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ABSTRACT OF THE DISSERTATION
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Professor Chi On Chui, Co-Chair

A biological cell is the elementary unit of life. Despite being actively studied for the last three

centuries, many details of how cells are organized remain mysterious. One of the reasons in

conventionally accepted optical microscopy that imposes high costs on experimental studies,

limits scalability, and slows down the progress. In order to address this, numerous label-

free imaging techniques were proposed by the biomedical engineering community. Among

them is electrical impedance tomography (EIT), a low-cost and label-free imaging method

based on electrical stimulations. Mathematically, EIT is ill-posed which severely limits its

applications. Moreover, it was initially developed for human thorax imaging and its micro-

scale version is yet to be established. In this dissertation, we shrink EIT for single-cell

applications and demonstrate how to image a cell and its interior organelles using only a few

microelectrodes.

We start by studying electrical properties of cells and build a scalable model of cellular

electrical response. The proposed method mimics biodiversity among four common cell

types and accurately represents complex three-dimensional geometries. By combining it

with modern shape optimization methods and a customized microelectrode array we extend

EIT to single-cell imaging. Along the way, we provide solutions to several well-known EIT

problems such as low contrast images and numerical instability. To further expand cellular

EIT to nucleus imaging we take a data-driven approach. We explore a variety of machine

ii



learning methods previously applied to inverse imaging problems and discuss their pros and

cons. We then propose a novel deep learning model specifically adjusted for EIT. Finally, we

evaluate and experimentally demonstrate live cell nucleus imaging, driven by pure electrical

excitations and the proposed deep neural network.
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CHAPTER 1

Introduction

Theories pass. The frog remains

Jean Rostand

Discovery of biological cells in XVII century caused a fundamental shift in the way we think

about living beings. It brought to life cell biology and enabled us to engineer new drugs and

therapies. The discovery was made possible through the continual improvements in magni-

fication technologies. More than two thousands year ago, Romans started making glass and

used it to look at small objects. Beginning from XII century, lenses in eyeglasses became a

common tool in European nations. It took a few more centuries to combine an objective lens

with an eyepiece into a compound microscope that was later used to observe specimen with

cells for the first time. Nowadays, optical microscopes (also called light microscopes) remain

dominant in a variety of biomedical applications. Combined with digital cameras, lasers,

fluorescent dyes, and advanced lenses, microscopes became imperative to every laboratory

space. The technological complexity and associated expenses of even basic microscopy anal-

ysis (see Figure 1.1) sometimes imposes additional challenges and significantly slows down

research efforts.

Besides high maintenance and operation costs, optical microscopy has another drawback

- it requires labeling. To image biological cells, one needs to stain them with fluorescent

dyes - specifically engineered chemicals that emit light upon ultraviolet (UV) or infrared

(IR) excitation. These molecules penetrate the cells, bind to a targeted organelle, and,

when exposed, emit a light of a specific wavelength. To image the entire cell, one needs

to use several collectively-compatible dyes, which may impose significant costs on empirical

studies and makes nearly impossible in vivo experiments, long-term cell imaging, and assays
1



Figure 1.1: A live cell microscope. Live cell microscopes are generally inverted. To keep cells

alive during observation, the microscopes are commonly enclosed in a micro cell incubator

(the transparent box).

Photo credit: Jacopo Werther

(https://en.wikipedia.org/wiki/Live_cell_imaging#/media/File:

Olympus_FluoView_FV1000_Confocal_Microscope_-_NCMIR.jpg). Licensed under CC

BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0).
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beyond the laboratory. Moreover, high-power UV and IR light can damage DNA, raise

cellular temperatures, and cause other photo-toxic effects [31, 32], while fluorescent dyes are

frequently cytotoxic and can interact with other chemicals affecting the experimental results

[33, 34].

A number of advanced optical techniques have been developed including coherence to-

mography [35] and projection tomography [36], but they suffer from poor penetration depth,

high cost, and are difficult to scale down to a cell level. Micro-scale magnetic resonance

imaging (MRI), on the other hand, requires very strong permanent magnets or additional

injection of potentially toxic particles into the cells [37]. As a result, long-term studies with

live cells are hardly feasible with these conventional methods.

The emerging global viral disease episodes such as Coronavirus Disease 2019, Ebola, or

Middle East respiratory syndrome, on the other hand, bring new challenges to cell biology

and require more scalable, fast, and cheap cellular imaging techniques that can acceler-

ate drug and vaccine development. Hence, invention of novel non-invasive cellular imaging

techniques are of the utmost importance to biomedical and engineering communities.

1.1 Non-invasive electrical methods

Electrically-driven techniques is a promising direction that could bring a new realm of label-

free imaging and sensing. Several methods based on electrical stimulations have been shown

to be suitable for real-time and scalable cell studies. With a single pair of electrodes Giaver

and Keese developed electrical cell-substrate impedance sensing (ECIS) [38], a robust in vitro

technique based on changes in electrical impedance between the cells and the underlying

electrode. Cellular behaviors that can be detected by ECIS include, but not limited to

1) cell adhesion, 2) micromotion, 3) mitosis, 4) spreading, and 5) drug response [39, 40].

In the past three decades, an incredible growth in the field of ECIS has not only resulted

in a large amount of academic research, but also brought commercial companies such as

Applied Biophysics and ACEA Biosciences. ECIS measurement system is sketched out in

Figure 1.2. During the measurements, a small alternating current (AC) is applied across
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the electrodes, which results in electric potential across the electrodes. As cells grow and

cover the electrodes, the current is impeded proportionally to the number of cells covering

the electrode, the morphology of the cells and the nature of the cell attachment. When cells

get additional treatment, the accompanying changes in cell morphology alter the impedance.

At relatively low frequencies (below 2 kHz), the measurements strongly respond to changes

in the spaces either under or between the cells since most of the electric current flows there

(blue dashed curves in Figure 1.2). At higher frequencies current easier penetrates the cells

and the measurements are more affected by the cell coverage. By continuously monitoring

the impedance, ECIS allows detection and quantification of morphology changes in the sub-

nanometer to micrometer range. Although this method only gives a point estimate and falls

behind optical imaging in applicability, it serves as a demonstration of the power behind

electrical probing of the cell morphology.

With a few additional electrodes, a more sophisticated analysis can be done. Proposed

by Webster [41] and practically realized by Barber and Brown [42], electrical impedance

tomography (EIT) deals with the reconstruction of the spatial distribution of electrical ad-

mittivity or conductivity. Assuming that different biological materials can be identified and

characterized by their electrical properties, EIT delivers high penetration imaging for med-

ical and biological applications. In contrast to other tomographic imaging techniques, EIT

does not employ hazardous ionizing radiation. Instead, it uses electric currents that are

relatively small and do not cause significant nerve stimulation. The AC frequency of the

applied stimulations is sufficiently high not to give rise to electrolytic effects in the body and

is easily handled by the patient’s body. Non-invasive properties, high mobility, and low cost

make EIT systems particularly useful in intensive care.

In EIT the conducting electrodes are attached around the object being examined (e.g.

human thorax or a tissue). A small AC current is applied between a chosen electrode pair

that results in equi-potentials being recorded from the remaining electrodes (see Figure 1.3).

This process is repeated for numerous different electrode pairs and finally results in a set of

recorded voltages. The changes in conductivity due to presence of objects being examined

causes bending of the equi-potential lines and encodes that in measured voltages. Finally, a
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Figure 1.2: ECIS measurement system. The green lines represent cells attached to an active

electrode, blue dashed curves show low-frequency current flow and red dashed curves show

high-frequency current flow. The drawings are not to scale.

5



Figure 1.3: Single-cell EIT measurement system. The red node represents electrical current

stimulations, the blue nodes are sequential voltage measurements. The drawing is not to

scale.

two-dimensional (2D) tomogram is obtained using one or several reconstruction algorithms.

Given that electrical properties of biological materials often have a strong dependency on

frequency of the external electric field, multifrequency-EIT (MF-EIT) or electrical impedance

spectroscopy (EIS) systems became popular in detecting or locating abnormal tissue such as

precancerous lesions or cancer.

On the other hand, EIT has its own well-known problems. Being notoriously difficult,

the image reconstruction remains the main bottleneck of the technology. Mathematically, it

is severely ill-posed and requires additional simplifications that eventually deteriorate image

resolution. From its inception researchers struggled with the development of reliable and in-

expensive reconstruction algorithms. For instance, the commonly accepted approaches such
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as backprojection method [43] and Gauss-Newton algorithm [44] fail to deliver high resolu-

tion and may suffer from undesirable artifacts in the images, despite strong assumptions such

as linearity of the problem. Nonetheless, EIT attracts research interests and new develop-

ments in image reconstruction, measurements methodology, and applications are presented

every year. Particularly intriguing is micro-scale EIT that was previously applied to ex vivo

tissue electroporation imaging [45], cell culture imaging [46, 47], and even single cell studies

[48, 49]. Further efforts led to three-dimensional (3D) and real-time cell imaging systems

combined with microfluidic devices [50, 51]. Recently, electrically-driven cell imaging was

also integrated with complementary metal–oxide–semiconductor (CMOS) technology [52, 53]

demonstrating how it could be further scaled to a larger number of sensing electrodes and

expand into lab-on-a-chip platform.

1.2 Electrical response of biological cells

Electrical properties of biological cells and tissues play a critical role in multiple sensing and

imaging applications including ECIS, EIT, EIS, electroporation, dielectrophoretic (DEP)

cell trapping and manipulation, cytometry, and electrical cell lysis. The key underlying

foundation behind these techniques is an accurate model of electrical response of individ-

ual sub-cellular components, the entire cell, and multicellular systems. In a simple view,

cell consists of cytoplasm enclosed by a thin membrane made of regular lipid bilayer with

embedded proteins. Cytoplasm additionally contains membrane-bound organelles that are

associated with specific living activities such as nucleus, mitochondria, ribosomes, and others

(see Figure 1.4). The most conspicuous among these is cell nucleus, which houses almost

all DNA replication and RNA synthesis. Nucleus is a sphere or ellipsoid containing viscous

nucleoplasm enclosed within a porous nuclear envelope. Electrical properties of entire cell

depend on the properties of each cell component.

The history of active experimental studies of electrical cellular response starts in 1960s

with early efforts by Pauly et al. [54, 1], Loewenstein et al. [2], Carstensen et al. [55, 3] and

Miyamoto et al. [4]. Numerous empirical and theoretical works were presented in subsequent
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Figure 1.4: Internal structure of eukaryotic cell. The drawing is not to scale.

Adapted from Science Primer (National Center for Biotechnology Information, NIH)

years by Schwan, Asami, Pethig, Becker, Holzel, Gimsa, and many others [56, 6, 7, 12, 22, 24].

For many year the dominating method in electrical modelling of cells and tissues was the

equivalent circuit model. Giaever and Keese approached modelling of a confluent layer of

adherent cells with a lumped element circuit in their pioneering work on ECIS [38]. Thein et

al. described an equivalent circuit of an individual cell and the cell-electrode interface [57]

revealing mechanisms behind electrical responses of a single cell and optimal parameters for

the sensing applications. Gowrishankar and Weaver [58] introduced a sophisticated network

of lumped elements called Cartesian transport lattice (CTL) that was inherently dependent

on the cell geometry. Ren and Chui recently presented another 3D model of a cell in their

work on the fundamental feasibility of tracking changes of multiple cellular properties [59].

The later work particularly demonstrated frequency response of different cell components

and showed how they may be distinguished.

An alternative approach based on finite element method (FEM) was proposed by Huang

et al. [60]. They reported a model that took into account frequency-dependent nature of the

electrical properties of a single cell while trying to accurately depict the geometry of the at-
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tached cell. Generally, the geometry of adherent cells can vary drastically. During life-cycle,

adherent cells undergo significant shape deformations due to spreading, crawling, division

and apoptosis. Deformations can involve simple electrostatic interactions and sophisticated

protein polymerization mechanisms. Steady isotropic and stochastic anisotropic spreading

dominate in many adherent cells. Cell membrane and cytoplasm experience stronger de-

formations compared to cell organelles, which leads to heterogeneous electrical properties

throughout the cell body [61].

The most important property of a numerical model is its ability to describe and predict

behaviour under diverse set of conditions. Driven by biological diversity fluctuations in

electrical properties often cause discrepancies between real samples and naive deterministic

models. A recent statistical study on diversity among animal cells, yeast cell and bacteria

has shown that simple parametric models are well-suited for this problem [62]. Moreover,

the study proposed a method for generation of realistic 3D geometries of adherent cells and

their organelles that enabled precise modelling of individual cell components, whole cells,

and small tissues. Stochastically modelled electrical properties and cell geometries serve as a

great prior for EIT reconstruction problem. As was mentioned before, image reconstruction

suffers from ill-posed conditions, but if supplied with a proper prior information, the problem

becomes numerically stable and a lot easier. Finally, the model is well suited for generating a

large training dataset and subsequent development of machine learning-based reconstruction

algorithms. In fact, high quality data generation process is quintessential in data-driven

methods.

1.3 Deep learning-based EIT

Machine learning and, particularly, deep learning is a great example of a data-driven ap-

proach. A typical deep learning model is based on an artificial neural network (ANN), a

weighted directed graph whose nodes perform simple mathematical operations on their in-

puts. Relying on large amount of data, deep learning methods are often presented as vague

black boxes that approximate a mathematical function of interest by fitting the dataset.
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Particularly, due to lack of a comprehensive understanding of the learning dynamics, design

choices are often driven by heuristics and intuition. The exact form of the ANN graph is,

however, one of the major areas of research because it defines network capacity and directly

affects results. It becomes clear when different ANN becomes particularly suitable for certain

tasks.

Despite being an art, rather than science, deep learning is widely applied to a variety

of numerical problems and demonstrates superior performance in medical imaging, natural

language understanding, astronomy, finance, and many other fields, which is, at least, im-

pressive. Recently, due to increased availability of scalable and reliable simulation methods,

deep learning gained popularity in inverse problems [63, 64], a class of very difficult math-

ematical problems. Particularly promising are applications in image restoration and image

reconstruction of biomedical data [65, 66, 67, 68].

Apparently, for a forward mapping F : X 7→ Y a deep ANN can be trained to help ap-

proximating the corresponding inverse mapping F−1 : Y 7→ X. Known deep learning-based

inverse solvers can be classified into deep approximation, deep prior, and deep representation.

In deep approximation a model directly learns F−1 from the training dataset. Similarly, an

invertible ANN can be trained to fit the forward mapping F and then its inverse can be used

to approximate F−1. Deep prior, on the other hand, does not solve the inverse problem of

interest, but rather improves image reconstruction results by removing noise and artifacts.

In that case, an ANN is trained on a custom dataset to learn a priori information, so that the

model would be able to impose that prior on the reconstructed images. Deep representation

models do not solve the inverse problem either, but extract semantic features from the data

that can be used in subsequent analytical methods. Often, deep representation models are

specifically trained to include information about the underlying analytical methods, while

deep prior are completely decoupled from the image reconstruction.

Several machine learning-enabled EIT (ML-EIT) schemes were recently proposed. Most

of the early works that used deep-learning methods for EIT took a naive end-to-end learning

approach (see Figure 1.5), where a predefined artificial neural network is trained on a syn-

thetic dataset generated using an underlying simulation model [69]. This approach is still
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Figure 1.5: Machine leaning-enabled EIT: non-invasive electrical measurements are mapped

to the reconstructed image using a deep neural network

dominant in EIT, but more advanced neural architectures are proposed including ensemble

of models [70], non-standard wavelet form of a neural network [71], and U-Net [72]. While

ML-EIT demonstrated superior performance, the trade-offs of the blind end-to-end approach

are yet to be discovered. Because EIT is a small niche with its own fundamental advantages

and limitations we believe that a more elaborate analysis is necessary. For instance, prior

knowledge on electrical response of biological cells could be embedded in the newly developed

methodologies.

1.4 Outline of this work

Despite enormous growth of the field and ever increasing number of novel techniques, label-

free cellular imaging still imposes significant limitations on researchers in biology and medicine.

The topic of this dissertation addresses this challenge at the scale of a single cell. Driven

by benign and simple electrical stimulations the proposed scheme for cellular electrical
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impedance tomography targets non-invasive and scalable applications including drug de-

velopment, cell phenotyping and motility, as well as studies on sub-cellular organelles. We

hope to raise active interest among academic and industry communities that would promote

diverse applications across biological and biomedical fields.

In Chapter 2 we question how biological cells respond to an external electric field. By

collecting previously published experimental data and applying statistical analysis we show

the importance of biological diversity and develop a precise numerical model. The purpose

of the model is three-fold: 1) to explore the feasibility of probing the underlying structure of

a single cell using AC electric stimulations, 2) to precisely model electrical cellular response

and provide a reliable prior knowledge to electrically-driven techniques, and 3) to enable

data-driven methods in cellular sensing, imaging, and manipulation.

General settings of electrical impedance tomography are discussed in Chapter 3. We

particularly show the pros and cons of this electrically-driven non-invasive technique and

discuss important steps towards single-cell applications. We take an ambitious task of cel-

lular imaging and demonstrate how to improve the current paradigm by adopting the latest

developments in image reconstruction and microelectrode fabrication in Chapter 4. It turned

out that fascinating results can be achieved using pure electrical measurements and a few

planar electrodes.

Stemming from statistics and inspired by biological neural networks, deep learning went

through an explosive growth in the last two decades that eventually led to unprecedented

advances in the field of artificial intelligence. Influenced by these developments, this work

discusses modern deep learning methods in Chapter 5. Besides giving a brief introduction

to the core elements of deep learning, we show how to apply them to inverse problems. We

analyze the most promising deep neural architectures and training methodologies and discuss

their pros and cons.

In Chapter 6 we further extend deep learning to EIT. Despite several successful instances

of solving various inverse problems, ML-EIT did not gained enough momentum and major

challenges remain unsolved. Inspired by the insights from numerical simulations we develop
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a novel approach to image cell nucleus without labeling. We explore several deep learning

methods and show their strengths and weaknesses. Our approach provides a scalable solu-

tion for non-invasive single-cell imaging, a long-standing challenge in biology and raises a

fundamental question of sensing inner cellular organelles with purely electrical AC field. We

hope that the results demonstrated in this dissertation will reignite research efforts towards

electrically-driven cellular imaging and tomography and bring new ideas that will end up in

the development of a new realm of label-free cellular and sub-cellular imaging.

Finally, in Chapter 7 we summarize the major findings of this work and discuss possible

directions of the future developments.
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CHAPTER 2

Diversity in cellular response to electrical stimulations

Long-standing interest in electrical properties of biological cells and tissues gave birth to

multiple sensing and imaging applications. Among them are ECIS, EIT, EIS, electropora-

tion, DEP cell trapping and manipulation, cytometry, and electrical cell lysis. Low cost,

non-invasiveness, and label-free nature of electrical stimulations make them attractive for

cell biology research. The key underlying foundation behind these techniques is an accu-

rate model of electrical properties of individual sub-cellular components, the entire cell, and

multicellular systems. To build such model, one needs reliable empirical estimation of mate-

rial properties of the cells, but physical size and biological diversity among cells challenged

precise theoretical modelling for decades. With increased amount of collected experimental

data, however, it became feasible to build a strong data-driven model.

Active experimental studies on cell properties began in 1960s with early efforts by Pauly

et al. [54, 1], Loewenstein et al. [2], Carstensen et al. [55, 3] and Miyamoto et al. [4]. Numer-

ous empirical and theoretical works were presented in subsequent years by Schwan, Asami,

Pethig, Becker, Holzel, Gimsa, and many others [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. The dominating method in electrical modelling

of cells and tissues was the equivalent circuit model. Giaever and Keese approached mod-

elling of a confluent layer of adherent cells with a lumped element circuit in their pioneering

work on ECIS [38]. Thein et al. described an equivalent circuit of an individual cell and the

cell-electrode interface [57] revealing mechanisms behind electrical responses of a single cell

and optimal parameters for the sensing applications. Huang et al. [60] reported a model

based on Finite Element Method (FEM) and took into account frequency-dependent nature

of the electrical properties of a single cell. Ren and Chui recently presented another 3D
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model of a cell in their work on the fundamental feasibility of tracking changes of multiple

cellular properties [59]. However, the aforementioned efforts ignore sub-cellular organelles

and biological diversity.

Another important aspect is geometrical shape of the cells. During life-cycle, adherent

cells undergo significant shape deformations due to spreading, crawling, division and apop-

tosis. Deformations can involve simple electrostatic interactions and sophisticated protein

polymerization mechanisms. Steady isotropic and stochastic anisotropic spreading dominate

in many adherent cells. Cell membrane and cytoplasm experience stronger deformations

compared to cell organelles, which leads to heterogeneous electrical properties throughout

the cell body [61]. Although being of significant importance, there was little progress to-

wards engaging more realistic cell geometries in numerical modelling of electrical cellular

response. Gowrishankar and Weaver[58] introduced a sophisticated network of lumped el-

ements called Cartesian transport lattice (CTL) that was inherently dependent on the cell

geometry. Huang et al. attempted to mimic a specific shape of a single adherent cell [60],

but had to make a strong assumption on the symmetry of the geometry.

In this chapter, we describe a novel approach to simulate electrical cellular response [62].

The proposed model is the first to capture biodiversity across animal cells, yeast cell and

bacteria; and the first to represent more realistic 3D shapes of adherent cells. The model

is of relevance to a number of medical diagnostic and therapeutic applications that involve

biological effects arising from the exposure to electric and magnetic fields, such as EIT, EIS,

DEP, electroporation, and others. To verify robustness of the model we conduct impedance

spectroscopy measurements on a single human cervical carcinoma (HeLa) cell.

2.1 Electrical properties of biological cells

We collected previously published experimental data and grouped them into five categories:

adherent animal cells, non-adherent animal cells, yeast cells, bacteria, and other (tissues and

bio-membranes). To visualize the entire dataset, we plot it in Figure 2.1, which shows that

electrical properties tend to form small clusters and sometimes have a significant overlap
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between different cell types. Given clustered structure of the data shown in Figure 2.1 and

knowing that biological diversity in cellular electrical response is driven by complex unobserv-

able processes inside the cell, parametric modelling is a natural choice. Moreover, parametric

models have physical interpretations, generalize better with small training datasets, and pro-

vide sufficient power when mixed together. To mitigate inherent constraints on functional

forms of the parametric approach, we employ a comprehensive list of distribution families.

Note that a larger dataset is necessary for further investigation with more sophisticated

models, as they simply overfit the dataset presented in this work.

Correlation analysis. Although correlation between cytoplasm and culture medium is

frequently reported in the literature, we did not find a strong evidence of consistent linear

relationship between the variables. Moreover, no strong relationship between conductiv-

ity and permittivity (as well as conductance and capacitance) within any cell component

was found. We, therefore, proceed with univariate analysis of each dielectric property of

individual cell components.

Univariate analysis. In our analysis, each electrical property is modelled as a random

variable. We choose candidate models as the closest to the observations on Cullen and Frey

graph [73] constructed using non-parametric bootstrap with 2000 iterations. To mitigate

inherent constraints on functional forms of the parametric approach, we employ a com-

prehensive list of distributions including log-normal, normal, gamma, exponential, Weibull,

t-distribution, inverse Gaussian (Wald), inverse normal, and inverse log-normal. Although

more sophisticated statistical models were expected to produce a superior fit of biological

diversity, they tend to overfit the data and result in poor generalization measured by cross-

validation.

For each candidate distribution, we fit a mixture model by applying Expectation-Maximization

(EM) algorithm[74]. At E-step, we estimate weights of the mixture components by max-

imizing the weighted log-likelihood for given model parameters. At M-step, we maximize

the weighted log-likelihood to get new parameter estimates. To choose a proper number of
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mixture components without overfitting, we use 5-fold cross validation and pick the one with

the largest out-of-sample log-likelihood. As an alternative to cross-validation, we use the gap

statistics [75] of complete-linkage hierarchical clustering. Interestingly, both methods always

suggested the same number of mixture components. To ensure global convergence, we run

each optimization 50 times with different weights initialization and take the best performing

models. In each run, we initialize the mixture weights with either K-Means, hierarchical

clustering, or random uniform (continuous and discrete) assignment.

When the data is insufficient for EM algorithm to converge in 1000 iterations, we use

hard cluster assignment of each data point. Similarly to the previous procedure, we use K-

Means, hierarchical clustering and random uniform (discrete) cluster assignment. We, then,

fit a parametric model with Maximum Likelihood Estimation (MLE) for each cluster.

To reject the models we conduct non-parametric Kolmogorov-Smirnov (KS) test, and

calculate the corresponding p-values (confidence level of 0.1) of the simulated bootstrapping

of the KS-statistics as was suggested in literature [76]. To choose the best performing model,

we carefully analyze the quantile-quantile (Q-Q) plots and compare Bayesian information

criterion (BIC).

2.1.1 Cell membrane

The basic electrical model of cell membrane is an insulator made of a phospholipid bilayer of

4 - 10 nanometers (nm) thick. Presence of the ion channels and pores, however, significantly

increases its electrical conductance per area, reaching 15 Sm/cm2. Combination of the active

and passive transport mechanisms of the cell membrane can maintain different amounts of

charge inside and outside the cell, which leads to significant electrical capacitance per unit

area[77] of 1 - 10 µF/cm2. Electrical properties of cell membrane are akin to those of a

non-ideal capacitor with small leakage conductance.

It is well known that physical size of living tissues follows log-normal distribution. Given

that capacitance (Cm) is inversely proportional to membrane’s thickness, it is not surprising

that it follows log-normal distribution across all cell types (see Table 2.1). Fundamentally,
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such a relationship could be associated with multiplicative effects between random sequential

events such as synthesis of proteins, formation of a phospholipid bilayer, and further assembly.

Note, that the observed mixture components may describe distinct sub-populations within

each cell type. Conductance of the cell membrane (Gm) follows gamma distribution. Since

the average conductance per area of the membrane is proportional to the density of open

ion channels and pores, one can presume the existence of exponentially distributed random

processes of creating and destroying conductive paths in the membrane. For example, the

time periods between the switching of the ion channels can be represented by such process

with a specific rate.

2.1.2 Cytoplasm

Cytoplasm is a viscous liquid solution that fills the cell and comprises every organelle but

nucleus. It is mainly composed of water, salts, and proteins that makes its conductivity

reach 1 - 3 Sm/m. Due to the presence of the bio-molecules and small organelles, dielectric

constant of cytoplasm can be between 50 and 100.

We observe gamma and log-normal distributions of the conductivity (σcyt) and permit-

tivity (εcyt) in cytoplasm respectively. One of the factors affecting cytoplasm’s conductivity

is modulating permeability of the cell membrane. Membrane channels, that adjust ion con-

centration inside the cell, can be modelled as stochastic pumps switching between "open"

and "closed" states. The process of incremental change of the ionic concentration in cyto-

plasm could be causing gamma distributed conductivity. On the other hand, permittivity of

the cytoplasm is dominated by the presence of polarizable organelles, membranes, proteins,

and nucleic acids. It therefore follows log-normal distribution, which indicates a complex

multiplicative process of biomolecule synthesis.

2.1.3 Cell nucleus

The largest organelle inside animal cells is nucleus, which occupies about 10% of the total

cell volume and reaches 6 - 10 micrometers (µm) in diameter. The nuclear envelope (mem-
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Figure 2.1: Electrical properties by cell type: adherent cells, non-adherent (suspended)

cells, yeast cells, bacteria and other (tissues and membranes). Data was collected from the

previously reported works [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29]
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brane) consists of two porous layers of total thickness of 20 - 50 nm. Small water-soluble

molecules can freely penetrate the membrane through the pores, which increases its electrical

conductivity.

We omit yeast cells and bacteria due to insufficient observed data, and summarize animal

cells in Table 2.1. Electrical properties of the nucleus in animal cells (adherent and non-

adherent cells combined) have the same nature as the cell membrane and cytoplasm. Driven

by the biomolecule polarization, nucleus membrane capacitance (Cnm) and nucleoplasm per-

mittivity (εnp) follow log-normal distribution. On the other hand, the envelope conductance

(Gnm) and nucleoplasm conductivity (σnp) are dominated by regularly distributed pores in

the envelope and follow gamma distribution.

2.1.4 Culture medium

Culture medium supports the growth of the cells. It is usually in a form of a salt so-

lution containing high concentration of amino acids and vitamins, as well as additional

supplementary components. Most commonly used ones include Dulbecco’s Modified Eagle

Medium (DMEM), Roswell Park Memorial Institute medium (RPMI), Minimum Essential

Media (MEM), and Iscove’s Modified Dulbecco’s Medium (IMDM). Industry-level control

over their chemical content minimizes variance in their electrical properties. As a result,

experimental data is well modelled with uniform and normal distributions:

σmedium ∼ Unif(0.1, 2.0) [Sm/m]

εmedium ∼ N (79.7224, 1.8949)
(2.1)

2.1.5 Dielectric dispersion

So far, we have discussed electrical properties of the cells regardless of the frequency of the

applied electric field. Because of unusual dispersion phenomenon, frequency-dependent char-

acteristics are of a bigger practical importance. Dielectric dispersion, also called relaxation,

is the response of a dielectric material to an external, oscillating (AC) electric field. Caused

by the delay in polarization at higher frequencies, it leads to frequency-dependent complex

20



Table 2.1: Electrical properties of cell components

Property Cell type Family Components Parameters Test statistic

Cm,
µF/cm2

Adherent Lnorm π = {0.6249, 0.3751} µlog = {0.9430,−0.3745}
σlog = {0.3713, 0.1833}

KS = 0.0729

p-val = 0.9988

Non-adh Lnorm π = {0.6710, 0.3290} µlog = {0.0753, 0.0958}
σlog = {0.7332, 0.3140}

KS = 0.0831

p-val = 0.9507

Bacteria Lnorm π = {0.4602, 0.5398} µlog = {−0.2412, 1.5514}
σlog = {0.9473, 0.1176}

KS = 0.1878

p-val = 0.7644

Yeast Lnorm π = {0.3571, 0.6429} µlog = {−0.3522, 0.1261}
σlog = {0.0153, 0.0626}

KS = 0.1014

p-val = 0.9860

Gm,
Sm/cm2

Adherent Gamma π = {1} shape = 0.1641

rate = 2.8960

KS = 0.3966

p-val = 0.5591

Non-adh Gamma π = {1} shape = 0.3138

rate = 0.2869

KS = 0.1542

p-val = 0.8264

Bacteria Insufficient data. Takes values from 0.01 to 14.3 Sm/cm2

Yeast Usually reported as non-conductive

εcyt

Adherent Lnorm π = {1} µlog = 3.9857

σlog = 0.3790

KS = 0.1848

p-val = 0.8261

Non-adh Lnorm π = {0.5460, 0.4540} µlog = {4.0248, 4.5445}
σlog = {0.0898, 0.0737}

KS = 0.1729

p-val = 0.6828

Bacteria Insufficient data

Yeast Lnorm π = {1} µlog = 3.9160

σlog = 0.0600

KS = 0.2460

p-val = 0.7807

σcyt,
Sm/m

Adherent Gamma π = {1} shape = 4.0489

rate = 10.0158

KS = 0.1015

p-val = 0.6518

Non-adh Gamma π = {1} shape = 4.7512

rate = 7.8888

KS = 0.1014

p-val = 0.9650

Bacteria Weibull π = {1} shape = 8.7034

scale = 3.0522

KS = 0.1703

p-val = 0.8634

Yeast Gamma π = {0.5714, 0.4286} shape = {57.502, 280.000}
rate = {216.987, 537.772}

KS = 0.1663

p-val = 0.9484

Cnm,
µF/cm2

Adherent
& Non-adh

Lnorm π = {1} µlog = 0.0969

σlog = 0.4330

KS = 0.1228

p-val = 0.9657

Gnm,
Sm/cm2

Adherent
& Non-adh

Gamma π = {1} shape = 1.5337

rate = 0.1180

KS = 0.1684

p-val = 0.9847

εnp
Adherent
& Non-adh

Lnorm π = {1} µlog = 4.1114

σlog = 0.3756

KS = 0.1372

p-val = 0.9937

σnp,
Sm/m

Adherent
& Non-adh

Gamma π = {1} shape = 2.3099

rate = 1.3536

KS = 0.1632

p-val = 0.5132
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permittivity. Schwan and Cole pioneered the field with analysis of the dispersion observed

in tissues and cell suspensions [56, 78, 79]. Dielectric properties of such systems change in

distinct steps called alpha (α), beta (β), and gamma (γ) dispersion. A thorough review of

underlying mechanisms was presented by Pethig [7]. Some authors also distinguish delta (δ)

dispersion between 0.1 and 3 GHz, but due to lack of clear mechanisms, its interpretation

is complicated.

Extraordinarily large permittivity below 100 kHz is the main result of α-dispersion. It

is believed to be caused by the counter ion diffusion in response to the charged cell surface.

Frequency-dependent conductance of the cell membrane proteins and charging of the interior

organelle membranes can also contribute to α-dispersion. Between 0.1 MHz and 100 MHz,

β-dispersion takes place. It primarily arises from Maxwell-Wagner interfacial polarization

of the cell membrane. Relaxation effects in the proteins, amino acids and inner organelle

membranes also contribute to the tail of β-dispersion. In contrast with α-dispersion, fluid

conductivity noticeably raises in β-dispersion band. The main cause of γ-dispersion is dipolar

relaxation of water, which accounts for about 80% of the cell body. Gamma-dispersion

happens around 1 - 50 GHz and results in a significant jump of conductivity and relatively

small changes in permittivity.

Relaxation of an ideal, non-interacting population of dipoles under an AC external elec-

tric field is described by Debye equation. However, a commonly accepted model for cell

suspension from 1 kHz to 1 GHz is based on Cole-Cole equation, describing relative dielec-

tric constant:

ε∗(f) = ε
′
(f) + iε

′′
(f) = εHF +

εLF − εHF
1 + (i2πfτ)1−α (2.2)

where ε∗, ε′ , ε′′ are complex dielectric constant and its real and imaginary parts respectively;

εLF , εHF are the static and high-frequency dielectric constants; f is frequency; τ, α are a time

constant and a shape parameter that define a range of frequencies of the dispersion. When

α = 0, Cole-Cole equation 2.2 simplifies to Debye equation. If we take ∆ε = 1−εHF/εLF and

ω = 2πf , equation 2.2 can be further split into equations 2.3 and 2.4. Note, that the static
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Table 2.2: Dielectric dispersion parameters estimation
Material α̃ ∆̃ε τ̃ , sec
Cell membrane µ = 0.5302;σ = 0.2157 µ = 0.6717;σ = 0.2390 µ = 8.0189 · 10−7;σ = 1.3514 · 10−7

Cytoplasm µ = 0.1385;σ = 0.0416 µ = 0.7979;σ = 0.1454 µ = 1.3860 · 10−7;σ = 4.5010 · 10−8

Organelle membr µ = 0.4199;σ = 0.2103 µ = 0.7783;σ = 0.2199 µ = 2.5042 · 10−4;σ = 1.2146 · 10−5

Organelle interior µ = 0.1982;σ = 0.0930 µ = 0.7925;σ = 0.1058 µ = 1.1757 · 10−7;σ = 6.4540 · 10−8

Culture medium µ = 0.2167;σ = 0.1000 µ = 0.9208;σ = 0.2100 µ = 5.00 · 10−11;σ = 3.41 · 10−12

conductivity and permittivity correspond to the stochastic electrical properties described

previously.

ε
′
(f) = εLF

(
1−∆ε

(ωτ)1−α sin απ
2

+ (ωτ)2(1−α)

1 + 2(ωτ)1−α sin απ
2

+ (ωτ)2(1−α)

)
(2.3)

σ(f) = σLF +
εLFωε0∆ε(ωτ)1−α cos απ

2

1 + 2(ωτ)1−α sin απ
2

+ (ωτ)2(1−α)
(2.4)

We collected previously reported data [54, 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

80, 81, 82, 83, 84, 85, 86, 87] and extracted the corresponding dispersion equations and their

parameters to generate curves of complex dielectric constants against the original frequencies.

For each generated curve, we applied Levenberg-Marquardt algorithm (also called damped

least-squares) to fit them to equation 2.2. To rule out the local minimum estimates, we ran

each optimization 103 times with different initial estimates and took parameters with the

highest adjusted coefficient of determination. We then found the means and the standard

deviations of the estimated α̃, τ̃ , ∆̃ε for each cell component (see Table 2.2).

2.2 Numerical simulations

FEM subdivides a large problem into smaller subdomains that are called finite elements.

The systems of equations that model the finite elements are then combined into the entire

model. FEM gives accurate representation of complex geometries, allows dissimilar material

properties, and captures local effects. We employ COMSOL Multiphysics’s AC/DC module

in frequency domain to solve current conservation equation based on Ohm’s law. Built-in

discretization engine takes a randomly generated cell shape, places it onto a predefined array
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of microelectrodes, and builds an appropriate mesh (see Figure 2.4 (F)). To numerically solve

the corresponding partial differential equations (PDEs), we use flexible generalized minimal

residual method (FGMRES), an iterative procedure that gives an efficient trade-off between

computational cost and solution quality. Our approach is easily scaled up to thousands of

concurrent simulations and provides high quality results.

2.2.1 Cell geometry

While non-adherent cells maintain almost the same shape throughout the life-cycle, the ad-

herent cells substantially deform, which leads to a sophisticated electrical response. Minutes

after an adherent cell encounters a surface, it starts passive isotropic adhesion (spreading).

Isotropic spreading ends when the cell reaches the balance between the energy gained through

the adhesion to the surface and the energy dissipated by the deformations in the cell’s actin

cortex. This process is characteristically similar to a liquid droplet spreading on a surface

[88, 89]. Later crawling creates significant deformations driven by actin polymerization and

myosin contraction [90]. It has been experimentally shown that cells migrate via short-lived

extension and retraction events (< 1 min) which, over the course of many minutes, result in

a net movement of the cell’s leading and trailing edges [91, 92]. Stochastic nature of protru-

sion initiation in the segments of the cell edge leads to an anisotropic mode of motility, the

basis for other cell motility processes such as polarization and migration.

During the initial isotropic spreading elasticity of the cell membrane plays a central role.

Among copious models describing deformations of the cell membrane, a commonly accepted

one is fluid mosaic model that mimics it as a two-dimensional fluid-like lipid bilayer with

partially or fully embedded proteins [93]. More recent geometric models [94, 95] produce

more realistic shapes, but may lead to sharp local curvature of the membrane surface [96],

which makes them inapplicable in finite-element simulations as it complicates meshing.

To guarantee high quality meshing and numerical convergence we approximate a vertical

profile of the cell membrane with surface wetting equation that has similar nature [97]. In

addition to it, the rigidity of the nucleus leads to a small knob-looking deformation of the cell
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membrane around its origin, hence, we appropriately modify the surface wetting equation

as follows:

z(ρ) =

√
ρ2

0

sin2 θ
− ρ2 − ρ0

tan θ
+ Π

( ρ

2an

)(
cn

√
1− ρ2

a2
n

)
(2.5)

where 0 ≤ ρ ≤ ρ0, θ are radius and contact angle of the droplet (cell) respectively, an, bn, cn

are the principal semi-axes of the nucleus along x, y, z respectively, and Π(·) is a rectangular

(pulse) function. Note, that this assumes that the height of the droplet at the origin satisfies

ρ0
1−cos θ

sin θ
≥ cn

To ensure realistic changes in the cell membrane area and the cytoplasm volume, we

introduce two more optimization constraints. Before the spreading, volume of the cyto-

plasm and area of the cell membrane are approximately equal to Vcyto = Vcell − Vnucleus =

4/3π(R3
cell − anbncn) and Am = 4πR2

cell respectively. Therefore, we have:

∣∣∣∣∣∑i ∆zi
∑
j

ρ2ij∆φj

2
−4/3π(R3

cell−anbncn)

4/3π(R3
cell−anbncn)

∣∣∣∣∣ ≤ ∆V∣∣∣πρ2
0+
∑
i ∆zi

∑
j ρij∆φj−4πR2

cell

4πR2
cell

∣∣∣ ≤ ∆A

(2.6)

We can rewrite the volumetric constrain to derive a first-order approximation for ρ0:

π

∫ cn

0

[
z−1(ρ)

]2
dz ≤ 4

3
π(R3

cell − anbncn)(1 + ∆V ), (2.7)

ρ2
0 − ρ0

cn
tan θ

− c2
n

3
− 4(R3

cell − anbncn)(1 + ∆V )

3cn
≤ 0. (2.8)

Equilibrium shape of cell membrane is given by equation 2.9, where λ is surface tension,

∆p is the difference in pressure outside and inside the cell, kc is bending rigidity of the surface,

c0 is spontaneous curvature, and H,K are mean and Gaussian curvatures respectively. To

solve it we apply iterative running-mean optimization procedure for each horizontal slice at

zi as depicted in the pseudocode in Figures 2.2 and 2.3. Few randomly generated shapes are

shown in Figure 2.4 (A-D) including assembly of cells, which can be used to mimic complex

cell networks and tissues.
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1: procedure Main

2: initialize ∆p, kc, λ, c0, z, ε, θ,∆A,∆V,Rcell, an, bn, cn

3: Am ← 4πR2
cell, Vcyto ←

4
3
π(R3

cell − anbncn)

4: ρ0 ← max{x : x2 − cn
tan θ

x− c2n
3
− 4(R3

cell−anbncn)(1+∆V )

3cn
= 0}

5: φ← [−π, π)

6: stochastically initialize protrusions ρ∗ at angles φ∗

7: for all zi do

8: for all φ do

9: ρ(φ)←
{
x :

√
ρ20

sin2 θ
− x2 − ρ0

tan θ
+ Π

(
x

2an

)
·
(
cn

√
1− x2

a2n

)
− zi = 0

}
10: end for

11: for all φ∗ do

12: ρ(φ)← ρ∗
√

ρ20
sin2 θ

−
(
zi + ρ0

tan θ

)2
13: end for

14: ρOPT (zi)← OPT(ρ(φ), φ∗)

15: end for

16: V ←
∑
j ∆zj

∑
i

ρ2ij∆φi

2

17: A← πρ2
0 +

∑
j ∆zj

∑
i ρij∆φi

18: if |A−Am|
Am

> ∆A then

19: ca ←
(Am+∆A

A

)1/2
20: ρOPT ← ρOPT · ca

21: end if

22: if |V−Vcyt|
Vcyt

> ∆V then

23: cv ←
(Vcyt+∆V

V

)1/3
24: ρOPT ← ρOPT · cv

25: end if

26: surf ← transform ρOPT into a surface with cubic spline interpolation

27: obj ← convert surf into a solid return obj

28: end procedure

Figure 2.2: Pseudocode for cell geometry generation

∆p− 2λH + kc(2H + c0)(2H2 − c0H − 2K) + 2kc∇2H = 0 (2.9)

2.2.2 Electrodes-solution interface

When an electrode is exposed to electrolytic solution, electric double layer (EDL) forms

at the interface. Gouy-Chapman-Stern is a commonly accepted model of EDL [98]. The

first layer (inner Helmholtz plane, IHP), comprises of ions adsorbed onto the surface due to

chemical interactions (see Figure 2.5). The second (diffuse) layer is composed of ions of the
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1: procedure OPT(ρ(φ), φ∗)

2: for all φ do

3: H(φ)← 1
ρ(φ)

4: K(φ)← 1
ρ(φ)

5: end for

6: err ←∞

7: while err > ε do

8: for all φj ∈ φ \ φ∗ do

9: ∆ρ←
∣∣∣1− mean(ρ(φj−1...j+1))

ρ(φj)

∣∣∣+ c0N (0, 1)

10: if
∣∣∣∆ρ−ρ(φj)

ρ(φj)

∣∣∣ > γ then

11: ∆ρ← γ

12: end if

13: ρ(φj)← ρ(φj) · (1 + ∆ρ)

14: end for

15: for all φ do

16: H(φ)← 1
ρ(φ)

17: K(φ)← 1
ρ(φ)

18: end for

19: err ←
∣∣∆p− 2λH + kc(2H + c0)(2H2 − c0H − 2K) + 2kc∇2H

∣∣
20: end whilereturn ρ(φ)

21: end procedure

Figure 2.3: Pseudocode of optimization subroutine used in cell geometry generation

Figure 2.4: Examples of the cell geometries: (A) isotropic spreading, (B-C) anisotropic

spreading, (D) assembly of cells, (E) cell structure schematic, (F) finite-element mesh
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Figure 2.5: Electrical Double Layer (EDL): (A) physical structure and (B) its lumped-ele-

ment model

opposite charge attracted to the surface by Coulomb force, which leads to a virtual capac-

itance at the interface (CI). Faradaic processes are modelled as charge transfer resistance

(Rct) connected in series with Warburg impedance (ZW ), which mimics the ionic diffusion.

Spreading resistance (RS) represents the conduction path in the electrolyte.

Electric potential, applied to the electrode (against another counter electrode), causes

a red-ox reaction at the interface and exponential growth in the net current flow. The

charge transfer resistance Rct is inversely proportional to the electric current density and has

negligible effect in many practical scenarios. Diffusion-driven Warburg impedance, however,

remains constant and is only limited by the ion mobility in the solution. In response to

the applied AC voltage, ZW decreases with frequency as f−0.5. Interfacial capacitance CI

is commonly reported to be in the order of 4 - 20 µF/cm2. The complete model for EDL

under applied AC voltage can be described by its frequency-dependent conductivity (σdl)

and permittivity (εdl):

σdl + iωεdl = thicknessdl

[
ω0.5

Kw

+ i
ω0.5

Kw

+ iωCI

]
(2.10)

where ω = 2πf , Kw is interface-specific constant, that was reported to be around 2000 -
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5000 Ω · sec−0.5 · cm2 for gold electrodes [60].

Beyond the EDL, the gap between the electrodes and an adherent cell is filled with

culture medium. Depending on the strength of adhesion, the thickness of this gap can

vary. We model this region with a fixed-thickness domain and modulate its conductivity and

permittivity to take into account true varying thickness (equation 2.11). The schematic of

the model is shown in Figure 2.7 (C).


σgap = treal

tfixed
σmedia

εgap = treal
tfixed

εmedia

(2.11)

2.2.3 Importance of cell geometry

Conventional FEM models of electrical cellular response assume naive cell shapes. The

proposed geometry generation procedure is intended to enhance the quality of the numerical

modelling by introducing local cell protrusions. However, the resulting geometries are not

naturally occurring cell shapes, but rather smooth efficient approximations. To illustrate the

limitations of the proposed method, we compare previously published serial transmission

electron microscopy (TEM) image of an inter-phase human pancreatic carcinoid cell line

(BON) cell [30] and its smooth approximation, which we generated by averaging every 20

slices and using them as initial slices for the proposed procedure. As can be seen from

Figure 2.6, the proposed method is unable to mimic cell morphology and results in monotonic

vertical profile. On the other hand, the geometry catches the overall shape, area, and volume

of the cell, which is more important for almost all applications involving electrical cellular

response, as we show later. Moreover, while 3D TEM image has ultra-high resolution, its

acquisition is often complicated and the resulting sliced image does not convert into mesh

due to vast surface discontinuities seen in Figure 2.6 (A, B).

Our choice of cell’s vertical profile, geometrical constraints, and other simplifications

is driven by the trade-off between precision and practical considerations. To investigate

the overall efficacy of the chosen approach we consider cell geometries of different levels
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Figure 2.6: Top view and side view of a BON cell. (A-B) Experimental 3D reconstruc-

tion generated by serial sectioning TEM and segmentation of the cell outline (brown) and

(C-D) its smooth approximation. The experimental 3D reconstruction is based on data from

Villinger C. et al. (2014) Three-dimensional imaging of adherent cells using FIB/SEM and

STEM. In: Kuo J. (eds) Electron Microscopy. Methods in Molecular Biology (Methods

and Protocols), vol 1117. Humana Press, Totowa, NJ. Copyright Springer Science+Business

Media, New York 2014. The data was provided by authors of the study[30]
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of detail as shown in Figure 2.7. A model with the highest level of detail (blue in the

figure, purchased from CGTrader) represents realistic cell geometry that preserves natural

local protrusions and cell morphology. Moderate level of detail (green) is achieved using

the proposed procedure by initializing the bottom slice with the corresponding slice in the

original image. The model with the lowest level of detail (yellow) is a frequently assumed

naive ellipsoidal approximation. At the origin of each geometry we place ellipsoidal nucleus

with major axes of 7 × 7 × 1 µm. All geometries have total volume of around 2700 µm3,

surface area of 2250 µm2, and cover 1000 µm2 on the bottom surface.

To evaluate the fidelity of the cell geometries, we simulate single cell electrical impedance

measurement at 1 MHz. In particular, we build a 200 × 200 × 200 µm solution domain

placed on a dielectric passivation surface (silicone dioxide). We then insert a cell attached

to the bottom surface and create an active electrode (circle of diameter del) underneath the

cell located at δel from the center of the cell along the cross-section line as schematically

shown in Figure 2.7 (C). Five grounding counter electrodes of size 200 × 200 µm each are

set at the external faces of the solution domain. We calculate the impedance as the ratio

between the voltage applied at the active electrode and integral of the current density at

the counter electrodes. Parameters and conditions were kept equal during testing of each

cell geometry. To have equivalent mesh quality, we kept approximately the same mean and

minimum values of skewness and volume versus circumradius of the mesh for all simulations.

As an error metric we employed relative difference in the absolute impedance response (|Z|−

|Zreal|)/(|Zreal|) ·100%, where Zreal is impedance response of the realistic cell geometry (blue

in Figure 2.7).

In the first set of simulations (Figure 2.8 (A)) we had the active electrode aligned with

the cell geometry (δel = 0). We observed a significant error in naive geometry when del

approaches the size of the cell. A closer look at the magnitude of the current density in the

plane between the surface and the bottom of the cell (see Figure 2.9 (A-B)) discovered that

the discrepancy is caused by difference in the covered electrode areas. Current density at

the edges of the proposed cell geometry is depicted in Figure 2.9 (C-D) and shows dominant

lateral flow in the cell gap region. Near the edge of the cell, however, current flow pattern

31



Figure 2.7: Level of detail in cell geometries: (A) 3D view, (B) top view, and (C) cross

section of a human lung cancer cell at different levels of detail (1 - highest (realistic), 2 -

moderate (proposed), 3 - lowest (naive)); (C) cross sections include schematic sketches of

the active electrode placement underneath the cell
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Figure 2.8: Testing fidelity of the cell geometries against (A) varying electrode size and (B-C)

electrode displacement

Figure 2.9: Electric current flow: underneath (A) proposed cell geometry and (B) naive cell

geometry as well as the cross-sections (C) and (D) at the edges of the proposed geometry

shown by the dashed lines
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Table 2.3: Computational complexity associated with levels of detail of cell geometry

Metric Realistic Proposed Naive

Average degrees of freedom (entire model) 1,119,844 237,525 118,062

Mesh size of the cell, elements 113,402 15,880 5,297

Time to solve [min,max], sec. [570, 635] [114, 127] [54, 60]

is drastically different and highly depends on the extension of the cell membrane over the

electrode, which emphasizes the importance of accurate cell shape representation. When we

fixed electrode size del and introduced electrode displacement δel 6= 0 (see Figure 2.8 (B-

C)), we found another limitation of naive geometry. Impedance measurements with smaller

electrodes at the vicinity of the cell edges become inaccurate due to presence of membrane

protrusions. Interestingly, that naive geometry can lead to overestimated and underesti-

mated results, while the proposed geometry consistently had small error. Both scenarios are

common in biomedical engineering and demonstrate that the proposed simplified geometry is

sufficient to enable accurate estimation of the electrical cellular response. Moreover, to show

computational efficiency we report numerical complexity in Table 2.3. More sophisticated

models describing adherent cell shape formation may bring higher precision, however they

are not of a primary focus of this work. From practical perspective, such models can lead

to numerical singularities during meshing, while being only useful for depicting micro-scale

shape curvatures and associated local electrical potential changes.

2.3 Adherent cell simulations

To experimentally verify the entire approach of modelling adherent animal cells, we mea-

sured EIS response of a single human cervical carcinoma cell (see Figure 2.10). A small

microelectrode array (MEA) was used to obtain independent electrical measurements. We

imaged the sample with fluorescent microscopy and translated it into 3D mesh for FEM

simulations. Experimental results were compared against the simulations.
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Figure 2.10: Experimental verification of the model with EIS measurements and FEM sim-

ulations of a HeLa cell on 8-electrode array
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Figure 2.11: Translation of the fluorescent microscopy image into finite-element mesh

In Figure 2.11 (B), electrode 4 is located beneath the cell nucleus, electrode 3 is partially

covered by the cell membrane, electrode 8 is intact by the cell, and electrode 5, the common

ground, is fully covered by the membrane. We measured impedance between seven pairs of

electrodes with the common ground at electrode 5. We performed two sets of measurements:

before and after culturing HeLa cells on top of MEA. Each time we swept the frequencies

from 100 kHz to 100 MHz. We also simulated the experimental measurements with the

FEM model for adherent cells described earlier. We grounded electrode 5 by applying the

appropriate boundary condition and swept the working electrodes by setting a constant

normal current density at the corresponding boundaries. We then calculated the complex

impedance as the ratio between voltage at the working electrode and the applied electric

current.

To build an appropriate FEM mesh, we extracted outlines of the cell membrane and

nucleus shown as green and blue curves in Figure 2.11 (B) respectively. We applied our

proposed geometry generation procedure to create 3D finite-element mesh depicted in Figure

2.11 (C).

We used previously described statistical models of dielectric properties of adherent cells to

independently generate 106 samples of each variable. We then found their means, 97.5th and

2.5th percentile values and ran five sets of FEM simulations with these dielectric properties:

mean values and four combinations of high and low conductivity and permittivity. To control
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for correctness and ensure numerical convergence of FEM, we keep the mesh skewness > 0.1,

volume versus circumradius of the mesh > 0.01, and the total size of the mesh < 107 degrees

of freedom.

2.4 Results and discussion

Electrical response of biological cells is fundamental to many bio-medical studies. Modern

methods model it with deterministic material properties and assume naive cellular geome-

tries. Both assumptions cause misleading results. We approximate the diversity among cells

using mixture of parametric models, built upon the data from 60 years of empirical research.

We verified the proposed modelling approach with impedance spectroscopy measurements of

a single HeLa cell. We believe that our model establishes theoretical foundations for funda-

mental stochastic mechanisms inside cell that impact its electrical properties. The proposed

model extends to numerous bio-medical applications as it mimics biological diversity across

different cell types and eliminates necessity for empirical parameter fitting. Nonetheless,

a larger dataset can enable further analysis that may discover intricate relationships be-

tween cell components and associated molecular processes, while additional experimental

verification may also improve the model in the future.

2.4.1 Electrical properties of cells

Adherent and non-adherent animal cells tend to have similar properties, while yeast cells

and bacteria have thicker non-conductive membranes, but more conductive cytoplasm. Fun-

damentally, capacitance of the membranes is driven by the synthesis of phospholipid bilayers

and attached proteins, which explains its tendency to follow log-normal distribution. Mem-

brane conductance, on the other hand, follows gamma distribution, which can be driven

by stochastic formation of the ionic channels and pores in the membrane. Conductivity

of cytoplasm and nucleoplasm is best modelled by gamma distribution. It corresponds to

accumulation of ions inside the cell, driven by the switching ion channels in the membranes.

Presence of various proteins and organelles in cytoplasm and nucleoplasm causes log-normal
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Figure 2.12: Electrical impedance spectroscopy of a single HeLa cell and FEM simulations

distribution of their permittivity.

2.4.2 Electrical impedance spectroscopy of HeLa cell line

We plot measured electrical impedance difference |Zcell − Znocell| (red lines) versus frequency

and analogous measures from FEM simulation with mean dielectric properties (blue line) in

Figure 2.12. Empirical error bars extracted from measuring equipment specifications (worst-

case uncertainty) were smaller than the markers on the plot, and, therefore, are omitted here.

Shaded blue regions are bounded by simulations with 97.5th and 2.5th percentile values of the

material properties. Comparing to the simulations, measured impedance had an identical

decreasing trend. At frequencies below 1 MHz, when EDL dominates, we observed a rapid

drop in impedance with a slope of f−0.9≤slope≤−0.5. In this regime, the major voltage drop

is taking place at the double layer, which leads to horizontal current flow. With increase

of the frequency, double layer becomes electrically transparent and β-dispersion takes place.

This lets electric current to penetrate deeper inside the cell. The slope, therefore, continues

dropping down and reaches f−0.35 at 10 MHz. Region of 1 MHz to 50 MHz is of a particular

interest as it brings Maxwell-Wagner effects. Primarily driven by the membrane polarization,

normalized impedance peaks at 10 MHz. At the electrodes 1, 2, and 4, the effect is stronger,

as they are located underneath the cell and its nucleus. At higher frequencies, a slope of

f−0.25 emerges implying the end of the β-dispersion region at 1 GHz.
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CHAPTER 3

Electrical impedance tomography

Electrical impedance tomography (EIT) is a noninvasive imaging technique proposed by

Webster in 1978 [41] and demonstrated by Barber and Brown in 1984 [42]. It was devel-

oped primarily for medical imaging in which the electrical properties (conductivity σ and

permittivity ε) of a part of the body are inferred from the boundary measurements. Given

that electrical properties vary considerably across biological tissues their spatial distribution

defines shape and boundaries of the parts inside the body. Therefore, the reconstructed

electrical properties form a tomographic image of the interior structure.

Compared to the conventional imaging techniques such as X-rays computed tomography

(CT) or optical microscopy, EIT is entirely non-invasive and is based on a radiation-free

"soft" excitation. In "hard" field imaging such as CT, pixels (or voxels) only locally affect

the measurements. At softer X-rays, the effect of scattering needs to be taken into account

leading to non-local effects. Non-locality makes image reconstruction in EIT particularly

difficult as local changes in electrical properties may lead to global changes in measurements,

which eventually results in lower imaging resolution. However, due to high portability, low-

cost, and faster imaging capabilities EIT is being actively pursued.

A typical EIT measurement system contains a set of electrodes that are attached to the

skin around the object being examined (see Figure 3.1). Then, a small alternating (AC)

current is applied between a pair of electrodes, while the resulting potential distribution is

captured by the voltage measurements on the remaining electrodes. Sometimes, a voltage

stimulation and current measurements are used, which is fundamentally equivalent. This

process is repeated for different pairs of electrodes to collect a set of electrical measurements

that contains information about spatial distribution of the electrical properties. The goal of
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Figure 3.1: Steps in EIT image reconstruction: data collection with electrical measurements

and mapping from voltage measurements to an image

image reconstruction is to find appropriate mapping between electrical measurements and

the electrical properties that form an image.

The problem of recovering an admittivity distribution from measurement data, also called

Calderon’s problem, is non-linear and severely ill-posed. Specifically, for any measurement

precision, there are arbitrarily large changes in the conductivity distribution that do not

result in electric potential displacement. In other words, for a given set of measurements

multiple possible solutions exist. To mitigate this, numerous methods were proposed, but

most of them are aimed at including additional information about possible solutions. With

sufficient a priori knowledge one can exclude meaningless solutions and separate the remain-

ing ones so that the inverse problems could have a unique solution.

Mathematically, Calderon’s problem was shown to have a unique solution if a complete

relationship between voltages and the current is know. In practice, however, we can only

have a finite number of electrodes of fixed sizes and, therefore, only an approximate solu-

tion is achievable. Another significant constraint stems from measurement noise and other

sources of error. Given ill-posedness of the problem, a slight variation in the measurements

heavily impacts image reconstruction. As a result, the inverse problem becomes numeri-
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cally unstable. Popular algorithms such as backprojection, variational method, modified

Newton-Raphson algorithm, Newton one-step error reconstruction (NOSER), and a maxi-

mum a posteriori (MAP) approach linearize the problem and introduce a regularization term

to achieve numerical stability and convergence.

Practically, EIT imaging can be divided into three types: absolute imaging, frequency

difference, and time difference. Absolute imaging simply maps measured signal to a spatial

distribution of electrical properties. Often, however, a set of reference measurements is

obtained before imaging an object. The relative changes between measurements of the body

and the reference measurements are then mapped to an image, which is often called time

difference imaging. When two sets of measurements are are separated in frequency domain,

frequency imaging takes places, which is particularly useful when electrical properties have

a strong frequency dependence.

Originally, absolute and time difference EIT was proposed for human lung imaging. Par-

ticularly pulmonary emboli or blood clots detection in lungs raised interests in medical en-

gineering community. Pulmonary emboli is a common serious complication of a surgery. In

order to detect it, a sophisticated combination of conventional X-ray imaging with a prepa-

ration procedure was commonly practiced in hospitals. A patient was supposed to inhale

radioactive gas followed by injection of a radio-opaque dye or a dissolved radioactive sub-

stance into a vein. Both procedures detrimentally affected patient’s health and non-invasive

methods were actively studied. In addition, EIT was proposed to detect accumulation of

fluid in lungs, monitoring of heart function and blood flow, studying pelvic fluid, and en-

riching electrocardiograms and electroencephalograms. Later multi-frequency EIT found

applications in cancer detection and localization in skin, breast, or cervix, as well as imaging

of brain activity and gastrointestinal tract. Recently, micro-scale EIT applications emerged

and several efforts on tissue and single-cell imaging were reported.

Although EIT is rather a niche imaging tool in medical practice, numerous measurement

systems have been developed. The most widely used one is produced by Maltron Interna-

tional. It is a 16-electrode Mark system originally developed in Sheffield. Similar systems are

the Goe MF II (16 electrodes) and Enlight 1800 (32 electrodes) developed at the University
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of Gottingen and the University of Sao Paulo respectively. Such systems typically comply

with medical safety standards and are primarily used by clinical research groups in hospitals

and in intensive care.

3.1 EIT problem statement

To establish mathematical definition of the image reconstruction problem we first need to

visit its first component - forward mapping F : Γ 7→ U . The forward problem is used while

solving the inverse problem by estimating the discrepancy between measurements V and

predicted U due to error in γ. In addition, the forward mapping is used to estimate the

Jacobian in several reconstruction algorithms.

Mathematical definition of the EIT problem is given by the Maxwell’s equations:


∇×H = γE

∇× E = −iωµH
(3.1)

Given that the working angular frequency ω and the physical dimensions of the electrodes

P are sufficiently small such that ωµ |γ|P 2 � 1, the curl of the electric field is usually ignored.


∇×H = γE

∇× E = 0

(3.2)

Taking the Ohm’s law J = γE and assuming the absence of the current sources and sinks

in imaging domain Ω, we can yield:


J = −γ∇u

∇2u = 0

(3.3)

In practice, EIT usually employs a set of current excitations, which brings the corre-

sponding Neumann boundary conditions:
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

γ δu
δn

= j, on electrodes e1...eL

γ δu
δn

= 0, between electrodes∫
el
γ(x, ω)∂u

∂n
ds = il, ∀el,∑L

l=1 il = 0.

(3.4)

Electrode measurements V during the excitations I lead to additional Dirichlet boundary

conditions. Note that the presence of the EDL at the electrode surfaces gives rise to contact

impedance zl for every electrode el, which leads to often called a complete EIT model [99].


u(x, ω) + zl

∂u
∂n

= vl, ∀el,∑L
l=1 vl = 0,

(3.5)

Therefore, full mathematical formulation of EIT problem is given by 3.6:



∇ · γ(x, ω)∇u = 0, in Ω,

γ(x, ω)∂u
∂n

= j, on electrodes e1...eL,

γ(x, ω)∂u
∂n

= 0, between electrodes,∫
el
γ(x, ω)∂u

∂n
ds = il, ∀el,

u(x, ω) + zl
∂u
∂n

= vl, ∀el,∑L
l=1 il = 0,∑L
l=1 vl = 0,

(3.6)

Despite being non-linear, a number of methods can be used to solve the forward problem.

Finite difference method (FDM) uses a regular grid to discretize the domain and approxi-

mates the partial differential equations (PDE) with a system of difference equations. Its close

relative, finite element method (FEM) approximates the space with arbitrary sized finite el-

ements (usually, triangles in 2D or tetrahedrons in 3D), which gives a lot more flexibility in

describing curved or smooth boundaries and domains (see Figure 3.2). Boundary element

method (BEM) discretizes only surfaces of regions and employs analytical expression for
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Figure 3.2: A solution to the forward problem based on FEM: admittivity distribution, space

discretization using finite elements of adaptive size, response due to an excitation

the Green’s function within enclosed volumes that are assumed to be homogeneous. BEM

is computationally more efficient and is useful for EIT forward modelling when piece-wise

constant electrical properties are assumed. In contrast to FEM and FDM, BEM results in

a dense linear system and its computational advantage quickly diminishes with increase in

degrees of freedom (DOF). BEM, however, has the advantage of being able to represent un-

bounded domains and may be superior in some applications. For example, a hybrid method

where some regions assumed homogeneous and are represented by BEM demonstrated ef-

ficacy [100]. It is important to note, that the forward problem is usually well-posed and

has guarantees for numerical convergence to a unique solution. As these numerical methods

are not the primary matter for this work, we will further continue our discussion. More

detailed introduction to FDM, FEM, and BEM can be found in the relevant literature such

as [101, 102, 103, 104].

The second component of EIT problem, inverse mapping F−1, corresponds to the re-

construction of γ given the stimulations I and the voltage measurements V at the bound-

ary. Theoretically, infinitely many boundary measurements can be mapped to a unique γ,

but practically the number of the measurements is usually limited, which makes this non-

linear problem ill-posed and particularly difficult. Therefore the problem is frequently solved
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through use of regularization. Tikhonov regularization, named for Andrey Tikhonov and also

known as ridge regression, is a popular approach used in EIT and other ill-posed problems.

In general, this method provides improved efficiency in parameter estimation problems in

exchange for a tolerable amount of bias (loss in image resolution in EIT problem).

Let us consider a simple case where for a know A and b we want to find x that would

satisfy:

Ax = b (3.7)

When A is full-rank, a unique solution can be founds using ordinary least squares xOLS =

(ATA)−1ATb. However, most real-world forward mappings have the property of a low-pass

filter which leads to loss of information and ill-posedness of the inverse problem. Therefore,

several solution may exist that satisfy 3.7. In order to give preference to a particular solution

with desirable properties, a regularization term is added to the original least squares:

xT ikhonov = arg min ‖Ax− b‖2 + ‖Lx‖2, (3.8)

where L is Tikhonov matrix. Frequently this matrix is chosen as a multiple of the identity

matrix, giving preference to solutions with smaller norm. In other cases, high-pass operators

(e.g., a weighted Fourier operator or Laplace kernel) may be used to enforce smoothness of

x. Tikhonov regularization improves the conditioning of the problem, thus enabling a direct

numerical solution:

xT ikhonov =
(
ATA+ LTL

)−1
ATb. (3.9)

A quantitative measure of ill-posedness can be measured with condition number:

k(A) = ‖A‖ ·
∥∥A−1

∥∥ , (3.10)

where ‖·‖ for a matrix is defined as:

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

(3.11)

Assuming that A is invertible and known accurately, k(A) measures the amplification of

relative error in the solution, or the worst case error bound:

‖δx‖
‖x‖

≤ k(A)
‖δb‖
‖b‖

(3.12)
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A probabilistic view on image reconstruction problem gives another justification to Tikhonov

regularization. According to Bayes theorem, the posterior probability is defined as:

P (x|b) =
P (b|x)P (x)

P (b)
(3.13)

We can find optimal x by maximizing the posterior probability, which is called maximum

a posteriori estimate (MAP). To achieve that, x is assumed to be Gaussian with mean x0

and ε = Ax− b is also Gaussian with zero mean. Assuming independence of x and ε so that

P (b|x) = P (ε) we can show that the posterior P (x|b) is maximized as follows:

P (x|b) ∝ exp
[
− ‖Ax− b‖2

]
exp

[
‖x− x0‖2

]
xMAP = arg min ‖Ax− b‖2 + ‖x− x0‖2.

(3.14)

3.2 Image reconstruction

A number algorithms for the inverse EIT problem have been proposed, including early

approaches that assumed linear changes in γ such as backprojection [43] and variational

[105] methods, and iterative non-linear methods such as modified Newton-Raphson algo-

rithm [106], one-step Gauss-Newton (NOSER) [44], and MAP approach [107]. To improve

the numerical stability of the inverse EIT problem, a variety of regularization strategies

have been introduced. In particular, Tikhonov regularization [108] and the total variation

(TV) [109, 110] methods became an integral part of the major EIT reconstruction meth-

ods. Further research efforts brought alternative methods with their own advantages and

disadvantages. They include Kalman filter-based approach [111], Markov chain Monte Carlo

(MCMC) optimization [112, 113], direct solver [114], and the D-bar algorithm [115]. A

graphical example comparing different families of these algorithms is shown in Figure 3.3.

Approaching the problem with a non-linear iterative optimization is, perhaps, the most

accepted method. In this case, the solution to the inverse problem is found by minimizing

the square of the difference between the measured voltages V and the solutions to the

forward problem U = F (γ). Given that the problem may have multiple local minima the
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Figure 3.3: An illustration of how non-linear, linear, and regularized non-linear methods

differ in a simplest case of fitting a function based on noisy samples

loss functional is usually extended with a regularization term as shown below:

γ = arg minF(V, U)

= arg min
[
‖V − U‖2 + α ‖L(γprior − γ)‖2

] (3.15)

where α is a regularization coefficient, L is a matrix approximation of a smoothing operator,

such as Laplace or Gaussian, γprior is the prior (reference) image.

The loss functional F(V, U) if then minimized through iterative updates:

γt+1 = γt − δγ

= γt − η
(
JTt Jt + αLTL

)−1·[
JTt
(
V − U

)
+ αLTL(γprior − γ)

] (3.16)

where Jt is the Jacobian matrix of the forward model estimated at step t, and η is the update

step size. Additional damping factor yields Levenberg-Marquardt algorithm (also known as

damped least squares) 3.17:

γt+1 = γt − δγ

= γt − η
(
JTt Jt + αLTL+ λD

)−1·[
JTt
(
V − U

)
+ αLTL(γprior − γ)

] (3.17)

where D is a diagonal matrix and is often chosen to be D = diag(JTt Jt) to make the solution

scale-invariant, and λ is the damping factor that decays to zero as the solution converges

λt+1 = arg min{λt,λt/β,λt·β}F(V, U) for an arbitrary scalar β.
47



A simplified version of the problem can be obtained through linearization:

F (γt+1) = F (γt) + Jt · δγ (3.18)

By replacing δV = V − F (γt), the update becomes:

δγ = η
(
JTt Jt + αLTL

)−1[
JTt δV + αLTL(γprior − γt)

]
(3.19)

While there are many other forms of regularization possible for a linear ill-conditioned

problem, this generalized Tikhonov regularization has the benefit that the a priori infor-

mation it incorporates is made explicit and that under Gaussian assumptions it is the sta-

tistically defensible MAP estimate. If only a linearized solution is to be used with a fixed

initial estimate γ0, the Jacobian J and a factorization of JTt Jt +αLTL can be pre-calculated

off-line. The efficiency of this calculation is then immaterial and the regularized solution

can be calculated using the factorization with complexity O(N2) for N degrees of freedom in

the conductivity (which should be smaller than the number of independent measurements)

[116]. A popular image reconstruction algorithm, NOSER, that uses this scheme with a

single update step is often used due to its efficiency.

Another way to mitigate numerical instability is regularization by total variation (TV).

TV functional plays an important role in the regularization of inverse problems belonging to

many disciplines. The use of such a functional as a regularization penalty term allows the

reconstruction of discontinuous profiles. As this is a desirable property, the method gained

popularity [116].

For a differentiable function of several variables on a domain Ω TV measures the total

amplitude of the oscillations of the function:

TV (u) =

∫
Ω

|∇u(x)| dx (3.20)

In case when u is non-differentiable, TV is defined as:

TV (u) = sup
v∈V

∫
Ω

u div v (3.21)

where V is the space of continuously differentiable vector-valued functions that vanish on δΩ

and ‖v‖Ω ≤ 1.
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As the TV functional measures the variations of a function over its domain, it can be

understood to be effective at reducing oscillations in the inverted profile, if used as a penalty

term. The same properties apply, however, to L2 regularization functionals. The impor-

tant difference is that the class of functions with bounded total variation also includes dis-

continuous functions, which makes the TV particularly attractive for the regularization of

non-smooth profiles [116].

3.3 Applications

As we mentioned before EIT is suitable for monitoring human thorax and particularly lungs

because its tissue resistivity is five times higher than other soft tissues in the thorax. In addi-

tion, lung resistivity increases and decreases to a few orders of magnitudes during breathing.

This also led to the most promising clinical application of EIT in monitoring of ventilated

patients. The feasibility of EIT for lung imaging was first demonstrated in 1990 with the

development of ultra-fast NOSER algorithm [44]. Time difference EIT was shown capable

of visualization of the changes in the lung volumes and assistance in protective ventilation

to patients in intensive care units. Absolute EIT is also a potential solution to clinical lung

imaging, as this approach can help to distinguish between medical conditions which result

in lower resistivity (e.g. hemothorax) and those with higher resistivity (e.g. pneumothorax).

Besides applications in intensive care EIT can be combined with other imaging modalities.

For instance, overlaying functional EIT images with morphological patient data (e.g. CT

images) may be used in analysis of lung pathophysiology, which might be useful for patients

suffering from obstructive lung diseases. Moreover, high temporal resolution of EIT allows

assessment of common dynamic parameters used in pulmonary function testing. Recently,

Drager released PulmoVista 500, an EIT-based system aimed to support decision making

processes on the treatment of patients with acute respiratory distress syndrome.

Another promising EIT application is imaging of breast cancer as an alternative or com-

plementary technique to mammography and magnetic resonance imaging (MRI). Funda-

mentally, breast cancer detection is enabled by electrical properties of normal and malignant
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breast tissue that differ due to changes in physical density and capacity of the tissues to

conduct electric current. Another factor in favor of EIT is low specificity of the conventional

methods a relatively high false positive rate that cause wrong medical decisions. Moreover,

non-invasiveness of EIT would be particularly important to support health of the patients.

EIT has been also suggested to be used in brain imaging to detect and monitor cere-

bral ischemia, haemorrhage, and other morphological changes associated with neuronal cell

swelling. While EIT has significantly lower resolution compared to cerebral CT or MRI, its

temporal resolution is much higher, which makes EIT suitable for monitoring normal brain

function and neural activity in intensive care units. Moreover, quick imaging of temporal

changes in electrical properties at around 100 Hz might lead to novel EIT applications such

as human-computer interfaces and robotic arm haptic sensors.
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CHAPTER 4

Cell imaging with electrical impedance tomography

Cellular imaging is the primary engine in microbiology and one of the central problems in

biomedical engineering. Despite recent advances in the field, the conventional fluorescent

microscopy remains the most frequently practiced imaging technique. It is a repeatable,

reliable, and commonly accepted method in cell studies, but it has several flaws arising

from the need for optical excitation and use of fluorescent dyes. High-power ultraviolet

(UV) and infrared (IR) light can damage DNA, raise cellular temperatures, and cause other

photo-toxic effects [31, 32], while fluorescent dyes are frequently cytotoxic and can interfere

with the results [33, 34]. A number of advanced optical techniques have been developed

including coherence tomography [35] and projection tomography [36], but they suffer from

poor penetration depth, high cost, and are difficult to scale down to a cell level. Micro-

scale magnetic resonance imaging (MRI) on the other hand, requires very strong permanent

magnets or additional injection of potentially toxic particles into the cells [37]. As a result

long-term studies with live cells are hardly feasible with the conventional methods.

Several non-invasive methods based on electrical stimulation and sensing have been shown

to be suitable for real-time and long-term applications. With a single pair of electrodes Gi-

aver and Keese developed electrical cell-substrate sensing [38], a robust in vitro technique

that found applications in drug discovery, toxicity, phenotyping, and other studies [39, 40].

With additional pairs of electrodes, a more sophisticated analysis can be done. Proposed by

Webster [41] and practically realized by Barber and Brown [42], electrical impedance tomog-

raphy (EIT) deals with the reconstruction of the spatial distribution of electrical admittivity

or conductivity. Assuming that different biological materials can be identified and char-

acterized by their electrical properties, EIT delivers high penetration imaging for medical
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and biological applications. On the other hand, the reconstruction is a hard ill-posed prob-

lem that requires additional assumptions and simplifications. From its inception researchers

struggled with the development of reliable and inexpensive reconstruction algorithms. For

instance, the commonly accepted approaches such as backprojection method [43] and Gauss-

Newton algorithm [44] fail to deliver high resolution and may suffer from undesirable artifacts

in the images, despite the strong assumptions such as linearity of the problem. Nonetheless,

EIT has found applications in imaging of human thorax, brain, gastrointestinal tract, as well

as, breast cancer screening [117, 118, 119, 120, 116].

Later, EIT was scaled down to ex vivo tissue electroporation imaging [45], cell culture

imaging [46, 47], and single cell studies [48, 49, 51, 50]. In this chapter, we significantly

extend EIT by tailoring it for cellular imaging. We first adjust measurement methodology.

The traditional circular electrode array was originally developed for imaging of the human

body and requires placement on the outer boundary of the object. This approach suffers

from particularly low resolution at the center of the array caused by the absence of the

interior electrodes and is practically infeasible at the scale of biological cells. We, therefore,

propose an equally-spaced microelectrode array (MEA) along with the entire measurement

system working at a wide range of frequencies. It is designed to enhance sensitivity for

the cell imaging and takes advantage of the modern micro-fabrication technology. We then

argue that a culture medium with cells is characteristically similar to a conductive domain

with non-conductive inclusions. Hence, shape optimization methods could be applied to the

problem. For example, image reconstruction was previously formulated as a shape identi-

fication task and shown to give stable numerical results [121]. By employing the notion of

topological derivative [122, 123, 124] and level-set functions [125] researchers achieved more

reliable and higher quality results in image reconstruction. Finally, we further modify the

shape optimization method and include the a priori knowledge about the shape and unique

electrical response of the cells, which drastically improves the algorithm’s stability and im-

age quality. This makes the reconstruction algorithm tolerant to natural diversity among

different cell types and enables high-contrast imaging by facilitating numerical convergence.

We validate the proposed methodology on a single-cell imaging of HeLa cell line. The
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Figure 4.1: Electrical Impedance Tomography: forward and inverse problems

results promise real-time and long-term cellular imaging with an unprecedented image reso-

lution. To compare the equally-spaced MEA design against the conventional circular MEA

we estimated their performance on a set of simulated data that was designed to be numer-

ically equivalent to each other. The results clearly demonstrate beneficial impact on the

image quality. Then, we extensively benchmarked the proposed image reconstruction al-

gorithm’s performance with a large-scale 3D simulated dataset and directly compared the

results against the most commonly used alternatives. We report a high resolution single-cell

EIT, a possible solution to one of the fundamental problems in microbiology and biomedical

engineering.

4.1 Problem statement

EIT is a low-cost, non-invasive, and label-free imaging technique that employs difference in

material properties to identify, localize, and reconstruct the objects. To get a reconstructed

image, one needs to apply a sequence of electric current (or voltage) stimulations I between

the electrodes placed around the region of interest Ω (see Figure 4.1). The image reconstruc-

tion involves measurement of electric potentials (or currents) V at the electrodes during the

stimulations and solving a numerical optimization problem. The resulting image represents

spatial distribution of the admittivity γ.

EIT has two distinct parts: the forward problem and the inverse problem. A solution to

the former one is a potential distribution u for a given complex admittivity γ = σ+ iωε and
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a stimulation i. It is well-defined and has a unique solution that can be found numerically

with finite-element method (FEM). Mathematically, the forward problem is described by

Laplace’s equation that assumes no sources in Ω as shown below 4.1.

∇ · γ(x, ω)∇u = 0, in Ω,

γ(x, ω)∂u
∂n

= j, on electrodes e1...eL,

γ(x, ω)∂u
∂n

= 0, between electrodes,∫
el
γ(x, ω)∂u

∂n
ds = il, ∀el,

u(x, ω) + zl
∂u
∂n

= vl, ∀el,∑L
l=1 il = 0,∑L
l=1 vl = 0,

(4.1)

where ~n is an inwards unit normal, ~j is an inwards current density, and zl, il and vl are

the contact impedance (introduced to take into account the electrochemical effects at the

electrode surface), current, and voltage at an electrode l.

The inverse problem corresponds to the reconstruction of γ given the stimulations I

and the voltage measurements V at the boundary. Theoretically, infinitely many boundary

measurements can be mapped to a unique γ, but practically the number of the measurements

is usually limited, which makes this non-linear problem ill-posed and particularly difficult.

To overcome these limitations, numerous algorithms have been proposed, including the early

approaches that assumed linear changes in γ such as backprojection [43] and variational [105]

methods, and iterative non-linear methods such as modified Newton-Raphson algorithm

[106], one-step Gauss-Newton [44], and a maximum a posteriori (MAP) approach [107].

To improve the numerical stability of the inverse EIT problem, a variety of regularization

strategies have been introduced. In particular, Tikhonov regularization [108] and the total

variation (TV) [109, 110] methods became an integral part of the major EIT reconstruction

methods. Further research efforts brought alternative methods with their own advantages

and disadvantages. They include Kalman filter-based approach [111], Markov chain Monte

Carlo (MCMC) optimization [112, 113], direct solver [114], and the D-bar algorithm [115].
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4.2 Image reconstruction

The solution to the inverse problem is found by minimizing the square of the difference

between the measured voltages V and the solutions to the forward problem U . Given that

the problem may have multiple local minima the loss functional is usually extended with a

regularization term as shown in 4.2:

γ = arg minF(V, U)

= arg min
[
‖V − U‖2 + α ‖L(γprior − γ)‖2

] (4.2)

where α is Tikhonov regularization coefficient, L is a matrix approximation of a smoothing

operator, such as Laplace or Gaussian, γprior is the prior (reference) image, and ‖·‖ is the

vector norm operator.

The loss functional F(V, U) if often minimized through the iterative optimization:

γt+1 = γt − δγ

= γt − η
(
JTt Jt + αLTL+ λD

)−1·[
JTt
(
V − U

)
+ αLTL(γprior − γ)

] (4.3)

where Jt is the Jacobian matrix of the forward model estimated at step t, D is a diagonal

matrix, η is the update step size, and λ is the damping factor which usually decays to zero as

the solution converges. The optimization stops when the difference V − U becomes smaller

than the measurement error of the empirical measurements V . Note that when λ is large,

4.3 is equivalent to the Levenberg-Marquardt algorithm, while as λ → 0 it becomes the

Gauss-Newton method with Tikhonov regularization. We use the original strategy of scaling

λ:

λt+1 = arg min
{λt,λt/β,λt·β}

F(V, U) (4.4)

for 0 < β < 1. In addition, to facilitate the convergence and make the solution scale-invariant

we take D = diag(JTt Jt).
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4.2.1 A priori electrical cellular properties

As was previously reported [62], electrical properties of the culture medium, cell membrane,

and cytoplasm can be represented with simple parametric models shown in Chapter 2. A

naive approach to include the proper prior information about γ is to replace γprior−γ with 1−

fprior(γ) in 4.2, where fprior is the appropriate parametric probability density function (PDF).

Assuming linearity of the PDF for small δγ, this would yield another iterative algorithm 4.5:

δγ = η
(
JTt Jt + αgTpriorL

TLgprior + λD
)−1·[

JTt
(
V − U

)
+ αgTpriorL

TL(1− fprior(γt))
] (4.5)

where gprior is the derivative of the fprior estimated at γt. Similarly, if we take out the

quadratic power from the regularization term, δγ becomes:

δγ = η
(
JTt Jt + λD

)−1 ·
[
JTt
(
V − U

)
+
α

2
Lgprior

]
(4.6)

4.2.2 Maximum a posteriori estimation

Bayesian view on the image reconstruction suggests maximization of the posterior probability

p(γ|V ) given by 4.7.

p(γ | V ) ∝ p(V | γ) · p(γ) (4.7)

Where the likelihood p(V |γ) is determined by the forward model F : γ 7→ U and the

measurement error. By estimating the error in measurements V , we can build the commonly

accepted model that assumes additive Gaussian noise V = F (γ) + N (0, Rn) and linearity

F (γ + δγ) ≈ F (γ) + J · δγ. If the prior p(γ) is also assumed to follow N (µγ, Rγ) [107] one

can apply the iterative optimization 4.8:

γt+1 = γt+1 − η
(
JTt R

−1
n Jt + αR−1

n

)−1·[
JTt R

−1
n

(
V − U

)
+ αR−1

γ

(
µγ − γt

)] (4.8)

We extend the MAP approach by bringing a more realistic p(γ). As has been shown

previously [62], cellular components can be described with a mixture of parametric models

such as gamma, log-normal, uniform, and Gaussian. Following a similar derivation procedure
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and using log(γ+δγ) ≈ log(γ)+δγ as δγ → 0, we can show that for log-normally distributed

γ with parameters µγ and Rγ the update δγ is given by:

δγ = η
(
JTt R

−1
n Jt + αR−1

n

)−1·[
JTt R

−1
n

(
V − U

)
+ αR−1

γ

(
µγ − log(γt)

)
− α

] (4.9)

Similarly, gamma-distributed γ with shape sγ and rate rγ yields 4.10, while, the uniform prior

defined for aγ ≤ γ ≤ bγ simply suggests maximization of the likelihood p(V |aγ ≤ γ ≤ bγ).

δγ = η
(
JTt R

−1
n Jt)

−1
[
JTt R

−1
n

(
V − U

)
+ α(sγ − rγ − 1)

]
(4.10)

4.2.3 Shape optimization

A simplified model of a cell is a cytoplasm enclosed by a thin membrane made of a lipid bilayer

with embedded proteins. The cytoplasm additionally contains membrane-enclosed organelles

that are involved in separate living activities. Cell membrane has regularly distributed ion

channels - the pumps that maintain high ionic concentration inside the cell to support the

internal biochemical processes. Cell membrane is, therefore, frequently modelled as a leaky

capacitor. Hence, an individual cell differs significantly from the conductive culture medium

and could be represented as an inclusion Ωk
i with admittivity γki , while the surrounding

medium can be described by Ωe = Ω \ Ω
k

i . This extends the forward problem by 4.11:

γ(x, ω) = γki , in Ωk
i ,∀k,

γ(x, ω) = γe, in Ωe,

u− − u+ = 0, on ∂Ωk
i , ∀k,

γi(x, ω)∂u
−

∂n
− γe(x, ω)∂u

+

∂n
= 0, on ∂Ωi.

(4.11)

Shape optimization methods have been previously considered to be used in EIT. In par-

ticular, a concept of topological derivative was proposed for reconstructing inclusions Ωi

[124]. By combining it with Gauss-Newton iterative optimization a more general image re-

construction case was demonstrated in [126, 122]. Second order shape optimization methods

have been proposed to improve the numerical stability and further enhance image recon-
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struction [127, 128, 123]. Similarly, level-set method was reported as another alternative to

involve shape optimization into EIT [125].

The topological derivative DT (x,Ψ) of a loss functional G(Ψ) on a domain Ψ ⊂ Ω mea-

sures its sensitivity to a removal of an infinitesimal hole χε of radius ε at location x ∈ Ψ:

DT (x,Ψ) = lim
ε→0

G(Ψ \ χε)− G(Ψ)

Q(χε)
(4.12)

where χε = χε ∪ ∂χε and Q(χε) is a positive function that decreases to 0 as ε → 0. For

instance, we can take Q(χε) = πε2 for two-dimensional reconstruction. For a small ε this

yields:

G(Ψ \ χε) ≈ G(Ψ) +Q(χε) ·DT (x,Ψ) (4.13)

As was shown earlier [122], for the loss functional defined in 4.14 the topological derivative

can be estimated with 4.15:

G(Ψ, γ) =

∫
∂Ω

|V − U |2 dl (4.14)

DT (x) =


<
(

4γi(x)(γi(x)−γe(x))
γi(x)+γe(x)

∇u∇p
)
, x ∈ Ωi

<
(

4γe(x)(γi(x)−γe(x))
γi(x)+γe(x)

∇u∇p
)
, x ∈ Ωe

(4.15)

where u is the solution to the extended forward problem 4.11 and p is the solution to the

adjoint problem 4.16.

∇ · γe(x, ω)∇p = 0, in Ωe,

∇ · γi(x, ω)∇p = 0, in Ωi,

γe(x, ω) ∂p
∂n

= V (x)− U(x), on electrodes e1...eL,

γe(x, ω) ∂p
∂n

= 0, between electrodes,

γi(x, ω)∂p
−

∂n
= γe(x, ω)∂p

+

∂n
, on ∂Ωi

p− = p+, on ∂Ωi.

(4.16)

4.2.4 Cellular EIT reconstruction

Introduction of the inclusions Ωi enables mixture modelling of the prior distribution fprior(γi) =∑
j[πijfpriorj(γi)], where πi is an indicator vector that assigns each element γi to the cor-
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responding components {fpriorj} such that
∑

j πij = 1. The simplest case of the cellular

imaging contains two mixture components including culture medium Ωe and the cells Ωi.

More sophisticated models can be constructed using prior distributions for the internal cell

organelles, combinations of different cell types, and phases of the cell cycle.

We combine the shape optimization and the iterative algorithm into a two-step proce-

dure: at any time-step t we first minimize F(γ) and then update Ωi and π to minimize G(γ).

Since Q(χε) ≥ 0 in 4.13, adding inclusions at the locations {xadd : DT (xadd,Ωe) < −C}

or removing inclusions at the locations {xremove : DT (xremove,Ωi) > C} for a positive real

threshold C will lead to the decrease of G(γ), which is the original strategy proposed in [122].

Note that G(γ) ≤ F(γ),∀γ and limα→0
arg minγ G
arg minγ F

= 1. Hence, the proposed reconstruction

procedure belongs to the class of Majorization-Minimization (MM) algorithms and guaran-

tees the convergence [129]. Empirically, we found that step-wise exponentially decreasing

the threshold C enhances the numerical stability and convergence to the global minimum.

Note, that the minimization of F(γ) can be achieved using any of the previously mentioned

iterative optimization algorithms, but we empirically found that particularly stable results

are achieved when we employ Laplace smoothing L (4.5 or 4.6) as well as MAP with the

appropriate prior (4.8, 4.9, 4.10).

4.2.5 Complex admittivity

Usually EIT is used to reconstruct the real part of admittivity distribution σ = <(γ) by

applying DC current at the electrodes. However, cellular membrane that separates cell

interior from the outer medium is distinguishable in both conductivity and permittivity,

which makes complex EIT reconstruction more meaningful. Due to significant noise level

and screening properties of the electrochemical interface at the microelectrodes, however,

complex-valued measurements are prone to errors. On the other hand, the majority of

impedimetric equipment perform measurements on a wide range of frequencies f . Having

independent reconstructions [|γ̃1| , ..., |γ̃p|] based on absolute values of [V1, ..., Vp] for a set of

angular frequencies [ω1, ..., ωp] we can construct a set of linear equations 4.17. Note that we
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assume negligible dependence of σ and ε on frequency ω, which is a reasonable assumption

when the measurements are performed within a narrow band in between known dielectric

dispersion frequencies [62].
|γ̃1|2 = σ̃2 + ω2

1 ε̃
2

...

|γ̃p|2 = σ̃2 + ω2
p ε̃

2

⇔


|γ̃1|2

...

|γ̃p|2

 =


1 ω2

1

... ...

1 ω2
p


σ̃2

ε̃2

 (4.17)

Finally we can estimate σ and ε that minimize the sum of the squared discrepancies in

|γ̃n|2 as shown below:

A =


1 ω2

1

... ...

1 ω2
p

 (4.18)

σ̃2

ε̃2

 =
[
ATA

]−1
AT


|γ̃1|2

...

|γ̃p|2

 (4.19)

4.2.6 Equally-spaced microelectrode array

The commonly used circularly-arranged electrode array has several restrictions that make it

inapplicable to the cell imaging. First, it has the fundamental resolution limit particularly

restraining image quality at the center of the array [130]. Second, it is practically infeasible

to bound a micrometer-scale domain containing cells. In order to overcome the aforemen-

tioned limitations and tailor EIT to the cellular imaging applications, we designed an equally

spaced planar microelectrode array (MEA). Introduction of the internal electrodes mitigates

resolution constraints at the center of the MEA [131, 102] while a regular pitch improves de-

vice sensitivity as it enables uniform probing of the electric potential changes due to presence

of the cells. In general, planar electrodes require solving the unbounded (open) EIT problem

[132], however, due to dominant horizontal current flow underneath the cells distant conduc-

tivity changes have negligible impact on the measured electrode voltages Vl [62] and we can

still employ the original problem statement 4.1 while allowing electrodes placed inside Ω.
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From a practical perspective, the planar MEA takes advantage of the latest developments in

micro-fabrication and can be further scaled to a greater number of electrodes and integrated

with solid state electronic devices to enable massive parallel in vitro assays.

4.3 Numerical evaluation

4.3.1 Evaluation of the proposed MEA design

To evaluate the proposed MEA design of equally-spaced planar electrodes we generated

1000 samples using 2D FEM that mimic adherent cells on the electrode arrays. Each sample

was simulated on the circular arrangement (8 and 12 electrodes) and the equally-spaced

arrangement (8 and 12 electrodes). A cell was approximated by an ellipse or union of two

ellipses of varying sizes (6 - 20 µm) and conductivity of 0.3 mSm/m randomly placed between

electrodes and surrounded by a conductive medium of 1 Sm/m (see Figure 4.2 A). For each

sample, we kept the same size and the total number of the mesh elements to compare different

electrode arrangements. As a reconstruction algorithms we employed 1-step Gauss-Newton

difference method (NOSER) [44] and to measure the fidelity of the reconstruction, we used

mean squared error (MSE) and multi-scale structural dissimilarity index (MS-DSSIM), which

estimates perceived difference in the structure information of two images. To calculate MS-

DSSIM, we normalized each ground truth image (difference against the background) and the

reconstructed image to range of [0, 1], then, we found (1−MS-SSIM)/2, where MS-SSIM is the

multi-scale structural similarity index [133] between the ground truth and the reconstructed

images. We discovered that the proposed MEA design benefit the image reconstruction both

in MSE and MS-DSSIM (see Table 4.1). As was expected, with greater number of electrodes

we obtained better reconstruction results.

4.3.2 Simulated cellular impedance tomography

To conduct a comprehensive comparison between different EIT algorithms, we collected a

dataset of EIT measurements of adherent cells on an equally-spaced MEA. Each sample was
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Figure 4.2: Sample of the MEA evaluation scheme: (A) simulated single cell (outlined with

green) placed on equally-spaced 8- and 12-electrode MEAs (blue) and equivalent circular

MEAs (red); (B) the corresponding reconstruction results

Table 4.1: Image reconstruction error (mean ± std) for different MEA arrangements

MEA arrangement MSE MS-DSSIM

Circular (8-MEA) 0.1776± 0.0898 0.0983± 0.0911

Equally-spaced (8-MEA) 0.1368± 0.0654 0.0751± 0.0817

Circular (12-MEA) 0.1289± 0.0908 0.0714± 0.0580

Equally-spaced (12-MEA) 0.1035± 0.0613 0.0535± 0.0428
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Table 4.2: Electrical properties of cell components used in the dataset generation
Property Family Parameters

Membrane capacitance, µF/cm2 Mixture log-normal
π = {0.6249, 0.3751}

µlog = {0.9430,−0.3745}
σlog = {0.3713, 0.1833}

Membrane conductance, Sm/cm2 Gamma
shape = 0.1641

rate = 2.8960

Cytoplasm permittivity Log-normal
µlog = 3.9857

σlog = 0.3790

Cytoplasm conductivity, Sm/m Gamma
shape = 4.0489

rate = 10.0158

Nuclear envelope capacitance, µF/cm2 Log-normal
µlog = 0.0969

σlog = 0.4330

Nuclear envelope conductance, Sm/cm2 Gamma
shape = 1.5337

rate = 0.1180

Nucleoplasm permittivity Log-normal
µlog = 4.1114

σlog = 0.3756

Nucleoplasm conductivity, Sm/m Gamma
shape = 2.3099

rate = 1.3536

Medium permittivity Normal
µlog = 4.1114

σlog = 0.3756

Medium conductivity, Sm/m Uniform
shape = 2.3099

rate = 1.3536

created with 3D finite-element simulations as was previously proposed [62]. In particular,

we randomly generated realistic cell geometries at different adhesion stages. We used 50

geometries, each comprising of 1 - 4 cells (see examples in Figure 4.3 A). Random translations

and rotations were introduced to augment the dataset. We used mean, 97.5th and 2.5th

percentile values of the material properties distributed accordingly to the parametric models

for adherent cells (see Table 4.2). We carefully evaluated FEM mesh in each simulation

to ensure numerical convergence and data quality. In total, the dataset contained 10, 000

unique samples for 8-electrode MEA and 10, 000 unique samples for 12-electrode MEA.

We compared the proposed reconstruction algorithms, with a few conventional EIT meth-

ods including NOSER [44], MAP with Gaussian prior [107], Gauss-Newton method with the

edge-preserving Laplace prior [134], Tikhonov regularization [108], and Primal Dual - Interior

Point Method (PD-IPM) with TV regularization [110]. We employed EIDORS [135, 136],
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Table 4.3: Image reconstruction error (mean ± std) with 12 equally-spaced MEA and noise-

less data
Algorithm MSE MS-DSSIM

NOSER [44] 0.1723± 0.0833 0.3045± 0.0416

MAP [107] 0.1462± 0.0693 0.3015± 0.0511

Tikhonov [108] 0.1399± 0.0635 0.2947± 0.0580

Laplace [134] 0.1187± 0.0436 0.2872± 0.0497

TV PD-IPM [110] 0.0868± 0.0174 0.2883± 0.0359

MAP + Prior 0.1217± 0.0592 0.2898± 0.0452

Laplace + Prior L1 0.1138± 0.0429 0.2789± 0.0497

Laplace + Prior L2 0.0977± 0.0333 0.2566± 0.0455

TD + MAP + Prior 0.0970± 0.0410 0.2352± 0.0184

TD + Laplace + Prior L1 0.0938± 0.0393 0.2455± 0.0261

TD + Laplace + Prior L2 0.0738± 0.0308 0.2171± 0.0079

a popular software toolkit that has the commonly accepted implementations of the afore-

mentioned algorithms. A set of three-dimensional (3D) finite-element (FEM) simulations

of EIT measurements with planar equally-spaced 12-electrode MEA underneath adherent

cells was used to create a testing dataset for further estimation of the reconstruction perfor-

mance. Note that the dataset was generated using realistic 3D cell geometries (see Figure

4.3 A) with dielectric properties that precisely mimic biological diversity from the previously

proposed model in Chapter 2. The simulations particularly targeted a practical scenario of

a virtually unbounded region with the cells cultured over the planar MEA. From each 3D

simulated sample we extracted a 2D image that was depicting the cell shape from top down

view similarly to observation in traditional microscopy. We found that reconstructing 2D

images from the 3D simulated data is more challenging and generally ends in a bigger error,

which is the reason of higher MS-DSSIM compared to the 2D simulated data that we used

to evaluate different MEA arrangements. Interestingly, MSE did not show sensitivity to this

challenge and was almost the same.
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Figure 4.3: Evaluation of the proposed reconstruction algorithm on simulated data: (A) data

generation and performance estimation; (B) reconstruction metrics at individual frequencies

65



Table 4.4: Image reconstruction error (mean ± std) with 12 equally-spaced MEA and 20 dB

data
Algorithm MSE MS-DSSIM

NOSER [44] 0.1698± 0.0806 0.3080± 0.0409

MAP [107] 0.1452± 0.0681 0.3016± 0.0519

Tikhonov [108] 0.1382± 0.0595 0.3049± 0.0556

Laplace [134] 0.1186± 0.0436 0.2872± 0.0499

TV PD-IPM [110] 0.1168± 0.0251 0.3089± 0.0380

MAP + Prior 0.1208± 0.0589 0.2899± 0.0455

Laplace + Prior L1 0.1137± 0.0429 0.2789± 0.0500

Laplace + Prior L2 0.0976± 0.0331 0.2566± 0.0470

TD + MAP + Prior 0.0964± 0.0407 0.2353± 0.0198

TD + Laplace + Prior L1 0.0937± 0.0384 0.2455± 0.0286

TD + Laplace + Prior L2 0.0787± 0.0309 0.2240± 0.0082

In Table 4.3 we report the mean and standard deviation of MSE and MS-DSSIM. The

data show superior performance of the proposed reconstruction algorithms in both metrics.

On the other hand, the reconstruction algorithms struggle to generate a perfectly recon-

structed image. This could be caused by the differences between the simulated unbounded

3D geometries and bounded 2D reconstruction region, which also clearly shows the com-

plexity of the inverse problem. To further improve the realism of the testing and evaluate

the algorithms stability we mixed the simulated measurements with additive Gaussian noise

assuming pessimistic 20 dB signal-to-noise ratio (SNR). As Table 4.4 suggests, the proposed

algorithms demonstrate insignificant degradation, while TV PD-IPM becomes substantially

worse in both MSE and MS-DSSIM. Interestingly, that other methods withstand the noise

well and produce results similar to the noiseless case. When we took a closer look at the

reconstruction performance at each stimulation frequency (see Figure 4.3 B), we discovered

that the proposed algorithm (TD + Laplace + Prior L2) consistently outperforms the oth-

ers. On the other hand it has noticeable fluctuations along the frequencies, which could be
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caused by inconsistent topological derivative estimation that sometimes fails to find new can-

didates for the inclusions and hints for future optimization of the parameters of the proposed

algorithm.

4.4 Experimental verification

We designed MEA of eight golden and transparent electrodes with pitch of 12 µm. MEAs

were fabricated at Nanoelectronics Research Facility at UCLA. To make golden electrodes,

layers of 20 nm of Ti and 100 nm of Au were vacuum-evaporated on fused silica wafers (100

mm in diameter) and the electrodes were patterned with the conventional lift-off process.

To make transparent electrodes, a layer of 120 nm of indium tin oxide (ITO) was sputter-

deposited on fused silica wafers (100 mm in diameter) and the electrodes were patterned with

reactive-ion etching. On top of the electrodes we deposited a passivation layer of 500 nm of

silicon dioxide with plasma-enhanced chemical vapor deposition (PECVD). To pattern the

passivation layer, we employed deep reactive ion etching. We made circular openings of 4 µm

in diameter at the center of the MEA and square contact pads of 5 mm at the edges. The

wafer was diced into 25-by-25mm square dies and each of them was cleaned in ultrasonic bath

of acetone with subsequent deionized water wash, nitrogen blow and thermal dehydration.

On top of the MEAs we designed 500 microliter (µL) wells of polydimethylsiloxane (PDMS)

to allow long-term cell culturing. In addition, MEAs were connected to the intermediate

printed-circuit board (PCB) with conductive silver epoxy adhesive (MG Chemicals). The

intermediate PCB was connected to switching PCB that contained analog multiplexers and

interfaces for vector network analyzer (VNA, HP 8753ES) and a computer. The computer

was used to control stimulation power of the VNA, switch between the electrodes, and fetch

data via General-Purpose Interface Bus (GPIB, Agilent 82357B).

To empirically verify the integrity of the proposed cellular EIT we conducted several

experimental measurements of human cervical carcinoma (HeLa) cells. Cells (HeLa AC-free,

Sigma-Aldrich) were grown at 37 °C in Dulbecco’s Modified Eagle’s Medium (DMEM) sup-

plemented with 10% fetal bovine serum (FBS) and 100 units/mL penicillin, and 100 µg/mL
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streptomycin (PS). Cells were regularly passaged to maintain exponential growth. Twenty-

four hours before staining and electrical measurements, we trypsinized HeLa cells, diluted

them 1 : 5 with fresh DMEM medium without antibiotics, centrifuged, and suspended into

fresh DMEM with 10% FBS and 1% PS. Then, we transferred 10 µL of the cell suspension

(2 · 105 cells/mL concentration) to the MEA device with the attached PDMS well (500 µL).

To enable the long-term incubation we added 390 µL of fresh DMEM medium with 10% FBS

and 1% PS and left the cells in the incubator for 24 hours at 37 °C and 5% CO2. The cells ap-

peared healthy and attached thereafter. During the incubation, the entire assembly of MEA,

PDMS well, and the intermediate PCB was enclosed in a small vented Petri dish. After the

incubation, the well was gently desiccated and washed with DMEM medium. To stain the

cell nuclei, we added 20 µL of 2 µg/ml Hoechst 33342 (Invitrogen) solution and incubated

the cells for 25 minutes at 37 °C. We then gently desiccated the well and washed it with

DMEM medium. To stain the cell membrane, 20 µl of 5 µg/ml of WGA Alexa Fluor®488

conjugate (Invitrogen) solution were added, and cells were incubated for another 10 minutes

at 37 °C. After the last incubation, the well was gently desiccated, washed, and filled with

a fresh DMEM medium with 10% FBS and 1% PS. We imaged the cells with fluorescent

microscopy before and after the electrical measurements and observed no visible changes in

structure, shape, and location caused by the electrical measurements.

4.4.1 Single-cell imaging of HeLa cell line

To empirically verify the integrity of the proposed cellular EIT we conducted several experi-

mental measurements of human cervical carcinoma (HeLa) cells. We designed a measurement

system that can handle arrays up to 16 microelectrodes, although for this experimental study

we used 8-MEA with 12 µm pitch between the electrodes. On top of the device, we built a

500 microliter (µL) well of polydimethylsiloxane (PDMS), which is sufficient for the major-

ity of long-term studies with adherent cells (see Figure 4.4 A). The electrodes are covered

by a thin passivation layer with small openings at the tips of the electrodes. The device is

connected to printed-circuit boards (PCB) that are dynamically routed to a vector network

analyzer (VNA). Transparent substrate of the device allows light to go through and gives
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flexibility to easily integrate with inverted microscopes.

We confirmed successful reconstruction with transparent (Figure 4.5 A, B) and non-

transparent (Figure 4.5 C) 8-electrode MEA. We qualitatively compared the reconstructed

results against the fluorescent images (shown in white on the grayscale images) of the cell

membranes, that correspond to the outer boundaries of the cells. The reconstructed images

depict spatial distribution of absolute admittivity with high values (low impedance) repre-

sented in red and low values (high impedance) represented in blue, hence, the blue regions

denote the cells.

Figure 4.5 A captures a partial coverage, where only one electrode at the edge of the 8-

MEA is completely covered by the cell membrane as indicated on the fluorescent microscopy

image. The blue region in the corner of the image reconstructed by the proposed algorithm

(TD + Laplace + Prior L2) accurately depicts the shape, size, and the location of the cell

membrane. Despite having only one electrode covered by the cell membrane, the topological

optimization step of the reconstruction algorithm managed to recover the inclusion at the

edge of the reconstruction domain (the outlined blue box). A closer look at the gradient of

the blue region suggests an increase of the electrical impedance, which could be a measure of

the strength of the cell adhesion or the thickness of the cell membrane that blocks lateral and

vertical current flows. Noticeable conductivity artifacts in the center of the reconstruction

domain, a well-known weakness of EIT, could be caused by the noise in the measurements

and substantially large contact impedance at the central electrodes.

On the other hand, when we substituted Laplace-smoothed iterative optimization step

with the maximum a posteriori (MAP) optimization, the inclusion was misidentified (TD +

MAP + Prior). Detailed analysis showed that it stems from the initial guess on the admit-

tivity distribution by the MAP step that later caused the errors in the shape optimization

(TD), which escalated the problem further. The root cause is, however, the noise in the

measurements that made MAP to compensate by smoothing the image at the center and

moving the blue inclusion away from the edge. The conventional Gauss-Newton reconstruc-

tion with Laplace smoothing also failed in estimating of the boundaries and shape of the

cell (Laplace). We found that reducing regularization hyperparameter produced smaller blue
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Figure 4.4: Diagrams of (A) the measurements system and (B) experimental methodology
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Figure 4.5: Cellular EIT of HeLa cells compared against fluorescently labeled cell membrane:

(A) partial coverage, (B) almost complete coverage, and (C) gold MEA
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region at the top right corner of the image, but at the same time brought large artifacts at

the other corners of the image. Interestingly, that a popular EIT reconstruction algorithm

based on total variation regularization (TV PD-IPM), particularly suited for high contrast

imaging, similarly to the MAP approach moved the cell location away from the edge to

compensate for the noise at the central electrodes.

Figure 4.5 B brings a more sophisticated situation where a single cell almost completely

covered the entire MEA, which allowed us to reconstruct the image directly underneath the

cell. The proposed approach (TD + Laplace + Prior L2) produced the image that appears

predominantly blue as the cell blocks the current flow in all directions. Several red spots at

the edges and at the center of the image could suggest spatial variance in cell adhesion driven

by the cell motility and formation of the membrane protrusions. On the other hand, they

could be caused by the measurement noise, presence of electric current paths outside of the

reconstruction domain, and sub-optimal hyperparameter choice for the algorithm leading to

the convergence to a local minimum. The right corner at the bottom of the reconstruction

domain, however, is properly colored in red representing an open spot not covered by the

cell. The reconstructed sample also demonstrates the ability of the proposed algorithm to

recover high contrast images, which is of the utmost importance for cellular imaging and was

a long-standing challenge in EIT.

Replacing the iterative optimization with the MAP estimation (TD + MAP + Prior)

once again leads to the failure mode of the shape optimization step. In particular, the small

blue inclusions at the center of the MEA failed to merge due to presence of the red regions

of high conductivity in between. Unfortunately, further tuning of the hyperparameters of

both MAP and TD steps led to emergence of additional artifacts on the image. Comparable

reconstruction results were achieved through Laplace-smoothed Gauss-Newton optimization

(Laplace), which stresses the need for the shape optimization and specific tuning for cellular

imaging. TV PD-IPM method also suffered from large artifacts at the center and at the top

left corner. Presumably, these methods are limited by the measurement noise and additional

current flows outside the reconstruction domain that lead to artifacts on the images.

Another example of a single cell EIT is depicted in Figure 4.5 C. Although the microscopy
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image was partially obscured by the gold 8-MEA, we could still compare the reconstructed

image against the fluorescently labeled cell membrane. As these electrodes have lower con-

tact impedance compared to the transparent ones, the cell appears in light blue, while the

areas without the cell are correctly reconstructed in red. Once again, we were able to recover

the shape and the location of the cell and pick up several slightly more conductive spots un-

derneath the cell using the proposed image reconstruction algorithm (TD + Laplace + Prior

L2). While few different explanations are possible, we presume that the red regions inside

the blue inclusion are driven by the cell motility mechanisms that alternate cell adhesion

and the electrical impedance underneath it. We also found that the gold electrodes are less

prone to artifacts at the edges of the reconstruction domain.

As with the transparent MEA, MAP estimation significantly constrains the shape opti-

mization and leads to erroneous results (TD + MAP + Prior). Once MAP gets into a locally

convex region of the loss function the topological derivative is either insufficient to escape

it or further worsens the problem by approaching to a local minimum. Suffering from the

same issue Laplace optimization produced an image of similar topology and nature. Un-

fortunately, TV PD-IPM algorithm was not able to catch the cell shape, location, or size,

despite a thorough hyperparameter search. Generally, we noticed that traditional EIT re-

construction methods particularly struggle with the cases where a significant portion of the

reconstruction domain is covered by the cells, which can dramatically limit their applicability

and shows the importance of the proposed changes that tailor EIT to cellular imaging.

To investigate how electrical stimulations induced by the measurements system affect

cell proliferation and viability, we had two additional groups of cells. The first (control)

group was cultured in a culture dish for one day, while the second (treated) group was

cultured on the devices for one day and then was subject to the electrical stimulations (see

Figure 4.4). Both groups were later cultured for two days and then transferred to a dish for

hemocytometer cell counting and estimating of the doubling time. Despite being exposed

to the electrical field, the treated cells looked healthy and attached all the time and were

virtually indistinguishable from the control group. The average doubling time of the both

groups was around 19 hours.
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4.4.2 Discussion

Cellular imaging is one of the central problems in biomedical engineering. Although the

conventional fluorescent microscopy remains popular in the field, it severely limits the long-

term studies due to cytotoxic effects of the labeling dyes. EIT, on the other hand, is based on

label-free non-invasive electrical stimulations and has been previously proposed for cellular

imaging. The technique, however, was originally developed for the applications in human

body imaging and has insufficient resolution for cell research. We extended EIT to single-cell

imaging and designed a novel device. To enhance image quality we proposed a two-step image

reconstruction algorithm that exploits the unique topology of the problem. Introduction of

the a priori known material properties of the cells improved numerical convergence and made

it resistant to noise and biological diversity.

Cellular EIT fills the gap in rapid non-invasive long-term cellular imaging. The experi-

mental results show the first high-resolution impedance-based imaging of a single cell that

captures the slightest changes underneath the cell that are unobservable in the conven-

tional optical microscopy. As the impedance underneath the cell very sensitively responds

to changes in cell thickness and cell adhesion, cellular EIT can drastically extend biomedical

studies such as cytotoxicity, drug development, phenotyping, cell motility, and so on. Due

to simple physical structure the proposed device could further evolve into a lab-on-a-chip

platform for large-scale simultaneous single-cell assays that could be used along with optical

microscopy or as a standalone imaging method.
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CHAPTER 5

Deep learning in inverse problems

Homo sapiens, you and me, we are

basically the same as people 10,000

years ago. The next revolution will

change that

Yuval Noah Harari

Over the last few decades machine learning and, particularly, deep learning demonstrated

extraordinary results across numerous tasks [137]. The list includes long-standing problems

in computer vision, natural language understanding, and applied fields such as health care,

self-driving cars, surveillance, and so on [138]. In this chapter we are going to quickly

introduce the basic components of deep learning methods and discuss their applicability to

inverse problems. A more thorough introduction to the topic can be found in [139, 140, 141].

5.1 The elements of deep learning

Deep learning belongs to a broad family of machine learning methods and is based on artificial

neural networks (ANNs). ANNs are loosely inspired by biological neural networks and are

built with units (sometimes called neurons) that perform simple mathematical operations

on their inputs. The exact form of these operations are defined by the network architecture

and the corresponding trainable parameters. Connections between the units form a directed

graph, often acyclic. Units are grouped in a larger abstraction, called layer, which also serves

as a standard building block in deep learning and simplifies ANN visualization. The adjective

"deep" comes from cascading multiple layers in ANN that increases the depth of the graph.
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Figure 5.1: Feed-forward neural network

Adding layers leads to a higher capacity of a network, but brings difficulties during model

fitting. Mode fitting (often called training) is an optimization procedure that minimizes a

loss functional (e.g. mean squared error, mean absolute error, binary crossentropy, and so

on) using an optimization algorithm such as gradient descent. A popular choice among today

is Adam algorithm [142], which is based on stochastic gradient descent with momentum.

5.1.1 Core building blocks

Deep feed-forward network (also called multi-layer perceptron or MLP), is an essential model

in deep learning. It approximates an arbitrary function f ∗(x) = y by defining a mapping

f̃(θ) : x 7→ y. Trainable parameters θ are learned to best approximate the function f ∗.

Intermediate (also called hidden) layers in MLP are connected to every unit from a previous

layer and are parameterized by dense matrices W (see Figure 5.1), which is why these layers

are commonly called dense. The parameter matrices W are trainable and simply represent

the weights of the edges in the network graph.
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Fundamentally, MLP could have as many hidden layers as possible. Hence, mathe-

matically MLP represents a composition of functions f̃ = (fr ◦ ... ◦ fk ◦ ... ◦ f1)(x). A

dense layer k takes the inputs Zk−1 and linearly combines them using the weight matrix

fk(Zk−1) = Wk · Zk−1. The weight matrix Wk additionally contains trainable bias terms

(shown with the edges connected to constant unit nodes in Figure 5.1). Therefore, Zk−1 is

formed by concatenation of a constant unit node 1 and the outputs of the previous layer

k − 1.

In many practical problems the function of interest f ∗ is non-linear and to make ANN

capable of fitting f ∗ a non-linear activation function is applied on top of the outputs of

each unit. In early days, logistic function σ(x) = ex

1+ex
, hyperbolic tangent tanh(x) =

ex−e−x
ex+e−x

, softmax s(x)i =
exi∑
k e

x
k
, and linear rectifier ReLU(x) = max(0, x) were among the

most popular activation functions. To avoid vanishing gradient problem and other issues

appearing in deep models, however, a more robust activation functions became popular,

such as parametric ReLU (PReLU), exponential linear unit (ELU), and scaled exponential

linear unit (SELU):

PReLu(x) =


x, if x ≥ 0,

ax, if x < 0

ELU(x) =


x, if x ≥ 0,

a(ex − 1), if x < 0

SELU(x) =


bx, if x ≥ 0,

ab(ex − 1), if x < 0

(5.1)

Convolutional neural network (CNN) is another type of feed-forward networks, where the

connections between subsequent layers are sparse. CNN were originally inspired by biological

visual cortex and often used in computer vision problems. Although a fully connected neural

network or MLP with a large number of neurons and a single hidden layer has the ability to

approximate any function, provided our activation functions satisfy some weak assumptions,

CNN is often favored in many applications. When dealing with highly structured modalities
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Figure 5.2: Convolutional neural network

such as images, CNN is chosen because of its inherent numerical efficacy and capacity to

preserve the structure of the data while extracting meaningful statistical features.

During learning on large dataset an important question to consider is overfitting. In

early days naive Lasso and Ridge regularization were often applied to MLP, but became

impractical in deep models. A stochastic alternative that became extraordinarily popular

due to computational efficiency and stable results was proposed in [143]. Dropout provides a

computationally inexpensive, but powerful method of regularizing a broad family of models

by randomly dropping activations of the units at chosen probability. To the first order

approximation, dropout is a method of making bagging practical for ensembles of very large

neural networks. Specifically, at each training step we randomly dropout units from the

network, which yields a new model [140].

Another popular technique that is sometimes regarded as regularizing in batch normaliza-

tion. Introduced in 2015 [144], it still remains popular due to numerical efficiency and benefits

during training. It was initially proposed to mitigate internal covariate shift, a change in

distribution of the inputs due to randomly initialized previous layers. Since training adjusts

the parameters across all layers, the distribution of the inputs changes accordingly. This
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problem is especially pronounced in deep neural networks, as small changes in hidden lay-

ers are amplified as they propagate through the network. Batch normalization shifts and

rescales the inputs and helps to avoid changes in covariate distribution. As the training

becomes more stable, larger learning rates can be used without danger of causing vanishing

or exploding gradient. Several different flavors of normalization layers were recently intro-

duced, including layer normalization. While batch normalization operates across the batch

dimension and works best on large batch sizes, layer normalization [145] can be applied even

when the batch size is equal to 1.

5.1.2 Importance of network architecture

Besides the core nodes, connections between them is another critical element of deep neural

networks. In fact, sophisticated network architectures was among the key developments that

led to the emergence of deep learning models with exceptional performance. With advanced

building blocks researchers improved both computation efficiency and performance across

diverse problems. Moreover, many architectures that achieve high performance on one set

of problems could be applied to other problems through transfer learning, a technique for

recycling pre-trained network parameters for initialization before the actual training. This

gives flexibility to developers and makes the invention of novel models such as EfficientNet

[146] a lot more valuable.

One famous deep neural architecture is Inception (also known as GoogLeNet), which

was originally presented in 2015 [147] and further improved and combined with ResNet in

2017 [148]. Authors proposed a novel building block called inception which contained three

convolutional layers of window sizes of 1, 3, 5 and a max pooling layer of size 3 all operating

at the same input in parallel (see Figure 5.3 A). The outputs are then concatenated together

and fed to the next inception block. To limit computational load due to exponentially

growing number of concatenated features, authors inserted convolutional layers of window

size 1. In addition, to reduce overfitting and excessive number of parameters, authors used

global average pooling to reduce dimensionality towards the end of the network. GoogLeNet
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Figure 5.3: Famous computer vision building blocks: (A) inception block, (B) residual block,

(C) dense block, and (D) U-Net

became one of the most popular image classification models and clearly demonstrated that

going deeper with convolutional neural networks improves both performance and efficacy.

With increase of the number of layers, however, neural networks deal with a notoriously

difficult problem called vanishing gradient. During back-propagation the gradients may be-

come infinitely small due to numerous multiplication operations. This leads to performance

saturation or even degradation as the number of layers increases. ResNet, a neural archi-

tecture proposed in 2016, solves this issue by introducing an identity shortcut connection,

also known as a residual or skip-connection [149]. This configuration makes a block learn

a residual needed to correct its input (see Figure 5.3 B). Theoretically, residual block can

include any arbitrary operation depending on the problem. Authors assume that learning a

residual mapping is easier than directly fitting the desired mapping and, therefore, stacking

layers should not degrade the model performance. This can also be true because we could

stack identity mappings instead of arbitrary operations and the resulting architecture should

perform the same. This also means that deeper models should not produce a training error

higher than its shallower counterparts. This simple argument made ResNet one of the most

well-known architecture actively used in research and production.

Another highly successful example of use of skip-connections is dense convolutional net-

work that introduced a dense block [150]. Motivated by the goal to increase the efficacy
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of deep CNNs and, particularly, MLP-based feature extraction, authors proposed to use a

novel block called dense block. Unlike ResNet, where element-wise addition is used, dense

blocks employ concatenation. Each layer receives feature maps from all preceding convolu-

tions within the same block (see Figure 5.3 C). This apparently leads to a quick growth of

the number of features, which is conveniently controlled by hyperparameters such as depth

of each dense block and growth rate of the parameters. Additionally, authors used convo-

lutional layers and pooling between dense blocks to control the dimensionality. DenseNet

became widely used in various computer vision problem such image classification, object de-

tection, and image segmentation due to superior computational efficiency and quality of the

learned features. Despite having dense skip-connections, it needs fewer trainable parameters

than ResNet and, at the same time, allows easy gradient propagation. This allows the model

learn very diverse, yet simple, features that boost its performance.

Image-to-image problems include reconstruction, segmentation, detection, and others.

They are particularly important for medical imaging domain as they are often used to aug-

ment traditional methods. One of the famous examples is U-Net, a fully convolutional ANN

proposed for biomedical image segmentation in 2015 [151]. The architecture consists of a

contracting path and an expansive path, which gives it the U-shaped form (see Figure 5.3 D).

The contracting path takes the input image and extracts features through a series of feature

extraction blocks followed by a scaling down block such as a pooling layer. This is essentially

a CNN that scales extracts feature and scales down the input image. The expansive path

concatenates the features of the same resolution and applies addition feature extraction. The

up-scaling method could be anything from a non-trainable Nearest-Neighbor algorithms to

a deep CNN. Additional skip connections between individual blocks of the contracting and

expansive pathways enables easier gradient propagation and more stable learning. Impor-

tantly, the symmetry between two paths and the U-shaped architectures lets the network

propagate context information to higher resolution layers and achieve better results. U-net

obtained popularity in numerous bio-medical application including brain MRI, CT, and ul-

trasound imaging. It also contributed to popularization of the end-to-end fully-convolutional

networks for semantic segmentation.
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Figure 5.4: Data representation and generative modeling: (A) autoencoder and (B) genera-

tive adversarial network (GAN)

Another interesting type of image-to-image architectures is autoencoder (AE). It is often

used to learn efficient data representation in an unsupervised manner. AE has two major

parts connected sequentially: encoder and decoder (see Figure 5.4 A). The goal of the encoder

is to learn the best mapping of the input data to a latent space. As the dimensionality of

the latent space is typically much smaller than the input dimensions, AE is frequently used

as a method for unsupervised dimensionality reduction. Along with the encoding part, a

decoding side is learnt, where the model tries to reconstruct the input data from the reduced

latent features. Several variants of AE exist including variational AE (VAE), where the

latent features are used as the parameters for independent Gaussian distributions. The

input to the decoder is then sampled using these parameters. VAE usually yields smooth

mapping between the latent space and the data and frequently used in generative learning

where changing input of the decoder continuously adjusts the output image.

A distinct approach to generative learning was proposed in 2014 [152]. Generative ad-

versarial network (GAN) is a class of machine learning frameworks where two ANNs (called

generator and discriminator) contest with each other (see Figure 5.4 B). The generator cre-

ates candidates while the discriminator tries to distinguish between the generated candidates

and real images. By learning how to increase the error rate of the discriminative network,

generator finds an optimal mapping from a latent space to the training data. Ideally, the
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generator should learn the distribution of the training dataset. This requires a strong dis-

criminative model, which is sometimes unavailable. Poorly performing discriminators lead to

a "mode collapse" where generator fail to generalize properly. Besides generative modelling,

GANs have also proven useful for semi-supervised learning and reinforcement learning.

5.1.3 Geometrical neural networks

The majority of the computer vision deep learning-based solutions assume images defined

on Euclidean domains that could be represented by 2D or 3D grids. While the assumption

is justified for most of the use cases, there are many fields where data is inherently non-

Euclidean and takes forms of graphs, meshes, and manifolds. Geometrical neural networks

extend the conventional deep learning methods to these types of structured data.

Let us consider a graph defined by the adjacency matrix A. We can define graph Laplacian

∆ = D−A, where D is the degree matrix. Eigendecomposition of ∆ would give a matrix of

eigenvectors Q = (q1, ..., qn). Now, for any two signals x and y defined on the original graph

space their Fourier transforms can be defined as QTx and QTy respectively. Then, spectral

convolution can be defined as the element-wise product:

y ∗ x = Q
(
QTy

)
�
(
QTx

)
(5.2)

Spectral convolutional neural networks employ 5.2 to define spectral convolutional layer

operation as:

fi(xi) = g
(∑

j

QkΘijQ
T
kxi

)
, (5.3)

where Θ is a diagonal matrix representing a trainable convolutional filter (kernel), xi is a

vector of the input matrix x, Qk contains the first k eigenvectors, and g is an arbitrary activa-

tion function. To alleviate computation burden associated with the graph Fourier transform,

Chebyshev polynomials are often used to represent the spectral filters [153]. Spectral convolu-

tions were among the first developments in geometrical deep learning that led to applications

in networking, natural language processing, genomics, graphics, and many others.

An alternative to spectral methods is spatial approach. Monti and Boscaini et al. pro-
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posed a good generalization in a form of mixture model networks (MoNet), a framework that

allows designing convolutional deep architectures on non-Euclidean domains independent of

the underlying manifold or graph structure [154]. For any point a in an arbitrary manifold

or a node in a graph, they consider points {b} in the neighborhood of a. Convolution of two

signals defined in this space can be defined as:

(y ∗ x)(a) =
∑
j

gj
∑
{b}

[
wj[u(a, b)]f(b)

]
, (5.4)

where u(a, b) is the pseudo coordinates of a chosen dimensionality and the kernel W is

modelled as a trainable Gaussian mixture model of the form:

wi(u) = exp
[
− 0.5(u− µj)TΣ−1

j (u− µj)
]

(5.5)

A recent example of a practical geometrical neural network applied to mesh data is called

MeshNet that was proposed for learning 3D shape representation [155]. Mesh is an efficient

method of representing surfaces and volumetric objects. Having adaptive size of the elements

mesh can depict objects of arbitrary local complexity, while having a sparse and compact

representation. The drawback is, however, a highly diverse and sophisticated structure of

the mesh that is difficult to analyze with conventional computer vision and deep learning

methods. Authors, therefore, proposed two building blocks called spatial and structural

descriptors for learning the initial features, and a mesh convolution block. In their approach

a 3D mesh representing a surface is translated into a collection of faces (triangles) with

spatial (location) and structural (connectivity and size) features. MeshNet extracts these

features by combining 1D convolutions, pooling operations, Gaussian kernel correlation, and

MLP. Finally, the mesh convolution block expands the receptive field of faces by aggregating

spatial and structural features of the neighboring faces. The approach achieves state-of-the-

art performance in 3D object classification and retrieval tasks while being relatively compact

(4.25 million trainable parameters).
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Figure 5.5: Example of a forward and the corresponding inverse problems: image distortion

(F ) and image restoration (F−1)

5.2 Inverse problems

Mathematical problems can be classified into forward and inverse types. A forward problem

starts from a cause and estimates the effects, while the inverse problem estimates the cause

by observing the effects. The majority of forward problems are numerically stable and have

know solutions. The inverse problems, on the other hand, are often ill-posed. However,

due to abundance in nature they attract attention of researchers in medical imaging, optics,

signal processing, geophysics, astronomy, remote sensing, machine learning, and many other

fields. Inverse problems remain active area of research in science and mathematics because

they allow us to discover the properties that we cannot directly observe.

For a forward problem we can generally define a mapping F : X 7→ Y . Then, for an

invertable F there exists an inverse problem that we describe with the inverse mapping

F−1 : Y 7→ X. Finding the inverse mapping becomes difficult when the forward problem

introduces noise or leads to loss of information. Particularly, a small perturbations in y

may lead to a large changes in x, which clearly makes the problem ill-posed. Therefore, the

forward model can be described as follows:

y = F (x) + ξ (5.6)

where ξ models random noise. Analytical optimization methods such as minimization of the

squared error ‖y − F (x)‖2 or maximum a posteriori estimation (MAP) have been exten-
85



sively studied for a long time. Supplemented with a priori information and regularization

techniques, these method were proven to be robust, but often come with poor results and

significant computational costs.

An alternative approach that quickly became popular with recent advances in semicon-

ductor processing and the rise of computational capacity is to employ machine learning.

Deep neural networks were successfully applied to a variety of inverse problems [68, 67, 65,

156, 157, 158, 66, 159]. Apparently, given a sufficiently large dataset a deep ANN can be

trained to solve inverse problems. We divide these approaches into three fundamentally dif-

ferent categories: deep prior, deep approximation, and deep representation. The majority of

early works used deep prior to improve image reconstruction results by removing noise and

artifacts. They train ANNs on custom dataset to learn a priori information, so that the

model would be able to impose that prior on the reconstructed images. Deep approximation

learns the inverse mapping F−1 by training a deep ANN Φ(·), which directly finds a solution

Φ(y) = x̂ that minimizes a loss function chosen for model training. Similarly, the forward

mapping F can be learned with a deep invertible ANN Ψ(·) and its inversion Ψ−1(·) can be

taken as an approximation to F−1. Finally, in deep representation approaches we train an

ANN to estimate the loss function (or its parts) or another representation that can be used

in an underlying analytical optimization method. Interestingly, that the later often results

in a priori information being built-in in the learned parameters of the ANN.

5.2.1 Deep prior

One of the first applications of deep neural networks in inverse problem was post-processing

of a solution obtained using an alternative method (see Figure 5.6). In this case, a deep

learning model does not solve the inverse problems, but rather improves the solution by

imposing appropriate prior information learned during training.

An inverse mapping B : Y 7→ X is first used to obtain a solution x̂. Then, a neural

network Φ is used to improve the solution as x̂OPT = Φ(x̂) = Φ(B(y)). Since x̂ is an image

(at least in some cases), powerful pre-trained models are typically employed. A model of a
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Figure 5.6: Deep prior approach

previously reported architecture is initialized with parameters trained on a common-purpose

dataset and then retrained to remove artifacts and noise from images. This training scheme

is called transfer learning. Note, that Φ is trained independently from B and does not know

about operations applied in the forward and inverse mapping.

As an extension to deep prior approach of image denoising, Φ could be combined with an-

other optimization procedure that minimizes a discrepancy metric similar to ‖y − F (Φ(B(y)))‖2.

Such iterative schemes were previously demonstrated in [160, 161, 162, 163]. Note, that train-

ing of Φ usually involves extensive use of the alternative inverse and forward solvers, so that

Φ(·) = (Φn(·)◦Un(y, ·)◦...◦Φ1(·))(x̂), where Ui is a training step that updates the parameters

of Φ using its estimate Φi−1(x̂), the forward mapping F , and the known y. Typically the

updates are obtained using gradient descent. Apparently, this cascaded scheme improves

data consistency and makes Φ to include more relevant prior information.

5.2.2 Deep approximation

Due to the ability of ANN to fit non-linear functions, training deep neural networks to learn

a mapping from the observation y to its reconstruction x is often the favored approach in

imaging field. Initially MLP was proposed to be used as a universal function approximation

to learn the inverse mapping. Zhang and Salari [164] used an MLP with one hidden layer

to denoise images in the wavelet domain. Burger et al. [165] added another hidden layer to

learn end-to-end mapping from noisy and noiseless images using an MLP. Note, that these
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Figure 5.7: Deep approximation approach

methods could be also seen as deep priors and could be applied on reconstructed images.

For instance, a denoising ANN could be used to clean the CT or MRI images reconstructed

using another method.

While deep approximation was practically implemented for various applications, several

theoretical works were recently published. For instance, a novel theory for deep convolutional

framelets was proposed by Ye et al. [64]. Authors rely of classical signal processing and give

specific rules and guidance on how to design convolutional neural networks. Particularly,

they consider deep CNN with ReLU activation and argue that popular building blocks such

as residual block, redundant filter channels, and concatenated ReLU help learning better

inverse mapping, while the pooling layers should be augmented with skip-connections.

Another interesting approach is based on inverting neural networks, as was reported in

[166]. Authors proposed to use invertible neural networks and particular affine coupling layer,

a popular invertible building block (see Figure 5.8). In this scheme the input data is split

into two parts x = [x1, x2]. The output is then obtained by concatenating the corresponding

outputs y = [y1, y2]. The inverse transformation can be obtained as follows:
y1 = x1 � eΦ3(x2) + Φ4(x2)

y2 = x2 � eΦ1(x1) + Φ2(x1)

⇐⇒


x1 =

(
y1 − Φ4(y2)

)
� e−Φ3(y2)

x2 =
(
y2 − Φ2(y1)

)
� e−Φ1(y1)

, (5.7)

where Φi(·) are any arbitrary deep learning models, not necessarily invertible, but trainable

through conventional back-propagation using stochastic gradient descent. Now, we can train
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Figure 5.8: An invertible neural network built using affine coupling layer: (A) forward pass

and (B) inverse pass
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Figure 5.9: Deep representation approach

a deep ANN to fit the forward mapping F : X 7→ Y and then take its inverse to approximate

the inverse mapping F−1 : Y 7→ X. Given that forward problem is frequently more stable,

learning F seems to be easier. However, a set of parameters that would satisfy the forward

mapping up to a small error, might, in theory, cause much larger issues in the inverse mapping

F−1. Moreover, the proposed scheme requires the dimensionality of x and y to be exactly the

same, although the later could be avoided by appending constant values or random noise.

5.2.3 Deep representation

Since many inverse problems are numerically unstable, they require to use regularization.

A popular approach is called Tikhonov regularization that provides improved efficiency in

parameter estimation in exchange for bias. In a simplest case, it adds a second norm of the

parameter vector to the loss function, or more generally:

L(x̂,Φ) = ‖F (x̂)− y‖2 + λR · ψ(Φ(x̂)), (5.8)

where λR is regularization hyperparameter, ψ is a functional that maps to a positive scalar

in [0,∞], and Φ is a function that measures how much regularization is needed (see Figure

5.9). For instance, ψ(·) = (·)2 and Φ(·) = ‖·‖ is equivalent to L2 regularization.
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Recently, a few novel deep learning-based regularization approaches were proposed. They

combined deep neural networks with Tikhonov regularization strategy and demonstrated

noticeable improvement in the results. For instance, in [161] ResNet and L2 norm were used

as Φ and ψ. In [167] authors proposed the use of denoising engines instead of Φ. They

used an explicit image-adaptive Laplacian-based regularization functional that is able to

incorporate any denoising model, including deep CNN. A complete convergence analysis of

this approach and guarantees on data consistency were recently presented in [168] where

authors used a deep ANN as Φ and introduced the absolute Bregman distance as a new

generalization from the convex to the non-convex setting. Another work used a regularizer

that was able to distinguish the distributions of desired images and noisy images [169].
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CHAPTER 6

Machine learning-enabled cellular impedance tomography

Besides describing electrical cellular response, the model that we proposed in Chapter 2 is

capable of generating a large diverse dataset for training a machine learning model. In this

chapter, therefore, we are going to discuss the use of deep learning models in solving the

inverse problem of cellular EIT.

Previously, several machine learning-enabled EIT (ML-EIT) schemes were proposed.

Most of the early works took an end-to-end deep approximation approach, where a prede-

fined deep ANN is trained on a synthetic dataset generated using an underlying simulation

model. For example, Zheng and Peng [69] proposed an autoencoder-based model to recon-

struct images in electrical capacitance tomography, a close relative of EIT. The technique is

commonly applied in industrial process monitoring for measurements of fluid flows in pipes.

Authors generated a dataset of 40, 000 samples, each consisting of capacitance measurements

and the corresponding 2D permittivity distribution. To evaluate the performance they used

10-fold cross validation and added noise and experimental data to the testing dataset.

Deep approximation is still a dominant approach in ML-EIT, but more advanced neural

architectures are proposed including ensemble of models [70], non-standard wavelet form of a

neural network [71], and U-Net [72]. While ML-EIT demonstrated superior performance, the

trade-offs of the blind end-to-end approach are yet to be discovered. Because EIT is a small

niche with its own fundamental advantages and limitation we believe that a more elaborate

analysis is necessary. For instance, prior knowledge on how electrical response of biological

cells should not be ignored, but rather embedded in the newly developed methodologies.

Recently, a significant performance improvements in reconstructing targets with sharp

corners or edges was achieved using a deep CNN and a novel iterative bases-expansion
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subspace optimization method in [170]. In another work, authors improved performance of

3D image reconstruction by adding a geometrical prior in a novel structure-aware sparse

Bayesian learning (SA-SBL) [171].

In this chapter we propose a deep neural architecture that inherently takes into account

geometrical structure of the mesh and equi-distant electrode arrangement. Moreover, we

introduce a novel network growth approach that dynamically adds new building blocks to

the network graph to achieve higher imaging resolution. Finally, we introduce a hybrid loss

function to make sure that the model learns physically meaningful features. Note that to be

consistent with the conventional notations and unlike in the previous chapter, we use X for

voltage measurements and Y for images.

6.1 Training and model selection

We generated a dataset of EIT measurements of adherent cells on equally-spaced MEA

arrangement of 8 and 12 planar microelectrodes with pitch of 12 µm. To mimic cellular

response we used 3D FEM simulations as described in Chapter 2. More precisely, we syn-

thesized random cell geometries at different adhesion stages: attachment, spreading, and

further migration. Then, we combined several different cell geometries to mimic cell net-

works comprised of 2 - 4 cells. Overall, we obtained 50 diverse geometries (see a few examples

in Figure 6.1). Inside the cell cytoplasm region, at the center of cell geometry, we created

ellipsoidal nucleus comprised of nuclear envelope and nucleoplasm. For each geometry we

applied random geometrical transformations including scaling, translation, and rotation as

shown in Table 6.1. Due to inherent symmetry of the MEA structures we simulated 1/4 and

1/6 of the 8-MEA and 12-MEA respectively and then augmented the dataset by rotating

the measurements, which helped us to significantly reduce computational burden. To mimic

biological diversity we randomly sampled electrical material properties from parametric dis-

tributions accordingly to previously proposed models of adherent cells (see Table 4.2). Each

sample was automatically converted into a tetrahedral mesh of varying size, which gave us

an optimal trade-off between required computational resources and simulation accuracy. To
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Figure 6.1: Examples of 3D cell geometries used in training dataset generation
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Table 6.1: Geometrical transformations used in dataset generation

Transformation type Range Number of samples

Scaling [0.5, 1.5] 8

Translation (x, y) ∈ [(−15,−15), (15, 15)] 64

Rotation [−45°, 45°] 16

ensure numerical convergence and data quality we carefully evaluated the generated mesh in

each simulation to ensure that element skewness is at least 0.1, ratio of the element volume

to its circumradius is above 0.01, and the total number of degrees of freedom to be below 107.

To numerically solve the corresponding PDE, we use flexible generalized minimal residual

method (FGMRES), a simple and scalable FEM algorithm. After dataset augmentation,

the overall size of the dataset was 26 and 39 millions of samples for 8-MEA and 12-MEA

respectively.

We split the dataset into training (85 %) and testing (15 %) subsets. We then used 5-fold

cross-validation by leaving one fifth of the training dataset for validation and fit the models

on the remaining parts. By repeating the training steps five times, we estimate a mean of the

performance metrics on the validation subsets. We use mean cross-validation performance

for optimizing hyperparameters such as depth and width of the neural networks, as well as

learning rates of the optimization algorithm. After training we evaluate each model on the

testing dataset and report this metric as "testing" performance.

For each generated image we obtained the corresponding electrical measurements that

have size of L × (L2 − L) × p, where L is the number of electrodes and p is number of

AC frequencies. Note that electrical measurements and images can be represented as mesh

objects. In our case, we used a regular triangular mesh of constant element size (see Figure

6.2). To mimic realistic electrical measurements we added additive Gaussian noise layer that

modelled 20 dB signal-to-noise (SNR) ratio.

We cast the image reconstruction problem as binary classification where "1" corresponds

to nucleus and "0" corresponds to everything else. This allows us to train a neural network

tuned for frequency response of nucleus and rule out false detection of cell membrane. In
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each training we employed binary cross-entropy as a loss function and Adam optimizer, which

improved stability and rate of convergence.

Our first attempt to approach the problem was to find a solution using a traditional

analytical optimization method combined with deep prior network. NOSER is a good choice

since it is relatively fast and results in a smooth image that can be further improved by

passing through a deep neural network. It also has a nodal solver, which gives results

consistent with our mesh data structure. During training, therefore, we generated an initial

image using NOSER algorithm and then passed it to a subsequent neural network. We tried

U-Net [151] and an autoencoder as examples of deep prior models.

In the second attempt we explored a popular regularization by denoising (RED) ap-

proach and recently proposed network Tikhonov (NETT) method. Inspired by RED, we

used steepest descent optimization along with denoising AE to minimize the following loss

function:

L(ŷ) = ‖f(ŷ)− x‖2 + λ · ŷT
(
ŷ − Φ(ŷ)

)
, (6.1)

where ŷ is estimated image with NOSER, f(·) is the forward model (FEM), λ is a regular-

ization hyperparameter, and Φ(·) is AE.

Similarly, we employed NETT scheme to minimize loss function shown in 6.2 with incre-

mental gradient descent. We decomposed the denoising AE that we used in RED approach

as Φ(·) = (Ψd ◦Ψe)(·) and took the encoding part.

L(ŷ) = ‖f(ŷ)− x‖2 + λ · ‖Ψe(ŷ)‖2 , (6.2)

Next, we tried directly learn the inverse mapping by training a deep neural network. To

be able to employ previously proposed models that are based on rectangular images, we used

flat feature vectors X̃ and a rectangular images Ỹ obtained by resampling from mesh Y and

padding it with zero valued pixels. We began with training previously proposed MLP [164]

and invertible neural network (INN) [166] using Adam algorithm, a variation of stochastic

gradient descent. Next, we adjusted DenseNet [150] and U-Net [151] and trained them to

find a mapping X̃ 7→ Ỹ . Finally, we introduced mesh convolution operation (see Figure 6.2)

and built a corresponding U-Net architecture that we call InvUMeshNet. Additionally, we
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trained InvUMeshNet in GAN settings, where the model functioned as a generator and its

counterpart was used as a discriminator. As another generative approach we used conditional

VAE (CVAE) model that mapped an initial image mesh reconstructed with NOSER to image

mesh conditioned on the voltage measurements.

6.1.1 ENINet architecture

Given that the proposed device design results in inherently symmetric equidistant electrode

arrangement we use regular spatial discretization with triangular mesh of constant element

size. Moreover, to preserve spatial conformity between the measurements X and images Y ,

we represent Y as nodes in 2D meshes aligned with X. This enables us to use convolutions

to find the mapping X 7→ Y .

Therefore, the first core component we introduce here is 2D mesh convolution (see Figure

6.2). We force the kernel to have a hexagonal (honeycomb) shape, which allows us to define

three sliding axes along the principal directions of the mesh. Similarly to rectangular 2D

convolution, this instance is translation-invariant and preserves spatial information between

the layers. Numerically, mesh convolution is also efficient as it leads to sparse connections be-

tween layers. The inverse operation, transposed 2D mesh convolution, is defined analogously

to rectangular 2D convolution and has similar properties.

Next, we introduce a super-resolution block (see Figure 6.3) that we used to build the

electrical nucleus imaging network (ENINet). Based on mesh convolution layers it takes

voltage measurements V and an input image (mesh) of size x × y, and returns a mesh of

size 2x × 2y. The upper branch simply maps the voltage measurements to the image of a

predefined size. Note, that the input voltages V are represented as mesh of a fixed size L.

Since each transposed mesh convolution (shown in blue) scales up the input mesh by 2 (stride

is 2), the number of these layers is equal to log2

( |out|
L

)
. The bottom branch, on the other

hand, takes an input image and passes it through a series of mesh convolutions and scales up

the image with a transposed mesh convolution. Similarly to DenseNet, we employed several

skip-connections to facilitate easier gradient propagation and faster learning, which becomes
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Figure 6.2: 2D mesh convolution with a few possible kernel window sizes (kw). Arrows

represent sliding directions for a regular triangular mesh (shown in pink)

important for this lower branch when we stack blocks on top of each other. Outputs of the

lower and upper branches are then concatenated together and passes through another mesh

convolution layer of size 1 to reduce the dimensionality back. In parallel we introduce a

non-parametric nearest-neighbour up-scaling layer, which simply repeats the values of the

input image to magnify it. The NN-scaled image is then mixed with the output image

accordingly to a weight α, which is non-trainable, but dynamically controlled. The purpose

of NN-scaling is to stabilize training, which will become apparent in the next paragraph.

In Figure 6.4 A we show how we stack several super-resolution blocks dynamically during

model training. We start with resolution of 12 µm, which means that |X| = |Y |. Therefore,

the first block does not have any transposed mesh convolution layers and may take any

input image (e.g. constant blank mesh). In principle, the first block could also take an

image reconstructed by another algorithm (e.g. NOSER). For each resolution block we train

for 4 epochs: during the first 2 we linearly ramp up α from 0 to 1 (see Figure 6.3), while

in the next 2 epochs we continue training to make sure each layer converges to an optimal

point. When added the next block, we repeat the process, but now we use the output

of the previous layer as the initial image. Introduction of gradual increase in α helps to
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Figure 6.3: ENINet: super-resolution building block

smooth the training and lets the previous block to adjust its weights before the new block

starts learning. This is particularly important for deep architectures as it promotes gradient

propagation. Besides super-resolution blocks, we also have a series of tree mesh convolution

layers of sizes 5, 3, and 1 that perform additional post-processing and convert the image

into a binary form. In addition, we feed the result of the cascaded super-resolution blocks

to FEM forward model that maps the image to voltages U and calculates auxiliary loss as
1
|X| ‖V − U‖

2. The overall loss that is being minimized during training contains both average

binary cross-entropy (image) and MSE (voltages) (see Figure 6.4 A). The weighting factor

β is a hyperparameter and we empirically found that the best cross-validation results are

achieved when we scale it as β = 2−Nres−2, where Nres is current number of super-resolution

blocks, which implies that at lower resolution the model learns a more generalizable features

if regularized by analytical forward map. As a forward mapping we employ a 2D FEM solver

that solves relatively fast since the size of the mesh is small (see Figure 6.4 B). When handling

multi-frequency measurements we found that if we concatenate the measurements ENINet
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suffers from overfitting and struggles with real-world experimental verification. Presumably,

it is caused by artificial relationship between frequency response of cell membrane and cell

nucleus that are present in the simulations, but are not observed in experimental data. To

avoid this we found an elegant and cheap solution - we process each frequency independently

with the same model, which is practically implemented through parameter sharing. Then,

we use max pooling from the results to obtain the final image. This pooling operation is

performed in image reconstruction part of ENINet (before sending the image to forward

model), which makes the post-processing component to learn inherent a priori information

on how to combine multi-frequency image reconstruction results. On the other hand, this

approach deprives us of the opportunity to learn how cell nucleus responds to a particular

frequency.

6.2 Numerical results

Since our output is a binary image, a good metric would be the area under receiver operating

characteristic curve (ROC AUC), which is commonly used in binary classification tasks.

Particularly, we use average across image pixels (mesh nodes). The mean values of the

metric are reported in Table 6.2 below.

As we employed out-of-sample cross-validation (CV) and meticulously optimized model

hyper-parameters, we observed small deviation between CV and testing results. The pro-

posed model, ENINet, outperformed other approaches on both 8-MEA and 12-MEA datasets.

Interestingly, that larger MEA gave a little better results across almost all methods, which

is probably due to a bigger field of view and higher chances of having a nucleus within the

electrodes array.

Early deep prior approaches demonstrated poor performance, which was expected since

the underlying NOSER algorithm cannot ignore cell membrane and cytoplasm and includes

them in the reconstructed image. Subsequent neural networks, therefore, have to learn how

to transform these conductivity maps into binary nucleus images, which is difficult without

having access to the original measured voltages. When we added the voltage measurements
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Figure 6.4: ENINet hybrid training approach: (A) growing network architecture and (B)

corresponding mesh for 12-MEA, and (C) training on multi-frequency measurements data
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Table 6.2: Out-of-sample mean average ROC AUC of deep learning models

Model
8-MEA 12-MEA

Cross-validation Testing Cross-validation Testing

NOSER + U-Netdp 0.6657 0.6640 0.6823 0.6711

NOSER + AEdp 0.6788 0.6744 0.6959 0.6875

NOSER + REDdr [167] 0.7534 0.7456 0.7734 0.7668

NOSER + NETTdr [168] 0.7488 0.7345 0.7687 0.7408

MLPda [164] 0.8473 0.8303 0.8581 0.8498

INNda [166] 0.6122 0.5989 0.6170 0.6199

InvDenseNetda 0.8618 0.8539 0.8755 0.8660

InvUNetda 0.8752 0.8664 0.8902 0.8826

InvUMeshNetda 0.9289 0.9312 0.9324 0.9299

InvUMeshGANh 0.8032 0.7921 0.8208 0.8058

NOSER + CVAEh 0.8511 0.8457 0.8567 0.8666

NOSER + ENINeth 0.9579 0.9471 0.9701 0.9553

ENINeth 0.9731 0.9612 0.9897 0.9796

dp deep prior, dr deep representation, da deep approximation, h hybrid methods
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to the inputs of the deep ANN (NOSER + CVAE) as a conditional vector, we observed

a noticeable jump in the performance, which clearly shows the bottleneck in deep prior

approaches.

To explore deep representation models we employed RED and NETT combined with

initial guess from NOSER. We found that performance of both methods are very similar,

despite slight difference in the form of the regularization term and subsequent gradient opti-

mization approaches. Although deep representation seems to be advantageous compared to

deep prior, these methods still fell short compared to deep approximation. We presume that

this is because the regularizing neural networks have no knowledge of the inverse problem,

but rather estimate amount of noise in the image.

We discovered that deep approximation methods performed among the best. Perhaps,

it is partially because these methods are trained to minimize binary cross-entropy, which

directly translates to ROC AUC score. On the other hand, we observed that adding mesh

convolutions significantly improved InvUNet, which shows that further efforts towards neural

architectures customized for specific inverse problems may result in considerable improve-

ments. While previously proposed MLP model demonstrated comparable performance, INN

failed the benchmark. This is probably due to difficulty of learning exact forward mapping.

As was mentioned in the Chapter 5, small disturbances to INN weights may lead to signif-

icant performance degradation in its inverse model due to severely ill-posed nature of EIT

problem.

Finally, we explored several hybrid approaches. First, we trained InvUMeshNet using

GAN framework and found it particularly difficult due to instabilities frequently emerging

during training. The proposed ENINet, however, demonstrated stable and smooth conver-

gence, although it took significantly more time to be trained due to small learning rate,

dynamically growing graph, and necessity to iteratively solve the forward problem. Interest-

ingly, that when supplied by NOSER conductivity image as the initial guess, ENINet ended

up with inferior performance. Perhaps, the first super-resolution block in ENINet does not

have sufficient capacity to learn mapping from NOSER’s output to a binary nucleus image,

which causes the degradation.
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6.3 Experimental results

Besides having indisputable performance advantage deep learning is well-known for strong

overfitting and poor generalization. We, therefore, tested the proposed methodology on real

empirical data. First, we verified the reconstruction algorithms on single-cell and multiple-

cell configurations and compared the result to fluorescent microscopy. Next, we applied

ML-EIT to a popular practical case of cancer drug response and demonstrated its superior

sensitivity to subtle changes in nuclear envelope permeability caused by the chemotherapy.

To rule out any bias in this stage we performed model training and selection on the synthetic

dataset prior to experimental verification. In this section we summarize the results.

6.3.1 Imaging cell nucleus

We conducted an experimental verification with HeLa cell line. The cells (HeLa AC-free,

Sigma-Aldrich) were grown at 37 °C in Dulbecco’s Modified Eagle’s Medium (DMEM) sup-

plemented with 10% fetal bovine serum (FBS) and 100 units/mL penicillin, and 100 µg/mL

streptomycin (PS). They were regularly passaged to maintain exponential growth. Twenty-

four hours before staining and electrical measurements, we trypsinized HeLa cells, diluted

them 1 : 5 with fresh DMEM medium without antibiotics, centrifuged, and suspended into

fresh DMEM with 10% FBS and 1% PS. Then, we transferred 10 µL of the cell suspension

(2 · 105 cells/mL concentration) to the MEA devices with the attached PDMS wells (500

µL). To enable the long-term incubation we added 390 µL of fresh DMEM medium with 10%

FBS and 1% PS and left the cells in the incubator for 24 hours at 37 °C and 5% CO2. The

cells appeared healthy and attached thereafter. During the incubation, the entire assembly

of MEA, PDMS well, and the intermediate PCB was enclosed in a small vented Petri dish.

After the incubation, the well was gently desiccated and washed with DMEM medium. To

stain the cell nuclei, we added 20 µL of 2 µg/ml Hoechst 33342 (Invitrogen) solution and

incubated the cells for 25 minutes at 37 °C. We then gently desiccated the well and washed

it with DMEM medium. To stain the cell membrane, 20 µL of 5 µg/ml of WGA Alexa

Fluor®488 conjugate (Invitrogen) solution were added, and cells were incubated for an-
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other 10 minutes at 37 °C. After the last incubation, the well was gently desiccated, washed,

and filled with a fresh DMEM medium with 10% FBS and 1% PS. We imaged the cells with

fluorescent microscopy before and after the electrical measurements and observed no visible

changes in structure, shape, and location caused by the electrical measurements.

For this series of experiments we used MEA of eight golden and transparent electrodes

with pitch of 11 µm. MEAs were fabricated at Nanoelectronics Research Facility at UCLA.

To make golden electrodes, layers of 20 nm of Ti and 100 nm of Au were vacuum-evaporated

on fused silica wafers (100 mm in diameter) and the electrodes were patterned with the con-

ventional lift-off process. To make transparent electrodes, a layer of 120 nm of indium tin

oxide (ITO) was sputter-deposited on fused silica wafers (100 mm in diameter) and the

electrodes were patterned with reactive-ion etching. On top of the electrodes we deposited a

passivation layer of 500 nm of silicon dioxide with plasma-enhanced chemical vapor deposi-

tion (PECVD). To pattern the passivation layer, we employed deep reactive ion etching. We

made circular openings of 4 µm in diameter at the center of the MEA and square contact

pads of 5 mm at the edges. The wafer was diced into 25-by-25 mm square dies and each

of them was cleaned in ultrasonic bath of acetone with subsequent deionized water wash,

nitrogen blow and thermal dehydration. On top of the MEAs we designed 500 microliter

(µL) wells of polydimethylsiloxane (PDMS) to allow long-term cell culturing. In addition,

MEAs were connected to the intermediate printed-circuit board (PCB) with conductive silver

epoxy adhesive (MG Chemicals). The intermediate PCB was connected to switching PCB

that contained analog multiplexers and interfaces for vector network analyzer (VNA, HP

8753ES) and a computer. The computer was used to control stimulation power of the VNA,

switch between the electrodes, and fetch data via General-Purpose Interface Bus (GPIB,

Agilent 82357B).

In Figure 6.5 A-D we show the experimental results. We used the same 8-MEA arrange-

ment in all four experiments with pitch of 11 µm and field of view of 420 µm2. Samples A,

C, D had transparent ITO electrodes and sample B used gold electrode. To match with the

reconstructed images, we visualized fluorescently stained nucleus in red and membrane in

green on the images in the second column. Field of view of the devices is shown by white and
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Figure 6.5: Electrically-driven imaging of cell nucleus on four samples shown in A-D. We used

8-MEA device with pitch of 11 µm (schematic arrangement is shown in the first column). To

verify the reconstruction results we stained nucleus (shown in red) and membrane (shown

in green). The white box represents the MEA area (field of view of the device). The third

column shows an overlay of the nucleus reconstruction (ML-EIT) on top of the fluorescent

images. The last three columns are the reconstructed images of the cell nucleus Φ(x). The

red color represents area when the reconstruction algorithm predicts cell nucleus with greater

confidence, while the blue regions are likely to have no nucleus
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blue rectangles at the center of the images. An overlay of the fluorescent and reconstructed

images in shown in the third column. The last three columns are the outputs of three models

that demonstrated the highest performance on synthetic testing dataset.

Sample A in Figure 6.5 depicts multiple cells within the field of view of the device.

Particularly, the cell in the top-left corner seems to be recently divided from the neighboring

cell, but has already formed the nuclear envelope. The nucleus of the cell on bottom edge

is slightly deformed and enlarged. Membrane of the cell shown that it is not fully spread,

which might indicate that the cell is in prophase and is actively preparing to division by

tightly condensing its chromosomes and initiating mitotic spindle formation. A cell in the

top-right corner, however, was not detected by any of the reconstruction algorithms. A

closer look at the image explains the reason: cell nucleus was severely deformed, which could

indicate either cell death or nuclear envelope disintegration in metaphase. Either case leads

to cell nucleus being invisible to electrical probing. Comparison analysis of the reconstructed

images also shows that all three models successfully identified the location of cell nuclei, but

had different estimation of the shape of the nucleus at the bottom edge due to noise in the

measurements and perturbations coming from the cells outside the field of view of the sensor.

The second sample (B) shows a single cell captured at the center of a golden 8-MEA.

Compared to the previous case, the cell was noticeably larger, but it did not confuse ENINet

as it successfully identified the location and the shape of the nucleus. InvUMeshNet produced

a similar estimated image, while InvUMeshGAN struggled, perhaps, due to differences in

contact impedance of ITO and gold electrodes.

Figure 6.5 C captures another single-cell case where the cell barely covers the top-left

corner of the device. It turned out that both InvUMeshNet and InvUMeshGAN models

suffer from this type of edge cases. Apparently the location of the cell together with the

measurement noise severely limit the signal and may lead to spike-like artifacts shown in

InvUMeshGAN and ENINet. Intriguingly, however, some of these spikes well correlate with

green fluorescent debris on the microscopy images. We presume that some of the debris may

have electrical response equivalent to nuclear envelope and were misclassified by ML-EIT.

InvUMeshNet generated a lot smoother image, which may be caused by stronger regulariza-
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tion applied during model training. This, in fact, may be advantageous as it could lead to

fewer artifacts and make the model less susceptible to edge cases.

The last sample features another single-cell imaging of a considerably large HeLa cell.

While the cell covers the left half of the device, all three reconstruction algorithms successfully

localized the nucleus. The difference came at the shape estimation. InvUMeshNet generated

a slightly smaller nucleus, but had a roughly correct shape. InvUMeshGAN model slightly

shifted the nucleus toward the bottom-left corner and produced too elongated and narrow

shape. ENINet, on the other had, successfully identified both shape and orientation of the

nucleus. Interestingly, that we observed a white point inside the red region. Optimistically,

this implies that the nuclear envelope was compromised or had abnormally different electrical

properties around that point. Another possible cause is, however, measurement noise.

6.3.2 Early detection of cancer drug response

To demonstrate another possible application of ML-EIT nucleus imaging, we studied a drug

response of HeLa cells to low concentration of Doxorubicin. Doxorubicin is a popular anti-

cancer (antineoplastic or cytotoxic) chemotherapy drug. It slows or stops the growth of

cancer cells by blocking topoisomerase II (TOP2), an enzyme needed for cell division and

growth. We specifically target low concentrations, as they typically impose difficulty evaluat-

ing drug response due to small effect observable through optical microscopy. Conventionally,

a treated sample of cultured cells is imaged through fluorescent microscopy and a number

of alive cells is tracked by manually counting the cells. Then, a sample is compared against

the control group to evaluate an average treatment effect.

We prepared HeLa cells in a culture dish similarly to the previously decribed protocol.

After culturing the cells, we transferred 10 µL of the cell suspension (2 · 105 cells/mL

concentration) to the MEA device with the attached PDMS well (500 µL). To enable the

long-term incubation we added 240 µL of fresh DMEM medium with 10% FBS and 1% PS.

In addition, we transferred 10 µL of the same cell suspension to 48 well of 96-well plate

and added additionally of 240 µL of fresh DMEM medium with 10% FBS and 1% PS to
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each well. We left the cells in the incubator for 24 hours at 37 °C and 5% CO2. The cells

appeared healthy and attached thereafter. During the incubation, the entire assembly of

MEA, PDMS well, and the intermediate PCB was enclosed in a small vented Petri dish.

After the incubation, the wells were gently desiccated and washed with DMEM medium. To

stain the cell nuclei, we added 20 µL of 2 µg/ml Hoechst 33342 (Invitrogen) solution and

incubated the cells for 25 minutes at 37 °C. We then gently desiccated the wells, washed

them with DMEM medium, and filled with a fresh DMEM medium with 10% FBS and

1% PS. Then, we randomly divided the 48 wells into 4 groups of 12 wells each and added

Doxorubicin to three groups to achieve 0.3, 0.6, and 1.2 µg/mL concentration of the drug

respectively. The fourth control group of 12 wells was not treated. The samples on MEA

devices were also treated with 0.3 µg/mL of Doxorubicin.

We applied previously proposed ENINet for cell nucleus imaging to reconstruct nuclei

at a single-cell resolution (Figure 6.6 A). At the beginning of the experiment we observe

two closely located nuclei at the edge of the MEA. The small separation between the nuclei

could suggests that both of them are located within a recently divided cell. After 4 hour

of treatment with 0.3 µg/mL of Doxorubicin we observe a drastic change in the topology -

only one significantly shrunk nucleus is found close to the center of the MEA. As the drug

is accumulated inside the nucleus and block important synthesis of essential biomolecules,

nucleus, in fact, changes electrical properties of the nuclear envelope. Optically, however,

this is not immediately evident as the size of the nucleus might remain the same and the

cells remain attached. After another 8 hours of treatment, we imaged with ML-EIT once

again and observed a further shrinkage of the nucleus. This time the nucleus did not change

the location which is a strong indication that the cell was immobile. The shrinking nucleus,

however, could indicate both physically decrease size of the nuclear envelope and increase

in its electrical admittivity. For instance, depletion of TOP2 inside the cell could lead to

partial or compete destruction of the nuclear envelope making it electrically indistinguishable

from the cell cytoplasm. Later measurements showed no visible nucleus, which could also

indicate a complete cell detachment caused by cell death. Visual inspection after 30 hours

from treatment confirmed that the cell at the center of the MEA was floating. To quantify
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Figure 6.6: Detecting early effect of chemotherapy treatment with ML-EIT: (A) ENINet

reconstruction of nuclei of a sample treated with 0.3 µg/mL of Doxorubicin; (B) fluorescent

microscopy images of cells treated with 0.3 µg/mL of Doxorubicin; (C) relative changes in

cell count (fluorescent microscopy) and nucleus size (ML-EIT) during the experiment; (D)

relative changes in cell count compared to the baseline (control group) and nucleus size

(ML-EIT). As a measure of relative cell nucleus change we used average number of visible

cell nuclei on fluorescent images shown in (B) and the area of the red regions (Φ(x) > 0.5)

on the ML-EIT reconstructed images shown in (A)

110



the changes in the cell nucleus we measure the area of the red regions (Φ(x) > 0.5) on the

reconstructed images. We then plot a relative change of this quantity in Figure 6.6 C and

D.

To compare the results of the ML-EIT imaging against a traditional method we estimated

mean cell count using fluorescent microscopy. We collected fluorescent images depicting cell

nuclei distributions in 48 wells. Samples of the fluorescent images are shown in Figure 6.6 B.

As one can see, the cells remain viable despite nucleus staining and drug treatment, which

also supports our argument on practical difficulty of measuring the effect of small drug

concentrations. Note, that the background noise after treatment is caused by Doxorubicin,

which is also fluorescent and overlaps with the nucleus staining. Following the imaging we

manually counted the number of cell nuclei at 0, 6, 21, and 30 hours after the treatment. We

took average of relative changes in cell count as a measure of nucleus changes. At any time

t = i we calculate the relative change of cell count CNTi as its ratio to the cell count at time

step t = 0: CNTi/CNT0. The results are shown in Figure 6.6 C. We observed an expected

suppression of cell growth caused by the treatment. Apparently the effect is more noticeable

with the increase in drug concentration. Since we applied low-dose treatment cells continue

to divide but at slightly lower rates. For a reference, we also estimated average doubling

time of unstained cells to be 16.2 hours. In this experiment, however, we observed that the

control group did not experience exponential growth due to nucleus staining. Despite being

relatively non-toxic and widely used in live cell staining Hoechst 33342 molecules bind to

DNA and significantly interfere with its replication during cell division, which is another

example of invasiveness of fluorescent microscopy. On the other hand, nucleus staining gives

simple and robust means of measuring cell proliferation. Note, that treated groups of cells

were also stained with Hoechst together with the control group to be comparable and enable

us distinguish an impact of subsequent drug treatment.

We take a difference in means of the average cell count to estimate the effect of Doxoru-

bicin treatment. Results suggest (see Figure 6.6 D) 7.2 %, 25.7 %, and 39.1 % change in the

relative cell count compared to the control group when treated with 0.3, 0.6, and 1.2 µg/mL

of the drug respectively. Interestingly, that at 0.3 µg/mL the effect was diminishing with
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time. Driven by cell recovery mechanisms this could eventually result in non-measurable

level of treatment effect and wrong conclusions. Note that the difference in means of the

fluorescently measured average treatment effect saturated after the first 20 hours, which was

caused by the control group that slowed down the growth due to toxic effects of the nucleus

staining.

Comparison of the curves in Figure 6.6 D reveals a significant advantage of ML-EIT.

Particularly, the electrically-driven deep learning image reconstruction was able to immedi-

ately detect cell nucleus changes caused by the accumulation of the drug, while conventional

method was not able to certainly distinguish the effect of treatment at 0.3 µg/mL concen-

tration (red curve) from the control group. While detachment of an individual cell might

seem to be the only reason behind the superior sensitivity of ML-EIT at 20 hours from

treatment, it can not explain the apparently larger slope during the first few hours of the ex-

periment. Moreover, ML-EIT reconstructed image before the treatment clearly showed two

nuclei within the MEA and detachment of both cells is unlikely. Additionally, since we used

immortal cancer cells well-known for surviving in adverse environment random detachment

of a cell does not sound as a probable factor. Finally, typical cell detachment takes a short

time, while in our experiment we observed a gradual shrinkage of the cell nucleus for up to

12 hours since Doxorubicin treatment.
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CHAPTER 7

Concluding remarks

Everybody has a capacity for a happy

life. All these talks about how difficult

times we live in, that’s just a clever

way to justify fear and laziness. It’s

necessary to work now, but times

might change

Lev Landau

Studying biological cells requires reliable tools and methods for imaging and sensing. In this

dissertation we explored and demonstrated feasibility of all-electrical cellular tomography.

Driven by exposure to AC electric field, cellular EIT gives means for non-invasive and label-

free imaging that can be scaled and automated by further on-chip integration and use of

microfluidic structures.

7.1 Electrical properties of biological cells

The first key result of this work is a scalable data-driven simulation framework that models

how biological cells respond to an external electric field. The model is built upon empirical

data collected over the last 60 years. We discovered that cell organelles have unique frequency

response and may be distinguished with only a few electrical stimulations.

We found that adherent and non-adherent animal cells tend to have similar properties,

while yeast cells and bacteria have thicker non-conductive membranes, but more conduc-

tive cytoplasm. Membrane capacitance and cytoplasm permittivity can be described using
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log-normal distribution, which is fundamentally driven by synthesis of biomolecules and

formation of lipid bilayers. On the other hand, conductance of the membranes and conduc-

tivity of the cytoplasm are driven by switching ion channels and pores that cause gamma

distribution of these electrical properties. To achieve high-fidelity modelling we proposed a

method to numerically generate smooth 3D shapes of adherent cells. Our approach gives

an optimal trade-off between accurate geometric representation and numerical complexity of

the subsequent FEM simulations. We then demonstrated the importance of cell geometry

on modelling of electrical cellular response. Experimental impedance spectroscopy measure-

ments of a single HeLa cell clearly showed how accurate the model is.

The proposed framework 1) establishes the first stochastic model of electrical properties of

cells that are affected by biological diversity and underlying internal mechanisms; 2) captures

cellular electrical response and shows feasibility of probing of internal organelles; 3) enables

machine learning methods in sensing and imaging by providing a robust data-generation

pipeline.

7.2 Cellular imaging using a few electrodes

The second key results is enhanced EIT for single-cell imaging. Because EIT was originally

developed for human body imaging and suffers from insufficient resolution, we extended it

by designing a novel device and image reconstruction algorithm. The proposed approach

involves a two-step analytical optimization that exploits unique topology of the problem and

a priori knowledge of dielectric properties of cells. Microscopic EIT fills the gap in rapid

non-invasive imaging and is able to capture the slightest changes underneath the cell that are

unobservable in the conventional optical microscopy. As electrical impedance very sensitively

responds to changes in cell thickness and cell adhesion, cellular EIT can drastically extend

biomedical studies such as drug response, cell phenotyping, motility, and so on.

Finally, we developed nucleus tomographic imaging by further extending the proposed

device with a custom machine learning model. As cell membrane becomes electrically trans-

parent at higher frequencies it exposes interior of the cell to electric field and enables nucleus
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imaging. Driven by high-fidelity data generation pipeline, the proposed ML-EIT showed

robustness on ITO and gold electrodes. Our approach provides a scalable solution for non-

invasive single-cell nuclear tomography, a long-standing challenge in biology and raises a

fundamental question of sensing inner cellular organelles with an electric field.

7.3 Future directions

Label-free cellular imaging will be in high demand in the future and we hope that electrically-

driven methods will be extended to new exciting applications.

As one of the most promising directions that we see is a fundamental study on electrical

properties of cells and the underlying microscopic mechanisms. Besides biological signifi-

cance, such analysis would show the primary factors that determine how far EIT and other

techniques could be extended. Despite having straight practical implications, this direction

is, however, the most complex and might require extensive investments.

Another intriguing direction is device design. As electrical stimulations generate struc-

tured data they present abundant opportunities for scaling and automation. Particularly

promising is the work towards on-chip integration with existing CMOS-based sensors and

microfluidic devices. On the other hand, EIT is fundamentally limited by the measurement

noise and novel device designs may lead to considerable improvements.

EIT reconstruction belongs to a broad family of inverse problems which is actively stud-

ied nowadays. We believe that additional efforts towards hybrid methods that combine

deep learning and analytical methods could further improve the performance of the image

reconstruction. For instance, with carefully analyzed network architectures emerging build-

ing blocks could be used to mimic those operations presented in analytical methods and

inherently preserve the a priori information about the physics of the problem.

Finally, we believe that the developments in this and other works on microscopic EIT

could be translated back to human body and industrial applications and may lead to novel

use cases such as non-invasive point-of-care testing for early pneumonia detection, comple-
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mentary sensing for robotic arms, or human-computer interfaces.
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