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ABSTRACT OF THE DISSERTATION 

 
Systems analysis of energy metabolism elucidates  

the roles of mitochondria in human health and disease 

 

by 

 

Thuy D. Vo 

 

Doctor of Philosophy in Bioinformatics 

University of California, San Diego, 2007 

 

Professor Bernhard Ø. Palsson, Chair 

Professor Andrew McCulloch, Co-chair 

 
Beginning as the science of life, biology has been transformed and expanded 

throughout the years to give rise to fields such as ecology, molecular biology, biophysics, 

and biochemistry.  The distinction among these disciplines is perhaps artificial as the 

study of any particular biological process or system often spans multiple fields.  The 

research on energy metabolism to follow involves three fields: bioinformatics, 

bioengineering, and systems biology.  The informatics aspect deals with the mining, 

organization, and management of genomic, proteomic, microarray and biochemical data 

for reconstructing metabolic networks.  The engineering aspect employs the application 

of mathematics and scientific fundamentals to construct constraint-based models for 

examination. The systems biology paradigm allows the analysis and interpretation of the 
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models and data from a holistic perspective.  Specifically, the findings of this work center 

on energy metabolism as understood by resource allocation and roles or mitochondria in 

mammalian cells in health and diseased states. 

 

The constraint-based framework provides the facilities for biological discovery 

using tools from the three mentioned disciplines.  This modeling approach describes a 

biological system as a network of components whose behaviors can be predicted upon the 

application of constraints.  Energy metabolism of four systems – mitochondria, 

cardiomyocytes, hepatocytes, and fibroblasts – is investigated here.  The application of 

linear constraints on metabolite mass, reaction reversibility and substrate utilization 

allows an exploration of network capability and topology.  The capability and topology of 

the mitochondrial metabolic network are evaluated based on the theoretical energetic 

yield of substrates, the number of alternate pathways satisfying the same metabolic 

objective, and the effects of diabetic and ischemic conditions on feasible steady states.  

The second part of this dissertation involves the use of stable isotopes to uncover 

physiological steady states assumed by the cell.  Nonlinear constraints are used to balance 

isotopomers and select for a set of flux distributions that match GC-MS data.  Results 

from studies with cardiomyocytes and hepatocytes elucidate the paths undertaken by 

substrates as well as effects of media composition on intracellular flux distributions. Most 

significantly, results from tissue culture study identify complex II as the deficient 

complex in fibroblasts derived from a patient affected with Leigh’s disease. 
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Chapter 1  
Introduction 
 

 

It has become my personal realization that the journey of “self-discovery” is the 

most challenging intellectual endeavor a person can undertake.  The phrase self-discovery 

is used liberally here to refer to the investigation of the human body’s organization, its 

cellular composition, and the intricate connections among such components rather than 

psychological pursuit of self-identity.  This is not to discredit the importance of such a 

soul-searching exercise, but it is really the quest for understanding the inner workings of 

a human cell that is absolutely intriguing and mesmerizing to me.  It has been said that “if 

the brain was simple enough for us to understand, we would be too stupid to understand 

it.”  I remember being particularly bothered by this saying when I first learned about it.  

However, as I delve deeper into the business of research, it becomes apparent to me that 

not only is the structure of human cell absolutely exquisite, it is mystifyingly so.  I often 

find it uncomfortably difficult to explain to my non-biologically oriented relatives how it 

is possible to study genes and gene products without ever actually seeing them with one’s 

own eyes.  In fact, many discoveries in biology have been accomplished with ex-

periments ingeniously designed to circumvent our inability to visualize biomolecular in-

teractions or to verify events happening millions of years before the Homo sapiens 

species set foot on earth.  If we stop thinking about all the diseases that we are not 

presently able to cure for one minute, we will immediately be overwhelmed by the 
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fantastic improvement in the quality of life modern medicine has been able to achieve 

since the invention of penicillin.  The conception of molecular biology and the 

subsequent evolution of high-throughput biology is no less impressive.  It is the rare 

instance that science is able to meet (albeit remotely) the fantasy created by Hollywood in 

the 1997 science fiction movie Gattaca.  Though the work towards a $1000-genome is 

not yet within reach, it is incredible to think that we are able to witness, in our lifetime, 

the assembly of three billion base pairs of the human genome – a job harder than 

attempting to reassemble several thousand copies of the New York Times after they have 

been splattered with ink and shredded to millions of pieces.  The genomic revolution 

became the driving force, in terms of scientific capability, publicity, and morale, for the 

advancement of other high-throughput technologies, which gave rise to a myriad of 

‘omics’ datasets and scientific journals that are named after them.  The remaining of this 

chapter provides an overview of the state-of-the-art technologies, their use in biological 

research, and the challenges as well as the opportunities they present to me as I started 

my graduate career. 

1. The advent of high-throughput biology 

1.1  Genomics 

Launched in 1986, the Human Genome Project, funded primarily through the 

Department of Energy and the National Institutes of Health, set forth the goal to sequence 

and identify the functions of the 100,000 putative genes1 identified in the human genome.  

The hope was that a physical mapping of the human genome would provide new avenues 
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for advances in medicine and biotechnology including the speedy identification of 

disease candidate genes, bio-markers, drug targets, and predisposition to illnesses as well 

as shedding new light on human evolution.  Twelve years later, Celera Genomics was 

found based on Craig Venter’s “whole-genome shotgun” technique to compete for 

essentially the same goal.  This shotgun technique quickly became the most speedy and 

efficient, and thus standard, technology for genome sequencing.  In 2001, both the 

Human Genome Project2 and Celera Genomics3 unveiled the first rough draft of the 

genome with much fanfare.  This initial rough draft and its subsequent revision marked 

two major milestones in the quest for understanding the cellular system in its entirety.  

These drafts reveal that there are only 30,000-40,000 protein-coding genes, about twice 

many as in worm or fly, and make up only a few percent of the human genome.  Though 

this estimated number of genes is far from final, the low gene count did end the 

speculation that human’s superior intelligence is a result of the high number of genes in 

our genome.  Unlike worms or flies, however, human genes tend to have small exons 

(approximately 50 codons on average) separated by highly variable intron lengths (from 

40 bp to more than 10 kb), which makes it difficult to identify the location of open 

reading frames (ORFs).  A substantial fraction of ORFs, more than the initial estimate of 

35%, were found to contain alternative splicing.  Alternative splicing allows multiple 

proteins to be encoded by the same ORF, and is thought to be used for complex gene 

regulation.  It was also proposed that the high number of transcripts, or the complex 

transcriptional regulation allowed by alternative splicing, was the mechanism by which 

higher organism’s complexity is generated.  Further investigations by Brett and 

colleagues, however, showed that such a high number of genes containing alternative 
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splicing is not unique in human as compared to species such as worm, fly, mouse, and 

rat4.  Therefore, the mystery about how the human “book of life” sets us apart from other 

animals continue to elude us5.  Efforts to complete the genome sequencing is ongoing and 

attention is now turned more intensively to developing applications and uses for the data 

generated by the genome. 

 

1.2 Transcriptomics or DNA microarrays 

The development DNA microarrays or gene chips evolved naturally from the 

sequenced genomes.  The technology relies on the presence of small DNA segments 

(probes) affixed on a solid surface, which then hybridize to fluorescently labeled cDNA 

produced from mRNA in the sample.  By having hundreds of thousands of probes on a 

gene chip, microarrays facilitate the measurement of the genome-wide mRNA 

expression, hence the transcriptome, of all genes subject to a particular experimental 

condition (Figure 1.1).  Assuming the flow of information from DNA to RNA to protein 

and function (the Central Dogma of Molecular Biology) is true for most protein-coding 

genes, the hope is that the knowledge of which genes are being transcribed gives clues 

about the functions of the involved genes as well as how the cell coordinates these genes 

to respond to a given stimulus.  This was a major breakthrough in molecular biology and 

received considerable attention in the scientific community.  Since the first report of a 

gene expression study with DNA microarrays in Science6, approximately five thousand 

articles have been published on the use and analysis of microarrays.  More recent studies 

have started to focus on standardization, statistical analysis, and data interpretation.  The 
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current absence of standardization in arrays presents an interoperability problem, which 

hinders the exchange of microarray data.  In effort to standardize microarray data, 

thereby increasing their accessibility, the Microarray Gene Expression Data (MGED) 

Society defines standards and guidelines, described under MIAME (Minimum 

Information About a Microarray Experiment), to facilitate unambiguous interpretation 

and improve reproducibility of microarray experiments7.   

 

The analysis of DNA microarrays also poses a statistical problem surrounding 

two issues: i) low signal-to-noise ratio resulting from low number of replications and ii) 

high rate of false positives resulting from the high number of genes per chip.  The lack of 

sufficient replications of microarray data is due mostly to the relatively high cost of gene 

chips.  With a low number of replicates (sometimes less than three per experiment), 

statistical confidence can not be assigned to expression results.  The widely varied basal 

expression levels among the different genes exacerbates the low-signal-to noise ratio, 

making it difficult to estimate the level of up and down regulation of a particular gene 

relative both to its baseline and to other genes.  Secondly, from a hypothesis-testing 

standpoint, the large number of genes present on a single array increases the false 

positive probability even when the likelihood of a gene yielding a result of interest is 

extremely low.  To further complicate the matter, an additional problem that is often 

overlooked is that mRNA expression level is a weak indicator of the encoded enzyme 

levels8.  The observed gene expression thus does not necessarily correlate with cellular 

functional activity, rendering microarray data uninformative in understanding cellular 
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physiology.  Much effort in both the academic and industrial setting is now targeted at 

resolving these matters in microarray analysis. 

 

1.3  Proteomics 

In keeping with the spirit of genomics and transcriptomics, the field of proteomics 

aims to identify, quantify, and functionally characterize the entire set of proteins 

contained in a particular cell.  Unlike the genome, which is unchanged across cell types 

and conditions, the proteome is a dynamic set of proteins.  The proteomic composition 

varies with different cell types in a multicellular organism and is subject to modification 

based on the cell’s external and internal conditions.  Due to the problems discussed 

earlier with genomics and transcriptomics, the cellular proteome is expected to be 

instrumental in deciphering the cell’s functional state as well as identifying biomarkers 

for pharmaceutical purposes.  Proteomic studies include minimally two steps, protein 

separation followed by identification.  One- and two-dimensional gel electrophoresis are 

frequently used to determine protein mass and isoelectric point.  Proteins are then excised 

from the gel, enzymatically digested into smaller peptides, and sent to mass spectrometry 

for identification.  Mass spectrometry ionizes and vaporizes the molecules in a magnetic 

field and then separates them according to their mass-to-charge ratios.  Two soft 

ionization techniques primarily used for large biomolecules such as peptides are 

electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI).  

Tandem MS is now being used to identify the amino acid sequence of the peptide ions, 

which are used to query a database to determine the identity of the protein.  
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The major challenge encountered by proteomic studies is the wide range of size, 

pI, and hydrophobicity of the different proteins in the cell, making it impossible to 

preserve the integrity of the entire proteome in any particular separation condition.  

Furthermore, the digestion step makes it difficult to determine any posttranscriptional 

modification a protein carries.  Due to these complications, the complete identification of 

the human cellular proteome will most likely not be completed until new technology is 

developed.  In the mean time, encouraging success has been achieved for organelles 

(mitochondrion, lysosome, peroxisome, Golgi, etc) and large cellular structures 

(cytoskeleton, centrosome, mitotic spindle)9. 

 

1.4  Metabolomics and fluxomics 

Metabolomics refers to the set of small molecules present in the cell as the 

cumulative result of the cell’s genomic, transcriptomic, proteomic, and environmental 

stimuli.  Metabolic profiling, enabled by MS and NMR, provides an instantaneous 

'snapshot' of the functional state of that cell.  The tradeoffs between MS and NMR are 

structural information and sensitivity.  Higher sensitivity and coverage are achieved by 

MS, particularly with Fourier transform ion cyclotron resonance-MS (FTICR-MS) and 

capillary electrophoresis-MS (CE-MS).  FTICR-MS is able to detect ion masses at 

extremely high accuracy and has been used to characterize cytochrome C variants10, 

detect locations of sulfur-containing amino acids in peptides11, and profile 

lipooligosaccharides of the gonorrhea bacterium12.  CE-MS is highly sensitive to low 
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abundance metabolites and has been applied to identify nearly 2,000 metabolites in 

Bacillus subtilis extracts13.  More recently, CE-MS has also been used to analyze 

polypeptide markers from patient’s body fluids for diagnostic purposes14.  The field of 

metabolomics is faced with similar problems as proteomics in moving towards a 

comprehensive dataset, or possible worse, as metabolites making up the metabolome are 

even more divergent in physical and chemical properties.  It is thus the area with the most 

opportunities for improvement, particularly in sample purification and instrumentation 

development.  

 

Co-evolving with metabolomics is the search for relationships among these 

metabolites and the rates by which they interconvert.  In fact, the quantification of 

metabolic intermediates and reaction kinetics is the basic technique of classical 

biochemistry, which, in its larger scale, gives rise to metabolomics and fluxomics.  

Fluxomics is often defined as the large scale measurement of reaction fluxes in the cell.  

The word “measurement” is in fact a misnomer because reaction kinetics, or fluxes, are 

never measured directly; they are inferred through the concentrations (either relative or 

absolute) of reaction participants.  Therefore, fluxomics is essentially a subcategory of 

metabolomics with an emphasis on quantification.  More recently, fluxomic data have 

been obtained through the use of stable isotopes, particularly those containing 13C labels, 

and the application of MS or NMR to determine the eventual fate of these labels.  

Understandably, this field of study has been referred to as both fluxomics and tracer-

based metabolomics in the literature.  The relative distribution of 13C among the different 

metabolites and the different mass isotopomers of a metabolite reflect the rates of 
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reactions producing and consuming them.  Mass isotopomers of a metabolite are isomers 

that differ only in the isotope distributions (in this case 13C vs. 12C).  The presence of 

multiple isotopomers of a metabolite is a clue that the metabolites are produced by 

multiple paths in the reaction network.  Conversely, the quantification of reaction fluxes 

is dependent on a model network describing the cellular metabolism and the 

mathematical tools to calculate reaction fluxes based on tracer data. 

2. The emergence of Bioinformatics and Systems Biology 

 The innovative high-throughput techniques, in some sense, can be considered 

disruptive technologies, as they force scientists to transform molecular biology into a 

systemic and quantitative discipline.  The plethora of omics and legacy data has turned 

biology from a relatively data-poor to a data-rich discipline.  The transformation of 

biological data into knowledge of cellular physiology is not trivial; it requires a major 

effort in organization and interpretation of such data.  In fact, the launch of 

bioinformatics and systems biology as disciplines represents a concerted effort among 

scientists of different research areas to unite biological data, physical principles, and 

mathematical tools to unravel the complexity of living systems.  As a result, 

bioinformatics and systems biology are widely described as interdisciplinary studies.  

However, I think Sean Eddy said it best when he referred to these fields of study as 

“antedisciplinary” science - the science that precedes the organization of existing 

disciplines15.  Similar to biochemistry or bioengineering, it is my hope that, in time, these 

areas of study will become established and accepted disciplines in their own right.  Being 
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young disciplines, the two areas of study do not have well defined, concrete descriptions.  

Nevertheless, it is generally agreed among scientists developing the field that 

bioinformatics refers to the creation and advancement of computational and statistical 

algorithms to solve theoretical and practical problems arising from the management and 

analysis of biological data.  Systems biology, on the other hand, is characterized by the 

integration of experimental and computational methods and a philosophical shift from the 

more traditional reductionist to a more holistic approach in viewing biological systems.  

Systems biology and bioinformatics are often used synonymously due to the quantitative 

component they introduce to molecular biology.  Nevertheless, most scientists who 

subscribe to the philosophy of systems biology agree that experimental study is an 

integral component of the discipline.  In fact, successes in this field depend on the 

interplay of four processes: i) identifying key biological components, ii) reconstructing 

networks of interactions among these components, iii) quantitatively analyzing these 

networks, and iv) generating testable hypotheses for model validation and further 

experimental investigations.  Together these four steps form a cycle (Figure 1.2) in which 

every iteration provides better understanding of the biological system than the sum of 

results individually collected from each process.  

3. Network reconstruction and constraint-based modeling 

3.1  Network reconstruction as a tool for data integration and analysis 

The unifying theme across the ‘omics’ studies described here is the search for a 

physiological context of the cellular response to a particular condition.  This theme 
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reflects the transition of biology from component identification to functional state 

characterization.  The characterization of cellular functional states requires knowledge 

not only about the individual components and their functions, but also about the 

interactions among such components.  Network abstraction is an obvious and intuitive 

way to represent these components and interactions.  Networks of proteins and 

metabolites are the most common, and can now be reconstructed at the genome-scale16-18.  

The research described in the remaining chapters of this dissertation is concerned 

primarily with networks of metabolites (substrates) as nodes and biochemical reactions as 

edges.  These networks are reconstructed through the curation of high-throughput and 

legacy biological data.  High-throughput data used in these networks encompass 

genomics, DNA micro-arrays, proteomics, and tracer-based metabolomics.  Legacy data 

include structures of biochemical pathways, reaction directionality, and substrate 

specificity of individual enzymes.  Reconstructed networks thus serve as a highly 

organized repository for results of a large number of experiments, from which testable 

hypotheses can be drawn (Figure 1.2).  Interrogating the properties of these networks 

allows one to evaluate their accuracy and functions.   

3.2  Constraint-based modeling 

 Once an abstraction of the biological system has been accomplished with a 

reconstructed network, the next step in the systems biology cycle is the making of a 

predictive model.  The use of simplified models to describe biological processes is not a 

new concept; however, it is not until recently that large-scale quantitative models have 

become accessible.  Unfortunately, quantitative data are extremely scarce and 
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quantitative formalisms from which models can be built are even rarer in biology.  The 

plea for an engineering approach in studying biology was eloquently and entertainingly 

made in Lazebnik’s “Can a biologist fix a radio?” communication19.  Though this 

scientist, in my opinion, made a rather unfair comparison between a radio and a cellular 

system, his point is legitimate: quantitative analysis is necessary to move biology forward 

in a meaningful and productive manner.  

 

With respect to most metabolic systems, the focal concerns of this dissertation, 

quantitative analysis is often applied by relating the reaction rate to the change in 

concentrations of involved metabolites.  The reaction rate primarily depends on the 

kinetics of the corresponding enzyme, which, in turn, depends on the enzymatic 

mechanism, regulatory state, and quantity of available enzyme molecules.  A kinetics-

based description is perhaps the most straight-forward, though not always the simplest or 

most feasible, approach to quantitatively model biological systems.  It is thus recognized 

that kinetics-driven models, though useful, require a large number of system- and 

condition-specific parameters for which values are difficult and laborious to obtain.  The 

lack of such data is a major hindrance to kinetics-based modeling, rendering it 

inaccessible for many systems of interest, particular those not amenable to experimental 

studies.  An alternative, data-driven, constraints-based approach has been developed to 

partially overcome this difficulty.  This modeling approach seeks to narrow the range of 

possible phenotypes a metabolic system can display by imposing constraints, rather than 

precisely determining the exact behavior of the system20,21.  The constraint-based method 

is typically used in combination with a reconstructed network representing the system of 
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interest.  Quantitatively, the reconstructed network can be represented by a stoichiometric 

matrix S, where each element Sij represents the stoichiometric coefficient of metabolite i 

in reaction j, following the convention that Sij is positive if the metabolite is the product 

of the reaction, and negative otherwise.  Typical constraints in constraint-based modeling 

fall into two categories: hard and soft constraints.  Hard constraints refer to the physico-

chemical principles that all chemical reactions must obey.  Examples are mass 

conservation22, energy balance23,24, and the laws of thermodynamics22.  Soft constraints 

arise from the flexibility inherently built into a biological systems so that the organisms 

can adapt to various environmental conditions.  Soft constraints therefore are system (cell 

type or organism) and condition (substrate availability, physiological state, presence of 

stimuli) dependent.  Examples of soft constraints include regulatory rules and the 

goodness of fit with experimentally measured data.  Soft constraints can be adjusted 

when comparing model predictions with experimental observations and likely lead to 

new discoveries when a disagreement is found.  It should be noted that the constraint-

based modeling approach is neither superior to nor can it completely replace its kinetic 

counter parts.  Advantages and limitations of the constraint-based modeling approach are 

further discussed in chapter 3. 

4. Dissertation overview 

 This introductory chapter aims to provide a layout of the biological and 

technological research landscape at the beginning of this century, which incidentally is 

about the time I started graduate school.  What has been described here is the state of the 
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art science and opportunities I have been presented with to carve my own niche and 

contributions to the scientific community.  As hopefully will become clearer in the 

chapters to come, biology is becoming a technology-driven discipline, and the philosophy 

of systems biology will likely become the standard practice to study living things.  As 

technology improves, more data will be generated and at a faster rate, our understanding 

of biological systems will be limited only by our ability to analyze such data.  The 

opportunity is clear: data must be converted knowledge.  In working toward this goal, the 

research in this dissertation seeks to elucidate the metabolic phenotypes of the cells in 

normal and diseased states.  The characterization of cellular metabolic phenotypes will 

place an emphasis on the biochemical pathways associated with mitochondria and the 

organelles’ role in energy metabolism.  Three main themes will be encountered: i) Data 

integration, ii) Data analysis, and ii) Data interpretation.   

 

 Specifically, chapter 2 details the process of metabolic network reconstruction as 

an effective and scalable method to organize and integrate ‘omics’ and legacy data for 

studying cellular metabolism.  Three model systems are described in this chapter.  The 

first model system is the mitochondrion, a semi-autonomous organelle that participates in 

many important cellular functions, is implicated in many diseases, and is the test system 

of many proteomic studies.  Chapter 3 describes the various linear methods of analysis 

under the constraint-based modeling formalsim that can be applied to identify relevant 

metabolic steady states in the cell.  These methods allow one to quickly and systemically 

evaluate the capabilities of the mitochondrial network under the constraints set by 

physical and chemical principles as well as metabolic disturbance.  Chapter 4 describes 
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the process of incorporating carbon tracer data into the constraint-based framework so 

that physiological steady states, rather than theoretical metabolic capabilities, can be 

determined.  Chapter 5 applies the method developed in chapter 4 to characterize the 

substrate distributions in the ex vivo mouse cardiomyocyte.  Considerations for 

computational and experimental studies with tracer data are also discussed in this chapter.  

Chapter 6 arrives at the ultimate goal of this dissertation, which is the elucidation of 

cellular metabolic phenotypes in human health and disease.  The first part of the chapter 

investigates the effects of external stimuli, namely changes in substrate availability, on 

the steady state assumed by HepG2 cells.  The second part uses model predictions to 

identify the affected enzyme complex in fibroblasts derived from a patient with Leigh’s 

disease.  Finally the concluding chapter discusses the lessons learned from the 

computational and experimental methods undertaken this dissertation, my contribution to 

the field, as well as my prediction on the future of the bioinformatics and systems 

biology. 

 

(This chapter, in part, is a preprint of the material appearing in “Building the 

power house: Recent advances in mitochondrial studies through proteomics and systems 

biology,” Vo TD and Palsson BO. 2006. Am J Physiol Cell Physiol, in press.  The 

dissertation author is the primary investigator and author of this paper.) 
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Figure 1.1: Diagram of a typical dual-color microarray experiment 
mRNA from normal cells (control) and cancer cells are isolated and converted to cDNA that are 
differentially labeled with fluorescent tags.  The cDNA from two samples are combined and are allowed to 
hybridize with DNA probes affixed on the chip.  The combined intensities of the two fluorescent labels 
indicate the level of mRNA present in the original samples.  This figure is reproduced from reference 25 
with full permission of the author. 
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Figure 1.2: The systems biology cycle 
Systems biology can be defined as the quantitative study of biological processes as whole systems instead 
of isolated parts. The field is characterized by the synergistic integration of data and theory which can be 
combined to produce a model.  Analysis of the model provides predictions about physiological functions 
whose measurements are difficult or expensive to obtain.  Validation of these predictions helps to identify 
novel components, which, in turn, refine the model. 
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Chapter 2  
Metabolic Network Reconstruction as a 
Tool for Data Integration and Analysis  

 
 

With the increasing availability of high throughput data, there is a growing need 

for integrating and reconciling these heterogeneous data sets to increase their consistency 

and reliability26,27.  Metabolic network reconstruction has been referred to as “two-

dimensional genome annotation” because it builds on the parts list of the genome (one-

dimensional genome annotation) and brings together the connections amongst these 

components as an additional level of annotation.  As these networks are often used as a 

basis for studying the genotype–phenotype relationship, it is important that they are 

biochemically and genetically accurate.  Specifically, reconstructing a metabolic model 

includes two steps: i) identifying key components and ii) specifying biochemical 

reactions contributing to the metabolism of the system of interest (Table 2.1).  Key 

components include some or all of the following: the model organism’s annotated gene 

index, gene expression data, proteomic data, and legacy biochemical data.  The 

specification of biochemical reactions relies mostly on the cumulative biochemical data 

from the primary literature and biochemistry textbooks.  The present chapter is divided 

into three main sections.  The first section provides a description about a variety of data 

types, their sources, and how they can be used to construct metabolic networks.  The 

second section describes the steps and considerations to be taken in the reconstruction 
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process.  The last section describes the contents of three metabolic networks whose 

properties and functions are studied in the remaining chapters of this dissertation. 

1. Data Acquisition 

1.1 Genome annotation  

A large number of organisms have publicly available genomic sequences with an 

initial genome annotation.  Genome annotation usually includes both experimentally 

verified functions of known proteins and putative functions annotated with in silico 

methods.  These in silico methods are computational algorithms that predict the function 

of open reading frames (ORFs) in the genome.  Both ab initio and comparative genomics 

approaches have been used for this purpose.  Ab initio methods such as GLIMMER 

(Gene Locator and Interpolated Markov ModelER)28,29 and GENSCAN30 predict the 

location of an ORF based on the presence of regulatory signals such as promoters and 

stop codons.  GLIMMER can find up to 99% of all bacterial protein-coding genes with 

high accuracy.  Eukaryotic ab initio gene finders, on the other hand, have achieved only 

limited success due to the presence of long introns and high numbers of alternative splice 

sites31 as discussed in chapter 1.  On the other hand, comparative genomics approaches, 

also known as sequence-homology search tools, include BLAST32-34, FASTA35-37, and 

HMMER38,39 rely on sequence similarity between closely related organisms to predict the 

function of a gene.  It should be noted that gene annotation based on ab initio methods is 

subject to revision until the gene has been experimentally studied.   
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Acquiring a complete and annotated gene index of an organism is usually the first 

step in reconstructing the metabolic network for that organism.  This type of data is 

relatively easy to obtain (if the genome of the organism of interest has been sequenced) 

and provides a comprehensive catalog of enzymes in the targeted network.  Genomic data 

can be obtained from databases such as NCBI Genome, KEGG (Kyoto Encyclopedia of 

Genes and Genomes), TIGR-CMR (Comprehensive Microbial Resource), Ensembl 

(eukaryotic genomes), or directly from the group that sequenced the organism.  The 

minimal information from a genome annotation necessary for the reconstruction includes 

locus number, gene name, and annotated gene functions.  Commonly studied model 

organisms may have multiple gene indices corresponding to the various strains, and it is 

important to obtain the correct gene index for the strain of interest.  The annotated gene 

index usually provides a good preview of the overall metabolic characteristics of the 

organism.  Examples of characteristics to consider include preferred oxidative modes 

(anaerobic, aerobic, or microaerophilic), preferred substrates, and essential and non-

essential amino acids.  

 

1.2  DNA microarray data 

DNA microarray data identify the set of genes that are being transcribed in a 

particular cell type and condition.  As the number of microarray experiments grows, 

numerous databases have been established to archive and organize this information.  

Examples of these databases include NCBI Gene Expression Omnibus (GEO), 

ArrayExpress, Stanford Microarray Database (SMD), and Yale Microarray Database.  In 
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most of these databases, users are allowed to query based on species, experiment type, 

experimental description, protocol, etc.  Studies archived on these databases are also 

likely to be MIAME compliant7,40.  The URLs of these databases change frequently, so 

users are advised to search for the databases by their names or by the research groups 

maintaining them.  

 

Most microarray experiments contain at least two sets of data, one serving as a 

control and one subject to stimuli of interest.  Since gene expression data are condition 

dependent, one should obtain the dataset that most resembles the condition to be modeled 

in silico.  Given the often non-standardized experimental protocols and statistical 

difficulty affecting microdata interpretation41, these data should be used conservatively if 

they are not generated in-house.  For example, most expression studies report expression 

levels as fold change relative to a baseline at time zero or the control levels.  One can use 

reasonable judgment or statistical analysis, if sufficient replicates are available, to 

determine whether a gene is present or absent in the condition of interest.  This step 

allows the filtering of genes and enzymes that may not be relevant to the reconstructed 

network.  Though this is a simple concept, determining whether a gene, protein, or 

reaction should be included in an in silico study is tricky for human cells, because the 

majority of human enzymes do not have a one-to-one association in the chain of 

information from ORF, transcript, protein, and reaction.  Logic statements (section 2.1) 

are currently the most effective way to describe the relationships among these 

components.  An example of how microarray data are used to identify relevant genes and 

enzymes for the human fibroblast-specific network is included in the last section of this 
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chapter.  Additional research is underway to develop more sophisticated methods for the 

application and integration of microarray data for reconstructing purposes. 

 

1.3  Proteomics 

The proteome of a biological system (an organelle, a cell, or an organism) is 

characterized by its protein content, localization, and abundance.  Proteomic data are thus 

specific to species, cell type, and experimental condition.  Proteomic data are particularly 

important for studying systems such as mitochondria, where the majority of enzymes are 

not encoded in the organelle’s genome, or for differentiating cells where not all genes are 

expressed at the same time.  These data are typically more difficult to obtain than 

genomic data, but sub-cellular proteomes and proteomes of small bacteria have been 

identified42,43.  Due to the greater complexity of these experiments, databases dedicated to 

proteomic data are less prevalent and less comprehensive than those for microarray data.  

Well established databases include Swiss Prot, Open Proteomic Database (OPD), and 

BIOBASE.  Databases specific for subcellular structures are also available such as those 

for nuclei (the Nuclear Protein Database (NPD), Nuceolar Database) and mitochondria 

(The Human Mitochondrial Protein Database, MitoProteome, MitoP2, and MITOP).  The 

minimal information needed from proteomic data for reconstructing purposes is gene 

name, encoded protein, localization, and description of protein function.  

1.4  Biochemical data 

Direct biochemical information is usually the most reliable.  Biochemical 

characterization of an enzyme usually includes its substrate specificity, substrate 
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stoichiometry, and the physiologically preferred direction of the reaction(s) the enzyme 

catalyzes.  Additional useful information about the enzyme is its gene locus, three-

dimensional structure, subcellular localization, catalytic mechanism, kinetic parameters 

(Vmax, KM, Kcat, etc) and the change in Gibbs free energy accompanying the conversion of 

substrates to products.  Collections of biochemical data on an organism’s metabolism can 

be found in review articles, biochemistry textbooks, and volumes that focus on the 

biology of specific organisms.  When inconsistencies are found among these sources, one 

is recommended to refer to the primary literature where the reaction is characterized.  

Lastly, review articles and textbooks dedicated to a particular organism or cell type are 

also likely to contain the organism or the cell’s preferred substrates, minimal media 

composition, end products, etc, all of which are valuable for functionally characterizing 

the metabolic system. 

2. Define molecular composition and interactions in the network  

2.1 Define Gene-Protein-Reaction associations 

 The gene-protein-reaction associations describe the dependency of reactions on 

proteins and proteins on genes.  Such dependency is straightforward if a particular gene 

encodes only one protein, which then catalyzes a substrate-specific reaction (Figure 2.1, 

panel 1).  A small number of enzymes, particularly those acting on fatty acids or 

phosphoslipids, can act on a class of substrates that carry similar chemical groups.  As 

each metabolite is a distinguishable compound in the reaction network, separate reactions 

are written for each of these substrates.  Consequently, a separate association between the 
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enzyme and individual reaction is specified (Figure 2.1, panel 2).  Conversely, the same 

reaction may be catalyzed by more than one isozyme.  In these cases, separate 

associations are used to connect each isozyme to the same reaction.   

 

 Additional complexity arises when multiple transcripts can be derived from the 

same ORF or when the functional enzyme is made up of multiple subunits or proteins.  

When an ORF gives rise to more than one transcript, each transcript is uniquely defined 

and associated with the corresponding protein.  The same ORF is connected to all of 

these transcripts.  On the other hand, genes encoding protein subunits are all associated 

with one protein.  They are connected by an “AND” association between the mRNA 

transcript and protein levels (Figure 2.1, panel 3).  Protein complexes are different from 

proteins of multiple subunits in that each protein of the complex has a distinguishable 

function contributing to the overall catalytic function of the enzyme.  As all proteins 

making up protein complexes are necessary for the reaction to occur, these proteins are 

connected by an “AND” association between the protein and the reaction levels (Figure 

2.1, panel 4). 

2.2 Define reactions 

 Accuracy in the biochemical reactions making up the metabolic network is 

essential, especially if the corresponding stoichiometric matrix is to be used in a 

predictive model (Chapter 3).  Five pieces of information are necessary to describe each 

reaction: i) metabolite specificity, ii) metabolite formulas, iii) reaction stoichiometry, iv) 

reaction direction, and v) metabolite and reaction localization.  The first piece of 
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information defines the reactants and products of the reaction.  If an enzyme catalyzes 

multiple reactions, one should include all reactions that fall within the scope of the 

metabolic network.  Second, each metabolite is to be further defined with the 

predominant elemental composition and charge at physiological pH.  Note that the 

molecular formula of a metabolite at pH 7.2 (typical physiological pH) may not 

necessarily be the same as its neutral formula.  For example, the neutral formula of 

lactate is C3H6O3, but it is present as C3H5O2
- in most cellular environments.  Third, once 

the elemental and charge formulas of all reaction participants are defined, it should be 

easy to determine the coefficients of each participant to make the reaction balanced.  One 

must make sure that the reaction is both element and charge balanced; it is likely that 

H2O and H+ need to be added to balance the equation.  Fourth, thermodynamic properties 

and results of biochemical studies should be considered in defining the direction of a 

reaction.  This is usually the trickiest step.  Some reactions are essentially irreversible due 

to the large Gibbs free energy difference between reactants and product molecules.  

However, if this energy difference is sufficiently small, the direction of the reaction can 

be reversed by fluctuation in concentrations of reactants and products (temperature and 

pressure are relatively constant in most cellular environments).  In these cases, the 

reaction is considered bidirectional or reversible.  The reversibility of a reaction has 

implications for the metabolic capability of the cell or organism, and therefore reaction 

direction must be evaluated with care.  Lastly, localization of the enzyme gives clues 

about the subcellular localization of reaction participants.  Unless the enzyme is a 

transporter, reaction participants are assigned to the same location as the enzyme.  If a 

metabolite is present in more than one cellular compartment, they are distinguishable 
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compounds, which may be interconverted by transporters if such transporters exist.  Note 

that incorrect assignment of a reaction to a cellular compartment may lead to non-

functional pathways or inaccurate network properties. 

 

2.3 Determine reaction confidence level 

Once a reaction is written, it is assigned a confidence level to reflect the type of 

data supporting its existence in the metabolic network of interest.  A four-level scoring 

system for evaluating the confidence level is used in all metabolic networks discussed 

here (Table 2.2).  The criteria for each level are i) Biochemical data (score of 4), ii) 

Genetic or proteomic data (score of 3), iii) Genomic or physiological data (score of 2); 

and iv) Modeling data (score of 1).  Biochemical data, as described in section 1.4, result 

from experimental characterization of a chemical reaction.  The characterization should 

contain information about the substrates, products, and stoichiometry of the reaction.  

Direct biochemical data include the identity of the enzyme and indirect data demonstrates 

the occurrence of the reaction in a cellular extract.  Genetic data contain information 

relating to the experimental identification or genetic characterization of the gene coding 

for the enzyme, thereby suggesting the existence of the corresponding reaction.  Genomic 

data refer to the putative genes annotated through in silico methods and are thus linked to 

the protein catalyzing the reaction.  Physiological data are information about the overall 

cellular physiology, fitness characteristics, substrate utilization, or phenotypic results that 

suggest the presence of the biochemical event.  Finally, modeling data are purely 

hypothetical reactions predicted from in silico analysis.  These are often reactions 
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required for the model to fulfill certain metabolic demands.  The scores assigned to each 

data type allows the numerically evaluation the overall reliability of a metabolic network. 

 

2.4 Assemble metabolic pathways and construct the stoichiometric matrix 

 Once the list of genes and proteins specified by genomic or proteomic data is 

translated to a list of reactions, the next step is to assemble them into a complete 

biochemical pathway.  This step is necessary to ensure that the resulting metabolic 

network is functional.  Review articles or books written specifically about the metabolism 

of the organism or cell of interest can be helpful in determining which metabolic 

functions the system is capable of.  If such reviews or books are not available, the KEGG 

database can be a useful resource to reference canonical biochemical pathways.  Note that 

not all enzymes or reactions constituting these pathways are present in any single system.  

One should start with metabolic pathways corresponding to oxidation of preferred 

substrates of the organism as these are likely the most well studied pathways in the 

literature.  Oxidation of other substrates, followed by biosynthetic pathways, can be built 

from there.  Catabolic pathways allow the metabolic network to produce cellular currency 

such as ATP, NADH and NADPH, which are necessary for biosynthetic pathways to be 

functional.  In assembling these pathways, one may find gaps, or missing enzymes, 

compared to canonical biochemical pathways.  These gaps may be real, i.e. the organism 

is incapable of carrying out the corresponding metabolic function, or they may represent 

missing knowledge about that pathway.  Such gaps are ideal candidates for further 

experimental studies18. 
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Once all pathways making up the organism’s or the cell’s entire metabolic 

network are assembled, technically one has arrived at a reconstructed metabolic network.  

However, in order for quantitative results to be extracted from the model, the metabolic 

network is usually converted to a matrix, which records the reaction participation of 

every metabolite in every reaction in the network.  Specifically a reconstructed network 

can be represented by a stoichiometric matrix S (m x n), where m is the number of 

metabolites and n is the number of reactions22.  Each element Sij represents the coefficient 

of metabolite i in reaction j, following the convention that Sij is positive if the metabolite 

is the product of the reaction and negative otherwise.  A zero entry indicates the 

metabolite does not participate in the reaction (Chapter 3).  Reversible reactions can be 

written in either direction. 

3. Metabolic networks studied 

3.1 The mitochondrial metabolic network 

The most complete catalog of the human mitochondrial proteome to date 

identifies 615 proteins, of which 298 are assigned to 153 unique enzymatic reactions42 in 

the human cardiac myocyte.  Since the catalogued proteome may be incomplete44, 

metabolic reactions catalyzed by enzymes found in the proteome are augmented with 

biochemical data from the primary literature to form an initial reconstruction of the 

human mitochondrial metabolic network.  This network is comprised of 189 metabolic 

reactions and 230 metabolites in three cellular compartments.  The included reactions 
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describe the tricarboxylic acid cycle (TCA), oxidative phosphorylation (OxPhos), fatty 

acid β-oxidation, phospholipid biosynthesis, urea cycle, and reactive oxygen species 

detoxification (Table 2.3). Glycolytic reactions are also included because they were 

identified in the mitochondrial proteome and seem to be physically associated with the 

mitochondria45.  The complete contents of the metabolic network can be found in Vo et 

al. 46. 

 

Every metabolite and reaction in the network is localized to a cellular 

compartment.  The three compartments included in the model are the mitochondrial 

matrix, the cytosol, and the extracellular space.  Many of the included pathways span 

more than one compartment (Table 2.3).  The mitochondrial inter-membrane 

compartment is not explicitly accounted for since most metabolites under 10 kD freely 

travel across the outer mitochondrial membrane, and therefore are considered to be in 

equilibrium with the cytosol47.  Metabolites are also characterized by their molecular 

formulas and predominant charge forms determined at pH 7.2.  Each reaction is thus 

elementally and charge balanced.  Figure 2.2 describes the level of detail contained in 

each reaction.  The present reconstruction contains 88 reactions annotated with a score of 

4, 40 with a score of 3, 31 with a score of 2, and 30 with a score of 1.  Lumped reactions 

and exchange reactions between the cytosol and the extracellular space are assigned a 

score of 1.  Functional characterization of this network can be found in chapter 3 and Vo 

et al. 46. 
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3.2 The hepatocyte metabolic network 

HepG2, derived from a liver carcinoma, is an adherent cell line widely used as 

models for hepatocellular carcinoma48-50.  Hepatocytes make up 60-80% of the 

cytoplasmic mass of the liver.  These cells are very metabolically active, and participate 

in many processes such as carbohydrate transformation; synthesis of protein, cholesterol, 

phospholipids, and bile salts; and detoxification of exogenous and endogenous waste.  

The major pathways involved in these processes are well studied and reactions making up 

the pathways are available in the literature.  The reconstructed network for HepG2 cells 

are thus assembled using the annotated human genome and primary literature.  The 

network, containing 254 reactions and 269 metabolites, describes glycolysis, the TCA 

cycle, the pentose phosphate cycle (PPC), OxPhos, amino acid metabolism, β-oxidation, 

porphyrin metabolism, the urea cycle, palmitate biosynthesis, and phospholipid synthesis.  

These pathways are assembled using canonical pathway structures from KEGG and 

biochemistry textbooks.  Every reaction in the network is mass and charge balanced as 

described above.  The complete contents of this network can be found in Vo et al. 51. 

 

3.2  The fibroblast metabolic network 

The complete (general) human metabolic network16 is used as a basis for the 

reconstruction of the fibroblast-specific metabolic network.  DNA microarray data52, 

downloaded from the NCBI GEO database, are used to identify fibroblast-specific genes.  

The samples for the microarray experiments are dermal fibroblasts collected from 

apparently normal donors of similar ages.  Expression data were measured based on the 
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33,000 annotated genes on the Affymetrix U133A/B chips using three different normal 

fibroblast cell lines (GM00038C, GM00316B, and GM08398C)52.  The published present 

and absent calls are analyzed to identify expressed genes, thus “active” enzymes, in the 

fibroblast network.  Using the gene-protein-reaction associations built in the general 

human metabolic network16, active enzymes are translated to active reactions to be 

included in the fibroblast-specific metabolic network.  A total of 1690 reactions are 

identified using this method.  This list of reactions is filtered further to reduce the 

network size and scope so the computation associated with isotopomer analysis is 

feasible in practical time.  The resulting network contains only reactions occurring in the 

mitochondrial matrix and cytosol and transporters associated with these compartments.  

The final model network contains 430 metabolites and 508 reactions, describing 

glycolysis, the TCA cycle, the pentose phosphate cycle (PPC), oxidative phosphorylation, 

the malate-asparate shuttle, β-oxidation, de novo fatty acid synthesis, phospholipid 

biosynthesis, ketone body metabolism, and amino acid metabolism.  Every reaction in the 

network is mass and charge balanced as described above.  The complete contents of this 

network can be found in the reference 53. 

 

(This chapter, in part, is a reprint of the material appearing in “In silico Analysis 

of SNPs and Other High Throughput Data”, Jamshidi N, Vo TD, and Palsson BO. 2006. 

Cardiac gene expression: methods and protocols, Totowa, NJ: Humana Press, in press; 

“Reconstruction and functional characterization of the human mitochondrial metabolic 

network based on proteomic and biochemical data,” Vo TD, Greenberg HJ, and Palsson 

BO. 2006. J Biol Chem 279(38):39532-40; “Isotopomer analysis of cellular metabolism 
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in tissue culture: a comparative study between the pathway and the network-based 

methods”, Vo TD, Lim SK, Lee PWN, and Palsson BO. 2006. Metabolomics, in press; 

and “Systems analysis of energy metabolism elucidates the affected respiratory chain 

complex in Leigh’s syndrome”, Vo TD, Lee PWN, and Palsson BO, Molecular genetics 

and metabolism, submitted.  The dissertation author is the primary investigator and 

author of these publications.) 
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 Table 2.1: Steps in the reconstruction process 
 
 
1. Data acquisition 

1.1. Acquire an annotated gene index for the organism of interest.   
Minimal information necessary for the reconstruction includes locus number, gene name, and 
annotated gene functions.  Sources: NCBI Genome, KEGG (Kyoto Encyclopedia of Genes 
and Genomes), TIGR-CMR (Comprehensive Microbial Resource), Ensembl (eukaryotic 
genomes), and research groups sequencing the organism. 

1.2. Acquire DNA microarray data 
Data should be MIAME compliant and relevant to systems and conditions of interest.  Gene 
expression is used to determine whether the reaction catalyzed by the encoded proteins should 
be included in the reconstructed network.  Sources: NCBI Gene Expression Omnibus (GEO), 
ArrayExpress, Stanford Microarray Database (SMD), Yale Microarray Database, and primary 
literature. 

1.3. Acquire proteomic data 
Data should be specific to species, cell type, and experimental condition of interest.  Minimal 
information needed includes gene name, encoded protein, localization, and description of 
protein function.  Sources: Swiss Prot, Open Proteomic Database (OPD), BIOBASE, the 
Nuclear Protein Database (NPD), Nuceolar Database, the Human Mitochondrial Protein 
Database, MitoProteome, MitoP2, and MITOP.   

1.4. Review biochemical data 
Biochemical characterization of an enzyme usually includes its substrate specificity, substrate 
stoichiometry, and the physiologically preferred direction of the reaction(s) the enzyme 
catalyzes.  Additional useful information about the enzyme is its gene locus, three dimensional 
structure, subcellular localization, catalytic mechanism, kinetic parameters (Vmax, KM, Kcat, etc) 
and the change in Gibbs free energy accompanying the conversion of substrates to products. 
 

2. Define molecular composition and interactions in the network 
2.1. Define gene-protein-reaction associations 

Use genome annotation to identify gene locus, proteomic data to identify encoded proteins, 
and biochemical data to identify the biochemical reaction. 

2.2. Define reaction by specifying 
2.2.1. Metabolite specificity 
2.2.2. Metabolite formulas 
2.2.3. Reaction stoichiometry 
2.2.4. Reaction direction 
2.2.5. Metabolite and reaction localization 

2.3. Determine reaction confidence level 
2.4. Assemble metabolic pathways and construct the stoichiometric matrix 

2.4.1. Refer to the KEGG pathway or biochemistry textbooks for canonical pathway 
structures 

2.4.2. Assemble reactions identified based on acquired data, start with oxidative pathway of 
the organism’s preferred substrates and extend the network to biosynthetic pathways   

2.4.3. Resolve gaps: if a reaction is missing from the organism’s data as compared to the 
canonical pathway, investigate if physiological or phenotypic data are available to 
support the function of such a pathway.  If such data are available, include the 
reactions and assign them a confidence score of 1. 
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Table 2.2: Examples and guidelines for evaluating the confidence level of reactions 
 

Level Data Example Reason 
4 Biochemical  Citrate synthase  The enzyme has been purified and 

characterized, but crystal structure is not 
necessary.  The mechanism and/or kinetics 
of the enzymatic reaction have been 
shown.   

3 Genetic or 
proteomic 

Inorganic pyrophosphatase The gene has been isolated and the 
corresponding protein was found in 
mitochondrial proteome, but the 
mechanism of the catalysis is not well 
understood.  A level of 3 is also assigned to 
genes/proteins that had biochemical data 
but were from tissues other than cardiac. 

2 Physiological 
or sequence 
homology 

Pyruvate mitochondrial 
transport 

Activity of the enzyme has been observed, 
but no gene has been identified. 

1 in silico  Glycerol transport There has been no documentation on 
glycerol is transport from the extracellular 
to the cytosol.  It is possible that glycerol is 
also produced in the cytosol itself, but the 
biosynthesis of this molecule is outside the 
scope of this reconstruction.  This reaction 
is included because the presence of 
glycerol is required for the reconstructed 
mitochondrial network to produce 
phospholipids. 
 

 
Table 2.3: Summary of the composition of the mitochondrial metabolic network 
 

 Number of 
reactions 

Compartment 

Glycolysis 12 cytosol 
Citric acid cycle 10 mitochondrial matrix 
Oxidative phosphorylation 6 mitochondrial matrix 
ROS detoxification 9 cytosol, mitochondrial matrix 
Fatty acid oxidation 31 mitochondrial matrix 
Phospholipid biosynthesis 16 mitochondrial matrix 
Urea cycle 8 cytosol, mitochondrial matrix 
Porphyrin biosynthesis 12 cytosol, mitochondrial matrix 
Transport and others 85 cytosol, mitochondrial matrix, external 
Total network 189 cytosol, mitochondrial matrix, external 
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Figure 2.1: Gene-protein-reaction association 
Panel (a) shows an example where there is a one-to-one relationship among locus, gene, protein, and 
reaction.  Panel (b) shows a case where an enzyme can catalyze multiple substrates and/or reactions.  Panel 
(c) shows the mitochondrial protein Idh3-m is made up of three subunits coded by three separate genes.  
Panel (d) shows an example where an entire protein complex is necessary to carry out the specified 
reaction. 
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Oxidative Phosphorylation

TCA
cycle

Fatty 
Acid
Oxidation Pyruvate + NAD + CoA

Accetyl-CoA + CO2 +NADH

Pyr [C3H3O3]-1 [m]
AcCoa [C23H34N7O17P3S]-4 [m]
NAD [C21H26N7O14P2]-1       [m]
NADH [C21H27N7O14P2]-2 [m]

  
 
Figure 2.2: Characterizing reactions in the reconstruction process  
The left panel show a section of the mitochondrial metabolic network.  Each reaction, pyruvate 
dehydrogenase as an example shown to the right, is characterized with metabolite molecular formulas, 
charge, compartment, and reaction direction. 
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Figure 2.3: Network reconstruction as applied to the glycolytic pathway 
A reconstruction of a biochemical pathway starts with identification of enzymes, metabolites, and 
directionality of each reaction.  The list of reactions in the glycolytic pathway is shown, where each 
reaction is labeled with an abbreviation of the corresponding enzyme name.  Each reaction is written to 
balance elements and charges of reactants on both sides.  The net reaction shows a gain of two protons, 
which can possibly contribute to the proton gradient across the mitochondrial membrane.  The S matrix on 
the right hand side is the mathematical representation of the list of reactions on the left.  Each element Sij 
denotes the participation of metabolite i in reaction j.  The reconstruction also directly integrates 
associations of locus, gene, protein, and reaction for each enzyme when possible.  An example is shown for 
the enzymes phosphofructosekinase (PFK).  PFK is made up of four subunits and has tissue variations 
(muscle, liver, platelets) as well as transcript variations (locus 5211 has two alternative splices, 5211.1 and 
5211.2).  The muscle and liver isoforms are homotetramers of the M (PFKM) and L (PFKL) subunits, 
respectively, while platelets contain various heterotetramer combinations such as three PFKL and one 
PFKM or two PFKL and two PFKM54.      
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Chapter 3  
Functional Characterization of the Cardiac 
Mitochondrial Metabolic Network  
 

 

In order for a metabolic network to become a predictive model, rules must be 

established to describe the behaviors of the network.  As briefly described in Chapter 1, 

the constraint-based modeling approach is an effective method to eliminate unattainable 

metabolic states, thereby narrowing down or identifying theoretically possible and/or 

physiological network behaviors.  This chapter is divided into three main parts.  The first 

part describes the constraint-based modeling formalism, its advantages and limitations 

(Section 3.1).  The second part applies this framework to identify theoretically allowable 

metabolic state of the cardiac mitochondrial metabolic network constructed using 

proteomic data (Section 3.2-3.7).  The last part discusses the application of Monte-Carlo 

sampling in identifying feasible flux distributions in the steady-state flux space.  

Segmentation of the solution space, applied through constraints on extracellular and 

intracellular reactions, is used to study metabolic steady states in i) normal physiological 

conditions (heart at rest), ii) ischemia, and iii) diabetes (Section 3.8-3.10). 

1. Constraint-based modeling formalism 

A constraint-based model can serve as a model-centric database that provides 

quantitative predictions.  The constraint-based modeling approach involves the 
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application of a series of constraints arising from stoichiometry considerations, 

thermodynamics, enzymatic capacities, and regulatory and kinetic constraints when they 

are available.  This method starts by identifying the molecular composition of the 

biological reaction network and then defining constraints on their interactions.  The key 

components of a metabolic model are metabolites and enzymes (Chapter 2).  Constraints 

ensure the predicted functional states of the model network adhere to the fundamental 

laws of physics and chemistry.  A biochemical reaction can be viewed as a conversion of 

substrates into products by the action of an enzyme, whose activity can be described by a 

rate law.  Therefore the change in concentration of a particular metabolite over time is 

equal to the sum of all fluxes producing the metabolite subtracting the sum of fluxes 

consuming that metabolite.  Under the steady-state assumption, the rate of consumption 

of every metabolite equals its rate of production.  This mass conservation relationship 

translates to a system of ordinary differential equations: 

=
dt
Xd ][  S . v = 0    (Equation 3.1)  

where X is the metabolite vector (length m), v is the flux vector (length n), and S is the 

m x n  stoichiometric matrix consisting of the appropriate coefficients for all reactions 

participating in the network (Figure 3.1).  Each element Sij represents the coefficient of 

metabolite i in reaction j.  By convention, the coefficient of a metabolite is positive if it is 

the product of the forward reaction, and negative otherwise.  Solutions for v are 

systematically determined by successive application of additional constraints, such as 

those representing directional (reversible vs. irreversible) and enzymatic capacity 

considerations.  These constraints have the form:  
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αi ≤ vi ≤ βi     (Equation 3.2) 

where αi and βi represent lower and upper bounds on the steady-state rate of each 

reaction.  Maximum flux values (β) can be estimated based on enzymatic capacity 

limitations or maximal measured uptake rates for transport reactions.  The lower limit (α) 

is zero for irreversible reactions.   

 

Energy-balance constraints have also been developed to disallow fluxes in 

thermodynamically infeasible internal reaction cycles23,24.  These bilinear constraints 

introduce a second set of variables, stored in the vector ∆µ, which represent the change in 

chemical potential associated with reactions in the network: 

 K. ∆µ = 0    (Equation 3.3) 

 v . ∆µ < 0 

The matrix K (Equation 2) stores the null space basis for a matrix Z, where Z contains 

rows and columns in S corresponding only to internal reactions.  The resulting solution 

space (satisfying Equations 3.1-3.3) often contains a range of possible values, rather than 

a unique number, for each reaction rate vi that satisfies the stated constraints.  The term 

solution space is thus used synonymously with the term “steady state flux space” in this 

dissertation. 

 

Equations 3.1 and 3.2 are commonly applied to study metabolic states of cellular 

systems due to their simple mathematics and guaranteed solutions.  Such simplification is 

based on two fundamental assumptions which must be discussed.  First, it is assumed that 



41 

 

all biochemical reactions and physical interactions can be written as equations with 

known participants.  Second, the flux distribution v calculated based on these two 

equations assumes a steady state where the change in concentration of every chemical 

species in the network is approximately zero.  Rationales and ramifications associated 

with these two assumptions are as follows.  The first assumption is straight-forward for 

most biochemical reactions where reactants and products are well defined.  However, 

participants and stoichiometry of reactions of interactions involving signaling molecules, 

activation and inactivation of enzymes, and voltage-gated responses are frequently ill 

defined, making it difficult to incorporate them into the stoichiometric matrix.  Secondly, 

there are two implications of the steady state assumption: i) There must be no internal 

build-up of metabolites in the cell so that the mass conservation equation (Equation 3.1) 

holds perfectly and ii) Observable phenotypes or biological phenomena of interest occur 

at a time scale longer than the rate of metabolites being produced and consumed by 

reactions in the network.  Consequently, Equation 3.1 and the mentioned constraints only 

apply to a subset of biological systems and only at a time scale satisfying assumption (ii).  

Specifically, these equations are most appropriately used to investigate non-transient 

phenotypes such as metabolic steady states, gene essentiality17, and end points of 

adaptive evolution55 or time-invariant qualities such as network topology56 and 

metabolite pool identification57.  Successes in these studies have clearly demonstrated the 

strength of the constraint-based formulation in studying such biological behaviors58,59.  In 

contrast, the steady state assumption precludes the use of constraint-based methods to 

study concentration-dependent behaviors associated with transient or periodic dynamics 

observed in regulatory (activation, inhibition, feed-back) or signaling responses by 
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neuronal and muscular cells.  For example, even when the components and interactions 

of the JAK-STAT signaling network are painstakingly identified, only topological 

characteristics can be satisfactorily analyzed60.  With respect to mitochondrial systems, 

the constraint-based approach, in its present definition, can not be used to model 

oscillatory behaviors resulting from muscle excitation61,62 but is ideal for studying 

metabolic disturbance due to enzymatic defects63.  It should be noted that the limitations 

discussed here are associated only with the use of Equation 3.1 and are not inherent in the 

constraint-based methodology.  In other words, the constraint-based approach allows the 

use of Equation 3.1, i.e. the omission of kinetic data, but it does not preclude the use of 

such data if they are available.  In fact, if such data are available, they can be formulated 

into constraints to further resolve flux calculation.  On the other hand, since the 

constraint-based approach was developed to circumvent the need for kinetic data and the 

nonlinearity in kinetic rate laws, most researchers only apply the constraint-based method 

when they do not have kinetic data and/or want to simplify the calculation.  Thus, though 

these assumptions are not a direct result of the constraint-based methodology but have 

always been associated with it. 

2. Methods of analysis under the constraint-based framework 

 The methods of analysis described in this section are applied to analyze functional 

states of the mitochondrial network.  Specifically, methods described in sections 2.1-2.5 

are used to study the capabilities of the network (Sections 3-5) and the Artificial 

Centering Hit-and-Run algorithm64 is used to sample the entire solution space (Sections 

6-9). 
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2.1 Optimization for a metabolic function of interest: linear programming 

 Linear programming (LP) is frequently used to find a flux distribution that 

maximizes a particular metabolic objective function21,46,65.  The underlying assumption of 

this analysis is that biological systems have evolved the ability to allocate cellular 

resources to maximize for certain end products (Figure 3.2).  The general problem 

formulation has the form 

 Maximize f(v) 

 Subject to S . v = 0  (Equation 3.4) 

   αi ≤ vi ≤ βi 

The three objective functions considered for the mitochondrial network are 

ATP production      

f1(v) = -1 ATP -1 H2O + 1 ADP + 1 Pi + 1 H+ 

Phospholipid biosynthesis      

f2(v) = 0.18 cardiolipin + 0.34 phosphatidylethanolamine + 0.43 phosphatidylcholine 

Heme biosynthesis 

f3(v) = protoheme 

The first objective function is written as an ATP hydrolysis reaction, so that the 

network can recycle ADP and phosphate.  The coefficients in the second objective 

function are derived from the phospholipid composition of the mitochondria 16-18.  The 

last objective function is simply the production of protoheme.  Network reconstruction 
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and flux balance analysis are done using the software SimPheny (Genomatica, San 

Diego, CA). 

 

2.2 Flux variability analysis 

To explore the range of allowable flux of each reaction in the network, one sets 

the physiological objective functions (ATP production, heme biosynthesis, and 

phospholipid biosynthesis) to their respective optimal values, then maximizes and 

minimizes the flux through each reaction66.  In a particular calculation, one of the three 

physiological objective functions is set to its optimal value; the other two are set to zero.  

Two LP problems (maximizing and minimizing) are solved for each reaction in the 

network.  All other constraints regarding mass balance, reversibility, and enzymatic 

capacity are kept the same. 

 

Thermodynamically infeasible cycles in the network, identified using the extreme 

pathway algorithm67, have no net flux23,66.  Since these cycles are never used in vivo, one 

reversible reaction from the cycle is removed such that it does not disconnect any 

metabolite from the rest of the network.  For this study, two reactions (ORNt3m and 

CITRtm) are removed for this purpose.  All calculations for flux variability analysis are 

implemented in GAMS (GAMS Development Corporation, Washington, DC) using the 

CPLEX solver and independently checked with the Mosek solver68. 
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2.3 Identification of alternate optima 

Alternate optima refer to a set of equivalent paths the network may use to 

optimally satisfy an imposed metabolic demand.  They lie at the corners of the 

intersection between the solution space and the hyperplane created by the objective 

function.  Current linear programming solvers cannot provide alternate optima 

automatically; this must be done after finding one optimal extreme point and executing a 

vertex-enumeration algorithm69,70.  The algorithm to enumerate all alternate optima 

involves the following three steps: 

1) A linear programming formulation of the stoichiometric matrix, constraints, and 

objective functions as described in the constraint-based modeling section is 

implemented in MATLAB: 

 Maximize f(v) = cTv   (Equation 3.5) 

 Subject to S . v = 0, αi ≤ vi ≤ βi 

where S is the stoichiometric matrix, v is the flux vector, c corresponds to one of 

the three objective functions listed in Section 2.1, αi and βi are the respective 

upper and lower bounds on the reaction flux vi. Mosek68, an optimization system 

available for use with MATLAB interface, is applied to solve this LP problem for 

an initial optimal extreme point vo. 

2) To reduce the dimension of the problem, reactions that must have a fixed flux 

value (identified from flux variability analysis) are considered to be constants.  To 

enumerate only basic optimal flux distributions, one imposes f* = cTv, where f* = 

cTvo, as an additional constraint. 
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3) The last step passes the set of inequalities of the optimal solution space, F* = v, to 

lrs to obtain its corresponding vertex representation, and hence its number of 

extreme points.  Since lrs requires the origin to be an extreme point, F* is 

translated to the one computed extreme point, vo, to obtain the set of change-

vectors:  D = (d: vo+d in F*).  Then, if (dk) are the extreme points of D, (vo+dk) are 

the extreme points of F*.   

 

Details of how lrs enumerates the extreme points can be found in the 

references69,70.  It should be noted that, while this method works well here, tighter bounds 

may cause a combinatorial explosion in the number of extreme points, making complete 

enumeration impractical. 

   

2.4 Multiple-objective analysis 

 The three objective functions can be considered simultaneously by using the 

concept of Pareto optimality.  A feasible flux v is dominated by another feasible flux v’ if 

fi(v’) ≥ fi(v) for all objective functions fi, and fi(v’) > fi(v) for at least one fi.  A feasible 

flux is Pareto optimal if it is not dominated by any other feasible flux.  The set of Pareto 

optimal fluxes is called the efficient frontier. 

 

Two methods to compute Pareto optima are weights and lexicography.  The 

weight formulation allows one to designate a composite objective function that includes 

all three mitochondrial functions, each weighed by a positive coefficient wi.  All 
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members of the efficient frontier can be found by maximizing an associated weighted 

sum, Σi wifi(v), where the weight vector w > 0.  Alternatively, the objectives can be 

hierarchically ordered to produce a sequence of optimization problems.  The ordering 

gives a lexicographic-max of the vector f = (f1, f2, f3).  Here, if the order of the objectives 

is such that f1 = ATP demand, f2 = heme, and f3 = phospholipids: 
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(Equation 3.6) 

(Equation 3.7) 

(Equation 3.8) 

The fluxes in the last optimal set are Pareto optimal. 

 

2.5 Sampling of the steady-state flux space  

 Sampling the steady-state flux space is performed using a random walk algorithm 

(Artificial Centering Hit-and-Run, ACHR) as described by Kaufman et al.64. The 

algorithm involves three steps. The first step identifies an initial point by reducing each 

of the upper bounds and increasing each of the lower bounds by a small value, and then 

calculating a solution for v within these new constraints using LP.  This procedure 

ensures that the initial point is chosen within the solution space and avoids computational 

difficulties that arise when the initial point lies at the extremity of the solution space.  The 

second step of the ACHR algorithm calculates “warm up” points from the initial point 

using several iterations of a basic Hit-and-Run algorithm64.  A geometric center, s, is 

calculated from the “warm up” points which are stored as columns of a matrix W.  The 



48 

 

third step of the ACHR algorithm calculates sample points as follows.  The direction for 

the next iteration from point xm is chosen by randomly taking one point y out of the 

matrix W and applying a direction vector p = (y–s) to xm.  At each iteration, the newly 

calculated point, xm+1, is substituted randomly into W in place of a previously calculated 

point so that the matrix W always contains the most recent points.  The approximated 

center is also recalculated after each iteration.  This third step is repeated until a desired 

number of points are reached.  This approach allows the distribution of points converges 

to a uniform distribution at a much faster rate than the standard hit-and-run method.  In 

each sampling calculation, 500,000 randomly distributed points are computed with 100 

iterations between each point.  The algorithm is implemented in Matlab (MathWorks 

Inc., Natick, MA) with Lindo (LINDO Systems Inc., Chicago) as the linear programming 

solver.  The same solution space is sampled five times using different randomly chosen 

initial points to verify that the calculated distribution of points is independent of the 

starting point. The resulting distributions are compared with one another to ensure that no 

difference is observed. 

3. Capabilities of the mitochondrial network 

The reconstructed mitochondrial network (Chapter 1) represents the integration 

and simultaneous analysis of heterogeneous data types.  Systemic analysis of the three 

mitochondrial metabolic objectives highlights the interdependence of various 

biochemical pathways in this organelle.  Previous in silico studies63,71-73 of mitochondrial 

metabolism primarily focused on energy metabolism, although it is well known that 

mitochondria play important roles in many cellular processes.  The present reconstruction 
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is more comprehensive, and therefore can be used to assess a broader range of the 

mitochondria’s physiological functions.  In particular, three metabolic roles are 

considered in this study: ATP production, heme biosynthesis, and phospholipid 

biosynthesis.  Oxidative phosphorylation (OxPhos) fulfills the energetic requirement for 

heme and phospholipid syntheses, whereas the latter processes provide the maintenance 

for proteins and membrane structure essential for the energy conversion pathway. 

 

3.1  Energy conversion  

Mitochondria constitute up to 35% of the mammalian cardiomyocyte volume74.  

The primary function of the cardiac mitochondria is to produce energy for the heart’s 

contraction; therefore it is possible that these organelles can operate at approximately 

theoretical metabolic limits.  Normal, well-perfused myocardium generates more than 

90% of its ATP by OxPhos and less than 10% by glycolysis75.  Most of this ATP is 

generated by aerobic metabolism taking place in mitochondria; so efficiency of ATP 

production within the mitochondrial network is vitally important.  Here the reconstructed 

network is used to study ATP yield from the two main energy sources of the heart – 

glucose and fatty acids. 

 

3.2 Glucose metabolism 

The complete mitochondrial network reconstruction allows for a systemic and 

accurate calculation of ATP yields and PO ratios from oxidation of various metabolites.  

The maximal ATP yield per glucose in the reconstructed network is 31.5.  This number 
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has been a topic of discussion for many years with some textbooks reporting a value of 

36-38 ATP/glucose47 while others report a value of 3176,77.  Since reactions in the present 

reconstruction account for every proton consumed and produced, it is possible to 

calculate this ATP yield on a network-wide basis.  It is found that after accounting for all 

protons consumed in glycolysis, the malate-asparate (mal-asp) shuttle, and phosphate 

transport, there is a net difference of two protons per glucose molecule between our 

calculations and those previously reported76,77: 

 

Glucose + 2 Pi + 2 ADP + 2 NAD  2 pyruvate + 2 ATP + 2 NADH + 2 H+ + 2 H2O 

 

Previous calculations do not account for the fate of the protons produced in the 

preceding net reaction when computing the overall ATP yield by glucose.  When one 

balances the entire network; however, these protons must be consumed.  These two 

protons account for the 0.5 ATP discrepancy.  Physiologically these protons may or may 

not contribute to the proton gradient, which is localized to the mitochondrial inter-

membrane space, depending on how proximal glycolytic enzymes are to the 

mitochondria.  As the proteomic data from Taylor et al.42 and other studies45 have shown 

that glycolytic enzymes are always found in purified mitochondria samples, it is likely 

that glycolysis takes place near the mitochondria, and thus the additional proton 

contribution is significant.  Considering the high rate of glycolysis in muscle cells, the 

generated protons probably affect the mitochondrial inter-membrane gradient and 

contribute to the overall ATP production in the organelle.  
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3.3 Fatty acid metabolism 

Cardiac mitochondria derive the majority of their energy from fatty acids78.  

Long-chain fatty acids are transported to the mitochondrial matrix by the carnitine shuttle 

for β-oxidation.  Six types of fatty acids – palmitate (n-C16:0), stearate (n-C18:0), oleate 

(n-C18:1), octadecynoate (n-C18:2), arachidonate (n-C20:4), docosohexaenoate (n-

C24:6) – are considered in the present reconstruction (Chapter 1).  These fatty acids make 

up 90% of the fatty acid composition of human heart phospholipids79,80.  Only the ATP 

yield from palmitate is computed here for comparison with existing literature 

calculations.  The remaining long-chain fatty acids are generally not used for energy, but 

are important in the assembly of mitochondrial phospholipids.  The maximal ATP yield 

for each palmitate in the reconstructed network is 106.  Biochemistry textbooks usually 

report a value of 129 ATP81 or 106 ATP77 depending on whether NADH is considered to 

have a PO ratio of 3 or 2.5 respectively.  Here, instead of directly imposing a fixed PO 

ratio, only the number of protons transported by the electron transport chain and 

consumed by ATP synthase are specified based on the stoichiometry of these reactions.  

This result shows that a PO ratio of 2.5 is consistent with the reconstructed network. 

 

3.4 Heme biosynthesis 

In addition to energy conversion, heme biosynthesis is another function that is 

common to mitochondria of all tissues82.  Heme molecules play an essential role in the 

assembly of many apoproteins including electron transfer complexes and catalase.  

Cytochromes are examples of biologically active hemes linked to polypeptides.  Only the 
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synthesis of protoheme is considered in the reconstruction, as it has been reported that the 

synthesis rate of “mature” heme (for example, heme a and b) is controlled by that of 

protoheme83.  The carbon backbone of protoheme is derived from succinyl-CoA and 

glycine.  Given the constraints on the network, glycine has a higher shadow price than 

succinyl-CoA.  The shadow price of a metabolite reflects how sensitive the value of the 

objective function is with respect to that metabolite84.  This finding confirms 

experimental results with isolated perfused rat hearts83, which showed that changes in 

glycine concentration and uptake rate account for changes in the rate of heme 

biosynthesis.  

3.5 Phospholipid biosynthesis 

Mitochondria are semi-autonomous organelles.  Besides producing energy and 

various metabolites for the cells, they also perform their own assembly and maintenance.  

In human heart tissue, the mitochondrial membrane is composed of 18% cardiolipin 

(CL), 34% phosphaethanolamine (PE), 43% phosphotidylcholine (PC), and 5% phospha-

tidyinositol (PI)85.  The mitochondrion can synthesize CL from phosphatidylglycerol and 

PE from phosphatidylserine decarboxylation85,86.  Phosphatidylserine is believed to be 

synthesized on the endoplasmic reticulum membrane closely associated with the 

mitochondria86-88.  The objective function representing the mitochondria’s phospholipid 

synthesis activity (Section 2.1) does not include PI because it is primarily produced in the 

endoplasmic reticulum85.  This objective function is used for the flux variability 

computations presented below. 
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3.6 Reactive oxygen species (ROS) detoxification 

It has been reported that at least 2-5% of electrons transported on the electron 

transport chain are lost, and therefore not used to reduce oxygen to water89.  The lost 

electrons react with oxygen, hydroxide ions, nitrogen containing compounds, and fatty 

acids to form reactive radicals.  These radicals are collectively referred to as ROS.  The 

current network accounts for the generation of superoxides (O2-) but not other species.  

Superoxide dismutase reduces superoxides to hydrogen peroxide (H2O2), which is 

converted to water by either catalase or glutathione peroxidase.  The contribution of 

catalase to this function is believed to be minimal compared to that of glutathione 

peroxidase in heart mitochondria74.  The glutathione peroxidase and the glutathione cycle 

use NADPH to reduce H2O2, and therefore implicitly imposing an energetic stress on the 

cell.  Consequently metabolism of glucose produces 3% less ATP when 2% of electrons 

are lost and 7% less when 5% of electrons are lost.  Oxidation of palmitate produces 3% 

and 8% less ATP for these two conditions, respectively.   Calculations in the remaining 

of this chapter assume an overall 2% electron loss. 

 

4. Network robustness and flexibility 

To better understand the robustness and flexibility of the reconstructed network in 

carrying out its metabolic functions, the variability of each reaction flux66 as well as the 

properties of equivalent optimal flux distributions90,91 in the network are analyzed.  Here, 

flexibility and robustness are measured by the range of allowable flux values in each 
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reaction and the number of equivalent pathways (alternate optima) that can lead to the 

optimal results for the objective function(s), respectively. 

 

4.1 Flux variability analysis 

The flexibility of a particular reaction in the mitochondrial network depends on 

the metabolic function under consideration.  Flux variability analysis determines the 

allowable range of flux values while the network optimally satisfies a particular 

metabolic objective and physiological constraints on enzymatic capacities (Table 3.1).  

When ATP production is the metabolic objective, the network has the least flexibility: 

only 8% of the 189 reactions have variable fluxes, 25% always have a constant non-zero 

flux value, and 67% are never used.  When heme is the objective end product, higher 

flexibility is observed with 60% reactions having variable fluxes, 8% having a constant 

non-zero flux, and 32% not used.  For phospholipid synthesis, these proportions are 60%, 

11%, and 29%, respectively (Table 3.2). 

 

  Among reactions with variable fluxes, the average flux ranges while maximizing 

for ATP, heme, and phospholipid, are 60, 23 and 23 µmol/min/g protein, respectively.  

Heme and phospholipid syntheses have the same set of reactions with variable fluxes.  

This set contains 114 reactions participating in glycolysis, the TCA cycle, OxPhos, β-

oxidation, ROS detoxification, and the urea cycle.  Notably, it does not include any 

reactions in the heme and phospholipid synthesis pathways.  Fifteen of these 114 

reactions also have variable fluxes under the ATP synthesis condition.  These fifteen 
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reactions are involved in catabolism (ATPS4m, PYK, PCm, PEPCKm, NDPK1), 

phospholipid metabolism, (DAGKm, PAPAm), and transport (CITtam, CITtbm, GTPtm, 

HCO3Em, Htm, MALtm, PIt2m, PYRt2m). 

 

 The flux range of reactions in the network when no objective function is imposed 

is also calculated for comparison (Figure 3.3).  These flux ranges are only slightly larger 

than the variation found when heme and phospholipids are optimized, but significantly 

larger than the variation when ATP is optimized.  This implies that a large portion of the 

solution space is accessible for optimal heme and phospholipid syntheses, but it is much 

more restricted for ATP production.  Overall, in addition to transport reactions, those in 

glycolysis, the TCA cycle, and the respiratory chain have the highest flux variability. 

 

4.2 Properties of alternate optima 

 The number of different equivalent flux distributions that can optimally satisfy a 

metabolic function can be used to measure the robustness of a network.  Similar to flux 

variability analysis, the number of alternate network flux distributions is a function of the 

metabolic objective and metabolite uptake rate (Vmax of transporters).  These constraints 

are the same as those used for flux variability analysis (Table 3.1). 

 

When glucose, fatty acids, and glutamate are simultaneously available to produce 

ATP, only four optimal flux distributions are found.  The average number of reactions 

used per optimal solution is 57.5, with a minimum of 55 and a maximum of 62 reactions 
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(Table 3.2).  When the network is optimized for protoheme, a total of 8,288 equivalent 

flux distributions are found.  On average, there are 78.7 reactions used per alternate 

optima, ranging from 53 to 81 reactions.  The network, however, appears to be much 

more flexible in synthesizing phospholipids as compared to the other two cases.  A large 

number of optimal flux distributions, 21,863, are discovered.  An average of 98.1 

reactions are used across these flux distributions, with a minimum of 75 and a maximum 

of 118.  

 

The alternate optima reported in this study are calculated with respect to one 

objective function at a time, while setting the other two functions to zero.  This is done to 

enumerate equivalent metabolic pathways that can maximally satisfy one metabolic 

function without being influenced by reactions that are used for a different metabolic 

objective.  It also eliminates pathways that use unnecessarily high numbers of reactions 

only to produce by-products that are not part of the objective function.  The drawback is 

that extreme points that simultaneously produce all three metabolic products are missed.  

The effort to enumerate all alternate optima without setting two objective functions to 

zero has been computational infeasible within practical time.  Nevertheless, among the 

alternate optima found here, those that are highly correlated with each other give clues 

about the flux distributions that simultaneously satisfy all three metabolic functions. 

 

5. Analysis of alternate optima  
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5.1 Optimal flux distributions are correlated with each other 

The similarity among flux distributions is evaluated by calculating the pair-wise 

correlation between each of the four ATP-specific alternate optima and each of heme- 

and phospholipid-specific optima.  Figure 3.4 shows the cumulative distribution of 

correlation coefficients r between ATP and heme optimal fluxes, and ATP and 

phospholipid optimal fluxes.  Both distributions share the same general characteristics: 

there are no pairs of fluxes with negative correlation, roughly half of the pairs of fluxes 

have very low correlation (r < 0.2), and the other half has very high correlation (r > 0.9).  

The absence of negative correlation among these fluxes suggests that when the 

mitochondrion is producing ATP for the cell, it is also likely to produce other compounds 

important for its own maintenance.   

  

The correlation among the sets of heme and phospholipid flux distributions that 

have very high correlation with ATP alternate optima (r > 0.975) is further investigated.  

These flux distributions are very well correlated with each other – the majority have 

correlation value higher than 0.99 (Figure 3.4).  This criterion (r > 0.99) identifies a 

subset of 425 flux distributions (out of a total of 30,155 alternate optima calculated) that 

are highly correlated with each other.  One out of the 425 flux distributions is an ATP 

optimal solution, 157 are heme optimal solutions, and the rest (267) are phospholipid 

optimal solutions.   

 

In comparing the three flux distributions for ATP, heme, and phospholipid that 

are most correlated with each other, it is found that only 20 reactions need to be activated 
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for the network to produce phospholipids simultaneously with ATP.  Another seven 

reactions are needed for simultaneous syntheses of all three products.  The high 

correlation amongst a subset of flux distributions suggests that these are the most 

probable in vivo fluxes.  Figure 3.1 shows the flux variations (result of flux variability 

analysis) found among flux distributions that are optimal for individual metabolic 

objective functions and among flux distributions that are highly correlated with each 

other.  The variation found in the latter group substantially reduces the flux range seen 

among heme and phospholipid optimal fluxes. 

 

5.2 Correlated reaction sets form network modules 

The sets of reactions that are always used together across all optimal flux 

distributions are referred to as correlated reaction sets92,93.  These reactions form 

functional modules that are likely to be co-regulated.  Correlated reaction sets among 

optimal solutions calculated for each objective function and among highly correlated flux 

distributions are identified here.  Reactions that are always active with respect to a 

specific objective function form the largest correlated reaction set under that objective 

function.  Under the three objective functions - ATP production, heme synthesis, 

phospholipid synthesis - the largest correlated reaction sets contain 53, 35, and 56 

reactions, respectively (Table 3.2).   

 

When ATP production is the objective function, two more correlated reaction sets 

are found.  One set contains DPK1 and GTPtm, which participate in the conversion of 
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GPT produced by substrate level phosphorylation to ATP.  The other reaction set uses 

phosphoenolpyruvate kinase (PEPCKm) to consume GTP (and oxaloacetate) to produce 

phosphoenolpyruvate.  Two out of four ATP optimal flux distributions use NDPK1 and 

GTPtm.  These two flux distributions are much better correlated with heme and 

phospholipid optima, confirming that mitochondria usually convert GTP to ATP directly.  

When heme and phospholipid syntheses are used as the objective functions, 19 and 13 

other correlated reaction sets are found, respectively.  Some of these correlated sets are 

present in both cases.  Two of these sets contain reactions in the urea cycle and 

glycolysis.  One of these sets appears to form a module for oxygen metabolism.  Seven 

other sets contain reactions involved in the shuttling and oxidation of the seven fatty 

acids.  The remainders are smaller reaction sets with two or three reactions each.  

Reactions within each of these sets are also known to be involved in the same 

biochemical pathway. 

 

Correlated reaction sets found among highly correlated flux distributions form 

functional modules that nicely encompass reactions known to participate in the same or 

connected biochemical pathways.  In particular, reaction sets corresponding to lipid 

metabolism, heme biosynthesis, glycolysis, the TCA cycle and OxPhos, urea cycle, and 

mal-asp shuttle are notable examples.  These results show that given fluxomic data, this 

method can be used to identify functional modules that represent physiologically 

significant components in the network.   Whether or not enzymes within these functional 

modules actually share the same regulatory mechanism is perhaps a more difficult 

question to answer.  Since most of these enzymes are encoded in the nuclear genome, and 
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many are post-transcriptionally regulated, co-appearance inside the mitochondria may not 

directly imply co-expression in the nucleus.  Nevertheless, knowledge about these 

functional modules allows a better understanding how the separate components in the 

network operate to carry out the overall function of the mitochondrion. 

 

5.3 Distribution of flux values among the equivalent optimal flux 

distribution 

The distribution of flux values of a reaction across all equivalent optimal solutions 

can be interpreted as the activity profile of that reaction46.  These profiles are analogous 

to gene expression profiles, except that they represent enzyme activity levels rather than 

mRNA transcript levels.  Since most reactions under maximal ATP production conditions 

do not have much flux variation, only profiles for the heme and phospholipid syntheses 

are discussed further.  Profiles of reactions in glycolysis, the TCA cycle, and OxPhos for 

heme and phospholipid biosyntheses are similar for both cases.  Glycolytic reactions have 

a bimodal distribution, with high peak values at extreme ends of the flux range; i.e. either 

these reactions are fully used or not at all in the optimal solutions.  The TCA cycle 

reactions have more diverse distributions.  Also, reactions corresponding to complexes I 

and II seem to have broader flux distribution than the rest of the reactions of the electron 

transport chain.   

 

 Flux distribution profiles of reactions in the urea cycle, ROS detoxification, and 

fatty acid metabolism are nearly identical for both the heme and phospholipid synthesis 
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cases.  Reactions in the urea cycle and ROS detoxification pathway tend to have one of 

two dominant flux values, with a few reactions having no variation.  Reactions in fatty 

acid transport and oxidation all have two major peaks at extreme ends of the flux spectra, 

except for the carnitine carrier (CRNtim).  These profiles suggest that only a subset of the 

6 fatty acids types is used at a time by the network.  However, since the carnitine carrier 

is shared among all long chain fatty acids, it tends to be active regardless of which fatty 

acid is used.  The rest of the reactions in the network do not have much variation. 

 

6. Distribution of fluxes and resources among the three mitochondrial 

functions  

Multiple-objective analysis is used to investigate how the network distributes its 

resources to simultaneously satisfy all three metabolic functions.  The lexicographic 

method allows one to hierarchically order the three objective functions.  All six possible 

ordering of the three objectives are explored here to study the relative importance of 

each.  Results show that all of the ATP-specific alternative optima have zero flux values 

for heme and phospholipid production.  Note that heme and phospholipids can be 

simultaneously maximized, but not so with either of them and ATP demand.  When the 

synthesis of either heme or phospholipid is maximized first, near optimal values are 

obtained for the other two functions.  In fact, both heme and phospholipid productions 

achieve their maximum values simultaneously while ATP demand is strictly less than its 

maximum value – more so if ATP production is the third objective in the order.   
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 Similar results are observed using the weight formulation.  In particular, w is set 

to be ((g/(2+g), 1/(2+g), 1/(2+g)), where g/(2+g) corresponds to the weight coefficient of 

the ATP objective function and the other two objective functions have equal weight.  As 

g increases, the weight for ATP demand increases towards one.  For g ≥ 0.72, the 

weighted solution is the same as maximizing ATP demand (Figure 3.5).  The composite 

objective begins with a simple average of heme and phospholipid, both at their maximum 

values of 0.125 and 3.704, respectively.  For g = 0.72, the value of ATP demand reaches 

its maximum; heme and phospholipid biosyntheses are at zero.  The value of the 

composite objective function, however, is biased by the metabolic function with 

dominant flux output (ATP production).  To remove this bias, the weight coefficient of 

each of the metabolic function is rescaled by its respective optimal flux value, and g is 

varied such that w1 goes from zero to approximately one.  The value of the new 

composite objective function increases linearly with g in this case.   

 

 The fact that both heme and phospholipid objective functions can be 

simultaneously satisfied suggests that these two functions of the mitochondria can 

operate relatively independent from each other without affecting one another’s resource 

pool.  However, these two functions require energy in the form of ATP, thus reducing the 

available ATP for the cell.  This, of course, should not be viewed as a compromise to the 

energy conversion ability of the mitochondria, because ATP is produced precisely for the 

purpose of fueling cellular processes both outside and inside the mitochondria. 
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7. Candidate steady-state flux distributions in the normal physiological 

condition 

 The preceding sections show that are an infinite number of theoretical steady-

states v satisfying Equation 3.1-3.2 for the mitochondrial network (this is also true for 

most metabolic networks).  A distribution of possible values for each reaction rate (vi) can 

be determined by sampling the entire null space of S.  Such results allow one to evaluate how 

changes in steady-state rates of a subset of reactions systemically affect the rates of the remaining 

reactions in the network.  The remaining sections of this chapter apply the ACHR 

algorithm64 to evaluate steady-state flux distributions in the cardiac mitochondrion 

subject to three different metabolic conditions: normal, diabetic (Figure 3.6), and 

ischemic (Figure 3.7)94. 

 

7.1 Constraints on the reaction network  

The normal physiological condition described here represents the metabolism of a 

human cardiac mitochondrion at rest.  Constraints are applied on the uptake and efflux 

rates of metabolites according to an expected normal state of the mitochondrion.  A 

positive lower bound on the demand for ATP (DMATP) is applied to represent the 

minimum energy required for normal ion homeostasis.  This required ATP level is set at 

approximately 26% of the total ATP production95.  An ATP production rate of 30 

µmol/min/g protein, taken from measurements in the working dog heart96, is used here 

because corresponding data for humans could not be found.  The lower bound of DMATP 
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is thus set at 7.5 µmol/min/g protein. The uptake rate of n-C16:0 has been measured to be 

1 µmol/min/g protein97. This value is used to approximate the uptake rates of other fatty 

acids based on their observed distributions in mammalian cardiomyocytes: 53% for n-

C18:0, 16% for n-C16:0, and 7% for n-C18:1 and n-C18:295.  Since longer chain fatty 

acids, n-C20:4 and n-C22:6, are not detected in these experiments95, they are estimated to 

make up less than 2% of the total fatty acid uptake.  The lower bound and upper bound 

are set by taking a 25% variation around the experimentally measured values (Table 3.3).  

The uptake rate of lactate is constrained to the same upper bound defined for glucose, as 

both substrates are consumed at approximately equivalent rates under normal 

physiological conditions98.  The uptake of the ketone bodies, acetoacetate and (R)-3-

hydroxybutanoate, is allowed but the secretion of ketone bodies is set to zero as the heart 

does not normally produce and export ketone bodies like the liver does99.  In addition, the 

maximum flux rates for these ketone bodies are set to be very small (0.001 µmol/min/g 

protein) since the plasma concentration of circulating ketone bodies is less than 0.1 mM 

at normal physiological conditions99. 

 

7.2 Steady state flux distributions 

Network flux distributions satisfying the described constraints represent all 

possible steady states that are consistent with these measurements.  Figure 3.8 (black 

line) shows allowable steady-state flux distributions for selected metabolic reactions 

under normal conditions.  Each histogram corresponds to the range of possible steady-

state flux values allowed for a reaction in the network.  Peak values represent the most 
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probable flux values within the distribution. In general, four shapes of flux distribution 

can be distinguished: i) right peak (H+ efflux), ii) left peak (urea excretion), iii) central 

peak (phospholipid synthesis), and iv) broad peak (ATP production).  The histogram of 

heme production shows that the most probable flux values are small (close to zero).  The 

biosynthesis of mixed phospholipids shows a relatively wide range of highly probable 

flux values. These phospholipids are mainly used for maintenance of the mitochondrial 

membranes.  For a number of reactions, the computed most probable flux values are good 

estimates of the measured values (NADH2-u10m, complex I of the electron transport 

chain and ASPGLUm, the aspartate-glutamate shuttle). 

8. Effects of diabetes 

8.1 Model of diabetic condition 

Diabetic conditions are characterized by a lack of, or insensitivity to, insulin.  

This condition results in unregulated and increased fatty acid uptake in mitochondria via 

the carnithine-palmitoyl-transferase (CPT-I) shuttle100,101.  The mitochondrial fatty acid 

uptake flux through CPT-I is thus increased in the model to reflect its activity under 

diabetic conditions.  Effects of diabetes on mitochondrial metabolism are assessed by 

applying constraints reflecting i) unregulated fatty acid uptake via carnitine-palmintoyl-

transferase-I (CPT-I) shuttles, ii) decreased glucose consumption due to the reduced 

number of glucose transporters in the cell membrane, and iii) increased ketone body 

uptake due to their higher blood concentration.   
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Though no quantitative experimental values could be found on how much the 

fatty acid uptake rates increase in diabetic patients, a significant increase has been 

observed in diabetic mouse myocardium102.  Therefore, the lower-bounds of the fatty acid 

uptake rates are increased to 80% of the maximum allowed flux values under the normal 

condition (Table 3.3).  Note that increasing the lower bound on the uptake of n-C20:4 and 

n-C22:6 results in an empty solution space.  Maximum glucose uptake is reduced to 75% 

of its normal rate103 due to the decreased number of available glucose transporters in the 

cardiomycyote membrane under insulin insufficiency or insensitivity100,101.  Another 

effect of diabetes is that plasma ketone body concentration may be as high as 25 

mM104,105.  Thus, upper limits on uptake rates of ketone bodies defined under normal 

conditions are removed.  It should be noted, however, that even though the constraints on 

ketone body uptake are removed in the diabetic condition, the resulting maximum 

allowable fluxes through the ketone body transporter under diabetic conditions are much 

lower than that under normal conditions (~1.4%).  This reduction in ketone body uptake 

is due to the increased fatty acid uptake rate in the diabetic condition, which systemically 

limits ketone body transport.  To simulate a high influx of ketone bodies, their minimum 

uptake rates are set at 10% of the highest possible uptake of each ketone species. These 

new constraints represent the salient features of changed substrate supply observed in 

diabetic cardiomyocytes. 

 

8.2 Effects of diabetic conditions on mitochondrial metabolism 

A possible treatment for diabetes would be to force a normal glucose and ketone 
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body uptake via therapeutic agents.  To investigate these effects, the constraints on 

glucose and ketone body uptake are set to their values under the normal condition.  

Figure 3.8 shows the probability distributions for selected reactions in four cases: i) 

normal physiological (black), ii) diabetic (red), iii) diabetic with normal glucose uptake 

(green), and iv) diabetic with normal glucose and ketone body uptake (blue).  Results 

from these four conditions show that increased mitochondrial fatty acid uptake leads to 

smaller ranges of allowable flux rates for most reactions and thus reducing network 

flexibility dramatically.  Although normalization of ketone body and/or glucose uptake 

leads to higher flux ranges, the effect is minimal.  The high mitochondrial fatty acid 

breakdown leads to a higher and narrower distribution of oxygen consumption.  Due the 

compensation of fatty acids for glucose, DMATP in diabetic cases differs only slightly 

from that in the normal condition.   

 

Another interesting finding from our results is that the flux through the 

mitochondrial pyruvate dehydrogenase (PDH) enzyme becomes significantly restricted 

by network stoichiometry with increased fatty acid consumption (Figure 3.8). Many 

studies have tried to identify factors that affect the inhibitory mechanism of PDH under 

conditions such as diabetes100,101; this study shows that an increase in cellular fatty uptake 

flux forces a significantly lower flux through PDH as a direct consequence of overall 

network stoichiometry.  In silico predictions of changes in metabolic function in the 

diabetic condition relative to normal physiological conditions are compared with 

diabetes-caused changes in metabolism found in the literature (Table 3.4).  Results are 

quite consistent between this study and experimental observations. 
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9. Effects of ischemia 

9.1 Model of ischemic conditions 

 Severe ischemia leads to at least 70% reduction in local blood flow and a 

consequent decrease in oxygen supply.  Here effects of mild ischemia (25% oxygen 

reduction) as well as effects of two therapeutic approaches are studied106,107.  One therapy 

involves administration of glucose, insulin, and potassium (GIK)106.  This therapy seeks 

to alleviate damage during and after an ischemic event by raising the amount of ATP 

available for metabolic and non-metabolic tasks through glycolysis.  An alternate therapy 

combines the first approach with increased ketone body uptake.  This latter treatment is 

based on the observation that ketone bodies had a positive effect in the case of acute 

insulin deficiency107.  These two approaches are implemented in silico by i) increasing 

maximum glucose uptake rate to 2 µmol/min/g protein and ii) increasing the lower-bound 

constraint on uptake rates of both types of ketone bodies. 

 

9.2 Effects of ischemic conditions on mitochondrial metabolism 

 Severe ischemia leads to an undersupply of oxygen, and consequently, of energy 

for cardiomyocytes.  Cell damage during and after an ischemic event is associated with 

reduced energy production, decreased contractile work, and increasing acidosis due to 

increased glycolysis.  Candidate flux distributions under ischemic conditions are 

compared to those computed for the normal physiological condition (Figure 3.9).  
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Interestingly, maximal ATP production under ischemic conditions does not differ 

significantly from that found for diabetic conditions.  However, the shape of the steady-

state flux space changes significantly due to the changed maximal oxygen uptake rate.  

Both the maximally allowed and the most probable flux values are reduced in most 

reactions since ATP is the most undersupplied metabolite in ischemic conditions.  

Exceptions are reactions in the phospholipid biosynthesis pathway where the most 

probable flux values are increased.  This increase allows consumption of fatty acids, 

which can not be oxidized in absence of oxygen.  Overall, the changed tendency of the 

flux distributions of the network is comparable to the reported changes observed in 

ischemic patients (Table 3.4). 

 

9.3 Effects of diet treatments 

There have been multiple approaches in ischemia therapy to reduce negative 

effects of reperfusion; two of these therapies are investigated in this study. The GIK 

infusion106 is simulated by increasing the maximal glucose uptake rate.  Figure 3.9 (blue 

line) shows this effect on the metabolic network under oxygen restricted conditions.  Flux 

distributions under GIK treatment differ only slightly from those of the untreated 

ischemic condition, suggesting that this therapeutic approach may not be effective.  

Though the goal of this therapy is to increase ATP available for contractile work, the 

model shows that neither ATP production nor fluxes through ATP consuming reactions 

increase as a result.  However, effluxes of protons and lactate are shifted higher, 

corresponding to two well known side effects of this therapy.  The resulting acidosis 



70 

 

often leads to further damage during reperfusion.  The second ischemia therapy is based 

on the observation that ketone body oxidation produces higher ATP yield per oxygen 

molecule than glucose oxidation but requires less oxygen than fatty acid breakdown.  

Effects of GIK in combination with ketone body administration are shown on Figure 3.9 

(green line).  Results with this second treatment deviate only slightly from those with 

GIK alone, with the flux distribution of lactate and proton production shifted to the right 

into a higher flux value range. 

 

An alternative therapeutic approach proposed in the literature to treat ischemia is 

to stimulate activity of PDH108.  The rationale for this approach is that higher flux 

through PDH should result in a higher glytolytic flux and therefore a reduced lactate 

level108. However, our calculations predict that direct stimulation of PDH can only lead to 

a slightly higher steady-state flux through this reaction due to stoichiometric constraints.  

The highest possible flux through PDH under the ischemic condition is only 17% of the 

maximal flux under the normal condition.  It is thus concluded that a therapy directly 

targeting PDH is likely to not have a lasting effect. 

 

(This chapter, in part, is a reprint of the material appearing in “Reconstruction and 

functional characterization of the human mitochondrial metabolic network based on 

proteomic and biochemical data,” Vo TD, Greenberg HJ, and Palsson BO. 2004. J Biol 

Chem 279(38):39532-40 and “Candidate metabolic network states in human 

mitochondria: Impact of diabetes, ischemia, and diet,” Thiele I, Price ND, Vo TD, and 
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Palsson BO. 2005a. J Biol Chem 280(12):11683-95.  The dissertation author is the 

primary investigator and an author of the materials used from these papers.) 
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Table 3.1: Constraints on reaction fluxes in the mitochondrial network 
These data are collected primarily from experiments with rat heart and liver mitochondria.  Please refer to Vo et al. 46 
for abbreviations of reactions and metabolites.  The symbols [m] and [c] at the beginning of a reaction indicate whether 
the reaction occurs inside the mitochondria or cytosol, respectively.  The [m] and [c] following a metabolite denote the 
compartmental location of that metabolite.  LB and UB stand for lower bound and upper bound on reaction fluxes, 
respectively.  All data below have units of µmol/min/g protein, which are converted from reported units as necessary.  
Most references do not specify whether the reported unit is “g total mitochondrial proteins” or “g isolated protein” 
based on our interpretation of the reported experimental procedures, it appears that “g total mitochondrial protein” is 
more appropriate. 
 
Reaction Equation LB UB Reference 
CRNtim crn[m] → crn[c] 0 200 109 
C160CPT2 [m] : coa + pmtcrn → crn + pmtcoa 0 475 110 
C160CPT1 [c] : crn + pmtcoa → coa + pmtcrn 0 468 110 

ASPGLUm asp-L[m] + glu-L[c] + h[c] ↔ asp-L[c] + glu-L[m] + 
h[m] -40 93 111 

PDHm [m] : coa + nad + pyr → accoa + co2 + nadh 0 32 112 
MALtm mal-L[c] + pi[m] ↔ mal-L[m] + pi[c] -20 19 113 
CITtbm cit[c] + pep[m] ↔ cit[m] + pep[c] -104 104 114 
PYRt2m h[c] + pyr[c] ↔ h[m] + pyr[m] -110 110 112 
CITtam cit[c] + mal-L[m] ↔ cit[m] + mal-L[c] -92 113 114 
SUCCt2m pi[m] + succ[c] ↔ pi[c] + succ[m] -13 13 115 
LYStm h[m] + lys-L[c] ↔ h[c] + lys-L[m] -120 120 116 
ARGtm arg-L[c] + h[m] ↔ arg-L[m] + h[c] -105 105 116 
CITRtm citr-L[m] ↔ citr-L[c] -60 60 116 
ATPtm adp[c] + atp[m] → adp[m] + atp[c] -32 32 117 
ORNt4m citr-L[c] + h[c] + orn[m] ↔ citr-L[m] + h[m] + orn[c] -145 145 116 
 

 
Table 3.2: Reaction participation among equivalent optimal flux distributions (alternate optima) 
Each of the three right most columns corresponds to the metabolic objective under which the alternate optima are 
calculated.  Optima refer to the extreme points of the solution space that achieve the optimal value for the objective 
function, whereas feasible extreme points only satisfy the constraint of the LP problem 
 

 ATP Heme Phospholipids 
Total number of optima 4 8,288 21,863 
Average reactions used per optimal solution 57.5 78.7 98.1 
Reactions with variable fluxes 15 114 114 
Reactions with constant (non-zero) fluxes 47 14 21 
Reactions always used (largest correlated set) 53 35 56 
Reactions never used 127 61 54 
Number of feasible extreme points 
 

9,160 
 

11,000 
 

50,012 
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Table 3.3: Constraints representing diabetic and ischemic conditions 
These constraints represent the key factors that are associated with diabetic or ischemic metabolic 
conditions.  LB and UB stand for lower bound and upper bound, respectively.  (*) denotes the effects on the 
substrate LB and UB are the sole results of network stoichiometry after the constraint in the normal 
condition is removed.  A detailed list of applied constraints can be found in reference 94. 
 
Condition Substrate Uptake rate Constraint Uptake rate Constraint 
Diabetes Fatty acids LB Increased  UB Increased* 
 Glucose  LB Decreased  UB Decreased 
 Ketone bodies   LB Increased  UB Increased* 
Ischemia Oxygen  LB Decreased  UB Decreased 
 
 
Table 3.4: Comparison between computed flux values and experimental data 
UR and Expt stand for “uptake rate” and “experimental data”, respectively.  FAOX stands for fatty acid 
oxidation.  Peak values refer to peaks of the histograms made from uniform random sampling of all the 
steady state flux space.  LB and UB are determined by flux variability analysis (section 2.2).  Unit: 
µmol/min/g protein. 
 
Reaction LB UB Peak Expt References 

DMATP  7.50 45.99 7.86 - 
23.89 30.00 Low work dog heart96 

Glucose UR -0.88 -0.53 -0.86 -0.51 in vivo human heart118 
Glucose UR -0.88 -0.53 -0.86 -0.7 in vivo human heart119 
Glucose UR -0.88 -0.53 -0.86 -0.57 in vivo human heart120 
Glucose UR -0.88 -0.53 -0.86 -0.56 in vivo human121 
Lactate UR -0.88 24.03 -0.67 1.04 in vivo working rat heart122 
Oxygen UR -39.10 -23.44 -38.94 -30.00 Isolated rat heart123 
Oxygen UR -39.10 -23.44 -38.94 -28.00 in vivo human heart124 
CTP-I (C16:0) 0.10 1.25 0.11 0.54 in vivo pig skeletal muscle125 
CTP-I (C16:0) 0.10 1.25 0.11 0.47 Rat heart mitochondria110 
CTP-I (C16:0) 0.10 1.25 0.11 0.90 Isolated rabbit heart97 
CTP-II (C16:0) 0.10 1.25 0.11 0.48 Rat heart mitochondria110 
Complex IV 18.68 39.70 37.66 19.20 in vitro rat heart126 
FAOX C16:0 0.24 1.74 0.84 0.35 in vitro rat heart127 
FAOX C16:0 0.24 1.74 0.84 0.70 Isolated working rat heart128 
FAOX C18:1 0.27 1.64 0.33 1.06 in vivo working rat heart122 
Complex I 31.75 61.49 54.13 52.44 Human muscle129 
3-oxoacid CoA-
transferase 0.00 14.47 0.13 13.50 Isolated enzymes from human 

dermal fibroblast130 

PDH 0.00 8.30 0.07 6.00 
isolated working rat hearts 
perfused with 0.4 mM 
palminate131 

Pyruvate transport -0.39 2.75 18.82 0.54 Isolated rat heart132 

Citrate synthase 2.22 11.50 14.86 11.20 Isolated rabbit heart97 

Asp/Glu Shuttle 0.00 2.30 20.56 2.90 Isolate rabbit heart97 
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Figure 3.1: Constraint-based and kinetics-based representations for four reactions in the TCA cycle 
The constraint-based approach requires the presence of a theoretical boundary (dashed line) to distinguish 
the inside and outside of the system.  The S matrix is written for the four internal reactions and three 
exchange reactions (EX1, EX2, EX3), which allow the metabolites (accoa, co2, and nadh) to cross the 
boundary.  Flux balance analysis is applied to find a flux distribution v that maximizes ‘nadh’ output.  The 
mass-balance constraint is represented by d[X]/dt, where [X] is a vector of metabolite concentrations.  The 
time derivative d[X]/dt represents a system of 12 differential equations, each similar to the differential 
equations shown for the kinetics-based model. The system of equation accounts for all 12 metabolites in the 
S matrix.  Kinetics-based descriptions for CS and ACO are shown here as examples; similar expressions 
are required for the rest of the enzymes in the model and can be found in Cortassa et al.71.  There are two 
notable differences in the two approaches: 1) The relationship between substrate concentrations and 
reactions is linear in the constraint-based approach, but highly nonlinear in the kinetic counterpart and 2) 
The requirement of the large number of kinetic parameters is eliminated in the constraint-based model.  
Consequently, a kinetic model is useful when enzyme mechanisms are known and immediate responses of 
the system to perturbations are of interest.  On the other hand, due to the much simpler mathematics 
involved, constraint-based models can be applied to large scale networks and are useful when steady-state 
responses are relevant. 
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Figure 3.2: Application of linear programming to search for an optimal flux distribution 
The result of constraints 1-2 is a capped polytope that lies in the null space of S.  Any point in this 
polyhedron is a mathematical valid solution for the vector flux v.  Since there are an infinite number of 
points in this space, a hypothesis is needed to identify the most physiologically relevant solutions.  The 
underlying hypothesis of the linear programming method is that the biological system occupies a steady 
state that is optimal, in terms of resource distribution, for its designated function. 
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Figure 3.3: Range of flux variation 
The allowable flux range for each reaction is ordered by magnitude on the x-axis.  The flux range is found 
across flux distributions that are optimal for each individual metabolic objective function and among flux 
distributions that are highly correlated with each other.  The allowable flux ranges when no objective 
function is imposed is also shown for comparison.  Values in the y-axis indicate the magnitude of flux 
variation of a particular reaction.  For clarity, the hundred reactions with the smallest flux variations are 
omitted here.  The mitochondrial proton transport (reaction Htm) with flux variation higher than 400 is also 
omitted.  
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Figure 3.4: Cumulative distribution of correlation coefficients between pairwise flux distributions 
Pairwise correlations are calculated between A) ATP and heme optimal solutions, B) ATP and 
phospholipids optimal solutions, and C) highly correlated heme and phospholipid flux distributions.  Each 
point on the plot corresponds to a particular pairing of two flux distributions. 
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Figure 3.5: Results of multiple objective analysis.   
Value of composite and individual objective functions are shown as a function of g.  For values of g > 0.72, 
the syntheses of both heme and phospholipids equal zero, and the production of ATP achieves its maximal 
value. 
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Figure 3.6: Metabolic disturbance in diabetes 
Diabetic patients have an impaired ability to uptake plasma glucose, which results in increased fatty acid 
oxidation (either because of the absence of insulin (Type I) or the low level of Acetyl-CoA or Malonyl-
CoA).  Β-oxidation produces Acetyl-CoA, which inhibits PDH further.  This diabetic condition is simulated 
by i) reducing maximal glucose uptake, ii) increasing the lower bound on fatty acid uptake, and iii) 
removing explicit constraints on ketone body uptake because plasma ketone body levels are very high in 
these conditions. 
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Figure 3.7: Metabolic disturbance in moderate ischemia 
A decrease in blood flow and O2 supply lead to a transient decrease in aerobic carbohydrate and fatty acid 
oxidation.  This reduces the level of high energy phosphate molecules (both ATP and creatine) available for 
contractile work.  At the same time, glucose influx increases (ischemia, like insulin, leads to increased 
number of glucose transporter), but the conversion of Acetyl-CoA via the TCA cycle and respiratory chain 
is reduced.  Therapeutic approaches such as GIK (Glucose, Insulin, Potassium infusion) aim to increase 
immediate ATP level through glycolysis.  Side effects include increased lactate and proton production.  An 
alternate approach is to increase ketone body consumption as ketone bodies yield better ratio of ATP 
produced per O2 consumed than fatty acids.  Effects of ischemia and these two therapeutic approaches are 
implemented in silico by i) reducing oxygen uptake by 25%, ii) increasing maximum glucose uptake rate to 
2 µmol/min/g protein, and iii) increasing the lower-bound constraint on the uptake rates of both types of 
ketone bodies. 
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Figure 3.8: Metabolic states under normal condition and disease conditions 
Each plot is a histogram of the different flux values a reaction can take while satisfying all constraints in 
the network.  The x-axis represents the allowable flux value for the corresponding reaction.  The y-axis 
shows the likelihood the reaction will assume that particular flux value.  The overall result from the four 
conditions shown above is that the increased mitochondrial fatty acid uptake leads to smaller ranges of 
allowed flux rates for most reactions, and therefore reducing network flexibility dramatically.  The ATP 
production capability of the mitochondrion in diabetic condition only differs slightly from the normal 
physiological condition.  Due to the high mitochondrial fatty acid breakdown, the flux distribution of 
oxygen uptake was increased and its flexibility was very restricted.  Another interesting finding is that the 
flux through the mitochondrial pyruvate dehydrogenase enzyme is significantly restricted by network 
stoichiometry when fatty acid uptake was increased.  This behavior is present in the absence of explicit 
inhibition by pyruvate kinase.  Lastly, although changing ketone body and glucose uptake to normal values 
leads to a higher flexibility of reaction fluxes, the effect is minimal compared to the normal condition.  
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O2 consumption Pyruvate dehydrogenase Urea excretionH+ efflux

Normal conditions

Increased glucose (GIK)
GIK + ketone bodies

Ischemic conditions
Moderate ischemia slightly reduces ATP production
GIK increases effluxes of lactate and H+
Restricted overall network activity
Treatments that directly activate pyruvate 

dehydrogenase will have minimal effect  
 
Figure 3.9: Metabolic states under normal condition and ischemic conditions 
Each plot is a histogram of the different flux values a reaction can take while satisfying all constraints in 
the network.  The x-axis represents the allowable flux value for the corresponding reaction.  The y-axis 
shows the likelihood the reaction will assume that particular flux value.  Flux distributions show that both 
the maximally allowed and the most probable flux values were reduced in most reactions; exceptions were 
reactions of the phospholipid biosynthesis pathway where the most probable flux values were increased.  
Such increase is a result of the build-up of non-oxidizable fatty acids in the absence of adequate oxygen.  
Effects of two therapeutic approaches, GIK and GIK in combination with ketone bodies, are also 
investigated here (Figure 3.7).  Both approaches seem to alleviate damage caused by ischemia: ATP 
production and the range of allowable flux values for most reaction increase slightly.  However, effluxes of 
protons and lactate are shifted higher, corresponding to two well known side effects of these therapies.  
These side-effects may lead to further damage during reperfusion. 
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Chapter 4  
Integration of Isotopomer Data into the 
Constraint-Based Framework 
 

 

The metabolic phenotype of a living cell is the cumulative result of the genomic, 

transcriptomic, and proteomic responses of the cell to a particular condition.  The field of 

metabolomics seeks to integrate metabolite identification and reaction kinetics to 

elucidate cellular metabolic phenotypes.  Recent efforts to detect and measure 

concentrations of a large number of low molecular weight compounds have achieved 

success with gas chromatography-mass spectrometry (GC-MS), liquid chromatography-

electrospray ionization-mass spectrometry (LS-ESI-MS), and capillary electrophoresis 

coupled to mass spectrometry (CE-MS)133.  Similar to other component-identification 

research areas, e.g. genomics and proteomics, it is perhaps expected that the 

comprehensive set of cellular metabolites will eventually be elucidated.  The large-scale 

quantification of reactions kinetics in the cell (fluxomics) is more complex, however, as 

in vivo experiments are not possible and in vitro experiments often fail to mimic the 

molecular crowding environment in the cell5.  On the other hand, fluxes in exchange with 

the extracellular environment, i.e. substrate uptake or secretion rates, can be satisfactorily 

measured and have been applied to microbial organisms55,134, tissue cultures135, and organ 

systems136.  In addition, the use of tracer-based metabolomics, particularly with 13C 

labeled substrates, has proven successful in inferring intracellular reaction fluxes137.  
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Accordingly, the most promising approach for elucidating cellular nutrient-gene 

interactions will likely require a combination of metabolite profiling, extracellular flux 

measurements, and an effective method for analyzing isotopomer data.  

 

Analysis of isotopomer data obtained from tracer experiments relies on the 

relative distribution of 13C among the different metabolites and the different mass 

isotopomers of a metabolite to infer intracellular fluxes in the reaction network.  In 

particular, many existing isotopomer studies follow the 13C labels originating from a 

particular compound to analytically solve for the rates of reactions or pathways 

associated with that compound138-144.  These analytical methods, however, have at least 

two major limitations.  First, the quantification of a particular flux or flux ratio requires a 

priori assumptions about which pathways are considered relevant and the direction of 

flux in such pathways.  Such assumptions are difficult to make correctly when 

biochemical pathways or cycles of interest contain many reversible reactions.  Second, 

conclusions drawn from these analyses provide little insight into the mechanism of how 

the cellular metabolic system exhibits the observed phenotypes.  As a result, this 

pathway-based method145 does not provide a means to predict changes in intracellular 

metabolic phenotypes due to changes in uptake (input) and secretion (output) rates of 

nutrients.  As more isotopomer data become available at a cellular scale, a more general 

and systemic approach for flux analysis is desirable. 

 

More rigorous modeling methods have been proposed, many of which employ an 

optimization framework to search for globally optimal flux distributions that produce the 
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observed 13C labeling patterns.  Concepts of atom mapping matrices (AMMs)146, 

isotopomer mapping matrices (IMMs)147, bondomer mapping matrices148, isotopomer 

matrices149, and T matrices150 have also been introduced to facilitate bookkeeping of 

different isotopomer states and formulation of balance equations that are amenable to 

different types of tracer data.  Within these formalism, models of various sizes have been 

developed to study the metabolism of Escherichia coli151,152, Bacillus subtilis153, Methylo-

bacterium extorquens154, Saccharomyces cerevisiae155,156, Penicillium chrysogenum157,158, 

and Corynebacterium glutamicum159,160. 

 

In this chapter, isotopomer mapping matrices and isotopomer balance equations 

are incorporated as constraints in the constraint-based framework for flux analysis.  This 

approach, here termed network-based, has two fundamental differences from the earlier 

pathway-based analysis.  First, the method requires a well-defined system boundary 

encapsulating the biochemical network and permitting the distinction between 

intracellular fluxes and fluxes in exchange with the environment.  Second, the method 

relies on numerical optimization rather than analytical tools to determine reaction fluxes 

in the network.  The trade-offs between the network-based and the pathway-based 

methods are the computational complexity and the comprehensiveness of results inferred 

from observed isotopomers. 

1. What are isotopomers? 

Isotopomers of a metabolite are isomers that are different only in isotope 
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composition (Figure 4.1).  Tracer-based metabolomics uses stable isotopes containing 13C 

as labels to distinguish experimentally supplied carbons from those endogenous in the 

cell.  The 13C from substrates are transferred to intracellular metabolites; any metabolites 

that only differ in their 13C labeling patterns are isotopomers of each other.  A metabolite 

of n carbons may have up to 2n isotopomers.  Since 13C has a different mass than natural 

12C, mass isotopomers can also be defined to distinguish isotopomers with different 

masses.  For examples, a pyruvate molecule (C3H3O3-) labeled with one 13C has a mass 

of 88 Daltons, whereas a pyruvate molecule labeled 13C in all three carbons has a mass of 

90.  A given metabolite of n carbon thus has up to n+1 mass isotopomers.   

2. Constructing a metabolic network 

 The construction of a model for isotopomer analysis is a four-step process 

beginning with the definition of a metabolic network (Table 4.1).  Chapter 2 describes in 

detail the steps involved in the reconstruction of a metabolic network.  This network 

should be as complete as possible to obtain the highest resolution on the final flux 

estimation.  The metabolic network is then converted to a stoichiometric matrix S, where 

S(i,j) denotes the participation of metabolite i in reaction j22.  Three metabolic networks, 

cardiomyocyte, HepG2 and fibroblast, are used for isotopomer analysis.  The complete 

studies and results are described in chapters 5 and 6. 

3. Constructing Atom and Isotopomer Mapping Matrices 
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3.1 Identifying metabolites for which isotopomers are to be tracked in the 

model 

 One should track isotopomers for as many metabolites as possible.  Every 

metabolite of n carbons adds n additional constraints to the network if its isotopomers are 

tracked (Section 3.3).  However, three groups of metabolites should be excluded, as they 

either make the formulated nonlinear programming problem unsolvable in practical time 

or their isotopomers are uninformative.  Specifically, they are 

 

a) Metabolites which are dead ends or effective dead ends in the network.  Dead ends 

are compounds that are only produced or only consumed by reactions in the network, 

and therefore they do not participate in any flux-carrying reactions at steady state.  

They are usually those that cross the scope of the model or represent a knowledge 

gap.  Effective dead ends are compounds that only participate in reactions that contain 

dead ends, and hence do not participate in any flux-carrying reactions at steady state, 

either. 

b) Very large metabolites.  These are usually fatty acids or phospholipids.  Since the 

number of theoretically possible isotopomers is exponential to the number of carbons 

in a metabolite, one should exclude all metabolites having more than 10 carbons to 

keep the size of the problem within the capability of most existing nonlinear 

programming solvers. 

c) Metabolites that do not participate in carbon transferring reactions in the network.  

Examples of these are ATP, ADP, NADP, etc.  If the network does not include 
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reactions that affect the carbon backbones of these metabolites, their isotopomer 

balance constraints will be uninformative. 

 

3.2 Constructing atom mapping matrix for reactant-product pairs 

Atom mapping matrices (AMM) are used to describe the carbon transfer for each 

pair of reactant and product of relevant reactions in the network.  The original convention 

described by Zupke and Stephanopoulos146 specifies a matrix A (m x n), where m is the 

number of carbons in the product, and n is the number of carbons in the reactant.  The 

element Aij is non-zero when carbon j in the reactant can be transformed to carbon i in the 

product, and zero otherwise.  I found that a value of “1” should always be used instead of 

fractions for non-zero Aij, because the convention of using fractions, as described by 

Zupke and Stephanopoulos146, is inconsistent with the algorithm for computing 

isotopomer mapping matrices (IMMs) from AMMs as developed by Schmidt et al.147. 

 

3.3 Constructing isotopomer mapping matrices 

Isotopomer mapping matrices (IMMs) describe whether or not a particular 

isotopic pattern of the product can be derived from a particular isotopic pattern of the 

reactant.  An IMM has size 2m x 2n, where m and n are the number of carbons in the 

corresponding product and reactant, respectively.  The original algorithm described by 

Schmidt et al.147 does not explicitly specify rules for constructing IMMs for reactions 

with symmetric compounds or reactions with multiple reactants or products of the same 

species.  I extended this algorithm to account for these two cases.  For reactions with 
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symmetric products, the final IMM should be the average of IMMs constructed for each 

mirror image.  For condensation reactions with multiple reactants of the same species, the 

final IMM is the sum of those created for each of the reactant molecules.  Details and 

illustrative examples for each of these cases can be found at 

http://systemsbiology.ucsd.edu/organisms/.  All atom and isotopomer mapping matrices 

used in this dissertation are also available for download at that website.  

4. Formulating variables and constraints on reaction fluxes 

There are two types of variables in the model: isotopomer distribution variables 

and flux variables.  Three types of constraints – mass balance, bounds, and isotopomer 

balance – are used to narrow down and compute values for these variables.  The variables 

and constraints are defined as follows. 

 

4.1 Linear constraints 

Each isotopomer distribution variable is a vector of size 2n, where n is the number 

of carbon atoms in the corresponding metabolite.  Each element of an isotopomer 

distribution vector (IDVs) describes the relative abundance of a particular isotopomer of 

the metabolite; these elements sum to one.  The flux vector v contains the second set of 

variables that need to be determined.  The mass balance constraint ensures that the time 

derivative of each metabolite in the network is zero at steady state, 

 S . vnet  = 0    (Equation 4.1) 
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where S is the stoichiometric matrix and vnet is a vector of unknown net fluxes.  

Constraints on reactions rates are linear, αi ≤ vnet ≤ βi, where αi and βi  represent lower 

and upper bounds on the steady state rate of each reaction in the network. 

 

4.2 Nonlinear constraints 

Similar to the mass-balance equation described above, the isotopomer balance 

equations ensure that production and consumption of every isotopomer of every 

metabolite are equal at steady state.  Isotopomer balance constraints can be 

algorithmically generated from the S matrix and IMMs147 (Figure 4.2).  In addition, as 

both the forward (vforward) and the reverse (vreverse) directions of a reversible reaction can 

affect the observed isotopomer distributions of the reaction’s reactants and products, 

these variables are incorporated in the isotopomer balance equations (Equation 4.2).  

These variables are also transformed as previously described154,161. 

vnet = vforward -  vreverse      (Equation 4.2) 

with i
reverse

i
forward

i
net

i vvv αββα ≤≤≤≤≤≤ 0;0;  

 

It may not be necessary (or possible162) to track the rates of both the forward and 

the reverse directions of every reversible reaction in the network.  In a few specific cases, 

only the net fluxes of these reversible reactions affect the isotopomer distributions of 

involved metabolites.  Criteria for identifying these reactions are available at 

http://systemsbiology.ucsd.edu/organisms/. 
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5. Solving for optimal flux distributions 

The set of isotopomer-balance constraints, in combination with Equations 4.1-4.2, 

formulates a nonlinear programming problem, where the objective (Equation 4.3) is to 

minimize the difference between the predicted and observed mass distributions of 

isolated metabolites: 

Min 
2

)(

,

,,∑∑ 








 −
=

iN

j ji
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ji

measured
ji

M

i

MDVMDV
Error

σ
  (Equation 4.3) 

 

In Equation 4.3, MDV is the mass distribution vector of a particular metabolite i;  

each element MDVi,,j contains the mole fraction of isotopomers of the same mass, and σi,j 

is the standard deviation associated with that measurement.  The index N(i) represents the 

total number of mass isotopomers of metabolite i and the index M represents all 

metabolites measured in the experiment.  Values for measured mass isotopomer 

distributions are corrected for naturally occurring isotopes163 before they are substituted 

in the equation.   

 

The formulated model is implemented in GAMS (GAMS Development 

Corporation, Washington, DC) and solved using the commercially available solver 

SNOPT (Stanford Business Software, Inc., CA).  Since the model is nonlinear, the 

predicted flux distributions are locally optimal solutions of the posed optimization 

problem.  The landscape created by the isotopomer balance constraints is generally 

rough, so convergence to a particular locally optimal solution is dependent on both the 
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initial starting point and the computer on which the program is run.  It is therefore critical 

that the calculation is repeated for a large number of initial points164.  Flux results 

presented in the following studies are the results of 1000 repeated calculations, whose 

initial points are selected from 107 feasible steady state flux vectors.  To limit the analysis 

to only the most likely flux distributions, flux distributions with Error values larger than 

certain threshold, e.g. more than twice the smallest Error value found, should be 

discarded; the remaining are considered acceptable solutions. 

 

(This chapter, in part, is a preprint of the material appearing in “"Isotopomer 

analysis of cellular metabolism in tissue culture: A comparative study between the 

pathway- and network-based methods," Vo TD, Lim SK, Lee PWN, and Palsson BO. 

2006. Metabolomics, in press and “Isotopomer analysis of myocardial substrate 

metabolism: A systems biology approach,” Vo TD and Palsson BO. 2006. Biotechnology 

and Bioengineering 95(5):972-83.  The dissertation author is the primary investigator and 

author of these papers.) 
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Table 4.1: Procedures to develop a constraint-based model for intracellular flux estimation based on 
reaction stoichiometry, substrate uptake and efflux rates, and isotopomer data. 
Additional descriptions of each step are provided in the manuscript and cited references 
 
 
Step 1. Construct a stoichiometric matrix S representing the biochemical reactions in the 

network  
 
Step 2. Construct atom and isotopomer mapping matrices 

A. Identify metabolites for which isotopomers are to be tracked in the model, note symmetric 
metabolites 

B. Construct atom mapping matrices (AMMs) for reactant-product pairs of metabolites in 
step A 

C. Compute an isotopomer mapping matrix (IMM) for each AMM 
 

Step 3. Formulate constraints 
A. Linear constraints: 

 S • vnet = 0 
S is the stoichiometric matrix; vnet is a vector of unknown net fluxes 

For all irreversible reactions i 
 αi ≤ vnet ≤ βι  

αi and βi represent the lower and upper bounds on the steady state reaction rates 
For all reversible reactions j 

 
j

reverse
j

forward
j

net
j

reverse
j

forward
j

net
j

vvv

vvv

αββα ≤≤≤≤≤≤

−=

0;0;
 

For all metabolites k with carbon tracking,  
C is the number of carbon atoms in metabolite k. 

 ∑
=

)(

1

kC

i

k
iIDV = 1   

B. Nonlinear constraints: isotopomer balance equations 
 0),( =vIDVF k

ik  
where the function Fk for each metabolite k is defined in Schmidt et al. 1997 

  
Step 4. Solve for optimal flux distributions 

A. Pick an initial starting vo satisfying S • vnet = 0 
B. Solve  

Min    

2
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Subject to  Constraints 3A-3B. 
 

MDVi,,j  : mole fraction of mass isotopomer j of metabolite i 
σi,j              : standard deviation associated with that measurement MDVi,,j   
N(i)       : total number of mass isotopomers of metabolite i  
M          : number of metabolites measured in the experiment. 

C. Repeat 4A-4B for a sufficiently large number of flux distributions  
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Figure 4.1: All possible isotopomers of a metabolite with three carbons 
IDVpyr represents a sample isotopomer distribution vector for pyruvate.  Each element in IDVpyr indicates 
the fractional contribution of the isotopomer shown in the left to the total pyruvate pool.  MDVpyr shows 
an example of a mass distribution vector for pyruvate.  Elements in MDVpyr are sum of the contributions 
of isotopomers with the same number of labeled carbons.  mi correspond to the mass isotopomer with i 
labeled cabons.  This figure is reproduced with permission from the author of reference 186. 
 
 

 
 
Figure 4.2: Formulation of isotopomer balance constraints 
The two equations FA and FC show the isotopomer balance constraints for these two metabolites, 
respectively.  Such constraints set the time derivative of each isotopomer of each of these metabolites to 
zero at stead state.  IMMXY stands for isotopomer mapping matrix describing the carbon transfer from 
reactant A to product C.  Rules for formulating these constraints can be found in Schmidt et al. 147. 
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Chapter 5  
Isotopomer analysis of myocardial 
substrate metabolism: Computational 
and Experimental Considerations  
 

 

The quantification of reaction fluxes in cellular metabolism has always been of 

great interest in physiological and biotechnological research165,166.  Metabolic flux 

profiles can uncover details about substrate utilization, substrate redistribution at network 

branch points, and quantitative information about enzyme activity.  As intracellular flux 

measurements tend to be invasive and difficult, our current ability to profile metabolic 

flux relies on computational tools to analyze experimental data.  Studies have shown that 

isotopomer data, especially 13C tracer data, are useful and effective for estimating 

intracellular reaction fluxes167-169.  In particular, mass isotopomer analysis has been 

extensively applied to study substrate oxidation and anaplerosis in the heart141,142,170,171,  

gluconeogenesis143,172,173 and lipogenesis in the liver144,174, and activities of the TCA 

cycle in various tissues175-177.  Reaction flux estimates in these studies were analytically 

derived based on observed isotopomer data, assuming a configuration and a direction of 

flux flow in relevant pathways.  Such analytical solutions are restricted to small model 

networks and are not obtainable for many biochemical pathway structures178. 
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In this study, isotopomer mapping matrices and isotopomer balance equations 

(Chapter 4) are incorporated into the constraint-based framework to analyze 

isotopomer data obtained from perfused mouse hearts136.  Advantages of this 

approach as compared to the analytical expressions originally employed by 

Khairallah et al.136 are twofold.  First, the use of a cohesive model ensures that 

estimations of intracellular fluxes are consistent with both isotopomer data and flux 

measurements obtained from experiments.  The incorporation of known myocardioal 

metabolic activities and stoichiometry of the underlying biochemical reactions also 

provides a more complete picture of how the entire cardiomyocyte metabolic network 

operates and how fluxes in different pathways fit together.  The resulting flux 

distribution offers a systemic view of cellular metabolism as opposed to glimpses of 

fluxes or flux ratios calculated separately and possibly under independent 

assumptions.  Second, the models can be used to simulate and analyze experimental 

scenarios beyond the original experimental conditions.  In particular, the model is 

used to study the effectiveness of 12 different 13C glucose substrate mixtures and to 

identify the most informative metabolites and fluxes to measure in subsequent 

experiments. 

1. Cardiomyocyte model 

1.1 Isotopomer data from the perfused mouse heart 

The work of Khairallah et al.136 sought to characterize and trace the origin of 

pyruvate and citrate carbons in working mouse hearts.  Four types of labeled substrates, 
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perfused at their respective physiological concentrations, were employed in that 

experiment; here only the isotopomer data from the experiments with uniformly labeled 

glucose, [U-13C6] glucose, (50% enrichment) are analyzed.  

  

Three types of information are accounted for when integrating these data into the 

model.  First, the reported molar enrichment of perfused glucose is used to set the 

isotopomer distribution of extracellular glucose.  Second, upper and lower bounds on the 

uptake and efflux rates of lactate, pyruvate, glucose, citrate, succinate, oleate, oxygen are 

set to two standard errors above and below the mean (Table 4.1).  Third, the 13C 

enrichment of the TCA cycle intermediates (citrate, α-ketoglutarate, succinate, fumarate, 

malate, oxaloacetate moiety of citrate) and their standard errors are used to formulate the 

objective function.  These data were obtained from GC-MS, and the final enrichment, 

corrected for 13C natural abundance, of each mass isotopomer was reported136.  The 

average mouse heart wet weight136 is used to convert reported data into a consistent flux 

unit (µmol/min/gww). 

 

1.2 Size and scope of the model 

The present cardiomyocyte metabolic model accounts for 240 metabolites and 

257 reactions, of which 39 are exchange reactions179.  The rank of the corresponding 

stoichiometric matrix is 221.  There are thus 36 reaction fluxes that have to be determined 

by using isotopomer data in addition to the mass-balance constraint.  Reactions in this 

network describe glycolysis, the TCA cycle, oxidative phosphorylation, ROS 
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detoxification, anaplerosis, β-oxidation, ketone body metabolism, heme synthesis, and 

phospholipid synthesis.  These reactions are written at the same level of detail as those in 

previous reconstructed networks46 (Chapter 2).  Five assumptions are made in using this 

model to analyze isotopomer data from the perfused mouse heart: 

 

1) The 257 reactions included in the model are sufficient to describe the major metabolic 

activity in the perfused mouse heart.   

2) The labeling of substrates with 13C does not affect how they participate in a reaction, 

i.e. a metabolite is not selected against or preferred by an enzyme due to its labeling 

state. 

3) The flux distribution that yields 13C labeling patterns most resembling the observed 

isotopomers (of the isolated metabolites) is the physiological flux distribution in the 

cell.  

4) The perfused mouse heart achieves a steady state during the course of the experiment. 

5) There is label scrambling in reactions involving symmetric metabolites. 

 

AMMs146 and IMMs are employed to track carbon transfer between products and 

reactants (Chapter 4).  Carbon transfer for 121 reactant-product pairs, associated with 79 

metabolites, is tracked in the model.  This translates to 1700 isotopomer variables.  

Carbons of the remaining metabolites are not tracked for one or more of the three reasons 

described in Chapter 4.  IMMs for the 121 reaction-product pairs are available for 

download in MATLAB (The MathWorks, Inc., Natick, MA) matrix format at 

http://systemsbiology.ucsd.edu/organisms/.  A database of such IMMs can be a valuable 
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repository of unambiguously defined reaction mechanisms.  Note that a large number of 

these IMMs are identity matrices as most biochemical reactions do not involve carbon 

rearrangement.  All identity IMMs are excluded from the isotopomer balance constraints 

used in this dissertation to avoid unnecessary matrix computation. 

 

The isotopomer balance constraints are algorithmically generated from the 

stoichiometric matrix and IMMs147.  Both forward and the reverse directions of a 

reversible reaction, which affect observed isotopomer distributions of the reaction’s 

reactants and products, are incorporated into isotopomer balance equations.  The 

described constraints and variables are concisely formulated into a nonlinear 

programming problem, whose objective is to minimize the difference between measured 

and calculated mass distributions (Chapter 4).  Values for measured mass isotopomer 

distributions are corrected for naturally occurring isotopes before they are used in the 

model136,180.  The sequential quadratic programming method181 implemented in the 

commercially available solver SNOPT (Stanford Business Software, Inc.) is chosen to 

solve the formulated nonlinear programming problem.  Network contents and 

computational programs used in this study are available at 

http://systemsbiology.ucsd.edu/organisms/. 

2. Sensitivity analysis 

The SNOPT solver searches for a locally optimal solution starting from a 

specified initial point (vo) in the steady state flux space.  In searching for a globally 
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optimal solution, one must sample the entire solution space for locally optimal solutions.  

The larger the number of locally optimal solutions found, the more likely that one of 

them is the globally optimal solution.  Estimated flux values resulting from these 

solutions are likely to be sensitive to two parameters: i) the user-defined initial points and 

ii) the measured mass distributions (MDVmeasured).  The effects of each of these 

parameters are investigated in this study.  The initial values for vo are generated using two 

methods.  The first method assigns vo
 to a flux distribution found by applying a linear 

programming solver (cplex) with the objective of maximizing or minimizing flux through 

a chosen reaction in the network.  The isotopomer balance constraints (non-linear) are 

excluded in this step.  The second method assigns vo to a random flux distribution within 

the convex space using the Hit-and-Run algorithm94.  These two methods produce 489 

and 1000 unique vo, respectively.   

 

To investigate the effect of the uncertainty associated with each isotopomer 

measurement, 100 random hypothetical measurements (for each mass isotopomer of each 

metabolite) are drawn from normal distributions simulated with the reported mean and 

standard error.  Randomly selected values from these measurement pools produce 100 

hypothetical mass distribution data sets based on measurement statistics.  The calculation 

is repeated for these 100 data sets to evaluate how these mass distributions affected the 

predicted flux distributions.   

3. Pyruvate branch points and fate  
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Pyruvate serves as an important branch point of substrate metabolism.  It is thus 

useful to be able to quantify the contribution of various exogenous carbohydrate sources 

to tissue pyruvate.  Cytosolic pyruvate is considered equivalent to tissue pyruvate for this 

purpose, as the mitochondrial pyruvate pool includes pyruvate produced by 

mitochondrial lactate dehydrogenase and malic enzyme.  Based on the predicted uptake 

rates for glucose (3.00 ± 0.05 µmol/min/gww), pyruvate (0.43 ± 0.06 µmol/min/gww), 

lactate (0.30 ± 0.05 µmol/min/gww), and the following equations, 

 

Exogenous glucose contribution = (2*glucose uptake)/total fluxes producing cytosolic pyruvate 

Exogenous pyruvate contribution = pyruvate uptake/total fluxes producing cytosolic pyruvate 

Exogenous lactate contribution = lactate uptake/total fluxes producing cytosolic pyruvate 

Total fluxes producing cytosolic pyruvate = 2*glucose uptake + pyruvate uptake + lactate uptake  

       (Equations 5.1-5.4) 

 

the estimated fractional contributions of these three exogenous substrates to cytosolic 

pyruvate are 80 ± 2, 8 ± 2, and 12 ± 2% respectively. 

 

This estimate is rather different compared to the reported estimation by Khairallah 

et al.136 (Table 4.2) because the latter study used a different method of analysis.  Those 

authors combined data from three experiments, each with a different labeled substrate, 

and computed the contributions based on enrichment of m3 cytosolic pyruvate in each 

experiment.  However, if they had used their reported flux estimates to compute the 

fractional contributions, the result would have been much closer to the values presented 
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here (Table 4.2).  The method by Khairallah et al.136 is more experimentally intensive, 

and may be affected by inconsistency and errors in these experiments.  Such 

inconsistency is likely the reason that those authors could not account for the source that 

made up 26% of tissue pyruvate.  On the other hand, the method described here is more 

computationally intensive, and does not account for contribution of substrates other than 

exogenous glucose, lactate, and pyruvate.  These two methods are thus complementary 

for quantifying the contribution of exogenous carbohydrates to tissue pyruvate. 

 

Since tissue pyruvate was only enriched in m3 isotopomer, it is concluded that the 

pentose phosphate pathway activity was low.  The consumed 13C glucose thus yields a 

stoichiometric amount of glycolytic pyruvate at a rate of 3.00 ± 0.05 µmol/min/gww.  

The model predicts that the majority of cytosolic pyruvate is converted to lactate (90%), 

which, in turn, is excreted by the cell.  This result agrees with the observed m3 lactate 

efflux rate when mouse hearts were perfused with [U 13C3] pyruvate136.  The remaining 

pyruvate is transported into the mitochondria for further oxidation.  Mitochondrial 

pyruvate has two major fates: oxidation by pyruvate dehydrogenase and anaplerosis by 

pyruvate carboxylase.  The estimated steady state rate for pyruvate dehydrogenase is 0.25 

± 0.00 µmol/min/gww, while that for pyruvate carboxylase is 0.02 ± 0.00.  A small 

amount of mitochondrial pyruvate (15%) is also inter-converted with lactate via 

mitochondrial lactate dehydrogenase and the pyruvate-lactate shuttle. 

 

The ex vivo perfusion experiment allowed the working mouse heart to take up 

four substrates ([U 13C] glucose, pyruvate, lactate, and oleate) from a perfusate that was 
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optimized to mimic physiological serum136.  At a respiration rate of 5.49 ± 0.06 

µmol/min/gww, the heart takes up significantly more (ten times) exogenous 

carbohydrates than the fatty acid oleate.  After accounting for efflux of pyruvate and 

lactate, however, oleate is found to have twice the amount of ATP contribution as 

glucose.  Similar results were also found by Khairallah et al.136, where the authors, using 

analytical expressions, reported a contribution of 62 ± 10% by fatty acids and 34 ± 4% by 

carbohydrates to the overall ATP production.  The TCA cycle is predicted to carry an 

average net flux of 1.51 ± 0.05 µmol/min/gww, a value very similar to that found in rat 

hearts, 1.7 ± 0.2 µmol/min/gww182.  Anaplerosis by pyruvate carboxylation is found to be 

relatively small, only 1% of the TCA cycle net flux.  However, the difference between 

calculated and predicted isotopomer distributions suggests that anaplerosis by 

endogenous substrate is about 10% of the TCA cycle net flux.  Finally, analysis of 

exchange fluxes shows that pseudoketogenesis can be a significant source of ketone 

bodies generated by the heart, amounting up to 50% of the overall ketone body uptake of 

the organ. 

4. Activities of the citric acid cycle 

Citrate is produced from oxaloacetate and acetyl-CoA in every turn of the TCA 

cycle.  During the time course of the perfusion experiment (20-30 min)136, most cellular 

energy is likely to be derived from substrates in the perfusate (glucose, pyruvate, lactate, 

and oleate).  Contributions of amino acids from protein breakdown and lipid from 

membrane turnover are probably small, and hence not accounted for in the model.  The 
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acetyl-CoA moiety of citrate (accit) thus mostly comes from fatty acid or pyruvate 

decarboxylation, while the oxaloacetate moiety (oaacit) mostly comes from pyruvate 

carboxylation.  The origin of each citrate moiety is evaluated using the ratios of pyruvate 

decarboxylation and pyruvate carboxylation fluxes to that of citrate synthase (CS).  Based 

on calculated fluxes for PDH and pyruvate carboxylase, the pyruvate contribution to accit 

and oaacit is estimated to be 17% and 1.4% of the TCA cycle flux (1.51 ± 0.05 

µmol/min/gww).  In comparison, the TCA cycle flux was previously estimated to be 1.88 

± 0.01 µmol/min/gww by Khairallah et al.136 when a linear relationship between oxygen 

consumption and citrate formation from carbohydrates and fats was assumed. 

 

Recall that since the experimentally measured isotopomer distributions of the six 

TCA cycle intermediates are used in the objective function, discrepancies between 

calculated mass distribution vectors (MDVs) and measured MDVs (Figure 5.1) offer a 

good estimate of the accuracy of the flux calculation.  Three key differences are observed 

between calculated and measured MDVs.  First, there is stronger agreement between 

predicted and experimental averages for m3 and m4 isotopomers, compared to m1 and 

m2, of the TCA cycle intermediates.  The experimental data for m3 and m4 isotopomers 

have more precise values (smaller standard errors), and thus the model favors flux 

distributions that had better fit for these isotopomers (see the Error function in Chapter 

4).  Second, the overall higher 13C enrichment predicted for most TCA cycle 

intermediates indicates that there is a low level of 13C dilution (~10%) due to endogenous 

unlabeled carbon sources (most likely amino acids) not accounted for in the model.  

Third, the decrease in the total enrichment of α-ketoglutarate and succinate reflects a loss 
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of 13C to 13CO2.  Lastly, the similar mass distributions calculated for succinate, fumarate, 

and malate are probably a consequence of i) fumarate being produced and consumed in 

the model only by succinate dehydrogenase and fumarase and ii) the assumed rapid 

isotopomer randomization for symmetric metabolites in the model.  Labeling data from 

Khairallah et al.136 do not have such a homogenous mass distributions for these three 

metabolites (Figure 5.1). 

 

 The TCA cycle, together with OxPhos, produces the majority of the ATP used for 

contractile function (Myosin ATPase) and various ion pumps in cardiomyocytes.  Here 

all ATP consuming reactions are represented collectively as an ATP demand function, 

which describes the hydrolysis of the high energy phosphate bond of ATP to ADP and 

pyrophosphate.  This way, ATP produced by metabolism of various substrate sources is 

coupled with an ATP consuming sink.  The amount of ATP produced by anaerobic 

oxidation is 6.0 ± 0.1 µmol/min/gww, which is approximately 30% of the estimated total 

ATP production, 16.6 ± 2.3 µmol/min/gww.  The total ATP production rate calculated 

from isotopomer data using this model is less than 40% of the maximal ATP production 

rate computed based on respiration rate and substrate uptake rates alone46. 

5. Bidirectional reaction rates 

Many enzymatic reactions are recognized to be bidirectional, i.e. reversible, as 

they operate near equilibrium in cellular physiological conditions.  Even for reactions 

with low net fluxes, both forward and reverse rates can be quite high, rendering these 
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rates unobservable during a typical experimental time scale.  However, as both directions 

of the reactions affect the 13C labeling patterns of reactants and products of the enzymes, 

it is possible to estimate these rates based on the isotopomers of these metabolites.  In 

fact, one may incorrectly estimate the net flux of such reactions if forward and reverse 

directions of the enzymes are ignored. 

 

 Of the 95 reversible reactions in the model, 55 reactions are associated with 

metabolites whose isotopomers are tracked; these are the only reactions whose forward 

and reverse rates can be reliably estimated.  The difference between the forward and the 

reverse rate, referred to as exchange fluxes183, are predicted with precision for 49 

reactions.  Note that the term exchange flux used here is not the same as ‘exchange 

reaction’179, which is used to describe metabolite crossing the system boundary.  

Histograms of the exchange fluxes (across all the predicted locally optimal solutions) 

have dominant left peaks.  Overall, exchange fluxes are of the same order of magnitude 

as the net fluxes, but tend to be slightly lower.  Average net fluxes for the 49 reactions are 

found to be 0.46 µmol/min/gww, while average exchange fluxes are 0.41 µmol/min/gww. 

 

 Reversibility of reactions also provides information about the dynamics of flux 

patterns in a pathway.  Seven out of ten reactions in the glycolytic pathway are 

considered reversible as they participate in both glycolysis and gluconeogenesis.  

However, as the heart does not have a high gluconeogenic activity, these reactions do not 

have high exchange fluxes; their exchange fluxes make up less than 50% of the net 

fluxes.  The TCA cycle has five reversible reactions; three of them (succinate 
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dehydrogenase, malate dehydrogenase, and fumarase) have significantly higher exchange 

fluxes than the other two.  The high exchange rates in these enzymes justify the 

isotopomer scrambling assumption in the model.  Lastly, pseudoketogenesis, a process 

discovered by the label exchange between acetoacetate and acetoacetyl-CoA in rat 

hearts184, is also observed in the exchange fluxes predicted by the model.  The two 

reversible enzymes contributing to this pseudoketogenesis have the following net and 

exchange fluxes: thiolase (0.72 and 0.24 µmol/min/gww) and 3-ketoacyl-CoA transferase 

(0.41 and 0.13 µmol/min/gww).  In comparison, the net uptake to ketone bodies are 0.27 

(acetoacetate) and 0.46 (β-hydroxybutyrate) µmol/min/gww.  Thus, pseudoketogeneis 

makes up as much as 50% of net ketone body uptake by the perfused mouse heart. 

6. Properties of predicted flux distributions 

6.1 Reducing the solution space  

Complete estimates for net and exchange fluxes for reactions in the network can 

be found in Vo and Palsson164.  The amount of information gained by the addition of 

isotopomer data can be estimated by comparing the estimated flux variation computed 

with and without the isotopomer balance constraints.  The 149 reactions having no flux 

variation are not shown on Figure 5.2.  Without isotopomer data, only about 20% of the 

remaining reactions (reactions with non-zero flux variation) can be predicted with 

reasonably small flux ranges.  The application of isotopomer data, however, brings this 

number to 90%, a substantial improvement in flux estimation 
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6.2 Sensitivity with respect to user-defined initial points 

Locally optimal solutions returned by SNOPT are dependent on the user-defined 

starting points.  Starting points computed by the linear programming method, net
LPv , and by 

the Hit-and-Run algorithm94,185, net
randv , produce two sets of solutions, which are evaluated 

based on four characteristics: i) success in finding locally optimal solutions with the 

starting points; ii) values of the objective function Error; iii) correlation of the best 

solution (solution yielding the smallest error) with other locally optimal solutions; and iv) 

range of flux variation of each reaction across locally optimal solutions found.  First, the 

SNOPT solver converges to locally optimal solutions for more than 80% of the initial 

points generated by the LP method, but only 50% with points generated by the ACHR 

algorithm.  Second, the smallest errors found by both methods differ only by 0.1%.  

Comparing the two best solutions found with net
LPv  and net

randv  respectively, only 14 

reactions have flux values differing by more than 5% from each other.  Overall, 

approximately 90% of all locally optimal solutions found by the two methods have very 

similar error values (less than twice the error of the best solution); the remaining 10% are 

outliers with significantly higher errors164.   

 

Third, further analysis is limited to solutions with errors that are within 5% of the 

smallest error.  This way, predicted flux values provide the best estimates of 

physiological fluxes without over fitting the measured mass distributions.  Among this 

group of flux distributions, it is determined that if two flux distributions are well 

correlated, then the individual reaction fluxes in the two distributions must be similar.  As 
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expected, SNOPT is more likely to converge to the same optimal solution for net
LPv  that 

maximizes or minimizes fluxes through reactions in the same pathways.  In contrast, 

solutions found by net
randv  are less correlated with one another; their correlation coefficient 

values range from 0.5 to 1.  Lower correlation among solutions found with the second 

method implies that there exist a number of reactions whose fluxes cannot be determined 

precisely.  The high correlations seen with the first method are likely a result of 

incomplete sampling of the solution space.   

 

Lastly, in assessing how much isotopomer data helps in determining reaction 

fluxes, reaction flux ranges are evaluated for groups of flux distributions computed with 

net
LPv  and net

randv .  Within the first group, 21 reaction fluxes have standard deviations larger 

than 10% of the mean flux values.  Among solutions in the second group, 28 reactions 

have standard deviations larger than 10% of mean fluxes.  The former 21 reactions are a 

subset of the latter 28 reactions, indicating that the second initialization method provides 

a more exhaustive list of reactions whose fluxes cannot be precisely determined by  

isotopomer data.  Taken together, these results point to the following conclusions.  If one 

is only interested in the solution with the best objective value, it is possible to find such 

solution with either method of initialization.  However, if one is interested in studying 

how a set of isotopomer data narrows the range of allowable flux values for each 

reaction, the second method of initialization provides a more thorough answer. 
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6.3 Sensitivity with respect to experimental error 

 In order to investigate effects of uncertainty associated with each isotopomer 

measurement on results of the model, random isotopomer measurements are generated 

based on measurement statistics (normal distribution having reported mean and standard 

errors).  The net
randv  starting point yielding the best error value found in the previous 

calculations is used as the starting point here.  The resulting solutions are also assessed 

based on the four characteristics mentioned above.  A total of 98 out of the 100 sets of 

isotopomer data produce locally optimal solutions.  Similar to the previous results, 90% 

of these solutions have very similar objective values, while the remaining 10% have 

significantly higher error values.  The best flux distribution found from the previous 

sensitivity analysis, v*, is correlated with solutions found with these hypothetical 

isotopomer data as well as it is with solutions found with the original dataset164.  It is thus 

concluded that uncertainty associated with isotopomer measurement errors do not 

significantly change the estimated fluxes, so long as such uncertainty is sufficiently small 

(having similar relative errors as the data used here). 

7. Effects of Experimental Design 

7.1 Choice of labeled carbon sources 

 In choosing labeled substrates for an experiment, there are two considerations to 

keep in mind186.  First, labeled substrates should lead to high total 13C enrichment in the 

cellular system after potential decarboxylation.  Second, labeled substrates should result 

in different mass distributions of isolated metabolites under different flux distributions.  
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These two qualities are investigated by computing isotopomer distributions of isolated 

metabolites for a set of 1000 flux distributions.  The 1000 flux distributions are calculated 

using the Hit-and-Run sampling algorithm94,185.  Twelve commercially available substrate 

mixtures are studied:  

1) 100% [U-13C6] glucose 

2) 100% [1 13C] glucose  

3) 100% [2 13C] glucose  

4) 100% [4 13C] glucose  

5) 100% [6 13C] glucose  

6) 50% [U-13C6] glucose and 50% [1,2 13C] glucose 

7) 20% [U-13C6] glucose and 80% [1 13C] glucose  

8) 20% [U-13C6] glucose and 80% [2 13C] glucose  

9) 20% [U-13C6] glucose and 80% [3 13C] glucose  

10) 20% [U-13C6] glucose and 80% [4 13C] glucose  

11) 20% [U-13C6] glucose and 80% [5 13C] glucose  

12) 20% [U-13C6] glucose and 80% [6 13C] glucose 

 

The seven mixtures producing substantially higher total enrichment of the TCA 

cycle intermediates are 3, 4, 6, 8, 9, 10, and 11.  In addition, standard deviations are 

calculated for values of each mass isotopomer of each metabolite across the 1000 flux 

distributions.  The substrate mixtures producing the largest overall standard deviations 

are 7, 9 and 10.  Considering both qualities, one is recommended to use 20% [U-13C6] 
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glucose and 80% [3 13C] glucose or 20% [U 13C6] glucose and 80% [4 13C] glucose for 

studying the TCA cycle dynamics. 

 

 An isotopomer model generated under the framework described here is based on 

the assumption that one can determine the isotopomer distribution of the products of a 

reaction if the reaction rate and the isotopomer distribution of reactant(s) are known.  

Therefore, it is essential that the isotopomer distribution of at least one metabolite is 

always known throughout the time course of the experiment.  In practice, this can be 

done by supplying a tracer that is only taken up and not secreted by the cell at steady 

state.  This way the isotopomer pool for that metabolite does not get “contaminated” by 

isotopomers produced by the cell.  In the study by Khairallah et al.136, even though the 

perfusate was not recirculated after going through the heart, there is some mixing, in the 

extracellular space, of labeled pyruvate supplied by the buffer and pyruvate produced by 

the cell.  As a result, the isotopomer distribution of extracellular pyruvate was not known 

definitively through out the experiment.  The same situation occurred in the experiments 

with labeled lactate.  Therefore, of the four experiments by Khairallah et al.136, glucose 

and oleate are suitable substrates to be analyzed using the method described in this paper, 

but pyruvate and lactate are not. 

 

7.2 Choice of flux or isotopomer measurement 

 In profiling metabolic fluxes, one can combine mass isotopomer data with flux 

measurements to accurately determine the intracellular flux distribution in a metabolic 
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network.  As flux measuring experiments tend to be intricate and difficult, it is useful to 

identify which reaction rates are the most informative for determining the rate of the 

remaining reactions.  The calculated flux distributions yield a set of 28 reactions, whose 

flux values cannot be precisely determined with the present data.  These reactions 

generally fall into two categories: ketone body and glutamine metabolism.  Therefore, 

reaction fluxes or isotopomers of metabolites in pathways involving ketone bodies and 

glutamine are good candidates for measurement in future experiments.  By iteratively 

studying the results of previous measurements, each subsequent experiment benefits from 

the knowledge gained from previous experiments, and together they paint a more 

complete picture of the metabolic network.   

8. Computational Considerations 

 The optimization framework for predicting flux distribution from isotopomer data 

as described here produces a set of least-squares, best-fit, steady-state flux distributions 

from a given set of mass distribution data.  For common metabolic networks, there is no 

guarantee of finding the globally optimal solution in polynomial time.  As a result, one 

must sample a sufficiently large group of local solutions, and identify a group of flux 

distributions that are most likely to be physiological.  Alternatively, one can select the 

solution with the least deviation from experimental data and designate that as the best and 

most probable flux distribution.  The latter approach, however, is likely to over fit the 

data.  Though the process of developing a comprehensive model as presented here is 

more time consuming than deriving analytical expressions, the benefit of this approach is 
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that once the network and associated constraints are set up, they can be applied to analyze 

isotopomer data for various tracers with very little modification.  The AMMs and the 

IMMs are inherently modular; they only have to be constructed once and can be used in 

any networks that include the associated reactions.  In addition, the constraint-based 

framework ensures that predictions made by the model cannot contradict previously 

known information about reaction fluxes (those represented by constraints) and therefore 

the model can serve as a framework to resolve inconsistent data. 

 

In applying this approach for isotopomer analysis, careful consideration must be 

taken to determine which experimental quantities can be set as constraints and which 

quantities are used to formulate the objective function.  Constraints in the nonlinear 

programming problem specify mathematical relationships that the network must 

faithfully obey, while the objective function describes the preferable characteristics of the 

optimal solutions.  Most studies, including this one, have used mass distribution data for 

the objective function and measurements of substrate uptake and secretion rates as 

constraints.  This practice is usually followed for two reasons.  First, setting the mass 

distribution variables exactly equal to the mean of the observed data often eliminates all 

feasible steady states.  In addition, including the standard deviations as the lower and 

upper bounds for these variables is cumbersome, and the resulting sum of elements of the 

isotopomer distribution vectors may not be unity.  Second, it is much more 

straightforward to include flux means and standard deviations as constraints on reaction 

fluxes.  The consequence of these constraints can be quickly determined by solving a 

linear programming problem that excludes isotopomer balance constraints.  Constraints 
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should be set sufficiently loose to avoid eliminating physiologically relevant flux 

distributions.  Naturally, the decision on constraint formulation should be specific to the 

system of interest and confidence in the experimental measurements.   

 

 (This chapter, in part, is a reprint of the material appearing in “Isotopomer 

analysis of myocardial substrate metabolism: A systems biology approach,” Vo TD and 

Palsson BO. 2006. Biotechnology and Bioengineering, 95(5):972-83.  The dissertation 

author is the primary investigator and author of this paper.) 
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Table 5.1:Constraints on substrate uptake and efflux 
The constraints for oxygen, pyruvate, lactate, citrate, and succinate are converted directly from flux values 
reported by Khairallah et al.136 in the experiments with [U-13C6] glucose.  The reported unit of µmol/min is 
interpreted as µmol/min/heart, and is converted to µmol/min/gww using the reported mouse heart wet 
weight.  These constraints are set at two SE around the mean.  These values represent only the net uptake 
(negative) or secretion (positive) by the cells.   Pyruvate and lactate are allowed to be simultaneously taken 
up and released by the cells, as observed in the experiment.  The positive upper and lower bounds specify a 
net secretion of these two metabolites.  All numbers are derived from Khairallah et al. except for oleate 
which is taken from DeGrella and Light187 and the lower bound for glucose, which is set arbitrary large. 
 

Substrates Lower bound Upper bound 
Glucose          -10.00  -1.455 
Lactate    1.33            2.17 
Pyruvate      0.125   0.625 
Oleate  -0.30            0.00 
Citrate     0.015   0.019 
Succinate     0.005   0.017 
Oxygen  -7.05 -5.45 

 
 
Table 5.2: Fractional contribution of exogenous carbohydrates to cytosolic pyruvate 
Fractional contribution of each exogenous carbohydrate is calculated based on reaction fluxes calculated in 
the model.  Estimated values for Khairallah et al.136 are computed using flux results reported in that paper, 
with pyruvate uptake = 0.11 ± 0.02 µmol/min, lactate uptake = 0.09 ± 0.03 µmol/min, and glucose uptake 
rate > 0.51 ± 0.06 µmol/min (sum of lactate and pyruvate efflux when the heart is perfused with [U 13C6] 
glucose).  Values are reported as mean ± SD for this study and mean ± SE for Khairallah et al.   
 

Fractional contribution (%) 
 This study Khairallah et al. 
Glucose 
Lactate 
Pyruvate 
 

80 ± 2 
8 ± 2 
12 ± 2 

 

> 72 ± 8 
< 15 ± 4 
< 13 ± 3 

 
 



115 

 

 
A 

 
B 

0 2 4 6 8 10
0

2

4

6

8

10
citrate

E
xp

er
im

en
ta

l m
as

s 
di

st
rib

ut
io

ns

0 2 4 6 8 10
0

2

4

6

8

10
a-ketoglutarate

0 2 4 6 8 10
0

2

4

6

8

10
succinate

0 2 4 6 8 10
0

5

10
fumarate

0 2 4 6 8 10
0

5

10
malate

Predicted mass distributions
0 2 4 6 8 10

0

5

10
oaa(cit)

 
Figure 5.1: Predicted (calculated) mass distributions for TCA cycle intermediates compared to 
experimentally measured mass distribution 
In each panel, values from left to right are m4, m3, m2, and m1, reported as average molar percent 
enrichment.  The error bars are SE associated with experimental data reported by Khairallah et al. 136.  
Predicted mass distributions also have associated standard deviations, but such deviations are very small 
and are not visible in the figure. Compared to m1 and m2 isotopomers, there is stronger agreement between 
the predicted and the experimental averages for m3 and m4 isotopomers of the CAC intermediates.  The 
experimental data for m3 and m4 isotopomers have smaller standard errors, and thus the model favors flux 
distributions that have better fit for these isotopomers.  Oaa(cit) refers to the oxaloacetate moiety of citrate. 
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Figure 5.2: Estimated flux variation from the non-linear model using isotopomer data compared to 
those from the linear model not using isotopomer data 
“All locally optimal solutions with isotopomer data” refers to all solutions that the SNOPT solver returns 
with “locally optimal” status.  Some of these solutions may have very large error values.  “Locally optimal 
solutions with smallest Error” refers to solutions with objective values no more than 5% of the smallest 
error found.  The precision in flux estimation is at least one order of magnitude better when isotopomer 
data are used (A).  Flux variations have the unit of µmol/min/gww.  A total of 149 reactions (not shown) 
have constant flux values.  Flux variation is also reduced if one considers only flux distributions with the 
smallest errors rather than all locally optimal solutions (B) returned by the solver 
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Chapter 6  
Isotopomer Analysis of Cellular 
Metabolism in Normal and Disease States  
 

 

As hopefully has been clear in the preceding chapters, experimental studies 

constitute an essential component of systems biology, without which computational 

models cannot be built or validated.  Among the various data types discussed in this 

dissertation, staple isotopes as carbon tracers are perhaps the most straightforward to 

obtain and the most informative in identifying the steady states assumed by the cells.  

This chapter describes the acquisition of carbon tracer data, i.e. isotopomers and results 

from their analysis within the constraint-based framework.  The chapter is divided into 

three parts: i) experimental studies of HepG2 and dermal fibroblasts in media with 

labeled substrates, ii) analysis of the effects of changed medium composition on internal 

reaction fluxes of HepG2 cells, and iii) characterization of metabolic phenotypes and 

identification of the affected enzymes in fibroblasts.   

1. Experimental procedures 

1.1 Tissue culture 

Experiments with HepG2 cells: The human hepatoma HepG2 cell line is obtained 

from the American Type Culture Collection (ATCC, Manassas, VA), Cat No. HB-8065, 

and cultured according to published protocols188.  Briefly, these cells are grown in 
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DMEM, catalog numbers 11966 (medium A) and 11054 (medium B) (Invitrogen Corp., 

Carlsbad, CA).  The media are supplemented with 10% fetal bovine serum, 1% antibiotic 

and antimycotic, as well as 25 mM HEPES buffer.  Unlabeled and [1,2 13C2] glucose are 

added to medium A to make a final concentration of 1000 mg/L of each type of glucose.  

To medium B, [1,2 13C2] glucose is added to make a final concentration of 1000 mg/L 

(DMEM 11054 already contains unlabeled glucose) and asparagine to make a final 

concentration of 584 mg/L.  The complete contents of the media are shown in Table 6.1.  

Cells are grown in four flasks of each medium type.  When the cells are approximately 

50% confluent (~2.5 × 106 cells/plate), the media are removed, and the cells are washed 

with Dulbecco’s phosphate-buffered saline (Invitrogen Corp., Carlsbad, CA).  Tissue 

cultures are grown for 72 h, with a medium change every 24 h.  The media are saved for 

lactate and glutamate analysis.  After trypsin treatment, cell pellets are collected and kept 

frozen (-20 0C) until ready for RNA and lipid extraction. 

 

Experiments with fibroblasts:  Two fibroblast cell lines, CRL1501 (control) and 

GM015013 (Leigh’s disease) are obtained from ATCC and NIGMS Coriell Institute for 

Medical Research (Camden, NJ), respectively.  Cells are grown in DMEM (Invitrogen 

Corp., catalog number 11966) supplemented with 10% fetal bovine serum, 1% antibiotic 

and antimycotic, and 25 mM HEPES buffer188.  Unlabeled and [1,2 13C2] glucose are 

added to make a final concentration of 1000 mg/L of each type of glucose.  Each cell line 

is grown in four flasks for 70 h, with a medium change every 24 h.  The media are saved 

for pyruvate, lactate and amino acid analysis.  Pyruvate concentrations in media are 

measured after 2 and 5 h, and lactate and glucose concentrations are measured after 2, 5 
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and 70 h.  Amino acid concentrations in media are determined by comparing their 

intensities at 70 h with a standard (Sigma, catalog number A6407).  Cells are washed 

with Dulbecco’s phosphate-buffered saline (Invitrogen Corp.) and removed from flasks 

with trypsin.  Cell pellets are collected and kept frozen (-20 oC) until ready for protein 

isolation. 

1.2 Cleanup and derivatization of metabolites 

Lactate: A 1-ml aliquot of medium is loaded onto a dowex-1 column and 

acidified with 2 N acetic acid.  The eluting mixture is dried under compressed air.   

Lactate is derivatized to n-propylamide-heptafluorobutyric ester according to the method 

of Tserng et al.189 for GC-MS analysis. 

 

Fatty acids: Lipids are separated from the cell pellet by saponification of 

triglycerides with 1 ml 30% KOH-ethanol (1:1, vol/vol) at 70°C overnight190.  Neutral 

lipids are first removed with petroleum ether extraction.  The solution containing the 

saponified fatty acids is then acidified; palmitate and other fatty acids are recovered with 

another petroleum ether extraction.  Extracted palmitate is dried and then esterified with 

0.5 N HCl in methanol (Supelco, Bellfonte, PA) for GC-MS analysis191. 

 

Ribose: RNA is extracted from the cell pellet after treatment with ice-cold 0.5% 

Tryzol (vol/vol).  The purified RNA pellet is hydrolyzed in 2 ml 2 N HCl for 2 h at 100 

°C and dried under a flow of nitrogen. Ribose is then derivatized to its aldonitrile acetate 

form for GC-MS analysis188.  
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Amino acids from cell pellets:  2 ml of phosphate-buffered saline are added to 

dissolve a pellet sample of 5-10 million cells.  The sample is centrifuged at 2500 rpm for 

10 min.  The supernatant is removed, followed by an addition of 200 µl of HPLC-grade 

water.  The sample, placed in ice water, is sonicated for 12 min and is transferred to 

Eppendorf microcentrifuge tubes for 30 min of centrifugation at 10,000 rpm at 4 °C.  The 

supernatant is then pipetted to glass tubes, combined with 300 µl of 12 N HCl and heated 

over night at 100 oC.  After being dried under nitrogen, 200 µl CH2Cl2 and 20 µl of 

trifluoroacetic anhydride are added to the sample and kept at room temperature for 20 

min.  After the solvent is dried again with nitrogen, CH2Cl2 is added to dissolve the 

sample for GC-MS analysis.   

 

Amino acids from media: 1 ml culture medium is loaded on a dowex-50 cation 

exchange column to bind positive ions.  Columns are washed with 10 ml water to remove 

neutral and positively charged compounds.  The amino acids are eluted with 10 ml 2 N 

NH4OH and dried under compressed air.  The derivatization procedure is the same as that 

for amino acids from cell pellets. 

 

Glutamate from media: The procedure for isolating glutamate from the media is 

the same as that described for isolating amino acids from the media. To further separate 

glutamine from glutamate, samples are dissolved in water and loaded on dowex-1 anion 

exchange columns.  Glutamine is removed with 15 ml water.  Glutamate is eluted with 

0.5 N acetic acid and dried under compressed air.  The dried sample is combined with 
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200 µl butanolic HCl and heated for at least 1 h at 100 °C.  The sample is dried under 

nitrogen.  The derivatization procedure is the same as that for amino acids from cell 

pellets.  The resulting derivative of glutamate is n-trifluoroacetyl-n-butyl-ester. 

 

1.3 GC-MS analysis 

 GC-MS analysis is carried out with a Hewlett Packard Gas Chromatograph (6890 

series) connected to a 5973 HP Mass Selective Detector.  GC conditions are as follows: 

injector temperature 250 oC and oven temperature 210-220 oC at 10 oC/min192.  For 

lactate, ribose, and amino acid analysis, an Agilent HP-5 capillary column (30m × 250 

µm) is used with He as carrier gas at a constant flow rate of 1 ml/min.  For palmitate, a 

SGE bpx70 column (30m × 250 µM) is used, also with a constant He flow of 1 ml/min.  

Electron impact ionization is used to identify labeled carbons in mass fragments of 

palmitate (m/z 270), alanine (m/z 140-142), glycine (m/z 126-127), threonine (m/z 153-

156), valine (m/z 168-172), leucine (m/z 182-187), isoleucine (m/z 182-187), proline 

(m/z 166-170), methionine (m/z 153-156), aspartate (m/z 184-187), phenylalanine (m/z 

91-98), tyrosine (m/z 203-210), and glutamate (m/z 198-202)193.  Lactate fragments (m/z 

328) and ribose C1-C5 fragment (m/z 256) are monitored under chemical ionization with 

20% methane as the reagent gas.  Each biological sample is analyzed three times in the 

GC-MS machine; selected ions are recorded and normalized in abundance. 

2. Pathway-based analysis 
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HepG2, derived from a liver carcinoma, is an adherent cell line that has been 

widely used as a model for hepatocellular carcinoma48-50.  A variety of Dulbecco’s 

modified Eagle’s media (DMEM) have been used to propagate HepG2 cells in tissue 

cultures194-196, although it is not clear how closely these media can mimic the 

physiological extracellular environment or what effects different varieties of DMEM 

have on the cell’s metabolism.  Here HepG2 cells are cultured in two DMEM media, 

which are different in their amino acid and carbohydrate compositions (Table 6.1).  Using 

[1,2 13C2] glucose as the tracer, GC-MS methods are applied to determine the isotopomer 

mass distributions of glutamate, ribose, lactate, and palmitate.  As mentioned, both the 

pathway-based and network-based methods are applied to calculate reaction fluxes using 

known HepG2 biochemistry and measured isotopomers.  With the pathway-based 

method, the analysis is limited to 12 reactions involved in the TCA cycle, pentose 

phosphate cycle (PPC), and palmitate synthesis.  On the other hand, a more extensive 

model of HepG2 metabolism involving 254 reactions and 269 metabolites is used in the 

network-based analysis. 

 

2.1 Anaplerotic and TCA cycle fluxes inferred from glutamate isotopomers 

Supplied [1,2 13C2] glucose is metabolized to [2,3 13C2] pyruvate, which, in turn, 

is primarily either carboxylated to [2,3 13C2] oxaloacetate or decarboxylated to [1,2 13C2] 

acetyl-CoA.  In the first turn of the TCA cycle, these oxaloacetate and acetyl-CoA form 

[2,3 13C2] citrate (oxaloacetate moiety) or [4,5 13C2] citrate (acetyl-CoA moiety).  

Resulting α-ketoglutarate molecules are either labeled in C2 and C3 or C4 and C5, both of 
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which yield m2 glutamate (Figure 6.1).  Subsequent turns of the TCA cycle produce m1 

α-ketoglutarate, and thus m1 glutamate.  Justification and detailed description of these 

assumptions have been published in the literature139.  The ratios m1/Σm and m2/Σm, 

where Σm is defined by Equation 6.1, reflect the activity of the TCA cycle.  The different 

mi in this equation correspond to the different fractional mass isotopomers of glutamate:   

Σm = m1 + m2 + m3 + m4  (Equation 6.1) 

 

If it is further assumed that the two primary fates of oxaloacetate are being 

converted to citrate and exiting in anaplerosis as phosphoenol pyruvate, then the 

corresponding fraction of oxaloacetate in each path can be referred to as r and (1-r), 

respectively.  The effective anaplerosis is simply (1-r)/r, where the value for r can be 

inferred from the ratio of m1/m2 glutamate (Equation 6.2)139,197: 

r
r

m
m

5.012
1

−
=       (Equation 6.2) 

 

2.2 Ribose isotopomers and the pentose phosphate cycle fluxes 

Riboses isolated from RNA are mostly derived from ribose-5-phosphate (R5P).  

R5P can either come from the isomerization of ribulose-5-phosphate (produced by 6-

phosphogluconate dehydrogenase) or from sedoheptulose-7-phosphate and glycer-

aldehyde-3-phosphate (G3P) carbon rearrangement.  The former pathway can form m1 

and m3 R5P from [1,2 13C2] glucose through the action of 6-phosphogluconate 

dehydrogenase and transketolase.  The latter path can produce either m2 or m4 R5P:  m2 

R5P can be derived from [1,2 13C2] fructose or [2,3-13C2] G3P, and m4 R5P is produced 
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when both of these molecules come together to form [1,2,4,5-13C4] xylulose-5-phosphate, 

which isomerizes to R5P188.  Therefore, the ratio of the oxidative to non-oxidative branch 

of the pentose phosphate cycle can be inferred from Equation 6.3: 

4*22
31
mm

mm
veNonoxidati

Oxidative
+

+
=       (Equation 6.3) 

 

When [1,2 13C2] glucose is used as the tracer, the enzyme 6-phosphogluconate 

dehydrogenase produces [1 13C] R5P, which can be recycled to single C1, C2, or C3 

hexose phosphate.  These hexoses are eventually converted to [3 13C], [2 13C], or [1 13C] 

lactate (m1).  On the other hand, lactate produced from glycolysis is primarily [2,3 13C2] 

lactate (m2).  Hence, PPC flux can be estimated based on the enrichment in m1 and m2 

lactate (Equation 6.4)188,198: 

PPC flux 
2*31

1
mm

m
+

=     (Equation 6.4) 

 

2.3 Fractional synthesis rate of palmitate 

A fraction of acetyl-CoA produced from glucose oxidation is converted to 

palmitate.  In calculating the fraction of palmitate newly synthesized from acetyl-CoA, 

three assumptions are made: i) newly synthesized palmitate is derived entirely from 

acetyl-CoA; ii) this acetyl-CoA pool is made up of m0 and m2 mass isotopomers (m2 

acetyl-CoA originates from [1,2 13C2] glucose); iii) the fractional enrichment of a 

particular palmitate isotopomer (mk) can be estimated from the binomial distribution 

describing eight draws of acetyl-CoA from the mentioned acetyl-CoA pool.  The 
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rationale for these assumptions has been described in the literature199,200.  Thus, the 

expected fractional enrichment of palmitate mk can be calculated with Equation 6.5: 

iNi
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=    (Equation 6.5) 

where N is the number of acetyl-CoA per palmitate molecule (eight), i is the number of 

m2 acetyl-CoA incorporated into palmitate, p is the fractional enrichment of m2 acetyl-

CoA, and q is the fractional enrichment of m0 acetyl-CoA.  The sum of p and q is one, 

based on assumption 2.  The expected value for p can be computed by taking the ratio of 

two consecutive mass isotopomers (Equation 6.6),   
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if mk represents the fractional enrichment of m2 palmitate (thus i=1) and mk+1 represents 

the fractional enrichment of m4 palmitate (thus j=2).  Equation 6.6 can be simplified to 

Equation 6.7 to evaluate p based on the observed m2 and m4 palmitate: 
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=    (Equation 6.7) 

 

Fractional synthesis rate (FSR) of palmitate derived from [1,2 13C2] acetyl-CoA 

can be estimated based on the ratio of observed mk palmitate to the expected mk if all 

palmitate molecules are synthesized from the acetyl-CoA pool mentioned above 

(Equation 6.8)191.  
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3. Network-based analysis 

The network-based analysis requires the use of a reconstructed metabolic network 

and constraints on reaction fluxes as well as metabolites to identify the set of flux 

distributions best matching observed isotopomer data.  Contents and procedures for 

constructing the HepG2 and fibroblast metabolic networks are described in Chapter 2.  

Relevant constraints as well as methods for integrating isotopomer data for reaction flux 

determination are provided in Chapter 4. 

4. Effects of altered substrate availability on HepG2 metabolism 

Composition of culture media is critical for proper cellular function, growth, and 

survival.  Commercially available media routinely used for established cell lines often 

include serum, glucose, glutamine, and a few other amino acids.  A carbon tracing 

experiment with HepG2 cells cultured in two different DMEM media is conducted to 

explore the response of HepG2 cells to variations in medium nutritional composition.   

These two media (A and B, Table 6.1) are slight modifications of the media obtained 

from Invitrogen.  [1,2 13C2] glucose is chosen as this tracer leads to the same primary and 

secondary oxaloacetate isotopomers (Figure 6.1), thereby avoiding the complication in 

isotopomer analysis encountered with [U-13C6] glucose201.  Secondary oxaloacetate 

isotopomers are produced through the cycling of pyruvate: pyruvate → oxaloacetate → 
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PEP → pyruvate.  The advantage of [1,2 13C2] glucose over other singly-labeled glucoses 

in studying the dynamic changes of PPC has also been discussed188.  Over the course of 

72 h, glutamate, ribose, lactate, and palmitate from the cultures are isolated and analyzed 

with GC-MS methods to investigate any changes in cellular metabolism.  Results of this 

study are discussed in two parts: i) changes in cellular energy metabolism as inferred 

from the pathway-based method (Section 4) and ii) additional insights gained from the 

network-based method about the intracellular flux distribution and nutritional needs of 

HepG2 cells (Section 5). 

 

4.1 Effects of glutamine and asparagine on the TCA cycle  

Over the course of 72 h, HepG2 cells grow equally well in both A and B media.  

Glutamate isolated from cells grown in glutamine-containing culture (medium A) shows 

a lower relative abundance of labeled glutamate compared to those grown in asparagine-

containing culture (medium B) in all 24, 48, and 72 h samples (Table 6.2).  This lower 

enrichment indicates a dilution of cellular glutamate with glutamate produced by 

glutamine from the culture medium.  Since it is assumed that m1 and m2 glutamate make 

up the major glutamate isotopomers formed from [1,2 13C2] glucose, the relative 

abundance of these two isotopomers (m1/Σm and m2/Σm, Table 6.2) reflects the flow of 

glucose carbon through reactions in the TCA cycle139.  Results show that HepG2 cells 

grown in glutamine-containing media produce a higher amount of m2 glutamate, but 

lower m1 glutamate than those grown in the other media.  This suggests that [1,2 13C2] 
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glucose metabolism by the TCA cycle in cultures A and B is not exactly the same, 

despite the similar observed growth. 

 

Intermediates of the TCA cycle are continually consumed and produced via 

processes of cataplerosis and anaplerosis.  Anaplerosis conserves and refills the TCA 

cycle intermediate pool which is depleted by biosynthesis processes202.  Three-carbon 

anaplerosis at oxaloacetate is maintained by the actions of phosphoenolpyruvate 

carboxykinase (PEPCK) and CS.  Effective anaplerosis is thus defined as the ratio of 

these two paths representing the ratio of anabolic activity to energy production.  Analysis 

of m1 and m2 glutamate isotopomers indicates that the presence of pyruvate and 

asparagine in medium B leads to a 30% decrease of effective anaplerosis in HepG2 cells.  

This suggests that either the flux at CS is increased or that PEPCK flux is decreased with 

the presence of pyruvate.  The former hypothesis is more likely as it is consistent with the 

presence of pyruvate and the increased m1 glutamate observed above. 

 

4.2 Activity of the pentose phosphate cycle (PPC) 

In addition to glycolysis, glucose is also metabolized by the PPC to form ribose-5-

phosphate.  The PPC has two main branches, oxidative and non-oxidative.  Fluxes 

through these two branches are modulated by cellular needs for ribose in nucleic acid 

synthesis, NADPH in lipogenesis, or both.  The oxidative branch produces mostly m1 

and m3 riboses, while non-oxidative enzymes produce mostly m2 and m4 riboses.  

Overall, HepG2 cells grown in the two media exhibit only a small difference in the total 
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enrichment of ribose from glucose labels; such difference is attributable to random 

measurement error (Figure 6.2).  Accordingly, the ratios of ribose produced by oxidative 

to non-oxidative branches are essentially the same for HepG2 cells cultured in media A 

and B.  In addition, PPC flux, relative to glycolysis, can also be estimated using isotope 

yields from triose products188,198.  Calculations (Equation 6.4) show that HepG2 cells 

grown in medium A do not have a significant change in relative PPC flux compared to 

those in medium B (6.5 ± 0.4% and 6.1 ± 0.5%, respectively).  The comparable growth 

observed for cells in both media is also indicative of this similar ribose synthesis rate. 

  

4.3 Palmitate synthesis 

Palmitate isolated from culture media is used to assess de novo lipogenesis as it 

has been reported that cultured HepG2 cells preferentially and rapidly secrete de novo 

synthesized fatty acids rather than storing them in the cytosol203.  De novo synthesis of 

cellular palmitate comes entirely from the intracellular acetyl-CoA pool, which itself is 

mostly produced from oxidation of supplied [1,2 13C2] glucose, unlabeled glucose, and 

fatty acids.  As in previous work, the synthesis of palmitate is modeled by a binomial 

distribution, with p being the probability of drawing a m2 acetyl-CoA and q being the 

probability of drawing a m0 acetyl-CoA from the intracellular acetyl-CoA pool198,199.  

Therefore, the values p and q represent the fractional enrichment of m2 and m0 acetyl-

CoA, respectively.  This analysis shows that acetyl-CoA enrichment from [1,2 13C2] 

glucose is not significantly affected by the composition difference between media A and 

B (Figure 6.3, Table 6.3).  De novo palmitate synthesis of cells in culture A and B is 
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estimated to contribute 47.7% and 34.6%, respectively, to the total intracellular palmitate 

pool.  The estimate for cells in medium B is remarkably similar to the reported 33 ± 2% 

hepatic de novo lipogenesis based on intravenous infusion of stable isotope tracers in 

healthy volunteers204.  Since palmitate had the highest synthesis rate among non-essential 

fatty acids in that study, it is likely that the palmitate synthesis rate estimated here also 

represents the majority of de novo lipogenesis activity in HepG2 cells. 

5. Insights from the network-based analysis 

5.1 Computational model used in the network-based analysis 

A computational model (Section 3) incorporating the major metabolic pathways 

in HepG2 cells and measured isotopomer data is used to estimate reaction fluxes in these 

pathways.  Such flux distributions elucidated the mechanism by which cells produce the 

observed 13C isotopomers.  Metabolism of HepG2 cells is represented by a biochemical 

network describing glycolysis, the TCA cycle, the PPC, oxidative phosphorylation, 

amino acid metabolism, β-oxidation, porphyrin metabolism, the urea cycle, palmitate 

biosynthesis, and phospholipid synthesis.  These pathways make up a total of 254 

reactions and 269 metabolites.  The model also keeps track of isotopomers of 104 of 

these metabolites.  This is thus the largest metabolic network ever used for isotopomer 

analysis.  In comparison, some of the largest previous models include Saccharomyces 

cerevisiae (54 reactions155 and 37 reactions156), Corynebacterium glutamicum (47 

reactions160), and Escherichia coli (32 reactions152). 

 



131 

 

5.2 Effects of extracellular environment on intracellular fluxes 

A fundamental distinction between the network-based approach and the previous 

pathway-based method is the presence of a well defined system enclosed by a theoretical 

boundary145,179.  This boundary, defined here to be just outside the plasma membrane, 

differentiates substrates that must be taken up (input) from by-products that must be 

secreted by the cell (output).  In addition, fluxes in exchange with the environment are 

now distinguishable from internal reaction fluxes, so changes in intracellular flux 

distribution can be understood in terms of input/output behaviors of the cellular system. 

 

It is well documented that cultured cells utilize both glucose and glutamine as 

energy sources and precursors for other biosynthetic products205,206.  When glutamine (in 

medium A) is replaced with asparagine (in medium B), the cells must be able to 

substitute their requirement for the former amino acid, at least partly, by asparagine.  It 

has also been reported that while hepatocytes use the same transport systems, systems A 

and N207,208, for both glutamine and asparagine, the rate of glutamine uptake is 

substantially higher than that of asparagine209.  Results from this study indeed confirm 

this relationship.  Glutamine is estimated to be taken up at the rate of 9.24 nmol/min/mg 

protein by HepG2 cells in medium A, while those in medium B take up asparagine at a 

much slower rate, 3.78 nmol/min/mg protein (Figure 6.4).  On the other hand, the 

estimated glucose uptake rates for these two cultures are similar, 1.94 and 1.85 

nmol/min/mg protein, in media A and B, respectively.  Interestingly, cultures A secrete a 

net amount of pyruvate, 2.38 nmol/min/mg protein, while cultures B take in a net amount 

of this compound, 10.34 nmol/min/mg protein.  The conversion of pyruvate to lactate, i.e. 
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activity of lactate dehydrogenase, in cells cultured in medium B is less than half of that in 

cells cultured in medium A (Figure 6.4). The amount of lactate secreted is similarly 

decreased, from 1.96 to 0.68 nmol/min/mg protein in cultures A and B, respectively. 

 

Due to the differences in the consumed carbon sources, cells grown in medium A 

primarily have glutamine entering the TCA cycle as α-ketoglutarate, while those in 

medium B have asparagine and pyruvate entering the cycle as oxaloacetate and acetyl-

CoA.  Fluxes through enzymes in the TCA cycle reflect these dynamics: cells in medium 

A have substantially higher α-ketoglutarate dehydrogenase activity, while the other cell 

cultures have higher pyruvate dehydrogenase and CS activities (Figure 6.4).  As a result, 

not all enzymes in the TCA cycle functioned at the same steady state reaction rates.  

Based on the observed glutamate isotopomers and the pathway-based analysis, it was 

previously suggested, from the pathway-based analysis, that cells grown in medium B 

have different TCA cycle activity; here the model shows that only isocitrate 

dehydrogenase and upstream enzymes had higher fluxes.  On the other hand, malate 

dehydrogenase has a higher flux in culture A.  In short, the majority of carbon sources 

enter the TCA cycle at α-ketoglutarate dehydrogenase in cells cultured with medium A, 

but enter at CS, both by oxaloacetate (product of asparagine) and acetyl-CoA (product of 

glucose and pyruvate), in those cultured with medium B (Figure 6.4).  It is concluded that 

the observed disparity in glutamate isotopomers as well as the estimated reaction fluxes is 

a result of the difference in substrate entry points.  
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5.3 End products of cells grown in glutamine and asparagine-containing 

media 

The model predicts that HepG2 cells grown in glutamine-containing media 

(medium A) secrete various metabolites into the media including lactate (1.96 

nmol/min/mg protein), alanine (3.13), proline (0.87), serine (0.15), citrate (0.85), and 

ketone bodies (0.9).  These secretion rates are all within the range reported for thirteen 

other mammalian cell lines210.  Of these metabolites, cells grown in medium B are 

predicted to secrete alanine, serine, and ketone bodies.  Perhaps most interesting, cells 

grown in glutamine-containing media secrete asparagine, 0.83 nmol/min/mg protein, and 

those in asparagine-containing media secrete glutamine, 1.09 nmol/min/mg protein.  

Gluconeogenesis is represented in the network as a demand on glucose-6-phosphate, 

which is exported to the endoplasmic reticulum.  The model predicts comparable 

glucose-6-phosphate export for both cultures: 0.9 and 1.1 nmol/min/mg protein for cells 

in media A and B, respectively. 

   

Cells use a fraction of acetyl-CoA produced by glucose, pyruvate, and fatty acids 

to synthesize palmitate.  The model predicts a much smaller enrichment of m2 acetyl-

CoA (~1%) in both cultures than the value of p calculated from the pathway method 

(Figure 6.3).  The steady state rate of palmitate synthesis is predicted to be 0.06 and 0.04 

nmol/min/mg protein for HepG2 grown in medium A and B, respectively.  Similarly, the 

rate of phospholipid synthesis in culture A (0.16 nmol/min/mg protein) is higher than that 

in culture B cells (0.10 nmol/min/mg protein).  On the other hand, the collective β-

oxidation of fatty acids in the media (palmitate, stearate, oleate, octadecynoate, 
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arachidonate, and docosahexaenoate) is 50% lower in the former cultures (0.89 

nmol/min/mg protein) compared to the latter (1.29 nmol/min/mg protein).  These fatty 

acids produced acetyl-CoA at the rates of 5.25 and 7.75 nmol/min/mg protein, 

respectively, making them a major energy source in the cell.  The generation of ketone 

bodies is also indicative of this high fatty acid oxidation.  Collectively, the flux in lipid 

metabolism pointed to the same conclusion that asparagine (medium B) supplied at the 

same amount as glutamine (medium A) in the media is not able to sustain equivalent 

cellular metabolism.  Cells grown in medium B consequently must take up more of other 

substrates and produce fewer end products into the media. 

 

Though asparagine and glutamine have the same number of nitrogen atoms per 

molecule, cells grown with glutamine (medium A) have a higher steady state nitrogen 

load as they take up glutamine at a faster rate.  This effectively increases the amount of 

ammonia that has to be converted to urea.  It is thus not surprising that enzymes in the 

urea cycle have much higher steady state rates than those in asparagine cells; urea 

secretion in medium A is 6.14 nmol/min/mg protein and is 1.63 nmol/min/mg protein in 

medium B (Figure 6.4).  Since enzymes in the urea cycle require energy, the energy load 

in culture A is also likely to be higher.  These results suggest that one can improve the 

growth rate and reduce energy load of cultured HepG2 cells by substituting asparagine 

for glutamine at a sufficiently high concentration to overcome the slower asparagine 

transport rate. 

6. Fibroblasts as a model for Leigh’s syndrome 
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Leigh’s syndrome, first described this disease as subacute necrotizing 

encephalomyelopathy in an infant211 is a progressive neurodegenerative disorder 

exhibiting considerably variable clinical signs, symptoms, onset time, and course.  

Symptoms of LS may include mental retardation, abnormal breathing rhythms, optic 

atrophy, ataxia, and dystonia212.  Standard diagnostic tests for LS patients include MRI, 

lactate and pyruvate levels from plasma and/or cerebro-spinal fluid analysis, and 

mitochondrial morphology213.  Studies have associated LS with mutations in complexes 

of the respiratory chain (commonly in I and IV, and less frequently in II and III), 

ATPase6, and components of the pyruvate dehydrogenase complex (PDHC)214 (Table 

6.4).  However, the low correlation in clinical results with symptoms and inheritance 

pattern (autosomal dominance, X-linked, and maternal inheritance) of this syndrome 

indicates that such assays are insufficient to distinguish the different underlying disorders 

of LS.  Therefore, methods to comprehensively elucidate metabolic responses of Leigh-

affected cells, thereby identifying affected enzymes or energetic processes, are needed 

before appropriate treatments can be developed for the disease.  

 

Metabolic profiling is becoming a recognized platform for disease diagnostics215.  

Current MS and NMR-based technologies are capable of identification and quantification 

of small molecules, both of which are important for metabolic phenotyping of a cell.  

Tracer-based metabolomics is a branch of metabolomics that focuses on metabolite 

quantification using isotopes as labeled tracers137,145.  Relative intensities of different 

isotopomers of a metabolite reflect the internal flux distribution, hence metabolic 

phenotype and functional state, of the cell.  The large-scale determination of intracellular 
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fluxes based on isotopomer data requires a computational model that can accommodate 

flux and carbon tracking for the several hundred reactions making up the major 

biochemical pathways in a human cell.  A constraint-based model, which allows the 

calculation of reaction fluxes based on network stoichiometry, substrate uptake and 

secretion rates, and mass balance on 13C labels, is the systems biology solution for this 

problem216,217.  This systems biology approach is preferred over the traditional pathway-

based approach because the resulting flux estimates can be obtained in absolute units, as 

opposed to flux ratios, and are mutually consistent among the several hundred reactions 

in the network51.  Recently, constraint-based models have been successfully used to 

determine reaction fluxes for E. coli 216, cardiomyocytes217, and hepatocytes51. 

 

Fibroblasts are chosen as the model system for metabolic profiling of LS 

metabolism as they are easily and routinely obtained from patients.  In addition, 

fibroblasts are one of the few cell types that have the ability to grow in tissue culture 

without being transformed.  The present studies aim to elucidate substrate utilization, 

energy production, and deficient enzyme complex(es) in a LS affected cell line through 

systems analysis of isotopomer data obtained from a 13C tracer study. 

7. Leigh’s cells have slower substrate utilization than control cells 

 The fibroblast metabolic network is used to analyze isotopomer data, thereby 

characterizing metabolic phenotypes of normal and LS fibroblasts.  The slower 

metabolism of LS affected cells is evidenced by their lower overall substrate utilization 
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and secretion of end products (Figure 6.5).  Based on substrate uptake and secretion rates, 

the model predicts a respiration rate of 202 ± 50 nmol/hr/mil cells for control fibroblasts 

and 155 ± 8 for the Leigh’s cell line.  The normal oxygen consumption of cultured 

fibroblasts, measured from 158 samples, has the range of 120-240 nmol/hr/mil cells218.  

Glucose taken up by LS affected cells is approximately 35% of the control (1.89 

nmol/hr/mil cells vs. 5.31 nmol/hr/mil cells).  Pyruvate and lactate secretions in LS cells 

(0.70 and 2.40 nmol/hr/mil cells) are also lower accordingly (control: 0.96 and 5.46 

nmol/hr/mil cells, respectively).  Relative to the glucose uptake rate, pyruvate and lactate 

secretions are higher in LS cells, indicating higher anaerobic respiration in this cell line.   

 
Uptake and secretion rates of the majority of amino acids from and into the media 

are also slower in affected cells as compared to the controls.  Those with the largest 

differences are alanine secretion (normal vs. LS: 50.5 vs. 15.9 nmol/hr/mil cells), 

glutamine uptake (16.7 vs. 5.42 nmol/hr/mil cells), histidine uptake (17.7 vs. 7.67 

nmol/hr/mil cells), and tyrosine uptake (9.47 vs. 0.74 nmol/hr/mil cells).  In contrast, 

methionine uptake is much higher in LS affected cells (9.34 vs. 13.7 nmol/hr/mil cells) 

and serine uptake is slightly higher (19.5 vs. 19.7 nmol/hr/mil cells) (Figure 6.6).  

Predicted flux distributions show that methionine is used for creatine production and 

serine for succinyl-CoA production.  The collective free fatty acid (palmitate, stearate, 

oleate, octadecynoate, arachidonate, and docosahexaenoate) consumption by LS affected 

cells is 0.36 nmol/hr/mil cells and of normal fibroblast is 0.46. 

 

 Observed growths are comparable between patient and control cell lines 
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(approximately 0.02 hr-1).  Interestingly, this growth rate is much slower than what is 

theoretically permitted based on standard flux balance analysis (linear optimization) 22.  

In fact, the model shows that both cell lines are capable of producing ATP at a rate that is 

an order of magnitude higher than the ATP requirement associated with the biomass 

function.  The biomass function used in the present model is a slight modification of that 

published for the mouse model219, as comparable data are not available for human 

fibroblasts.  The lower growth-associated ATP requirement relative to the cell’s ATP 

production capability suggests that either much of the consumed substrates are converted 

to storage forms or that there are many other energy consumption processes not 

accounted for in the biomass function.  Another implication is that growth prediction 

made from similar flux balance analyses will vastly overestimate the growth rate of 

fibroblasts in culture or that substrate consumption predicted based on observed growth 

using the same procedure will be grossly underestimated.   

8. Validation of predictions for intracellular reaction fluxes 

Flux results described in the following sections are derived from analysis of the 

508 reactions in the network, and thus are mutually consistent assuming that the 

reconstructed biochemical network is correct.  Consequently, the validation (through 

comparison with published results from other studies) of a subset of reaction fluxes in the 

model also serves as indirect validation for estimated fluxes of the remaining reactions, as 

all of these reactions are connected through a cohesive model representing the underlying 

biochemical network.   
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Flux values predicted by the model are compared to results of in vitro enzymatic 

activity measurements.  Except for PDHC whose activity has been reported for the 

GM01503 (Leigh’s) cell line, the remaining comparisons are taken from various cultured 

fibroblasts that were used as controls in the literature.  In particular, the basal activities of 

PDHC in normal and LS cells were reported to be 1.0-1.5 nmol/min/mg protein220,221, 

which is approximately 30-45 nmol/hr/mil cells if one assumes an average of 1 mg cell 

protein per 2 mil cells222,223 (Table 6.5).  Predicted fluxes for PDHC in control and LS 

affected fibroblasts in this study are 30.7 ± 2.3 and 31.5 ± 3.6 nmol/hr/mil cells, 

respectively (Figure 6.6).  An enzyme commonly used as an indicator for the TCA cycle 

activity is citrate synthase (CS).  However, reported in vitro activities for CS (20-32 

nmol/min/mg protein224 and 53 nmol/min/mg225) are significantly higher than that of 

aconitase (ACONT, 0.4-1 nmol/min/mg protein) and isocitrate dehydrogenase (ICDH, 1-

3 nmol/min/mg protein)224.  Table 1 shows the rates of these enzymes in the flux unit of 

the model.  The model predicts similar fluxes for all three enzymes, ~29 ± 19 nmol/hr/mil 

cells.  This similarity is a result of the steady state constraint which ensures that the 

majority of products produced by one enzyme are consumed by the next enzyme. 

 

Activity for mitochondrial malic enzyme was reported to be 1.21 ± 0.9 

nmol/min/mg protein, which is equivalent to 9-63 nmol/hr/mil cells221.  The model’s 

predicted flux for this enzyme is 34.6 ± 10.8 nmol/hr/mil cells.  Lastly, activity for lactate 

dehydrogenase has been published to be as high as 699 ± 91 nmol/min/mg protein, 

equivalent to 9.5-23.7 x 103 nmol/hr/mil cells221.  This high rate suggests that the enzyme 
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is highly reversible and sensitive to changes in lactate and pyruvate levels.  The model 

does not predict such a high rate of activity for this enzyme, but it is sufficiently high that 

intracellular lactate and pyruvate are isotopically equivalent. 

9. Mutations are predicted to be present in complex II of the 

respiratory chain 

Currently Leigh’s syndrome is diagnosed for all patients who have an early-onset 

progressive neurodegenerative disease that results in cellular necrosis.  Thus all patients 

diagnosed with LS may not have the same underlying disorder220.  Techniques for 

characterizing cellular defects at higher resolution are necessary before appropriate 

treatments can be developed.  It is shown in this study that carbon tracer data in 

combination with a constraint-based model can be used to elucidate the metabolism of 

the diseased cells, thereby identifying the most likely affected enzyme. 

 

9.1  Ruling out PDHC 

GM01503 is believed not to contain a deficient PDHC.  There are four pieces of 

evidences supporting this conclusion.  First, the model does not predict reduced PDHC 

activity for LS affected cells as compared to that in the controls.  Direct PDHC 

biochemical assays reported a normal activity range of 30-45 nmol/hr/mil cells220 which 

encompasses the predicted PDHC flux values for both fibroblast cell lines used in this 

study.  Second, the lactate levels found in two media (control: 1.20 ± 0.08 mM and 

Leigh: 1.23 ± 0.01 mM) are within the normal range (< 2.25 mM)226.  Third, the ratios of 
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lactate to pyruvate are very similar between the controls (15.6 ± 2.5) and LS cells (11.4 ± 

0.4), but are markedly different from that of the known PDH deficient cells (GM03093) 

also measured in this study (35.0 ± 4.3).  The normal range of this ratio is 11.8-24 214,227.  

Lastly, two independent studies have also concluded that this particular Leigh cell line 

does not have deficient PDHC enzymatic activity.  Sorbi et al. measured the basal and 

activated PDH activity and showed that GM01503 had the same basal activity as the 

normal fibroblasts when (indirect) activators of PDH were not present220.  Huh et al. 

subsequently reported no abnormality in both subunits of PDH as measured by total 

enzyme activity, mRNA amounts (Northern blot), and immunoreactive proteins228. 

 

9.2  Ruling out ATP synthase and complexes I, III, and IV 

Results from the model also eliminate ATP synthase (complex V) as the deficient 

complex in the present LS cell line (GM01503).  Reasons to support this conclusion are 

as follows.  First, the predicted rate of ATP production by LS cells is very similar to that 

of the controls.  Specifically, the rate of complex V in LS cells is within one standard 

deviation of that in the controls (686 ± 107 nmol/hr/mil cells), but with a lower mean 

(601 ± 2).  It is important to keep in mind that the lower mean is possibly a result of the 

lower substrate uptake rates by LS cells rather than a limitation of ATP synthase itself.  

Secondly, the calculated flux ratio for ATP synthase relative to each of the remaining 

complexes is essentially the same between LS affected cells and the controls (Table 6.6).  

This suggests that ATP synthase is not the limiting step in the respiratory chain, and 

hence is not the complex with the deficiency in this particular patient.  As a side note, 
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mutations causing complex V deficiency in LS have been located only on mtDNA genes 

(inherited maternally), so patients with these defects can also be confirmed with pedigree 

study229-231. 

 

What remains from the list of possible causes for LS are complexes I-IV.  These 

enzymes convert NADH and FADH2 produced by the TCA cycle to the proton-motive 

force used to generate ATP.  Reasons supporting a defect in complexes I-IV are 

discussed below.   

 

First, LS-affected cells generate NADPH to supplement NADH.  Absolute flux 

values for oxidative PPC (producing NADPH) are higher in LS-affected cells compared 

to the controls (0.54 nmol/hr/mil cells in LS and 0.68 in controls).  Relative to normal 

fibroblasts, the ratio of oxidative PPC/glycolysis in LS affected cells favors the oxidative 

branch of the PPC more than the usual glucose oxidation by glycolysis (PPC/glycolysis = 

0.6 in LS and 0.1 in controls).  This result is also reflected in lactate isotopomers 

(products of [1,2 13C] glucose), which are predominantly labeled in only one carbon.  

High activity in the oxidative branch of the PPC is indicative of the high NADPH 

requirement by the cells232.  NADPH is used as an alternative cofactor for NADH in 

many enzymes (glutamate dehydrogenase, ICDH, malic enzyme, etc) in the model 

network.   

 

Second, cofactor consumption and regeneration by complexes I-IV are slower in 

LS cells.  The overall activity of the malate-aspartate shuttle, whose function is to transfer 
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electrons from cytosolic NADH to mitochondrial NADH, is lower in LS-affected cells 

than in the controls.  The actual net activity of this shuttle is somewhat difficult to assess 

because reactions in the shuttle also participate in other biochemical processes.  However, 

the model predicts lower fluxes for all six reactions of the shuttle in LS fibroblasts.  

Furthermore, despite the first three reactions in the TCA cycle (CS, ACONT, ICDH) 

having similar fluxes in both cell lines, the three reactions that require NAD+ and FAD 

(regenerated by complexes I-IV) to act as electron acceptors operate at slower rates in LS 

cells (Figure 6.6).  The only exception is ICDH, which carries the same flux as ACONT 

mainly because isocitrate is not consumed anywhere else in the model.   

 

Third, comparison of activity ratios among complexes I-IV shows that complex II 

is the most deficient (Table 6.6).  Although many LS case reports have provided activities 

for the various respiratory chain complexes, and combinations thereof, direct comparison 

between the model’s predicted fluxes and these data is difficult because i) 

spectrophotometric and polarographic measurements of enzyme activities in vitro only 

reflect enzyme capacity (i.e., Vmax) and not their physiological activities233 and ii) 

reported values vary significantly from patient to patient and study to study233-235.  On the 

other hand, Rustin and colleagues suggested that ratios of complex activities, particularly 

COX/SCCR (cytochrome c oxidase to succinate cytochrome c reductase), are less 

sensitive to patients’ age, physical training, and tissue type, and are thus more reliable 

parameters for diagnosis233,236-238.  Evaluating the activities of ATP synthase and COX 

relative to the remaining complexes shows that complex II (SCCR) is the most likely the 

deficient complex in the present Leigh-affected cell (Table 6.6). 
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9.3  Treatment options 

 Though there is no recognized treatment for Leigh and Leigh-like syndromes, 

there have been a number of nutritional treatments and interventions with limited 

successes reported213,239.  In particular, LS with PDHC deficiency has been successfully 

treated with thiamin, a cofactor of the PDH enzyme, and alternative energy sources such 

as carnitine and/or  ketogenic diets240,241.  Patients with defective ATP synthase have also 

benefited from creatine monohydrate supplement242,243.  On the other hand, due to the 

similar roles complexes I, II, and IV have on oxidative phosphorylation, LS patients with 

these deficiencies were given similar vitamin cocktails containing coenzyme Q10, 

riboflavin, and vitamins C, K3, and E213,239,244.   

 

 In summary, the present study describes the application of tracer-based 

metabolomics in characterizing physiological steady states assumed by fibroblasts 

obtained from normal and LS patient.  Though the experiments and analysis presented 

here are more time consuming than current clinical tests, they provide a more complete 

picture of the metabolic state of the cells.  In fact, just the elimination of PDHC and ATP 

synthase as the deficient complexes is sufficient to identify the most appropriate vitamin 

treatment for this patient.   The model’s prediction of a defective complex II also narrows 

the choices of candidate genes for sequencing.  The current study thus serves as an 

important first step towards a comprehensive characterization of the different disorders 

presently classified as Leigh or Leigh-like syndromes. 
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(This chapter, in part, is a preprint of the material appearing in “Systems analysis 

of energy metabolism elucidates the affected respiratory chain complex in Leigh’s 

syndrome, Vo TD, Lee PWN, and Palsson BO, Molecular genetics and metabolism, 

submitted.  The dissertation author is the primary investigator and author of this paper.) 
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Table 6.1: Composition of media A and B  
Concentrations shown are provided by Invitrogen catalog.  In addition to the tabulated components, the two 
media also contain vitamins (choline chloride, D-calcium pantothenate, folic acid, i-inositol, niacinamide, 
pyridoxine hydrochloride, riboflavin, and thiamine hydrochloride) and inorganic salts (CaCl2, Fe(NO3)3 . 
9H2O, MgSO4, KCl, NaHCO3, NaCl, and NaH2PO4 . H2O).  Equal weight (584 mg/L) instead of equimolar 
concentrations of the two amino acids is used to partially compensate for the potentially lower energy 
capacity in asparagine (fewer carbons per asparagine molecule). 
 

Medium A Medium B 
Components Conc (mM) Components Conc (mM) 
Glucose 
Sodium pyruvate 
Glycine 
L-Arginine hydrochloride 
L-Cystine 2HCl 
L-Glutamine 
L-Histidine hydrochloride-H2O 
L-Isoleucine 
L-Leucine 
L-Lysine hydrochloride 
L-Methionine 
L-Phenylalanine 
L-Serine 
L-Threonine 
L-Tryptophan 
L-Tyrosine disodium salt dihydrate 
L-Valine 

11.12 
  - 
  0.4 
  0.398 
  0.201 
  4.0 
  0.2 
  0.802 
  0.802 
  0.798 
  0.201 
  0.4 
  0.4 
  0.798 
  0.0784 
  0.398 
  0.803 

Glucose 
Sodium pyruvate 
Glycine 
L-Arginine hydrochloride 
L-Cystine 2HCl 
L-Asparagine 
L-Histidine hydrochloride-H2O 
L-Isoleucine 
L-Leucine 
L-Lysine hydrochloride 
L-Methionine 
L-Phenylalanine 
L-Serine 
L-Threonine 
L-Tryptophan 
L-Tyrosine disodium salt dihydrate 
L-Valine 

11.12 
  1.0 
  0.4 
  0.398 
  0.201 
  4.4 
  0.2 
  0.802 
  0.802 
  0.798 
  0.201 
  0.4 
  0.4 
  0.798 
  0.0784 
  0.398 
  0.803 
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Table 6.2: Mass distribution of glutamate C2-C5 fragment 
This fragment does not include the backbone carboxylic carbon of the amino acid.  Glutamate samples are 
isolated from cells at 24, 48, and 72 h.  m0, m1, m2, m3, and m4 represent the molar fraction of each of 
these five mass isotopomers.  m4 isotopomers are not detectable in a number of samples.  The 13C 
enrichment of these isotopomers increase over time.  HepG2 cells cultured in medium B have higher 
overall 13C enrichment in glutamate, although m4 glutamate is not detectable in these cells.  Σm represents 
the sum of all mass isotopomers enriched with 13C.  Columns m1/Σm and m2/Σm show the normalized 
fractional enrichment of singly and doubly labeled glutamate isotopomers, respectively, excluding 
unlabeled glutamate.  Reported values are mean and standard deviation (shown under mean).  
 
 

 A B A B A B 
 24 h  48 h  72 h 

0.9353 0.9200 0.9170 0.8744 0.9013 0.8243
m0 0.0027 0.0176 0.0036 0.0095 0.0047 0.0049

0.0262 0.0471 0.0363 0.0619 0.0433 0.0880
m1 0.0014 0.0009 0.0005 0.0021 0.0024 0.0032

0.0356 0.0471 0.0449 0.0634 0.0483 0.0860
m2 0.0010 0.0016 0.0005 0.0015 0.0020 0.0027

0.0017 0.0007 0.0026 0.0037 0.0035 0.0020
m3 0.0001 0.0015 0.0003 0.0011 0.0003 0.0028

0.0012 - - - 0.0038 -
m4 0.0005     0.0005 

0.0647 0.0953 0.0830 0.1312 0.0987 0.1761
Σm 0.0027 0.0012 0.0036 0.0038 0.0047 0.0045

0.4049 0.4943 0.4379 0.4716 0.4381 0.4996
m1/ Σm 0.0053 0.0136 0.0142 0.0119 0.0067 0.0114

0.5500 0.4942 0.5421 0.4838 0.4890 0.4883m2/ Σm 0.0092 0.0117 0.0207 0.0134 0.0033 0.0104
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Table 6.3: Mass distributions of palmitate 
Twelve ions (m/z 169-280) are monitored and the most abundant ions are shown here.  The remaining ions 
make up about 2% of the total.  The m4/m2 ratios are used to estimate the fractional enrichment of 
intracellular acetyl-CoA and fractional synthesis rate of palmitate (Equations 7-8) using the pathway-based 
method.  Reported values are means ± standard deviations. 
 

 Media A         Media B 

m0 0.7372 ± 0.0243 0.8100 ± 0.0431 
m1 0.0318 ± 0.0037 0.0243 ± 0.0052 
m2 0.1614 ± 0.0153 0.1163 ± 0.0266 
m3 0.0158 ± 0.0017 0.0115 ± 0.0026 
m4 0.0430 ± 0.0037 0.0305 ± 0.0068 
m5 0.0041 ± 0.0006 0.0029 ± 0.0007 
m6 0.0067 ± 0.0006 0.0045 ± 0.0015 

m4/m2 0.2665 ± 0.0571 0.2627 ± 0.1047 
 
 
 
Table 6.4: Causes of Leigh or Leigh-like disease 
Thus, there are at least 3 major causes of Leigh syndrome, each transmitted by a different mode of 
inheritance: X-linked recessive, mitochondrial, and autosomal recessive.  The incidence of strictly defined 
LS is 1 per 77,000 and of LS and Leigh-like disease is 1 per 44,000 214. 
 
Defects Frequency Components of affected genes 
PDHC 10 E1α subunit (X-linked) 

Complex I 19 

mitochondrial-encoded MTND3, MTND5, and 
MTND6 
nuclear-encoded NDUFV1, NDUFS1, NDUFS3, 
NDUFS4, NDUFS7, and NDUFS8 

Complex II Fp subunit of SDHA 
Complex III }~39 BCS1L 

Complex IV (COX) 14 mitochondrial-encoded MTCO3 
nuclear-encoded COX10, COX15, SCO2, and SURF1 

Complex V 18 ATPase6 encoded by mtDNA (maternally inherited) 
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Table 6.5: Comparison between predicted and published reaction rates 
Predicted fluxes are showed for control fibroblasts.  Model-predicted flux values are constrained by both 
enzymatic capacity (Vmax) and network stoichiometry.  Published values are taken from in vitro 
experiments, where reaction rates are not limited by substrate limitation.  Unit: nmol/hr/mil cells. 
 
 

Enzyme Predicted flux Published value References 
PDH 30.7 ± 2.3  30-45 222,223 
CS 29 ± 19 600-900, 1600 224,225 
ACONT 29 ± 19 12-30 224 
ICDH 28 ± 20 36-90 224 
ME 34.6 ± 10.8 9-63 221 

 
 
 
Table 6.6:  Absolute and relative activities of different complexes in the respiratory chain.   
A) Though the absolute activities of all five respiratory chain complexes are lower for LS cells compared to 
the control, they are all within on SD of the mean fluxes predicted for the normal fibroblasts.  Flux ratio of 
ATP synthase relative to each of the remaining complexes suggests that ATP synthase is not the limiting 
step in the respiratory chain.  The high activity ratio of ATPS/CII for the LS cells implies that CII is 
limiting factor.  B) Ratios of complex IV (COX) relative to the remaining complexes also indicate that 
complex II (SCCR) is likely to be the most defective complex.  
 
A) 

 Mean flux ± SD ATPS/Ci (i = I .. IV) 
 Control Leigh Control Leigh 

CI 223 ± 41 195 ± 2 3.1 3.1 
CII 87 ± 19 65 ± 4 7.9 9.4 
CIII 310 ± 58 259 ± 4 2.2 2.3 
CIV 160 ± 31 136 ± 1 4.3 4.4 
CV 686 ± 107 601 ± 2  

 
B) 

 Control Leigh 
CIV/CI 1.43 ± 0.03 1.40 ± 0.02 
CIV/CII 3.72 ± 0.33 4.28 ± 0.36 
CIV/CIII 1.03 ± 0.01 1.05 ± 0.01 
CIV/CV 0.47 ± 0.04 0.45 ± 0.004 
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Figure 6.1: Schematic carbon transmission from [1,2 13C2] glucose to glutamate 
The following carbon transfer scheme is assumed to infer reaction fluxes in the pathway-based method.  
Labeled carbons (shaded) in m2 pyruvate yield labeled oxaloacetate and labeled citrate through processes 
of carboxylation and decarboxylation, respectively.  The first turn of the TCA cycle turns these compounds 
into m2 glutamates (m/z 198 fragments).   
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Figure 6.2: Ribose enrichment and the inferred 
oxidative to non-oxidative ratio (Ox/Non-ox) of 
fluxes in the pentose phosphate cycle 
Total molar enrichment is the sum of the fractional 
molar enrichment of m1 to m5 riboses.  This 
enrichment does not change significantly between 
cells grown in media A and B, suggesting the 
similar RNA synthesis and growth rates between the 
two cell cultures.  Error bars reflect values of 
standard deviations over four biological replicates 
and three analytical measurements per replicate; 
some are too small to be seen.  The ratios of 
oxidative to non-oxidative branches in the pentose 
phosphate cycle are also similar for HepG2 cells in 
two media. 
 

Figure 6.3: Fractional enrichment of acetyl-CoA 
and the inferred fractional synthesis rate of 
palmitate 
The enrichment of 13C from glucose to acetyl-CoA 
is not different between HepG2 cells grown in 
media A (glutamine containing) and B (asparagine 
containing).  The palmitate fractional synthesis rate, 
i.e. the rate of de novo palmitate synthesis, is 
decreased when cells are cultured with asparagine.  
These results are consistent with reaction fluxes 
estimated by the network-based analysis. 

 
 



152 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4: Estimated reaction fluxes calculated using the network-based method for the metabolic  
network of HepG2 cells cultured in media A and B 
Only a selected group of reactions and their flux values are shown here to illustrate the different flux 
pattern displayed by cells in the two cultures.  Reference 50 contains estimated reaction fluxes for all 254 
reactions in the model.  The first flux values of malic enzyme and PEPCK are of their cytosolic isoforms; 
the second correspond to the mitochondrial isoforms.  Within the same panel, the widths of arrows do not 
correspond to the relative magnitude of reaction fluxes, but are used to compare flux values of the same 
reactions between the two panels.  All reactions of the urea cycle have the same flux in each panel.  All flux 
values have the same unit, nmol/min/mg protein. 
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Figure 6.5: Substrate uptake and secretions rates of Leigh affected cells relative to controls 
Substrate uptake (black) and secretion (white) rates that are below the line y=1 are lower in LS cells as 
compared to normal fibroblasts.  For the majority of these substrates, the lower uptake and secretion rates 
reflect the slower metabolism of LS cells.  Specifically, LS cells produce only about 80% of the amount of 
ATP produced by normal cells. 
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Figure 6.6: Schematic map and estimated fluxes of the reactions in the fibroblast metabolic network 
In each reaction, the first number is the flux values calculated from the controls followed by that of LS 
cells.  Each arrow may represent multiple reactions in the model.  Secondary metabolites (proton or water) 
are not shown, but are included in the stoichiometric matrix.  Metabolites in blue are those isolated and 
measured in this experiment.  Definitions for metabolite abbreviations can be found in reference .  Flux unit 
is nmol/hr/mil cells 
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Chapter 7  
Conclusions and Future Outlook 
 
 

 Biology is a dynamic and expanding discipline.  It is perhaps the one field where 

technology advances sometimes precede philosophical development.  There is no doubt 

that the emergence of high-throughput technology has given rise to bioinformatics and 

systems biology, and it not until now that we are starting to define and differentiate these 

two fields from traditional biology.  Perhaps what sets these two fields apart is the 

employment of mathematics and a desire to predict systemic behaviors of organisms from 

knowledge of their constituent processes.  Towards this goal, the work in this dissertation 

involves the design of novel methods of analysis as well as their applications to uncover 

new discoveries using the constraint-based modeling approach as the focal point. 

1. Contributions to the field 

The work described in this dissertation and accompanying peer-reviewed 

manuscripts covers the development of new analytical methods as well as novel 

discoveries resulting from application of such methodologies.  Chapter 1 provides an 

overview of some of the latest technology, biological data they generate, and the 

opportunities and challenges they present.  Chapter 2 introduces metabolic network 

reconstruction as a tool for effective data integration and analysis.  Though metabolic 

network reconstruction is not a new concept, the types of data previously used for such 
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purposes had been largely textbook-based canonical pathways and genome annotations.  

In addition, existing networks mostly describe bacterial systems such as E. coli, where 

the entire intracellular reaction network is localized in the same compartment and 

enzymatic and molecular components of most biochemical pathways are well studied.  

Expanding the network construction formalism to account for other data types and more 

complex cellular systems requires the introduction of new concepts.  Three new data 

types, proteomics, microarray, and transcript variants, can now be incorporated into a 

reconstructed network based on the rules described in chapter 2.  In addition, two new 

types of metabolic systems, organelles (cardiac mitochondria) and human cells 

(hepatocytes and fibroblasts), can now be represented with reconstructed networks.  

Defining the contents of these networks is not as straight-forward as for bacterial systems 

for two reasons.  First, the system boundary is not obvious because many biochemical 

pathways span both the mitochondrial and cytosolic compartments.  In fact accounting 

only for matrix reactions would result in a “bag” of unconnected reactions and a 

functionless network.  Thus, the scope of a metabolic network should be defined in terms 

of metabolic functions it describes rather than by its physical boundary.  Second, 

expanding the reconstruction formalism from single to multi-compartmental systems 

requires connections, i.e. transporters, that allow metabolites to move from one 

compartment to another.  However, as transporters are the least characterized set of 

enzymes16, the decision to include or exclude a particular transporter relies on 

physiological data.  In short, these challenges and solutions serve as guidelines for future 

size and scope expansion of network reconstruction.  Indeed, the transition from 
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microbial systems to human systems is a stepping stone in the advancement of systemic 

study of human health and disease.  

 

Chapter 3 details the functional analysis of the mitochondrial metabolic network 

using the constraint-based framework and flux balance analysis.  Neither constraint-based 

modeling nor flux balance analysis is a novel concept; however, their application in 

studying mitochondrial metabolism is unique because unlike microbials whose primary 

metabolic objective is growth, the metabolic objective(s) of mitochondria are not 

obvious.  Novel techniques such as multiple objective analysis and alternate pathway 

identification are designed to accommodate the multiple functions of these organelles.  

The second part of this chapter introduces random sampling of the steady state flux space 

as a way to evaluate effects of metabolic disturbance on the entire network.  The novelty 

of this study is twofold.  First, the method makes it possible to access the entire 

distribution of allowable flux values for each reaction.  Second, results show that the 

number of accessible steady states is drastically reduced in diabetic and ischemic 

conditions. 

 

Chapter 4 describes step-by-step procedures to incorporate isotopomer or tracer 

data into the constraint-based framework for reaction flux estimation.  This type of data 

has been used to infer flux ratios at network branch points (pathway-based method), but 

its use for computing absolute flux values in a large scale network is a novel 

development.  The integration of isotopomer data is instrumental in determining the 

physiological steady states in the cells without imposing an assumed metabolic objective.  
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Chapter 5 applies this method to elucidate flux distributions in a perfused mouse heart.  A 

further advantage of model-centric rather than pathway-based analysis of isotopomer data 

is that the model can be used to simulate and analyze experimental scenarios beyond the 

original experimental conditions. 

 

Lastly, chapter 6 applies all the tools developed in the previous chapters to study 

cellular metabolic phenotypes of tissue culture in response to substrate availability and 

disease conditions.  This is an advancement in two ways.  First, these studies show that 

constraint-based modeling, which previously has only been applied to microbial systems, 

can now be applied to elucidate metabolic phenotypes of human cells with the addition of 

tracer data.  Second, the ability to characterize intracellular resource distribution as a 

function of medium composition as well as genetic limitations is an improvement made 

in both nutrigenomics (deciphering the nutrient-gene interaction) and disease diagnosis 

and characterization (Leigh’s disease). 

2. Lessons learned 

2.1 Stoichiometric constraints alone are not sufficient to predict 

mammalian cellular phenotypes 

Every modeling approach has its triumphs and failures.  A good scientist 

understands the limitations of his tools so as not to use them inappropriately.  The first 

lesson I have learned is that stoichiometric constraints and the flux balance analysis 

formalism alone are insufficient to identify metabolic phenotypes in mammalian cells.  
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Certainly this is no reason to abandon constraint-based modeling as a whole, but is a 

reason to search for additional constraints.  Figure 7.1 shows that even if the functions of 

all n genes in the genome (which translate to stoichiometric constraints on the 

corresponding reactions) are known, that is only a fraction of the phenotypes the encoded 

protein can exhibit, giving rise to a much large possibilities of metabolic phenotypes.  

Clearly the ability to determine the unique metabolic state the cell occupies in this vast 

phenotypic space requires knowledge of the intricate regulation and coordination of 

different pathways and functions in the cellular system.  In the absence of this 

knowledge, an alternative approach would be to simulate cellular activities based on 

observed input and output of the system.  The difference between simulation and 

prediction is that the former does not claim to represent what governs the behavior of the 

systems, but simply to emulate the observable phenotypes to infer unobservable 

activities.   

 

The addition of isotopomer data and isotopomer balance constraints is essential 

for the present model to simulate the steady state assumed by the cell.  In fact, searching 

for a solution (i.e. flux distribution) that best fits observed 13C labels is an empirical 

approach, and thus the more isotopomer data obtained, the more reliable the results.  

Though this seems like a “black-box” approach, it is currently the best solution for 

shedding light on the intracellular reaction fluxes.  In particular, since most metabolic 

networks have a high level of “theoretical” redundancy (i.e. high number of alternate 

optima), isotopomer data allows us to identify which pathways are actually taken by the 

cell.  Knowledge about the paths not traveled also provides clues about the missing 
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constraints, or regulatory rules, of the system.  Accordingly, the lesson about the 

deficiency of stoichiometric constraints is also a lesson about the usefulness of 

isotopomer data in filling in missing constraints. 

 

2.2 Biological models and model-centric discoveries 

 The second lesson is that models will hold an instrumental/integral role in 

biological discoveries in the future.  It is perhaps necessary to redefine the term model.  A 

model is an abstraction of the salient characteristics of a system or process.  It is thus 

necessary that a model is not as complex as the real system or it loses its purpose.  A 

common criticism of the constraint-based modeling approach is that it is restricted to 

steady state behaviors.  Section 3.1 discusses this subject more extensively; however, it is 

worthwhile to mention here that i) metabolic steady states are frequently achieved during 

the time scale of involved experiments (hours to days) and ii) dynamic behaviors 

obtained by integrating metabolite and enzyme concentrations (traditional kinetic 

approaches) are reliable only when initial concentrations of these components are known 

(which is usually not the case).  What this all means is that models are a delicate balance 

between abstraction and realism, and effective models capture the relevant features of the 

biological systems without being unnecessarily complex.   

 

 With the risk of being biased, I believe that model-centric discoveries will lead 

the way to comprehensive understanding of biological systems.  Quantitative models 

provide a framework to structure data in a concise and coherent organization which will 
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necessarily replace the arrow-based diagrams that have dominated molecular biology for 

years.  The difference between these two model systems is that computational models can 

identify missing information as well as confirm known behaviors.  The ability to simulate 

known behaviors through a quantitative model is necessary to be sure that we really 

understand the system. 

 

2.3 Personal lesson 

 It is sometimes discouraging to think that the number of lessons I learned upon 

completing my graduate research is minuscule compared to the vast body of knowledge I 

acquired though my undergraduate education.  This is of course an unfair comparison 

because most of the lessons I learned throughout graduate school were either self-taught 

or through researchers in very similar fields, while what I was taught at Berkeley is 

knowledge compiled from work of an uncountable number of people.  The most valuable 

lesson I have learned, however, is that graduate school is about learning how to learn.  

The amount of existing knowledge is vast and more are accumulated everyday; it is not 

possible for anyone to know everything.  However, the ability to figure out new concepts 

as well as critically assess and interpret new information is instrumental in the building of 

a scientist.  To this end, I now comfortably know that graduate school has equipped me 

with an ability to learn.  

3. Looking forward 
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3.1 The future of constraint-based modeling 

The development of the constraint-based modeling framework is effectively the 

quest for the missing constraints.  There are three areas that can be improved by 

formulating appropriate constraints in the new generation of constraint-based models.    

First, current proteomic and metabolomics data are represented in the model framework 

indirectly through the presence of the reactions in the biochemical network.  Such 

representation does not account for the dynamical nature of these data in response to 

post-translational modification, allosteric regulation, ubiquitination, and substrate 

availability.  The ability to integrate these effects in the modeling framework will lead to 

a big improvement in phenotypic prediction in future models.  Second, biochemical 

processes such as voltage-gated ion channeling and osmo-regulation are concentration-

based transient behaviors that can only be effectively modeled with kinetic expressions.  

An effective method to integrate kinetic expressions without requiring kinetic parameters 

for the entire system would be highly desirable.  Lastly, though whole-cell models are a 

major advance over previous generations of biological models, complex diseases often 

involve processes that span multiple cell types and organs.  Accordingly new formalisms 

and methods are needed to model inter-cellular communication as well as inter-organ 

interactions.  

 

3.2 The future of systems biology 

In order for systems biology to significantly impact biological research in the 

future, collaborations among scientist of different biological sub-disciplines are necessary 
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to develop a formal language and standards for biology.  The need for such standards is 

reflected in the paradox that while the field is flooded with high-throughput and legacy 

data245-248, every modeler, including those whose work is reviewed here, is keenly aware 

of the absence of data needed to complete his study.  Responsibilities for realizing such 

standards should be accepted by both experimental and computational biologists.  As an 

experimental biologist, such responsibilities may include standardizing criteria for model 

systems, experimental protocols, and data presentation as well as making samples (cell 

lines, vector constructs, proteins, etc) accessible to those who are interested.  Such 

availability would not only facilitate verification and reproducibly of new findings but 

will also form new collaborations among researchers.  Responsibilities of computational 

biologists, on the other hand, may include outlining the specificity of needed data, 

providing testable hypothesis, suggesting experimental designs, and making models 

available for others.  Currently many computational studies only briefly describe the 

underlying algorithms and do not publish associated computational programs as it is not 

required by most peer-reviewed journals.  However, in order for results to be 

reproducible, documented source code of such programs should accompany every study. 

 

Perhaps one way to accelerate the realization of such standards and driving 

systems biology forward is to have experimental and computational researchers meet 

each other half way.  It is probably no longer realistic for each group to stay within the 

boundary of their respective disciplines.  In order to transform biology into a more 

quantitative discipline, efforts should be contributed from both groups of researchers.  

Experimentalists should understand the basics of computer-aided analytical tools, and 



164 

 

computational biologists ought to understand the systems beyond the mathematical 

representation by experiencing experimental biology first-hand at the bench.  Through 

interdisciplinary training, perhaps the next generation of researchers will no longer have 

to identify themselves as either experimentalist or computational biologist, but rather 

biologists of a new era, the systems biology era.  

 

(This chapter, in part, is a preprint of the material appearing in “Building the 

power house: Recent advances in mitochondrial studies through proteomics and systems 

biology”, Vo TD and Palsson BO. Am J Physiol Cell Physiol. 2006. in press.  The 

dissertation author is the primary investigator and author of this paper.) 
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Figure 7.1: Relationships among genotypes (genomics) and phenotypes exhibited by proteomics and 
metabolomics 
If there are n genes in the genome and each can be either expressed or not expressed, then the number of 
possible genotypes is 2n.  The number of proteomic phenotypes is a function of these genotypes, expressing 
post-translational and allosteric regulation effects.  The number of metabolomic phenotypes, thus metabolic 
phenotypes, in turn, is a compound function of the number of proteomic phenotype, as the activities of the 
encoded proteins are subject to constraints other than enzymatic regulation.    

Metabolomics 
G(F(2n)) 

Proteomics F(2n) 

Genomics (2n) 
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