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Short title: Highly variable NLR immune receptors 
 
One-sentence summary: NLR immune receptor complements of 62 ecotypes of A. thaliana and 
54 lines of B. distachyon help identify highly variable NLR subfamilies responsible for the 
generation of new receptor specificities. 
 
The author responsible for distribution of materials integral to the findings presented in this 
article in accordance with the policy described in the Instructions for Authors 
(www.plantcell.org) is: Ksenia V. Krasileva (kseniak@berkeley.edu). 
 
ABSTRACT 
The evolution of recognition specificities by the immune system depends on the generation of 
receptor diversity and on connecting the binding of new antigens with the initiation of 
downstream signaling. In plant immunity, the innate Nucleotide-Binding Leucine Rich Repeat 
(NLR) receptor family enables antigen binding and immune signaling. In this study, we surveyed 
the NLR complements of 62 ecotypes of Arabidopsis thaliana and 54 lines of Brachypodium 
distachyon and identified a limited number of NLR subfamilies that show high allelic diversity. 
We show that the predicted specificity-determining residues cluster on the surfaces of Leucine 
Rich Repeat domains, but the locations of the clusters vary among NLR subfamilies. By 
comparing NLR phylogeny, allelic diversity, and known functions of the Arabidopsis NLRs, we 
formulate a hypothesis for the emergence of direct and indirect pathogen-sensing receptors and 
of the autoimmune NLRs. These findings reveal the recurring patterns of evolution of innate 
immunity and can inform NLR engineering efforts. 
 
INTRODUCTION 1 

Plants lack the adaptive immunity of vertebrates. With their immune receptor specificities 2 

encoded in the germline, plants can achieve remarkable receptor diversity at the population level 3 

(Bakker et al., 2006). The mechanisms that generate this diversity and select for useful (and 4 

against deleterious) receptor variants are thus of great importance to both basic science and crop 5 

improvement (Dangl et al., 2013). Ongoing efforts at pan-genome sequencing of both model and 6 

crop species reveal the intraspecies diversity of plant immune receptors, their natural history, 7 
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mechanisms of action, and the evolutionary forces that shape plant immunity (Van de Weyer et 8 

al., 2019; Stam et al., 2019a, 2019b; Seong et al., 2020; Gordon et al., 2017).  9 

 10 

Two types of plant immune receptors form the basis of pathogen recognition: extracellular 11 

receptors, including receptor-like kinases (RLK) and receptor-like proteins (RLP); and 12 

intracellular Nucleotide-binding Leucine Rich Repeat (NLR) proteins (Dangl et al., 2013). While 13 

RLKs and RLPs monitor the extracellular environments of plants, NLRs are cell death-executing 14 

receptors that are shared across the plant and animal kingdoms (Jones et al., 2016). Plant NLRs 15 

are typically composed of three domains, including a central Nucleotide Binding (NB-ARC) 16 

domain that mediates receptor oligomerization upon activation, the C-terminal Leucine Rich 17 

Repeat (LRR) domain that defines receptor specificity, and one of three N-terminal domains: 18 

Resistance To Powdery Mildew 8 (RPW8), Coiled-Coil (CC), or Toll/Interleukin-1 Receptor 19 

homology (TIR) domains, which mediate the immune effector function. NLRs are divided into 20 

three monophyletic classes based on the N-terminal domains and their evolutionary origin: RNL, 21 

CNL, and TNL (Shao et al., 2016).   22 

 23 

NLRs can function as sensors or signal transducers (helpers) (Wu et al., 2017). For example, all 24 

RNL genes are thought to be helpers (Jubic et al., 2019), while TNLs and CNLs can fulfill either 25 

function. Sensor NLRs recognize pathogens using three main modes: i) direct binding to the 26 

pathogen-derived effector molecules, ii) indirect recognition of effector activities on other plant 27 

proteins, and iii) recognition of modifications to a non-canonical integrated domain of the NLR, 28 

which acts as a bait for the effector (Cesari, 2018). The recognition mode of a given sensor NLR 29 

is likely to have a large effect on the evolutionary pressure it experiences. Indirect recognition 30 

NLRs likely undergo balancing or purifying selection based on the monitoring of conserved 31 

effector activity. By contrast, effector recognition upon direct binding likely requires NLRs to 32 

adapt rapidly to keep track of easy-to-mutate effector surface residues. Among the best studied 33 

NLRs that directly bind pathogen-derived effectors are the flax (Linum usitatissimum) L genes 34 

(Ellis et al., 2007; Catanzariti et al., 2010), the MLA/Sr50 locus in barley (Hordeum vulgare) 35 

 and wheat (Triticum spp.) (Chen et al., 2017; Saur et al., 2019), and the RPP1 genes in 36 

Arabidopsis (Krasileva et al., 2010; Goritschnig et al., 2016). Their effector targets are 37 
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structurally diverse, suggesting that the current recognition specificities of individual alleles are 38 

recently derived, rather than ancestral.  39 

 40 

The continuous generation of diversity in sensor NLRs is required to provide protection from 41 

diverse pathogens and is thought to result from divergent (diversifying) selection and a birth-42 

and-death process acting on NLR gene clusters (Michelmore and Meyers, 1998). NLRs diversify 43 

through copy number variation, recombination, gene conversion, gene fusion, and point 44 

mutations (Baggs et al., 2017). In a subset of NLRs, these mechanisms combine to produce an 45 

astounding array of alleles (Bakker et al., 2006; Ding et al., 2007). Not unexpectedly, such 46 

diversity comes at a price. Hybrid necrosis has been observed widely in inbreeding and 47 

outcrossing plants in both cultivated and wild populations and can be considered a plant version 48 

of autoimmunity (Bomblies, 2009). Hybrid necrosis occurs due to a mismatch between immune 49 

receptor variants and other plant genes, leading to autoimmune recognition, as exemplified by 50 

Dangerous Mix genes in A. thaliana (Bomblies et al., 2007; Chae et al., 2014; Atanasov et al., 51 

2018) and Ne genes in wheat (Zhang et al., 2016). Tomato (Solanum lycopersicum) Cf-2 is an 52 

example of a non-NLR immune receptor that shows this type of phenotype (Kruger, 2002; 53 

Santangelo et al., 2003). These negative interactions revealed in crosses are likely only a small 54 

fraction of the cost of derivation of new immune specificities in the presence of the whole 55 

intracellular plant proteome.  56 

 57 

Cross-species phylogenetic analyses of the NLR gene family have provided important insights 58 

into NLR evolution. A combined phylogeny of maize (Zea mays) , sorghum (Sorghum bicolor), 59 

brachypodium, and rice (Oryza sativa) NLRs was used to identify recently derived NLR immune 60 

specificities against rice blast disease (Yang et al., 2013). An expansion of a network of helper 61 

and sensor NLRs was identified across asterids in which a set of diverse sensors signal through a 62 

redundant set of helpers that show reduced diversity (Wu et al., 2017). Phylogenetic analyses in 63 

grasses identified major integration clades of NLRs that incorporate additional domains that 64 

serve as baits for pathogens (Bailey et al., 2018). In view of the recent progress in elucidating the 65 

intra-species NLR complements of both model and non-model plants (Van de Weyer et al., 2019; 66 

Stam et al., 2019a, 2019b; Seong et al., 2020; Gordon et al., 2017), a systematic analysis is 67 
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needed to uncover the relationships between NLR phylogeny, mode of recognition, and the 68 

amount of allelic diversity.  69 

 70 

The recent elucidation of both the pre-activation monomeric and activated resistosome-forming 71 

conformations of ZAR1, an indirect recognition CNL, dramatically improved our understanding 72 

of both target binding and the receptor activation mechanisms of NLRs (Wang et al., 2019b, 73 

2019a). The structures of Roq1 and RPP1, both direct binders, in complex with their targets, 74 

were recently revealed (Martin et al., 2020; Ma et al., 2020), further shedding light on LRR and 75 

post-LRR domain-dependent target recognition and downstream TIR domain activation. While 76 

more NLR structures are likely to be revealed in the future, structure determination efforts will 77 

likely lag behind the pan-genome sequencing due to the cost and difficulty of the experiments 78 

involved. Therefore, the prediction of the mode of recognition and specificity-determining 79 

residues of NLRs based on sequence data is an attractive direction that is yet to be fully explored. 80 

The idea that highly variable residues determine immune receptor specificity predates the 81 

elucidation of the first antibody structure by three years (Kabat, 1970). In the subsequent 82 

decades, several measures of amino-acid diversity were advanced. Shannon entropy, which 83 

originated in information theory, is given by the formula: 84 

𝐻 =   − 𝑝!𝑙𝑜𝑔!𝑝!

!"

!!!

  

where pi is the fraction of one of the twenty amino acids in a column of a protein sequence 85 

alignment. This measure was first applied to study residues that determine antibody and T-cell 86 

receptor specificity (Shenkin et al., 1991; Stewart et al., 1997). High entropy values correlate 87 

strongly with surface exposure and hydrophilic character (Liao et al., 2005) and can be used to 88 

predict rapidly evolving ligand-binding sites (Magliery and Regan, 2005). In addition to B- and 89 

T-cell receptors, entropy-based measures have been applied to identify binding sites in TRP 90 

repeat proteins, ankyrin repeat proteins, Zn-finger transcription factors, and G protein-coupled 91 

receptors (Sanders et al., 2011; Magliery and Regan, 2005).  92 

 93 

In the current study, we used phylogenetic analyses to group Arabidopsis and Brachypodium 94 

NLRs into near allelic series and applied Shannon entropy analyses of protein alignments to 95 

define highly variable NLRs and their candidate specificity-determining residues. Our results 96 
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show that, depending on the ecotype, 15 to 35 Arabidopsis NLRs belong to rapidly diversifying 97 

families. These families are distributed in the NLR phylogeny among both CC- and TIR-98 

containing NLRs and encompass the known Dangerous Mix NLRs. We further show that in the 99 

highly variable NLRs (hvNLRs), the highly variable residues identified by Shannon entropy 100 

cluster on the surface of the LRR domain and contain surface-exposed hydrophobic residues, 101 

thus identifying likely binding sites. The exact location of the putative binding sites on the LRR 102 

surface is not conserved across different NLRs. Based on the phylogenetic distribution of 103 

hvNLRs, we formulate a hypothesis regarding the origin of indirect recognition sensor NLRs. 104 

When applied to Brachypodium distachyon pan-genome, our methods reveal a similarly 105 

dispersed phylogenetic distribution of highly variable NLRs in this model grass species. 106 

Collectively, our results reveal the origins of novel recognition specificities in NLR innate 107 

immune receptors and the common patterns in the evolution of innate immunity. 108 

 109 

RESULTS 110 

Arabidopsis NLRome shows variable rates of NLR diversification 111 

The recent elucidation of the NLR complements of over 60 accessions of the model plant A. 112 

thaliana (Van de Weyer et al., 2019) provided a unique opportunity to examine rapidly evolving 113 

clades of Arabidopsis NLRs. The unique advantage of the Arabidopsis dataset is the ability to 114 

correlate observed diversity to known functional classes of the extensively characterized NLRs. 115 

Previous NLRome analyses of this dataset were performed using OrthoMCL followed by 116 

orthogroup refinement. While these analyses provided a valuable basis for global analyses of 117 

selection pressures, they did not produce robust allelic series for each gene. This is likely due to 118 

the divergent rates of diversification across NLRs, which complicate orthogroup assignment. To 119 

circumvent this challenge, we adopted a phylogeny-based approach. To group NLRs into near 120 

allelic series, we first built a unified phylogeny of all NLRs based on their shared nucleotide-121 

binding domain (Figure 1A). This tree contained 7,818 NB-ARC sequences that had >70% 122 

coverage across the NB-ARC domain and represented 7,716 NLR genes, including 168 NB-ARC 123 

sequences of NLRs from the reference Arabidopsis Col-0 assembly. Even though the N-terminal 124 

domains were not included in the analysis, this phylogeny clearly split into clades corresponding 125 

to the three canonical architectures: RPW8, Coiled-coil, and TIR domain-containing NLRs (Shao 126 
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et al., 2016; Tamborski and Krasileva, 2020). We arbitrarily placed the root of the tree between 127 

TNL and non-TNL NLRs to simplify downstream analyses. 128 

 129 

We split the overall phylogeny into 65 clades based on clade size (40-500 sequences) and 130 

bootstrap support. Of these, 43 clades had bootstrap scores of 100, 12 additional clades had 131 

bootstrap scores >70, and only 10 clades had low bootstrap values, grouping sequences that 132 

could not be confidently assigned elsewhere (Figure 1B). To gain insight into the relative ages of 133 

the initial clades, we used the Evolutionary Placement Algorithm to place Arabidopsis lyrata and 134 

Capsella rubella NLRs in the A. thaliana pan-NLRome (Supplemental Figure 1). Of the 65 135 

initial clades, 53 had representative sequences from either or both outgroups (Supplemental Data 136 

Set 1). In the initial partition, the largest clade contained 431 sequences, allowing us to construct 137 

de novo full-length alignments and clade phylogenies for all clades. A tree of one of the initial 138 

clades, Int14015, containing the resistance gene RPP8, is representative of observed evolutionary 139 

dynamics and is shown in Figure 1C. This tree contains five well supported subclades that differ 140 

in size and internal diversity, as reflected by the very short internal branch lengths in four out of 141 

five subclades. The observation that closely related sequences evolve at very different rates is 142 

true not only for RPP8, but throughout the NLR family. RPP1, a well characterized NLR that 143 

directly interacts with its target ATR1, also has closely related sequences that are largely 144 

identical in different ecotypes (Figure 1D). In fact, all clades with longer branches, i.e. higher 145 

amino acid divergence, have closely related clades with paralogous genes that show very little 146 

variation between ecotypes. These observations are consistent with the notion that closely related 147 

NLR genes are experiencing different selection pressures (Ding et al., 2007). 148 

 149 

We iteratively refined the initial clades by splitting them into two or more subclades and 150 

repeating the alignment and phylogeny generation steps. We prioritized cutting long, well 151 

supported internal branches and therefore tended to preserve both rapidly evolving and low 152 

variability subclades (see Methods). After two iterations, the NLRs fell into 223 non-singleton 153 

and 14 singleton clades. The distribution of clade representatives across all ecotypes is 154 

summarized in Supplemental Data Set 2. This NLRome partition is somewhat more conservative 155 

than the OrthoMCL-based analysis, which produced 464 orthogroups and 1663 singletons (Van 156 

de Weyer et al., 2019). In our final clade assignments, 83% of all clades contained no more than 157 
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one gene for all represented ecotypes, thus approximating allelic series. Over 90% of all NLRs 158 

fell into clades of 20 or more genes, allowing sampling for sequence diversity analysis. Only six 159 

large clades that ranged in size from 73 to 323 sequences contained multiple genes for ten or 160 

more ecotypes and could not be split further due to the lack of long internal branches with strong 161 

support (Supplemental Data Set 2). The large clades contained RPP1, RPP4/5, RPP39, and 162 

RPP8, suggesting that interallelic exchange complicated the phylogeny and prevented separation 163 

into allelic series. Taken together, our analyses suggest that pan-genomic NLR repertoires can be 164 

clustered into near-allelic series using phylogenetic approaches. 165 

 166 

Sequence analysis of the NLRome clades identifies highly variable NLRs 167 

NLR genes encode immune receptors that provide protection during pathogen infection. Their 168 

highly variable regions are expected to contain the specificity-determining residues. We used 169 

Shannon entropy as a sensitive and robust measure of amino acid diversity. Entropy is zero at 170 

positions that are invariant, and it reaches a theoretical maximum of log220 or ~4.32 when all 20 171 

amino acids are present in equal ratios; a position with two variant amino acids present at equal 172 

ratios produces a value of 1 bit. A Shannon entropy plot thus represents a fingerprint of sequence 173 

diversity encoded in the alignment (Figure 2A).  174 

 175 

Several functional classes of NLRs produced entropy plots with limited diversity. The ancient 176 

helper RNL NRG1.1, the indirect recognition CNL RPS2, and the integrated-domain TNL 177 

RRS1B produced entropy plots in which entropy never exceeded 1 bit. The low sequence 178 

variability in these clades is consistent with their conserved functions. By contrast, 30 NLR 179 

genes in the reference ecotype Col-0, including 14 CNL genes and 16 TNL genes, belonged to 180 

clades whose alignments repeatedly scored above 1.5 bits and revealed a series of periodic spikes 181 

in the LRR region. Among these genes were the known direct recognition proteins from the 182 

RPP13 and RPP1 clades. Using Shannon entropy as a metric, we defined highly variable NLRs 183 

(hvNLRs) as those with 10 or more positions exceeding 1.5 bit cutoff (see Supplemental Figure 2 184 

for the relevant distribution). No protein known to indirectly recognize pathogen effector was 185 

found among hvNLRs, and all known direct binders were detected among hvNLRs (Figure 2B). 186 

When we ran Shannon entropy analyses on the previously identified NLR orthogroups (Van de 187 

Weyer et al., 2019), we only detected 15 hvNLRs, 5 of which did not overlap with our 188 
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phylogeny-based analyses (3 slightly below 1.5 bits cutoff and 2 not supported as true 189 

orthogroups by phylogeny). This suggests that phylogeny-based orthogroup assignment is a 190 

better option for preserving and detecting hvNLR clades. We predict that phylogeny-based NLR 191 

clade analysis combined with Shannon entropy can be applied to non-model plants to 192 

computationally separate candidate direct binders from other NLRs based on their sequence 193 

diversity.  194 

 195 

Highly variable NLRs are distributed throughout the TNL and CNL clades  196 

We observed that hvNLRs were distributed over the NLR tree of the reference accession Col-0 197 

with representatives in both TNL and CNL major clades. Within both major clades, there were 198 

multiple hvNLR genes right next to conserved paralogs that did not show excess diversity. This 199 

is consistent with our prior observation that NLR subclades with long branches have close 200 

paralogs with limited subclade diversity. Recent duplications of hvNLRs have produced local 201 

hvNLR clusters such as those near RPP7, RPP39, RPP4/5, and RPP1. NLRs found in 202 

phylogenetic proximity often also cluster physically on the Arabidopsis chromosomes 203 

(Supplemental Figure 3). Nonetheless, genomic clustering with close paralogs is not required for 204 

an NLR to become highly variable, as shown by RPP9, RPP13, and RPP28. Also, presence in a 205 

physical cluster does not force a gene to become an hvNLR, as shown by RLM3 in the RPP4/5 206 

genomic cluster and CW9 in the RPP7 genomic cluster. Thus, it appears that the copy number 207 

variation observed in the clusters is an independent process that helps create material for NLR 208 

evolution, but the generation of highly variable NLRs can proceed outside of genomic clusters. 209 

 210 

The physical proximity and phylogenetic relationships of hvNLRs and their closely related low 211 

variability paralogs suggest that rapid switches in selective pressure were involved in generating 212 

the apparent diversity. Since the selection of an NLR is likely to correlate with its function, we 213 

located the known guardian NLRs within the phylogeny. Since these NLRs are expected to 214 

maintain binding sites for conserved plant proteins, we expected them to show low entropy 215 

scores. As we have already seen for RPS2, other known guardian NLRs including RPM1, RPS5, 216 

and ZAR1 all showed low variability. However, they did not form a separate clade within the 217 

phylogeny; instead, they were interspersed by hvNLRs. This phylogenetic arrangement, together 218 

with the excess of both copy number variation and amino acid diversity in the hvNLRs, argue for 219 



9 

a mechanism where hvNLRs mostly act in direct recognition mode but are infrequently able to 220 

generate indirect recognition alleles that are preserved due to their competitive advantage.  221 

 222 

Highly variable NLRs contain the known NLR autoimmune loci 223 

Generating diverse receptors in the immune system carries with it a cost of autoimmune 224 

recognition. In the known Dangerous Mix gene pairs, at least one and sometimes both causative 225 

alleles are NLRs (Chae et al., 2014). If our prediction that highly variable NLRs are sources of 226 

novel direct binding is correct, we would expect to find a strong overlap between hvNLRs and 227 

Dangerous Mix NLRs. Indeed, hvNLR clades contain all the known NLR Dangerous Mix genes 228 

including RPP7, RPP8, RPP4/5, and RPP1. We suspect that in the future, more Dangerous Mix 229 

NLRs will be found that will map to other hvNLR loci. This finding also suggests that targeted 230 

resequencing of NLRs in crop species could help identify loci responsible for hybrid necrosis 231 

phenotypes, which are a frequent impediment to breeding.  232 

 233 

Highly variable residues cluster on the surfaces of LRR domains of hvNLRs 234 

The LRR domains are known to encode the recognition specificities of plant NLRs. First, we 235 

wanted to know whether highly variable residues occur predominantly in the LRR domain. This 236 

was indeed the case for all 30 hvNLRs examined (Table 1). We noticed, however, that regions in 237 

the NB-ARC domain also had high entropy scores in multiple NLRs (RPP1 and RPP8 in Figure 238 

2A). This suggests that a limited number of residues in the NB-ARC domain could participate in 239 

target binding in these receptors. Alternatively, these could compensate for changes in the LRR 240 

in order to maintain the off state in the absence of the ligand. Many TNLs have post-LRR 241 

domains that lack the characteristic LRR pattern of residues yet are predicted to be folded and 242 

form a contiguous structure with the preceding repeats (Van Ghelder and Esmenjaud, 2016). We 243 

observed that the post-LRR domains also often contained residues with high entropy scores 244 

(RPP1 in Figure 2A). Together, these data suggest that the LRR carries the majority of binding 245 

residues, while NB-ARC and post-LRR domains can also participate in ligand binding.  246 

 247 

If the high entropy residues do indeed make up the target binding sites, we would expect to find 248 

them in one or two clusters on the receptor surfaces and to include exposed hydrophobic 249 

residues. LRR domains fold in a predictable manner that buries the conserved leucines and 250 
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exposes the variable residues on the protein surface; this allows us to skip structure prediction 251 

and to approximate LRR surfaces based on repeat annotation. The concave side of LRR domains 252 

contains a beta-sheet with a regular array of surface-exposed residues, and it can be represented 253 

as a table with one line per repeat unit and the columns corresponding to variable positions in the 254 

canonical Lx2x3Lx5Lx6x7 repeat. In the case of ZAR1, the first plant NLR whose structure was 255 

elucidated, such matrix representation based on repeat annotation perfectly matches the one that 256 

is based on the experimental structure (Figure 3A).  257 

 258 

In order to test whether entropy analysis can predict NLR binding sites, we annotated LRRs for 259 

each hvNLR gene in Col-0 and mapped entropy scores onto this representation. This analysis 260 

revealed that in all the hvNLRs, the periodic spikes in entropy signal over the LRR likely 261 

correspond to one or two surface clusters in the NLR protein (Figure 3B for three representative 262 

examples, Supplemental Data Set 3 for all Col-0 hvNLRs). In the first example, AT5G43740, the 263 

strongest variability signal is found in LRRs 8 through 12 and positions 3, 5, 7, and 8 of the 264 

repeat. Additional high entropy signal comes from LRR1 through LRR5 positions 8 and 10. In 265 

RPP13, the positions C-terminal to the predicted beta sheet appear to play an important role in 266 

determining binding specificity. Unlike AT5G43740, highly variable residues in positions 8, 9, 267 

and 10 of the repeats appear throughout the annotated LRR region, while all residues in position 268 

2 and 3 are conserved. We therefore predict that in RPP13, loops that follow the beta strands 269 

play a key role in determining substrate specificity. Our prediction that specificity determinants 270 

of RPP13 stretch between LRR1 and LRR12 are in agreement with the large experimentally 271 

identified specificity-determining region in RPP13 (Rentel et al., 2008a). 272 

 273 

RPP1 is a well-studied example of a direct recognition NLR where multiple alleles have different 274 

recognition profiles of the effector ATR1 of the downy mildew pathogen Hyaloperonospora 275 

arabidopsidis (Rehmany et al., 2005). In RPP1, we observed a large number of contiguous 276 

residues that likely contribute to binding specificity stretching from LRR1 to LRR15. Highly 277 

variable residues are concentrated in positions 5, 7 and 8 at the beginning of the domain but shift 278 

towards the start of the beta strands in the later repeat units, with residues 2, 3 and 5 lighting up 279 

uniformly in LRR7 - LRR15. Rather unusually, we also observed some variable residues in the -280 

1 and -2 positions. We conclude that in RPP1 (and in AT5G43740), the targets likely bind 281 
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through the middle of the horseshoe LRR shape rather than on one side of it, as in the case of 282 

RPP13. The high-entropy residues in RPP1 contain the amino acids previously shown to extend 283 

recognition specificity of the RPP1 allele NdA towards ATR1-Maks9 (Krasileva, 2011) and 284 

those that directly interact with ATR1 in the cryo-EM structure (Ma et al., 2020) (see below for 285 

discussion). 286 

 287 

To further investigate whether the identified highly variable surfaces indeed represent target-288 

binding sites, we surveyed these regions of high diversity for the presence of exposed 289 

hydrophobic residues, which are commonly found at the centers of protein-protein binding sites 290 

(Figure 3C). Indeed, in every case, the highly variable residues included exposed hydrophobic 291 

amino acids, often including bulky aromatics such as tryptophan and phenylalanine. We also 292 

tested whether the entropy-based predictions agree with the results of positive selection analyses 293 

that have been used in the past to identify functionally important residues in NLRs (Kuang et al., 294 

2004). In RPP13, 66% of all high-entropy residues (>1.5 bits) were under positive selection 295 

according to Phylogenetic Analysis by Maximum Likelihood (PAML) Model 8 (Supplemental 296 

Figure 4). All of the remaining high-entropy residues fell into regions that contained gaps in the 297 

alignment and could not be analyzed by PAML. Thus, the results of the entropy analyses of 298 

hvNLR surfaces are consistent with the results of the widely accepted molecular evolution 299 

analyses performed on the underlying nucleotide sequences. 300 

 301 

NLR binding sites are largely similar across the NLRome 302 

We next examined how the placement of the highly variable residues and the predicted ligand 303 

binding site evolved across the NLR phylogeny (Figure 4). Overall, closely related paralogs 304 

shared a similar binding site location, and most variation was apparent between CNLs and TNLs. 305 

We observed that the clustering of highly variable residues was largely similar across CNLs, 306 

with most sites clustering together in C-terminal repeats and most variability introduced by the 307 

repeat number variation. In TNLs, highly variable sites were more dispersed across the LRRs, 308 

and the predicted binding site was stretched across NLRs with a larger number of repeats. Across 309 

both TNLs and CNLs, the N-termini of LRRs 1-4 were invariable: this region is in contact with 310 

the invariable part of the NB-ARC domain and might be important for regulating NLR 311 

activation. 312 
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 313 

The ZAR1-RKS1 binding site overlaps with the binding site of RPP13 prediced by entropy-314 

based analysis 315 

Arabidopsis ZAR1 is an indirect-recognition NLR and the first one with an elucidated structure. 316 

In our phylogeny, its closest hvNLR is RPP13 (Figure 2B). While the ZAR1 entropy plot lacked 317 

high-entropy residues, we wanted to compare the known footprint of RKS1, the ZAR1 binding 318 

partner, with the positions of highly variable residues in RPP13. Unusually for hvNLRs, highly 319 

variable residues of RPP13 cluster on the C-terminal side of the repeats, with positions 7-10 of 320 

the repeat units showing the highest diversity (Figure 4). Surprisingly, the similarly positioned 321 

residues in ZAR1 are used to bind its stable complex partner, RKS1 (Figure 5). This finding is 322 

consistent with the notion that ZAR1 and RPP13 emerged from an hvNLR common ancestor that 323 

had a binding site similar to that observed in ZAR1 and predicted in RPP13. 324 

 325 

High-entropy residues in RPP13 are required for recognition of ATR13 326 

To experimentally test our prediction, we created synthetic RPP13 constructs and transiently 327 

expressed them in Nicotiana benthamiana together with the ATR13 d49 Emco5 allele, which is 328 

recognized by RPP13-Nd but not RPP13-Col. We used another effector, ATR1 d51 Emoy2, 329 

which is not recognized by either RPP13 variant, as a negative control. RPP13-Col containing 330 

the 509-729 amino acid region from the Nd allele showed a gain of ATR13 recognition, which is 331 

consistent with our prediction (Figure 5C). Similarly, swapping 21 amino acids with Shannon 332 

entropy >1.5 bit from Nd to Col created a loss-of-function allele, despite stable protein 333 

expression, confirming the functional requirement for highly variable residues (Figure 5C, 334 

Supplemental File 3). However, the same 21 amino acids transferred from RPP13-Nd to RPP13-335 

Col were not sufficient for a gain of recognition, suggesting that residues with lower entropy 336 

scores also participate in target binding. (Neither functional nor non-functional RPP13-Col 337 

variants could be observed by immunoblotting, as reported previously (Rentel et al. 2008).) 338 

 339 

The majority of RPP1 target-binding site residues show high sequence variability  340 

While this manuscript was in review, the cryo-EM structure of RPP1 bound to ATR1 was 341 

published (Ma et al. 2020), allowing us to directly evaluate the accuracy of our binding site 342 

predictions. The majority of binding residues had entropy values above one bit (Figure 6A). Both 343 
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precision (fraction of positives among all predictions) and recall (fraction of positives recovered) 344 

varied with the entropy cutoff chosen. Maximal recall was achieved at a cutoff of 0.8 bit, and 345 

precision improved up to a cutoff of 1.8 bits. Thus, cutoff values in this range are likely to be 346 

useful, with higher cutoffs achieving greater accuracy at the cost of missing a greater number of 347 

true positives (Figure 6B). Our empirical 1.5 bit cutoff used to define hvNLR clades is therefore 348 

a conservative one. It is also important to note that sequence-based analyses predicted a number 349 

of RPP1 binding residues past the LRR domain (Table 1); the structure revealed that these 350 

residues form a contiguous surface on the post-LRR domain that is characteristic of a number of 351 

TNL receptors. 352 

 353 

hvNLRs show a similar phylogenetic distribution in Brachypodium distachyon 354 

To test whether our methods and findings are applicable beyond A. thaliana, we performed a 355 

similar analysis on 54 lines of Brachypodium distachyon, a model grass species. The automatic 356 

short-read assembly and annotation pipeline used to generate the Brachypodium data is less 357 

reliable than the targeted resequencing approach used to generate Arabidopsis pan-NLRome. 358 

Specifically, only 45% of hvNLRs present in reference strain Bd-21 were recovered in the 359 

assembly control. Nonetheless, the overall picture that emerged from the analysis of 360 

Brachypodium NLR clades is similar to that of Arabidopsis. After splitting the overall 361 

Brachypodium NLR tree into 91 initial clades, we performed four rounds of clade refinement to 362 

arrive at a final clade partition with 433 subclades. Of these, 28 produced alignments that 363 

fulfilled the hvNLR criteria. Altogether, 40 hvNLRs in the reference accession Bd21 were 364 

identified as hvNLRs.  365 

 366 

Similar to A. thaliana, Brachypodium hvNLRs were distributed throughout the phylogeny, 367 

including in the highly expanded monocot-specific CNL clade. Here too, hvNLRs had sister 368 

clades that showed little amino-acid diversity. Importantly, when we constructed the joint tree 369 

for Col-0 and Bd21 reference NLRomes, the only hvNLRs from the two species that appeared 370 

close together belonged to the RPP13-like clades (Figure 7). This highlights the importance of 371 

sequencing the pan-NLRomes of plants of interest, as the identification of hvNLRs is unlikely to 372 

be transferable except for closely related species.  373 

 374 
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DISCUSSION 375 

Even before the first NLR structure or the extensive sequence datasets were available, 376 

Michelmore and Meyers predicted that hypervariable amino acid positions in the NLRs would 377 

map to the concave surface of the LRR domain based on the signatures of positive selection in a 378 

number of selected examples (Michelmore and Meyers, 1998). They generalized that this might 379 

be true for all NLRs. This model was challenged by the discovery of indirect recognition and of 380 

strongly conserved NLRs. Our analysis proposes a powerful methodology to study NLR-omes, 381 

predicts NLR mode of action through sequence analysis, and reconciles the evolution of direct 382 

recognition NLRs (under diversifying selection) and indirect recognition NLRs (under purifying 383 

or balancing selection). 384 

 385 

In this study, we observed that hvNLRs account for the known direct recognition NLRs and for 386 

autoimmune NLRs. We also observed that the hvNLRs have close paralogs with little allelic 387 

diversity that include the known indirect recognition NLRs. Based on this observation, we 388 

propose that indirect recognition NLRs are a functional byproduct of hvNLR evolution, 389 

providing an important update of the birth-and-death model (Michelmore and Meyers, 1998). 390 

Our analyses suggest that in a given species, diversity generation occurs in a limited subset of 391 

NLR genes, creating a wide recognition potential, including binding to endogenous plant 392 

proteins. When recognition of endogenous proteins is beneficial, such as under perturbations by 393 

the pathogen, the NLR evolves into indirect recognition and begins to experience different 394 

selective forces.  395 

 396 

The resolution and sensitivity of our analyses became possible when we adopted two key 397 

approaches: identifying orthologous groups of NLR receptors by phylogeny in place of 398 

commonly used distance metrics; and using simpler Shannon entropy measure of diversity in 399 

place of more complex evolutionary models. Separating rapidly evolving protein families into 400 

meaningful clades or groups for downstream analyses is a common challenge. In the NLR family 401 

of plant immune receptors, this process is further complicated by ongoing information flow 402 

between close paralogs through recombination and gene conversion (Kuang et al., 2004). 403 

Phylogeny-based analyses are considered to be more accurate than distance-based methods for 404 

similar problems such as classifying Human Immunodeficiency Virus isolates (Pineda-Peña et 405 
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al., 2013). Our phylogeny-based partition of NLR immune receptors into clades improved on the 406 

published OrthoMCL-based partition by producing more encompassing clades and (in particular) 407 

fewer singletons. OrthoMCL is a distance-based algorithm that was originally developed to 408 

separate members of different protein families rapidly; it uses a single parameter to determine the 409 

rate of convergence (Li et al., 2003). This makes its use to partition the pan-NLRome 410 

problematic, because closely related NLRs are known to experience vastly different selection 411 

pressures and thus are expected to contain very different amounts of allelic diversity (Bakker et 412 

al., 2006; Kuang et al., 2004). The specific danger for hvNLR identification is that highly 413 

variable clades will be split, losing the relevant signal. This is indeed what we observed, as the 414 

OrthoMCL-based analysis identified only one out of three hvNLRs and missed key sources of 415 

new NLR specificity such as the RPP1 cluster, which was split into small orthogroups. The 416 

drawback of the phylogeny-based approach is that it is not yet fully automated; however, we are 417 

hopeful that phylogeny-aware algorithms will emerge that will fill this gap. One alternate 418 

approach that would simplify the analysis would be to replace the initial clade assignment with 419 

iterative matching of NLR sequences against a set of inferred ancestral NLR models (Shao et al., 420 

2016). 421 

 422 

It is well established that closely related NLRs experience different modes of selection (Ding et 423 

al., 2007; Wang et al., 2011; Kuang et al., 2004). By expanding this observation to the pan-424 

NLRome and combining it with the wealth of characterized NLRs in Arabidopsis, we were able 425 

to decipher a larger evolutionary pattern where hvNLRs act as sources of new specificities and 426 

encompass the known direct-recognition NLRs. Their diversification, while advantageous to the 427 

plant, comes at a cost. All known Dangerous Mix NLR genes that can trigger autoimmune 428 

recognition belong to hvNLR clades. Thus, the generation of novel specificities goes hand in 429 

hand with the potential for self-recognition and auto-immunity. We also propose that during their 430 

continuous evolution, hvNLRs can generate indirect-recognition NLRs at a low frequency. 431 

Because indirect recognition usually tracks a conserved effector activity, it is more robust than 432 

direct recognition of the effector surface. Duplication of such successful variants might then be 433 

favored due to the increased fitness of the progeny where one copy could eventually be 434 

preserved while the other could continue to generate novel specificities (Kondrashov et al., 435 

2002). The latter inference is consistent with our observation that ZAR1, an indirect-recognition 436 
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NLR, binds to its stable complex partner RKS1 through the same surface on the LRR that 437 

contains highly variable residues in RPP13, its closest hvNLR. 438 

 439 

When we applied Shannon entropy analysis to the NLR clades, only a subset of clades gave 440 

strong signals; these clades included known direct recognition NLRs and autoimmune NLRs. 441 

When we looked at the distribution of high-entropy amino acids in the 30 hvNLRs of 442 

Arabidopsis reference strain Col-0, we found that these residues commonly clustered on the 443 

predicted surfaces of LRR domains. This observation is consistent with the finding that binding 444 

specificities are largely encoded in the LRR domains, as supported by multiple genetic and 445 

biochemical studies (Ellis et al., 2007; Krasileva et al., 2010), as well as the prediction (by 446 

evolutionary studies) that amino acid residues under positive selection are located within LRRs 447 

(Kuang et al., 2004; Rose et al., 2004; Wang et al., 2011). When we carried out a positive 448 

selection analysis on the RPP13 clade, we found that the majority of residues with entropy >1.5 449 

bits were under positive selection. The only exceptions were residues that could not be analyzed 450 

for positive selection due to the presence of gaps in the relevant alignment columns. Shannon 451 

entropy calculation does not count gap characters. Instead, it works without making complex 452 

assumptions about the data and is therefore much faster computationally.  453 

 454 

In our analysis, we went a step further to predict binding sites in hvNLRs directly from pan-455 

NLRome sequence data. The identified binding sites are large. This is likely in due (in part) to 456 

the concave shape of the LRR scaffold, which can place many of the beta strands in contact with 457 

a relatively small target. Comparisons of antibody sequence-based predictions with experimental 458 

structures showed that the predictions correctly recover ~80% of residues that do contact the 459 

antigen, while also producing many false-positives (<50% precision) (Kunik et al., 2012). Unlike 460 

the antibody, where the binding determinants are present on loops away from the core of the 461 

structure, in the LRR, many predicted binding residues fall within the beta sheet located on the 462 

concave side of the domain. This suggests that the accuracy of the prediction might be higher in 463 

this system due to stronger structural constraints. Additional highly variable residues were 464 

located in post-LRR domains and in specific sites within NB-ARC, suggesting their involvement 465 

in substrate binding, or in case of NB-ARC of a compensatory mechanism to maintain self-466 

inhibition in the absence of the ligand. Further mutational and structural experiments in well-467 
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established NLR-effector systems would be needed to test the accuracy of these predictions and 468 

to help refine them.   469 

 470 

Identification of the immense allelic diversity across hvNLRs argues that plant immunity is not 471 

far in its allele-generating potential from the most well-known adaptive immune systems. Indeed, 472 

LRRs are deployed in the adaptive immune systems of early-diverging vertebrates, 473 

demonstrating that their modularity is sufficient for the generation of binding to any foreign 474 

molecule (Das et al., 2013; Han et al., 2008). In the case of plants, enormous diversity is 475 

generated at the population level rather than within a single organism, and therefore, defending 476 

against new pathogens is a community effort. The identification of specific genes within crop 477 

species capable of such diversity generation and their deployment in protein engineering efforts 478 

could provide valuable material for plant health.  479 

 480 

We conclude that phylogenetic analysis of pan-NLRomes combined with sequence diversity 481 

analysis can rapidly classify NLRs into functional groups given sequencing information for at 482 

least 40-60 diverse samples. We also believe that our method would be generally applicable to 483 

the identification of highly variable receptor-like proteins, such as Cf-9 in tomato (Wulff et al. 484 

2009), and the prediction of binding sites of highly variable extracellular immune receptors. Our 485 

method can also predict incompatibility loci, which can be taken into account in breeding new 486 

crop varieties. Similar allelic diversity analyses in other non-vertebrate eukaryotes with 487 

expanded immune receptor families are needed to test whether the patterns of innate immune 488 

receptor evolution we observed are shared across the eukaryotic kingdoms of life. 489 

 490 

METHODS 491 

 492 

Phylogenetic analysis  493 

Phylogenetic tree construction for the A. thaliana and B. distachyon NLRomes and the 494 

NLRomes of reference accessions was performed as previously described (Bailey et al., 2018). 495 

Briefly, amino acid sequences were searched for the presence of the NB-ARC domain using 496 

hmmsearch (Mistry et al., 2013) and the extended NB-ARC Hidden Markov Model (HMM) 497 

13059_2018_1392_MOESM16_ESM.hmm (Bailey et al., 2018), and initial alignment was made 498 
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on this HMM using the -A option. The resulting alignment was processed with Easel tools 499 

(https://github.com/EddyRivasLab/easel) to remove insertions and retain aligned sequences that 500 

matched at least 70% of the HMM model. This alignment was used to construct maximum 501 

likelihood phylogenetic trees using RAxML software version 8.2.12 (Kozlov et al., 2019) (raxml 502 

-T 8 -n Raxml.out -f a -x 12345 -p 12345 -# 100 -m PROTCATJTT). The sequences of outgroup 503 

species were aligned to the same NB-ARC HMM and placed in the pan-NLRome tree using 504 

RAxML Evolutionary Placement Algorithm (Kozlov et al., 2019). The trees were visualized in 505 

iTOL (Letunic and Bork, 2019).  506 

 507 

Initial clade assignments 508 

The phylogeny was used to separate protein sequences into clades using R scripts 509 

prefix_Initial_Assignment.R (hereafter the prefix is either Atha_NLRome or Brachy_NLRome 510 

for the two species under analysis). This and other scripts referenced below are available at 511 

(https://github.com/krasileva-group/hvNLR). First, for each NB-ARC sequence, a clade 40 to 512 

500 in size with the strongest bootstrap support was chosen. For sequences that did not belong to 513 

clades in this size range, smaller clades were allowed. Second, the resulting set of clades was 514 

made non-redundant by excluding all nesting clades. The resulting partitions uniquely assigned 515 

the 7,818 A. thaliana NLR sequences to 65 clades and 11,488 B. distachyon NLR sequences to 516 

91 clades. 517 

 518 

Iterative clade refinement 519 

For each identified clade, full-length protein sequences were aligned using the PRANK 520 

algorithm (Löytynoja, 2014), and phylogenetic trees based on full-length alignments were 521 

constructed as described above using RAxML (Kozlov et al., 2019). Trees were visualized in 522 

iTOL, along with subclade statistics calculated in R, and R scripts were used to produce subclade 523 

lists based on the trimmed branches (prefix_Refinement.R). For the first iteration, gappy 524 

columns in the full-length alignments were masked (90% cutoff), and later iterations were 525 

analyzed without masking gappy columns. Clade refinement was performed as follows: all tree 526 

branches longer than 0.3 were cut to form two or more subclades. All branches 0.1 and shorter 527 

were retained in the first iteration, and for the branches between 0.1 and 0.3, the decision to cut 528 

was made by visually inspecting the tree in iTOL and considering bootstrap support and overlap 529 
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in ecotypes on either side of a branch. The sequences belonging to the refined subclades were 530 

realigned using PRANK, and tree construction repeated. In the following iterations, some 531 

branches shorter than 0.1 were cut via tree inspection in iTOL based on bootstrap support and 532 

ecotype overlap. The refinement process converged to produce the final assignment of all genes 533 

into 237 final clades for A. thaliana and 433 clades for B. distachyon.  534 

 535 

Identification of hvNLR clades and prediction of binding sites in hvNLRs 536 

We used R scripts (prefix_CladeAnalysis.R) to calculate alignment Shannon entropy scores 537 

using the package “entropy”. Alignments that contained 10 or more positions with at least 1.5 538 

bits were considered highly variable. All highly variable clades were examined for the presence 539 

of Arabidopsis Col-0 alleles. For these Col-0 alleles, we predicted the LRR coordinates manually 540 

and cross-checked these predictions with an LRRpredictor online server (Martin et al., 2020). R 541 

script was used to map entropy scores to the predicted concave surface of the LRR domain 542 

(Atha_NLRome_GeneEntropy.R). The entropy scores for the individual strands of LRRs 543 

(LxxLxLxx) were exported in tabular format. The hydrophobicity scores of these residues were 544 

calculated as the percent of hydrophobic residues at a given amino acid position and exported as 545 

a second table. The resulting 2D representations of entropy and hydrophobicity of the concave 546 

sides were visually examined for clustering of residues that showed both high entropy scores and 547 

the presence of hydrophobic residues. Positive selection analysis of the RPP13 clade alignment 548 

was carried out in PAML (Yang, 2007). 549 

 550 

Structural analysis of RPP13 homology model, ZAR1 structure, and RPP1 structure 551 

In order to compare the 3D spatial distribution of highly variable residues in RPP13 with the 552 

ZAR1-RKS1 binding site, we used phyre2 in one-to-one threading mode to produce a model for 553 

RPP13 (Kelley et al., 2015) based on the ZAR1 experimental structure. The alignment had 24% 554 

identity over the complete sequences, with 31% identity before and 15% over the LRR domain. 555 

Important for the model accuracy, there were only two gaps of 7 residues and two gaps of 3 556 

residues, with several more single-residue gaps in the LRR domain. Thus, it is unlikely that 557 

whole repeat units are missing from the model. R script (Atha_NLRome_GeneEntropy.R) was 558 

used to produce a Chimera-formatted attribute files to color the model surfaces by entropy 559 

scores, and figures were generated in Chimera (Pettersen et al., 2004). The dependence of 560 
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binding residue prediction recall and precision on the entropy cutoff was determined using a 561 

custom R script (RPP1_Precision_Recall.R). 562 

 563 

Constructs 564 

RPP13-Nd and RPP13-Col cDNA without a stop codon fused to C-terminal HA tag in 565 

pENTRY/TOPO-D were obtained from the Staskawicz laboratory (Rentel et al., 2008b) and 566 

were used to generate chimeric and synthetic RPP13 variants. RPP13 501-729 synthetic 567 

constructs with highly variable residues (Shannon entropy cutoff >1.5) swapped between Nd and 568 

Col (Supplemental Data Set 4) were designed in SnapGene and synthesized as gene fragments by 569 

IDT. The clones were digested with uniquely cutting restriction enzymes SacI (New England 570 

BioLabs) and MslI (New England BioLabs). The chimeric constructs were ligated for 2 h at 571 

room temperature with T4-DNA ligase (New England BioLabs) and transformed into 572 

electrocompetent E. coli Top 10b (Invitrogen). The resulting constructs were introduced into 573 

binary vector pMD:npRPP13 (Rentel et al., 2008b) using LR clonase II (Invitrogen) and 574 

transformed into Agrobacterium tumefaciens GV3101(pMP90RK). ATR1 d51 Emoy2 tagged 575 

with C-terminal citrine in pEarleyGate103 (Krasileva et al., 2010) and ATR13 d41 Emco5 in 576 

p1776 (Rentel et al., 2008b) were used for transient transformation. 577 

 578 

Transient expression 579 

A. tumefaciens strains were grown for 24-48 hours at 28°C in Luria–Bertani broth (100 µg/mL, 580 

gentamicin 50 µg/mL, kanamycin 25 µg/mL) with constant shaking. After pelleting, the cells 581 

were resuspended in induction medium (10 mM MgCl, 10 mM MES, and 150 µM 582 

acetosyringone, adjusted to pH 5.6 with KOH), adjusted to a final OD600 of 0.6, and induced for 583 

3 h at room temperature. Co-infiltrations were done at a final OD600 of 0.6 and contained 584 

constructs mixed in a 1:1 ratio. Fully expanded leaves of 4-5-week-old Nicotiana benthamiana 585 

plants grown in Supersoil mix #4 supplemented with Miracle Gro Plant Food fertilizer at 24°C 586 

under a 16 h light (fluorescent lamps)/8 h dark cycle were infiltrated using a blunt end syringe. 587 

After infiltration, the plants were kept at constant light (fluorescent lamps, GE Cat #F405941-588 

ECO) and room temperature. The hypersensitive response reaction was monitored for 4 days, 589 

with pictures taken 3 days post infiltration. Two leaf disks (1.5 cm2 in diameter) were collected 590 
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from RPP13/ATR1 co-infiltrations for protein extraction 2 days post infiltration, frozen in liquid 591 

nitrogen, and stored at -80°C. 592 

 593 

Protein extraction and immunoblotting 594 

Tissue in a 1.5 mL Eppendorf tube was frozen in liquid nitrogen a ground with a manual drill 595 

using a pre-chilled plastic pestle. Total protein was extracted by re-suspending the ground tissue 596 

in 2x Laemmli buffer (Bio-Rad, Cat. #1610737) supplemented with fresh β-mercaptoethanol to a 597 

final concentration of 5% (by volume), boiling for 5 minutes, and pelleting the debris for 10 598 

minutes at 14,000 rpm. 15 µL of each protein sample was separated on a 4–15% Mini-599 

PROTEAN gel (BioRad) for 1 hour at 100V and transferred onto a nitrocellulose membrane 600 

using wet transfer for 1.5 h at 300 mA. The membranes were blocked overnight in 5% milk in 601 

TBST-T, incubated for 1 h in rat α-HA-horseradish peroxidase antibody (clone 3F10; Roche, Cat 602 

#12013819001) at 1:1000 dilution in TBST-T, washed once for 15 minutes and twice for 5 603 

minutes in TBST-T, and imaged using SuperSignal West Pico PLUS Luminol substrate (Thermo 604 

Scientific) inside a Gel Imager (BioRad). Total protein loading was confirmed by staining the 605 

membrane in Ponceau S and destaining in 5% acetic acid. 606 

 607 

Accession Numbers 608 

Arabidopsis pan-NLRome nucleotide assemblies were downloaded from the 2Blades foundation 609 

(http://2blades.org/resources/). Gene annotations were downloaded from GitHub pan-NLRome 610 

repository (https://github.com/weigelworld/pan-nlrome/). The gene models that matched 611 

assemblies were available for 62 A. thaliana accessions (Van de Weyer et al., 2019), and these 612 

were processed to extract the amino acid sequences of captured protein-coding genes using 613 

bedtools getfasta program (Quinlan, 2014). The reference set of 168 NLR alleles (including 614 

splice variants) of the Arabidopsis Col-0 genome was extracted as described before (Sarris et al., 615 

2016). The accession numbers of RPP13 used in the laboratory experiments are: RPP13-Nd 616 

(AF209732.1) and RPP13-Col (AF209730.1). The PDB accession number of the RPP1 structure 617 

used in this study is 7crb. Brachypodium proteomes for 54 lines were downloaded from 618 

BrachyPan (https://brachypan.jgi.doe.gov) (Gordon et al., 2017). The R scripts used to analyze 619 

project data are available via GitHub (https://github.com/krasileva-group/hvNLR), the complete 620 

data set for the project including clade alignements and clade trees is available via Zenodo (DOI: 621 
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10.5281/zenodo.3951781), and the clade trees can be viewed in iTOL 622 

(http://itol.embl.de/shared/daniilprigozhin). 623 

 624 

Supplemental Data 625 

Supplemental Figure 1. A. thaliana pan-NLRome tree showing initial clades and phylogenetic 626 

placements of outgroup sequences from A. lyrata and C. rubella.  627 

Supplemental Figure 2. Distribution of highly variable sites per final clade alignment. 628 

Supplemental Figure 3. Comparison of phylogenetic versus physical clustering of Col-0 NLRs. 629 

Supplemental Figure 4. Comparison of entropy-based and positive selection-based binding site 630 

predictions.  631 

Supplemental Data Set 1. Number of NLRs from A. lyrata and C. rubella in the initial NLR 632 

clades.  633 

Supplemental Data Set 2. Number of NLRs in the final NLR clades across the 62 A. thaliana 634 

ecotypes.  635 

Supplemental Data Set 3. 2D representations of LRR surfaces of 30 hvNLRs from ecotype Col-636 

0. 637 

Supplemental Data Set 4. Nucleotide and amino acid fasta sequences of RPP13 501-729 638 

synthetic constructs that have highly variable residues swapped between Col and Nd allele. 639 
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Table 1. Number and locations of highly variable residues in hvNLR receptors. The number of 804 
residues in clade alignment for each hvNLR with Shannon entropy values of at least 1.5 bits 805 
(counted by domain) is shown. The majority of highly variable residues were found in the LRR 806 
domain.  807 

Gene Name Type preNB NB-ARC linker LRR postLRR 

No hv 
aa 

% 
total 
aa 

No hv 
aa 

% 
total 
aa 

No hv 
aa 

% 
total 
aa 

No hv 
aa 

% 
total 
aa 

No hv 
aa 

% 
total 
aa 

RPP9 TIR 0 0 0 0 0 0 23 5.8 11 5.3 

RPP7 CC 0 0 0 0 1 1.5 34 6.1 0 0 

AT1G58807.1 CC 1 0.6 0 0 0 0 29 6.7 1 3.4 

AT1G58848.1 CC 1 0.6 0 0 0 0 37 7.2 0 0 

AT1G59124.1 CC 1 0.6 0 0 0 0 17 5.6 0 0 

AT1G59218.1 CC 1 0.6 0 0 0 0 36 7.1 1 7.7 

AT1G61180.1 CC 2 1.3 7 2.1 0 0 35 9.9 0 0 

RPP39 CC 2 1.3 4 1.2 0 0 36 8.7 1 2.7 

AT1G61300.1 CC 2 4.8 7 2.1 0 0 35 9.9 0 0 

AT1G61310.1 CC 2 1.3 7 2 0 0 35 9.9 0 0 

AT1G62630.1 CC 0 0 4 1.2 0 0 23 7 2 4 

AT1G69550.1 TIR 0 0 2 0.6 2 2.4 58 9.8 1 0.6 

RPP28 TIR 1 0.4 0 0 1 3 18 3.7 5 3.4 

AT3G44400.1  TIR 2 0.9 4 1.3 3 5.1 22 8.1 18 11.6 

RPP1 TIR 3 1.1 6 1.9 3 5.1 35 9.6 17 9.1 

AT3G44630.1 TIR 3 1.1 6 1.8 3 5.1 35 9.5 15 8.3 

AT3G44670.1 TIR 4 1.5 4 1.3 3 5.1 30 8.9 19 8 

RPP13 CC 0 0 0 0 1 2.5 34 11.6 0 0 

RPP4 TIR 3 1.6 5 1.7 5 8.3 45 8.4 1 1.6 

SNC1 TIR 6 3.2 5 1.7 5 8.5 34 5.5 5 3.6 

AT4G16920.1  TIR 7 3.8 5 1.7 5 8.5 51 8.3 3 2.1 

RPP5 TIR 7 3.7 5 1.7 5 8.5 41 6.6 8 2.9 

AT5G38350.1  TIR 0 0 3 0.9 1 1.7 13 4.6 6 4.1 

SSI4-LIKE TIR 0 0 3 1 0 0 21 6.6 4 2.2 

AT5G41750.1  TIR 0 0 2 0.6 1 1.9 19 6 2 1 

RPP8 CC 0 0 10 2.9 0 0 19 5 0 0 

AT5G43740.1 CC 0 0 2 0.6 2 4.1 27 8.2 0 0 

AT5G46510.1 TIR 1 0.5 1 0.3 1 0.9 7 2.3 6 1.4 

VICTR/ACQOS TIR 1 0.5 1 0.3 1 0.9 7 2.3 6 2.3 

AT5G48620.1  CC 0 0 10 2.9 0 0 19 5.3 0 0 
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Figure 1. Phylogenetic analyses of Arabidopsis pan-NLRome. A) Maximum likelihood tree for 7,818 
Arabidopsis NB-ARC sequences rooted on a branch connecting TNL and non-TNL clades. 99% or better 
bootstrap values are shown as dots. B) Same tree as in A) partitioned into 65 initial clades, with circle 
radius proportional to clade size, and indicating bootstrap support for each clade. C) Int14015 clade tree 
(rooted midpoint) based on a full-length alignment of the clade sequences. 99% or better bootstrap values 
are shown as dots. D) Int9878 clade ML tree (rooted midpoint) based on a full-length alignment of the 
clade sequences. 99% or better bootstrap values are shown as dots; branch length represents the 
number of substitutions per site.   



 
Figure 2. Identification and phylogenetic distribution of highly variable NLRs. A) Domain diagrams and 
Shannon entropy plots of clade alignments containing known NLRs from ancient helper (NRG1.1), guard 
(RPS2), integrated decoy (RRS1B), and direct recognition (RPP1) functional groups. It is not presently 
known whether RPP8 is a direct recognition NLR. B) Phylogenetic distributions of NLRs of the reference 
ecotype, Col-0, indicating positions of known genes and showing the locations of hvNLRs and 
autoimmune Dangerous Mix NLRs. 99% or better bootstrap values are shown as dots; branch length 
represents the number of substitutions per site.  



 
Figure 3. 2D representations of LRR surfaces allow comparisons of predicted NLR binding sites to be 
made in the absence of experimental structures. A) Beta-sheet on the concave side of ZAR1 LRR domain 
shows a regular array of surface-exposed residues that correspond to the variable positions in the 
LxxLxLxx LRR motif (left). Single-letter amino acid representation of the observed array (center). Identical 
representation is obtained from LRR repeat annotation by arranging the rows from bottom to top and 
hiding the columns containing conserved leucines (right). B) Shannon entropy scores and amino acid 
residues of three representative Col-0 hvNLRs mapped onto the 2D surface representation, including five 
additional amino acids on either side of the core repeat unit. C) Percentages of hydrophobic residues in 
the alignments of the same three proteins. 

  



 
Figure 4. 2D representations of Col-0 hvNLR LRR surfaces in the context 
of the Col-0 NLR tree. The 2D binding site representations are those in 
Figure 3 and Supplemental Data Set 3 situated horizontally and trimmed 
to include positions -2, -1, 2, 3, 5, 7, 8, 10, and 11 of each repeat unit. For 
each cartoon the -2 position of the LRR1 is in the top left corner and the 
position 11 of the last LRR is in the bottom right. The tree on the left is a 
subset of the Col-0 NLR tree from Figure 2B with only the hvNLR leaves 
shown. 
  



 
Figure 5. Highly variable residues in RPP13 overlap with the observed ZAR1-RKS1 binding site and are 
required for ATR13 recognition. A) Shannon entropy plots and domain diagrams for ZAR1, an indirect 
recognition CNL, and RPP13, a related hvNLR. B) Cryo-EM structure of RKS1 bound to ZAR1 (CC and 
NB-ARC domains omitted for clarity) (PDB ID: 6J5W). RKS1 shown as a secondary structure diagram 
with rainbow coloring from blue (N-terminus) to red (C-terminus), ZAR1 LRR as a secondary structure 
diagram and transparent surface with RKS1 contact residues colored blue. RPP13 LRR domain 
homology model with surface oriented as in ZAR1 and colored by Shannon Entropy of the RPP13 clade 
alignment from low (light blue) to high entropy (dark blue). C) Chimeric constructs of RPP13 region 501-
729 containing highly variable LRR repeats. The constructs were designed by targeting amino acids with 
Shannon entropy >1.5 bits and functionally tested by Agrobacterium-mediated transient expression 
assays in Nicotiana benthamiana together with cognate ATR13d41-Emco5 effector or ATR1d51-Emoy2 
negative control at the final OD600 of 0.6 with constructs mixed in equal ratio. The image was taken at 3 
days post infiltration. Each construct was tested on 14 leaves and showed consistent presence/absence 
of HR on all leaves. Immunoblotting showed stable expression of both functional and mutated RPP13-Nd 
variants. No RPP13-Col variants could be detected despite having an intact HA tag similar to what has 
been reported previously (Rentel et al. 2008). 



 
Figure 6. RPP1 contact residues show high sequence diversity. A) Structure of RPP1 LRR-ATR1 
complex (PDB ID: 7CRB) colored by entropy scores, with contact residues shown as sticks for predicted 
true positives and ball and stick for false negatives using a 1 bit entropy cutoff. False positive predictions 
at the same cutoff are represented as wire. B) Precision and recall for the prediction of RPP1-ATR1 
binding site residues based on the choice of entropy cutoff. 

 
  



 
Figure 7. Dispersed distribution of hvNLRs in a joint phylogeny of Brachypodium Bd21 (blue ribbon) and 
Arabidopsis Col-0 (green ribbon). The Arabidopsis hvNLR clades (green dots) and Brachypodium 
hvNLRs (blue dots) do not cluster except for the RPP13 CNL clades. The tree is rooted arbitrarily on a 
branch connecting TNL clade (orange branches) and non-TNL clades (RNL branches are shown in 
purple, and CNL branches are shown in green). 99% or better bootstrap values are shown as dots; 
branch length represents the number of substitutions per site. 




