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ABSTRACT: Background: Parkinson’s disease (PD) is
a highly age-related disorder, where common genetic risk
variants affect both disease risk and age at onset. A sta-
tistical approach that integrates these effects across all
common variants may be clinically useful for individual risk
stratification. A polygenic hazard score methodology,
leveraging a time-to-event framework, has recently been
successfully applied in other age-related disorders.
Objectives: We aimed to develop and validate a poly-
genic hazard score model in sporadic PD.
Methods: Using a Cox regression framework, we
modeled the polygenic hazard score in a training data
set of 11,693 PD patients and 9841 controls. The score
was then validated in an independent test data set of
5112 PD patients and 5372 controls and a small single-
study sample of 360 patients and 160 controls.
Results: A polygenic hazard score predicts the onset of
PD with a hazard ratio of 3.78 (95% confidence interval

3.49–4.10) when comparing the highest to the lowest risk
decile. Combined with epidemiological data on incidence
rate, we apply the score to estimate genetically stratified
instantaneous PD risk across age groups.
Conclusions: We demonstrate the feasibility of a poly-
genic hazard approach in PD, integrating the genetic
effects on disease risk and age at onset in a single
model. In combination with other predictive biomarkers,
the approach may hold promise for risk stratification in
future clinical trials of disease-modifying therapies, which
aim at postponing the onset of PD. © 2021 The Authors.
Movement Disorders published by Wiley Periodicals LLC
on behalf of International Parkinson and Movement Dis-
order Society

Key Words: Parkinson’s disease; age at onset; genet-
ics; polygenic score; prediction
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Age is one of the strongest-known risk factors for
Parkinson’s disease (PD). Consequently, a dramatic
increase in PD prevalence is expected over the next
decades, as a larger proportion of the population survives
into old age.1 A deeper understanding of the mechanisms
relating aging to neurodegeneration and improved tools
for individual risk stratification are immediately needed to
meet this major public health challenge. Early detection
and prediction through precision medicine2 will be increas-
ingly important for the development of novel disease-
modifying therapies in PD, as neurodegeneration is shown
to start long before the onset of clinical symptoms.
Common genetic variation also accounts for a sub-

stantial proportion of variability in sporadic PD risk,
with an estimated heritability of about 16%–36%,
based on meta-analyses of genome-wide association
studies (GWAS).3 A recent twin study reported 27%
heritability when all age groups were included.4 Vari-
ants detected in PD GWAS are also associated with age
at onset of PD in linear regression models.5-7 Only a
few common variants have reached genome-wide signif-
icance as individual age-at-onset association signals,
but models based on polygenic risk scores (PRSs) have
consistently found that a higher cumulative burden of
genetic PD risk correlates with earlier onset.8-10

Although the findings clearly overlap, the association of
genetic variants with disease risk and age at onset in
PD has thus far been studied only as independent ques-
tions, using separate statistical frameworks.
Polygenic hazard scores (PHSs) leveraging a time-to-

event, or survival, framework have been successful in
Alzheimer’s disease (AD) and prostate cancer, both
highly age-related complex disorders.11-13 This
approach integrates the association with disease risk
and age at onset into a common concept, under the
hypothesis that genetic variation acts as a modulator of
age-dependent risk. In the present article, we apply this
PHS methodology in PD for the first time.
Although PD incidence is strongly dependent on age,

some caution is warranted from the outset. A minor
fraction of PD patients have a monogenic cause,
recently estimated at approximately 1% in the United
Kingdom,14 yet higher in specific populations.15 Auto-
somal recessive disease is strongly overrepresented
among early-onset patients (eg, <40),16 and even
patients negative for mutations in known Mendelian
genes may have a different genetic architecture from the
common late-onset form.9 In the oldest age groups, epi-
demiological studies have reported mixed results with
respect to the trends in sporadic PD incidence.17

Using individual-level case–control genotype data
from the International Parkinson’s Disease Genomics
Consortium (IPDGC) with information about age of
onset, we model a PHS on reference data from sporadic
PD patients and healthy controls in the age group from
40 to 75 years and validate it in two independent data

sets. We further demonstrate how hazard ratios
obtained using this method are directly interpretable in
terms of stratified annualized incidence rates, with
potential implications for clinical trial design. At pre-
sent, a standard PRS approach based on summary sta-
tistics from case–control GWAS has the advantage of a
far larger sample size to model from. The current
results highlight the importance of collecting age-at-
onset data for future improved PHS modeling in large-
scale collaborative efforts.

Patients and Methods

All statistical analyses were performed using Matlab
R2019a or R v3.6.1. Plink v1.9 was used to prepare
the genetic data. An outline of the study workflow is
provided in Figure 1. A set of recommended reporting
standards for polygenic studies were published while
this article was under review, and we have aimed to
adhere to these guidelines.18

Genetic Data Sets
We used individual-level genotype data generated as

part of previous genetic association studies by the
IPDGC.5 Standard quality checks have been performed
on site-level data before initiation of the current study,
including filtering for individual and variant mis-
singness, excess heterozygosity, relatedness, Hardy–
Weinberg equilibrium, and sex-check failures, as
previously reported.3 All included samples were of
European ancestry. Genotypes have been imputed using
reference data from the Haplotype Reference Consor-
tium before data from individual sites were combined
and duplicated/related samples from the level of first
cousins were excluded from the common data set.
For the present study we included samples from sites

with only available information on age at onset for
patients or age at recruitment for controls. For some of
the site-level data sets, age at subjective symptom onset
was not available, and for these we used age at diagno-
sis as a surrogate for onset, similar to a recent age at
onset GWAS based on the same raw data.5 Notably, a
high correlation between age at reported symptom onset
and age at diagnosis (Pearson’s r2 = 0.965) was found in
the Oslo data set where both variables where available.
Patients with onset age and controls with recruitment age
below 40 years were excluded. We selected the largest single
data set available, including 5112 PD patients and 5372
controls, as a test data set for validation of the PHS model.
Previous analyses have shown this sample size to afford
high statistical power for testing of PHSs in a polygenic dis-
order.19 The same IPDGC data set was used for replication
in a 2014 PD GWAS and PRS validation in the 2019 PD
meta-GWAS and is available in the database of Genotypes
and Phenotypes (dbGaP phs000918.v1.p1).20 Similarly,
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genotype data from the Parkinson’s Progression Marker Ini-
tiative (PPMI) were reserved for independent validation.21

The remaining data sets were included in the training data
set used to generate the PHS model. Previous studies have
shown that genetic factors associated with longevity can
bias allele frequencies in data sets that include participants
from the oldest age groups.5 We therefore excluded patients
and controls aged above 75 years from the training data
set, which after exclusion comprised 11,693 PD patients
and 9841 controls. Demographics are provided in
Table S1, with site-specific details of the reference data in
Table S2.

Training and Testing the Polygenic Hazard
Model

Standard PRSs use a logistic regression framework to
estimate weights for individual single-nucleotide poly-
morphisms (SNPs) and treat patients and controls as
permanent designations. The PHS approach uses Cox
proportional hazard models to directly estimate associ-
ations with age of onset of the disease, which may be
particularly important for conditions, like PD, where
incidence is strongly dependent on age. The time to
event for patients is the age at diagnosis, and controls
are censored at age at last follow-up, allowing for the
possibility that they may develop PD at an older age.
Mathematically, the PHS is the vector product of the

individual’s genotype (Xi) for n SNPs and the

corresponding parameter estimates (βi) from the Cox
proportional hazard regression:

PHSx ¼
Xn

i

Xiβi

The hazard rate at time t for a given subject Xi, λ(Xi), is
given by λ(Xi) = λ0(t)exp(β1Xi1 + � � � + βpXip), where
λ0(t) is the baseline hazard rate function, β1, …, βp are
weights optimized from the training data sets, and Xi1,
…, Xip are covariates for the ith subject. In our case,
the covariates include the genotype vectors of all SNPs
included in the PHS model, as well as sex and top five
principal components of the genotype matrix.
We first used full summary statistics (including data

from 23andMe, Inc., Sunnyvale, CA, USA) from the
largest meta-analysis of PD GWAS to date3 to identify
a list of SNPs associated with PD risk at significance
threshold of P < 1e-5. From this list, we extracted only
variants with call rate >0.95 across the individual geno-
type data sets, which included 1532 SNPs. Genotypes
were coded 0 for reference allele homozygotes, 1 for
heterozygotes, and 2 for alternate allele homozygotes,
in line with a standard log-additive model. These SNPs
were evaluated in a stepwise forward, greedy proce-
dure, using a PHS to predict time to PD onset in the
training data set, applying a Cox proportional hazard
model, while controlling for sex and the top five genetic
principal components. In each step, the algorithm

FIG. 1. Overview of the study workflow. The figure shows the different analysis steps of the study and what data sets were used. The main study
workflow is shown at the top in bold font and darker boxes. Supplementary analyses are shown below in lighter boxes.
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selected the SNP that best improved model prediction
by minimizing the martingale residuals from Matlab’s
“coxphfit” function, until no SNP could be included in
the PHS that would further significantly improve the
model. The P-value threshold interpreted as a signifi-
cant improvement of the model was arbitrarily set to
P < 10e-3 based on our previous experience with the
method. We also repeated the workflow testing both
stricter (P < 5e-4) and more liberal (P < 0.05) thresh-
olds and compared model performance based on
z scores. The proportional hazard assumption was
assessed using graphical comparisons.
Having defined the model SNPs and allele weights

based on the training data, we then used the same
model to calculate individual PHS in the independent
test data set. We evaluated the performance of the PHS
as a predictor of age-dependent PD incidence by model
z score and plotted the Kaplan–Meier estimates for
PD-free survival stratified by PHS percentile ranges.

Evaluating the Potential for Model
Improvement by Adding SNPs Identified

in Larger GWAS
An important disadvantage of the PHS approach is

that the training step requires age data and individual
genotypes, typically not available for data sets on the
same scale as the largest GWAS meta-analyses. In a
recent paper, we have shown that a PHS generated by
our Cox regression method can be improved by the
incorporation of GWAS-nominated SNPs in an addi-
tional step where the optimal SNP set is selected using
least absolute shrinkage and selection operator
(LASSO)-regularized regression.22 Following this publi-
shed approach, we took advantage of results from the
latest meta-analysis of GWAS in PD, where 83 SNPs
were identified as genome-wide significant loci indepen-
dently of our test data set in a “leave one out” analysis.3
A list of SNPs combining our PHS model SNPs with
these 83 GWAS SNPs was compiled, and the R package
“glmnet” was used to estimate a LASSO-regularized
Cox proportional hazard model, where the hyper-
parameter λ was selected using 10-fold cross-validation
(see Supplementary Data). A final LASSO model was
estimated at the value of λ that minimized the mean
cross-validated error,22 and the performance of the
LASSO model was compared to the basic PHS
approach described earlier.

Evaluating the Performance of Sex-Specific
Models

In previous studies of AD, training and testing the
PHS model in sex-matched data sets have been shown
to significantly improve performance,23 indicating that
genetic risk interacts with sex, at least for a relevant
subset of common susceptibility loci. To evaluate this

possibility in PD, we repeated the same workflow for
model training and testing in the same data sets using
male-only and female-only subsets of the data,
respectively.

Predicting Population Risk of PD Onset
Combined with incidence rates from epidemiological

studies, PHSs can be used to calculate genetically strati-
fied estimates of absolute disease risk across the age
spectrum.11,24 We defined the age-dependent baseline
risk based on epidemiological incidence rates by age
group from a comprehensive 2017 report on “The Inci-
dence and Prevalence of Parkinson’s in the UK,”25 rep-
resenting to our knowledge the largest and most recent
data source to provide the figures of interest. As inci-
dence rates were reported for 5-year intervals, we let
values represent the midpoint of each interval and used
one-dimensional interpolation to estimate annualized
incidence rates. Hazard ratios of PHS percentile strata
were used to visualize the influence of polygenic risk on
incidence curves and recalculate stratified “instanta-
neous” risk across age groups, applying sample weight
correction to account for different case–control propor-
tions in the sample sets as detailed in a previous
report.12

Validating the Model for Onset Prediction
in PPMI Data

We further tested the accuracy of PHS stratification
in the relatively small PPMI data set of 360 PD patients
and 160 controls, emulating a clinical trial cohort of
premanifest individuals with a high risk of developing
PD at some unknown age. PPMI participants were
stratified into 10 PHS decile strata, and the age-
dependent absolute risk for each stratum was calculated
across all 1-year intervals from 50 to 75. For each PHS
decile we extracted the age at which the proportion of
individuals having developed PD reached 25%. We
defined an absolute risk reference threshold (0.005)
based on the risk corresponding to the 25% prevalence
age in the fifth and sixth deciles, and the expected age
for all other decile strata was defined as the year when
the same threshold was reached. This age was then
compared to the actual observed age when prevalence
reached 25% in each decile stratum.11

Results
The PHSs and Model Performance

The Cox stepwise regression framework identified
71 SNPs that met criteria for inclusion in the final PHS
model (Table S3). A graphical comparison between
stratified Kaplan–Meier estimations and Cox propor-
tional hazard models indicated that the proportional
hazard assumption holds for the final model (Fig. S1).
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Notably, several SNPs were included from loci that
have also been reported to be individually associated
with age at onset, including SNCA (three SNPs) and
TMEM175 (four SNPs). PHS was normally distributed
(Fig. S2) and showed a strong association with age-
related PD incidence in the test data (z score 17.7,
β = 0.90, standard error = 0.05, P < 10e-15). Stratified
Kaplan–Meier estimates are shown in Figure 2, demon-
strating the effect of PHSs on age at onset in the test
data. The hazard ratio comparing the highest to the
lowest risk deciles was 3.78 (95% CI [confidence inter-
val] 3.49–4.10) after sample weight correction.
Applying either stricter or more lenient P-value

thresholds for SNP selection changed the number of

included SNPs only slightly and did not improve model
performance (threshold at P < 5e-4: 70 model SNPs,
z score 17.7; threshold at P < 0.05: 82 model SNPs,
z score 17.2). Combining the 71 SNPs from our pri-
mary PHS model with GWAS hits identified indepen-
dently of the test data set in the latest meta-analysis of
GWAS, we generated 130 SNPs serving as input to our
LASSO-regularized Cox regression approach (Table S3).
The final LASSO-selected model included 85 of these
SNPs and performed slightly better in the test data
(z score 19.0). This indicates that a pragmatic incorpo-
ration of summary statistics from large case–control
GWAS could further improve a PHS model of PD
based on Cox regression in individual data. However,
as our primary aim in this work was to demonstrate
the feasibility of a PHS approach in PD, we went for-
ward with the basic 71 SNP PHS in the rest of our
workflow.
Splitting the data into male and female subsets

resulted in a smaller sample size for the training (men:
7258 PD patients and 4610 controls; women 4435 PD
patients and 5231 controls) and test (men: 3297 PD
patients and 3061 controls; women: 1815 patients and
2311 controls) data sets. Using the same threshold
(P < 0.01) for SNP inclusion in the PHS model, 28 SNPs
were selected for the male model and 32 SNPs for the
female model. Neither model performed as well as the
model combining data from both sexes (male z
score = 11.4; female z score = 9.4). Relaxing the P-
value threshold to 0.05 and allowing more SNPs to be
included did not improve the sex-specific models. Con-
sequently, the potential benefits of a sex-specific PHS
model did not outweigh the sacrifice in statistical power
in our PD data.

Applying PHSs to Population Risk
Examples of estimated yearly incidence rates for dif-

ferent age groups recalculated for specific PHS strata
are provided in Table 1. Incidence rates for selected

FIG. 2. Kaplan–Meier curves for test data, stratified by PHS (polygenic
hazard score) modeled in training data. A polygenic hazard score
modeled on the training data was calculated for all individuals in the
independent test data set. The figure shows the Kaplan–Meier curves
for survival free of Parkinson’s disease in the test data set across
selected PHS (polygenic hazard score) percentile strata. Thin lines rep-
resent 95% confidence intervals calculated by Greenwood’s formula.26

[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Baseline incidence rates adjusted for polygenic hazard ratio

Age Baseline incidence PHS 1st decile (95% CI) PHS 9th decile (95% CI) PHS 10th decile (95% CI)

45–49 4 1.9 (1.8–2.0) 5.4 (5.3–5.5) 7.3 (7.0–7.5)

50–54 9.1 4.4 (4.2–4.6) 12.3 (12.0–12.5) 16.5 (15.9–17.1)

55–59 18.2 8.7 (8.3–9.1) 24.5 (24.1–25.0) 33.0 (31.8–34.2)

60–64 33.5 16.1 (15.4–16.8) 45.1 (44.3–45.9) 60.7 (58.6–63.0)

65–69 62.5 29.9 (28.5–31.2) 83.9 (82.4–85.4) 112.9 (108.9–117.1)

70–74 113.4 54.3 (51.9–56.8) 152.7 (149.9–155.5) 205.6 (198.2–213.2)

75–79 173.5 83.1 (79.5–867.0) 233.6 (229.4–237.9) 314.5 (303.3–326.1)

The table shows examples of how stratified absolute risk of Parkinson’s disease can be recalculated from baseline incidence using hazard ratio. Figures correspond to cases per
100,000 individuals in the population. Baseline incidences are from the Parkinson’s UK 2017 report on “The Incidence and Prevalence of Parkinson’s in the UK.”25
Abbreviations: PHS, polygenic hazard score; CI, confidence interval.
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PHS strata, estimated from hazard ratios and epidemio-
logical data on baseline risk,25 are shown in Figure 3.

Onset Prediction in PPMI Data
Predicted and observed age at onset stratified for PHS

in the PPMI data showed a clear correlation (Pearson’s
r = 0.83, P = 0.0030). The results across all PHS decile
strata are shown in Figure 4.

Discussion

We show for the first time that the PHS method can
be used to estimate PHS-adjusted PD risk. The effect
sizes were large enough to achieve significant valida-
tion with relatively small sample sizes, such as the
PPMI study. Comparing the top and bottom PHS dec-
iles, we observed a hazard ratio of 3.78 (95% CI
3.49–4.10).
We focused our analysis on the age range from 40 to

75, demonstrating that a 71 SNP PHS model trained on
the reference data set successfully predicts empirical age
at PD onset in the independent test data. The observed
hazard ratio for the top and bottom PHS deciles for PD
is consistent with previous reports of an association
between cumulative burden of genetic disease risk and
age at onset in PD.5,6,8-10 We found no evidence of a
sex-specific effect in PD. Smaller sample sizes reduce statisti-
cal power, yet the lack of sex-specific effects in our study is
also consistent with the mostly negative sex-stratified results
reported in a recent GWAS of age at onset in PD.5

Methods that summarize the effect of many risk alleles
into a polygenic score have gained increasing attention
in complex genetics as ever-larger GWAS data sets
become available to train more powerful models.27 The
polygenic hazard approach takes advantage of a survival
analysis framework to integrate the genetic effects on
disease risk and age at disease onset in a single model
for age-dependent, complex disorders. A major advan-
tage of the PHS method is that the hazard ratio is
directly and intuitively interpretable as a modifier of
baseline risk. We have shown how PHS can be com-
bined with epidemiological data on incidence rates per
age group to calculate genetically stratified estimates of
instantaneous PD risk in a given population.
An important hurdle for the scalability of the PHS

approach is that it requires both age data and individual
genotype data. In contrast, large-scale meta-analysis of
GWAS can take advantage of summary statistics from
logistic regression. The standard PRS generated from
GWAS results is currently widely used in complex dis-
ease research but does not incorporate the age dimen-
sion the way our PHS does. We emphasize that we have
primarily aimed to demonstrate the feasibility of a PHS
approach, not expecting to directly outperform the best
current PRSs, where the number of participants contrib-
uting to SNP identification and estimation of allele
weights is very large. Our LASSO-regularized Cox
regression approach indicates that incorporating GWAS
results will currently benefit a PHS model. As genetic
data sets continue to grow, our results should encourage
PD researchers to collect and share participant age data
to allow for further improvement in polygenic modeling.
We acknowledge that larger training data sets will be
required to further improve the accuracy of the PHS
model and its potential utility in PD.

FIG. 3. Incidence rates for Parkinson’s disease stratified by polygenic
hazard score. The figure shows estimated absolute incidence rates for
Parkinson’s disease as a function of age and polygenic hazard score per-
centile. The baseline incidence rates are based on a 2017 report from
Parkinson’s UK.25 [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Observed versus predicted age at onset in PPMI (Parkinson’s
Progression Marker Initiative) hazard strata. A polygenic hazard score
modeled on training data was estimated for both PD patients and con-
trols in the PPMI data set, and participants were stratified into PHS
(polygenic hazard score) deciles. The figure shows the observed age at
which 25% of participants in each PHS stratum had developed
Parkinson’s disease plotted against the age estimated from the PHS
stratum hazard ratio (see main text). [Color figure can be viewed at
wileyonlinelibrary.com]
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It is worth noting that although our study concerns PD
onset, the polygenic hazard framework is also relevant for
the prediction of progression to specific clinical disease
course milestones. While this manuscript was under review,
a genome-wide survival study of progression to dementia in
PD was published, employing a PHS approach inspired by
our previous work in AD.11,28 Interestingly, a PHS modeled
on cognitive progression data was reported to significantly
predict PD dementia, whereas a general PRS for PD risk
based on GWAS summary statistics did not.
Our study has some limitations. Most important, the

model relies on assumptions that may not hold for PD at
the extreme ends of the age-at-onset range. Early-onset PD
has a higher likelihood of a monogenic cause and may
have a different genetic architecture from PD, with later
onset also in sporadic cases. The trend for PD incidence
late in life remains somewhat controversial, with con-
flicting results across studies. The 2017 epidemiological
report from Parkinson’s UK showed a peak in annual inci-
dence rate in the 80 to 84 age group, followed by a decline
in the 85 to 89 group and even lower in individuals aged
90 to 94 years.25 A similar pattern has been observed in
other studies.29,30 In contrast, a study from the Rochester
Epidemiology Project, Minnesota, found increasing inci-
dence rates all through the ninth decade of life,31 in line
with a previous meta-analysis.17 Ascertainment challenges
in the oldest age groups could plausibly contribute to these
discrepancies, yet the question of a possible PD incidence
peak or plateau remains currently unresolved.
We also note that determining the time of PD onset is

not trivial. Subjective symptoms present insidiously, often
years before the disease is diagnosed by a neurologist, and
the accuracy of age at onset in large, heterogeneous data
sets is likely to be low. More standardized and homoge-
neous criteria for determining age at onset would be
expected to improve both the estimates of SNP effect sizes
and the performance of the PHS. With respect to the
genetic data, PHS calculation requires ethnically matched
data sets. Consequently, the application of a PHS derived
with European ancestry data may have variable perfor-
mance in individuals of other genetic ancestries, and
ancestry-specific SNPs may improve performance.32,33 We
note also that our SNP selection was based on a stepwise
forward approach only, and future work should explore
stepwise backward selection and other alternative strategies.
Furthermore, the approach assumes an additive model and
will not capture gene–gene or gene–environment interac-
tions that may contribute to genetic risk.
Our study aims at highlighting the potential future

utility of PHSs as biomarkers in PD. That our analyses
were based on retrospective data only should be noted
as a major limitation, which may not necessarily trans-
late to the prospective context of a clinical trial. We
anticipate clinical trials of disease-modifying therapies
that aim at postponing the motor onset of PD, where

our hope would be that an integrated estimate of dis-
ease risk as a function of both age and genetic profile
could be a valuable asset for patient selection and strat-
ification. Significant imbalance in genetic risk variants
across randomized trial arms has been demonstrated in
simulated PD clinical trial cohorts, highlighting the
potential risk of genetic heterogeneity confounding true
effects.34 Envisaging pre-motor trials, an estimate of
participants’ risk of developing PD within the follow-
up period is far more relevant than lifetime risk, in line
with the framework presented here. We acknowledge,
however, that information such as family history and
clinical assessments for anosmia or other prodromal
symptoms is far more accessible, and how much genetic
profiling will independently add to a comprehensive
screening battery for pre-motor PD is currently an open
question.35 In our view, our validation in the PPMI
data set holds promise that even with relatively small
sample sizes, this type of genetic stratification can
potentially be clinically meaningful. By ensuring that
large ongoing international efforts to generate data for
precision medicine2 also include PD, we expect the
polygenic hazard approach will be further improved to
obtain clinically relevant performance.
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