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ABSTRACT OF THE DISSERTATION

An Immersed Reproducing Kernel Particle Method for Modeling Inhomogeneous Media

by

Frank Beckwith

Doctor of Philosophy in Structural Engineering

University of California San Diego, 2018

Professor Jiun-Shyan Chen, Chair

Structures involving multiple materials are difficult for meshfree methods to model

accurately due to the strain discontinuity introduced at the material interface. An immersed

Reproducing Kernel Particle Method (RKPM) approach is proposed to model inhomogeneous

materials using an immersed domain approach to allow independent approximations and dis-

cretizations for the background matrix and the foreground inclusion. In this approach, Nitsche’s

method is introduced to enforce the interface compatibility conditions in a variationally consistent

manner. The proposed method simplifies the spatial discretization procedures for multi-material

problems involving complex geometries because the conforming requirements in discretization

at the interface are avoided. Efficient and stable domain integration methods for the immersed

xiv



RKPM discretization are investigated, and the performance of several approaches are compared.

Specifically, conforming and non-conforming domain integration between the foreground and

background domains are discussed. Optimal convergence is achieved without tedious procedures

such as enrichment functions or boundary singular kernels commonly employed in other meshfree

methods for solving multi-material problems. Several numerical examples are presented to

examine the effectiveness of the proposed method. A nonlinear formulation of the immersed

RKPM method is also presented and its effectiveness in modeling brittle materials using an

elastic-damage model is investigated.
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Chapter 1

Introduction

1.1 Motivation

Meshfree methods are effective in constructing approximations with higher-order continu-

ity and completeness with arbitrary point discretizations. Additionally, meshfree methods do not

rely on an element mesh and construct the approximation using nodal information only. These

features are attractive for modeling problems under large deformation due to loading from extreme

events. However, modeling problems with multiple materials remains a challenging problem

for meshfree simulations due to the presence of discontinuities in the strain field. Meshfree

methods that are highly continuous are unable to capture such weak discontinuities and suffer

from oscillations in the strain space due to Gibb’s phenomenon unless enrichment functions

with derivative discontinuities are introduced. Although the finite element method (FEM) can

easily model strain discontinuities due its C0 approximation, it suffers from issues due to mesh

entanglement and element inversion under large deformation and requires costly remeshing.

Discretizing multi-material problems with complex geometries is also a tedious task if a

conformal discretization with respect to the material interface is required. For FEM simulations,

this can lead to distorted elements and introduce error into the approximation. Meshfree methods
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appear to have an advantage since they do not require a conforming mesh but cannot properly

approximate strain discontinuities at the material interface. Extrinsic enrichment techniques may

be adopted to introduce weak discontinuities into the meshfree approximation. Such enrichment

functions require nodal discretization that conforms to the material interface. They also introduce

additional degrees of freedom corresponding to the amplitude of the strain jump which adds

computational expense to the simulation. Intrinsic enriching avoids the additional degrees

of freedom by building the derivative discontinuities into the basis functions of the meshfree

approximation. However, the process still requires parameterization of the interface and can lead

to ill-conditioning away from the enrichment location.

Problems with complex material geometries may arise, for example, in composite struc-

tures with multiple fibers that cross and intersect each other. These structures often encounter

material damage in the matrix of the surrounding material due to extreme loading. The use of

meshfree approximations without any treatment at the material interface may prematurely damage

the matrix material due to oscillations occurring from Gibb’s phenomenon. Additionally, FEM

or other conformal methods fail to properly model these problems because of severe element

distortion near the material interface. To this end, body-unfitted or immersed approaches that

employ independent discretizations capable of capturing the weak discontinuity are desired.

1.2 Objectives

Despite several efforts made to improve meshfree approximations in the presence of

material discontinuities, simulating multi-material problems with meshfree remains a challenging

problem. The major objectives of this dissertation are as follows:

• Develop an immersed meshfree framework using Nitsche’s method for interface compatibil-

ity. Immersed, or body-unfitted, approaches are intended to avoid a conformal discretization

of the interface and utilize simple discretizations of the background and foreground materi-
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als. This alleviates the discretization effort required for conformal techniques while still

capturing the strain discontinuities through the use of independent approximations in the

background and foreground discretizations.

• Formulate the immersed meshfree method which is compatible for arbitrary approximation

functions for use with heterogeneous materials. Investigate and formulate accurate and

stable numerical algorithms, including the Nitsche’s penalty, the domain integration, the

order of continuity in the background and foreground approximation functions, and their

influence on the convergence rate of the numerical solution.

• Application of the immersed meshfree method to nonlinear problems with material damage

without remeshing, moving mesh/point, or element death for problems with deformation

dependent interface conditions such as interface debonding and material separation. Con-

siderations with respect to domain and interface integration are discussed when nonlinear

models are present. The use of Nitsche’s method in nonlinear problems is also discussed.

1.3 Outline

The remainder of this dissertation is organized as follows. An overview of the current

methods for solving multi-material problems with both body-fitted and body-unfitted approaches

is presented in Chapter 2. The construction of the reproducing kernel approximation is presented in

Chapter 3 in both continuous and discrete formats. A multi-dimensional notation is also introduced

for constructing RK approximations in arbitrary dimensions. The mechanics of the multi-material

problem and the formulation of the immersed method are given in Chapter 4. A fictitious

domain is introduced for the immersed approach which serves to simplify the discretization of

the total domain. Emphasis is placed on the use of simple discretizations for approximating the

background and foreground domains and the ease of obtaining these discretizations. Integration

methods for the immersed RKPM method are presented in Chapter 5. Different strategies for
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populating integration points for use with the immersed approach is discussed. The immersed

RKPM approach is applied to linear analysis and verified with several numerical examples in

Chapter 6. In Chapter 7, the immersed RKPM approach is extended to heterogeneous problems

with material nonlinearities. The linearization procedures are discussed and an example using an

elastic-damage model is given. Chapter 8 summarizes this work and gives recommendations for

future research.

4



Chapter 2

Literature Review

Meshfree methods, such as element free Galerkin (EFG) or reproducing kernel particle

method (RKPM), have been shown to be versatile in constructing approximations with arbitrary

order of continuity and polynomial completeness, where the order of continuity and completeness

are decoupled from each other [12]. These features usually result in more accurate solutions

and better resolved stress and strain fields than C0 finite elements for smooth problems, and

simplifies solution procedures for solving problems involving high-order spatial derivatives,

such as thin shells and gradient damage modeling [16, 14]. Further, meshfree methods are

effective for problems with excessive deformation where mesh-based methods often encounter

difficulties due to mesh distortion or element entanglement [15]. On the other hand, for problems

involving heterogeneous materials, the meshfree solutions exhibit severe spurious oscillations

due to the smooth approximations with overlapping supports that cannot adequately realize the

strain jump conditions across material interfaces. The C0 finite elements naturally introduce a

weak discontinuity in the strains across the material interface providing that a conforming mesh

with respect to the material interface is generated. However, in bi-material problems involving

complex geometries, such as reinforced concrete or composite materials, domain discretization

with a conforming mesh along the material interfaces remains a challenging and tedious task.
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To improve meshfree methods in capturing weak discontinuities, various approaches

have been proposed, which broadly fall into two categories: body-fitted methods and body-

unfitted methods, depending on whether or not the nodal distribution location conforms to the

material interfaces [59]. Within the category of body-fitted methods, Cordes and Moran [23]

attempted to apply a Lagrange multiplier method to enforce the interface jump conditions in the

EFG discretization, but the derivative oscillations around the interface are encountered unless

additional filtering schemes are adopted. Krongauz and Belytschko [50] enhanced the EFG shape

functions using extrinsic enrichment with built-in discontinuities in their derivatives, while at the

cost of introducing extra degrees of freedom associated with the amplitude of derivative jump.

By exploiting the reproducing conditions, an intrinsic interface-enriched reproducing kernel

approximation with embedded derivative discontinuities on the material interface was proposed in

Wang, Chen, and Sun [80], which maintains the completeness without extra degrees of freedom.

Lu, Kim, and Liu [61] proposed to capture weak discontinuities by truncating the window function

and global partition polynomials, which keeps the advantage of both finite element methods and

meshfree methods similar to that in the reproducing kernel element method [56].

2.1 Body-Unfitted Approaches

All the above-mentioned body-fitted methods require the discretization on the material in-

terfacial geometry, which is an enhancement over the finite element typed conformal requirement.

However, these approaches usually involve additional degrees of freedom, either extrinsically or in-

trinsically, and are considerably tedious for three dimensional, large-scale simulations of structures

with complex material interface geometries (e.g., reinforced concrete structures embedded with

numerous rebars and stirrups). Therefore, it is desirable to have a numerical scheme that allows the

mesh/point distributions to be entirely independent to the underlying interface geometry. Along

this line, various body-unfitted numerical methods have been developed, including immersed
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boundary methods [36, 66, 2, 31, 24, 71, 65], immersed finite element methods [90, 89, 83, 82, 84],

embedded methods [52, 60, 59], fictitious domain methods [5, 10, 11, 33, 88, 42, 47, 85], finite

cell methods [29, 69], Cartesian grid methods [22, 25, 64, 48, 1, 67], and extended/generalized

finite element methods [27, 28, 39, 78, 79].

In the extended/generalized finite element methods, partition-of-unity based extrinsic

enrichment functions are introduced to enable the approximation to capture weak discontinuities

without the need of a conforming mesh [8, 79, 78, 39]. In similar works [38, 27], a material inter-

face is embedded into an underlying mesh and the weak discontinuity is achieved by some form

of enrichment. These methods employ a level set function to identify the interface and subdivide

or “cut” the intersected elements. To model the weak discontinuity, Nitsche’s method [68] is

normally employed. In [38, 39], Nitsche’s method is used along an embedded interface with

triangle elements. Nodes of elements cut by the interface are duplicated and their shape functions

are modified such that they are positive on one side of the interface and zero on the other. In

addition, a lower bound on the Nitsche parameter, γ, is given using an a priori analysis. In [27, 41],

a closed-form expression for constant-strain triangles is given for γ using the inverse inequality.

Annavarapu, Hautefeuille, and Dolbow [3] demonstrated the Nitsche parameter γ depends on

the weighted average scheme used in the flux terms of Nitsche’s method and proposes different

weights based on the relative stiffness and size of the cut element to either side of the embedded

interface. Jiang, Annavarapu, Dolbow, and Harari [45] extended the use of Nitsche’s method for

spline-based finite elements where a closed-form expression for γ cannot be obtained. Instead, the

generalized inverse estimate is used on both sides of the interface to determine a lower bound for

the interfacial weights. Other works have also employed Nitsche’s method in conjunction with

heirarchical h-refinement of the level set function to accurately define the interface and integration

domains [53].

Body-unfitted approaches such as the immersed boundary and fictitious domain methods

have been studied extensively in fluid-structure interaction (FSI) problems. In the fictitious domain

7



method developed in [49], a solid is immersed into a finite volume discretization and the no-slip

condition is enforced on the interface. Using the distributed Lagrange multiplier method [35, 34],

solid particulates surrounded by a fluid medium have been modeled. The immersed boundary

(IB) method [70, 71] immerses solids in an Eulerian fluid domain and couples the two fields

via discrete Dirac delta functions. A second-order accurate version of IB [51] was developed

by employing a time-centered explicit integration scheme. An adaptive IB method [74] for

improved accuracy was later introduced. These methods use a network of volume-less fibers to

estimate the stresses in the solid. The extended immersed boundary method (EIBM) improves

the accuracy by estimating stresses via a continuum solid using finite elements [81], and the

discrete Dirac delta functions of the IB method are also replaced with reproducing kernel (RK)

delta functions for arbitrary Cn continuity. Similarly, this idea was extended to model both the

fluid and structure with elements in the immersed finite element method [90]. In the immersed

finite element method [90, 89, 83, 82, 84], the immersed solid material is described with a

deformable solid with finite volume. These methods have successfully been used towards heart

valve simulations [72, 63, 44], wave propagation in cochlea [9], de-aggregation of red blood cell

clusters [58], and recently to air-blast FSI [6].

For applications to inhomogeneous solid materials, the mortar element method [7] couples

two non-conforming FEM approximations using Lagrange multipliers. The finite cell method [29,

69] relaxes the conforming requirement by extending the domain of the problem to a uniform grid

of cells. Quadrature points outside of the physical domain are given softer material properties

to approximate the actual geometry. This approach requires high-order quadrature near the

boundary to accurately integrate the true strain energy. In a similar work [54, 55], a uniform grid

of elements is used and the shape functions are modified along the interface to capture the jump

condition. In [40], Nitsche’s method is employed for “embedded mesh” problems where two

separate discretizations overlap each other. The interface is defined as the collection of edges

from the elements used to discretize the immersed inclusion. Background triangles intersecting

8



this interface are cut in order to appropriately integrate each subdomain. In [76], this method was

extended to quadrilaterals to solve elasticity problems.

Despite the significant progress described above, studies on meshfree methods with body-

unfitted techniques are still rare. Recently, Wu, Guo, and Askari [86] introduced an immersed

meshfree formulation, which shows promising performance compared to body-fitted meshfree or

conforming finite element discretizations, especially for large deformation problems [87]. In these

works, the approximation functions are so constructed to impose continuity at the discrete nodal

points along the material interface, usually achieved by the boundary singular kernel method or

mixed transformation method [17]. As the resulting approximations generally do not conform to

each other away from the discrete points on the interface, optimal convergence for bi-material

problems are not guaranteed. In this work, an immersed RKPM approach is proposed where

a “fictitious” zone is introduced in the background which overlaps the underlying inclusion

and allows the background to be treated as a single, continuous body. Due to the independent

discretizations and approximations in the background and foreground domains, jump conditions

across the interface is achieved without the need of any enrichment schemes described in [50, 80].

In contrast to the earlier immersed meshfree formulation [86, 87], Nitsche’s method is adopted in

the present work to enforce the interface conditions, resulting in a computational framework that

allows incorporation of different approximations in the background and foreground discretizations

in a variationally consistent manner, and optimal convergence is achieved for modeling multi-

materials problems without any tedious procedures described in [86, 87] for matching different

approximations at interfaces.
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Chapter 3

Reproducing Kernel Particle Method

3.1 Continuous Reproducing Kernel Approximation

Consider a field u in the domain Ω. The kernel estimate uk of this field used in SPH is

given by the following convolution integral.

uk(x) =
∫

Ω

φa(x− s)u(s)ds (3.1)

φa is a kernel function with compact support given by a and is similar to the weighting function for

a moving least squares (MLS) approximation. The kernel estimate is not complete for arbitrary

polynomial orders. The RK approximation addresses this issue by introducing a correction

function C(x;x− s) into the kernel estimate such that the following approximation is complete up

to polynomials of order n.

uR(x) =
∫

Ω

C(x;x− s)φa(x− x)u(s)ds (3.2)
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To this end, the following correction function first proposed in [57] is introduced.

C(x;x− s) =
n

∑
i=0

(x− s)ibi(x) =HT (x− s)b(x) (3.3)

whereH(x) is a basis vector of monomials:

HT (x− s) =
[

1 x− s (x− s)2 · · · (x− s)n

]
(3.4)

and b(x) is a set of moving coefficients that are as yet undetermined. Here, monomial basis

functions have been used but others types of basis functions may be introduced as well. To

determine the coefficients, a Taylor expansion of u(s) is taken as follows:

u(s) =
∞

∑
i=0

(s− x)i

i!
u(i)(x) (3.5)

where u(i)(x) denotes the ith derivative of the function u(x). Substituting (3.3) and (3.5) into the

RK approximation given by (3.2) above yields:

uR(x) = m0(x)u(x)+
∞

∑
i=1

(−1)i

i!
mi(x)u(i)(x) (3.6)

where mi(x) is the ith moment of the corrected kernel φa and is given as:

mi(x) =
∫

Ω

(x− s)iHT (x− s)b(x)φa(x− s)ds (3.7)

For the RK approximation uR(x) to achieve nth order completeness, the first moment is taken as

m0(x) = 1 and all other moments mi(x) = 0 for all i. These “reproducing conditions” lead to the

following system of equations.

M(x)b(x) =H(0) (3.8)
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whereM(x) is a moment matrix given by

M(x) =



m0(x) m1(x) · · · mn(x)

m1(x) m2(x) · · · mn+1(x)
...

... . . . ...

mn(x) mn+1(x) · · · m2n(x)


(3.9)

or

M(x) =
∫

Ω

H(x− s)HT (x− s)φa(x− s)ds (3.10)

and the reproducing conditions are

HT (0) =
[

1 0 · · · 0

]
(3.11)

M(x) is a Gram or moment matrix and as such is symmetric and positive definite. With

(3.8) the vector b(x) is solved as follows:

b(x) =M−1(x)H(0) (3.12)

Reintroducing the moving coefficients into (3.2), the continuous RK approximation is obtained.

uR(x) =HT (0)M−1(x)
∫

Ω

H(x− s)φa(x− s)u(s)ds

=
∫

Ω

Ψ(x;x− s)u(s)ds (3.13)

where Ψ(x;x− s) is known as the reproducing kernel approximation function given as follows:

Ψ(x;x− s) =H(0)M−1(x)H(x− s)φa(x− s) (3.14)

An alternative method for developing the continuous RK approximation is presented
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in [18] by directly imposing reproducing conditions of the nth polynomial to the RK approxima-

tion. ∫
Ω

C(x;x− s)φa(x− s)si ds = xi, i = 0, · · · ,n (3.15)

(3.15) is equivalently expressed as

∫
Ω

C(x;x− s)φa(x− s)(x− s)i ds = δ0i, i = 0, · · · ,n (3.16)

where δ0i is the Kronecker delta function. Further rewriting the above and introducing the

definition of the correction function from (3.3) earlier gives:

(∫
Ω

H(x− s)HT (x− s)φa(x− s)ds
)
b(x) =H(0)

M(x)b(x) =H(0) (3.17)

which produces the same result and can be further utilized to arrive at the reproducing kernel

Ψ(x;x− s) as before.

As observed from (3.14), the reproducing kernel Ψ(x;x− s) retains the continuity of the

original kernel before correction; that is, if φa(x− s) belongs to Ck, so too does Ψ(x;x− s). Also,

the completeness of the reproducing kernel is completely independent of the original kernel

continuity, unlike polynomial spline functions. An example of a kernel function φa is the cubic

B-spline function given as:

φa(x− s) =



2
3 −4z2 +4z2 0≤ z≤ 0.5

4
3 −4z+4z2− 4

3z3 0.5≤ z≤ 1.0

0 z > 1.0

where z =
|x− s|

a
(3.18)
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3.2 Discrete Reproducing Kernel Approximation

The continuous form of the RK approximation must be discretized in order to construct

an approximation function for a finite-dimensional solution of a set of partial differential equa-

tions. However, simply discretizing the continuous form in the previous section will violate the

reproducing conditions and must be reformulated in a consistent manner for the discrete setting.

Let S be a set of nodes xI used to discretize the domain Ω and NP = card(S) be the total number

of nodes.

S = {I | xI ∈Ω} (3.19)

The discrete RK approximation is given as:

uh(x) = ∑
I∈S

C(x;x− xI)φa(x− xI)uI (3.20)

where

C(x;x− xI) =H
T (x− xI)b(x) (3.21)

Following [15], the discrete reproducing conditions are imposed as follows.

∑
I∈S

C(x;x− xI)φa(x− xI)xi
I = xi, i = 0,1, · · · ,n (3.22)

or equivalently

∑
I∈S

C(x;x− xI)φa(x− xI)(x− xI)
i = δ0i, i = 0,1, · · · ,n (3.23)

Rewriting the above using (3.21), the following system of equations is obtained:

∑
I∈S
H(x− xI)H

T (x− xI)φa(x− xI)b(x) =H(0)

M(x)b(x) =H(0) (3.24)
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where

M(x) = ∑
I∈S
H(x− xI)H

T (x− xI)φa(x− xI) (3.25)

Once again by solving for the moving coefficients b(x) using (3.25) above and substituting into

the discrete RK approximation in (3.20) results in the following.

uh(x) = ∑
I∈S
HT (0)M−1H(x− xI)φa(x− xI)uI ≡∑

I∈S
ΨI(x)uI (3.26)

where ΨI(x) is the shape function at node I.

HT (0)M−1H(x− xI)φa(x− xI) (3.27)

By construction of the RK approximation, the nth order consistency condition is exactly satisfied.

3.3 Multi-dimensional RK Approximation

The discrete RK approximation in 1D may easily be extended to arbitrary dimension.

Consider a domain Ω ∈ Rd where d is the spatial dimension. The set S is redefined such that

S = {I | xI ∈Ω}. The RK approximation is now expressed as:

uh(x) = ∑
I∈S

C(x;x−xI)φa(x−xI)uI (3.28)

where x = (x1,x2, · · · ,xd). In what follows, a multi-index notation is employed where α =

(α1,α2, · · · ,αd) denote the integer powers αi for each xi of a monomial xα ≡ xα1
1 xα2

2 · · ·x
αd
d =

Πd
i=1xαi

i . The length of the monomial order is given as |α|=∑
d
i=1 αi. In (3.28) above, C(x;x−xI)

represents a correction function defined as the linear combination of monomials complete to
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degree n.

C(x;x−xI)≡ ∑
|α|≤n

(x−xI)
αbα(x) =H

T (x−xI)b(x) (3.29)

As before,H(x−xI) = {(x−xI)
α}|α|≤n represents a set of monomial basis functions. In three

dimensions (d = 3), the basis vector complete up to nth order polynomials is given as:

HT (x−xI) =

[
1 x1− x1I x2− x2I x3− x3I · · · (x1− x1I)

n · · ·(x3− x3I)
n

]
(3.30)

Again, the reproducing conditions are imposed to the multi-dimensional RK approximation to

arrive at the following.

∑
I∈S

C(x;x−xI)φa(x−xI)x
α
I = xα, |α| ≤ n (3.31)

Equivalently,

∑
I∈S
H(x−xI)H

T (x−xI)φa(x−xI)b(x) =H(0)

M(x)b(x) =H(0) (3.32)

where

M(x) = ∑
I∈S
H(x−xI)H

T (x−xI)φa(x−xI) (3.33)

Solving for the moving coefficient vector b(x) and substituting back into (3.28) in the usual

manner results in the multi-dimensional RK approximation.

uh(x) = ∑
I∈S
HT (0)M−1(x)H(x−xI)φa(x−xI)uI ≡∑

I∈S
ΨI(x)uI (3.34)

ΨI(x) =H
T (0)M−1(x)H(x−xI)φa(x−xI) (3.35)
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In the definition of (3.35), the inverse of the moment matrix is taken and requires that the

moment matrix is non-singular. In the continuous version, the moment matrix is guaranteed to be

positive-definite, but this is not always the case in the discrete setting. To be able to evaluate an

approximation function at a given point x, the point is also required to be covered by at least m

non-coplanar nodes, where m is the number of basis functions inH(x−xI) and is given as:

m =
(n+d)!

n!d!
(3.36)

In (3.28) through (3.35), the multi-dimensional kernel functions may be constructed by

using the one-dimensional kernel as

φa(x−xI) = Π
d
i=1φa(xi− xiI) = φa(x1− x1I)φa(x2− x2I) · · ·φa(xd− xdI) (3.37)

for a kernel with rectangular support; or

φa(x−xI) = φa(z), z =
||x−xI||

a
(3.38)

for a kernel with spherical support.

There are some notable properties of the RK approximation.

• As before in the continuous RK approximation, the RK kernel ΨI possesses the same order

of continuity as the original kernel φa, while the consistency of the kernel is determined

by the basis functions used in the correction function C(x;x−xI). Further, these two

properties are independent of each other. This allows the RK approximation to be tailored

to have a desired level of continuity for a particular problem.

• Although the RK approximation may be constructed with arbitrary completeness and

continuity, the RK shape functions do not possess the Kronecker delta property, that is

ΨI(xJ) 6= δIJ . This complicates the imposition of essential boundary conditions of the
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governing partial differential equations. This topic is discussed in [17, 32].

• The RK approximation is constructed using nodal information only and does not require an

element mesh. This obviates issues arising from mesh entanglement and also allows for a

straightforward implementation of adaptive refinement.

• In addition to satisfying the consistency conditions, the derivatives of the RK approximation

functions also satisfy the derivative reproducing conditions.
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Chapter 4

Formulation of the immersed RKPM

method

4.1 Problem Statement for Linear Elasticity

In this section, the governing equations and the weak form for use with the immersed

reproducing kernel particle method. Consider an open domain Ω with an associated boundary

Γ = Γg∪Γh, where Γg denotes the essential boundary and Γh denotes the natural boundary. An

illustration of the body is shown in Figure 4.1. The body, Ω = Ω1∪Ω2, consists of two elastic

solids with different material properties. Ω1 defines a surrounding matrix with material constants

E1 and ν1, and Ω2 defines an inclusion with material constants E2 and ν2. The outer matrix

and inclusions are connected via a material interface, ΓI , over which traction equilibrium and

displacement continuity must be satisfied. The body is subject to prescribed displacement, g,

acting over the essential boundary, Γg, and applied tractions, h, acting over the natural boundary,

Γh. Let the body force b1 act over the outer matrix, Ω1, and the body force b2 act over the

inclusion, Ω2.

The bi-material problem is treated as two bodies taken separately and couple together at
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(a) (b) (c)

Figure 4.1: Inhomogeneous geometry. (a) Domain with circular inclusion; (b) Sub-domain of
base matrix Ω1; (c) Sub-domain of inclusion Ω2

the material interface. The total potential energy of the bi-material problem is thus a combination

of the potential energy from each subdomain. Without loss of generality, Lagrange multipliers τ

and λ are used to enforce the jump conditions on ΓI and the essential boundary conditions on

Γg, respectively. Treating λ and τ as unknowns, the virtual work is then stated as follows: find

u1,u2 ∈U1×U2 such that

δU =
∫

Ω1
δε1 : σ1 dΩ−

∫
Ω1

δu1 ·b1 dΩ−
∫

Γh
δu1 ·hdΓ

+
∫

Ω2
δε2 : σ2 dΩ−

∫
Ω2

δu2 ·b2 dΩ

−
∫

Γg
δu1 ·λdΓ−

∫
Γg

δλ ·
(
u1−g

)
dΓ

−
∫

ΓI

(
δu2−δu1) ·τ dΓ−

∫
ΓI

δτ ·
(
u2−u1)dΓ = 0 (4.1)

for all δu1,δu2 ∈ V 1×V 2 where the test and trial spaces are defined as:

Ui = {ui | ui ∈ H1
g (Ω

i),ui = g on Γ
g} (4.2a)

V i = {δui | δui ∈ H1
0 (Ω

i),δui = 0 on Γ
g} (4.2b)
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for i = 1,2. The strain, ε, is defined as the symmetric gradient of displacement

εi =
1
2
(
∇⊗ui +ui⊗∇

)
(4.3)

and the stress is the given by σi =C i : εi where C i is the modulus tensor for material i.

The first line of (4.1) above corresponds to the virtual work δU1 of subdomain Ω1, the

second line corresponds to the virtual work δU2 of subdomain Ω2, the third line enforces essential

boundary conditions using the Lagrange multiplier λ, and the fourth line enforces the interface

conditions using the Lagrange multiplier τ . Note that the essential boundary conditions must be

explicitly enforced with Lagrange multipliers for RKPM because the RK approximation does not

possess the Kronecker delta property and in general is not interpolatory over Γg [17].

To deduce the physical interpretation of the Lagrange multipliers λ and τ , the product rule

of differentiation is applied to the internal energy terms in (4.1) followed by divergence theorem

to obtain the Euler-Lagrange equations corresponding to the virtual work. The Euler-Lagrange

equations are given as

δU =−
∫

Ω1
δu1 ·

(
∇ ·σ1 +b1)dΩ+

∫
Γh

δu1 ·
(
σ1 ·n1−h

)
dΓ+

∫
Γg

δu1 ·
(
σ1 ·n1−λ

)
dΓ

+
∫

ΓI
δu1 ·

(
σ1 ·n1 +τ

)
dΓ−

∫
Ω2

δu2 ·
(
∇ ·σ2 +b2)dΩ+

∫
ΓI

δu2 ·
(
σ2 ·n2−τ

)
dΓ

−
∫

Γg
δλ ·

(
u1−g

)
dΓ−

∫
ΓI

δτ ·
(
u2−u1)dΓ = 0 (4.4)

Because the variations δui, δλ, and δτ are arbitrary, all the terms surrounded by parenthe-

ses must identically be equal to zero. It can be seen that the physical interpretation of the Lagrange

multipliers λ and τ are the tractions acting on the essential boundary Γg and the material interface

ΓI , respectively. It is important to note that τ =−σ1 ·n1 = σ2 ·n2. This indicates the traction

produced by the surrounding matrix is equal and opposite to the traction produced by inclusion at

the material interface. Noting the outward normals acting on the material interface are also equal
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and opposite to each other, a single normal n= n1 =−n2 is taken. Using this definition, the

governing equations describing linear elasticity for the multi-material problem are deduced from

the Euler-Lagrange equations above.

∇ ·σ1 +b1 = 0 in Ω
1 (4.5a)

∇ ·σ2 +b2 = 0 in Ω
2 (4.5b)

σ1 ·n= h on Γ
h (4.5c)

u1 = g on Γ
g (4.5d)

σ1 ·n= λ on Γ
g (4.5e)

JuK = 0 on Γ
I (4.5f)

Jσ ·nK = 0 on Γ
I (4.5g)

Note the use of the jump operator J·K = (·)2− (·)1 which is used to describe displacement

continuity and traction equilibrium in (4.5f) and (4.5g), respectively. The governing equations

above describe a perfectly bonded interface but can be easily extended to include a cohesion term

which admits compliance proportional to the traction experienced at the material interface, ΓI .

The Lagrange multiplier method, while general, is cumbersome to apply directly as

one must solve for the unknowns λ and τ . In addition, it suffers from instabilities such as

pressure modes if the inf-sup condition is not met. To avoid these issues, the Lagrange multi-

pliers are redefined according to their physical interpretation similar to the modified variational

principle [62].

λ= σ ·n− β

2
·
(
u1−g

)
(4.6a)

τ = 〈σ〉 ·n− γ

2
· JuK (4.6b)

22



The notation 〈·〉= α1 (·)1 +α2 (·)2 has been used to indicate a weighted average operator. This is

used to average the flux terms above for the definition of τ . Substituting these definitions into

(4.1) for λ and τ results in the well known Nitsche’s method [68].

δU =
∫

Ω1
δε1 : σ1 dΩ+

∫
Ω2

δε2 : σ2 dΩ−
∫

Ω1
δu1 ·b1 dΩ−

∫
Ω2

δu2 ·b2 dΩ (4.7)

−
∫

Γh
δu1 ·hdΓ−

∫
Γg

δσ1 ·n1 ·u1 dΓ−
∫

Γg
δu1 ·σ1 ·n1 dΓ+β

∫
Γg

δu1 ·u1 dΓ

+
∫

Γg
δσ1 ·n1 ·gdΓ−β

∫
Γg

δu1 ·gdΓ+
∫

ΓI
JδuK · 〈σ〉 ·n1 dΓ

+
∫

ΓI
〈δσ〉 ·n1 · JuKdΓ+ γ

∫
ΓI

JδuK · JuKdΓ = 0

In the above, β and γ are penalty-like terms for the imposition of essential boundary

conditions and interface conditions, respectively. It has been shown that these stabilization terms

must be selected sufficiently large to ensure coercivity with Nitsche’s method [39, 41]. A choice

of β >C and γ >C for a mesh-dependent constant C ensures the following coercivity function is

met.

a(vh,vh)≥C||vh|| (4.8)

where a(·, ·) is the bi-linear strain energy operator corresponding to the weak form. The question

remains how to determine C so that an appropriate set of stabilization terms may be selected.

The choice of α1 and α2 has been studied extensively for application to embedded

interfaces with linear tetrahedra [3, 4]. There, the coercivity of the system and thus the choice

of the value γ was shown to be dependent on the weights α1 and α2. A scheme for selecting the

weights was proposed based on the material modulus and the volume of the element intersected

by an interface. The analysis is based off of constant-strain tetrahedral elements which admits an

analytical solution for the coercivity. A later work extended the analysis to spline-based elements

by leveraging the inverse inequality [45]. In the present work, the RK approximation is used
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and the aforementioned studies based off of finite element approximations do not apply. For

simplicity, a one-sided flux of α1 = 1 and α2 = 0 has been chosen.

4.2 Immersed Method by the Fictitious Domain Approach

The above weak form is still expressed as separate integrals over the individual subdomains

Ω1 and Ω2. With complex geometries, tedious discretization of each subdomain with respect to

the material interface is required to solve the weak form using the Galerkin method. To simplify

the task of discretization, a fictitious domain which occupies the same space as the “foreground”

inclusion is introduced. The internal energy of this fictitious material is then added and subtracted

from the weak form and the internal energy is modified as follows:

δW int =
∫

Ω1
δε1 : σ1 dΩ+

∫
Ω2

δε2 : σ2 dΩ+
∫

Ω2
δε1 : σ1 dΩ−

∫
Ω2

δε1 : σ1 dΩ (4.9)

The last two terms of (4.9) correspond to the contributions of the fictitious domain to the internal

energy. By adding the first and third integrals, a total domain integral of the “background” energy

is obtained. The second and fourth integrals may also be combined to yield the following:

δW int =
∫

Ω

δε1 : σ1 dΩ+
∫

Ω2

(
δε2 : σ2−δε1 : σ1)dΩ (4.10)

The internal energy is now approximated by a total domain integral over the background matrix

material and the difference in internal energy between the inclusion and fictitious domains. We

refer to
∫

Ω2 δε1 : σ1 dΩ as the fictitious term in the (4.10). With the above, the total domain Ω

may be discretized using simple techniques in such a way that is not required to conform to the

material interface. In addition, the discretization of the background and foreground domains are

independent of each other. By the same procedure, the external energy from body forces may
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also be combined as follows:

δW ext =
∫

Ω

δu1 ·b1 dΩ+
∫

Ω2

(
δu2 ·b2−δu1 ·b1)dΩ (4.11)

where the term
∫

Ω2 δu1 ·b1 dΩ is also a fictitious term.

Using (4.10) and (4.11), the weak form of (4.7) may be re-expressed to yield the weak

form for the immersed procedure using Nitsche’s method.

δU = δW int−δW ext +δU I +δUEB = 0 (4.12a)

δW int =
∫

Ω

δε1 : σ1 dΩ+
∫

Ω2

(
δε2 : σ2−δε1 : σ1)dΩ (4.12b)

δU I =−
∫

ΓI
JδuK · 〈σ〉 ·n1 dΓ−

∫
ΓI
〈δσ〉 ·n1 · JuKdΓ+ γ

∫
ΓI

JδuK · JuKdΓ (4.12c)

δW ext =
∫

Ω

δu1 ·b1 dΩ+
∫

Ω2

(
δu2 ·b2−δu1 ·b1)dΩ+

∫
Γh

δu1 ·hdΓ (4.12d)

δUEB =−
∫

Γg
δσ1 ·n1 ·u1 dΓ−

∫
Γg

δu1 ·σ1 ·n1 dΓ+β

∫
Γg

δu1 ·u1 dΓ (4.12e)

+
∫

Γg
δσ1 ·n1 ·gdΓ−β

∫
Γg

δu1 ·gdΓ

In the above, all subdomain integrals over Ω1 have been converted into total domain

integrals over Ω, which eases the discretization over the background. The foreground domain Ω2

must still be discretized according to the geometry of the inclusion, but this may now be done

independently of the background discretization.

4.3 Discretization of Immersed RKPM

In the following sections, an immersed approach is introduced in which the total domain

Ω = Ω
1∪Ω

2 and the inclusion over Ω
2 are independently discretized. The discretization of the

inclusion Ω2 is then immersed or overset on top of the background discretization over Ω. This

allows for a straightforward discretization of the total domain because it avoids the complexity
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of the interface compared to discretizing the individual subdomain Ω
1. Because the inclusion is

not required to conform with the background, the discretization of the inclusion domain Ω
2 is

also greatly simplified. In the following, a simple discretization strategy is considered with the

immersed concept based on the weak form in (4.12).

RKPM is chosen to approximate the solution field for potential future applications to

large deformation problems where mesh based methods could encounter mesh distortion or

entanglement issues. The weak form allows nodes from the point discretization of Ω
2 to be

inserted into Ω, leading to a number of discretization strategies. To demonstrate, consider a

square domain with a circular inclusion as depicted in Figure 4.2.

(a) (b) (c)

Figure 4.2: Square domain with circular inclusion. (a) The original domain; (b) the background
(total) domain; and (c) the foreground domain

Let S be a set of points xI used to discretize the total domain Ω = Ω
1∪Ω

2, and NP =

card(S) be the number of nodal points used to discretize Ω. Similarly, let S̃ be a set of points

used to discretize the domain Ω
2, and ÑP = card(S̃) represent the number of nodal points in Ω

2.

The point sets S and S̃ may be generated independently of each other. The two point sets S and

S̃ are defined in (4.13a) and (4.13b) and are depicted in Figure 4.3. To discretize the fictitious

domain, a set of fictitious points Ŝ⊂ S is defined such that the domain of influence of each point

xI ∈ Ŝ intersects only with the sub-domain Ω
2, given by (4.13c). This point set will be explained
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in greater detail in Section 4.3.1.

S =
{

I |xI ∈Ω
}

(4.13a)

S̃ =
{

I | x̃I ∈Ω
2
}

(4.13b)

Ŝ =
{

I | I ∈ S,supp(φa(x−xI))∩Ω
2 6= /0

}
(4.13c)

(a) (b) (c)

Figure 4.3: Simple discretization strategy. (a) Discretization of Ω in set S; (b) discretization of
Ω

2 in set S̃; and (c) discretization of fictitious domain in set Ŝ.

The subdomain Ω
1 is no longer used due to its discretization complexity and is replaced

instead with the total domain with the discretization described above. Once the point sets S and S̃

for the background and foreground domains have been determined, the approximations to the

background and foreground displacement fields u1 and u2 are then constructed according to

(3.34), discussed next.

4.3.1 Galerkin equation for immersed RKPM

In the following, RK approximations will be introduced in the discretization of background

and foreground domains considering the appropriate monomial reproducing conditions. In (4.12b)

and (4.12d), the discretizations of the background terms,
∫

Ω
δε1 : σ1 dΩ and

∫
Ω

δu1 ·b1 dΩ, are
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carried out by using the background discrete points in S by

∫
Ω

δε1 : σ1 dΩ≈
∫

Ω

δε(uh) : σ(ε(uh),E1,ν1)dΩ (4.14a)

∫
Ω

δu1 ·b1 dΩ≈
∫

Ω

δuh ·b1 dΩ (4.14b)

where

uh(x) = ∑
I∈S

ΨI(x)uI, x ∈Ω (4.15)

Here, the RK shape functions {ΨI(x)}I∈S are constructed so that they meet the reproducing

conditions in Ω, that is

∑
I∈S

ΨI(x)x
α
I = xα, ∀x ∈Ω, |α| ≤ n (4.16)

As before, multi-dimensional notation has been employed as described earlier in Section 3.3.

Similarly, the discretization of the terms in (4.12b) and (4.12d) corresponding to the

inclusion,
∫

Ω2 δε2 : σ2 dΩ and
∫

Ω2 δu2 ·b2 dΩ, are performed by using the foreground discrete

points in S̃ by ∫
Ω2

δε2 : σ2 dΩ≈
∫

Ω2
δε(ũh) : σ(ε(ũh),E2,ν2)dΩ (4.17a)

∫
Ω2

δu2 ·b2 dΩ≈
∫

Ω2
δũh ·b2 dΩ (4.17b)

where

ũh(x) = ∑
I∈S̃

Ψ̃I(x)ũI, x ∈Ω
2 (4.18)

Here, the shape functions {Ψ̃I(x)}I∈S̃ are constructed so that they meet the reproducing conditions
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in Ω
2, that is

∑
I∈S̃

Ψ̃I(x)x
α
I = xα, ∀x ∈Ω

2
, |α| ≤ n (4.19)

Next, the discretization of the fictitious terms in (4.12b) and (4.12d),
∫

Ω2 δε1 : σ1 dΩ and∫
Ω2 δu1 ·b1 dΩ, are performed by using a subset of the background discrete points described in Ŝ.

The approximation of the fictitious terms is given by:

∫
Ω2

δε1 : σ1 dΩ≈
∫

Ω2
δε(ûh) : σ(ε(ûh),E1,ν1)dΩ (4.20a)

∫
Ω2

δu1 ·b1 dΩ≈
∫

Ω2
δûh ·b1 dΩ (4.20b)

where

ûh(x) = ∑
I∈Ŝ

Ψ̂I(x)ûI, x ∈Ω
2 (4.21)

In the above, a new set of shape functions {Ψ̂I}I∈Ŝ is defined over a set of points Ŝ ⊂ S. In the

current formulation, {Ψ̂I}I∈Ŝ = {ΨI(x) | supp(ΨI(x))∩Ω2 6= /0} is taken as a subset of the shape

functions defined over S. This serves as the approximation space for the fictitious terms utilized

in the immersed procedure.

For the interface terms in (4.12c), the approximation for u1 and u2 follow the background

and foreground discretizations in (4.15) and (4.18), that is

∫
ΓI

JδuK · 〈σ〉 ·n1 dΓ≈
∫

ΓI

(
δũh−δuh

)
·
(

α
1σ(εh,E1,ν1)+α

2σ(ε̃h,E2,ν2)
)
·n1 dΓ (4.22a)

∫
ΓI
〈δσ〉 ·n1 ·JuKdΓ≈

∫
ΓI

(
α

1σ(δεh,E1,ν1)+α
2σ(δε̃h,E2,ν2)

)
·n1 ·

(
ũh−uh

)
dΓ (4.22b)

γ

∫
ΓI

JδuK · JuKdΓ≈ γ

∫
ΓI

(
δũh−δuh

)
·
(
ũh−uh

)
dΓ (4.22c)

where εh = ε(uh) and ε̃h = ε(ũh).
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The formulations above do not require that the shape functions conform along the interface

as that introduced in [86]. In fact, the approximation functions ΨI , Ψ̃I , Ψ̂I are generated

independently from each other and do not conform in general. It is possible to use the above

formulation where the background and foreground approximations are equal, but requires more

effort to discretize. In the more general case where uh 6= ũh for x ∈Ω2, that is using background

discretization S in (4.13a) and foreground discretization S̃ in (4.13b), all of the interface terms in

(4.12a) to (4.12e) must be included.

δW int =
∫

Ω

δε(uh) : σ(ε(uh),E1,ν1)dΩ (4.23a)

+
∫

Ω2

(
δε(ũh) : σ(ε(ũh),E2,ν2)−δε(ûh) : σ(ε(ûh),E1,ν1)

)
dΩ

δU I =−
∫

ΓI

(
δũh−δuh

)
·
(

α
1σ(εh,E1,ν1)+α

2σ(ε̃h,E2,ν2)
)
·n1 dΓ (4.23b)

−
∫

ΓI

(
α

1σ(δεh,E1,ν1)+α
2σ(δε̃h,E2,ν2)

)
·n1 ·

(
ũh−uh

)
dΓ

+γ

∫
ΓI

(
δũh−δuh

)
·
(
ũh−uh

)
dΓ

δW ext =
∫

Ω

δuh ·b1 dΩ+
∫

Ω2

(
δũh ·b2−δuh ·b1

)
dΩ+

∫
Γh

δuh ·hdΓ (4.23c)

δUEB =−
∫

Γg
δσ(ε(uh),E1,ν1) ·n1 ·uh dΓ−

∫
Γg

δuh ·σ(ε(uh),E1,ν1) ·n1 dΓ (4.23d)

+β

∫
Γg

δuh ·uh dΓ+
∫

Γg
δσ(ε(uh),E1,ν1) ·n1 ·gdΓ−β

∫
Γg

δuh ·gdΓ

The equations above allow an arbitrary choice of approximations between Ω and Ω2 with no

restrictions on constructing the approximation functions along the interface. By introducing the

approximations given by (4.15), (4.18), and (4.21) into (4.23a), the matrix form follows. The

matrix form is cast in a block format where the diagonal stiffness matrices represent internal

energy of the two bodies and the off-diagonal terms are associated with the weakly enforced
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constraints responsible for displacement continuity.

K G

GT K̃


uũ
=

ff̃
 (4.24)

where the stiffness terms are given as:

KIJ =
∫

Ω

BT
I C

1BJ dΩ−
∫

Ω2
BT

I C
1BJ dΩ+α

1
∫

ΓI
BT

I C
1ηΨJ dΓ (4.25a)

+α
1
∫

ΓI
ΨIη

TC1BJ dΓ+ γI
∫

ΓI
ΨIΨJ dΓ+KEB

IJ

KEB
IJ =−

∫
Γg
BT

I C
1ηΨJ dΓ−

∫
Γg

ΨIη
TC1BJ dΓ+βI

∫
Γg

ΨIΨJ dΓ (4.25b)

GIJ =−α
1
∫

ΓI
BT

I C
1ηΨ̃J dΓ+α

2
∫

ΓI
ΨIη

TC2B̃J dΓ− γI
∫

ΓI
ΨIΨ̃J dΓ (4.25c)

K̃IJ =
∫

Ω2
B̃T

I C
2B̃J dΩ−α

2
∫

ΓI
B̃T

I C
2ηΨ̃J dΓ (4.25d)

−α
2
∫

ΓI
Ψ̃Iη

TC2B̃J dΓ+ γI
∫

ΓI
Ψ̃IΨ̃J dΓ

and the forcing terms are given as:

fI =
∫

Ω

ΨIb
1 dΩ−

∫
Ω2

ΨIb
1 dΩ+

∫
Γh

ΨIhdΓ+fEB
I (4.26a)

fEB
I =

∫
Γg
BT

I C
1ηgdΓ−β

∫
Γg

ΨIgdΓ (4.26b)

f̃I =
∫

Ω2
Ψ̃Ib

2 dΩ (4.26c)

Here the elastic modulii tensors are given byC1 ≡C(E1,ν1) andC2 ≡C(E2,ν2). The gradient
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matrixBI and normal matrix η are defined as

BT
I =


ΨI,1 0 0 ΨI,2 ΨI,3 0

0 ΨI,2 0 ΨI,1 0 ΨI,3

0 0 ΨI,3 0 ΨI,1 ΨI,2

 (4.27a)

B̃T
I =


Ψ̃I,1 0 0 Ψ̃I,2 Ψ̃I,3 0

0 Ψ̃I,2 0 Ψ̃I,1 0 Ψ̃I,3

0 0 Ψ̃I,3 0 Ψ̃I,1 Ψ̃I,2

 (4.27b)

ηT =


n1 0 0 n2 n3 0

0 n2 0 n1 0 n3

0 0 n3 0 n1 n2

 (4.27c)

Remark 1: In the implementation of the method above, one must define two sets of

shape functions corresponding to the background and foreground. Further, the integration of the

various terms may involve shape functions from both sets when integrating over the interface. A

pseudo-code for the immersed RKPM method is given in Appendix A.

Remark 2: During output, the displacements in each sub-domain Ω
i are obtained using

the corresponding approximation functions in each sub-domain:

uh(x) =


∑I∈S ΨI(x)uI x ∈Ω1

∑I∈S̃ Ψ̃I(x)ũI x ∈Ω2
(4.28)

Similar evaluations for the strain and stress fields are also employed.

Remark 3: The stiffness matrixK may further be subdivided into two regions. Consid-

ering the original sub-domain Ω
1, point sets SA = {I |supp(ΨI)∩Ω

1 6= /0} and SB = S \SA are

defined. The first set SA includes nodal points which may reside in Ω
2 but has kernel value in the

original sub-domain Ω
1. In contrast, the second set SB corresponds to nodal points strictly inside

32



of Ω
2 which do not have kernel value in Ω

1. The system of equations can be written as


KAA KAB G

KBA KBB 0

GT 0 K̃



uA

uB

ũ

=


fA

fB

f̃

 (4.29)

Under sufficient integration, the terms KAB, KBA, and KBB are nearly zero due to the second

term in (4.25a). This is problematic for iterative matrix solvers. In this case, the background node

set may be modified such that S← S \SB to completely remove these nodes from the analysis.

This has the additional advantage of reducing the total number of equations to solve since the

fictitious degrees of freedom are removed. Alternatively, the rows and columns corresponding

to SB may be condensed out of the matrix entirely by replacing those degrees of freedom with

identity to remove any ill-conditioning problems. The topic of integration is discussed in more

detail in the next chapter.

Acknowledgements

This chapter is currently being prepared for submission for publication of the material.

F. Beckwith, J.S. Chen, and H. Wei, “An Immersed Reproducing Kernel Particle Method for

Modeling Inhomogeneous Media.” The dissertation author was the primary investigator of this

material.

33



Chapter 5

Domain integration of the immersed

RKPM method

In order to solve a given problem using the immersed RKPM method, numerical integra-

tion rules for use with the equations given in Chapter 4 must first be defined. Unlike FEM, the

integration rules for meshfree methods is not a straightforward task. Gauss quadrature fails to

give exact integration for the rational RK shape functions with supports that do not match with the

integration cells. Further, Dolbow and Belytschko [26] and Chen et al. [20, 13, 12] showed that

significant error results when the quadrature cells are not aligned with the kernel support of the

shape functions. For these reasons, domain integration for meshfree methods must be carefully

formulated. This chapter discusses the integration details for the immersed RKPM method.

Domain integration of the bulk terms in the immersed method is carried out in three

main steps: a total domain integral over Ω of the background matrix; a domain integral over

Ω
2 of the inclusion; and a domain integral over the fictitious domain coinciding with Ω

2 to

subtract the fictitious energy introduced previously. A similar series of integrals is also carried

out to compute the external work due to body forces and tractions on the natural boundary.

Accordingly, two sets of integration cells are defined for the immersed RKPM method. Let
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the set of points {ξL}Nint
L=1 define the integration points of the background with corresponding

integration weights {wL}Nint
L=1. Similarly, the set of points {ξ̃L}Ñint

L=1 defines the integration points

of the foreground with corresponding integration weights {w̃L}Ñint
L=1. A set of integration points is

also defined to numerically integrate the fictitious domain terms, which is discussed later. The

integration domain for the background matrix taken over Ω is illustrated by Figure 5.1a whereas

the integration domain for the inclusion domain taken over Ω
2 is shown in Figure 5.1b. Although

shown separately, the integration domains overlap in general and are not required to conform to

each other.

(a) (b)

Figure 5.1: Integration domains for immersed RKPM. (a) Background integration mesh over
Ω; (b) Foreground integration mesh over Ω

2

After the internal energy and external work from the bulk contributions of the background,

foreground, and fictitious domains are calculated, they are coupled together using Nitsche’s

method at the material interface. Let {ξI
L}

NI
int

L=1 define the integration points of on the interface ΓI

with corresponding integration weights {wI
L}

NI
int

L=1. This set of integration points is responsible for

enforcing the interface conditions given in (4.25a). In a similar manner, integration points are
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generated for the essential boundary terms over Γg.

The remainder of this chapter discusses techniques for generating these integration points

for the immersed RKPM method. Many integration methods exists for RKPM, including back-

ground Gauss integration, stabilized conforming nodal integration (SCNI) [20], modified stabi-

lized conforming nodal integration [14, 73], variationally consistent integration [13], and naturally

stabilized nodal integration (NSNI) [43]. The reader is referred to [12] for more details. This

dissertation focuses on Gauss integration using background quadrature cells and the modified

stabilized nodal integration method.

5.1 Gauss Integration with Background Quadrature Cells

One option for quadrature is simply to use Gauss integration (GI) over each integration

cell. This method involves populating the domain with a set of uniform cells over which

integration points are generated. Alternatively, integration points may be generated for non-

uniform background cells which conform to the computational domain of the problem. An

example of GI is depicted in Figure 5.2.

(a) (b)

Figure 5.2: Integration domains for immersed RKPM using GI. (a) Background quadrature
points; (b) Foreground quadrature points
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It remains to be stated how the internal energy of the fictitious domain is integrated. One

option is to use the same quadrature rule as that is used from the foreground integration. This is

the simplest approach, but introduces integration error when integrating the internal energy of the

fictitious domain with non-conformity between the background and fictitious integration domains.

This leads to nearly zero stiffness coefficients in the matrixK for nodes spanned by the fictitious

domain and introduces spurious oscillations as a result. A second option is to copy a subset of

the background integration points, i.e. {ξ̂L}= {ξL | ξL ∈Ω
2} for the fictitious domain integral.

This alternative approach is illustrated in Figure 5.3. Using this scheme, the integration cells for

the background and fictitious domains match, and the stiffness coefficients associated with the

fictitious nodes become zero and can be condensed out of the stiffness matrix. However, some

error is introduced because the domain described by the integration points {ξ̂L} does not conform

with the true geometry of the fictitious domain, which is that of the inclusion itself.

Figure 5.3: Alternative integration points for fictitious domain

Although straightforward to implement, Gauss integration is not variationally consistent

with the Galerkin method and only converges optimally when a large number of integration points

is used in each integration cell, which is computationally expensive. This was demonstrated in

Chen et al. [20], where additional integration constraints were identified to achieve linear exactness

in the meshfree Galerkin approximation. For approximations with first order completeness, the
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integration constraint on the numerical quadrature of a 2nd-order PDE is

ˆ∫
Ω

∇ΨI dΩ =
ˆ∫
Γ

ΨIndΓ (5.1)

where a superposed ‘ˆ’ denotes numerical integration. (5.1) is the numerical quadrature version

of the divergence theorem [20]. There it was found that Gauss integration does not satisfy the

integration constraint if the shape function supports and the integration cells do not conform with

each other, and consequently optimal convergence is lost in the numerical solution.

5.2 Modified Stabilized Conforming Nodal Integration

To satisfy the integration constraint for an arbitrary RK discretization, stabilized con-

forming nodal integration (SCNI) was proposed in [20] where the gradients of the displacement

approximation are computed as follows.

∇⊗uh(xL) =
1

VL

ˆ∫
ΩL

∇⊗uh dΩ =
1

VL

ˆ∫
ΓL

uh⊗ndΓ = ∑
I∈S

∇ΨI(xL)uI (5.2a)

ε(uh) =
1
2

(
∇⊗uh +uh⊗∇

)
(5.2b)

where VL =
∫

ΩL
dΩ is the volume of the nodal representative domain ΩL, and ΓL is its boundary.

Introducing (3.34) gives

∇ΨI(xL) =
1

VL

ˆ∫
ΓL

ΨI(x)n(x)dΓ (5.3)

To compute the above boundary integral, a simple trapezoidal rule over the surface of the nodal

representative domain may be used. Combining the above result with nodal integration satisfies the

integration constraint in (5.1) if the set of nodal representative domains {ΩL}Nint
L=1 are conforming,

such as the Voronoi diagram as shown in Figure 5.4a. Employing the above and redefining the set

of integration points and their weights as nodal points {xL}L∈S and nodal volumes {VL}L∈S, the
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discrete domain integral is expressed as

ˆ∫
Ω

δεh :C1 : εh dΩ = ∑
L∈S
ε(δuh) :C1 : ε(uh)VL (5.4)

Similarly, the set of integration points over the foreground is redefined to be {x̃L}L∈S̃ with

associated weights {ṼL}L∈S̃. Similar treatment on the gradient of shape functions may be

generated for the foreground approximation as follows.

∇Ψ̃I(xL) =
1

VL

ˆ∫
ΓL

Ψ̃I(x)n(x)dΓ (5.5)

The corresponding discrete domain integral for the foreground inclusion is given as

ˆ∫
Ω2

δε̃h :C2 : ε̃h dΩ = ∑
L∈S̃

ε(δũh) :C2 : ε(ũh)VL (5.6)

In [14], it is reported that although SCNI is variationally consistent, it still possesses

spurious low-energy modes. To suppress these unphysical modes and to assume coercivity, a

modified SCNI procedure, or M-SCNI [14, 73], was proposed with the following form

ˆ∫
Ω

δεh :C : εh dΩ =
NP

∑
L=1

{
ε(δuh) :C : εh(uh)︸ ︷︷ ︸

SCNI

+

+ ∑
K∈SL

[
cK

L

(
ε(δuh)−ε(δuh)

)
:C :

(
ε(uh)−ε(uh)

)]
︸ ︷︷ ︸

Additional stabilization

}
VL (5.7)

where cK
L is a stabilization coefficient ranging between 0 and 1 and SL is a set of sub-cells which

decompose the SCNI nodal representative domain as shown in Figure 5.4b. In 5.7 above, ε(uh)

is evaluated at the centroid of each sub-cell.

Using M-SCNI, a set of nodal representative domains may be generated using a Voronoi

diagram. An example of such an integration scheme is given in Figure 5.5. Since each node
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(a) (b)

Figure 5.4: Integration cells for SCNI and M-SCNI. (a) SCNI cells at nodal integration point
xL; (b) M-SCNI sub-cells associated with the nodal integration point xL. Each “x” indicates the
centroid of sub-cell xK .

in the figure is effectively an integration point with an associated nodal volume, this method

is much cheaper in comparison to GI depicted earlier in Figure 5.2, which clearly has many

more evaluation points. The nodes and their volumes define the new integration sets {xL}NP
L=1

and {x̃L}ÑP
L=1. For integrating the interface conditions on ΓI , the surface points of the foreground

nodal representative domains which lie on the interface used in the calculation of the smoothed

shape functions in (5.3) are reused for surface integration.

As for the strategies for generating integration points for the fictitious domains, one may

choose to copy specific points from the set of background nodal representative domains or from

the foreground nodal representative domains. Similar to GI described earlier, the first option is

to define a set of integration points {x̂L}N̂int
L=1 = {x̃L}Ñint

L=1. Alternatively, the fictitious integration

points may be chosen as a subset of the background integration points, i.e. {x̂L}= {xL | xL ∈Ω
2}.

The first option integrates the true geometry of the fictitious domain more accurately but leads

to nearly zero stiffness terms which must be dealt with in the system of equations. The second

option approximates the geometry of the fictitious domain but consistently integrates the internal

energy of the background and fictitious terms.
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(a) (b)

Figure 5.5: Integration domains for immersed RKPM using M-SCNI, where each circle repre-
sents a node surrounded by its representative nodal domain. (a) Background nodal representative
domains; (b) Foreground nodal representative domains

A third option is to take a subset of the background integration cells but this time cutting

the cells which are intersected by the material interface. If the true geometry of the inclusion is

curvilinear, the cut is approximated by identifying the intersection points with the cell to be cut

and then cutting them with a plane section. The set of integration points for the fictitious domain

is identical to the second option proposed above, but now conforms much more closely to the

inclusion geometry due to the cut cells. An example of such a cut cell is shown in Figure 5.6.

While presented for M-SCNI, cutting the integration cells is a valid technique for GI as well, but

requires more complicated rules for populating each cell with Gauss points afterwards.
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(a) (b)

Figure 5.6: Cutting technique near material interface. (a) Background integration mesh over Ω

with cut cells; (b) Close-up view of cut cells. Ω1
L is the cut portion belonging to the background

and Ω2
L is the cut belonging to the foreground.

5.3 Eshelby Analogy for the Multi-Material Problem

The integration constraints above are established for a homogeneous body with a single

medium. The question remains whether this same integration constraint is valid for the immersed

RKPM framework. To answer this question, the problem is posed as a series of heuristic steps

where each has an accompanying state of stress and strain, similar to Eshelby’s pioneering work

on solving the inclusion problem [30]. The final solution is then a superposition of all the steps

involved.

We first assume a homogeneous body without an inclusion subject to some far-field strain,

denoted as ε∞. The stress and strain in the matrix and inclusion sub-domains for this body are

given as

εm1 = εI1 = ε∞ σm1 = σI1 =C1 : ε∞ (5.8)

At this stage, an inclusion with modified properties C∗ = C2−C1 is to be inserted into the

homogeneous medium. However, to do so it needs to be brought to the same state of deformation
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as the outer medium. A traction t=C∗ : ε∞ ·n2 is applied to the inclusion’s boundary ΓI for it

to assume the correct shape. The strain and stress at the end of the second step are

εm2 = ε∞ σm2 =C1 : ε∞ (5.9a)

εI2 = ε∞ σI2 =C1 : ε∞ +C∗ : ε∞ =C2 : ε∞ (5.9b)

The inclusion now has the correct shape and can be inserted at the location of the deformed

inclusion of the outer medium and the bodies are “fused” together. However, an embedded layer

of traction has been introduced to do so. This traction is removed by applying an equal and

opposite traction −t∗ to the interface ΓI to negate the effect of the previous traction. Because the

bodies are now effectively welded together at this point, this creates a constrained response εc

in both the medium and the inclusion. Note, this strain field is necessarily discontinuous across

the interface due to the difference in materials but the resultant stress and displacement field are

continuous.

εm3 = εc σm3 =C1 : εc (5.10a)

εI3 = εc σI3 =C2 : εc (5.10b)

From the principle of superposition, the total response is the sum of all the individual responses

from independent loadings.

εm = ε∞ +εc σm =C1 : (ε∞ +εc) (5.11a)

εI = ε∞ +εc σI =C2 : (ε∞ +εc) (5.11b)

In the above analysis, the far-field strain ε∞ can be taken as polynomial of degree n

under consideration, and the kinematics and kinetics of steps 1 and 2 are trivial. The third step

involves the constrained field εc which depends on the geometry and the material properties in
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(a) (b)

(c)

Figure 5.7: Superposition analogy of an inclusion. (a) shows the homogeneous body under
far-field ε∞; (b) is the inclusion deformed according to ε∞; and (c) is the insertion and removal
of traction t

the inclusion and the matrix, and in general is non-smooth. For the development of integration

constraints for the immersed formulation, Galerkin exactness of the boundary value problems

is enforced in the first two steps of the above process, and the third step accounts for the higher

order effects. As such, both the deformation in the matrix and the inclusion are polynomial,

where the field in the background is given by un = ∑|α|≤ncαx
α and the field in the foreground is

given by ũn = ∑|α|≤n c̃αx
α. Under this assumption, the following three integration constraints
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are determined following the variationally consistency procedure similar to that in [13].

ˆ∫
Ω

∇ΨI ·σα dΩ =−
ˆ∫
Ω

ΨI∇ ·σα dΩ+
ˆ∫
Γ

ΨIσ
α ·ndΓ (5.12a)

ˆ∫
Ω2

∇Ψ̃I · σ̃α dΩ =−
ˆ∫
Ω2

Ψ̃I∇ · σ̃α dΩ+
ˆ∫
ΓI

Ψ̃Iσ̃
α ·ndΓ (5.12b)

−
ˆ∫
Ω2

∇ΨI ·σα dΩ =
ˆ∫
Ω2

ΨI∇ ·σα dΩ−
ˆ∫
ΓI

ΨIσ
α ·ndΓ (5.12c)

(5.12a) is the integration constraint for the background over the total domain, (5.12b) is the

integration constraint for the inclusion, and (5.12c) is the integration constrain for the fictitious

domain introduced in the immersed framework. Under constant stress and strain for the first order

Galerkin exactness, the integration constraints become

ˆ∫
Ω

∇ΨI dΩ =
ˆ∫
Γ

ΨIndΓ (5.13a)

ˆ∫
Ω2

∇Ψ̃I dΩ =
ˆ∫
ΓI

Ψ̃IndΓ (5.13b)

−
ˆ∫
Ω2

∇ΨI dΩ =−
ˆ∫
ΓI

ΨIndΓ (5.13c)

The SCNI formulation given in (5.3)-(5.6) is introduced in (5.1) based on the integration con-

straints in (5.12) for each of the total, inclusion, and fictitious domain integrals.
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Chapter 6

Verification of Immerse RKPM for Linear

Analysis of Heterogeneous Materials

The immersed RKPM method is demonstrated in the examples that follow. In all of the

examples, the RK approximation is constructed using linear basis with cubic B-spline kernels

unless otherwise noted. The numerical results are obtained using 5-point Gauss quadrature as well

as M-SCNI. A one-sided flux with α1 = 1 and α2 = 0 is considered and a stabilization parameter

of γ = 2.0E1/h is taken.

6.1 Composite Rod

A composite rod in one dimension with different material constants E1 and E2 is fixed

on the left side and subjected to a prescribed displacement g on the right side, as depicted in
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Figure 6.1. The exact solution for the field with no body force is given by

u(x) =



E2g
A x x ∈ [0,x1]

(E2−E1)x1g
A +

E1g
A x x ∈ [x1,x2]

(E2−E1)(x1− x2)g
A +

E2g
A x x ∈ [x2,L]

(6.1a)

A = E2 (L− x2 + x1)+E1 (x2− x1) (6.1b)

where x1 and x2 mark the beginning and end of the inclusion and L is the length of the rod. For

this example, L = 10.0 with x1 = 3.75 and x2 = 6.25. Material constants of E1 = 2.0×109 and

E2 = 2.0×1011 are selected with a prescribed displacement g = 1.0.

Figure 6.1: Bi-material rod with a prescribed displacement. Solid squares denote discretization
points of the background and circles denote discretization points of the foreground.

The problem is modeled using the immersed RKPM method with linear basis and a

normalized support a = 2.0h. Following the analysis given in [3], Nitsche’s parameters γ = 2E1/h

and β = E1/h are selected to enforce displacement continuity across the material interface and

the essential boundary conditions, respectively. The model is discretized with 21 equally spaced

points in the foreground corresponding to a nodal spacing of h = 0.083. To test the effect of

discretization mismatch between the background and foreground, the background was discretized

from 121 to 125 equally spaced points. At 121 background points, the background and foreground

discretizations coincide. We define the mismatch, e, as the distance from the boundary of the
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inclusion to the nearest node in the background points as shown in Figure 6.1. For this example,

the values of e are selected as e/h = 0.0,0.25, and 0.5. To achieve these values, the number of

discretized points in the background are 121, 123, and 125 nodes, respectively.

The immersed RKPM formulation is first tested with 5-point Gauss quadrature, and the

results of the displacement and strain fields are given in Figures 6.2, 6.3a, and 6.3b, respectively.

The displacement solution is shown to agree with the analytical solution very well regardless of

how well the discretizations are aligned. The error that can be seen is attributed to the approximate

integration. When a misalignment e is present, the integration domains of the foreground and

background do not coincide and leads to some error in the strain in the background field in the

order of 10−3. However, the foreground strain is seen to match very well with the analytical

solution.
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Figure 6.2: Displacement field of the composite rod, a = 2.0h
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Figure 6.3: Strain fields of the composite rod, a = 2.0h. (a) is the strain field and (b) is the
normalized strain error.
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For comparison, the 1D problem was modeled using body-unfitted FEM following the

immersed procedure described in Section 4.3.1 but with an FEM approximation instead of an

RK approximation. Linear, 2-node elements were utilized with the same discretization as the

immersed RKPM setup. The results of the normalized strain error are given in Figure 6.4. Here,

the error is seen to be much larger near the interface than the previous results given by the

immersed RKPM approach in Figure 6.3.
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x
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0.0

ε
−
ε
h

ε

Unfitted FEM, e = 0.25h Unfitted FEM, e = 0.5h

Figure 6.4: Normalized strain error with body-unfitted FEM

The next study investigates the impact of integration methods and integration accuracy in

the immersed approach. In Figure 6.5, the number of Gauss quadrature points in each background

cell varies from 1 to 4 point quadrature. When only a single integration point is used, significant

error in the strain field is observed, shown in Figure 6.5a. The error in the strain reduces

substantially as the order of integration increases. In this case, 5-point quadrature is sufficient for

integration and higher order quadrature does not substantially improve the solution.

In addition to using GI above, M-SCNI is investigated with immersed RKPM, shown in

Figure 6.6. M-SCNI gives exact answers near round-off error when there is no mismatch (i.e.

e = 0.0h) with the largest normalized error of 3.1×10−12 in the strain field. By comparison, the

maximum normalized strain error for the same mesh but using GI was 1.2×10−5. For values

of e = 0.25 and 0.5, M-SCNI gives similar accuracy as 5-point quadrature, but at much less
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computational expense.
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Figure 6.5: Strain fields of the composite rod with increasing number of Gauss quadrature
points, a = 2.00h. (a) 1-point GI; (b) 2-point GI; (c) 3-point GI; (d) 4-point GI.
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Figure 6.6: Normalized strain error of the composite rod with M-SCNI, a= 2.0h with cK
L = 1.00
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Finally, for this 1D example the effect of kernel continuity is studied. Instead of the

cubic B-spline kernel employed in the previous examples, the power kernel proposed in [75] is

employed, given below.

φa(x− xI) =


(1− z)p 0≤ z≤ 1.0

0 z > 1.0
where z =

|x− xI|
a

(6.2)

The power kernel is designed to be more localized for use in approximating the rough solutions.

This kernel is only C0 continuous and contains a derivative jump discontinuity at z = 0. Three

values of p = 6,9, and 12 are compared and given in Figure 6.7, again using M-SCNI. By

increasing the value of p, the error in the strain field near the interface decreases due to the

better approximation of the strain by introducing a discontinuity in background. Increasing the

parameter p leads to increased localization and reduces the interpolation error across the strain

discontinuity and the oscillations near the interface.
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Figure 6.7: Strain fields of the composite rod using power kernel. (a) p = 6; (b) p = 9; (c)
p = 12.
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6.2 Circular Inclusion in an Infinite Plate Subject to Far-Field

Tension

An infinite plate with a circular inclusion with radius R is subject to a far-field tension

with magnitude P applied in the x-direction. The exact solution is given as follows [46]. Outside

of the inclusion Ω1, the stresses and their displacements are given by

σrr =
P
2

[
1− γ1

R2

r2 +

(
1−2β1

R2

r2 −3δ1
R4

r4

)
cos2θ

]
(6.3a)

σθθ =
P
2

[
1+ γ1

R2

r2 −
(

1−3δ1
R4

r4

)
cos2θ

]
(6.3b)

σrθ =−
P
2

(
1+β1

R2

r2 +3δ1
R4

r4

)
sin2θ (6.3c)

ur =
PR
8µ1

{[
(κ1−1)

r
R
+2γ1

R
r

]
+

[
2

r
R
+β1 (κ1 +1)

R
r
+2δ1

R3

r3

]
cos2θ

}
(6.3d)

uθ =
PR
8µ1

[
−2

r
R
−β1 (κ1−1)

R
r
+2δ1

R3

r3

]
sin2θ (6.3e)

where

β1 =−
2(µ2−µ1)

µ1 +µ2κ1
(6.4a)

γ1 =
µ1 (κ2−1)−µ2 (κ1−1)

2µ2 +µ1 (κ2−1)
(6.4b)

δ1 =
µ2−µ1

µ1 +µ2κ1
(6.4c)
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and where κi = 3−4νi for plane strain and κi =
3−νi
1+νi

for plane stress. The stresses and displace-

ments inside of the inclusion Ω2 are given by the following.

σrr =
P
2
(β2 +δ2 cos2θ) (6.5a)

σθθ =
P
2
(β2−δ2 cos2θ) (6.5b)

σrθ =−
Pδ2

2
sin2θ (6.5c)

ur =
Pr
8µ2

[β2 (κ2−1)+2δ2 cos2θ] (6.5d)

uθ =−
Prδ2

4µ2
sin2θ (6.5e)

where

β2 =
µ2 (κ1 +1)

2µ2 +µ1 (κ2−1)
(6.6a)

δ2 =
µ2 (κ1 +1)
µ1 +µ2κ1

(6.6b)

with κi as defined before. Eqs. (6.3) to (6.6) above correspond to a case where the inclusion is

welded to the outer matrix.

The problem is modeled with a finite domain with dimension 4.0×4.0 using immersed

RKPM with the exact displacement prescribed on the boundary as an essential boundary condition.

The discretizations of the individual domains over the background and foreground are given in

Figure 6.8a and Figure 6.8b, respectively. Nitsche’s parameter β = 100E1/h is employed over

the boundary Γg and γ = 10E1/h over the material interface, ΓI . The inclusion is given a radius

R = 1.0 and the far-field tension is P = 100.0. Material constants E1 = 1000.0 and ν1 = 0.30

were selected for the matrix and E2 = 10000.0 and ν2 = 0.30 were selected for the inclusion.

Linear basis is used with quadratic B-spline kernels for the construction of the RK shape functions

and 8×8 Gauss quadrature is employed over background integration cells.
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As in the 1D example above, the effects of support size were also investigated in the 2D

inclusion problem. The problem was modeled with varying support sizes for both the background

and foreground inclusions and are given below in Figure 6.9. In this example, the results agree

well with the exact solution regardless of the nodal support size, with only minor oscillations

occurring when a1/h1 = 3.0 and a2/h2 = 1.5.

As is well known, the value of Nitsche’s stabilization parameter γ can influence the

coercivity of the solution. For methods which have constant strain over the integration domain

(i.e. triangular elements) this value is given by a closed form solution. For other methods though

with arbitrary strain fields, the value of γ is bounded by the maximum eigenvalue given by

the coercivity condition. Typical values are on the order of E1/h or E2/h. For this example,

three values of the Nitsche parameter γ = 2.0E1/h,10E1/h, and 100E1/h are investigated with

support a/h = 1.0 and shown in Figure 6.10. The results show that favorable results are given

for γ = 2.0E1/h. As the stabilization parameter increases, it becomes the dominant term and the

method behaves similar to the penalty method.
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(a) (b)

Figure 6.8: Discretization of circular inclusion in an infinite plate. (a) Discretization of the
background and (b) discretization of the foreground.
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Figure 6.9: εxx along line y = 0 with varying normalized supports. In (a) a1/h1 varies, a2/h2
held constant, and in (b) a1/h1 held constant, a2/h2 varies.
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Figure 6.10: Stress field with varying γ, 8-point GI. (a) σxx along line x = 0; (b) σyy along line
x = 0
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To determine the effect of quadrature order, the response with 2-point, 4-point, and 8-point

Gauss quadrature is studied, and the stress results are given in Figure 6.11. As before, a low order

of quadrature results in spurious, unphysical behavior with significant error in the stress results.

Increasing to 4-point and 8-point GI removes much of this error.
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Figure 6.11: Stress field with varying quadrature order. (a) σxx along line x = 0; (b) σyy along
line x = 0

8-point GI was necessary above to achieve the accuracy desired. Using such a high

number of integration points is undesirable as it adds significant cost computationally especially

when solving problems in three dimensions. To study the effect of integration, the inclusion

problem under tension was also simulated using M-SCNI. Figure 6.12 shows the results when

using M-SCNI as the domain integration and is compared to GI. Here, M-SCNI is shown to give

similar accuracy to GI.
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Figure 6.12: Comparison of GI and M-SCNI along x = 0. (a) σxx comparison and (b) σyy

comparison.
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Finally, the convergence of displacement L2 and energy error norms was carried out and

the results are given in Figures 6.13a and 6.13b. 5-point Gauss quadrature is employed for the

calculation of L2 and energy error norms. Using 5-pt GI and an RK approximation with linear

bases, near optimal rate of convergence of 2.0 is observed in the L2 norm, and the energy norm

convergence rate of 1.96 is faster than the optimal rate of 1.0 at the last refinement step. For

comparison, the convergence is also investigated using M-SCNI as the integration method, which

converges at a rate of 2.37 in the L2 norm and 2.24 in the energy norm. This demonstrates the

accuracy of the proposed immersed RKPM method in approximating both the displacements and

stresses.
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Figure 6.13: Convergence rates of circular inclusion problem. (a) is the convergence in the L2
norm and (b) is the convergence in the energy norm.

6.3 Multiple Inclusions Subject to Shear

A 1.0× 1.0 unit square with multiple inclusions of varying radii is loaded as shown

in Figure 6.14. The matrix is given material constants of E1 = 2.0× 109 and ν1 = 0.29; the

inclusions were given constants E2 = 2.0× 1010 and ν2 = 0.29. In Figure 6.14, the inclusion
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domain is defined as the union of all the circular domains.

Figure 6.14: Simple shear with multiple inclusions

The RKPM approximation is constructed with linear basis functions and normalized

supports of a = 2.0h. The background domain is uniformly discretized with 68× 68 points

and the inclusions are discretized with 4,235 points, and 8×8 Gauss integration is used. The

discretizations of each body taken separately are shown in Figure 6.15. The values of β= 100E1/h

and γ = 2.0E1/h are taken to enforce essential boundary conditions. It is emphasized the

discretizations are not conforming at the interfaces between the two materials.

The displacement and shear strain fields are shown in Figure 6.16. Displacement continuity

and strain discontinuities across the material interface are properly captured.
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(a) (b)

Figure 6.15: Discretizations of matrix and reinforcing bodies shown separately. (a) Discretiza-
tion of the background matrix; and (b) Discretization of the inclusions.

Figure 6.16: Displacement and strain fields of multiple inclusion problem, immersed RKPM

65



To determine the accuracy of immersed RKPM for this multiple inclusion example, it is

compared to the FEM method. The FEM model is discretized with mesh size approximately equal

to the nodal spacing of the immersed RKPM method. The displacement, stress, and strain fields

along a horizontal line y = 0.76 are compared between both analyses, illustrated in Figure 6.19a

through Figure 6.20b. The displacement solutions of the immersed RKPM agree well with the

FEM analysis. Additionally, the discontinuities in the shear strain are properly captured by the

proposed method with simple, non-conforming discretizations.

Figure 6.17: Conforming FEM mesh
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Figure 6.18: Displacement and strain fields of multiple inclusion problem, FEM
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Figure 6.19: Displacement comparison between immersed RKPM and FEM along y = 0.76.
(a) ux comparison; and (b) uy comparison.
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Figure 6.20: Stress and strain comparison between immersed RKPM and FEM along y = 0.76.
(a) εxy comparison; and (b) σxy comparison.
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The results above were obtained again using 8-point Gauss quadrature over background

cells. In total, shape functions and their derivatives were evaluated for 691,497 integration points,

adding considerable expense to the immersed RKPM procedure. The problem is run again using

M-SCNI with cK
L = 1.0 for comparison and the results are shown in Figure 6.21. M-SCNI yields

similar results compared to that obtained using Gauss integration, but at a much lower cost.
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Figure 6.21: Stress and strain comparison between 8-point GI, M-SCNI, and FEM along
y = 0.76. (a) shows the εxy comparison; and (b) shows the σxy comparison.

6.4 3D Example with Cylindrical Inclusions

A block measuring 200× 200× 75 in dimension with cylindrical inclusions is subject

to tension by applying a prescribed displacement of gx = 10 and gx = −10 to the front and

back surfaces of the block, respectively. Four cylindrical inclusions with radius R = 12.5 and

length L = 200 are immersed with two cylinders aligned in the x-direction and two aligned in the

y-direction. The cylinders in the x-direction are lowered vertically by 12.5 units and the cylinders

in the y-direction are raised by 12.5 units with respect to the mid-plane such that the cylinders

touch at the crossing zones. This arrangement produces an inclusion geometry which would be

difficult to mesh under body-fitted schemes, and is likely to produce distorted meshes with large
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aspect ratios near the crossing regions between the cylindrical inclusions. The background matrix

is given material constants of E1 = 2.0×109 and ν1 = 0.2 and the cylindrical inclusions have

material constants of E2 = 2.0×1011 and ν2 = 0.3.

An average discretization size of h = 4.0 is chosen so that 110,902 nodes are discretized

in the background and 24,424 nodes are discretized in the foreground inclusions. The background

and foreground discretizations are shown in Figure 6.22. Linear basis with cubic B-splines is

used with a normalized support a = 2.0h for the RKPM approximation. M-SCNI is employed for

integration and a stabilization coefficient of cK
L = 1.0 is used to suppress low-energy modes in the

solution. Nitsche’s method is used to impose essential boundary conditions with β = 500.0E1/h

and γ = 2.0E1/h for the interface. Note that the ends of the inclusions extend to the essential

boundary and as such Nitsche’s method is applied to both the background and foreground.

(a) (b)

Figure 6.22: Background and foreground discretizations of 3D immersed cylinder example. (a)
shows the background discretization and (b) shows the foreground discretization.

The magnitude of displacement and the von Mises stress are shown in Figure 6.23, and

are also shown in the y-plane with y =−50 in Figure 6.24. Due to the loading conditions and

the difference in material stiffness between the two materials, the stress is concentrated in the

inclusions parallel to the x-direction. The stresses are well resolved despite the relatively coarse

discretization. Only marginal oscillations near the material interface on the essential boundary

are present and diminish with refinement.

A comparison is made with a FEM model for reference. Due to the nature of the crossing
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(a) (b)

Figure 6.23: Stress and displacement of 3D inclusion cylindrical inclusions. (a) shows the
displacement magnitude |u| and (b) shows the von Mises stress, J2.

(a) (b)

Figure 6.24: Displacement and von Mises stress along the plane y = −50. (a) shows the
displacement magnitude and (b) shows the J2 stress. Note, these are plotted on the undeformed
configuration.

geometries, a hexahedral mesh could not be generated. A tetrahedral mesh with constant strain

elements was generated but the aspect ratio of the tetrahedral elements in those regions exceeded

a value of 31.3, indicating poor quality elements in those regions. An element size is chosen to be

approximately equal to the nodal spacing of the immersed RKPM model, resulting in 170,335

nodes and 976,550 elements generated. The mesh is shown in Figure 6.25 and the FEM results

are obtained using ABAQUS.

The displacement components are compared between FEM and immersed RKPM in

Figure 6.26 to Figure 6.28. The displacement solution of the immersed RKPM method agrees

very well with the FEM mesh using tetrahedral elements, which is tedious to discretize with the

given geometry.
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(a) (b)

Figure 6.25: FEM tetrahedral element mesh. (a) shows the tetrahedral mesh of the whole
domain and (b) shows the tetrahedral mesh of the cylindrical inclusions.

(a) (b)

Figure 6.26: ux comparison between FEM (a) and immersed RKPM (b).

(a) (b)

Figure 6.27: uy comparison between FEM (a) and immersed RKPM (b).
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(a) (b)

Figure 6.28: uz comparison between FEM (a) and immersed RKPM (b).
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Chapter 7

Immersed RKPM for Damage Analysis of

Inhomogeneous Materials

In this section, the immersed RKPM method is extended to nonlinear heterogeneous

media under the updated Lagrangian framework, in which the Cauchy stress and the energy

conjugate strain are introduced, and both material and geometric nonlinearities are considered.

This formulation can then be degenerated into problems dominated by material nonlinearity with

very localized responses, such as damage near the material interfaces. The updated Lagrangian

formulation discussed herein uses the current configuration as the reference configuration, and

the RK approximation is also constructed in the current configuration, leading to the so called

semi-Lagrangian formulation [21, 37]. In the following, the material point located at X in the

undeformed configuration is mapped to x = x(X, t) in the deformed configuration, where t is the

real or pseudo time.
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7.1 Nonlinear Equations for the Immersed Formulation

The weak form for the immersed formulation under an updated Lagrangian framework is

stated as follows: Given b1, b2, h, and g, find u1,u2 ∈U1×U2 such that

δU = δW int−δW ext +δU I +δU int,EB−δUext,EB = 0 (7.1a)

δW int =
∫

Ωx

δε1 : σ1 dΩ+
∫

Ω2
x

(
δε2 : σ2−δε1 : σ1)dΩ (7.1b)

δU I =−
∫

ΓI
x

JδuK · 〈σ〉 ·n1 dΓ−
∫

ΓI
x

〈δσ〉 ·n1 · JuKdΓ+ γ

∫
ΓI

x

JδuK · JuKdΓ (7.1c)

δW ext =
∫

Ωx

δu1 ·b1 dΩ+
∫

Ω2
x

(
δu2 ·b2−δu1 ·b1)dΩ+

∫
Γh

x

δu1 ·hdΓ (7.1d)

δU int,EB =−
∫

Γ
g
x

δσ1 ·n1 ·u1 dΓ−
∫

Γ
g
x

δu1 ·σ1 ·n1 dΓ+β

∫
Γ

g
x

δu1 ·u1 dΓ (7.1e)

δUext,EB =−
∫

Γ
g
x

δσ1 ·n1 ·gdΓ+β

∫
Γ

g
x

δu1 ·gdΓ (7.1f)

for all δu1,δu2 ∈ V 1×V 2, where the test and trial spaces are defined as:

Ui = {ui | ui ∈ H1
g (Ω

i),ui = g on Γ
g
x} (7.2a)

V i = {δui | δui ∈ H1
0 (Ω

i),δui = 0 on Γ
g
x} (7.2b)

for i = 1,2. Here, the subscript “x” in the domain and boundary terms denotes fields in the current

configuration, whereas the subscript “0” in the domain and boundary terms denotes fields in the

reference configuration.

The Galerkin form is derived by following the formulation given in Section 4.3.1. In both

linear and nonlinear problems, the Galerkin approximation of the immersed approach leads to the

following discrete equilibrium equations after introducing RK approximations in the background

and foreground discretizations.
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f int(uh, ũh)

f̃ int(uh, ũh)

=

f ext

f̃ ext

 (7.3)

In linear problems, f int and f̃ int are not functions of the displacements uh and ũh, while for

nonlinear problems they are in general functions of the displacements. Since these are nonlinear

equations, linearization of the weak form in (7.1) is required.

7.1.1 Linearization of the Immersed Formulation

To satisfy equilibrium between the internal and external forces for nonlinear problems,

the weak form in (7.1) must be linearized. Following Chen et al. [15], the weak form is expressed

in an incremental format as follows:

∆
(
δW int +δU I +δU int,EB)= (δW ext +δUext,EB)

n+1−
(
δW int +δU I +δU int,EB)ν+1

n+1 (7.4)

where n+1 is the next load step to be solved and ν is the iteration index.

The linearization of the bulk terms given by ∆(δW int) involves both material and geometric

nonlinearities:

∆(δW int) = ∆(δW int)mat +∆(δW int)geo (7.5a)

∆(δW int)mat =
∫

Ωx

δε1 :D1 : ∆ε1 dΩ+
∫

Ω2
x

(
δε2 :D2 : ∆ε2−δε1 :D1 : ∆ε1)dΩ (7.5b)

∆(δW int)geo =
∫

Ωx

δε1 : T 1 : ∆ε1 dΩ+
∫

Ω2
x

(
δε2 : T 2 : ∆ε2−δε1 : T 1 : ∆ε1)dΩ (7.5c)

whereDm is the material response tensor for material m = 1,2, T m
i jkl is the geometric response

tensor defined in Table 7.1, σm
i j is the Cauchy stress component, and εi j = u(i, j) = (ui, j +u j,i)/2

is the conjugate strain. Comma notation has been employed with (·),i = ∂(·)/∂xi.

The Nitsche terms in δU I and δW EB are similar to follower loads in that they effectively
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apply a traction to the current interface configuration. As such, the linearization of the interface

and essential boundary terms involves several terms. Consider a single integral from δU I . By

employing Nanson’s relationship, the boundary integral over the interface is mapped to the

undeformed configuration over ΓI
0.

δU I,1 =−
∫

ΓI
x

JδuK ·n1 · 〈σ〉dΓ =−
∫

ΓI
0

JδuK ·n1 · 〈σ〉F−1JS dΓ =−
∫

ΓI
0

JδuK ·n1
0 · 〈σ〉F−1 dΓ

(7.6)

where JS above is the surface Jacobian that maps the reference area to the current area and F is

the deformation gradient and the term n1
0 = n

1JS. Linearization may now proceed by taking an

increment of each term in the integrand above.

∆
(
δU I,1)=−∫

ΓI
0

JδuK ·∆n1
0 · 〈σ〉F−1 dΓ−

∫
ΓI

0

JδuK ·n1
0 · 〈∆σ〉F−1 dΓ (7.7)

−
∫

ΓI
0

JδuK ·n1
0 · 〈σ〉∆F−1 dΓ

where ∆σ=C : ∆ε+S : ∆ω, and ∆ωi j =∆u[i, j] is the skew symmetric part of the strain increment

defined as u[i, j] = (ui, j−u j,i)/2, and C and S for the Truesdell stress rate are given in Table 7.1.

Index notation and summation convention has been employed where a sum is implied over

repeated indices. Here, the term ∆n1
0 has been ignored similar to that often done in the follower

load problem to omit the stiffness matrix associated with the follower load.

Similarly, for the increment of δU I,2 is as follows:

∆
(
δU I,2)=−∫

ΓI
0

〈δσ〉 ·∆n1
0 · JuKF−1 dΓ−

∫
ΓI

0

〈δσ〉 ·n1
0 · J∆uKF−1 dΓ (7.8)

−
∫

ΓI
0

〈δσ〉 ·n1
0 · JuK∆F−1 dΓ
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Table 7.1: Stress increment and response tensors in updated Lagrangian formulation

Cauchy Stress σi j

Cauchy Stress increment

∆σi j =Ci jkl∆u(k,l)+Si jkl∆u[k,l]
Ci jkl =Ct

i jkl +C∗i jkl

Si jkl =
1
2

(
σilδ jk +σ jlδik−σikδ jl−σ jkδil

)
Ct

i jkl , determined experimentally
C∗i jkl =−σi jδkl +

1
2

(
σilδ jk +σ jlδik +σikδ jl +σ jkδil

)
Material and geometric
response tensors

Di jkl =Ct
i jkl

Ti jkl = δikσ jl

Finally, the linearization of the stabilization term at the interface is:

∆
(
δU I,3)= γ

∫
ΓI

0

JδuK · J∆uKJS dΓ+ γ

∫
ΓI

0

JδuK · JuK∆JS dΓ (7.9)

The linearization of the essential boundary terms follows the same procedure as the linearization

of the interface, and are given below for completeness.

∆
(
δW int,EB,1)=−∫

Γ
g
0

δum ·∆nm
0 ·σmF−1 dΓ−

∫
Γ

g
0

δum ·nm
0 ·∆σmF−1 dΓ (7.10)

−
∫

Γ
g
0

δum ·nm
0 ·σm

∆F−1 dΓ

∆
(
δW int,EB,2)=−∫

Γ
g
0

δσm ·∆nm
0 ·umF−1 dΓ−

∫
Γ

g
0

δσm ·nm
0 ·∆umF−1 dΓ (7.11)

−
∫

Γ
g
0

δσm ·nm
0 ·um

∆F−1 dΓ

∆
(
δW int,EB,3)= β

m
∫

Γ
g
0

δum ·∆umJS dΓ+β
m
∫

Γ
g
0

δum ·um
∆JS dΓ (7.12)

The notation m indicates which subdomain the above equations are applied to and has been

included in the case where the inclusion may also be subject to essential boundary conditions.

79



The linearizations from the above formulas may then be combined to form a tangent

stiffness, which will have both material and geometric components. It should be emphasized

that although having a consistent tangent matrix will converge faster in the Newton-Raphson

procedure, it is not necessary to approximate equilibrium in (7.3). With this in mind, one may

choose to omit calculating the stiffness matrix at each iteration taking only the first stiffness. This

simplifies the procedure while decreasing the overall expense of building a new stiffness matrix,

albeit at an increased number of iterations.

7.1.2 Internal Force and Stiffness

The internal force consists of bulk terms given by the internal energy of the system, and

Nitsche terms which enforce the interface conditions between the background material and the

foreground inclusion. The enforcement of boundary conditions also contributes to the internal

work. Together, the internal force is given as

f int

f̃ int

=

f int,b

f̃ int,b

+
f int,N

f̃ int,N

+
f int,EB

f̃ int,EB

 (7.13)

By introducing the approximations given by (4.15), (4.18), and (4.21) into the test

functions δuh, δũh, and δûh of (7.1b), the discrete equations for the internal force are determined

as follows:

f int,b
I =

∫
Ωx

BT
I σ

1(εh)dΩ−
∫

Ω2
x

B̂T
I σ

1(ε̂h)dΩ (7.14a)

f̃ int,b
I =

∫
Ω2

x

B̃T
I σ

2(ε̃h)dΩ (7.14b)

In a similar manner, (4.15) and (4.18) are used for the Nitsche terms in (7.1c). For

the interface terms, the variation of stress δσm(u) is present. Following a displacement-based
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formulation, this may be expressed as:

δσ1(uh) = ∑
I∈S
D1BIδuI (7.15a)

δσ2(ũh) = ∑
I∈S̃

D2B̃IδũI (7.15b)

In the above,Dm is the consistent tangent according to the Truesdell stress rate for material m.

Substituting these approximations and invoking the arbitrariness of δuI and δũI results in the

following nodal forces from the interface terms.

f int,N
I =

∫
ΓI

x

ΨIη
T (α1σ1(εh)+α

2σ2(ε̃h))dΓ−α
1
∫

ΓI
x

BT
I D

1η(ũh−uh)dΓ

−γ

∫
ΓI

x

ΨI(ũ
h−uh)dΓ (7.16a)

f̃ int,N
I =−

∫
ΓI

x

Ψ̃Iη
T (α1σ1(εh)+α

2σ2(ε̃h))dΓ−α
2
∫

ΓI
x

B̃T
I D

2η(ũh−uh)dΓ

+γ

∫
ΓI

x

Ψ̃I(ũ
h−uh)dΓ (7.16b)

The internal force contributions from the essential boundary are treated similarly to the

internal force from the interface conditions.

f int,EB
I =−

∫
Γ

g
x

BT
I D

1ηuh dΓ−
∫

Γ
g
x

ΨIη
Tσ1(εh)dΓ+β

1
∫

Γ
g
x

ΨIu
h dΓ (7.17a)

f̃ int,EB
I =−

∫
Γ

g2
x

B̃T
I D

2ηũh dΓ−
∫

Γ
g2
x

Ψ̃Iη
Tσ2(ε̃h)dΓ+β

2
∫

Γ
g2
x

Ψ̃Iũ
h dΓ (7.17b)

Note that in general the inclusion may lie on the essential boundary Γ
g,2
x . In this case, it receives

a similar treatment to the background for the purpose of imposing essential boundary conditions

on the inclusion material.

Using (7.5a) to (7.12) defined earlier during linearization, the tangent stiffness matrix

considering material nonlinearities only is given as follows. The equations are virtually identical
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to those given in (4.25a) with the exception thatDm is used instead of linear elasticity.

KIJ =
∫

Ωx

BT
I D

1BJ dΩ−
∫

Ω2
x

B̂T
I D

1B̂J dΩ+α
1
∫

ΓI
x

BT
I D

1ηΨJ dΓ (7.18a)

+α
1
∫

ΓI
0

ΨIη
TD1BJ dΓ+ γI

∫
ΓI

0

ΨIΨJ dΓ+KEB
IJ

KEB
IJ =−

∫
Γ

g
0

BT
I D

1ηΨJ dΓ−
∫

Γ
g
0

ΨIη
TD1BJ dΓ+β

1I
∫

Γ
g
0

ΨIΨJ dΓ (7.18b)

GIJ =−α
1
∫

ΓI
0

BT
I D

1ηΨ̃J dΓ+α
2
∫

ΓI
0

ΨIη
TD2B̃J dΓ− γI

∫
ΓI

0

ΨIΨ̃J dΓ (7.18c)

K̃IJ =
∫

Ω2
0

B̃T
I D

2B̃J dΩ−α
2
∫

ΓI
0

B̃T
I D

2ηΨ̃J dΓ (7.18d)

−α
2
∫

ΓI
0

Ψ̃Iη
TD2B̃J dΓ+ γI

∫
ΓI

0

Ψ̃IΨ̃J dΓ+K̃EB
IJ

K̃EB
IJ =−

∫
Γ

g
0

B̃T
I D

2ηΨ̃J dΓ−
∫

Γ
g
0

Ψ̃Iη
TD2B̃J dΓ+β

2I
∫

Γ
g
0

Ψ̃IΨ̃J dΓ (7.18e)

7.1.3 External Force:

The external forces are given by:

f ext

f̃ ext

=

f ext,b

f̃ ext,b

+
f ext,EB

f̃ ext,EB

 (7.19)

where f ext,b and f̃ ext,b are contributions from external loading, and f ext,EB and f̃ ext,EB are

contributions from imposing essential boundary conditions. Because the interface conditions

act as internal constraints between the background and foreground approximations, they do not

appear as external forcing terms.

In the same manner as for the internal force terms, the approximations given by (4.15)
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and (4.18) are introduced into δW ext in (7.1d). The external forces are:

f ext,b
I =

∫
Ωx

ΨIb
1
0 dΩ−

∫
Ω2

x

Ψ̂Ib
1
0 dΩ+

∫
Γh

x

ΨIhdΓ (7.20a)

f̃ ext,b
I =

∫
Ω2

x

Ψ̃Ib
2
0 dΩ (7.20b)

Likewise, (4.15) and (4.18) are introduced as test functions for the essential boundary

terms involving g. The resulting external forces due to essential boundary imposition are:

f ext,EB
I =−

∫
Γ

g
x

BT
I D

1ηgdΓ+β
1
∫

Γ
g
0

ΨIgdΓ (7.21a)

f̃ ext,EB
I =−

∫
Γ

g
x

B̃T
I D

2ηgdΓ+β
2
∫

Γ
g
0

Ψ̃IgdΓ (7.21b)

Once the weak form in (7.1) has been linearized, the solution for a given load step is

determined by forcing the residual to be less than certain residual measures selected by the user.

K G

GT K̃


ν

n+1

∆u

∆ũ


ν

n+1

=

f ext

f̃ ext


n+1

−

f int(uh, ũh)

f̃ int(uh, ũh)


ν

n+1

(7.22)

u
ũ


ν+1

n+1

=

u
ũ


ν

n+1

+

∆u

∆ũ


ν

n+1

(7.23)

where ν is the iteration index for a given load step n+1.

7.2 Pullout from Brittle Material

To demonstrate the proposed method, a rebar pullout model is performed in two dimen-

sions. For brittle materials, an elastic-damage law as used in [19] is utilized and is given below.
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σ = (1−d)C : ε (7.24a)

d(ε) =


εc(ε− εi)
ε(εc− εi)

εi ≤ ε≤ εc

1 εc < ε

(7.24b)

and where ε is an equivalent strain which governs the damage parameter d. Here, the equivalent

strain is defined using the deviatoric part of the strain as follows.

εd = ε− 1
3

Itr(ε) (7.25a)

ε =

√
2
3
εd : εd (7.25b)

A 25 mm “deformed” bar with a length of 100 mm is embedded into a background matrix

measuring 150 mm × 150 mm. The term “deformed” refers to the fact that the reinforcement in-

cludes ribs on the wall of the bar which generates mechanical interlock between the reinforcement

and the background material. The top surface of the background is given a fixed displacement

condition except at its center, where the bar is pulled through. The rebar is pulled by a prescribed

displacement of gy = 1.0 mm at the top of the rebar, as shown in Figure 7.1. The left, right, and

bottom surfaces of the outer medium are free surfaces with no tractions or prescribed boundary

conditions. In this study, the background matrix is given material properties of E1 = 20.0 GPa,

ν1 = 0.2, εi = 0.0014, and εc = 0.030. The foreground employs an elastic material without

damage with E2 = 200 GPa and ν2 = 0.3. The problem is modeled in 2D with the plane strain

assumption. While this is not a realistic assumption, the purpose of this example is to demonstrate

the effectiveness of capturing weak discontinuities under a nonlinear setting.

The discretization is given in Figure 7.2. The background is modeled by a uniform

discretization and is independent from the foreground discretization. This example demonstrates
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(a) (b)

Figure 7.1: Pullout problem setup, all units are in mm. (a) Problem geometry; (b) Rib geometry

the ease for discretizing a model using the immersed RKPM method because the approximations

are independent from each other. Although the problem is only in two dimensions and a conformal

mesh may be generated, it still requires more effort by the user to generate such a discretization

to do so and becomes more complicated with more reinforcement, especially in three dimensions.

The immersed RKPM method is used and the RK approximation is constructed with linear

basis, cubic B-spline kernels with support a = 2.0h. For enforcing the essential boundaries,

β1 = 100E1/h and β2 = 100E2/h. The Nitsche stabilization term at the interface is γ = 2E1/h.

Two analyses are performed: a linear analysis compared to body-fitted FEM using ABAQUS [77];

and a nonlinear analysis using the damage law in (7.24) to compare with body-fitted RKPM.

7.2.1 Linear comparison with body-fitted FEM

The immersed RKPM method is first compared to a linear finite element model with

conformal discretization as shown in Figure 7.3. This study is intended to verify the implemen-
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tation accuracy of the immersed RKPM method. For this study, the surface of the bar is also

given a prescribed displacement of gy = 1.0 mm. The results for the displacement and strains are

given below in Figure 7.4 and Figure 7.5. The y-displacement of the immersed RKPM method is

slightly greater than the body-fitted FEM results but overall the displacement profiles agree with

each other. The strain results show good agreement between the immersed RKPM and conformal

FEM solutions, particularly in matching the tensile strain εyy experienced behind each rib of the

rebar.

The reaction force between immersed RKPM and the body-fitted FEM shown in Figure 7.6

also shows close agreement well. A slightly softer response is obtained using immersed RKPM,

differing by 1.7% between immersed RKPM and body-fitted FEM at a displacement of 1 mm.

(a) (b)

Figure 7.2: Rebar pullout discretization. (a) Background discretization; (b) foreground dis-
cretization
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Figure 7.3: Conformal mesh for rebar pullout discretization
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(a) (b)

(c) (d)

Figure 7.4: Displacement comparison between immersed RKPM and body-fitted FEM gy = 1.0
mm. (a) Immersed RKPM ux; (b) Body-fitted FEM ux; (c) Immersed RKPM uy; (d) Body-fitted
FEM uy
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(a) (b)

(c) (d)

(e) (f)

Figure 7.5: Strain comparison between immersed RKPM and body-fitted FEM gy = 1.0 mm.
(a) Immersed RKPM εxx; (b) Body-fitted FEM εxx; (c) Immersed RKPM εxy; (d) Body-fitted
FEM εxy; (e) Immersed RKPM εyy; (f) Body-fitted FEM εyy
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Figure 7.6: Reaction force of pullout problem with linear elasticity
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7.2.2 Nonlinear comparison with body-fitted RKPM

The problem is then run with the elastic-damage law using immersed RKPM. The results

for four load steps are given below in Figure 7.7 and Figure 7.8 for the damage and equivalent

strain, respectively. The damage is initially concentrated at the top of the matrix domain near

the fixed boundaries. Once the bar has become fully pulled, the damage spreads throughout the

remainder of the domain in the shape of a cone. The equivalent strain is also concentrated at the

top of the domain where large shear strains are present, but progressively spreads throughout the

rest of the background as the displacement increases.

(a) (b)

(c) (d)

Figure 7.7: Damage profiles of pullout simulation using immersed RKPM. (a) gy = 0.25mm;
(b) gy = 0.50mm; (c) gy = 0.75mm; (d) gy = 1.0mm
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(a) (b)

(c) (d)

Figure 7.8: Equivalent strain of pullout simulation using immersed RKPM. (a) gy = 0.25mm;
(b) gy = 0.50mm; (c) gy = 0.75mm; (d) gy = 1.0mm

For comparison, a study is also made using a conformal, body-fitted discretization with a

similar nodal spacing, as shown in Figure 7.3. The standard RKPM method is used by using nodes

in this body-fitted conformal discretization. The damage profiles of immersed and body-fitted

RKPM are given in Figure 7.9 when the bar has reached a displacement of gy = 1.0 mm. Both

methods show generally good agreement to the damage in the surrounding material, but the

immersed method has a sharp transition in damage between the background and foreground

whereas the conforming RKPM analysis is more diffuse across the material interface. This is due

to the smooth approximation in the body-fitted RKPM which is incapable of capturing interface
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strain discontinuity and “smooths” out the strain, leading to less localized damage. This is clearly

demonstrated in Figure 7.10, which compares the shear strain and equivalent strain across the

second rib from the top at position y = 25.4 mm. Both strains exhibit a weak discontinuity for the

immersed RKPM method whereas the conforming RKPM results are smeared over the interface.

(a) (b)

Figure 7.9: Comparison of damage profiles of immersed RKPM and body-fitted RKPM at
gy = 1.0 mm. (a) Immersed RKPM; and (b) Body-fitted RKPM.
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(b)

Figure 7.10: Strain comparisons between immersed RKPM and body-fitted RKPM along line
at y = 25.4 mm, gy = 1.0 mm. (a) Shear strain εxy; (b) Equivalent strain ε

The strain distributions of the standard and immersed RKPM methods are compared in
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Figure 7.11. The strains are very similar to each other, but on closer inspection of the ribs, the

immersed RKPM method has clear strain localization near the material interface indicating the

weak discontinuity is properly captured whereas the standard RKPM with body-fitted conformal

discretization is more diffuse and spread out. This is again due to the inability to capture a

derivative jump using a continuous RK approximation.

The reaction forces at the fixed boundary are also given in Figure 7.12 and shows the

immersed RKPM approach gives results consistent with the body-fitted, standard RKPM method

in predicting the global response of this pullout test.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.11: Strain comparison between immersed RKPM and body-fitted RKPM gy = 2.54
mm. (a) Immersed RKPM εxx; (b) Body-fitted RKPM εxx; (c) Immersed RKPM εxy; (d)
Body-fitted RKPM εxy; (e) Immersed RKPM εyy; (f) Body-fitted RKPM εyy
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Figure 7.12: Reaction force of pullout problem with elastic-damage law
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Chapter 8

Conclusions

In this dissertation, an immersed RKPM approach was proposed for problems with

inhomogeneous materials. Nitsche’s method is used to consistently enforce the displacement

continuity and traction equilibrium at the material discontinuity. By introducing fictitious material

to the background, the discretization of the total domain and foreground domains are simplified.

Furthermore, they may be generated independently of each other and are not required to conform

at the material interface. The immersed RKPM approach is developed for linear and nonlinear

problems and strategies for integration of the background and foreground domains are discussed.

The immersed RKPM approach is shown to be effective in solving multi-material problems

provided that the quadrature is sufficiently accurate and stable. The verification results from

Chapter 6 show a strong dependence on integration order. 1-pt Gauss quadrature and SCNI

demonstrate unstable behavior due to spurious low-energy modes present in the system. This can

trigger unphysical behavior in the fictitious domain and leads to oscillations near the material

interface. 5-pt Gauss quadrature is shown to be sufficient for the immersed RKPM method but

requires many evaluation points, which is expensive for RKPM and is particularly severe when

considering problems in three dimensions. To mitigate the computational expense, M-SCNI

is adapted for use with immersed RKPM and is shown to be as accurate as high-order Gauss
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integration but at a much lower cost. The integration constraints developed in [20] are also

applicable to the immersed RKPM method. Optimal convergence of the immersed RKPM method

is demonstrated using both 5-pt Gauss integration and M-SCNI.

Several numerical examples are given and show the accuracy of the proposed method. A

comparison of immersed RKPM with FEM solution is given, and the immersed RKPM method is

shown to effectively model bi-material problems without tedious discretization of the interface.

The jump condition of the inhomogeneous material interfaces is captured as a result of using

two different approximation functions, which naturally yields discontinuous derivatives at the

interface. In this approach, no explicit enrichment of the approximation functions is required as in

previous works [78, 50, 80]. This greatly simplifies the modeling procedure using the immersed

approach. The immersed RKPM formulation was also extended to nonlinear problems and is

demonstrated using an elastic-damage model. The immersed approach is not limited to the use of

RKPM approximations and could be utilized to couple with FEM.

8.1 Recommendations for future research

Directions for future research for the immersed RKPM method are recommended as

follows:

• Development of the immersed RKPM method to include transient analysis and dynamics.

The critical time step of the immersed approach may be investigated with considerations to

Nitsche’s method at the material interface. An immersed method including dynamics is of

particular interest to problems involving complex material geometries where high strain

rates and large deformation are expected.

• Development of a semi-Lagrangian, immersed RKPM method to incorporate moving in-

terfaces and formation of free surfaces. Under high strain rates, significant deformation

can occur which will cause the analysis to fail should the deformation gradient become
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non-invertible. Such conditions could occur during, for example, extensive fragmentation

of quasi-brittle materials. The use of the semi-Lagrangian formulation under the im-

mersed RKPM framework would enable the detection of free surfaces and avoid difficulties

associated with a total Lagrangian framework.

• Generalize the interface conditions to consider a non-zero jump in the displacement field at

the material interface (i.e. an imperfectly bonded interface). Such a non-zero jump may

be introduced using a cohesive traction law dependent on the relative displacement at the

material interface. By including an interface compliance, physical phenomena such as

interfacial transition zones may be captured, which are not adequately described under the

perfectly bonded assumption.

• The immersed approach is not limited to the use of RKPM and may be used to couple with

other approximations such as FEM to take advantages of both. RKPM may be used where

smooth solution fields are expected and FEM can be used in the inclusion domain where

little deformation occurs. This may promote solution efficiency when using less expensive

approximations than RK or others based off of moving least squares. The focus of this

work is immersed RKPM under a Lagrangian formulation, but the immersed methodology

provides a framework for semi-Lagrangian or Lagrangian/semi-Lagrangian coupling.

• Parallel considerations when using the immersed RKPM method. Because of its block

matrix format, the immersed RKPM approach lends itself to solution methods such as

taking the Schur complement. This can greatly simplify the solution procedure provided the

bulk stiffness contributions may be statically condensed by relating them to the background

degrees of freedom. In addition, when multiple inclusions are present, the solution of each

may be divided among several processors in parallel.

• Comparison of the immersed RKPM method to a suite of experiments to validate correct

prediction of the interface conditions. The experiments should be designed to measure the
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interface quantities as closely as possible in order to test the immersed RKPM approach.

Instrumentation methods could employ X-ray tomography in order to make direct observa-

tions to the material interface. The experiments may range from simple configurations, such

pullout of a single reinforcing bar from a concrete base, to more complex configurations

with multiple reinforcing inclusions.

• Coupling the immersed RKPM method with shocks either in a fluid or solid background.

The proposed framework can be applied to model wave reflections/transmissions at material

interface in the presence of a shock wave. The proposed method may also be used to embed

a moving, Lagrangian solid within an Eulerian background.
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[78] N. Sukumar, D. Chopp, N. Moës, and T. Belytschko. Modeling holes and inclusions by
level sets in the extended finite-element method. Computer Methods in Applied Mechanics
and Engineering, 190(46):6183 – 6200, 2001.
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