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(IV). ~NUMERICAL CALCULATION OF QUADRUPOLE EXCITATIONS IN

Cd, Sn, Te, Sm AND PbT)
Bent'Sérensen++)"
Lawrence Radiation Laboratory
University of California

Berkeley, California 94720

April 1969

Abstract
4 Quadrupole vibrational excitations are déscribed in a modified

quadfﬁpole plus pairing model, using the boson expansion methqd. The rédial
dependence of the quadrupole force.is cﬁosen so as to yield as ‘average field

a Wood-Saxon type potenfial. A qualitatively correct description is provided
for the phase transition in the Sm-isotopes, but the eﬁergy spectra,‘transition
probabilities and étatic guadrupole moments of nuclei néar closed shells are
barely consistent with experiment, the most puzzling>disagreement being the

sign of the static quadrupole moment of the first 2+ state in 122Te. F

Ty

Work performed under the auspices: of the U.S. Atomic Energy Commiséion.
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) On leave from the Niels Bohr Institute, University of Copenhagen,
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1. Introduction

The use of simplified model'interactions for the calculatioﬁ of nuciear
properties does call for the awareness of certain facts. First of all such
simplified models are usually tailored to a certain‘set of nuclear preperties
and will-givebnonsense answers to questions which fall outside their domaiﬁ.
Secbndly these model interactions may assume a structure of the nucleus
which in certain.respects is unrealistic. It should therefore be allowed to
renormalize the model interacfion in order to partly compensate for the
difference between the actual system and that implied by the model. An exaﬁple
of this situation is the strength.of the gquadrupole interactioh, whicheis
uniquely fixed‘by»requiring proportionality between the shape of the_system
"and that of tﬁe average quadrupole field. Nevertheless the fact that the.true
interaction_ddes create an average field which is different from that of fhe
v quadrupole force will in general imply that a choice of quadrﬁpole strength
different from the self--consistent one maybgive a better description of the
actual system. This type of renormalization_is of course not related to thet
required because of truncation of the configuration space. |

The problems mentioned above are usually interwoven with the effects
of approximations inbthe solution of the many-body preblem to such an extent
that it is impossible to obtain an independent judgement of the validity of those
simplifications made in the interaction and those made in the diagonalization.
We claim by the boson expansion method to have improved the treatmenf of'the
many-body problem to such an extent that we are able te make rather reliable
statemeﬁts concerning the model interaction itself. It is interesting to note

that the application of the best available realistic two-body -interactions
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to the descfiption of'complex‘nuclear excitation has often employed inferior
many-body techniques. . Calculating for instanéé collectivé viﬁrations»in

RPA using efféctivé intéractions baséd on a Hamada-Johnson intéractionl) one
finds in several casés an imaginary énérgy‘for the lowest root, indicating
merely the inappropriateness of RPA.i’If,.on thé'dthér'héhd,’oné.had used a
phenomenological interaction for the RPA'diégonalization; one would have chosen
a renormalized interaction strength for whieh RPA féproduces the experimental
energy, thus formally blaming.fhe déficiéncy oflRPA on fhe interactiong). The
gain of insight achieved in this way is clearly not very big, yet such ways of
proceeding did in fact for some.timé leavé thé impréssion thét the naturé

of céllective multipole vibrations néar closed shéllslwere fairly wéll under-
stood. Only when improved exférimental techniqués révéaiéd inconsistency with
the theoretical predictions for higher lying parts of the collective spectrum
it became obvious that something had to_be modified. However, it\remained
nuclear, whether the problemslhad to Be sought in the interactién or in the
method of calculation, and the situation became even more uncertain, when

experiments suggested large static moments in nuclei, which the theoretical

- models predicted should be nearly sphérical in shapeB).

Although the fourth order boson calculation presen£ed here is farz
from an exact solution of the many-body problem, we think it provides a
fairly clear indication of the type of results one can obtain by improving
the diagonalization techniques, and it 1éavés a number of definite discrepancies
which must be associated with details of thé nuclear interaction not contained

in the pairing plus quadrupole model, or at least not in‘the parts of these

interactions which are effective in the present treatment.
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In sect. 2 we discuss -the model interaction employed in the

calculations, and in sect. 3 the numerical results are presented after some

general comments on the choice of parameters. ' b R g

L
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2. ihe Modified Quadrupolé»Plus Pairing Intéraction
Thn general form of thé in%eraction we aro going to usé is well known.

It conﬁains a single particle hamiltonian Hs containing the sum of thé
kinétic energies of the particlés nrosént in tho system and their potential
energies associatéd with,thé avéragé field.‘ Furthér a pairing interaction,
HP 'acting on szl’ J=0 pairs ofrpartioles with a fixed strength for each
TZ, usually zero for T%=O. The constantness of strength holds within a
certain subspace in the single particle space, often assumed to be symmetric
in dimension.around the Fermi level. Outsidé this subspace no pairing force

is present. Finally there is a quadrupole'force H acting among particle-

Q

hole pairs, so that the total hamiltonian may be written

) _ ~ b o 1 AA
+ + = 3 . + i3 G
B * H + Hy z R L Z JJ7 5y
: 3 ' 33’
(V:n,p) . ) (v=n)p)

ZE: | (ql"Pv(r)Yg(m)“j3)
- Jody
(\)=1’1,P) (\)':n,p)

x (a, a.) (a E).—7=-'X Z
R A A Es R VR <R 3
1°3

. ! ' 3 o= + 3
x (ngva.(r )Y2(w )"Ju) ( (abl aj3)2(aj2 ajh)Q >o , (2.1)

1/2 = (_)j+m\a

where J = (2j+1) s
. -

and E: is the operator connected‘to a,

_ Jjm Jjm
by the time-reversal operation. We have assumed that ¥ is independent of
(V,v'), since:no definite knowledge of the opposite is available.f) The

nuclear states are for brevity denoted Js, but the summations shall extend

) The summation over the isospin quantum number VvV is put in parentheses below

.the sum signs for j-values having the same V.
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over n and Y% as well. The pairing force _HP has proven succéessful
in describing J=0 pairing type nuclear levels, but it does also imply a

quadrupole particle-~hole interaction because of the relation

e e | - L _ _
(aj aj).o(aj, aj,)o = - Z< (33000313 050](35)2(35")2;0 )
o J : : _
(2.2)
x[[(ég g&.)g(ag 55,)2)0 + contraction term. :

L

This addition to the quadrupole interaction will be neglected, since we try to

chose P(r) so0 as to make HQ alone as physical as possible.
A convenient way of arriving at a representation invwhich we can

focus on J=2 particle-hole operators,-is to perform the BCS_transformétion

a, =u, o, +v, o, ’ ' ) g : . (2.3)
ToJm J Jn Jd Jm . .

where. u? + v, = 1. We thereby érrive at the hamiltonian we are going to

use for the expansion in tefms of gquadrupole bosons

‘_= A + = _ X - X |' . . e SR
H EZ:J Ej (aj aj)o 5 E{: <JlJPvY2uJ3 ) {;2HPV,Y2HJM)

Y M33,(v=p,n)
(‘)—p,n) s s (\)': n)
o 333y (v'=p,
1 + - + -+
x¢=(u, u, -v, v, )u, u, -v, v, Mo, o, ) (o, a,)

sVt v ), ow -v, v )<<a’t o )yler w5y
1 3 J3 Jd1 dpo dy Jo  dy Jy J3 Jo Jﬁ'
1 + + . :

v~ (o o (6, . 8, . =8, . &,.)

V! 23, J3 1937007 "dydp Tdgdy Tdpdy dnds”

¢

e
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1 M, + + + +
+play v o rug v ey v o tug v ) | (S (e e ), (o ol ),
+ + + + + 1 + -
+ ( o, ( - % & _,(la. o, ( L= 8, . 8. .

-+ h.c. , - : o (2.4)

where Ej is the BCS quasi-particle energy. The hamiltonian (2.4) differs from

that employed in I (ref.'h) ,eq. (4.1)) in a number of details, for which we

( -

‘have come to the cénclusion that (2.4) offers the most consistent physical

~plicture. For the reasons given above the residual part of the paifing inter-

action is not aliOWed to add to the quadrupole'interaction. This implies not

only the neglect of the J=2 term in (2.2), but also of the non-BCS type

.J=0 pairing terms, which does contain boson terms with four J=2 Dboson

operators. In writing HQv‘in the quasi—particlé‘représentation we have

kept the quadrupole character of each term and tﬁus not normal ordered every
terﬁ; Otherwise certain effecﬁs of the qua@rupole force would by recoupling
have beén described by branches of J¥2, which we %ould neglect in our boson

expansion, which for practical purposes is restricted to guadrupole bosons.

" However, two cohtraction terms appear in (2.4) which had been neglected

in I. One describes the change in quasi-—particle energies due'to the
quadrupole force, the other changes the gquasi-particle number by two and hence

describes the disturbance of the BCS solution induced by the presence of

 the quadrupole field. As the quadrupole force is of long range; the claim

made in I that these effects could be assumed included in the average

ﬁdtential seems dubious, unless the single-particle energies were adjusted

”
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phenomenoloéically. However, the calcuiations Vill show, that the influence
of these contraction terms is sméll;
vThg fluctuation in particle numbéf implied by the BCS approximation
iS1fuilyrinherent in our interaction'(g.h),,since no resiaual pairing inter-
action is presernt. An improved tréatment in this réspéct will reQuiré boson
'expansibﬁs.with both J=0 and J=2v bosons présént. Without ghis the correcﬁ
aﬁerage'particle number_ensuréd for the BCS vacuum is.changed by-iﬁevpresence
dflﬁhevquadfupole interaction. Our method of réstoring aﬁerage partiqle
number is described  in II (ref.'s)). It is there shown, that the fermion‘spéce
may be mapped into the bosonispéce in an infinité_number of Wayé.v The
Variéus expansions which are charactefizéd by a sét of paraméters ;{yg}
are given in ref. §). They define boson 5ases which are conhected~by unitary
tranéformatioﬁ, so the choice of parameters yg deces not gffect any/physical
resulté as long as no truncation is made. It is shown in II fhaﬁ by choosing
constant y? = yO énd using a suitable yo one can usually make the.number
of particles correct in one eigenstate of a given hamiltonian of the particlé
number violatinglkind, no matter whether the particle number non-conservation
is due to truncations in the original fermion.space or in its boson expansion.
'The calculations to be répdrtedlin sect; 3 show that it is not possible to nake
bthe particle number complétély correct in this waf,FBUt'that a certain choice
of yo, usually zero, produces a minimum in the deviation from the correct
particle number, and this ‘yo usually is the samé for éll ldwlYing states.
In addition tq determining the boson expansioné of the hamiltonian
(2.4) ana the number operator, we find ﬁﬁosé of the électric quadrupole

operator, which as discussed in III (ref. 7)) is required for calculation of
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potential energy surfaces. The anharmonic terms arelképt only for the.collective
branch of excitation, which according to.the discussion in III is chosen

as that defined by a Tamm~Dankoff (TD) diagonalization. The non-collective
branches are thus describea by their TD Wavé functions and energies. Although

one could imprové them by adding anharmonic.ﬁérms liké oné doés for the collective
branch (using the same'computér code), this would not bé_a systematic improve-
ment,ksinée the higher ordér couplings Bétwéén colleCtiVé énd non—éoliegtiveA
branches is neglected.‘ Our assumption is thus that\the collective anharmonicities
are more important thgn anharmonic couplings bétwégn collective and non-

collective branches, which again are more important than non-collective anharmon-

icities. We feel that it is important to understand the anharmonicities of

the collective branch before going into the complékitiés of decidiné which
other branches may ﬁe significanfly coupled to this. It has alréady béen
mentioned in I, that we think that coupling-to-pairing excitations will influ-
ence. the O+ states in many nuclei. vIt is further suggésted in T, that ;ome
non-collective quadrupole branches may be strongly coupled to "two-phonon'
states. This seems fo be true for states with TD energies close to that of
collecti&e states? éccording to the magnitude of coupling terms e&aluated by
Sano8).using the boson expansion method . |

The use of a TD collective boson implies several simplifications in

the expansions of the various operators mentioned above. The explicit

formulae are given in appendix 1.
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2.1. AVERAGE POTENTTAL AND RADIAT, SHAPE OF THﬁ QUADRUPOLE FORCE

The single particle poténtial HS” may be fhgughtvof as the result
of a Hartree-Fock (HF) calculation based on puré kinetic energies and the |
best available tWDﬁnucléon intéraction. In that casé thé pairing plus
‘quadrupole intéractions may bé visualizéd as approximations to the residual
interaction. Such an avéragé.potential should allow a éimple calculation of
the properties of léwlying levels in odd nucléi adjacent to'clésed,shell
nuclei. TFurther the averagé potential should be related to the optical
~potentials used in the description of scattering and reaction processes
involving a single nucleon. Such a rélation réquires knowledge of theveﬁergy
dependence of the optiéal potential, extfapolated to thé‘negative'énergy of
the Fermi level. As the energy'variafion of the 6ptical_potential is rather.
slow (for positive energies) and the Fermi energy often close to zero (unbound),
one may guess from the extreme lack of.similarity between optical potentials
calculated by the HF method (see e.g. ref. 9)), that the latter onés are -
not reliable enough for‘nuclear structure calculations at pfesenti This
conclusion is also drawn from attempts to calculate collective éxcitations by
adding pairing plus quadrupole interaction to the HF average potentiél (using
the boson method). .We therefore use as single-particle hamiltonién the
WoOds-Saxon potentiallo) corstructed in analogy to optical potehtials. Anétﬁer
possibility would be to extract the single particle énergies directly from
one-particle stripping and pick-up expériments; using the sum-rule method
of MacFarlane and.Frenchll), but thisvwould not provide the single particle

wavefunctions, which are essential for our application.
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We then assume the spherical average potential.

vSPR(p) = %-(1 ST )V

: o) Voo @) + W - 2v, Bpxs) - 7))

2 so -

\

r-R_ -1 o o
Oy . (2.5)

x (1 + eip'{ =

with | A= (1 + A aMe

from which we calpuiat§ single~particle energies eanv and wavefunctions
8 3v of the bound states. In the present aﬁplipation the configuiation

space is always truncated to an energy region around the Fermi energy, which

is so small that continuuﬁ stafes do not have to be considered explicitly.

If an enlarged configuration space were to be used, one Would have to decide:

on a separate method for'tregting bound and unbound states.

Assuming nﬁw the quadfupole field to be related to the average potential
by a self—consistehcy argument we‘can complgtely determine the quadrupole |
force. The procedure i; dgscribed by Kumar énd Sdrensenl2) énd it cqnsists
in imposihg a small quadrupole deformation on the system and requiring it to

be maintained by the deformed average field produced by the quadrupole inter—

action. The approximations involved are i) proportionality between density

and field is only secured to first order in the deformation parameter,

ii) the range of the quadrupole force has to be assﬁmed small in comparison to
nuclear diﬁensions in order that the proportionalitylholds'and iii) the
contribution from the spin-orbit part of (2.5) is calculated only for axially
symmetric deformation, considering for the deformed density distributioﬁ'p that.the

third compohent of the projectioﬁ of (p_X §) . y_p on thé unit vectors

.n_, n, and g¢ will be negligible. Under these assumptions the radial

r? =f
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0

part P(r) of the quadrupole interaction (2.1) takes the form

_1 BN I - 3 1 2 0.
Pv(r) T2 (1 - T3v> Yo Vcoul(r) P TR T o Vo M Re
R, -1
913 | o
X <13r2 - Ty > (1 + exp { a }) . (2.6)

.This radial fqncﬁion is stfongly peaked at the nuclear surface Bd, in contrast
to the rg—dependence often eﬁployed for quadrupole interactionsg). Examples
of the differences in m;gnitudes ofyradial matrix elements of (2.6) and r2-
ﬁsing either the'corregponding Woods-Saxon wavefunctions yanjv or harmonic

12).

oscillator wavefﬁnctioﬂs are givenAin ref. .
In the calculatipﬁé to be presented we have used’fhe_modified quadrupole

interaction impiiéd by (2.6) and the Single particie energies of the poten?ial
(2.5), but it shouid'be mentioned thét'although we feel that the modification

of the radial shape of the quadrupolevforce is essential, it is not absolutely
required to use the W-S Vsinglé-particle'levels in our type of calculation..

This is because of our neglecf Qf any other multipole force A#2, which could

be obtained in analogy to the d?rivafion of (2.6). One may hope to 5e able to
gréssly incorporate the éffects of these branches, which are not contained_in
therspherical W-S thentigl, by performing the quadrupole calculation'with'a

- renormalized set of single partiﬁle energies. Further it is prébably corfect'

to suspect thét_the W-S pofential may not contain enough details to provide
accuréte predictions for quantiﬁies as sensitive as the sihgle particle énergieS3
: Whereas it is much more likely to be dccurate enough for evaluating quadrupole

matrix elements. One might further mention that the surface delta
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~interaction, which is a first order approximation to the multipole forces

‘derived from a W-S potential, has been applied with considerable

13).

success
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. 3. Numerical Resﬁl£s
3.1. CHOICE OF PARAMETERS
The parameteréﬂof‘the Woo@s—Saxon poténtial are giveh'in.taﬁle 1.
A1l tables are collectgdvin'appendix 2. The siﬁgle pafticle levelsyincludedv o \
in thé calcuiafions are given‘in tablé é, fbgether with effective force
iﬁafameters and éffective chafgés”and masées; The bairing strengt£s:ére given

the form

G ‘="2% (1 + 0.75 &2y Mev

_ . (3.1)
6 =2 (1-0.75 EE) Mev
in éccordegceiwith the symmetry energy in'the‘eﬁpiriéal masé formulal%). The
cénsténcy{of the numerical factors appearing in (3.1) corresponds to the
‘approximéte constancy of the‘éiie of the configuration space considered ‘
explicitly. For the same‘feasbns the quadrupole strengths
Xnnt=.pr = an =y Fhavé béen chosen ‘as a fixed scdle factor (=3.1) times the self-
consistent valuelg) implied by the proportionalityvbetween'average_density and )
field. The cgefficiégts of the boson expanaed hamiltonian ére gi?en in table

3, those of the guadrupole operator T in table 6, both calculated on

M
the basis of the formulae of appendix 1. A number of calculated and experimental ,
. o'

quadrupole moments and deformation parameters are given in table L of appendix - | -
2. As in figures etc. we consistently give‘energies.in units of MeV, lengths S

in units of the osciilator parameter

(B)1/3)1/2

o'
=
&

fm" a‘_ ) . /(3-2)
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using the same r. as in evaluating matrix elements {table 1). Masses are

0

in units of M and charges in units of |el. Table L gives the electric
. .

quadrupole moment QeQ(2+) of the first 2+ state and the BE2 value for its

decay to the ground state, BE2). We define the intrinsic electric quadrupole

Q

moment by the rotational model, Qg = =7 Q_(2+)/2, and the RMS value of the:

deformation parameters by the BE2 value

RMs 161 ,2,1/3 (5 BE2l)Y/?
= B v R (3-3)

Another value for BeQ is extracted from the static moment

/57 Qe‘Q b2
- 20 75 - (3.4)
BZrO A 3 ‘ ' \

BeQ

The experimental values are based analogously on the measured BE2) and
- . m _ .. :
Qe (2+). From the calculated Q,(2+) we define Q= -T Q (2+)/2 and

b Q% e

= ———7 . (3.5)
m - 31,% A5/3 |

8

The abscissa on the potential energy plots calculated by the method described
in IIi (ref. 7)) are intrinsic mass quadrupole momenﬁs, in some cases also
a Bm scale is provided. Table L gives the positions of the lowest potential
energy.minima.

Expérimeﬁtai access to the value of Bm' is provided by thevanalysis
of scattering experimenfs in terms of a quadfupole exbansion Qf'the nuclear -
su?face which is intrqdubed as a deformation dependent forﬁ factor in a DWBA

analysis or in the coupling potential in a coupled channel. formalism.
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‘'The experimental mass quadrupole moments quotéd are not obtained in

this way, but are related to the electric moments by assuming Bm = SeQ

W2 =%\/£‘2?Qe'g(2+> | R L (3.6).

\

In table 5 we givé expectationlvalues of the number ope%ator fpr a.few lowlying
calqulated sfates. | |

_We now brééent énd diSCUSs the resulﬁé of the diagonalizatibn'
of the boson hamiltonian and the evalustion of Eé transition probabilities, E
static quadrugole moménté,andlpotential energy surfaces according. to the -

description givén~in I1T.

o
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3.2. THE PHASE TRANSITION IN THE Sm ISCTOPES

Several pieées of evidence suggest that a major change in the
magnitude of quadrupole deformation takes place in thé Sm isotopes. Judging
from grouﬁd state energiés and 1owlying quadrupolé-vibrational stateé, the

150

transition is fairly smooth with Sm ‘being most far from both the rotational
model and the spectra of nuclei around closed shells. Already 1 8Sm has a
fairly large 2+ quadrupole moment and the increase in both B(E2, 2+ - gr)

and QeQ(2+) when going from lh88m to 152

Sm is again réther smooth. These

remarks have been substantiated by a calculatioﬁ of potential energy surfaces
) o) ‘ . ' .

by Kumay and Baranger 3) which, however, adjusted the force strengths so as

to give the phase transition at the correct plaée rather than to reproduce

, .2k
the energy spectra, which would require a subsequent numerical integration” ).

148-152

We show in fig. 1 the energy spéctra for Sm together with the results

of our boson calculétion, using\the parameters listed in table 2 (case a and

b in the fig.). The correction from contraction terms which is added in

column b makes very little difference. ‘In both calculations the trends of
developing a ground state rotational.band from the ground state,'2+ state .

and L4+ member of the "two-phonon" triplet, adding of course substantial
:components of,higher phonon states, is in qualifative agreement with the
observed one. In conﬁrast to the harﬁonic apﬁroximation the fourth order boson
results are not very sensitive to changes in the ratio of pairing to quadrupole
Strengths-' In column c, we have increased X by 30%, thereby improving

the energies of the ground band. At the same time the higher states (B- and

s . 152 v . :
- Y-vibrations in > Sm) gets pushed upwards, evidently (from the boson wave-

-function) due to the smallness of the diagonalization basis (7 bosons).
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The apfarent need for couplings to configuratiqns with mofe than T bosons

also suggest;‘that the collective boson éhosen'becomes less ana less

reaiistic, the more'@eformed the syétem becomes. Since the non-collective
states remain atvaéproximately'the same energy in all of the nuclei, we do

'not expect couplings to these to be im@ortant. This conclusion may not’

be safe, since thé'rotational model suggests that although the paifing gap
in'neighbouring'Spherical and deformed nuclei are of the same size, still the
orbits involved ma& be completely different, which would also imply a change in
the sﬁructure of the collective boson. |
A In fig. 2 We'compare calculated and experimental B(E2) values and
eleetric Quéarupolé moments. The agreeﬁent obfained is fair;ikeeping the
effective charges consféht (efr. table 2). The lack of'gorrelations in

the higher calculated states expected from the discussion above imbly a
gdrresponding underestimation of the transition strengths,_ Interestihg
details can be learnea.from the comparison of electricyand mass multipqlé
moménté énd deformations given in table L éf appendix 2. The deformation'
parameﬁefs BeQ extrécted from B(E2, 2+ +‘gr.) (BRMS) and from QeQ(2+)

are expec£éd to be the same for well deformed nuclei, whereas 8

should be larger than B when approaching spherical nuclei. The isotope
‘15OSm has B > BRMS in contradiction to any macroscopié‘model. The trends
are reproduced by the anharmonic boson calculation. On the other hand the
calculated mass quadrupole moments of 2+ states are about a factor of two
smallef than fhe experimental values ébtained from fhe assumption

ém‘= BeQ' Direct values of 'Bm extracted from fits Ey coupled channel

calculations to scattering experiments using a surface expansion in the

)
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optical potential cannot be considered very accurate, since they depend on

- the other optical model parameters, which have to be taken from often rather

distantvregions believed to be spherical. A likely reason for the short-

coming of the théoretical estimate is the explicit inclusion of only 11 j-shells,

leading to large effective charges ep,,en ‘and‘masses, which we have taken

as mp = mn = ep = 3//2. With e, = /2", we actually get approkimately
65% of the contributions to the electric E2 matrix elements from neutron
configurations. Thus; counting neutrons and protons on the same footing for
mass E2 matrix elements does not make the difference of %- implied by

i + ( + i = . : i i
extracting Qm(2 ) from QeQ(2 ) using Bmv BeQ A calculation using
much larger configuration space will be necessary if~one wants to test the
validity of assuming Bm = SeQ'

Figs. 3 to 5 show the potential energy functions calculated from the

boson hamiltonian and fig. 6 the Y = 0°

contours for the threeFSm—isotopes.
The sharp raise in Q at large ]Ql is presumably tied together with the
too ‘high excitation energies of B- and y-vibrational states (fig. i), and

is therefo;e egpected to be modified by the»higher order expansion terms.
Quite generally a trunéated power series expansion of this kind is expected
to produce too sharp minimé and too sfep raise towards infinity When the
highest order term is dominant; In order to allow a numerical integration
aléo kinetic energy functions are needed. These afe very anﬁarmonic, as one
can guess from the diffefence between the positions‘of potential energy
minima and the calculated expectation values of the mass quadrupoie moment
(cfr. table 4). TFor instance the potentiai energy for o2 is minimum

for Bm'= 0.21, whereas the value calculated with the boson wavefunctions is

0.12..
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The BCS approximation used for the pairing fofce and the negleét
of the residual pairing force causes the expectation vaiue bf the number
operator, which is‘éorrect in the pure quasi—par£icle vacuum, to be wrbng
" when evaluated in the quadrupole correlated boson eigenstates. - The deviations
of the particle numbers for a few of the lowlying eigenstates given in’table 5
of appendix-2,_tell§ whether the correlations beyond those of the underlying
BCS vacuum'arevsymmetric éround‘thé Fermi enefgy or not. Since each quasi-

/

particle operator carries an incorrect particle number we expect the number-

deviatioﬁs to increase with excitation energy. The table shows that the particle

148 15

‘numbers are worst for Sm and improveé.towards ?Sm,\obviouslyvbecause
of the moving upwafdé of the Fermi energy in the direction of the center of
.gfaQity-of the configufétion spacé used. .To the extent thgt the‘isotopes
cohéidéred are superfluid,ﬂohe ﬁill not expect even deviations in particle

number of a couple -of units to influence the physical predictions significantly.
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3.3. THE Pb REGION
The doubly closed shell nucleus 208Pb and the two adjacent éven

isotopes are considered in fig. 7. The energy spectra are in agreement with

206

the experimental ones, excéptvfor the first ekéitedrO+ state of Pb. Since

the dominant component of the first 2+ state is (f;}g‘pl/g)’ the 0+ state
» 208

‘becomes mainly (f;§2) with respect to the Pb core. This is exactly the

lowest non-collective pairing staﬁe, and.the observed depression of its energy
can be perfectly described by applying the residual pairing force, as shown in
By, - / ' |
ref. ). The j=1/2 spin of the lowest available orbit is the special reason
why in this case the pairing and quadrupole states are not two distinct
levels.
, . . X 210 '
The spectra are almost harmonic, in particular for Pb, due to the

fact that the h

‘ (g2

boson. Transition'matrix elements are given in fig. 8. The effective

)2 configuration has an amplitude of 0.992 in the basic

charées (see tébie 2) ‘are rather large despite the fact that no major part

of the wave function lies outside the configuration space considered. The
reason is thé smallness of the préton configuration spéce, but the reiative
uncorrelated wavefunctions obtaiﬁed.ensure that the effective chérge method
willxwork extremely well in this region. For soﬁe time 1% was considereq
puzzling that the E2 transitions in 208Pb were stronger than in the neighbour-

ing nuclei, which have much smaller 2+ energies. The reason is of course

the large degeneracies of the configurations entering in the 208P15~2+

state, and as expected the static quadrupole moment is smaller here and

positive in all three cases.
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EQuipotential surfaces for the potential energy are shown in figs.

9-11, and the 7y = 0° contoufs in fig. 12. One should notice that the 210Pb

spectrum is extremely harmonic despite the asymmetry in the potential energy.

N
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3.4. THE Z = 50 REGION
We first consider two N=66 nuclei, the proton closed shell nucleus

. N : .
Sn and the two-proton-hole nucleus 11 Cd. Later we look at two ~ N=T0

116
nuclei; the proton élosed'shell nucleus 12OSn and the two—protqn—particle
nuc;éus lggTe1 The calculated and experimental energy levels are shown in
fig7:13. The neutron single particle levéls of the Woods-Saxon potential

do with the chosén force parameters fit the excited Sn-states reasonably
Weli, so presumably the disagreement of eﬁergy levels for'lthd is mainly
due to proton copfigurations. Since the proton pairing gap.is extremely
sensitiveAtb both pairiné strength and position' of single particle levels, a
slight adjustment could méke the energy of the fifét excited 2+ state agree

with experiment. However, the magnitudes of anharmonic terms would remain
'

approximately the same and the next excited states therefore still be above

twice the 2+ energy. This criticism seems to appiy to all the calculated

~spectra and is thus directed either against the model interaction or the

appfoximations of the boson mefhod. We take up the subject again below

after having presented the'results fér transition probabilities and moﬁents.
One can rémark that thé residual parts of the pairing interaction can explain
the experimental finding of several O+ states in the two-phonon regionhh).

On the other hand theAposition of the‘third 2+ state in lthd can not easily

be understood, since both the Woods-Saxon single particle levels and another
57) (after making a least square fit to the

energies of the odd mass Cd—isotopes)_will not allow'any non-collective

state to come at this low energy. The BE2 systematics, shown in fig. lh;
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seems even to sugges£ that this 2+ state is a thrée«phon6n+) vibration, in
which case the specffum is not as hérmonic as ofherwise believed. If‘true
this increasing’depression'of two~ and three—phonon states_with respect to
both the harmonic position and our calculated values is most likely to point
to a deficiency‘of the pairing plus gquadrupole interaction since the
‘character of the third aﬁdbfourth brder-anharmonic terms in our hamiltonian
definitely is to»iOWer the energy of the grouﬁd state and oné—phonon state
and.ét the same time raise the ene;gies of the two- and three-phonon sﬁates.
This pattern is independent of the truncatioﬁ problem arisihg in the_dié—
gonalization of thg boéonAhamiltoniah, being dictated by the ratios §f_'.
magnitudes of third and fourth_ordervterms (see tabie 3) and the overail
poéitive signs of fhe fourth order terms. The observed structure_ﬁbuld
require .either a third order term ‘w31 much lafger than the fourth order
terms or alternatively négative fourth order terms (whichrwould make it
nécessary to include still higher order terms).

The E2vdata of the two N=66 systems shown in fig. 1k shows that the
calculated ll6én.2+ gquadrupole moment has the correct sign, which impliéé fhat
the neutron éonfigurations in lthd, which presumablyvare npt_very much
changed by the p—n’quadrupole inﬁeraction,.do also ccontribute by a poéitive

amount to the 2+ quadrupole moment. The proton contribution coming from the

r)We use for simplicity the expression n-phonon state to denote the collective

state whose largest éompohent is that .with n Dbosons.
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(89/2)_2 cqnfiguration is negative but because of the.large degeneracy of this
.level (and the absence of Elose levéls othér than Jj=1/2) the 2+ wave-.
function does not contain very much proton correlation, which again implies .
that tpe proton andAneutron_contfibutiohs to QeQ(é+). almost cancel; in
contradictioﬁ to most of the experimenﬁal indicatioﬁs,T) A plausible way fo
-obfain a largé negative QeQ(2+) is to iower the proton pairing gép as
mentioned above, in order to make the 2+ state mainly a proton state and mainly
a (g9/2)_2 configuration (this ﬁay also involve weakening the parts of the

- interaction aéting on neutrons). Thereby we can explain both the quadrupole
moment (especially if the.configuration space is enlargéd so as to lower

the neutron effective‘maSs; the net contribution to Q(2+) from higher

proton configurations is hopefully small (hopefully because the lowest con-
figurations not included in the present calculation contribute by a positive
éﬁount) and formally alsb’the almost ﬁarﬁonic two-phonon states. Fof the
higher par£ of tﬁejexcitation spectfum large.anharmqnicitiesﬁappear as mentioned
still to be necessary. The calculated‘B(EE) values are in reasonable agreement
with experiments, leaving.openlthe guestion of which excited O+ state

belongs tbethe collective branch. The boson wavefunctions are fairly

" rapidly converging (fbr instance the amplitudes in the second 2+ state

oo '
I) One of the experimental determinations of the static quadrupole moment

(ref. 31)) disagrees beyond experimental errors with the remaining ones.
The authors guote two:valueSICOnsistént with their experiment, and in
preliminary communications they quoted the opposite sign (given in paren-

theses on fig. 14). . ' ' .
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of the two possible 6-phonon components are -0.0161 and -0.0106, those

of the three possible T-phonon components -0.0279, 0.0007 and 0.0003), the

4

expansion of the hamiltonian (table 3) less so. .HOWever, since the

small third order term and positive fourth order terms are true feaﬁures of the
@odel interaction, we will’have'to conclude that it is to blame for the

faiiure to describe fhis nucleus. The quadrupdle operétérs converge somewhat
better than the hamiltonian (table 6), but the ideal hamiltonian for describing
11k - |

Cd would be one in which the hamiltenian has extremely small anharmonic

terms but where le of the proton quadrupole Qperator is large. Alternatively

" the contributions to the two-phonon states from higher order terms in the-

hamiltonian have to cancel accidéntially.'/This statement is in agreement

hs)'

with the results of the third order calculation performed earlier
Our claim made earlier about thé mass deformation Bm being badly
determined by the .coupled channels calculations of inelastic scattering angular

distributions using an expansion of the nuclear surface in terms of deformation

parameters can be substantiated by comparing wavefunctions obtained for

© 11k

Cd by such fits (ref. 35) using the formalism of ref. 56)) with ours.
The amplitude of the pure two-boson component in the wavefunctions of the
"two-phonon" J=0, 2 and b4 states implied by the BAJ parameters are 0.50,

0.56 and 0.78 as compared to .0.60, 0.86 and 0.86 in the boson wavefunctions.

' In view of the earlier discussion the extremely large admixtures implied by

. the analysis of the (pp') scattering experiment appears to be unreasonable

and ours even too large.

11k

The Cd and 116Sn potential energies, which are shown in figs.

15 - 17, at least qualitatively show how the excitation spectrum can be
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nearly harmonic, althdugh Q=0 is a maximum. At least for Sn the structure

in Vpot. is hidden by the zero point mdtion, and only the asymmetry of the

otherwise regular well is responsible for the static quadrupole moments.
We now turn to the two N=70 nuclei, also shown in fig. 13. Here
the agreément of excitation energies is much better, with the exéeption of

the second 2+'in 122Te, and so are the B(E2) values'(fig. 18). A reason

" for the boson method to work better fof 122Te than for lthd is the much

kY
’

larger amount of admixtures in the proton part of the wave function. In

contrast to all other cases included in this series of examples the deviation

in ground state particle number is for lv22Te'smallest not for yo =0

but for yo = 0.05. However this one-parameter adjustment of particie
number is as anticipated in 1II achieved(by a decrease in correlation, which
is‘insignificant for the energy épectrﬁm but decreases the transition
probabilities by'aé much as 25%.  We think that the influence of yo on
the transition .operator is unphysical and therefore use the yo =0
6peratoré (taﬁle 6 and fig. 18).

ThellgOSn' Qe2(2+). is too large to be in agreement with experiments
which claim that the static 2+-qﬁadrupole moment is nearly the same for .all
the Sn-isotopes and therefore ciose to the revised valué of the Rutgers

37>.

reorientation experiments

122

‘A much more striking disagreement occurs’in
Te, where the magnitudes are in -agreement but the signs different. Here
no cancellations take place as‘in lthd, so the quqted experimental sign is
‘really controversial. One may argue by agéin assuming the neutron Q(2+)

12

contribution to be nearly identical to the (experimental) QSn value, i.e.

between -1.8 and +5.4. The proton contributions from the main components
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are all positive (both from shellémodél estimatéé and the boson calculation)
and‘fairl&_large. It is thus completely impossible from ihe theoretical pic;'
ture employed td'explain a large negative 2+ moment.

Theoretical potential energy surfaces aré shown in fig. 19 to 21. If
the neutron contributions are reduced so as to yield the experimental -
QeQ(2+) in Sn, we expect the Te deformation to be only half of the calculated
‘one. Other;calculafions with certain anharmonic effects have been made in
fhis-region, ﬁone\of which included excitation of more than 2péhh6—h8).
These methods neglect what corresponds to our third order terms and thus do
not give correct static quadrupole moments. This can, howevef, be healed
and the diagonalization methods are attractive in allowing second order
admixtures betwéen collective and non—colleétive states. The projecﬁion
used by ref. h8) further removes spuriohs states, which is found to be

important. There are in the 2 plus L4 quasi-particle diagonalization method

~ e — .

twovsourcés of redundancieé, one connected with theIOQer¥completenéssﬂof

the Lgp Tbasis and another with the BCS type of spurious. The férmer'is

taken care of by the boson expansion method, whereas the particle number
projectioﬁ may improve éhe boson wave functions. This,-however; can not

be a’systematic imprbvement, since the structure information of projected
wavefunctions cannot be larger than that contained in the generator states.

‘We therefore think that the only real improvement is explicitly to include the
residual pérts of the pairing interaction in the bosoﬁ hamiitoniap’(or,

of course, not to use a number non-conserving basis). We have tried in part to

do this, including contributions from the residual pairing interaction to the J=2
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bosons, but it became evident,.that only by‘explicitly considering both

J=0 and dJ=2 bosén quanta can a real'imprOVément be obtained.
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L. Conclusions

By performing calculations ranging from a doubly closed shell nucleus

which presumably has less correlations than any other (since p-n correlatiohs

208

are weaker in Pb than in lighter closed-shell nuclei) to a guadrupole

deformed nucleus (1528m) we believe to have learned a number of regularities
of the boson method which enables us further to draw definite conclusions
concerning the model interaction.

In Pb it seems as‘if the truncation of the configuration space
made is allowable, and both the Lth order truncation of the boson expanéions
and the'Tth order truncation of the collective diagongiizétion basis are
high encugh or even higher than necessary. The couplings between collective

and'non—colleétive branches aré small but so are the collective_correlation"

v

effects. Otherwise any deviations'bétveen-calculated and experimental

quantities (e.g. the,energy differeénce between the_2o6Pb and 210Pb 2+

sfates must be ascribed to deficienciég in fhe iﬁgefaéﬁiaﬁ;
In the Sn region we expect the onset of inaccuracy of the Lth order

truncation of the hamiltonian, whereas the Tth order boson basis still

do guife'well Tor lowlyingvstafes, judging from the magnitudes of 6— and

T-boson components in the wavé functions. The discrepancies for the second.

and higﬁer excited states could have some origin in couplings to non-

collective states, but in conjunction with the épectacular disagreement with

respect to static gquadrupole moments (and some BE2 values) for the Cd and Te

cases, it seems_inévitable not be conclude that the interaction lacks fundamental

parts (or that the experiments are incorrect, which might be a possibility

in the case of the 122Te reorientation experiment (only one, unpublished
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result), but less 1ikelyvin lthd, where a large number o% experiments
disagrée with our Q(2+) ~value and only one agrées within uncértainties)_
This inappropriateness-of the pairing plus quadrupole interaction could never
have been revealed in‘a harmonic—-type approximation, since the experimental
épectrum up to two-phonon levels appears harmdnic‘whereas in fact we have
shown that this is not the prediction when using the. P+Q inﬁeraction. In
cases like this one could take advantage of‘wgrking with a phenomenologically
chosen Eollective boson and usé thé quadrupole pafticle—phonon coupling‘scheme
to calculate the anharmonicities and transition matrix eleﬁentsSS);

Finaily, in the Sm-region neither an enlarged confiéuration space
nor couplingé to non-collective degrees of .freedom can be considered
unimportant as one goesrtowards more deformed isotopés, but one may hope-
that the large number of iImportant couplings to rather uniformly spaced levels
of different properties make the renormalization.methods work decently.
However,.wé heré expériencé the natural limitation of renormalization based
on simple scale factors, e.g; in the difference befwéen calculated.mass
and electric.quadrupole moments; which probably is unphysical.

The convefgenée of the collective hamiltonians are'actually better
in Sm than in ‘the Sn region, but.due to the large ratio w2o/w21 the Tth
orderbtruncétion of the bospn basis becomes increasingly,insufficient from

b 2 ' v
148 > Sm. Thus only the calculated ground state band is even qualitatively

1
Sm to
correét, and it is in this situation no longer possible to make any statements
concerning the model interaction.

: The author wants to thank Dr. J. Gunn for patience and help in handling

the lehgthy computer codes made for these calculations, which were all



-30- - : UCRL-18903

run at the NEUCC and NORDITA-Niels Bohr Institute facilities in Copenhegen.
Stimulating discussions with Dr. F. Danau and Professor B: Mottelson

are highly appreciated.
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Appendix 1
TD Normal Mode Boson Expansion
After the hamiltonian (2.4) has been subjected to the basic boson

expansion defined in I; we define the TD representation by the unitary trans-

formation
. NS
+ z + rij(n) b (i JM)
.cn’(JM) = rij(n) b (ij IM) = 2 z T ‘Si' | (A.1)
ij | iy g
where \
- . = (it
rJl(n) = 05 rij’n) . i3 (=) and.
: (A.2)
Ve =2 Y I
1= lJ(n) =2 17 51:‘
ij iy J
For the TD diagonalization _ A
Hyp =2 E Py iy Zb+(ij‘2M) b(ij 2M)
ij (v=p,n) ‘ M
i'j'(v=p,n)
N ZE Zc+(2M)c (2M) ' ' ' (a.3)
n n n . ’ ’
n M - .

we need_the_coefficients
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2l sasry = X §:: . 2 2
Z (lJ 1'J ) 6ii' ij' va, < E. + S ity (u v n anVJ) ijn

2 ! J i’

C- X (1- + +
0 (1-2y )(u iyt gy )(u Vi uj'vi') Pij Pi'j'
x 3 e ) B
. 5 6jj' va, ." GV"V(uiuj" vivj")(ui'uj“~ Vi'vj") ij" i'j”'
J° ‘
x W(iJ ;25" ity " 22X 5
ij 22;23")w(i'y' 22; 23 ) - § (u U, - V.V.,)

x (ujui, - v.v.,) P.., P.,. W(iy 22;23")W(i'3 22;23"') ,

J1i ij i'J
(A.h)
where the Bohr-Mottelsen reducedvmatrix,élementslh) are
. {im! |2, Yo ldm?
= (e vy d= 0, (le v, 139 =4 e (Ad5)

(Jm2M]1m 5

It ig seen that the'non—diagohal'part of z21 does not consist of a single
separable term, fof which reason thé TD equaﬁion can not be reduced to a
dispersion relation.

The lowest root of the TD diagonaliiation defines the collective
boson ‘c;M » in terms of which the anharﬁonic part‘bf the goliective.
hamiltonian (eq. (2.1&) of III)‘is expressed with coefficients

20
w

x (1-2y) X/ + £ x x5, /5 ' o | (A.6)

wle oy Xy \/_Lc? + 2 XX, fo-by®) | | (A7)

2-ky

-
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L1 -
V=5 X J X Xy (A.8)
L2 z 2 2
wio= =25 ) d W(2222;27) X[ +5xJX
x Z 312 (222 2;3'7) XS54 (A.9)
3! -
where
Z ST A " | -
X = 15, (uivj + ujvi) Pij s o - (A.10)
iSj(v=n,p) Jo : S
X, = é l+<3 Z S o'y W iJ 22 ,23'") {r. ,J(uluj, - Vivj') Pij'
1y (v=n,p) J5(vr) (
lJr ] (uJuJ' - VJ.VJ )PJJ'} Py B ) . (A-ll)

1 = ' - s 3t DD.ns
X5 = }{: (u us = Vv, 13 E: Gv ty Tizr Ty w(ij 22?2J) E (A.;E)

ij(v=n,p) SIEAD
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. ] | _
_ v. ij - o . o 1 Z
X3 = Z 1+ . ( Z Syry Tyjr Tyyr W 22’23)> {;2 L Symy
. . . ‘j"(.\)"')

i J’_‘2 J
J”(\)")
X (ujnu‘. ‘:AV.HV.)'PJHJ } N (A.l3‘)
rl ’ rl' | .
%, = T ) Sy et § ey e Dy )
190=mep) Maggeony 7

X ZJQ (w(j'jJ2;2i)w(j'i';J2;ei_) + W(_i'iJ2;2j)W(i'j'-J2;2j)) } R

L (a,.1h)

= + : Py . '] .
X5y (uivJ. ujvi) Pij z 6\),\’ Tivgr Tigr Ty W(ijJges;eit)
ij(v=n,p) i

1
-|J-v(\)v)

"X W(ij'desei') , J=0,2, 4 . o , o (A.1L)

&
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It should be mentioned that there is a éréat_simplicity in the equations
above, which ié not present if the RPA repreéentation is used (as it was

for some of the examples shown in III). ‘In connection with eq. (2.L4)

the effects of two contraction terms weré pointed out.‘.Thése effécﬁs, which
are referred to as sélf—energy correctioné in-seét. 3, are connected with :
the second term in line one of eq. (Afh) and with-the first term in eq. (A.7).
Our'coﬁputer'code for caiculating the matriﬁ eleﬁenté (A.h) and the anharmonic
coefficients (A.6) to (A.9) has the option of leaving out the self—energy
terms._ The first term in el (eq. (A.6)) describe the "backward-going
,graphs"vof RPA, whereas the second term.conﬁains fourth order‘contribufion

to the.siability criterion. No similar fourth order contributions are presenf

in the leading order term, which is simply

= E

21 _ /5 _ ' '
v 2™ n ° : , . (A.16)

Together with the boson expansioﬁ of the hamiltonian we get that of the number

operator

- . -
N=n+ 00 + 87 (e c)O + NBl{(c+c+_c)O

0 =‘y0 E{: 32 (u? - v?) ; . (A.18)

+ (T TR o (aa7)
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vl = 2/ E j{: St T YT (A.19)
3(v=n,p) 31(v)
p3l = 1045 : }E: 8, Uit 22323) T T T.a.
(2-by0)t/2 AR DA A
J(v=n >P) iy (! ) ,
. ‘ (A.20)
and the quadrupole moment operator
' oo+ - 2l (D) 31 e
Toy = T (e” +e)yy * | (c + ZTJ [ (¢” e )se)
> J
T , | , ,

+ (c (c c)J):\ ; . » - - . (a.21)
R s et NP
T = o —— (148, ,) " r,, t,, (v, +uyv.) (K.22)

) /5_‘ . 1J 1lJ 1] 1] J 1
l\bj(\)'_‘nap) :

21 10 _ ' Cr omns

7 = = tlj (uiuj. ViVj) §:: Gv,v Ty rjj' W(ij 22,23)_,
C j'(\)') ’ T ' .
(A.23)

31 5T . g | | S22 7y
T = = ., (u,v, + u,v.) Z‘J' W(2222;3'J) -

J (g_hyo)l/Q S B B T 3i

ij(v=n,p) J!

x j{: ?i'jw(ijJ'2;2i')§E: 81y Ty ri,j; w(ij'areseit) (A.2k)

it(v') (v
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where

LR (illp? ) . o (8.25)

is defined in termé of effective charges
t = (eb6 +ed )/b° ] , ‘ (A.26)
Pp nn - _

if TQM is the electric quadrupole operator /4 (E2M) and in terms of an

effective mass
. 5 |
t,=_m/b : 4(A.27)

if T2M is the mass quadrupole operator QZM'
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Appendix 2
Tables

Table 1. Parameters of average potential (2.5). In order to describe the

symmetfy-energy we choose a potential depth Wv = WO + WIAEng (v=1

for proton, -1 for neutron), where T 1is the isospin of the A—particle'System"

and £ that of the particle. The radius characterizing the density is

assumed to be of the form RO = ro Al/3
R =r Al/3‘.
c c :

as also the Coulomb radius

0 - 1 s0 - 0 &. Te

-51'MeV ' 132.h MeV . 32 1.27 fm ~ 0.67 fm 1.27 fm

“



Table 2. Single-particle le§els explicitly included in the boson-calculationsa..Their energieswere ‘determined by the

Woods-Saxon potential specified in table 1. ' Further the effective. quadrupole strength

‘ e
e €y “and the effective mass m defined through egs. (A.26) and (A.27). .The pairing

X» the effective charges

strengths are given by eq. (3.1).

proton levels

‘neutron levels ! e e m
Mev P n
ey on e i 0 0,14, .0 2 14_,,,0n 0.00151 1.5 1.0 1.5
7/2°% 5727 3722 P /22789 0 B Vil Vo bt TRt V- e VPR R W s - ) '
Dy 0f. . 1be sl 1os08e joodde 1oa08n 1e | 14,0108y 1se28. 1oald, .00 1f 0.001k4 1.5 1.0 1.5
) 5/2*7F3/2°7F1/2°7F9/2* 5 /20 /2 s/2° =7 /2 T /2 T3 /2 1 /2 /2 ' : S
1205, 0 of o 1p. oL 08, . +1d_ .08, | 14,08, 1. +25. - 41d, . 4Oh 1f 0.00142 1.5 1.0 1.5
5/27P3/2°7P1 /22789722 0512287 2 5/2° 87/2 " /20 %372 /20 72 . ‘
122 : S 4 ,
Te  0fg ;501070010 1pi08g 00 0dg 01087 /s OBgpilds ni08q /ps25) pi1dyps0hyy o 0.C0135 1.5 1.0 1.5
148 SN ‘ . N
Sm 0g531dg5128) 5s1dg 550Ny 4y 1270200 /12835204y 3 /210555281 /5 0.00102 3/v2 2 3//Z
156 - _ . :
’~sm 057/2,1d5/2,251/2,1d3/2,0hll/2 18,5308 152D 1501 3 /50185 )52P) 4 0.00103 3/E Z 3/VZ
152, o ‘ ‘ ' . N . ' o
Sm o Ogyinslds 5028y /501d5,5.00 ) 1f7/2.0h9/2,2p3/2,9113/2,1f5/2,2p1/2 0.00104  3/VZ 73 3//2
206 o : Ohg /23187 /2003 13/222P 37002 5 /00
Pb  Oh Oh,_, ,1f ST 0.0005  1.725 1.15 . 1.725
11/2°779/2° /2 : .
\ ZPr/20t8g/200h1 /208052035 /0
208, jOh .0h_,.,1f ’ 0i .51 o1 0.0005  1.725 .15 1.725
11/2° g/ /2 13/2°789/2°" 11 /2 ' - b :
210 - Ofy3/p02P3/00 52920y 120289 /00
Po  Ohyy/pa0ng 50100 0.0005  1.725 1.15  2.725

01y /222852038 /5

ST
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Table 3. Boson expansion coefficients for the collective hamiltonian

UCRL-18903

(ITI, eq. (2.14)), corresponding to the parameter choices of the preceeding

“two tablesf).

20 . 21 il Whl Wul Whl Wuz th wuz
v v "0 2 b 0 o 4
Mhei 1643 0.685 0.098 0.250 0.137 0.167 0.211 0.1k6  0.205
116, - | v | o o
Sn - =-2.162 .215 -0.289 .370 .212 0.236 .303 .21 0.300
12083;. -1.249 .384  -0.870 .290 179 . 0.125 197 L1k7- 0 0.230
122 | L ' | I ‘
Te  -1.535 .850 -=0.7TL .259 .110  0.158 176 .162  0.183
Sm  -0.930 0.755 -0.448 .215 .102  0.119 151 .124  0.162
505, _1.267 o0.742 -0.697 0.219 0.114 0.113 0.148 0.124  0.16k
Sm -1.582 .728 -0.684 .193 .108  0.092 .132 .103  0.150
2065 5,145  1.086 -0.326 0.112 0.047 0.048 0.045 0.07L 0.062
208 : N _
“Pb -0.620 .791 -0.171 .09k .058  0.004 .04k 2032  0.076
205, _0.118 .84k -0.1L48 .056 .025 0.038 .038 .038 0.037
T) The sign of WSl depends on a phase choice in the BCS. transformation. It is

the relative sign of wl and the E2 operator (Mlo) which mainly determines

the sign of the quadrupole moment.




Table 4. Electric and mass quadrupole matrix elements and deformations. The quantities are defined in sect. 3-1. The experimental BE2's are

from the compilation of ref.

undetermined) from refs.

17)

, the Qel(2+)'s from ref. 2
26,35,h0,h2,h3,h9-5h,59)

, and the ‘incomplete selection of 'Bm' quasi-experimental values (sign

. el m RMS
Qq(2*) BE2} 9 Q,(2+) % . By Per x B ™ § for
Ex Th Ex Th Ex Th Ex Th Ex Th Ex Th Ex Th n P a o - m;;
Mhoa  10.9 2.9 372 26.8 38.2. 10.3 -8.1 -1.1 28.% 3.9 0.7 0.15 0.15 0.05 0.17 0.02°  0.10
*3 3 ’ 0.22 ’ '
116 t
Sn 1. b 6.0 26.0 ~6.3 -15. 1.3 1.9 -h.6 -6.7 .11 .1h "-0.02 -0.06 0.13 0.11 -0.03 -0.10
+} 2 0.1k
1205, 1. 8.1 15.0 16.3 -6.3 -28. 1.4 3.6+ -3.5 -9.0 0.10 0.11- -0.02 -0.11 0.12 0.12 0.12 0.10 <-0.06 =-0.09
E3N +p ’ 0.12
122
Te -9. 13. k1.7  46.2 31.5 =47, -6.9 5. 2h.1 -19.6 .16 .17 0.11 -0.17 -0.10 =-0.13
) ) ‘ ' .
W8 12,2 -12.1 k9.7 h7.2  k2.h k2.3 -9.2  -h.9  32.2 17.2 0.14 0.14 .0.12 0.12 0.06 - 0.10
7 ’ t5
0sn 203 -19. 73.2 93.0 Ti.0 68.5 -15.5 -8.0 5h.2 28.0 .17 .19 0.20 0.19 0.10 0.16
+3 +)
525, _29.9 “23.5 187.0 1k1.h 10h.5 B2.3 -23.2. -9.k 81.1 32.9 0.27 0.2k 0.29 0.23 0.21  0.12 0.2l
+10 +6
206 :
Pb - b, 6.0, 5.9 -17.1 2. -8.1 .03 .03 -0.03 0.05 -0.02 0
+1,-2 ’
208?b ‘ 1. 12.3 “k.9 0.6 -2.1 . 0.05 -0.01 0.0k -0.005 0
220py, 2. 5.2 ~10. 1. -4.9 .03 -0.03 -0.01 0

_Ef-(_.
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Table 5. Deviations from the correct ones of particle numbers for the boson

wave.function, i.e. (N-n) where N is given by eq. (A.17) of appendix 1.

Eigenstate Ji
0 0, 2 b

1 , 2 1 1
11kg, | —0.559 © -1.561 _1.99 ~3.768
A16g i  | 0.145 - 0.695 0.656 1.325
12anl ;'r ©~0.002  0.152 o 0.0 0.129
122Te 20.738 0.650 ' 0.929 : 2.762.
1h8Smg-' ’  o.h1é. N 1: 1.30k 'Vv 1.966 ‘h;oéz‘
15oém . 0.177 o o.233 10.563 0.983
l523m_ | 0.148 0.1k43 0.392 0.633
2065, %”f”aﬁ"éO%OIE“““““”‘—1;21h‘“*‘““*_“746?""‘“’“ﬂ“37$23”4‘
208y, 0 0" ‘ 6 B 0

210

Pb 0.025 » 2;351 2.827 7.&2&_




Table 6. Boson expansion coefficients for the cbllective part of the A = 2 transition operator,
| ‘ . : A - o
eq. (A.21).- The parameters are again given in table 1 and 2. The unit is b. but no effective

mass or charge has been multiplied in.

protons , B - _neutrons
10 21 31 31 31 10 21 31 31 31
T T TO 'l‘v2 Th T T TO T2_ Th

'llhcd '0.759 -0.34k  -0.060 -0.045 -0.058 2.kho 0.234 -0.132 ~0.089  -0.128

6g 5468  0.050 -0.004 -0.003 -0.007 2.985 0.169 -0.333 -0.159 -0.226

1205, 0.341  0.026 -0.001 =-0.001 -0.002 2.468 0.923 -0.226 -0.146 -0.263

1227¢  0.980  0.327 -0.055  -0.052 =-0.060 2.257 0.372 -0.129 -0.089 =0.128

M85 1,033 -0.095 0.016  0.011  0.018 -2.0TL ~0.684  0.246  0.185  0.260

50gn  _1.192  -0.129  ©0.028° 0.010  0.031 -2.385 -0.875  0.205  0.147  0.222

1524 -1.318 -0.159  0.038  0.026  0.042 -2.596 -0.674  0.141  0.098  0.158

2060, 5.097  0.002 -0.001 -0.001 =0.002 1.006 1.650 -0.368 -0.298  -0.433

2%, 0.501  0.028 -0.096 -0.062 =-0.161 2.120 0.46h -0.093 =-0.061 -0.155

21OPb 0.076 =~ 0.001 .-0.000 _—0.000 -0.000 1.783 0.903 -0.295 -0.221 -0.285

_.g-r(...
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Figure Captions

'Fig. 1l. Comparison between J = 0; 2, 4 energy levels invlh8?15o’1528m_from

experiments and from boson calculations without:(columﬁs a and c¢) and
with (cblumn'b) the cbntracfion terms discussed in sect. 2. bolﬁmns a
and, b correspond to‘the parameter choicé given in appendix 2, whereas the
quadrupole strength X has been increased by 30% for COiumn‘c. Dashed
lines represent states which do npt beiong t; the collective quadrupole
'branch; In the'theoretical spectra only J = 2 non-collective (TD)
' statés are shown. |

148,150,152,

Fig. 2. B(E2) values and static qﬁadrupole moments in m. The

energies are not to scale. The experimenﬁal information is labelled

corresponding to refs. 15) (a), 16) (b), 17).(c), 18) (d), average of

19--'21) (e) and finally the number in parentheses represent relative BE2
" 22
)

values for each upper -level taken from ref. The calculated values

éorrespond to the calculation iabelled a in fig. 1, for which parameters

\

are listed in appendix 2.

Pig. 3. Equipotentialvsurfaces_for~lh88m. , '
Fig. L. Equipotential surfaces for lSOSm.
lSESm.

Fig. 5. Equipotential surfaces for

Fig. 6. Potential energy at <y = 0° for Sm-isotopes.

Fig. 7. Comparison of J = 0, 2, 4 experimental levels in 206’208’210Pb

with thosé of thevboson calculation (including the contraction terms, using
parameters listed in tables 1 and 2). Dashed lines in the theoretical

spectra indicate the lowest non-collective 2+ states. Thé experimental

210

levels of Pb, all the highlying ones in 208Pb,and a few levels in
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.

2O6Pb have.only been observed in two-neutron transfer reactions

58,

and
may hence.répresent states nof bélonging to thevquadrupole branch, at the
-same time as fhié explains the non-observation of thé multiphonon levels
in 21OPb, where the pureness of the harmonic picture will imply very weak

transfer cross sections.

Fig. 8. B(E2) values and static quadrupole moments in Pb-isotopes. Energies

~are not to scale. The experimental B(E2) is from ref. 17).
. , s . 206 '
Fig. 9. Equipotential surfaces for- Pb.
. . 208,
Fig. 10. Equipotential surfaces for “Pb.
. : . 210
Fig. 11. Equipotential surfaces for Pb.
Fig. 12. Potential erergy at Yy = 0° for 3 Pb-isotopes. ‘
| » | !
Fig. 13. Comparison of J = 0, 2, 4 experimental levels in 11 cd, 116’1208n
and 122Te with those of the boson calculation (without contraction ternms,

parameters of table 1 and 2). Dashed lines represent non-collective states.

" A number of such 0+ states in the éxperimental spectrum are known to be

pairing states.

L
Fig. 14. B(E2) values and static quadrupole moments in 11%a and‘ll6Sn. The

energies are not to scale. Labels correspond to refs. 3)‘(a and d),

(b, this represents an average of refs. ,» of which at least

31)

one completely disagrees with the adoptéd BE2 vaiues), (¢ and d),

1) (0, 3 (0, 333 (@), ®) ), V0), ) (5) ena ¥ 0.
37)

Q'), s h)a

Numbers in parentheses are relative values. According to ref. , the
Q(2+) value of ref. 36) seéms.to be in error. The ambiguity of the .sign

of Qe£(2¥) from ref. 3l) is discussed in the text.
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Fig.
Fig.

Fig.
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15. Equipotential surfaces for lthdg

16. Equipotential surfaces for 116Sn.

17. Potential energy at Yy = 0° for two N=66 nuclei.

‘ o ~ 120 122

18. B(E2) values and static quadrupole moments in Sn and = "Te. The
energies are not to scale. Labels correspond to refs. 39) (a), 17) (v),

‘

0 (e), ) (a), BM) and hl) (e). The calculated transitions in 1225,

" are taken for yo = 0 rather than 0.05, which would reduce the important .

Fig.
Fig.

Fig.

ones by.about‘25%.

19. Equipotential surfaces for 12OSn. ‘

122

- 20. Equipotential surfaces for Te.

21l. Potential energy at Y = 0° for two N=T70 nuclei.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, 'person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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