fifth TE 

occurring exactly at the spin echo (Figure 5.8). The in vivo parameter maps reconstructed from 

these different SAGE echo patterns showed minimal visual differences (Figure 5.8). 

 
Figure 5.8. Optimization of SAGE Sequence. A) The average root-mean-square error (RMSE) between the actual 
cerebral blood volume (CBV), microvascular vessel radius (R), and tissue oxygen saturation (SO2) values and the 
estimated values for each of the eight echo-time (TE) patterns as outlined in Figure 5.4. Gaussian noise was added 
independently to simulated signals at a signal-to-noise ratio of 160 for 1,000 Monte Carlo simulations. B) CBV, R, and 
SO2 maps generated with the different sequence parameters used in dictionary simulations and image acquisition. 

Given these results, the SE pattern was chosen as the optimal echo pattern and used in 

the next set of analyses. For SAGE simulations with varying levels of SNR, the RMSE was found 

to be significantly higher for SNRs below 80 for CBV and R estimates, and significantly higher for 

SNRs below 160 for SO2 estimates (Figure 5.9). Similarly to the GESFIDE plots, the SAGE 
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sensitivity plots show a sharp decline in the ability to distinguish adjacent dictionary entries as 

SNR decreases (Figure A5.3).  

 
Figure 5.9. Effect of Signal-to-noise Ratio on Optimized SAGE Simulations. Root-mean-squared-error (RMSE) of 
vascular parameters predicted from matching noisy signals and the simulated signals true underlying parameter values 
at five signal-to-noise ratios (SNR) with the optimized SAGE sequence. Random parameter combinations were 
independently taken 1,000 times, and the RMSE with each SNR was calculated. Outliers were removed with the ROUT 
method, and Q was set to 1% prior to one-way ANOVA with multiple comparisons and Dunnett correction. 

The tradeoff between SNR and temporal resolution was investigated in vivo by generating 

parameter maps from signal-averaged images. There were minimal observable differences 

regardless of rSNR, and the inner product matching metric remained consistently high for all rSNR 

levels (Figure 5.10A). Quantitative regional analysis showed no differences between average 

CBV, R, or SO2 values in either the gray (Figure 5.10B) or white matter (Figure 5.10C) at different 

rSNR levels and were consistent with the values and regional trends in Figure 5.7. 
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Figure 5.10. Relative SNR and Temporal Resolution of SAGE Sequence. A) Images were consecutively acquired 
with the SAGE sequence for 110 repetitions during free breathing. The first 4, 16, and 64 images were averaged to 
produce relative signal-to-noise ratio (rSNR) images of 2x, 4x, and 8x, respectively. The SAGE images with different 
levels of signal averaging then underwent MRvF matching to produce the cerebral blood volume (CBV), vessel radius 
(R), and tissue oxygen saturation (SO2) shown. The inner product (IP) maps indicate the value of the matching metric 
for each voxel. Average parameter values are shown for the gray matter (B) and white matter (C) at each rSNR for the 
representative participant. 
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5.8 | Discussion and Conclusions 

In this work, we extended existing MRvF methods to enable dynamic and quantitative 

mapping of cerebrovascular physiology and demonstrated the ability to produce robust vascular 

parameter maps in the absence of contrast agents, further increasing the techniques’ accessibility 

and translatability. While we demonstrated good accuracy (Figure 5.6) at high levels of SNR in 

simulations, in vivo parameter estimations generally had higher CBV and lower SO2 values than 

we would anticipate (CBV from 1-10%163,164 and SO2 from 50-80%125,165) in healthy individuals. 

The sensitivity plots (Figures A5.1, A5.2, A5.3) illustrate the relationship between the matching 

metric and all dictionary entries, highlighting the difficulty in disentangling CBV and SO2, as 

increasing CBV and decreasing SO2 have similar effects on the qBOLD signal. This relationship 

between CBV and SO2 likely contributes to our estimations being higher and lower, respectively, 

than we expected and is a key reason contrast agents have been used in previous MRvF studies. 

Additionally, using more echoes like previous studies with the GESFIDE sequence could have 

mitigated, but not eliminated these biases. While introducing 2-step iterative matching (Figure 

5.5) improved the SO2 maps by more heavily weighting the gradient echo portion of the sequence 

for extracting oxygenation values, adding the phase component of the signal showed limited 

effect. The limited benefit of phase may be partially related to difficulties with phase unwrapping 

and background phase removal of images prior to MRvF matching, which will be optimized in 

future work. 

While MRF has been shown to be quite robust to noise, when considering dynamic MRF, 

the minimum SNR necessary to generate accurate maps is of critical importance. Our results 

(Figure 5.10) demonstrated no meaningful differences in parameter matching after signal 

averaging, indicating that a single TR of the SAGE sequence has adequate SNR for parameter 

matching. This aligns with SNR simulation results as the in vivo images had an SNR of ~160 at 

the first echo and simulations found significantly less error at SNRs above 80 for CBV and R, and 

above 160 for SO2. These findings are relevant for dynamic mapping as one SAGE repetition with 
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this protocol took 4.5 seconds, whereas if the 4, 16, or 64 averages were necessary, each 

repetition would take 18, 72, or 288 seconds respectively, decreasing temporal resolution and the 

physiological processes these techniques could observe. This sequence could be accelerated 

even further with the incorporation of simultaneous-multi-slice (SMS) techniques used with SAGE 

previously.120 Reducing the TR of the sequence from 4.5 seconds to <2 seconds could have 

significant applications for simultaneously investigating resting-state BOLD fluctuations in parallel 

to CBV, R, and SO2 from MRvF. 

While it is positive that the SNR of this SAGE sequence was not a limiting factor of MRvF 

matching, it leads to the question of why our estimates of CBV and SO2 are higher and lower than 

we would anticipate regardless of increasing rSNR. This likely points to an issue with sensitivity 

of our dictionary as opposed to SNR of our signal. The broad inner product maxima, as seen in 

our sensitivity plots (Figure A5.1, A5.2, A5.3), illustrate this lack of sensitivity and major limitation 

of this approach. As discussed previously, contrast agents improve this sensitivity but introduce 

their own problems and limit the ability to perform dynamic studies. Therefore, a few other 

approaches to improve sensitivity could be developing new, fast sequences specifically for 

dynamic MRvF that maximize sensitivity of CBV and SO2, using a more sophisticated matching 

algorithm for distinguishing between dictionary entries, or adding additional information to the 

matching process like another parameter or phase as in Chapter 4. 

In the optimization of the SAGE sequence for MRvF, the lowest error was observed in the 

three TE patterns with the earliest first echo. These are the only three patterns that sample at the 

spin echo or later and, therefore, may have increased sensitivity to signal contributions from the 

microvasculature. Additionally, the earlier the first TE, the higher the signal and therefore better 

SNR, compared to patterns with later TEs. While adapting an existing sequence like SAGE for 

MRvF methods increases the ease of access, developing a new sequence that intentionally 

maximizes sensitivity of the three MRvF parameters is an active area of research166 and could 

increase sensitivity, accuracy, and temporal resolution. 
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Another interesting observation was that the 5-echo subsampled simulations on average 

had lower RMSE than the 10-echo subsampled simulations (Figure 5.6). Including more time 

points for fingerprint matching would seem like it should improve accuracy, so these results were 

slightly counterintuitive. However, there may be a few explanations of this phenomenon. Like the 

SAGE optimization mentioned above, the earliest TEs have drastically higher SNR than later TEs. 

With the 10-echo subsampling, we are including five additional TEs for matching, with four of 

those TEs expected to be at very low SNR portions of the signal and the fifth one still lower SNR 

than the first TE of the 5-echo subsampled sequence (Figure 5.3). The 20-echo and 40-echo 

simulations both had at least one TE earlier than the 5-echo simulations. The addition of these 

low SNR TEs may introduce significant additional noise into the matching component, negating 

the benefit of having additional timepoints. Performing the 10-echo subsampling with an earlier, 

higher SNR TE would likely result in lower RMSE for those simulations. Similarly, if we performed 

the 5-echo subsampling with the additional echoes that were added in the 10-echo subsampling 

we would expect increased RMSE due to the significantly worse SNR. The subsampling was 

conducted to most closely reflect the TE sampling we have with the SAGE sequence, however, 

additional subsampling at other timepoints could be done to investigate the optimal sampling for 

MRvF sequences in general. Both the SAGE optimization and this GESFIDE subsampling 

indicate the importance of sampling timepoints, highlight by improved accuracy with earlier TEs 

that have higher SNR. 

In this chapter we advanced MR vascular fingerprinting through pattern matching without 

contrast agents, investigating the tradeoffs between SNR, sensitivity, number of echoes, and 

temporal resolution, and optimizing an accelerated spin- and gradient-echo sequence for future 

dynamic MRvF. These techniques demonstrated improved parameter mapping with an iterative 

matching algorithm and adequate SNR with the SAGE sequence from just one repetition for 

robust vascular parameter matching on the order of seconds. This optimized, dynamic MRvF 
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framework enabled the next set of studies that look at dynamic cerebrovascular function using 

MRvF and will be discussed in the next chapter. 
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Chapter 6 – Application of Dynamic Magnetic Resonance Vascular 

Fingerprinting During Hypercapnia 

6.1 | Introduction and Background 

Accurate vascular parameter map reconstruction with MRvF is dependent on using a 

pulse sequence that is sensitive to changes in blood oxygenation. Previous MRvF studies9,107 

have used time-consuming, sequences and contrast agents to increase this sensitivity, at the 

expense of temporal resolution. In Chapter 5 we demonstrated how contrast-free MRvF 

reconstruction, in combination with a rapid acquisition, could allow for dynamic mapping of 

multiple vascular parameters and enable new investigations of dynamic vascular function in the 

brain. By utilizing a fast spin- and gradient-echo (SAGE) pulse sequence with only five echo times 

(TE) that is sensitive to quantitative perfusion metrics120, we can dynamically reconstruct vascular 

parameter maps in seconds (<5 s) rather than minutes. While five TEs provides limited timepoints 

for the pattern matching algorithm, we showed in Chapter 5 that SAGE has an adequate echo 

train length and signal-to-noise ratio for MRvF while also providing high temporal resolution and 

accuracy. 

MRvF with these advantages allows for its utilization to look at rapid physiological 

processes in the brain. One such process is cerebrovascular reactivity (CVR), which is the ability 

of the vessels in the brain to respond (constrict or dilate) in response to vasoactive stimuli, like 

carbon dioxide (CO2) gas. Due to this response, CO2 inhalation has been shown to significantly 

increase cerebral blood flow in healthy individuals, but significantly less in normal aging42,167 and 

dementia.48,168 Hypercapnia therefore is expected to also cause changes in other vascular 

parameters of interest, like those measured with MRvF. By introducing CO2 gas inhalation 

(hypercapnia) during MR acquisition, we can quantitatively measure how CBV, vessel radius, and 

SO2 change in relation to fluctuations in the stimulus. CVR has been primarily measured using 

BOLD sequences39, but with MRvF and the SAGE sequence, changes in CBV, R, and SO2 in 
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response to a vasoactive stimulus could be obtained simultaneously to BOLD for parallel 

comparison and validation of the new metrics. Insights into how the magnitude and rate of these 

parameters change may be able to provide information on disease progression and provide 

additional diagnostic value. 

The significant strides towards dynamic MRvF made in Chapter 5 of improving contrast-

free matching with a novel algorithm and optimizing a SAGE acquisition specifically for MRvF 

enable further studies to probe dynamic vascular physiology. This chapter describes our work to 

apply this advanced dynamic MRvF imaging platform in prospective scans during a controlled 

hypercapnic respiratory gas challenge. Ultimately, this work could lead to rapid, quantitative, 

and multiparametric functional imaging biomarkers of cerebrovascular physiology. 

 

6.2 | Acquisition of MR Vascular Fingerprinting During Hypercapnia 

To assess the sensitivity of MRvF-derived vascular parameters to observe rapid, 

expected changes in physiology, we set up an experiment to observe subjects’ responses to 

hypercapnic stimulus. All MRI images were acquired on a 3T scanner (Siemens Skyra). Four 

separate participants (ages 25±0.7 years, 2 female) underwent imaging that included a T1-

weighted magnetization prepared rapid gradient echo (MPRAGE) and two separate SAGE 

acquisitions with the optimized imaging parameters (TR=4500 ms, 5 TEs [29 59 98 128 158 

ms], in-plane resolution=2×2 mm, slice thickness=5 mm, matrix size=110×110, 24 slices, in-

plane GRAPPA acceleration=3), one during hypercapnia and one during free-breathing. For 

each of the two SAGE acquisitions, we repeated the sequence 110 times consecutively for an 

acquisition time of ~8.5 minutes. 

Throughout imaging, participants were connected to a gas breathing apparatus (Figure 

6.1169). The breathing apparatus was connected to a Douglas bag filled with medical grade 

hypercapnic gas (5% CO2, 21% O2, 74% N2) and contained a switch to control whether the 

participant would be breathing the gas or normal room air. The apparatus also contained a line 
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that ran out of the scanner room to a capnograph (Nonin, RespSense II) that recorded end-tidal 

CO2 (EtCO2) values from the participant. A nose plug was used to ensure that the participant 

exclusively breathed through the apparatus. Respiratory rate, heart rate, and pulse oxygen 

saturation were monitored throughout the scan to ensure participant safety and compliance. 

 
Figure 6.1. Breathing Apparatus Used During Hypercapnia MRI Studies (from Lu et al.169). 5% CO2 gas was 
delivered in 1-minute blocks that were controlled by flipping the switch (#2) between room air and the hypercapnic gas 
filled Douglas bag (#1). Each participant’s nose was clipped shut (#6) and forced to breathe through the scuba-like 
mouthpiece (#5) while in the scanner. End-tidal CO2 (EtCO2) from exhalations was monitored via a capnograph (#14) 
located outside of the scanner room. 

During CO2 inhalation, CVR takes about 30 to 60 seconds to reach near maximal 

response.170 Therefore, a gas-inhalation paradigm with four 1-minute blocks each of gas-

delivery and rest was utilized while the first set of SAGE images were acquired (Figure 6.2A). 

With this design, 13 to 14 SAGE volumes are captured during each block. This sampling rate 

during each block will be an important consideration for future work investigating the speed of 

reactivity to reach maximal response. 
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Figure 6.2. Breathing Paradigm and Stability of Parameter Mapping. Images were continuously acquired with the 
SAGE sequence for 110 repetitions times (TR) for a scan time of ~8.5 minutes. A) During the scan, the participant 
experienced four 1-minute blocks of hypercapnic gas (5% CO2) inhalation. The cerebral blood volume (CBV), vessel 
radius (R), and tissue oxygen saturation (SO2) were matched using MRvF independently at each TR. B) The parameter 
maps reconstructed from the same slice of the representative at TRs 3, 35, 62, and 87, each during periods of normal 
air breathing with typical EtCO2. C) The parameter maps reconstructed from the same slice at TRs 22, 50, 76, and 104, 
each during separate periods of hypercapnic gas breathing with elevated EtCO2.  
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6.3 | Analysis of MR Vascular Fingerprinting During Hypercapnia 

The first gradient echo (TE = 29 ms) of the SAGE sequence was extracted as a BOLD-

weighted image for each TR to directly compare our MRvF-derived metrics during gas breathing 

to BOLD responses in the same individuals. We utilized the optimal SAGE dictionary generated 

in Chapter 5, along with the 2-step magnitude matching algorithm, to reconstruct vascular 

parameter maps for the four participants. This was repeated for every TR to generate CBV, R, 

and SO2 maps at every time-point. 

Using FLIRT in FSL137,138, we registered the spin echo of the SAGE sequence to each 

participant’s T1-weighted image and then applied this transform to their BOLD, CBV, R, and 

SO2 maps. We segmented gray and white matter regions-of-interest (ROIs) on each 

participant’s T1-weighted image using FAST in FSL.162 The BOLD signal and MRvF-derived 

CBV, R, and SO2 values were spatially averaged to produce a single time course per parameter 

in each ROI for each participant. This was done for both gray and white matter during the 

hypercapnic and free-breathing SAGE acquisitions. We then manually aligned each participant’s 

EtCO2 time course to their whole-brain BOLD time course and applied this temporal alignment 

to the MRvF parameter time courses.  

To test that the BOLD, CBV, R, and SO2 curves showed cerebrovascular modulation in 

response to the block-design gas stimulus, we took the ROI time courses acquired during the 

hypercapnic SAGE acquisition and performed linear regression to the EtCO2 response60: 

Equation 6.1:     𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =  𝛽0 + 𝛽1𝐸𝑡𝐶𝑂2 + 𝛽2𝑡 + 𝜀 

where Parameter is any of BOLD, CBV, R, or SO2; t is time, included to account for signal drift; 

β0, β1, and β2 are the coefficients being estimated; and ε is residual error. With these 

coefficients, we were then able to calculate the unit percent change in our parameter relative to 

the unit change (mmHg) in EtCO2, or CVR60: 

Equation 6.2:     𝐶𝑉𝑅𝑝𝑎𝑟 =
𝛽1

𝛽0+min(𝐸𝑇𝐶𝑂2)𝛽1
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This reactivity calculation was repeated for BOLD and each of the three MRvF parameters in 

both gray matter and white matter. 

 

6.4 | Vascular Fingerprinting Parameter Responses to Hypercapnic Stimulus 

The participants exhibited an average increase of approximately 10 mmHg in EtCO2 

recordings during periods of hypercapnic gas delivery compared to free breathing. The EtCO2 

trace, the BOLD signal (from the first SAGE echo), and vascular fingerprinting derived 

measures (CBV, R, and SO2) in response to the block vascular stimulus from a representative 

subject’s gray matter are shown in the top half of Figure 6.3. The bottom half of Figure 6.3 

shows the same recordings during the second SAGE scan with free-breathing and does not 

show the same large periodic fluctuations. Example parameter maps reconstructed during 

periods of free-breathing and hypercapnia are shown in Figure 6.2. These maps also 

demonstrate the consistency of MRvF through similar parameter maps being independently 

reconstructed for hypercapnic and normal breathing conditions despite being collected minutes 

apart.  

 
Figure 6.3. Representative Gray Matter Signal Time Courses During Hypercapnia Study. Gray matter averaged 
time-courses of end-tidal CO2, blood oxygen level dependent (BOLD) signal, cerebral blood volume (CBV), 
microvascular vessel radius (R), and tissue oxygen saturation (SO2) acquired during hypercapnic stimulus blocks (top 
row) and during free breathing (bottom row) from a single participant. BOLD, CBV, R, and SO2 values represent gray 
matter averages. 
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Linear regression (Eq. 6.1) was performed for BOLD, CBV, R, and SO2 against EtCO2 

during the hypercapnic acquisition for all four subjects in both gray matter (Figure 6.3, Figure 

A6.2) and white matter (Figure A6.3). This regression analysis showed that the BOLD, SO2, 

and CBV time curves significantly (p<0.01) correlated with EtCO2 fluctuations in all participants, 

whereas R negatively correlated with EtCO2 (p<0.01). The normalized regression coefficients 

for gray matter (Table A6.1) and white matter (Table A6.2) were then used to determine the 

reactivity (CVR) of each parameter (Eq. 6.2) and averaged across subjects. BOLD-CVR and 

SO2-CVR showed similar regional differences with higher CVR in gray matter than white matter, 

while R-CVR showed the opposite trend (Table 6.1). 

Table 6.1. Regional CVR from BOLD and MRvF Parameters During Hypercapnic Stimulus

 
Table displays the mean ± standard deviation of the CVR measurements across all four participants. 

 

6.5 | Discussion and Conclusions 

Here, we demonstrated the ability to generate CBV, R, and SO2 maps on the order of 

seconds, opening the possibility to measure brain physiology with these parameters 

dynamically. We demonstrated this ability of the MRvF paradigm to detect changes in 

cerebrovascular function, observing MRvF-derived physiological changes temporally aligned 

with induced changes in EtCO2 during delivery of hypercapnic gas. 
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Significant susceptibility distortions can be seen throughout the SAGE parameter maps 

in Figures 5.8, 5.10, and 6.2 caused by the sensitivity of EPI readout to field inhomogeneity. 

The effect of these distortions was mitigated in this work by masking out those regions of the 

brain with a matching metric threshold. If the inner product was below the threshold, such as in 

areas outside the brain, regions without vascular structures like the ventricles, or areas with 

distortion artifacts, they were not included in analyses. Future studies will include scans with 

reversed phase-encode direction or field map acquisitions to allow for distortion correction of 

raw SAGE images prior to fingerprint matching. 

The utilization of the SAGE sequence and administration of CO2 resulted in temporally 

aligned EtCO2 and BOLD changes and BOLD-CVR values similar to those previously 

reported.60,171 The gray matter signal traces for the MRvF parameters (Figure 6.3) show the 

SO2 values experiencing the largest fluctuations and most temporal similarity to the EtCO2, 

while the R values experience fluctuations inversely correlated to EtCO2. While CVR can be 

defined as the ability of vessels to dilate in response to CO2, this dilation largely occurs in 

arteries, arterioles, veins, and venules that are larger in scale than the micro vessels being 

modeled here.172,173 Still, it is curious that a decrease in radius was observed, albeit on the order 

of tenths of a micron, rather than no change or a slight increase, which warrants further 

investigation. Alternatively, since the dilation is primarily expected in the larger vessels, another 

approach could be to hold microvascular radii constant, and then observe how just CBV and 

SO2 fluctuate in response to the stimulus. This could mitigate any undue influences that the 

confounding radius response may be having on the estimates of those two parameters. 

Another limitation of the hypercapnia results is that the SO2 changes, while statistically 

significant and in the expected direction, are small in amplitude. Most hypercapnic challenges 

that would increase EtCO2 by 10 mmHg likely increase CBF by 25% or more, so the 

concomitant SO2 change (assuming constant oxygen metabolism) may be expected to be 
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larger. Future studies will acquire separate baseline and hypercapnic perfusion scans to directly 

measure the increase in CBF each participant experiences during CO2 inhalation.  

One of the disadvantages of analytical MRvF matching is that only vasculature that is 

simulated can then be reconstructed, as those are the only configurations present in the 

dictionary for matching. For the study performed here, we only scanned healthy individuals and 

the ranges of our vascular parameters were appropriate for the changes we expected to see in 

the microvasculature from 5% CO2 inhalation. However, these dictionaries did only contain very 

small micro vessels, and our acquired voxels are quite large and likely heterogenous, with some 

including larger vessels with CBV and R greater than our simulated range. For future studies 

with different anticipated cerebrovascular response or pathology, it will be important to generate 

a dictionary with ranges to accommodate that. Significant advancements have also been made 

in the biophysical modeling component used for MRvF105,108,174, and realistic vascular models 

derived from high-resolution optical imaging may more accurately represent the complexity of 

brain tissue. Additionally, the use of a continuous reconstruction algorithm, like a machine 

learning implementation,175–177 could allow us to perform more accurate parameter estimation 

(particularly with so few time points for matching) without the discrete restrictions of the 

simulated dictionary. Additionally, a machine learning approach would significantly reduce the 

reconstruction time required for dynamic parameter mapping and allow for the inclusion of 

additional varied MRvF parameters, like T2 or ADC, that could provide more physiological 

relevant measures that contribute to signal progression but are currently not possible due to 

prohibitively big dictionaries with analytical matching. 

To improve sensitivity of parameter time courses, we regionally averaged parameters 

prior to EtCO2 regression. This was done to maximize the observable effect of CO2 on our 

MRvF parameters due to their higher noise and heterogeneity compared to the BOLD signal; 

however, it precluded the ability to produce voxelwise CVR maps that could identify regional 

changes in vascular function. Lastly, as Table 6.1 shows, the highest CVR is observed in the 
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gray matter of the brain, which is consistent with literature, and as such, has been a primary 

region utilized for previous CVR studies. Relatedly, our gray matter regions produced more 

robust and more physiologically reasonable MRvF values compared to white matter regions, 

likely due to higher blood volume, and therefore better sensitivity in gray matter. In addition to 

reduced signal in white matter, the biophysical model we used in this study does not capture 

microstructure orientation and other susceptibility effects, like myelin, which causes qBOLD 

analytical models to be challenging in white matter. 

To summarize, in this chapter we applied dynamic MR vascular fingerprinting to a 

hypercapnic imaging design. These results demonstrated parameter consistency over time and 

regional changes in BOLD and quantitative vascular fingerprinting estimates of CBV, R, and 

SO2 in response to an induced hypercapnic stimulus. This validated MRvF framework and 

breathing paradigm enabled exploratory studies to investigate both the magnitude and rate of 

reactivity during aging as discussed in the next chapter and could be applied to study 

cerebrovascular disease progression. 
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Chapter 7 – Magnetic Resonance Vascular Fingerprinting Measures of 

Cerebrovascular Reactivity with Aging 

7.1 | Introduction and Background 

 The cerebral vascular system undergoes normal changes with aging that affect brain 

health and function. One such change involves cerebral vascular reactivity (CVR), which is a 

critical parameter that reflects the capacity of cerebral blood vessels to dilate or constrict in 

response to stimuli and serves as an indicator of vascular health and the brain's ability to regulate 

blood flow according to metabolic demand. With normal aging there is altered neuronal activity, 

decreased cerebral metabolism, and increased arterial stiffness that can all contribute to gradual 

decline in ability to regulate blood flow and respond to stimuli.42,178,179 Significant decreases in 

CVR with aging are associated with impaired neurovascular coupling180,181, increased risks of 

cerebrovascular diseases45,49,182, and cognitive decline44,168, highlighting the need for precise, 

non-invasive methods to assess these changes. 

 Blood oxygen level dependent (BOLD) imaging and arterial spin labeling (ASL) have been 

the primary MRI techniques used to measure CVR, but they each face their own limitations. BOLD 

imaging uses the inherent magnetic differences between Hb and dHb to detect the increase in 

oxygenated blood to the brain while ASL magnetically labels blood inferior to the brain and is able 

to capture increases in blood flow as the increased volume of labelled blood travels to the brain. 

While BOLD has high spatial and temporal resolution for capturing the intricate dynamics of the 

vascular response, BOLD signal itself is qualitative in nature and therefore has limitations related 

to its interpretability and reliability. ASL, on the other hand, produces quantitative maps of cerebral 

blood flow, but is limited due to its poorer spatial resolution and long scans times limiting its ability 

to observe rapid dynamic processes. 

 Dynamic magnetic resonance vascular fingerprinting (MRvF) offers another potential way 

to obtain CVR measures from MRI during vasoactive stimulus administration. Dynamic MRvF has 
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the advantage of using fast sequences like BOLD imaging, but results in quantitative parameters 

like ASL. Additionally, since it generates multiple quantitative parameter maps simultaneously, 

each of these maps can be independently measured over time for multiple metrics of vascular 

changes in response to the same vasoactive stimulus. Finally, as demonstrated in Chapter 6, the 

accelerated spin- and gradient echo (SAGE) sequence that has been optimized for dynamic 

MRvF inherently captures a BOLD contrast image and therefore can provide co-localized 

supplemental quantitative parameters of cerebral blood volume (CBV), microvascular vessel 

radius (R), and tissue oxygen saturation (SO2) to this widely studied BOLD response. 

 In this chapter we compare the CVR measurements obtained from BOLD, ASL, and each 

of the three MRvF parameters (CBV, R, and SO2) to one another and to previously reported 

studies. We also explore the application of MRvF for measuring differences in CVR in healthy 

young and healthy old cohorts and discuss how these results can inform future dynamic MRvF 

study design. 

 

7.2 | Hypercapnic MRI Acquisition and Analysis with Young and Old Cohorts  

 We recruited 11 healthy older subjects (69.2±5.1 years old, 5 female) and 11 healthy 

younger subjects (24.3±2.9 years old, 6 female) to undergo imaging for this study. All MRI images 

were acquired on a 3T scanner (Siemens Skyra). Subjects with a history of cerebrovascular 

disease or breathing disorders were excluded from this study and all recruited subjects were 

asked to not consume anything with caffeine for 6 hours prior to the imaging session. Scans 

acquired included an MPRAGE for a T1-weighted anatomical reference and the optimized SAGE 

acquisition determined in Chapter 6 during four 1-minute blocks of hypercapnic stimulus. SAGE 

images were acquired with 5 TEs (29, 59, 98, 128, and 158 ms), a 4.5 second repetition time 

(TR), a 2×2×5 mm voxel size, a 220×220 mm in-plane FOV, 24 slices, and GRAPPA in-plane 

acceleration of 3. The sequence was repeated 125 times consecutively during a block 

hypercapnic gas inhalation paradigm for an acquisition time of about 9 minutes (Figure 7.1). The 
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first TE of the SAGE sequence was also extracted as the BOLD image (Figure 7.2A) and 

repeated for every TR (Figure 7.2B).  

 We also acquired a pulsed ASL (pASL) acquisition while the subject breathed normal air  

for 4 minutes and a pASL acquisition during a 4-minute step of hypercapnic stimulus inhalation 

(Figure 7.1). The ASL scans were acquired at baseline and during hypercapnia to calculate 

cerebral blood flow (CBF) change for comparison to the changes in the MRvF parameters. The 

pASL images were collected with settings in line with the ASL white paper183 recommendations 

for pASL: 800 ms bolus duration, 1800 ms inversion time, 35 label/control pairs, 15 ms TE, 3.5 

second TR, 3.5 mm isotropic voxel size, 224×224 mm in-plane FOV, and 35 slices. The 

acquisition time for each pASL scan was just over 4 minutes (Figure 7.1). 

 Throughout imaging, participants were connected to the gas breathing apparatus 

described previously (Figure 6.1169). The breathing apparatus allowed for controlled breathing of 

normal room air or of gas from the connected Douglas bag (5% CO2, 21% O2, 74% N2). End-tidal 

CO2 (EtCO2) measurements from the participants were recorded throughout all scans via tubing 

that ran from the breathing apparatus out of the MRI room to a capnograph (Nonin, RespSense 

II) in the scanner operating room. The participants wore a nose plug throughout the duration of 

the imaging to force breathing exclusively through the scuba-like mouthpiece of the apparatus 

and to ensure appropriate gas inhalation and accurate, continuous EtCO2 recordings. Respiratory 

rate, heart rate, and pulse oxygen saturation were also monitored throughout the scan to ensure 

participant safety and compliance. 
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Figure 7.1. Breathing Paradigms and Imaging Protocol Schematic. Scans acquired for this study included a 
magnetization prepared rapid gradient echo (MPRAGE) for a T1-weighted anatomical reference, spin- and gradient-
echo (SAGE) scans for magnetic resonance vascular fingerprinting (MRvF) and blood oxygen level dependent (BOLD) 
measures, a turbo spin echo (TSE) for T2-weighted anatomical information, pulsed arterial spin labeling (pASL) scans 
for cerebral blood flow (CBF) measures, a time-of-flight magnetic resonance angiography (TOF MRA) for examination 
of large vasculature, and a T2 fluid-attenuated inversion recovery (T2-FLAIR) for possible identification of lesions and 
white matter hyperintensities (WMH). Participants were delivered 5% CO2 gas via four one-minute blocks during the 
SAGE acquisition, and 5% CO2 gas via a four-minute step paradigm during the second pASL acquisition.  

 In preparation for MRvF analysis, biophysical signal simulations were performed using the 

SAGE sequence implemented into the MRVox toolkit in MATLAB.111 Simulated SAGE time 

courses were generated for all combinations of CBV (0-24%), R (2-50 μm), and SO2 (0-100%) 

with evenly spaced parameter sampling (Table A7.1), resulting in a simulated dictionary with 

61,500 entries. An iterative, magnitude-based matching algorithm (Figure 5.2C) was performed 

to find the simulated signal that resulted in the highest inner product with each voxel’s signal 

evolution. This was repeated for every TR to generate CBV, R, and SO2 maps at every time point 

(Figure 7.2B). 
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Figure 7.2. Diagram of Simultaneous BOLD and MRvF Acquisition. A) A specialized MRI pulse sequence is used 
in parallel for biophysical simulations and image acquisitions. The acquired signals are matched to a database of 
simulated ones, allowing for the underlying parameters of the best simulated fit to be extracted. The first echo time (TE) 
image is also separately isolated as the blood oxygen level dependent (BOLD) image. B) These underlying parameters 
can be produced for the whole brain to generate cerebral blood volume (CBV), microvascular vessel radius (R), and 
tissue oxygen saturation (SO2) maps. This process is repeated for every repetition time (TR) to monitor how the MRvF 
parameters and BOLD values fluctuate over time. 
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 We performed linear registration using FLIRT in FSL137,138, to align the spin echo of the 

SAGE sequence to the T1-weighted image for each subject and then non-linearly registered each 

T1-weighted image to an atlas in MNI space using FNIRT in FSL.139 The BOLD, CBV, R, and SO2 

maps for each subject were warped to MNI space using these subject-specific transformations. 

White matter (WM) and cortical gray matter (GM) regions of interest (ROIs) were segmented using 

the Harvard-Oxford Subcortical Atlas in the same standard space. BOLD, CBV, R, and SO2 values 

were spatially averaged in each of the GM and WM ROIs at every TR to produce mean time 

courses per parameter for each participant.  

 The partial pressure of CO2 in the subject’s exhaled breath that we recorded with the 

capnograph was processed by extracting the peaks of each breathing cycle as the EtCO2 

measurements and performing 5-point moving average smoothing. We manually aligned each 

participant’s EtCO2 time course to their whole-brain BOLD time course and applied this temporal 

alignment to the MRvF parameter time courses. CVR was calculated for each of BOLD, CBV, R, 

and SO2 for every subject and ROI using Eq. 6.1 and 6.2. We also performed voxelwise CVR 

mapping by using these same two equations and temporal alignments but using the signal 

progression for each voxel independently rather than the ROI averages. 

 We generated CBF maps for the normal air and hypercapnic ASL scans independently 

using BASIL184 with the recommended settings from the ASL white paper.183 We calculated the 

percent change CBF per voxel by subtracting the resting CBF from the hypercapnic CBF and 

dividing that difference by the resting CBF. The EtCO2 throughout the resting and hypercapnic 

ASL scans were extracted and averaged across each ~4-minute scan for separate EtCO2 values 

for each of the two scans. We then found the difference between these two EtCO2 values and 

used them in combination with the previously calculated percent change in CBF in Eq. 7.1 to 

calculate the CBF-derived CVR. 

Equation 7.1:     𝐶𝑉𝑅𝐶𝐵𝐹 =
%ΔCBF

Δ𝐸𝑡𝐶𝑂2
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We again performed linear registration using FLIRT in FSL137,138, to align the M0 of the 

hypercapnic pASL acquisition to the M0 of the resting pASL acquisition. Then the M0 of the resting 

acquisitions were registered to the T1-weighted image for each subject. The resting CBF, 

hypercapnic CBF, percent change in CBF, and CVRCBF maps for each subject were warped to 

MNI space using these subject-specific transformations and the previously computed T1-to-MNI 

nonlinear transformations. The same GM and WM ROIs in MNI space were used to spatially 

average the CBF metrics. Finally, we averaged resting CBF, hypercapnic CBF, percent change 

in CBF, and CVRCBF values to create group average maps. 

 

7.3 | BOLD, MRvF, and ASL Responses to Hypercapnia  

 All 22 participants were able to complete the imaging without interruption or complication. 

There were no complaints of discomfort due to inhaling the hypercapnic gas mixture, however, a 

few participants commented on the scuba-like mouthpiece being moderately uncomfortable. One 

participant in the older group did not experience significant changes in EtCO2 (less than 3 mmHg 

increase) during periods of hypercapnic stimulus so their data was excluded from analyses and 

group comparisons. The BOLD, CBV, R, and SO2 time courses were first detrended and 

smoothed via 5-point moving average. Z-scores were calculated at each time point of every 

subject’s time courses to normalize signal progression relative to their mean of each parameter. 

These Z-score time courses were then averaged across the two age groups to produce the 

parameter evolutions in Figure 7.3.  
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Figure 7.3. Average Gray Matter Time Courses of BOLD, CBV, R, and SO2 for Young and Old Cohorts. The gray 
matter parameter Z-scores averaged across all participants after detrending and temporal smoothing for the young 
(darker lines) and old (lighter lines) cohorts. Fluctuations of blood oxygen level dependent (BOLD) signal, cerebral 
blood volume (CBV), microvascular vessel radius (R), and tissue oxygen saturation (SO2) acquired during hypercapnic 
stimulus blocks are shown. 

 The GM BOLD and SO2 and time courses (Figure 7.3) positively fluctuate in a temporally 

aligned way with the EtCO2 time courses (Figure A7.1), whereas the R time courses negatively 

fluctuate at the same times. Visually, there is little perceivable difference between BOLD, CBV, 

R, or SO2 when comparing the young and old group time courses for these GM signal averages. 

This continues to hold true for all parameter time courses when looking at the WM (Figure A7.2) 

and whole-brain averages (Figure A7.3). 

 Group average perfusion maps computed from the ASL scans with normal air and 

hypercapnic gas are shown in Figure A7.5. The percent change in CBF from rest to hypercapnia 

generally shows an increase in CBF in the GM, whereas the WM appears more inhomogeneous.  

 

7.4 | Cerebrovascular Reactivity from BOLD, MRvF, and ASL 

ROI CVR values for BOLD, CBV, R, and SO2 for every subject show similar CVRBOLD, 

CVRCBV, CVRR, and CVRSO2 between the young and old groups across the GM, WM, and whole 

brain (Figure 7.4). Notably, CVRBOLD and CVRSO2 averages were slightly higher and CVRR 

averages were slightly lower for the young group in GM (Table 7.1), but none of these differences 

were determined to be significant upon statistical analysis with Welch’s t-test. The WM had 

reduced CVRBOLD, CVRSO2, and CVRR compared to the GM, but neither the WM (Table A7.2) nor 

whole-brain (Table A7.3) ROIs showed significant differences between the young and old groups 

for any of the BOLD or MRvF metrics. 
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CVR maps for each subject were also produced via voxelwise CVR regressions and 

averaged across the two groups for each of BOLD, CBV, R, and SO2 (Figure A7.4). The CVRBOLD 

maps are visually anatomically similar and have values within the range of previous literature.60,171 

CVR maps for the three MRvF parameters are visually much noisier with notably more negative 

values, particularly for CVRR, which is consistent with ROI CVR calculations. 

 
Figure 7.4. Comparing Regional CVR Values Across Young and Old Cohorts. Violin plots showing the CVR values 
of all participants for the young and old groups. Parameters derived from MRvF were averaged in gray matter, white 
matter, and whole-brain ROIs for each subject and individually regressed against that subject's end-tidal CO2 to 
compute each parameter-specific CVR. 

 CBF maps for each subject were averaged across the two age groups for the resting ASL 

scan and the ASL scan during 5% CO2 inhalation (Figure A7.5, top). The percent change in CBF 

was calculated for each individual and then combined for group average maps (Figure A7.5, 
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middle). This CBF fluctuation was normalized to each subject’s change in average EtCO2 (mmHg) 

from the normal air to the hypercapnic breathing for CVRCBF, and then averaged for the group 

(Figure A7.5, bottom).  

The group level average GM, WM, and whole-brain CVR values for each parameter are 

shown in Table 7.1, Table A7.2, and Table A7.3, respectively. The GM CVRCBF is about an order 

of magnitude greater than CVRBOLD and is in the range between 1.5-6%Δ/mmHg matching 

previous literature in which similar changes in EtCO2 were achieved.43,167 

Table 7.1. Gray Matter CVR Measures from BOLD, MRvF, and CBF Parameters During 
Hypercapnic Stimuli 

 
Table displays the mean ± standard deviation of the CVR measurements across all participants in each group 

 

7.5 | Discussion and Conclusions 

In this study we demonstrated our novel imaging and MRvF protocol to measure BOLD, 

CBV, R, and SO2 as well as their associated CVR derivatives in two groups that significantly 

varied in age. All 22 scans were completed from start to finish with no adverse responses to the 

administration of the hypercapnic gas and with 21 of the subjects experiencing significant and 

expected changes in EtCO2. BOLD and CBF changes that resulted from hypercapnia were 
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consistent with literature, validating protocol design and allowing for reassurance that physiology 

was being appropriately modulated when assessing the new MRvF parameter responses. 

There were no significant differences in CVRBOLD, CVRCBV, CVRR, and CVRSO2 between 

young and old groups. While there have been many studies that have found significantly reduced 

CVRBOLD in groups with specific cerebrovascular diseases like AD46,47,  Moyamoya disease62,185, 

and cerebral steno-occlusive disease186, studies looking at healthy aging have gleaned more 

mixed results. Some studies23,42,178 have found a decrease in CVRBOLD with healthy aging while 

others167,179 have found no significant differences. Some of these differences in significance can 

likely be contributed to common factors like sample size, but one significant limitation within CVR 

literature is the wide variability in practices for acquisition, processing, and analysis.39 CVR can 

not only be acquired using different types of sequences like BOLD, ASL, PC, and DSC (Figure 

2.4A), but regardless of sequence, CVR can be induced with a wide variety of strategies like CO2 

inhalation, breath modulation, and acetazolamide (Figure 2.4B). Even if only CO2 is considered 

for the stimulus, it can be administered at various fixed percentages with normal oxygen and 

nitrogen, at various fixed percentages with only oxygen added (carbogen), or it can be 

administered with more sophisticated breathing equipment to reach a specific EtCO2 target. Some 

recent publications have started to raise these concerns with the aim of creating some standards 

for acquisition and CVR induction, as well as best practices for pre-processing and analyzing CVR 

data for improved comparisons across research studies.187–190 

 Targeted EtCO2 via computer-controlled CO2 gas delivery is a compelling option for future 

MRvF hypercapnia studies due its ability to ensure every participant experiences the same 

change in EtCO2, and therefore more similar changes in physiological modulation, as EtCO2 acts 

as a proxy for arterial partial pressure of CO2. For the subjects analyzed in this study, the older 

participants had a ΔEtCO2 range of +5.7-14.7 mmHg from rest to hypercapnia and the young 

participants had a ΔEtCO2 range of +4.9-12.2 mmHg from rest to hypercapnia. This is significant 

because CBF and BOLD signal, and therefore CVR, have been found to have nonlinear 
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relationships to change in EtCO2.171,191 Targeted EtCO2 would eliminate this variation of EtCO2 

response seen in hypercapnia studies like ours that use fixed percent CO2 delivery. What remains 

an obstacle even with the use of a targeted EtCO2 gas delivery system is that there is variability 

in baseline EtCO2 within the population. The same ΔEtCO2 will lead to greater CVR measures in 

individuals with lower baseline EtCO2 if using targeted EtCO2 gas delivery. Conversely, with 

individuals that start at the same baseline, greater ΔEtCO2 will actually typically lead to lesser 

CVR values with fixed gas delivery protocols due to this nonlinear response and the normalization 

by ΔEtCO2 used to calculate CVR (Eq. 7.1).171 These same studies have also suggested that 

CVR can vary within the same subject from one imaging session to the next, further increasing 

the difficulty of observing significant results comparing healthy individuals.171 While some of these 

factors may be able to be mitigated with targeted EtCO2 gas delivery, averaging across repeated 

imaging sessions, or an increase in the number of subjects for a study, they are important 

considerations for the interpretability of CVR studies.   

 When looking at the ASL-derived CBF results from this study, we achieved CBF and 

CVRCBF values consistent with literature,43,43,167 but the corresponding maps present evidence for 

future improvements. In particular, the percent change in CBF and CVRCBF maps show significant 

variability in the WM with unphysiologically high and negative values (Figure A7.5). Similarly to 

a limitation of MRvF discussed earlier, ASL has less signal from CBF in the WM due to decreased 

vascular density and therefore reduced SNR192 leading to the noisy maps and unrealistic values 

in Figure A7.5. For this reason, spatial smoothing is often implemented as a pre-processing step 

for CBF mapping and could be performed in future analysis with this data. Additionally, with the 

large voxels used for ASL there is concern about partial volume effects confounding CBF 

quantification. Future work will employ partial volume correction and compare the difference in 

results between corrected and uncorrected maps. 

 Since this is the first study to introduce generating CVR maps from MRvF-derived values 

of CBV, R, and SO2, spatial smoothing is also a step we could consider in our MRvF processing 
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pipeline to improve the quality and reliability of MRvF parameter maps. Performing smoothing on 

the SAGE images prior to pattern matching would allow for denoising and averaging of spatial 

information but could bias how the biophysical simulations match to signals assumed to be 

unmodified. Smoothing after MRvF matching is another possible option but would lose out on the 

benefits of averaging signal from neighboring voxels with similar structural and functional tissue 

for the matching process. 

 When considering the MRvF responses to hypercapnia (Table 7.1), there are very minimal 

changes detected in CBV, despite BOLD and CBF showing increases in blood flow. With an 

increase in blood flow from hypercapnia, we would expect both SO2 and CBV to increase, 

however, a decreased deoxyhemoglobin fraction with increased CBF could contribute to 

decreased sensitivity in the ability of MRvF to disentangle SO2 and CBV. Additionally, previous 

PET studies193 have shown that the increase in CBF in response to hypercapnia is greater than 

the increase in CBV (indicating an increase in blood velocity), and therefore better sensitivity may 

be required to accurately measure the more subtle changes in CBV. 

Finally, the ability to produce CBV, R, and SO2 maps in a dynamic fashion may provide 

insights into the temporal dynamics of cerebrovascular function and how those change with age 

and disease. In addition to possible differences in the magnitude of CVR response between these 

groups, there may also be differences in the rate of response. A few recent studies194–196 have 

started to consider this temporal aspect of CVR. They take similar approaches where they 

essentially measue the slope of the CVR signal evolution and the rate at which it increases after 

the introduction of a hypercapnic stimulus. Furthermore, this rate of change of CVR has shown to 

be significantly different between subjects with Alzheimer’s disease (AD) compared to healthy 

controls, indicating its potential value for diagnosis, differentiation, or understanding of disease.197 

These previous rate of CVR studies used BOLD MRI with TRs between 1 and 2.5 seconds194–196, 

whereas with the SAGE we had a temporal resolution of 4.5 seconds. However, Richardi et al.168 

found that on average it took healthy individuals 33 seconds and a group of mild cognitively 
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impaired and AD patients 59 seconds to reach 90% of peak CVR response. This would allow for 

7 to 8 SAGE volumes to be collected during the average healthy participant, which should be 

enough for measuring rate of response despite decreased temporal resolution. Additionally, the 

SAGE sequence could be accelerated through the use of simultaneous multi-slice (SMS) 

techniques to reduce its TR to as low as 1.5 seconds without changing other imaging parameters 

as has been shown previously.120 Ultimately, incorporating this additional temporal metric in future 

studies and analysis may provide insight into how our three MRvF parameters dynamically differ 

from each another and how they differ between healthy individuals and those with vascular 

dysfunction. 

In conclusion, in this chapter we applied our novel approach of dynamic MRvF with a 

hypercapnic imaging design to examine the responses of young and old healthy volunteers. 

Both groups experienced changes in BOLD, CBV, R, SO2, and CBF in response to the 

introduced hypercapnic stimuli. Although the groups’ responses themselves were not 

significantly different from each other, both CVRBOLD and CVRCBF were consistent with previous 

literature using similar hypercapnic breathing paradigms. Further analysis will examine whether 

the rate of reactivity for the young and old groups are significantly different for BOLD or any of 

the MRvF parameters.  
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Chapter 8 – Discussion, Perspectives, Future Work, and Conclusions 

8.1 | Discussion 

 Our overarching goal was to design imaging technologies, tools, and techniques to 

improve understanding, diagnosis, and treatment of cerebrovascular diseases. Throughout this 

dissertation we discussed the development and application of new magnetic resonance vascular 

fingerprinting (MRvF) techniques. Through our studies we were able to use MRvF to measure 

cerebral blood volume (CBV), microvascular vessel radius (R), and tissue oxygen saturation 

(SO2), investigate how these changed in response to different inhaled gas challenges, and 

compare the response of these metrics in a study of healthy aging. This final chapter aims to 

synthesize the insights gained from our studies, discuss the broader implications of our findings, 

and lay out possible directions of future research and development in the field.  

 

Summary of Main Findings 

 In the first study laid out in Chapter 4, we performed retrospective MRvF analysis of 

GESFIDE images collected during hypoxia, normoxia, and hyperoxia and compared those results 

to results obtained using a quantitative blood oxygen level dependent (qBOLD) method. We found 

that MRvF-derived measures of oxygen extraction fraction (OEF) significantly correlated with OEF 

measures from analytical qBOLD analysis. Furthermore, average OEF measured with MRvF 

during hyperoxia and normoxia were significantly lower than OEF during hypoxia. The ability to 

detect this expected change in OEF with MRvF helped build confidence in the sensitivity of the 

MRvF parameters to detect cerebrovascular changes across different physiological conditions. 

 In Chapter 5, we described the simulation, retrospective, and prospective experiments we 

conducted to investigate and optimize the accuracy, sensitivity, and temporal resolution of MRvF. 

An iterative, pattern-matching algorithm was developed to improve reconstruction in the absence 

of contrast agents. Subsampling of a 40-echo GESFIDE sequence in silico and in vivo 
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demonstrated the feasibility of MRvF with only 5 echoes. It also showed that SNR effected 

matching accuracy and sensitivity more significantly than echo train length. Finally, we optimized 

and collected preliminary images with a 5-echo SAGE sequence and found that a single repetition 

had adequate SNR for MRvF reconstruction with a 4.5 second temporal resolution. 

 We followed this up in Chapter 6 with an initial application of this optimized SAGE 

sequence in four young, healthy volunteers. Given the rapid acquisition, we introduced a 

hypercapnic breathing paradigm during imaging for assessment of how CBV, R, and SO2 

fluctuated relative to induced fluctuations in EtCO2. Through this pilot study, we observed 

expected regional brain changes in BOLD and fluctuations in each of the three MRvF parameters 

that significantly correlated with changes in EtCO2.  

 Our last study outlined in Chapter 7 built off the hypercapnic pilot study, this time recruiting 

11 young and 11 old healthy participants for hypercapnic MRvF imaging. It also included the 

inclusion of an ASL scan for CBF measures of CVR for an additional comparator. The average 

BOLD, CBV, R, and SO2 time-courses from both the young and old groups correlated significantly 

with changes in hypercapnia. The CVRs calculated using BOLD, the MRvF parameters, and CBF 

were not significantly different between the two groups, but gray matter CVR values for BOLD 

and CBF were in line with literature and the CVR values calculated using the MRvF parameters 

were comparable to those from the pilot study. 

 

Contributions to the Field 

This dissertation represents six primary contributions to the fields of MR vascular fingerprinting 

and dynamic, quantitative measurements of cerebrovascular vascular reactivity: 

1) We developed an iterative pattern matching algorithm for improved MRvF reconstruction 

without exogenous contrast agents. 

2) We validated the ability of MRvF to detect changes in cerebral oxygenation during hypoxia. 
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3) We demonstrated the limited effect of echo train length on MRvF sensitivity when using 

fully sampled images. 

4) We optimized a rapid, 5-echo, spin- and gradient echo pulse sequence for MRvF mapping 

on the order of seconds.  

5) We introduced an imaging protocol with a hypercapnic breathing paradigm that enabled 

co-localized, simultaneously acquired reactivity maps of BOLD, CBV, R, and SO2 and 

demonstrated that each parameter’s fluctuations in response to a 5% CO2 hypercapnic 

correlated with EtCO2 fluctuations. 

6) We showed how CBV, R, and SO2 changes varied relative to changes in BOLD and CBF 

from hypercapnic gas inhalation and compared those changes between a young and old 

group of healthy subjects. 

This work sets up framework that will provide insights into how different cerebrovascular 

parameters react to vasoactive stimuli. Ideally, these techniques and ideas will continue to be 

improved and inspire us and others to carry on the work of developing imaging biomarkers to 

better understand cerebrovascular function and dysfunction. 

 

8.2 | Perspectives and Future Directions 

 In this section we will briefly give some thoughts on the directions and application of MRvF 

in cerebrovascular research. The aim is to offer a candid and thoughtful examination of what will 

allow for the most significant improvements of MRvF, how it could have the greatest impacts, and 

what it would take for adoption more widely in research and clinical settings. 

 

Biophysical Modeling for MRvF 

 While the flexibility of MRF to look at any parameter that can be modeled is a key benefit, 

a key related limitation of MRF is that it can only reconstruct elements that are computationally 

modeled. Therefore, if the biophysical model does not include characteristics present in the real 



106 
 

tissue, then it will not be able to accurately detect those characteristics. For MRvF, this means 

that advancing the virtual vascular tissue model to be more realistic, tunable, and representative 

of possible abnormal microvasculature could allow for more accurate parameter mapping. 

 Many studies have already expanded computational microvascular tissue models, 

including a few MRvF ones115,122, pushing biophysical simulations to three dimensions and using 

images of vasculature from high-resolution microscopy to inform vessel network design. An 

example of one of these recent studies is shown in Figure 8.1, in which the entirety of a mouse 

brain was imaged via microscopy slides prior to the vascular network of the brain being re-

combined digitally. This new, full model of the mouse brain was then re-divided into voxel-sized 

sections prior to implementation into the MRVox biophysical modeling software. While it would be 

on a much larger scale, developing a similar model for the human brain would mitigate limitations 

of current MRvF implementations that do 2D simulations on homogenous tissue with constant 

vessel radius, often lack larger vascular structures representative of arteries and veins, and do 

not account for different vessel orientations that are in certain regions of the brain, like near white 

matter fiber tracts. 
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Figure 8.1. Microscopy-derived Vasculature Models for MRvF Biophysical Simulations (from Delphin et al.122). 
A) The MRvF framework has been adapted to utilize vascular architecture from high-resolution microscopy images for 
more representative virtual voxel design. B) In these realistic voxels, the cerebral blood volume and radius are 
distributed around typically occurring values within a physiological range and can be averaged throughout the volume 
for extraction and parameter map reconstruction. C) Once set up, these physiological virtual voxels can be used in 
simulations, with the same sequence used in imaging, for simultaneous multiparametric reconstruction of the vascular 
parameters of interest. 

 These realistic biophysical models could be extended even further with intentional 

inclusion of pathological tissues. Cerebrovascular diseases with structural microvascular 

abnormalities, like small vessel disease and microvascular ischemic disease, could be directly 

included into the biophysical model and have dictionary entries that would specifically represent 

the anatomy and physiology seen in those diseases.  

 

Machine Learning in MRF 

 An increasingly prevalent technique that can help improve both accuracy and 

computational speed for MRF is machine learning (ML).198 MRF matching is readily adaptable for 

ML, as the simulations with known parameters can be directly implemented into ML frameworks 
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as training data. Numerous MRF studies have begun utilizing ML for both dictionary generation 

and signal matching.159,175–177,198–201 Future incorporation of ML into an MRvF framework could 

allow for more complicated tissue models to be efficiently simulated, and for faster and more 

accurate parameter map reconstruction. The majority of machine learning approaches applied to 

MRF thus far have utilized a subset of ML known as deep learning (DL), specifically with a 

feedforward neural network architecture, similar to the basic diagram shown in the middle of 

Figure 8.2.175–177 These methods have shown great promise with more accurate parameter 

mapping than traditional MRF matching, increases in computational speed from 300-5000 fold 

faster177, enhanced robustness to noise, and improved reproducibility.175  

 
Figure 8.2. AI, Machine Learning, and Deep Learning (from Velasco et al.202). Artificial intelligence (AI) is a general 
term to describe a computer performing a task automatically while machine learning (ML) is a specific subset of AI in 
which a computer program or algorithm is trained to perform a task. Deep learning (DL) is a subset of ML that trains 
artificial neural networks (NNs) to perform the task. The two broad types of DL are feedforward NNs and recurrent NNs. 
Feedforwards NNs take input and are unidirectional to the final output, whereas recurrent NNs take input and are bi-
directional, with the ability to take intermediate outputs and input those back into the same nodes prior to final output.  

 The other main type of DL algorithm uses recurrent neural networks (Figure 8.2, right), 

which allow bi-directional flow of outputs into previous nodes of the neural network as inputs. 

While their use in MRF applications have been limited thus far, they are well suited for predicting 

time series data like you may have with an MRF fingerprint with many time points.203,204 Dynamic 

MRF, like we described throughout this dissertation, may also represent a compelling application 

of RNNs where the maps from one volume could be used as prior information on the next TR or 

to improve the previous TR. 
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 Possibly the most significant effect of implementing machine learning into our dynamic 

MRvF framework would be the computational time savings. With dynamic MRvF, an entire volume 

of the brain is captured at five echo times every 4.5 seconds and repeated for ~9 minutes. With 

traditional pattern matching each of these repetitions requires independent MRvF reconstruction 

in which hundreds of thousands of voxels are individually compared against the entire dictionary 

with tens of thousands of entries to determine the best match. For the matching done in this 

dissertation, one of these volumes would generally take about two minutes to complete, and the 

whole times series would then take about four hours to complete. This severely limits the size of 

the dictionary that can be used due to practical time constraints. With DL, the network would only 

need to be trained on the entire dictionary a single time. After training, rather than comparing each 

voxel to every entry in the large dictionary, you could simply input each voxel’s signal evolution 

into the single network and drastically reduce reconstruction times. Ultimately, these ML 

reconstruction techniques may enable MRF to be more widely adopted. The significantly reduced 

computational times could allow for reconstruction directly on the MR scanner and massively 

increase accessibility of MRF for those who do not have the technical expertise or time to perform 

sophisticated offline reconstructions. 

  

Transforming the Clinical MRI Workflow 

 While not yet used clinically, the advantages of MRF over traditional MRI are substantial 

and could change how MRI is viewed as an imaging tool in clinical practice. However, before any 

of these evolutions occur, MRF needs to mature into a user-friendly product that is as easy to use 

as any other MR sequence for an MR technologist and provides useful information to the 

physician reading the images. Clinical practice and research have revolved exclusively around 

qualitative MRI techniques until recently, and quantitative MRI has very few clinical applications 

at this point. Therefore, new quantitative maps from MRF may not initially be seen as particularly 

useful to radiologists who were trained on and have been reading qualitatively weighted images 
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for decades. One recent, and especially compelling, development in MRF are sequences and 

reconstruction techniques that provide quantitative parameter maps and classic qualitatively 

weighted images from the same scan. One exemplary illustration of this was recently published 

by Cao et al.205 They use a DTI-MRF approach with a specially tailored pulse sequence and very 

sophisticated reconstruction pipeline to generate five quantitative parameter maps of T1, T2, 

proton density, apparent diffusion coefficient, and fractional anisotropy (Figure 8.3A) and 

synthesize six clinical contrasts (Figure 8.3B) with 1-mm isotropic resolution from a single 10 

minute scan. Schauman et al.206 from the same group have pushed it even further to produce 

three quantitative parameter maps of T1, T2, proton density and five clinical contrasts with 1-mm 

isotropic resolution from a scan that is only 1-minute long. Development of an imaging protocol 

similar to this DTI-MRF one, but with vascular parameters like those in MRvF, could radically 

change the ubiquity of MRI, allow for more frequent scans during normal clinical visits, and 

ultimately lead to detection of vascular dysfunction before severe vascular complications or 

cognitive decline. 
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Figure 8.3. Fast, Comprehensive MRI with Quantitative Maps and Traditional Contrasts (from Cao et al.205). A) 
Orthogonal views of T1, T2, proton density, apparent diffusion coefficient (ADC), fractional anisotropy (FA), and colored-
FA parameter maps from diffusion tensor imaging (DTI) MR fingerprinting with 1-mm isotropic resolution and 10-min 
acquisition time. B) Synthesized clinical contrast images produced from the same acquisition using the quantitative 
results obtained with DTI-MRF. 

 In addition to the acceleration of multiparametric image acquisition with MRF, the ability 

of MRF to be robust to noise, under sampling, and motion artifacts could transform MRI in another 

way. MRI systems are expensive to maintain and operate, necessitate substantial infrastructure, 

and require very strong magnetic fields to produce quality images. These factors increase the 

cost of MRI scans and limit the accessibility for patients to get an MRI and for healthcare settings 
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to have a scanner on site. One growing field to address these particular limitations is low field 

MRI, which are considered as scanners with a field strength 0.5T or lower. MRI scanners face 

challenges related to lower SNR and reduced contrast between different tissue types at these 

field strengths, however, MRF is better suited to deal with these issues than traditional 

reconstruction techniques.207 The pattern-recognition approach of MRF allows it to extract 

valuable quantitative information even from the relatively noisy data produced by low -field 

scanners.208 With further improvements, MRF could open up the possibility for lower field MR 

scanners to be practically useful, and enable more hospitals and clinics to purchase less 

expensive scanners and increase the accessibility of MRI. Additionally, MRF has been shown to 

be effective at producing meaningful quantitative parameter maps for MR scanners with as low 

as 50mT field strength, potentially opening the door for point-of-care devices based on MR 

principles.209,210 While there is still substantial progress to be made before translating low-field 

scanners to widespread use, MRF will likely be one of the driving forces in the effort to make MRI 

more accessible. 

 

8.3 | Conclusions 

 Throughout this dissertation we presented a series of techniques we developed and 

studies we performed that demonstrate the capabilities of dynamic, contrast-free MR vascular 

fingerprinting. Initial studies presented here discussed matching algorithms to improve sensitivity 

in the absence of contrast agents, accuracy of parameter mapping with varying levels of SNR, 

and temporal resolution achievable from an accelerated sequence with a short echo train length. 

We optimized an accelerated SAGE sequence to enable continuous MRvF reconstruction of 

quantitative, multiparametric vascular parameter maps. This allowed us to validate our MRvF 

parameter fluctuations during hypercapnia induced changes of cerebral vasculature, which we 

then utilized in a study to compare vascular responses of healthy young and healthy old cohorts. 

In conclusion, the dynamic MRvF studies presented in this work lay the foundation for future 



113 
 

research into imaging rapid cerebrovascular processes and provide a step forward in developing 

novel functional imaging biomarkers of vascular function for early identification and treatment of 

cerebrovascular diseases and vascular-linked dementias.  



114 
 

References 

1. Dementia. World Health Orgnaization. https://www.who.int/news-room/fact-sheets/detail/dementia 

2. Corriveau RA, Bosetti F, Emr M, et al. The Science of Vascular Contributions to Cognitive 
Impairment and Dementia (VCID): A Framework for Advancing Research Priorities in the 
Cerebrovascular Biology of Cognitive Decline. Cell Mol Neurobiol. 2016;36(2):281-288. 
doi:10.1007/s10571-016-0334-7 

3. Alber J, Alladi S, Bae H, et al. White matter hyperintensities in vascular contributions to cognitive 
impairment and dementia (VCID): Knowledge gaps and opportunities. Alzheimers Dement Transl 
Res Clin Interv. 2019;5(1):107-117. doi:10.1016/j.trci.2019.02.001 

4. Banerjee G, Wilson D, Jäger HR, Werring DJ. Novel imaging techniques in cerebral small vessel 
diseases and vascular cognitive impairment. Biochim Biophys Acta BBA - Mol Basis Dis. 
2016;1862(5):926-938. doi:10.1016/j.bbadis.2015.12.010 

5. European Society of Radiology (ESR). Magnetic Resonance Fingerprinting - a promising new 
approach to obtain standardized imaging biomarkers from MRI. Insights Imaging. 2015;6(2):163-
165. doi:10.1007/s13244-015-0403-3 

6. Hsieh JJL, Svalbe I. Magnetic resonance fingerprinting: from evolution to clinical applications. J 
Med Radiat Sci. 2020;67(4):333-344. doi:10.1002/jmrs.413 

7. Poorman ME, Martin MN, Ma D, et al. Magnetic resonance fingerprinting Part 1: Potential uses, 
current challenges, and recommendations. J Magn Reson Imaging. 2020;51(3):675-692. 
doi:10.1002/jmri.26836 

8. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 
2013;495(7440):187-192. doi:10.1038/nature11971 

9. Christen T, Pannetier N, Ni W, et al. MR vascular fingerprinting: A new approach to compute 
cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain. 
NeuroImage. 2014;(89):262-270. doi:10.1016/j.neuroimage.2013.11.052 

10. An H, Lin W, Celik A, Lee YZ. Quantitative measurements of cerebral metabolic rate of oxygen 
utilization using MRI: a volunteer study. NMR Biomed. 2001;14(7-8):441-447. doi:10.1002/nbm.717 

11. Vazquez A, Masamoto K, Fukuda M, Kim SG. Cerebral oxygen delivery and consumption during 
evoked neural activity. Front Neuroenergetics. 2010;2. 
https://www.frontiersin.org/articles/10.3389/fnene.2010.00011 

12. Watts ME, Pocock R, Claudianos C. Brain Energy and Oxygen Metabolism: Emerging Role in 
Normal Function and Disease. Front Mol Neurosci. 2018;11. 
https://www.frontiersin.org/articles/10.3389/fnmol.2018.00216 

13. Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J. Cerebral blood flow and autoregulation: current 
measurement techniques and prospects for noninvasive optical methods. Neurophotonics. 
2016;3(3):031411. doi:10.1117/1.NPh.3.3.031411 

14. Tomoto T, Lu M, Khan AM, et al. Cerebral blood flow and cerebrovascular resistance across the 
adult lifespan: A multimodality approach. J Cereb Blood Flow Metab. 2023;43(6):962-976. 
doi:10.1177/0271678X231153741 

15. Quick S, Moss J, Rajani RM, Williams A. A Vessel for Change: Endothelial Dysfunction in Cerebral 
Small Vessel Disease. Trends Neurosci. 2021;44(4):289-305. doi:10.1016/j.tins.2020.11.003 

16. Herrera MD, Mingorance C, Rodríguez-Rodríguez R, Alvarez De Sotomayor M. Endothelial 
dysfunction and aging: An update. Ageing Res Rev. 2010;9(2):142-152. 
doi:10.1016/j.arr.2009.07.002 

17. Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment 
and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial 



115 
 

impairment, and neurovascular uncoupling in aging. Am J Physiol-Heart Circ Physiol. 
2017;312(1):H1-H20. doi:10.1152/ajpheart.00581.2016 

18. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of Vascular Aging. Circ Res. 
2018;123(7):849-867. doi:10.1161/CIRCRESAHA.118.311378 

19. Kohn JC, Lampi MC, Reinhart-King CA. Age-related vascular stiffening: causes and consequences. 
Front Genet. 2015;06. doi:10.3389/fgene.2015.00112 

20. Smith EE, Greenberg SM. β-Amyloid, Blood Vessels, and Brain Function. Stroke. 2009;40(7):2601-
2606. doi:10.1161/STROKEAHA.108.536839 

21. Zhao MY, Woodward A, Fan AP, et al. Reproducibility of cerebrovascular reactivity measurements: 
A systematic review of neuroimaging techniques *. J Cereb Blood Flow Metab. Published online 
November 22, 2021:0271678X2110567. doi:10.1177/0271678X211056702 

22. Mokhber N, Shariatzadeh A, Avan A, et al. Cerebral blood flow changes during aging process and 
in cognitive disorders: A review. Neuroradiol J. 2021;34(4):300-307. 
doi:10.1177/19714009211002778 

23. Peng SL, Chen X, Li Y, Rodrigue KM, Park DC, Lu H. Age-related changes in cerebrovascular 
reactivity and their relationship to cognition: A four-year longitudinal study. NeuroImage. 
2018;174:257-262. doi:10.1016/j.neuroimage.2018.03.033 

24. Lee BC, Tsai HH, Huang APH, et al. Arterial Spin Labeling Imaging Assessment of 
Cerebrovascular Reactivity in Hypertensive Small Vessel Disease. Front Neurol. 2021;12:640069. 
doi:10.3389/fneur.2021.640069 

25. Deery HA, Di Paolo R, Moran C, Egan GF, Jamadar SD. Lower brain glucose metabolism in normal 
ageing is predominantly frontal and temporal: A systematic review and pooled effect size and 
activation likelihood estimates meta‐analyses. Hum Brain Mapp. 2023;44(3):1251-1277. 
doi:10.1002/hbm.26119 

26. Liberale L, Badimon L, Montecucco F, Lüscher TF, Libby P, Camici GG. Inflammation, Aging, and 
Cardiovascular Disease. J Am Coll Cardiol. 2022;79(8):837-847. doi:10.1016/j.jacc.2021.12.017 

27. Saji N, Toba K, Sakurai T. Cerebral Small Vessel Disease and Arterial Stiffness: Tsunami Effect in 
the Brain. Pulse. 2015;3(3-4):182-189. doi:10.1159/000443614 

28. Vemuri P, Decarli C, Duering M. Imaging Markers of Vascular Brain Health: Quantification, Clinical 
Implications, and Future Directions. Stroke. 2022;53(2):416-426. 
doi:10.1161/STROKEAHA.120.032611 

29. Boehme AK, Esenwa C, Elkind MSV. Stroke Risk Factors, Genetics, and Prevention. Circ Res. 
2017;120(3):472-495. doi:10.1161/CIRCRESAHA.116.308398 

30. Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future 
Perspectives. Int J Mol Sci. 2020;21(20):7609. doi:10.3390/ijms21207609 

31. Kalaria RN. The pathology and pathophysiology of vascular dementia. Neuropharmacology. 
2018;134:226-239. doi:10.1016/j.neuropharm.2017.12.030 

32. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most 
dementia cases in community-dwelling older persons. Neurology. 2007;69(24):2197-2204. 
doi:10.1212/01.wnl.0000271090.28148.24 

33. White L, Small BJ, Petrovitch H, et al. Recent Clinical-Pathologic Research on the Causes of 
Dementia in Late Life: Update From the Honolulu-Asia Aging Study. J Geriatr Psychiatry Neurol. 
2005;18(4):224-227. doi:10.1177/0891988705281872 

34. Guermazi A, Miaux Y, Rovira-Cañellas A, et al. Neuroradiological findings in vascular dementia. 
Neuroradiology. 2007;49(1):1-22. doi:10.1007/s00234-006-0156-2 



116 
 

35. Razek AAKA, Elsebaie NA. Imaging of vascular cognitive impairment. Clin Imaging. 2021;74:45-54. 
doi:10.1016/j.clinimag.2020.12.038 

36. Smith EE. Clinical presentations and epidemiology of vascular dementia. Clin Sci. 
2017;131(11):1059-1068. doi:10.1042/CS20160607 

37. Zlokovic BV, Gottesman RF, Bernstein KE, et al. Vascular contributions to cognitive impairment and 
dementia (VCID): A report from the 2018 National Heart, Lung, and Blood Institute and National 
Institute of Neurological Disorders and Stroke Workshop. Alzheimers Dement. 2020;16(12):1714-
1733. doi:10.1002/alz.12157 

38. Catchlove SJ, Pipingas A, Hughes ME, Macpherson H. Magnetic resonance imaging for 
assessment of cerebrovascular reactivity and its relationship to cognition: a systematic review. 
BMC Neurosci. 2018;19(1):21. doi:10.1186/s12868-018-0421-4 

39. Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity 
Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol. 
2021;12:643468. doi:10.3389/fphys.2021.643468 

40. Carr JMJR, Caldwell HG, Ainslie PN. Cerebral blood flow, cerebrovascular reactivity and their 
influence on ventilatory sensitivity. Exp Physiol. 2021;106(7):1425-1448. doi:10.1113/EP089446 

41. Bhogal AA, Philippens MEP, Siero JCW, et al. Examining the regional and cerebral depth-
dependent BOLD cerebrovascular reactivity response at 7 T. NeuroImage. 2015;114:239-248. 
doi:10.1016/j.neuroimage.2015.04.014 

42. Catchlove SJ, Parrish TB, Chen Y, Macpherson H, Hughes ME, Pipingas A. Regional 
Cerebrovascular Reactivity and Cognitive Performance in Healthy Aging. J Exp Neurosci. 
2018;12:117906951878515. doi:10.1177/1179069518785151 

43. Kim D, Hughes TM, Lipford ME, et al. Relationship Between Cerebrovascular Reactivity and 
Cognition Among People With Risk of Cognitive Decline. Front Physiol. 2021;12:645342. 
doi:10.3389/fphys.2021.645342 

44. Aslanyan V, Mack WJ, Ortega NE, et al. Cerebrovascular reactivity in Alzheimer’s disease 
signature regions is associated with mild cognitive impairment in adults with hypertension. 
Alzheimers Dement. Published online December 18, 2023:alz.13572. doi:10.1002/alz.13572 

45. Mandell DM, Han JS, Poublanc J, et al. Mapping Cerebrovascular Reactivity Using Blood Oxygen 
Level-Dependent MRI in Patients With Arterial Steno-occlusive Disease: Comparison With Arterial 
Spin Labeling MRI. Stroke. 2008;39(7):2021-2028. doi:10.1161/STROKEAHA.107.506709 

46. Yezhuvath US, Uh J, Cheng Y, et al. Forebrain-dominant deficit in cerebrovascular reactivity in 
Alzheimer’s disease. Neurobiol Aging. 2012;33(1):75-82. doi:10.1016/j.neurobiolaging.2010.02.005 

47. Cantin S, Villien M, Moreaud O, et al. Impaired cerebral vasoreactivity to CO2 in Alzheimer’s 
disease using BOLD fMRI. NeuroImage. 2011;58(2):579-587. 
doi:10.1016/j.neuroimage.2011.06.070 

48. Glodzik L, Randall C, Rusinek H, de Leon MJ. Cerebrovascular Reactivity to Carbon Dioxide in 
Alzheimer’s Disease. J Alzheimers Dis. 2013;35(3):427-440. doi:10.3233/JAD-122011 

49. Bellomo J, Sebök M, Stumpo V, et al. Blood Oxygenation Level–Dependent Cerebrovascular 
Reactivity–Derived Steal Phenomenon May Indicate Tissue Reperfusion Failure After Successful 
Endovascular Thrombectomy. Transl Stroke Res. Published online October 25, 2023. 
doi:10.1007/s12975-023-01203-y 

50. Jiang D, Lu H. Cerebral oxygen extraction fraction MRI : Techniques and applications. Magn Reson 
Med. 2022;88(2):575-600. doi:10.1002/mrm.29272 

51. Barcroft J, Hill AV. The nature of oxyhæmoglobin, with a note on its molecular weight. J Physiol. 
1910;39(6):411-428. doi:10.1113/jphysiol.1910.sp001350 



117 
 

52. Hill AV. The Combinations of Haemoglobin with Oxygen and with Carbon Monoxide. I. Biochem J. 
1913;7(5):471-480. doi:10.1042/bj0070471 

53. Kaufman DP, Kandle PF, Murray IV, Dhamoon AS. Physiology, Oxyhemoglobin Dissociation Curve. 
In: StatPearls. StatPearls Publishing; 2024. http://www.ncbi.nlm.nih.gov/books/NBK499818/ 

54. Patel S, Jose A, Mohiuddin SS. Physiology, Oxygen Transport And Carbon Dioxide Dissociation 
Curve. In: StatPearls. StatPearls Publishing; 2024. http://www.ncbi.nlm.nih.gov/books/NBK539815/  

55. Komoda T, Matsunaga T. Chapter 5 - Biochemistry of Internal Organs. In: Komoda T, Matsunaga T, 
eds. Biochemistry for Medical Professionals. Academic Press; 2015:65-73. doi:10.1016/B978-0-12-
801918-4.00005-0 

56. Lewis NCS, Messinger L, Monteleone B, Ainslie PN. Effect of acute hypoxia on regional cerebral 
blood flow: effect of sympathetic nerve activity. J Appl Physiol. 2014;116(9):1189-1196. 
doi:10.1152/japplphysiol.00114.2014 

57. Stadlbauer A, Kinfe TM, Zimmermann M, et al. Association between tissue hypoxia, perfusion 
restrictions, and microvascular architecture alterations with lesion-induced impairment of 
neurovascular coupling. J Cereb Blood Flow Metab. Published online August 12, 
2020:0271678X2094754. doi:10.1177/0271678X20947546 

58. Xu F, Liu P, Pascual JM, Xiao G, Lu H. Effect of Hypoxia and Hyperoxia on Cerebral Blood Flow, 
Blood Oxygenation, and Oxidative Metabolism. J Cereb Blood Flow Metab. 2012;32(10):1909-
1918. doi:10.1038/jcbfm.2012.93 

59. Christen T, Ni W, Fan A, Moseley M, Zaharchuk G. MR Vascular Fingerprinting During Gas 
Challenges. Presented at: Proc. Intl. Soc. Mag. Reson. Med. 26; 2018. 
https://cds.ismrm.org/protected/18MProceedings/PDFfiles/0678.html 

60. Liu P, De Vis JB, Lu H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical 
review. NeuroImage. 2019;187:104-115. doi:10.1016/j.neuroimage.2018.03.047 

61. Hare HV, Germuska M, Kelly ME, Bulte DP. Comparison of CO 2 in Air Versus Carbogen for the 
Measurement of Cerebrovascular Reactivity with Magnetic Resonance Imaging. J Cereb Blood 
Flow Metab. 2013;33(11):1799-1805. doi:10.1038/jcbfm.2013.131 

62. Liu P, Welch BG, Li Y, et al. Multiparametric imaging of brain hemodynamics and function using 
gas-inhalation MRI. NeuroImage. 2017;146:715-723. doi:10.1016/j.neuroimage.2016.09.063 

63. Gibney B, Redmond CE, Byrne D, Mathur S, Murray N. A Review of the Applications of Dual-
Energy CT in Acute Neuroimaging. Can Assoc Radiol J. 2020;71(3):253-265. 
doi:10.1177/0846537120904347 

64. Heiss WD, Rosenberg GA, Thiel A, Berlot R, de Reuck J. Neuroimaging in vascular cognitive 
impairment: a state-of-the-art review. BMC Med. 2016;14(1):174. doi:10.1186/s12916-016-0725-0 

65. Ito H, Kanno I, Ibaraki M, Hatazawa J. Effect of Aging on Cerebral Vascular Response to Paco 2 
Changes in Humans as Measured by Positron Emission Tomography. J Cereb Blood Flow Metab. 
2002;22(8):997-1003. doi:10.1097/00004647-200208000-00011 

66. Ito H, Ibaraki M, Yamakuni R, et al. Oxygen extraction fraction is not uniform in human brain: a 
positron emission tomography study. J Physiol Sci. 2023;73(1):25. doi:10.1186/s12576-023-00880-
6 

67. Hoh CK. Clinical use of FDG PET. Nucl Med Biol. 2007;34(7):737-742. 
doi:10.1016/j.nucmedbio.2007.07.001 

68. Fan AP, An H, Moradi F, et al. Quantification of brain oxygen extraction and metabolism with [15O]-
gas PET: A technical review in the era of PET/MRI. NeuroImage. 2020;220:117136. 
doi:10.1016/j.neuroimage.2020.117136 



118 
 

69. Donahue MJ, Achten E, Cogswell PM, et al. Consensus statement on current and emerging 
methods for the diagnosis and evaluation of cerebrovascular disease. J Cereb Blood Flow Metab. 
2018;38(9):1391-1417. doi:10.1177/0271678X17721830 

70. Matsuda H. Role of Neuroimaging in Alzheimer’s Disease, with Emphasis on Brain Perfusion 
SPECT. J Nucl Med. 2007;48(8):1289-1300. doi:10.2967/jnumed.106.037218 

71. Ferrando R, Damian A. Brain SPECT as a Biomarker of Neurodegeneration in Dementia in the Era 
of Molecular Imaging: Still a Valid Option? Front Neurol. 2021;12:629442. 
doi:10.3389/fneur.2021.629442 

72. Introduction to MRI. Radiology Café. Published March 28, 2017. 
https://www.radiologycafe.com/frcr-physics-notes/mr-imaging/introduction-to-mri/ 

73. Abdulla S, Clarke C. FRCR Physics Notes: Medical Imaging Physics for the First FRCR 
Examination. 3rd ed. Radiology Cafe Publishing; 2020. 

74. Bloch F. Nuclear Induction. Phys Rev. 1946;70(7-8):460-474. doi:10.1103/PhysRev.70.460 

75. Slice selection. Radiology Café. Published March 28, 2017. https://www.radiologycafe.com/frcr-
physics-notes/mr-imaging/slice-selection/ 

76. Spatial encoding. Radiology Café. Published March 28, 2017. https://www.radiologycafe.com/frcr-
physics-notes/mr-imaging/spatial-encoding/ 

77. Hartung MP, Grist TM, François CJ. Magnetic resonance angiography: current status and future 
directions. J Cardiovasc Magn Reson. 2011;13(1):19. doi:10.1186/1532-429X-13-19 

78. Kuo AH, Nagpal P, Ghoshhajra BB, Hedgire SS. Vascular magnetic resonance angiography 
techniques. Cardiovasc Diagn Ther. 2019;9(S1):S28-S36. doi:10.21037/cdt.2019.06.07 

79. Calamante F. Perfusion MRI Using Dynamic-Susceptibility Contrast MRI: Quantification Issues in 
Patient Studies. Top Magn Reson Imaging. 2010;21(2):75-85. 
doi:10.1097/RMR.0b013e31821e53f5 

80. Peret A, Capel KW, Jen ML, et al. Perfusion MRI Techniques: Beyond DSC. Neurographics. 
2023;13(3):210-229. doi:10.3174/ng.2100041 

81. Khalifa F, Soliman A, El‐Baz A, et al. Models and methods for analyzing DCE‐MRI: A review. Med 
Phys. 2014;41(12):124301. doi:10.1118/1.4898202 

82. Bergamino M, Bonzano L, Levrero F, Mancardi GL, Roccatagliata L. A review of technical aspects 
of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human 
brain tumors. Phys Med. 2014;30(6):635-643. doi:10.1016/j.ejmp.2014.04.005 

83. BOLD Contrast Mechanism. MRIquestions.com. http://mriquestions.com/bold-contrast.html 

84. Cashmore MT, McCann AJ, Wastling SJ, McGrath C, Thornton J, Hall MG. Clinical quantitative MRI 
and the need for metrology. Br J Radiol. 2021;94(1120):20201215. doi:10.1259/bjr.20201215 

85. Weiskopf N, Edwards LJ, Helms G, Mohammadi S, Kirilina E. Quantitative magnetic resonance 
imaging of brain anatomy and in vivo histology. Nat Rev Phys. 2021;3(8):570-588. 
doi:10.1038/s42254-021-00326-1 

86. Granziera C, Wuerfel J, Barkhof F, et al. Quantitative magnetic resonance imaging towards clinical 
application in multiple sclerosis. Brain. 2021;144(5):1296-1311. doi:10.1093/brain/awab029 

87. Detre JA, Rao H, Wang DJJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the 
brain. J Magn Reson Imaging. 2012;35(5):1026-1037. doi:10.1002/jmri.23581 

88. Donahue MJ, Jan Van Laar P, Van Zijl PCM, Stevens RD, Hendrikse J. Vascular space occupancy 
(VASO) cerebral blood volume‐weighted MRI identifies hemodynamic impairment in patients with 

carotid artery disease. J Magn Reson Imaging. 2009;29(3):718-724. doi:10.1002/jmri.21667 



119 
 

89. Lu H, Hua J, Van Zijl PCM. Noninvasive functional imaging of cerebral blood volume with vascular‐
space‐occupancy (VASO) MRI. NMR Biomed. 2013;26(8):932-948. doi:10.1002/nbm.2905 

90. Ruetten PPR, Gillard JH, Graves MJ. Introduction to Quantitative Susceptibility Mapping and 
Susceptibility Weighted Imaging. Br J Radiol. 2019;92(1101):20181016. doi:10.1259/bjr.20181016 

91. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous 
tissues: The static dephasing regime. Magn Reson Med. 1994;32(6):749-763. 
doi:10.1002/mrm.1910320610 

92. Stone AJ, Harston GWJ, Carone D, Okell TW, Kennedy J, Blockley NP. Prospects for investigating 
brain oxygenation in acute stroke: Experience with a non‐contrast quantitative BOLD based 
approach. Hum Brain Mapp. 2019;40(10):2853-2866. doi:10.1002/hbm.24564 

93. Lee H, Englund EK, Wehrli FW. Interleaved quantitative BOLD: Combining extravascular R2ʹ - and 
intravascular R2-measurements for estimation of deoxygenated blood volume and hemoglobin 
oxygen saturation. NeuroImage. 2018;174:420-431. doi:10.1016/j.neuroimage.2018.03.043 

94. Panda A, Mehta BB, Coppo S, et al. Magnetic resonance fingerprinting – An overview. Curr Opin 
Biomed Eng. 2017;3:56-66. doi:10.1016/j.cobme.2017.11.001 

95. Kara D, Fan M, Hamilton J, Griswold M, Seiberlich N, Brown R. Parameter map error due to normal 
noise and aliasing artifacts in MR fingerprinting. Magn Reson Med. 2019;81(5):3108-3123. 
doi:10.1002/mrm.27638 

96. Yu Z, Zhao T, Assländer J, Lattanzi R, Sodickson DK, Cloos MA. Exploring the sensitivity of 
magnetic resonance fingerprinting to motion. Magn Reson Imaging. 2018;54:241-248. 
doi:10.1016/j.mri.2018.09.002 

97. Mehta BB, Ma D, Pierre EY, Jiang Y, Coppo S, Griswold MA. Image reconstruction algorithm for 
motion insensitive MR Fingerprinting (MRF): MORF. Magn Reson Med. 2018;80(6):2485-2500. 
doi:10.1002/mrm.27227 

98. Ye H, Ma D, Jiang Y, et al. Accelerating magnetic resonance fingerprinting (MRF) using t-blipped 
simultaneous multislice (SMS) acquisition: Accelerating MRF Using t-Blipped SMS. Magn Reson 
Med. 2016;75(5):2078-2085. doi:10.1002/mrm.25799 

99. Ye H, Cauley SF, Gagoski B, et al. Simultaneous multislice magnetic resonance fingerprinting 
(SMS‐MRF) with direct‐spiral slice‐GRAPPA (ds‐SG) reconstruction. Magn Reson Med. 

2017;77(5):1966-1974. doi:10.1002/mrm.26271 

100. Fujita S, Cencini M, Buonincontri G, et al. Simultaneous relaxometry and morphometry of human 
brain structures with 3D magnetic resonance fingerprinting: a multicenter, multiplatform, multifield-
strength study. Cereb Cortex. 2023;33(3):729-739. doi:10.1093/cercor/bhac096 

101. Shridhar Konar A, Qian E, Geethanath S, et al. Quantitative imaging metrics derived from magnetic 
resonance fingerprinting using ISMRM/NIST MRI system phantom: An international multicenter 
repeatability and reproducibility study. Med Phys. 2021;48(5):2438-2447. doi:10.1002/mp.14833 

102. Buonincontri G, Kurzawski JW, Kaggie JD, et al. Three dimensional MRF obtains highly repeatable 
and reproducible multi-parametric estimations in the healthy human brain at 1.5T and 3T. 
NeuroImage. 2021;226:117573. doi:10.1016/j.neuroimage.2020.117573 

103. Sushentsev N, Kaggie JD, Slough RA, Carmo B, Barrett T. Reproducibility of magnetic resonance 
fingerprinting-based T1 mapping of the healthy prostate at 1.5 and 3.0 T: A proof-of-concept study. 
PLOS ONE. 2021;16(1):e0245970. doi:10.1371/journal.pone.0245970 

104. Fujita S, Buonincontri G, Cencini M, et al. Repeatability and reproducibility of human brain 
morphometry using three‐dimensional magnetic resonance fingerprinting. Hum Brain Mapp. 
2021;42(2):275-285. doi:10.1002/hbm.25232 

105. Delphin A. MRI Signals Simulation for Validation of a New Microvascular Characterization. KTH 
Royal Institute of Technology; 2019. 



120 
 

106. Boux F. Statistical Methods for Vascular Magnetic Resonance Fingerprinting : Application to the 
Epileptic Brain. University of Grenoble Alpes; 2020. 

107. Lemasson B, Pannetier N, Coquery N, et al. MR Vascular Fingerprinting in Stroke and Brain 
Tumors Models. Sci Rep. 2016;6(1):37071. doi:10.1038/srep37071 

108. Delphin A, Boux F, Brossard C, et al. Towards optimizing MR vascular fingerprinting. Presented at: 
Proc. Intl. Soc. Mag. Reson. Med. 29; 2021. 
https://cds.ismrm.org/protected/21MProceedings/PDFfiles/0172.html 

109. Venugopal K, Arzanforoosh F, Van Dorth D, et al. MR Vascular Fingerprinting with Hybrid 
Gradient–Spin Echo Dynamic Susceptibility Contrast MRI for Characterization of Microvasculature 
in Gliomas. Cancers. 2023;15(7):2180. doi:10.3390/cancers15072180 

110. Pannetier NA, Debacker CS, Mauconduit F, Christen T, Barbier EL. A Simulation Tool for Dynamic 
Contrast Enhanced MRI. PLoS ONE. 2013;8(3):e57636. doi:10.1371/journal.pone.0057636 

111. Pannetier NA, Sohlin M, Christen T, Schad L, Schuff N. Numerical modeling of susceptibility-related 
MR signal dephasing with vessel size measurement: Phantom validation at 3T: Susceptibility-
Related Dephasing with Vessel Size Measurement. Magn Reson Med. 2014;72(3):646-658. 
doi:10.1002/mrm.24968 

112. Klassen LM, Menon RS. NMR Simulation Analysis of Statistical Effects on Quantifying 
Cerebrovascular Parameters. Biophys J. 2007;92(3):1014-1021. doi:10.1529/biophysj.106.087965 

113. Ma J, Wehrli FW. Method for Image-Based Measurement of the Reversible and Irreversible 
Contribution to the Transverse-Relaxation Rate. J Magn Reson B. 1996;111(1):61-69. 
doi:10.1006/jmrb.1996.0060 

114. Ni W, Christen T, Zun Z, Zaharchuk G. Comparison of R2′ measurement methods in the normal 
brain at 3 tesla: Comparison of R2′ Measurement Methods in Brain at 3T. Magn Reson Med. 
2015;73(3):1228-1236. doi:10.1002/mrm.25232 

115. Pouliot P, Gagnon L, Lam T, et al. Magnetic resonance fingerprinting based on realistic vasculature 
in mice. NeuroImage. 2017;149:436-445. doi:10.1016/j.neuroimage.2016.12.060 

116. Ni WW, Christen T, Zaharchuk G. Benchmarking transverse spin relaxation based oxygenation 
measurements in the brain during hypercapnia and hypoxia: Mapping R2’/R2*/R2 With Gas 
Challenges. J Magn Reson Imaging. 2017;46(3):704-714. doi:10.1002/jmri.25582 

117. Schmiedeskamp H, Straka M, Newbould RD, et al. Combined spin- and gradient-echo perfusion-
weighted imaging: Spin- and Gradient-Echo PWI. Magn Reson Med. 2012;68(1):30-40. 
doi:10.1002/mrm.23195 

118. Schmiedeskamp H, Andre JB, Straka M, et al. Simultaneous Perfusion and Permeability 
Measurements Using Combined Spin- and Gradient-Echo MRI. J Cereb Blood Flow Metab. 
2013;33(5):732-743. doi:10.1038/jcbfm.2013.10 

119. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel 
acquisitions (GRAPPA). Magn Reson Med. 2002;47(6):1202-1210. doi:10.1002/mrm.10171 

120. Manhard MK, Bilgic B, Liao C, et al. Accelerated whole‐brain perfusion imaging using a 
simultaneous multislice spin‐echo and gradient‐echo sequence with joint virtual coil reconstruction. 

Magn Reson Med. 2019;82(3):973-983. doi:10.1002/mrm.27784 

121. Zur Y. Design of improved spectral-spatial pulses for routine clinical use. Magn Reson Med. 
2000;43(3):410-420. doi:10.1002/(SICI)1522-2594(200003)43:3<410::AID-MRM13>3.0.CO;2-3 

122. Delphin A, Boux F, Brossard C, et al. Enhancing MR vascular Fingerprinting through realistic 
microvascular geometries. Published online May 26, 2023. doi:10.48550/arXiv.2305.17092 

123. Chen Y, Lu L, Zhu T, Ma D. Technical overview of magnetic resonance fingerprinting and its 
applications in radiation therapy. Med Phys. Published online October 11, 2021:mp.15254. 
doi:10.1002/mp.15254 



121 
 

124. Ding H, Velasco C, Ye H, et al. Current Applications and Future Development of Magnetic 
Resonance Fingerprinting in Diagnosis, Characterization, and Response Monitoring in Cancer. 
Cancers. 2021;13(19):4742. doi:10.3390/cancers13194742 

125. Christen T, Bouzat P, Pannetier N, et al. Tissue Oxygen Saturation Mapping with Magnetic 
Resonance Imaging. J Cereb Blood Flow Metab. 2014;34(9):1550-1557. 
doi:10.1038/jcbfm.2014.116 

126. Christen T, Bolar DS, Zaharchuk G. Imaging Brain Oxygenation with MRI Using Blood Oxygenation 
Approaches: Methods, Validation, and Clinical Applications. Am J Neuroradiol. 2013;34(6):1113-
1123. doi:10.3174/ajnr.A3070 

127. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. Mr contrast due to intravascular magnetic 
susceptibility perturbations. Magn Reson Med. 1995;34(4):555-566. doi:10.1002/mrm.1910340412 

128. Gu Y, Wang CY, Anderson CE, et al. Fast magnetic resonance fingerprinting for dynamic contrast-
enhanced studies in mice: Gu et al. Magn Reson Med. 2018;80(6):2681-2690. 
doi:10.1002/mrm.27345 

129. Ma D, Jiang Y, Chen Y, et al. Fast 3D magnetic resonance fingerprinting for a whole‐brain 
coverage. Magn Reson Med. 2018;79(4):2190-2197. doi:10.1002/mrm.26886 

130. McGivney DF, Boyacıoğlu R, Jiang Y, et al. Magnetic resonance fingerprinting review part 2: 
Technique and directions. J Magn Reson Imaging. 2020;51(4):993-1007. doi:10.1002/jmri.26877 

131. Delphin A, Boux F, Brossard C, et al. Optimizing signal patterns for MR vascular fingerprinting. 
Presented at: Proc. Intl. Soc. Mag. Reson. Med. 28; 2020. 
https://cds.ismrm.org/protected/20MProceedings/PDFfiles/3743.html 

132. McVeigh ER, Henkelman RM, Bronskill MJ. Noise and filtration in magnetic resonance imaging: 
Noise and filtration in magnetic resonance imaging. Med Phys. 1985;12(5):586-591. 
doi:10.1118/1.595679 

133. Gudbjartsson H, Patz S. The rician distribution of noisy mri data. Mag Res Med. 1995;(34):910-914. 

134. Cardenas-Blanco A, Tejos C, Irarrazaval P, Cameron I. Noise in magnitude magnetic resonance 
images. Concepts Magn Reson Part A. 2008;32A(6):409-416. 

135. Aja-Fernández S, Vegas-Sánchez-Ferrero G. Statistical Analysis of Noise in MRI. Springer 
International Publishing; 2016. doi:10.1007/978-3-319-39934-8 

136. Dietrich O, Raya JG, Reeder SB, Ingrisch M, Reiser MF, Schoenberg SO. Influence of multichannel 
combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. 
Magn Reson Imaging. Published online 2008:9. 

137. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. 
Med Image Anal. 2001;5(2):143-156. doi:10.1016/S1361-8415(01)00036-6 

138. Jenkinson M, Bannister P, Brady M, Smith S. Improved Optimization for the Robust and Accurate 
Linear Registration and Motion Correction of Brain Images. NeuroImage. 2002;17(2):825-841. 
doi:10.1006/nimg.2002.1132 

139. Andersson J, Jenkinson M, Smith S. Non-Linear Registration Aka Spatial Normalisation. FMRIB 
Centre; 2007. 

140. Stone AJ, Blockley NP. A streamlined acquisition for mapping baseline brain oxygenation using 
quantitative BOLD. NeuroImage. 2017;147:79-88. doi:10.1016/j.neuroimage.2016.11.057 

141. Yablonskiy DA. Quantitation of intrinsic magnetic susceptibility‐related effects in a tissue matrix. 

Phantom study. Magn Reson Med. 1998;39(3):417-428. doi:10.1002/mrm.1910390312 

142. Cherukara MT, Stone AJ, Chappell MA, Blockley NP. Model-based Bayesian inference of brain 
oxygenation using quantitative BOLD. NeuroImage. 2019;202:116106. 
doi:10.1016/j.neuroimage.2019.116106 



122 
 

143. Le LNN, Wheeler GJ, Holy EN, et al. Cortical oxygen extraction fraction using quantitative BOLD 
MRI and cerebral blood flow during vasodilation. Front Physiol. 2023;14:1231793. 
doi:10.3389/fphys.2023.1231793 

144. Kety SS, Schmidt CF. The Nitrous Oxide Method for the Quantitative Determination of Cerebral 
Blood Flow  in Man: Theory, Procedure and Normal Values. J Clin Invest. 1948;27(4):476-483. 
doi:10.1172/JCI101994 

145. Duffin J, Mikulis DJ, Fisher JA. Control of Cerebral Blood Flow by Blood Gases. Front Physiol. 
2021;12:640075. doi:10.3389/fphys.2021.640075 

146. Smeeing DPJ, Hendrikse J, Petersen ET, Donahue MJ, De Vis JB. Arterial Spin Labeling and Blood 
Oxygen Level-Dependent MRI Cerebrovascular Reactivity in Cerebrovascular Disease: A 
Systematic Review and Meta-Analysis. Cerebrovasc Dis. 2016;42(3-4):288-307. 
doi:10.1159/000446081 

147. Rodgers ZB, Detre JA, Wehrli FW. MRI-based methods for quantification of the cerebral metabolic 
rate of oxygen. J Cereb Blood Flow Metab. 2016;36(7):1165-1185. 
doi:10.1177/0271678X16643090 

148. Sommer K, Amthor T, Doneva M, Koken P, Meineke J, Börnert P. Towards predicting the encoding 
capability of MR fingerprinting sequences. Magn Reson Imaging. 2017;41:7-14. 
doi:10.1016/j.mri.2017.06.015 

149. Zhao B, Setsompop K, Adalsteinsson E, et al. Improved magnetic resonance fingerprinting 
reconstruction with low-rank and subspace modeling: A Subspace Approach to Improved MRF 
Reconstruction. Magn Reson Med. 2018;79(2):933-942. doi:10.1002/mrm.26701 

150. Lima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM, Prieto C. Sparsity and locally low 
rank regularization for MR fingerprinting. Magn Reson Med. 2019;81(6):3530-3543. 
doi:10.1002/mrm.27665 

151. Dikaios N, Protonotarios NE, Fokas AS, Kastis GA. Quantification of T1, T2 relaxation times from 
Magnetic Resonance Fingerprinting radially undersampled data using analytical transformations. 
Magn Reson Imaging. 2021;80:81-89. doi:10.1016/j.mri.2021.04.013 

152. Su P, Mao D, Liu P, et al. Multiparametric estimation of brain hemodynamics with MR fingerprinting 
ASL. Magn Reson Med. 2017;78(5):1812-1823. doi:10.1002/mrm.26587 

153. Wright KL, Jiang Y, Ma D, et al. Estimation of perfusion properties with MR Fingerprinting Arterial 
Spin Labeling. Magn Reson Imaging. 2018;50:68-77. doi:10.1016/j.mri.2018.03.011 

154. Lahiri A, Fessler JA, Hernandez‐Garcia L. Optimizing MRF‐ASL scan design for precise 
quantification of brain hemodynamics using neural network regression. Magn Reson Med. 
2020;83(6):1979-1991. doi:10.1002/mrm.28051 

155. Fraum TJ, Ludwig DR, Bashir MR, Fowler KJ. Gadolinium-based contrast agents: A comprehensive 
risk assessment: Gadolinium Risk Assessment. J Magn Reson Imaging. 2017;46(2):338-353. 
doi:10.1002/jmri.25625 

156. Ma D, Pierre EY, Jiang Y, et al. Music-based magnetic resonance fingerprinting to improve patient 
comfort during MRI examinations: MRF-Music. Magn Reson Med. 2016;75(6):2303-2314. 
doi:10.1002/mrm.25818 

157. Rieger B, Akçakaya M, Pariente JC, et al. Time efficient whole-brain coverage with MR 
Fingerprinting using slice-interleaved echo-planar-imaging. Sci Rep. 2018;8(1):6667. 
doi:10.1038/s41598-018-24920-z 

158. Su P, Fan H, Liu P, et al. MR fingerprinting ASL: Sequence characterization and comparison with 
dynamic susceptibility contrast (DSC) MRI. NMR Biomed. 2020;33(1). doi:10.1002/nbm.4202 



123 
 

159. Fan H, Su P, Huang J, Liu P, Lu H. Multi‐band MR fingerprinting (MRF) ASL imaging using artificial‐
neural‐network trained with high‐fidelity experimental data. Magn Reson Med. 2021;85(4):1974-

1985. doi:10.1002/mrm.28560 

160. Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in 
tissue composition. NeuroImage. 2011;55(4):1645-1656. doi:10.1016/j.neuroimage.2010.11.088 

161. Wu B, Li W, Guidon A, Liu C. Whole brain susceptibility mapping using compressed sensing. Magn 
Reson Med. 2012;67(1):137-147. doi:10.1002/mrm.23000 

162. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random 
field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45-
57. doi:10.1109/42.906424 

163. Ciris PA, Qiu M, Constable RT. Noninvasive MRI measurement of the absolute cerebral blood 
volume-cerebral blood flow relationship during visual stimulation in healthy humans: Absolute CBV-
CBF Relationship. Magn Reson Med. 2014;72(3):864-875. doi:10.1002/mrm.24984 

164. Hua J, Liu P, Kim T, et al. MRI techniques to measure arterial and venous cerebral blood volume. 
NeuroImage. 2019;187:17-31. doi:10.1016/j.neuroimage.2018.02.027 

165. Baas KPA, Vu C, Shen J, et al. Venous Blood Oxygenation Measurements Using TRUST and T2‐
TRIR MRI During Hypoxic and Hypercapnic Gas Challenges. J Magn Reson Imaging. Published 
online April 24, 2023:jmri.28744. doi:10.1002/jmri.28744 

166. Coudert T, Delphin A, Warnking J, Lemasson B, Barbier EL, Christen T. Searching for an MR 
Fingerprinting sequence to measure brain oxygenation without contrast agent. Presented at: Proc. 
Intl. Soc. Mag. Reson. Med. 30; 2022. https://index.mirasmart.com/ISMRM2022/PDFfiles/2591.html 

167. Taneja K, Liu P, Xu C, et al. Quantitative Cerebrovascular Reactivity in Normal Aging: Comparison 
Between Phase-Contrast and Arterial Spin Labeling MRI. Front Neurol. 2020;11:758. 
doi:10.3389/fneur.2020.00758 

168. Richiardi J, Monsch AU, Haas T, et al. Altered cerebrovascular reactivity velocity in mild cognitive 
impairment and Alzheimer’s disease. Neurobiol Aging. 2015;36(1):33-41. 
doi:10.1016/j.neurobiolaging.2014.07.020 

169. Lu H, Liu P, Yezhuvath U, Cheng Y, Marshall O, Ge Y. MRI Mapping of Cerebrovascular Reactivity 
via Gas Inhalation Challenges. J Vis Exp. 2014;(94):52306. doi:10.3791/52306 

170. Poublanc J, Crawley AP, Sobczyk O, et al. Measuring Cerebrovascular Reactivity: The Dynamic 
Response to a Step Hypercapnic Stimulus. J Cereb Blood Flow Metab. 2015;35(11):1746-1756. 
doi:10.1038/jcbfm.2015.114 

171. Hou X, Liu P, Li Y, et al. The association between BOLD-based cerebrovascular reactivity (CVR) 
and end-tidal CO2 in healthy subjects. NeuroImage. 2020;207:116365. 
doi:10.1016/j.neuroimage.2019.116365 

172. Hutchinson EB, Stefanovic B, Koretsky AP, Silva AC. Spatial flow-volume dissociation of the 
cerebral microcirculatory response to mild hypercapnia. NeuroImage. 2006;32(2):520-530. 
doi:10.1016/j.neuroimage.2006.03.033 

173. Masamoto K, Vazquez A. Optical imaging and modulation of neurovascular responses. J Cereb 
Blood Flow Metab. 2018;38(12):2057-2072. doi:10.1177/0271678X18803372 

174. Delphin A, Boux F, Brossard C, et al. Using 3D realistic blood vessel structures and machine 
learning for MR vascular Fingerprinting. Presented at: Proc. Intl. Soc. Mag. Reson. Med. 30; 2022. 
https://index.mirasmart.com/ISMRM2022/PDFfiles/2592.html 

175. Zhang Q, Su P, Chen Z, et al. Deep learning–based MR fingerprinting ASL ReconStruction 
(DeepMARS). Magn Reson Med. 2020;84(2):1024-1034. doi:10.1002/mrm.28166 



124 
 

176. Boux F, Forbes F, Arbel J, Lemasson B, Barbier EL. Bayesian Inverse Regression for Vascular 
Magnetic Resonance Fingerprinting. IEEE Trans Med Imaging. 2021;40(7):1827-1837. 
doi:10.1109/TMI.2021.3066781 

177. Cohen O, Zhu B, Rosen MS. MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn 
Reson Med. 2018;80(3):885-894. doi:10.1002/mrm.27198 

178. Bhogal AA, De Vis JB, Siero JCW, et al. The BOLD cerebrovascular reactivity response to 
progressive hypercapnia in young and elderly. NeuroImage. 2016;139:94-102. 
doi:10.1016/j.neuroimage.2016.06.010 

179. McKetton L, Sobczyk O, Duffin J, et al. The aging brain and cerebrovascular reactivity. 
NeuroImage. 2018;181:132-141. doi:10.1016/j.neuroimage.2018.07.007 

180. Fisher JA, Mikulis DJ. Cerebrovascular Reactivity: Purpose, Optimizing Methods, and Limitations to 
Interpretation – A Personal 20-Year Odyssey of (Re)searching. Front Physiol. 2021;12:629651. 
doi:10.3389/fphys.2021.629651 

181. Pinto J, Bright MG, Bulte DP, Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas 
Challenges: A Methodological Guide. Front Physiol. 2021;11:608475. 
doi:10.3389/fphys.2020.608475 

182. Siero JCW, Hartkamp NS, Donahue MJ, et al. Neuronal activation induced BOLD and CBF 
responses upon acetazolamide administration in patients with steno-occlusive artery disease. 
NeuroImage. 2015;105:276-285. doi:10.1016/j.neuroimage.2014.09.033 

183. Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin‐labeled 
perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the 
European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102-116. 
doi:10.1002/mrm.25197 

184. Chappell MA, Groves AR, Whitcher B, Woolrich MW. Variational Bayesian Inference for a Nonlinear 
Forward Model. IEEE Trans Signal Process. 2009;57(1):223-236. doi:10.1109/TSP.2008.2005752 

185. Liu P, Liu G, Pinho MC, et al. Cerebrovascular Reactivity Mapping Using Resting-State BOLD 
Functional MRI in Healthy Adults and Patients with Moyamoya Disease. Radiology. 
2021;299(2):419-425. doi:10.1148/radiol.2021203568 

186. Liu P, Li Y, Pinho M, Park DC, Welch BG, Lu H. Cerebrovascular reactivity mapping without gas 
challenges. NeuroImage. 2017;146:320-326. doi:10.1016/j.neuroimage.2016.11.054 

187. Sobczyk O, Sayin ES, Sam K, et al. The Reproducibility of Cerebrovascular Reactivity Across MRI 
Scanners. Front Physiol. 2021;12:668662. doi:10.3389/fphys.2021.668662 

188. Sobczyk O. Standardization of a Cerebrovascular Stress Test Using Carbon Dioxide and BOLD-
MRI for Clinical Application. University of Toronto; 2018. 

189. Liu P, Baker Z, Li Y, et al. CVR-MRICloud: An online processing tool for CO2-inhalation and 
resting-state cerebrovascular reactivity (CVR) MRI data. Shih YYI, ed. PLOS ONE. 
2022;17(9):e0274220. doi:10.1371/journal.pone.0274220 

190. Sleight E, Stringer MS, Mitchell I, et al. Cerebrovascular reactivity measurements using 3T BOLD 
MRI and a fixed inhaled CO2 gas challenge: Repeatability and impact of processing strategy. Front 
Physiol. 2023;14:1070233. doi:10.3389/fphys.2023.1070233 

191. Sobczyk O, Battisti-Charbonney A, Fierstra J, et al. A conceptual model for CO2-induced 
redistribution of cerebral blood flow with experimental confirmation using BOLD MRI. NeuroImage. 
2014;92:56-68. doi:10.1016/j.neuroimage.2014.01.051 

192. Haller S, Zaharchuk G, Thomas DL, Lovblad KO, Barkhof F, Golay X. Arterial Spin Labeling 
Perfusion of the Brain: Emerging Clinical Applications. Radiology. 2016;281(2):337-356. 
doi:10.1148/radiol.2016150789 



125 
 

193. Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S. Changes in Human Cerebral Blood Flow and 
Cerebral Blood Volume during Hypercapnia and Hypocapnia Measured by Positron Emission 
Tomography. J Cereb Blood Flow Metab. 2003;23(6):665-670. 
doi:10.1097/01.WCB.0000067721.64998.F5 

194. Yao J (Fiona), Yang HC (Shawn), Wang JH, et al. A novel method of quantifying hemodynamic 
delays to improve hemodynamic response, and CVR estimates in CO2 challenge fMRI. J Cereb 
Blood Flow Metab. 2021;41(8):1886-1898. doi:10.1177/0271678X20978582 

195. Poublanc J, Shafi R, Sobczyk O, et al. Normal BOLD Response to a Step CO2 Stimulus After 
Correction for Partial Volume Averaging. Front Physiol. 2021;12:639360. 
doi:10.3389/fphys.2021.639360 

196. Duffin J, Sobczyk O, Crawley AP, Poublanc J, Mikulis DJ, Fisher JA. The dynamics of 
cerebrovascular reactivity shown with transfer function analysis. NeuroImage. 2015;114:207-216. 
doi:10.1016/j.neuroimage.2015.04.029 

197. Holmes KR, Tang-Wai D, Sam K, et al. Slowed Temporal and Parietal Cerebrovascular Response 
in Patients with Alzheimer’s Disease. Can J Neurol Sci J Can Sci Neurol. 2020;47(3):366-373. 
doi:10.1017/cjn.2020.30 

198. Hamilton JI, Seiberlich N. Machine Learning for Rapid Magnetic Resonance Fingerprinting Tissue 
Property Quantification. Proc IEEE. 2020;108(1):69-85. doi:10.1109/JPROC.2019.2936998 

199. Chen Y, Fang Z, Hung SC, Chang WT, Shen D, Lin W. High-resolution 3D MR Fingerprinting using 
parallel imaging and deep learning. NeuroImage. 2020;206:116329. 
doi:10.1016/j.neuroimage.2019.116329 

200. Cao P, Cui D, Vardhanabhuti V, Hui ES. Development of fast deep learning quantification for 
magnetic resonance fingerprinting in vivo. Magn Reson Imaging. 2020;70:81-90. 
doi:10.1016/j.mri.2020.03.009 

201. Cao P, Cui D, Ming Y, Vardhanabhuti V, Lee E, Hui E. Accelerating Magnetic Resonance 
Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction. Investig Magn Reson 
Imaging. 2021;25(4):293. doi:10.13104/imri.2021.25.4.293 

202. Velasco C, Fletcher TJ, Botnar RM, Prieto C. Artificial intelligence in cardiac magnetic resonance 
fingerprinting. Front Cardiovasc Med. 2022;9:1009131. doi:10.3389/fcvm.2022.1009131 

203. Oksuz I, Cruz G, Clough J, et al. Magnetic Resonance Fingerprinting Using Recurrent Neural 
Networks. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). IEEE; 
2019:1537-1540. doi:10.1109/ISBI.2019.8759502 

204. Hoppe E, Thamm F, K&#246, et al. Magnetic Resonance Fingerprinting Reconstruction Using 
Recurrent Neural Networks. In: German Medical Data Sciences: Shaping Change – Creative 
Solutions for Innovative Medicine. IOS Press; 2019:126-133. doi:10.3233/SHTI190816 

205. Cao X, Liao C, Zhou Z, et al. DTI‐MR fingerprinting for rapid high‐resolution whole‐brain  T 1  ,  T 2  , 
proton density, ADC, and fractional anisotropy mapping. Magn Reson Med. 2024;91(3):987-1001. 
doi:10.1002/mrm.29916 

206. Schauman S, Iyer S, Yurt M, et al. Toward a 1-minute high-resolution brain exam - MR 
Fingerprinting with fast reconstruction and ML-synthesized contrasts. In: ; :0053. 
doi:10.58530/2022/0053 

207. Campbell-Washburn AE, Jiang Y, Körzdörfer G, Nittka M, Griswold MA. Feasibility of MR 
fingerprinting using a high-performance 0.55 T MRI system. Magn Reson Imaging. 2021;81:88-93. 
doi:10.1016/j.mri.2021.06.002 

208. Mickevicius NJ, Glide‐Hurst CK. LOW‐RANK inversion reconstruction for THROUGH‐PLANE accelerated 

radial MR fingerprinting applied to relaxometry at 0. 35 T. Magn Reson Med. 2022;88(2):840-848. 
doi:10.1002/mrm.29244 



126 
 

209. Xuan L, Zhang Y, Wu J, He Y, Xu Z. Quantitative brain mapping using magnetic resonance 
fingerprinting on a 50‐mT portable MRI scanner. NMR Biomed. Published online December 6, 
2023:e5077. doi:10.1002/nbm.5077 

210. O’Reilly T, Börnert P, Liu H, Webb A, Koolstra K. 3D magnetic resonance fingerprinting on a low-
field 50 mT point-of-care system prototype: evaluation of muscle and lipid relaxation time mapping 
and comparison with standard techniques. Magn Reson Mater Phys Biol Med. 2023;36(3):499-512. 
doi:10.1007/s10334-023-01092-0 

 

  



127 
 

Appendix 

A | Publications Related to Dissertation 

Peer-reviewed journal articles 

1. Wheeler G, Lee Q, Fan A. Dynamic Magnetic Resonance Vascular Fingerprinting During 

Hypercapnia for Quantitative and Multiparametric Cerebrovascular Reactivity Measures. 

IEEE Engineering in Medicine and Biology Society (EMBC); December 2023. DOI: 

10.1109/EMBC40787.2023.1033996 
 

Journal articles in review or preparation for submission 

1. Wheeler G, Le L, Lee Q, Bilgic B, Delphin A, Christen T, Manhard MK, Fan A. Development, 

Optimization, and Application of Dynamic, Contrast-free Magnetic Resonance Vascular 

Fingerprinting. In preparation. 

2. Wheeler G, Lee Q, Lin C, Linh L, Korte J, Fan A. Magnetic Resonance Vascular 

Fingerprinting Measures of Cerebral Vascular Reactivity with Aging. In preparation. 
 

Conference abstracts 

1. Wheeler G, Lee Q, Fan A. Dynamic Magnetic Resonance Vascular Fingerprinting During 

Hypercapnia for Quantitative and Multiparametric Cerebrovascular Reactivity Measures. 

Presented at IEEE Engineering in Medicine and Biology Conference (EMBC); July 26, 2023; 

Sydney, Australia. 

2. Wheeler G, Le L, Lee Q, Fan A. Optimizing an Accelerated Spin- and Gradient-Echo 

Sequence for Dynamic MR Vascular Fingerprinting. Presented at International Society for 

Magnetic Resonance in Medicine (ISMRM) Annual Meeting; June 6, 2023; Toronto, 

Canada. 

3. Wheeler G, Lee Q, Manhard MK, Bilgic B, Fan A. Feasibility of Dynamic Contrast-free 

Vascular Magnetic Resonance Fingerprinting. Presented at International Society for 

Magnetic Resonance in Medicine (ISMRM) Annual Meeting; May 12, 2022; London, United 

Kingdom. 

4. Wheeler G, Fan A. Noise Considerations for Accelerated MR Vascular Fingerprinting. 

Presented at International Society for Magnetic Resonance in Medicine (ISMRM) Annual 

Meeting; May 7, 2021; Virtual conference. 
 

Peer-reviewed journal article contributions 

1. Lee Q, Chen J, Wheeler G, Fan A. Characterizing systemic physiological effects on the 

blood oxygen level dependent signal of resting-state fMRI in time-frequency space using 

wavelets. Human Brain Mapping. November 2023. DOI: 10.1002/hbm.26533 

2. Le L, Wheeler G, Holy E, Donnay C, Blockley N, Yee A, Ng K, Fan, A. Cortical oxygen 

extraction fraction using quantitative BOLD MRI and cerebral blood flow during vasodilation. 

Frontiers in Physiology. October 2023. DOI: 10.3389/fphys.2023.1231793A. 
 

Conference abstract contributions 

1. Hsu C, Lee Q, Wheeler G, Fan A. White Matter Hyperintensity Burden is Related to White 

Matter Cerebrovascular Reactivity in Aging. Accepted to Organization for Human Brain 

Mapping (OHBM) Annual Meeting; June 2024; Seoul, South Korea. 

https://doi.org/10.1109/EMBC40787.2023.10339967
https://doi.org/10.1002/hbm.26533
https://doi.org/10.3389/fphys.2023.1231793


128 
 

2. Lin C, Wheeler G, Fan A. MR Vascular Fingerprinting with Deep Learning to Estimate Brain 

Physiological Parameters. Accepted to International Society for Magnetic Resonance in 

Medicine (ISMRM) Annual Meeting; May 2024; Singapore. 

3. Hsu C, Lee Q, Wheeler G, Fan A. Evaluating the Relationship between White Matter 

Hyperintensities and Cerebrovascular Reactivity in White Matter Regions of Elderly 

Participants. Poster presented at Biomedical Engineering Society (BMES) Annual Meeting; 

October 14, 2023; Seattle, WA. 

4. Le L, Wheeler G, Blockley N, Fan A. Quantitative BOLD with Variational Bayesian 

inference: model comparisons with Monte Carlo simulations and in an elderly cohort. 

Presented at International Society for Magnetic Resonance in Medicine (ISMRM) Annual 

Meeting; June 6, 2023; Toronto, Canada. 

5. Le L, Wheeler G, Fletcher E, Blockley N, Fan A. Assessment of Oxygen Extraction Fraction 

mapping between normal cognition and mild cognitive impairment in an elderly cohort using 

quantitative BOLD. Presented at International Society for Magnetic Resonance in Medicine 

(ISMRM) Annual Meeting; June 6, 2023; Toronto, Canada. 

6. Tavakoli A, Le L, Wheeler G, Fan A. Measuring Brain Hemodynamics with Quantitative 

BOLD imaging: Accuracy and Mean Squared Error. Poster presented at Biomedical 

Engineering Society (BMES) Annual Meeting; October 15, 2022; San Antonio, TX. 

7. Lee Q, Chen J, Wheeler G, Fan A. Characterizing systemic physiological effects on rsfMRI 

signals in time and frequency using wavelets. Presented at Organization for Human Brain 

Mapping (OHBM) Annual Meeting; June 20, 2022; Glasgow, United Kingdom. 

8. Le L, Wheeler G, Christen T, Zaharchuk G, Fan A. Comparison of Quantitative BOLD and 

Vascular MRF for Mapping Brain Oxygenation. Presented at International Society for 

Magnetic Resonance in Medicine (ISMRM) Annual Meeting; May 12, 2022; London, United 

Kingdom. 

9. Le L, Wheeler G, Momjian A, Donnay C, Blockley N, Fan A. Oxygen Extraction Fraction 

Using Quantitative BOLD and Cerebral Blood Flow During Vasodilation. Presented at 

International Society for Magnetic Resonance in Medicine (ISMRM) Annual Meeting; May 

12, 2022; London, United Kingdom. 

10. Lee Q, Chen J, Wheeler G, Fan A. Characterizing spectral and temporal effects of heart 

rate variability on resting-state BOLD signals using wavelet transform coherence. Presented 

at International Society for Magnetic Resonance in Medicine (ISMRM) Annual Meeting; May 

9, 2022; London, United Kingdom. 

11. Zhong D, Kim M, Wheeler G, Fan A. Reproducibility of R2' Measurement for Oxygen 

Saturation in the Human Brain. Poster presented at Biomedical Engineering Society (BMES) 

Annual Meeting; October 17, 2020; Virtual conference. 

 

  



129 
 

B | Supplementary Figures 

 
Figure A3.1. MRVox Algorithm, Inputs, and Outputs (from Pannetier et al.110) A) Variables on the left of the boxes 
are inputs to the model that can be modified. Data on the right are outputs after the simulation. The simulation is 
organized in three blocks. Block (a) initializes the geometry, block (b) describes the contrast agent (CA) behavior over 
time, and block (c) estimates the MR signal. B) List of main parameters used in the algorithm with definitions of 
acronyms. 
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Figure A3.2. The GESFIDE Sequence (from Ni et al.116) A) Schematic of the GESFIDE sequence showing echo 
sampling in the free-induction decay (FID), refocusing, and post spin echo (SE) dephasing signal regimes. B) The 
pulse sequence diagram illustrating the acquisition of multiple echoes. C) Representative images of the same slice 
corresponding to different echo times in the signal. 

 
Figure A3.3. The SAGE Sequence (from Schmiedeskamp et al.117). A) Schematic of the SAGE sequence showing 
echo planar imaging (EPI) acquisition of two gradient echoes, a 180° refocusing pulse, and three more EPI readouts. 
B) Representative images of the same slice corresponding to each echo time acquired with the sequence. 
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Figure A4.1. Breathing Apparatus Used During Hypoxia and Hyperoxia Study (from Ni et al.116) A) Schematic of 
gas inhalation set up with a Certec Hi-Ox mask (green box) and arrows indicating direction of airflow. B) Photo of the 
set up on a mannequin head showing straps that keep the facemask seal tight. 
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Figure A4.2. Average CBV Maps with Different Methods Across Oxygen Conditions. Group average CBV maps 
generated with each of the 10 methods from Table A4.1 for each gas inhalation condition. 
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Figure A4.3. Average Radius Maps with Different Methods Across Oxygen Conditions. Group average radius 
maps generated with each of the 10 methods from Table A4.1 for each gas inhalation condition. 
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Figure A4.4. Average SO2 Maps with Different Methods Across Oxygen Conditions. Group average SO2 maps 
generated with each of the 10 methods from Table A4.1 for each gas inhalation condition. 
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Figure A4.5. Average T2 Maps with Different Methods Across Oxygen Conditions. Group average T2 maps 
generated with each of the four methods from Table A4.1 that use T2 for each gas inhalation condition. 
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Figure A5.1. Signal-to-noise Ratio GESFIDE Sensitivity Simulations. A) The noise-free signal evolution of a 
GESFIDE sequence simulation with 5% CBV, 5 µm R, and 65% SO2 (orange), as well as the same parameter 
combination with added Gaussian noise at signal-to-noise ratios (SNR) of 160 (green), 80 (blue), 40 (purple), 20 (pink), 
and 10 (red). B) The sensitivity plots obtained by matching each dictionary entry to the example noise-free and noisy 
signals, repeated 100 times, and averaged. The plots show where SO2 = 65% with all combinations of CBV and radius. 
The orange arrows indicate the true parameters underlying the signal and each colored arrow shows the predicted 
parameters from the corresponding noisy signal in A. 
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Figure A5.2. Echo Train Length Sensitivity Simulations. A) The noise-free signal evolution of a single GESFIDE 
sequence simulation with 5% CBV, 5 µm R, and 65% SO2 and the same parameter combination with added Gaussian 
noise at a signal-to-noise ratio (SNR) of 160 with 40, 20, 10, or 5 subsampled echo times (TE). Each red dot represents 
where the noisy signal was subsampled. B) Sensitivity plots of the inner product values obtained by matching all 
dictionary entries to the example signal (5% CBV, 5 µm R, and 65% SO2) with the various number of echoes, repeated 
100 times and averaged. The plots show where SO2 = 65% with all combinations of CBV and radius. The orange arrows 
indicate the true parameters of the signal, and the red arrows show the predicted parameters from the corresponding 
noisy signal in A.  
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Figure A5.3. Signal-to-noise Ratio SAGE Sensitivity Simulations. Average sensitivity plots obtained by matching a 
simulated noise-free and simulated noisy signals with known underlying parameters (5% CBV, 5 µm R, and 65% SO2) 
to every signal in the dictionary and repeated 100 times. A) Plots where SO2 = 65% with all combinations of CBV and 
R. B) Plots where CBV = 5% with all combinations of R and SO2. C) Plots where R = 5 µm with all combinations of 
CBV and SO2. The pink arrows indicate the true parameters underlying the signal. Parameter combinations in the 
dictionary that match the noisy signal better (higher inner product) are signified by darker regions in the plot. 
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Figure A6.1. Mounting Clip for Breathing Apparatus. Dimensions and virtual model of custom designed and 3D 
printed clip to mount the support arm to the rail of the MRI scanner. This support connects via plastic bracket and plastic 
screws to the two-way non-rebreathing valve (#3) in Figure 6.1 and ensures the breathing apparatus remains in place 
throughout each scan. 
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Figure A6.2. Gray Matter Signal Time Courses During Hypercapnic Study. Averaged time-courses of end-tidal 
CO2, blood oxygen level dependent (BOLD) signal, cerebral blood volume (CBV), microvascular vessel radius (R), and 
tissue oxygen saturation (SO2) acquired during hypercapnic stimulus blocks and during free breathing from three other 
pilot participants (S2, S3, and S4). BOLD, CBV, R, and SO2 values represent gray matter averages. 
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Figure A6.3. White Matter Signal Time Courses During Hypercapnic Study. End-tidal CO2, and white matter 
averaged time-courses of blood oxygen level dependent (BOLD) signal, cerebral blood volume (CBV), microvascular 
vessel radius (R), and tissue oxygen saturation (SO2) acquired during hypercapnic stimulus blocks and during free 
breathing from all four participants. 
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Figure A7.1. Average End-Tidal CO2 Changes for Young and Old Cohorts. The end-tidal CO2 (EtCO2) time courses 
averaged across all participants after detrending and normalization for the young (black line) and old (gray line) cohorts 
during hypercapnic stimulus blocks block acquisition. 

 

 
Figure A7.2. Average White Matter Time Courses of BOLD, CBV, R, and SO2 for Young and Old Cohorts. The 
white matter parameter Z-scores averaged across all participants in the young (darker lines) and old (lighter lines) 
cohorts. Fluctuations of blood oxygen level dependent (BOLD) signal, cerebral blood volume (CBV), microvascular 
vessel radius (R), and tissue oxygen saturation (SO2) acquired during hypercapnic stimulus blocks are shown. 

 

 
Figure A7.3. Average Whole-brain Time Courses of BOLD, CBV, R, and SO2 for Young and Old Cohorts. The 
whole-brain parameter Z-scores averaged across all participants in the young (darker lines) and old (lighter lines) 
cohorts. Fluctuations of blood oxygen level dependent (BOLD) signal, cerebral blood volume (CBV), microvascular 
vessel radius (R), and tissue oxygen saturation (SO2) acquired during hypercapnic stimulus blocks are shown. 
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Figure A7.4. Average CVR Maps Derived from MRvF Imaging for Young and Old Cohorts. To generate these, 
voxelwise cerebrovascular reactivity (CVR) maps were generated for each subject by regressing the time-course of 
blood oxygen level dependent (BOLD) signal, cerebral blood volume (CBV), vessel radius (R), and oxygen saturation 
(SO2) of each voxel independently against the subject’s end-tidal CO2 time-course. These subject CVR maps were 
then averaged across parameter and age group. 
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Figure A7.5. Comparing CBF Response to Hypercapnia for Young and Old Cohorts. Group average cerebral 
blood flow (CBF) maps were calculated for the ASL scan acquired during normal air breathing (1st row) and during 5% 
CO2 gas inhalation (2nd row). The percent change in CBF was calculated for each subject and average across the group 
(3rd row) before being normalized to each subject’s change in EtCO2 during the hypercapnic scan for determination of 
CBF-derived cerebrovascular reactivity (CVR) and group averaging (4th row).  



145 
 

C | Supplementary Tables 

Table A4.1. Modeling and Matching Method Variations 

 
 

Table A5.1. Biophysical Model Parameters Used for Generating Dictionaries with Finer 
Sampling in Normal Physiological Ranges 

 
 

Table A6.1. Normalized Regression Coefficients of BOLD and MRvF Parameters Against 

EtCO2 During Block Hypercapnic Stimulus in Gray Matter 

 
Table displays the mean ± standard deviation of the regression coefficients across all four participants. Parameters 
were normalized to the maximum value in their time course prior to regression. 

 

Table A6.2. Normalized Regression Coefficients of BOLD and MRvF Parameters Against 
EtCO2 During Block Hypercapnic Stimulus in White Matter 

 
Table displays the mean ± standard deviation of the regression coefficients across all four participants. Parameters 
were normalized to the maximum value in their time course prior to regression. 

 

                                                             

                                  

                                    

                                   

                                     

                                        

                                         

                                    

                                     

                                        

                                         



146 
 

Table A7.1. Biophysical Model Parameters Used for Generating Dictionary with Evenly 
Spaced Sampling Throughout Physiological Range 

 
 

Table A7.2. White Matter CVR Measures from BOLD, MRvF, and CBF Parameters During 
Hypercapnic Stimuli 

 
Table displays the mean ± standard deviation of the CVR measurements across all participants in each group 

 

Table A7.3. Whole-brain CVR Measures from BOLD, MRvF, and CBF Parameters During 

Hypercapnic Stimuli 

 
Table displays the mean ± standard deviation of the CVR measurements across all participants in each group 
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