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Training Sequence Size and Vector Quantizer Performance 

Pamela C. Cosman Keren 0. Perlmutter Sharon M. Perlmutter 
Richard A. Olshen* and Robert M. Gray 

Informat ion Systems Laboratory 
Durand Building 

Stanford University 
Stanford, CA 94305-4055 

Abstract 

We examine vector quantizer performance as a 
function of training sequence size for  both tree- 
structured and full-search vector quantizers. The per- 
formance is measured b y  the mean-squared error be- 
tween the input image and the quantizer output at a 
given bit rate. The training sequence size is measured 
either b y  the number of training images, o r  b y  the 
number of training vectors. When the training vectors 
are counted, they are selected randomly from among 
the training images. For every training sequence size, 
vector quantizers are developed from several different 
training sequences and the distortion is calculated for 
different test sequences in a cross validation procedure. 
Preliminary results suggest that plots of distortion us. 
number of training images (n )  follow an algebraic de-  
cay of the form An-a + B as expected from analogous 
results of learning theory. 
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training sequence size. The study of training se- 
quence size for vector quantization using learning the- 
ory is independently being pursued by David Cohn 
at the University of Washington. Separate training 
and test images were chosen from a set of 12 mid- 
sagittal MRI brain scans of different individuals. The 
two vector quantizers considered were the unbalanced 
tree-structured quantizer (TSVQ) and the full-search 
quantizer (FVQ). The quantizers were developed us- 
ing the Generalized Lloyd Algorithm, and the TSVQs 
were grown one node at a time in a “greedy” fashion 
as described in [5, 4,  31 and then pruned back using 
the generalized Breiman, Friedman, Olshen and Stone 
(BFOS) algorithm [l]. In all cases the vector dimen- 
sion was 4 (2 x 2 pixel block). The performance was 
measured by the mean-squared error (mse) between 
the input image and the quantizer output at a given 
rate. 

2 Approach 
1 Introduction 

Vector quantizers are generally trained on a se- 
quence of images. Insufficient training data causes the 
vector quantizer to become “over-trained,” in that it 
becomes very good a t  coding the training vectors it 
was supplied with, but is likely to be highly unre- 
liable when coding anything else. Too much train- 
ing data, on the other hand, should not degrade VQ 
performance, but can slow down research and devel- 
opment efforts. The amount of training data needed 
to obtain reliably a preassigned level of performance 
from the vector quantizer has not been studied and 
researchers employ “rules of thumb” to decide how 
much training data to use. The purpose of this work 
was to address this question, and generally to study 
the form of the relationship between performance and 

We used two sampling approaches in this study. 
First, images were considered as sampling units, which 
implies that with a total of 12 images available, one 
would choose n as the actual training images. This 
is the approach generally used in practice. Second, 
vectors were considered as sampling units, which im- 
plies that we would randomly choose n images’ worth 
of training vectors from all 12 images, rather than a 
specific set of n images, to create a training sequence 
of size n. With the first approach, including a highly 
unusual image as one of the training images could re- 
sult in high variability. With the second approach, we 
take only some of the vectors from the unusual image 
for all training sequence sizes, thus lessening the effect 
of a very unusual image. On the other hand, if the im- 
ages all have very similar pixel intensity distributions, 
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then one specific image might be more representative 
of the distribution of another image than a random 
sampling of 5 images would be. It is thus not obvious 
a priori which sampling method will yield better or 
more trustworthy results. 

2.1 Images as Sampling Units 

Training vectors were obtained from a subset n of 
the I = 12images, wheren e { + ,  f ,  4, 1, 2 ,  3, 4, 5, 6, 7, 
8, 9, 10). A training sequence from less than 1 image 
was obtained by randomly choosing a subset of the 
training vectors from 1 image. Four of the 12 images 
were used separately as the test images, and the results 
for the 4 images at a specific size n were then averaged 
to obtain each data point on the distortion vs. training 
sequence size plot. 

In order to avoid biased results, images used as a 
source for training vectors were not used as a source for 
the corresponding test vectors. In addition, we used a 
split sample scheme, similar to cross-validation, where 
we took more than one subset of size n as a source for 
training vectors whenever possible, and then averaged 
over the results obtained for the different subsets. The 
number of different training sequences used to obtain 
each data point varied slightly due to the limited num- 
ber of images available, and because we wanted to en- 
sure that particular training vectors never composed 
more than one training sequence for a specific train- 
ing sequence size n .  Four different training sequences 
were used separately to obtain results for the train- 
ing sequence sizes of :, f ,  +, 1 and 2. Two different 
training sequences were used separately to obtain re- 
sults for training sequence sizes 3 and 4. Only one 
training sequence was used to obtain results for the 
sizes 5, 6, 7, 8, 9, and 10. 

2.2 Vectors as Sampling Units 

All training vectors from all 12 images were ran- 
domly reassigned to one of 12 new fictitious “images.” 
For an m-fold cross-validation for n < I ,  we pick 

(1) 
m n  

m - 1  I 1 = .[-][-I 
vectors from each new “image.” n denotes the number 
of training images, w denotes the number of vectors in 
each “image,” and I denotes the total number of im- 
ages available. In our study, we used m = 10-fold 
cross-validation, with w = 16384 vectors/image, and 
I = 12. Nine-tenths of these t vectors are obtained 
from each new “image,” and these are combined to- 
gether to form the training sequence. The remain- 
ing one-tenth of the t vectors from each new “image” 

are combined to form the test sequence. Ten differ- 
ent training sequences of size n and ten corresponding 
different test sequences are then produced by choos- 
ing different nine-tenth and one-tenth combinations. 
For example, to investigate the distortion when one 
training image’s worth of vectors is used, i.e., n = 1, 
we picked 16384(10/9)( 1/12) or approximately 1520 
training vectors from each image (rounding ensured 
an equal number of training vectors from each image). 

2.2.1 Bias-Variance Tradeoff of Nesting 

Training sequences of different sizes were nested. For 
example, half of the training vectors that form a train- 
ing sequence of size 2 are those vectors that composed 
the training sequence of size 1. 

The decision to nest the increasing sets of train- 
ing vectors or not is a choice of trading off bias and 
variance that is familiar in the statistical estimation 
of functions and also in signal processing. The trade- 
off that we describe is a very subtle analogue of the 
problem that arises when one filters a periodogram to 
estimate a spectral density. An identity filter which 
simply passes the signal without change, i.e., a filter 
with a delta function as its pulse response and a con- 
stant transfer function, has little bias but a variance 
that does not tend to 0 with increasing sample size. 
On the other hand, a long comb filter for smooth- 
ing the input signal, i.e., a filter with a very narrow 
bandwidth, will have little variability, but will have a 
persistent bias that does not tend to 0 with increas- 
ing sample size. Either situation is unacceptable in 
practice. For us the bias-variance tradeoff arises in 
designing the successive training units and their rela- 
tionships to each other. In the end we implemented 
only one possibility; that is, increasing sets of training 
vectors were nested. 

We are interested in the mse of the prediction of 
pixel intensity with respect to its experimental value. 
If we let the number y represent our prediction of the 
actual intensity value y (a  constant for present pur- 
poses), then the mse can be expressed as a function of 
its variance and bias thus: 

E[($  - y y ]  = E[(Y - EY+ E@ - Y)’] 
= E[(Y - EYy] + (E6 - Y)’ 

(2) = var(y) + (bias)’ 

since the cross product terms vanish. When we nest 
and include a previous sequence in an expanded se- 
quence, as opposed to selecting completely new ran- 
dom sets, we obtain a decrease in variability. For ex- 
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ample, if we choose a subset of training vectors that 
formed two images’ worth of training vectors, and 
these vectors well represented the test sequence, the 
distortion could be quite low. If we then randomly 
choose four images’ worth of training vectors from all 
the training vectors (not necessarily including those 
used for size 2), and these training vectors badly repre- 
sented the test sequence, the distortion could be quite 
high. This potential high variability could produce an 
mse that would not decay as we naturally expect from 
an increase in the number of training vectors. How- 
ever, nesting to decrease this potential variability may 
lead to an increase in bias that may result if one of the 
original smaller sequences is in some way unusual. We 
thus forego the opportunity to restart with a new set 
of training vectors and avoid such a potential bias, so 
that we can be faithful to the expected decay. 

3 Learning Theory 

Minimax results and work in progress in the theory 
of nonparametric function estimation suggest that, at 
least for numbers of training images or vectors below 
a threshold, the plots of distortion versus training se- 
quence size (at a fixed bit rate) should be of the form 

y(n) = An-Q + B (3) 

where y = distortion and n = training sequence size. 
We are interested in the norm 11 y - y 1 1 ,  where y is 
the prediction of pixel intensity y subject to a bit rate 
constraint. If we consider a particular class of distribu- 
tions of pixel vector intensities, then the cited heuristic 
deals with the best case of the worst situation, that is, 
with 

min max II Y - Y II. (4) 
predictors y distributions 

Previous work of Stone [6] and others deal with (what 
amount to) pixel intensity distributions smoother than 
what applies to our imaging problems. In addition, 
this work treats only cases for which B = 0, that is, 
where, with increasing sample size, distortion tends to 
0. That is clearly impossible in our setting since, even 
with an infinite amount of training data, the quantizer 
cannot represent the original image in a distortion- 
less way when the rate is less than the entropy of the 
source. And, too, we stretch to suggest that TSVQ 
or FVQ are algorithms that even for large samples do 
as well as can be in the minimax sense of (4).  If the 

type rate B A alpha fit 
TSVQ 1 bpp V 279 16.3 0.573 35 

1 bpp I 248 36.0 0.245 189 
2 bpp V 45.3 37.2 0.533 39.9 
2 bpp I 31.1 43.7 0.366 15.7 

FVQ 1 bpp V 363 23.2 0.240 341 
1 bpp I 380 0.028 3.38 374 
2 bpp V 95.4 11.1 0.389 10.2 
2 bpp I 18.4 85.7 0.035 22.6 

Table 1: Fit parameters to y(n) = B + An-O 

code design were indeed optimal, B could be inter- 
preted as the operational distortion-rate function of 
the source for the given bit rate, code structure, and 
blocklength. Notwithstanding, especially in view of 
recent unpublished work of colleagues David Donoho 
and Iain Johnstone, we can make the guess that the 
model (3) will fit and that a will be between 0 and 
.5; a special argument not reproduced here suggests 
further that a ought to be about 1/3. The cited re- 
search of Donoho and Johnstone (unlike that of Stone) 
indicates that there will be a threshold above which 
a=l applies. The existence of this threshold, which 
will be smaller at lower bit rates, renders fitting prob- 
lematical when the threshold is less than the smallest 
sampling unit. This offers a possible explanation of 
the result a=3.38 for FVQ, I at 1 bpp in Table 1. 

4 Results 

The results for TSVQ at 1 bpp and 2 bpp are shown 
in Figures 1 and 2, respectively, and the results for 
FVQ at 1 bpp and 2 bpp are shown in Figures 3 and 
4, respectively. In all figures, the x-axis has units of 
training sequence size (in number of images), where 
each image (25G x 256 pixels) provides 16384 training 
vectors. The y-axis has units of distortion, as mea- 
sured by the mse between the input image and the 
quantizer output. The data points are shown as x’s 
for the vector sampling approach, and as 0’s for the 
case of images as sampling units. The solid curve is 
fitted to the x’s, and the dashed curve is fitted to the 
0 ) s .  Table 1 shows the fit parameters for the 8 cases. V 
and I denote the two sampling methods: vectors and 
images. The column marked fit shows the residual 
sum of squares between the fitted and actual values. 

In general, the TSVQs performed better than the 
FVQs. This is expected because we used variable-rate 
TSVQ, which is designed to minimize average distor- 
tion for a given average rate rather than the more re- 
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stricted minimization of average distortion for a given 
fixed rate. Also as expected, the distortions at 2 bpp 
were considerably lower than the distortions at 1 bpp. 

The differences between using images and vectors as 
sampling units were not substantial, although image 
sampling generally produced lower distortion. 

The results from both TSVQ and FVQ at 1 bpp 
indicate that any small number of training images is 
sufficient for the quantizer to perform near the distor- 
tion asymptote. For 2 bpp, the results for TSVQ using 
both approaches and for FVQ using vector sampling 
fit the model of y(n) = An-a + B very well. 

For FVQ with image sampling the decay in distor- 
tion at 1 bpp was extremely rapid and, as a result, an 
a of about 3.4 was obtained. At 2 bpp, the distor- 
tion asymptote was much lower than expected, and a ,  
although between 0 and 0.5, was surprisingly small. 
Thus, both the 1 bpp and 2 bpp results seem to  in- 
dicate that the model is not applicable to FVQ with 
image sampling. In contrast, the A ,  B and a for vector 
sampling were reasonable values. Similar to the results 
for the 1 bpp TSVQ, the distortion from a training se- 
quence size of 1 image or greater is quite close to the 
distortion asymptote. 

The curves can be used to determine how much 
training data is needed to  obtain results close to the 
asymptote for the image type considered. The exper- 
imenter first decides how much distortion above the 
asymptote is tolerable, and then chooses the training 
sequence size corresponding to that distortion. 

5 Future Research and Conclusions 

There are a number of issues in this work that 
can be further explored. Bootstrapping [a] (or some 
other sample reuse method) is the only plausible way 
to quantify the variability of estimates of A, B, a,  
and points on the curves. With the 10-fold cross- 
validation, the 10 training sequences of any particular 
size n were not independent. Variances computed for 
A, B ,  and a using these ten different values would 
thus underestimate the true variances. 

The study can be extended to investigate results 
with different vector sizes, image sizes, and other types 
of images, e.g., the USC database images. In addition, 
the importance of variability between the images used 
could be considered. 

The differences between the images as sampling 
units or vectors as sampling units can be further ex- 
plored. In particuhr, given more training data than 
one is able to use, should one choose images or vectors 
from the set? 

It is likely that the results of this preliminary study 
are highly dependent upon the statistics of the partic- 
ular images used, yet we find it intriguing that the re- 
sults fit the algebraic decay model predicted by heuris 
tic arguments from nonparametric function estima 
tion. Ultimately this work may provide researchers 
with some guidelines for both method and quantity 
when choosing training data for a VQ. 
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