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Current Review
In Clinical Science

The Scope of the Problem
The incidence of seizures and of epilepsy varies throughout 
life, peaking in neonates and children and increasing again 
after the age of 50 (1–4). In addition to the quantitative 
measure of the incidence of seizures, the type of seizures (and 
of epilepsy syndromes) varies with age: for example, febrile 
seizures take place in infants and children (1, 5–7), whereas the 
incidence of post-stroke epilepsy increases in adults compared 
with children (1, 3, 8). What is the basis of these age-depen-
dent variations? What are the age-specific properties of the 
brain that contribute to the probability of seizure generation 
and to the nature of the resulting seizure?

A second, reciprocal aspect of the interaction of the age 
of the brain and seizures involves the effects of a seizure 
on the structure and function of neurons and neuronal 
networks. Here, again, clinical evidence suggests that the 
consequences of a seizure might vary with age. For example, 
the consequences of status epilepticus (SE) in young children 
seem to depend on the inciting etiology (9, 10), and, in gen-
eral, mortality and cognitive outcomes are more favorable 
than in the adult and elderly individual (11–14). In contrast, 
status epilepticus in adult and aging individuals can have 
major detrimental effects on cognitive function and even 
survival (14–16). What is the basis of these age-dependent 
variations? What are the age-specific properties of the brain 
that modulate the effects of seizures on neuronal integrity 
and function?

These questions are of paramount clinical importance 
because they should provide clues for developing age-specific 
diagnostic tools, prognostic models, and intervention strate-

gies. Thus, while the answers to these questions are not fully 
elucidated, the questions provide a framework for discussing 
the salient elements of the evolving interaction between the 
brain and seizures throughout life.

The following paragraphs highlight a few of the many facts 
that influence age-specific seizures and the age-specific conse-
quences of seizures. Because most of the direct information 
about seizures throughout the life-span often derives from 
animal models, these are discussed. The author regrets that 
this overview is not comprehensive and likely omits a number 
of important publications. Nonetheless, this review serves to 
illustrate crucial features of the topic.

Age-Specific Brain Properties Influence Seizures That Are 
Generated During Each Age
Whereas brain development from embryonic life to senes-
cence is a continuum, here it is divided into four stages: the 
neonatal, childhood, adulthood, and aging epochs.

The Neonatal Brain and Age-Specific Neonatal Seizures
The neonatal brain is in a stage of rapid flux from both struc-
tural and functional perspectives. Neurons are still being born, 
circuits are being formed, and synapses are being established 
(17, 18). Synaptic currents are often slower (19), neurotransmit-
ters play trophic roles (20), and circuits are not fully mature 
(21). These facts predict that seizures may propagate poorly 
and may thus remain subclinical, or manifest as fragmented 
motor activity (22, 23).

From a molecular standpoint, there are developmental 
changes in both excitatory and inhibitory neurotransmission 
(24–34) excitatory and inhibitory components of synaptic 
transmission do not develop concurrently (33, 35). GABAergic 
synapses seem to be the first to function (36). In addition, 
GABA receptor subunit expression is developmentally regu-
lated and is relatively low during development (30), whereas 
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glutamate receptor expression is high, favoring robust neuro-
transmission in excitatory synapses.

Indeed, both presynaptic and postsynaptic elements of 
glutamatergic synapses undergo developmental changes 
that favor hyperexcitability in the neonatal period: glutamate 
transporter expression is low, increasing glutamate levels 
at synapses. In addition, the developmental characteristics 
of all three types of the major glutamate receptors, NMDA, 
AMPA, and metabotropic, favor augmented glutamatergic 
neurotransmission (31–33). Together, all of the facts described 
above contribute to the observed facility in which insults such 
as hypoglycemia or hypoxia generate seizures in the neonate, 
and to the fragmentary nature of many neonatal seizures.

The Child’s Brain and Age-Specific Seizures
Animal models have been instrumental in elucidating the 
changes in excitability and seizure vulnerability during the 
developmental transition from the neonatal to the childhood 
periods. In this context, it is helpful to note the complexity of 
comparing developmental status of human and rodent brain. 
A useful approach is to focus on a single region or circuit and 
assess multiple developmental processes, such as neurogen-
esis, synaptogenesis, dendritic growth, and functional maturity 
across species (see table in Avishai-Eliner et al. [37] for such 
comparison of rat, monkey, and human hippocampus). This 
approach enables studying the role of specific stages of matu-
ration of a given brain region on the susceptibility to seizures 
and the generation of specific seizure types (38–42). Insight 
from non-human work has suggested that the child’s limbic 
circuit is characterized by an overshoot of axons in some hip-
pocampal pathways (43), and an accompanying overshoot 
of excitatory synapses and glutamate receptors (31, 32). This 
apparent augmented excitability is combined with the suscep-
tibility of young children to sustain fever and febrile seizures 
as well as trauma and infections. Hence, typical seizures in the 
child include febrile (5, 44, 45) and traumatic (46) seizures, as 
well as other reactive or provoked seizures. Increasing matura-
tion of neuronal circuits supports rapid propagation and often 
severe seizures in this age group (41, 42).

The Mature Brain: Sex-Specific Properties and Seizures
The spurt in the release of sex hormones that accompanies pu-
berty and adolescence contributes to structural and functional 
neuronal changes and further maturation of neuronal circuits. 
Sex-dependent dimorphism further arises in numerous brain 
regions and circuits (47–49). In addition to the arrival of sex 
hormones from the gonad and other peripheral sources, sex 
hormones are also synthesized within brain regions including 
the hippocampus (50). The effects of the female sex hormones 
on neuronal excitability are complex. Estrogen is generally 
believed to promote excitability (51) as well as augmented 
synaptic plasticity (e.g., [52]). In contrast, progesterone-derived 
neurosteroids augment GABAA receptor function (48, 53, 54). 
The cyclical nature of hormonal release during the menstrual 
cycle in women promotes cyclical or catamenial seizures and 
epilepsy, often complicating the management of seizures in 
women (47, 51). In analogy to the female sex hormones, the 
effects of testosterone—directly and indirectly—on neuronal 
excitability are complex (55, 56).

How Aging Influences Seizures
The incidence of seizures increases in the middle-aged and the 
elderly (57, 58). This is a result, in part, of the increased inci-
dence of tumors and cerebrovascular diseases including stroke 
(3). In addition, there are likely intrinsic processes within the 
aging brain that might promote susceptibility to seizures. For 
example, an increasingly recognized source of the increased 
incidence of seizures in the aging brain may derive from 
increased accumulation of the molecules Tau and amyloid 
beta. It has been shown that these compounds may interact to 
influence excitability at several levels (59, 60), thus influencing 
excitability in both normal and dementing aging individuals. 
Much more work remains to be done to explain and hopefully 
prevent the human observational studies on increased seizure 
susceptibility during aging (61). The nature of seizures in the 
elderly might differ from those observed earlier in the life 
cycle. Partial complex seizures may be confused with “senior” 
moments, and a number of additional factors contribute to the 
complexity of diagnosing seizures in the elderly (62).

Age-Specific Brain Properties Influence the Consequences 
of Seizures at Different Ages

The Neonatal Brain: Specific Vulnerabilities to the  
Effects of Seizures
The neonatal brain is in a stage of rapid flux from both a 
structural and a functional perspective. As mentioned above, 
neurons are still being born, circuits are being formed, and 
synapses continue to be established and mature. Many of 
these processes are activity dependent, in that they are influ-
enced by synaptic communication. For example, activation 
of certain synapses is believed to strengthen them at the ex-
pense of nonactive synapses that are pruned (63, 64). Clearly, 
then, a burst of abnormal neuronal activity (a seizure) has the 
potential to disrupt this activity-dependent process, leading 
to aberrant hyperexcitable or hypo-excitable circuit. At the 
structural level, excitatory synapses reside on dendritic spines 
(65); spine size and integrity, as well as the integrity of the 
dendrites that carry the spines, are activity dependent (66–69). 
These observations suggest that seizures might influence the 
structure of spines and dendrites during development, result-
ing in stunted, dysfunctional neurons (70–73).

At the molecular level, seizures during the neonatal and 
infancy periods modify neurotransmission through several 
mechanisms. Neonatal seizures may directly influence the 
effects of activation of GABA-A receptors (74–77) and alter 
receptor expression at both excitatory and inhibitory synapses. 
For example, such seizures modify the expression of glutamate 
receptors of various types (78–81), GABA receptors (82), and a 
number of additional important ion channels (83–86). Notably, 
both the structural and molecular changes provoked by neo-
natal seizures might be persistent (87, 88).

Excitotoxicity Throughout the Life Cycle
In both human and animal models, prolonged seizures and 
status epilepticus appear to result in loss of specific neuronal 
populations in hippocampus and the hilus of the dentate 
gyrus (89–94), as well as other vulnerable brain regions (for 
examples, see Cavalheiro et al. [90], Motte et al. [93], Pitkänen 
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et al. [95], and Kubová et al. [96]). However, the majority of evi-
dence suggests that even prolonged seizures and SE are less 
likely to provoke cell death during development (70, 71, 97–
102). Reorganization of neuronal connectivity is another com-
mon outcome of seizures in the mature brain. Typical is axonal 
“sprouting” and the formation of new synapse (103–107). This 
process, which might be driven in part by the loss of neuronal 
targets of the affected axons, is also more attenuated during 
development (108, 109). Subtle changes in neuronal structure, 
including loss of dendritic spines and synapses (70, 110), with 
potential loss of hippocampal volume (111) are found. Thus, 
during the developmental stages of infancy and childhood, 
rodent brain seems more resilient to seizure-induced excito-
toxicity. However, the age-specific mechanisms responsible for 
this relative resilience are not fully understood.

Understanding why neurons in hippocampus and other 
vulnerable regions do not die, when the inciting seizures are 
prolonged and severe is of paramount clinical importance. 
The underlying mechanisms might enable future protection 
of neurons in the adult brain from seizure-provoked death. 
One potential mechanism for this resilience of neurons in 
immature brain to long seizures and status epilepticus is the 
relatively mild inflammation in response to seizures during 
development (112, 113). This is in contrast to the adult, where 
cytokines and related mediators are both released from 
injured cells and contribute to neuronal death (113). A second 
mechanism might involve the resilience of mitochondria in the 
immature brain to accumulation of reactive oxygen species 
(ROS), which promotes mitochondrial injury and cell death 
(114, 115). During adult SE, metabolic demand in neurons 
results in the formation of ROS and overwhelming of mito-
chondrial function. In contrast, mitochondria in immature 
brain are partially uncoupled due to the high basal expression 
of the mitochondrial uncoupling protein 2 (UCP2). This protein 
reduces mitochondrial membrane gradient, prevents ROS ac-
cumulation, and protects from seizure-induced cell loss (116, 
117). Other properties of the developing brain, potentially in-
cluding higher levels of BDNF and other growth factors might 
protect neurons from excitotoxic injury.

Notably, the paucity of cell loss does not indicate that 
seizures during infancy or childhood do not have significant 
sequelae. Indeed, a large body of existing and emerging lit-
erature suggests that functional (45, 118) as well as structural 
changes in neurons may be induced by seizures throughout 
life, and may contribute to cognitive deficits and emotional 
dysfunction (119).

Cognitive Vulnerability During Aging
An important correlate (comorbidity) of seizures and epilepsy 
involves cognitive deficits (110, 120–122). In humans, it is more 
difficult to discern the relationship of the epilepsy and the cog-
nitive defects (122). Temporal lobe or limbic seizures propa-
gate through the same neuronal pathways that are engaged 
in learning and memory processes (111). Thus, seizures might 
directly cause such problems; alternatively, the abnormali-
ties that result in the seizures might independently provoke 
cognitive dysfunction. Work in experimental animal models 
demonstrated that seizures, and even interictal activity, reduce 
cognitive performance (118). Indeed, in both humans and ani-

mals, rapid seizure-induced injury to dendritic spines and the 
synapses that they carry might underlie some of the cognitive 
effects of epileptic activity (123).

During aging, whereas there does not seem to be a major 
reduction in the numbers of hippocampal neurons, spine 
density is reduced in pyramidal cells. This finding, reported 
in aging monkeys, suggests that the number of synapses is 
also reduced (124). This loss of functional excitatory synapses 
might be a basis for reduced cognitive reserve in the aging 
brain. The aging brain may thus be more vulnerable to seizure-
induced loss of additional synapses. Other factors that contrib-
ute to vulnerability to cognitive loss that might be provoked 
by seizures include an established, age-dependent accumula-
tion of mitochondrial injury (125). In addition, there is an ac-
cumulation of beta amyloid and tau, as described above. These 
factors, and probably many additional ones that are as yet 
unknown, combine to exacerbate the potential consequences 
of seizures on the aging brain.

Summary
The brain evolves throughout life, and this evolution contrib-
utes to the probability of the occurrence of seizures, as well 
as to their type. In addition, the consequences of seizures are 
significantly influenced by age-specific properties of the brain. 
Understanding the unique features of the neonatal, child, 
adult, and aging brain is crucial for optimal diagnosis and 
treatment of both seizures and their consequences.
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