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Dataflow Compu'ter Architecture

ABSTRACT

The primary objective of the proposed research is to define
and evaluate an architecture for a computer system comprising
large numbers of small processors, thereby taking new advantage
of LSI technology. Our premise, however, is that such a machine
cannot be successful if based upon the usual von Neumann concepts
of sequential control and the memory cell. Instead, we adopt the
principles of dataflow as a more appropriate semantic base, since
dataflow places no constraints on the order of execution other
than the arrival of data. Such a basis appears very well suited
to a technology disposed towards distributed processing.

We have developed so far both a high-level dataflow programming
language and a base machine language into which programs are compiled
for execution. We also have devised an interpreter for the base
language capable of more highly asynchronous operation than other
dataflow systems. It is the emulation of this interpreter that is
the goal of the machine proposed here.

We feel that success in this work would be significant since
such machines might not only speed the execution of programs,
but may also allow the development and application of significant
reliability and fail-soft techniques.

A second objective of the proposed work is to collect the
experiences of others in using the particular high-level dataflow
language we have devised, to improve it, and to determine how
well people are able to program in dataflow.
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I. The Objective, Significance, and
Research Methods to be Employed

Objective

The primary objective of the proposed research is to con-

tinue the definition and evaluation of an effective architecture

for a general-purpose dataflow computer composed of large numbers

(hundreds or perhaps even thousands) of small LSI processors,

thereby taking new advantage of LSI technology. We also propose

to study associated system problems with the eventual goal being

a specification of a complete dataflow computer system.

2. Basis and Significance of the Proposed Work

2.1 Basis

Many other proposals (e.g., the Holland machine, Illiac IV,

Hydra, Hypercube) have been forwarded in an attempt to synthesize

a single large machine from several small processors which

cooperate in a concerted effort on a single computation. Almost

all of these proposals (some exceptions are CChamberlin-71, Dennis

& Misunas-T74, Rumbaugh-77, Sonnenburg & Irani-74]) have failed

to recognize that such a machine, only recently made possible

by new advances in technology, must itself be founded upon new

principles of computation. This is the fundamental premise

upon which this proposal stands. We claim that the problems

involved in utilizing the new technology are not related simply
to providing a proper interconnection mechanism, or to

designing a machine which, for example, can efficiently manipulate

arrays. Rather, the problems are due to one of the fundamental
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premises of computer design: the von Neumann model of computation

and Its basic principles of a (centralized) sequential control and

direct programmer manipulation of memory cells. In place of

the von Neumann model, we have adopted the opposing principles

of dataflow [Dennis-73, Karp &Miller-66, Rodriquez-69, Bahrs-72::

1. Operations execute when and only when the operands
required become available (asynchrony).

2. Computation is based on the values produced rather
than on where those values are kept (functionality.
I.e., the absence of side—effects).

By adopting these principles, we can realize the asynchronous

execution of programs without the need for parallel programming

constructs (e.g., parbegin - parend) or program analysis of any

kind.

Our approach has been to develop simultaneously a base

machine language and a higher-level dataflow programming language
called ID (for Irvine Dataflow) [Arvind, Gostelow, &Plouffe-76].
Operationally, programs are written only in ID. They are then

compiled into the base language (Section II - Semantic Basis

of the Machine, and Appendix) and executed on a dataflow computer

(Section III - The Proposed Machine). The proposed machine emulates
an interpreter [Arvind &Gostelow-77a: capable of far greater

concurrency of execution than has been possible in other dataflow

systems. It is the definition and evaluation of an architecture

for this machine that is described in Section III and which is

the primary subject of this proposal. As a final note on our

approach, we feel we have now developed a clean semantic basis

by simultaneous development of both the higher-level and base dataflow

languages, and as opposed to most other approaches to machine design.
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realization of the base language interpreter has become the goal

of the architecture, rather than just a resulting effect.

2.2 Significance

Even though LSI technology has made available to us tremendous

capacity for computation, no one has yet been able to realize this

potential within a single machine. The reasons, we feel, are

inherent in the usually unquestioned principles of the von Neumann

approach. Dataflow provides a fundamentally distinct direction

for development. One significant result of developing such a

machine can be seen by studying the time-complexity of the programs

it executes. In Section II we show, for example, an algorithm that
3 .requires 0(n ) time on a sequential machine, but may execute as

fast as 0(n) time on the dataflow machine (as long as O(n^)

processors are available).

Also, a particular advantage of dataflow is its inherently

functional nature due to the absence of side-effects, and a

correspondingly modular structure [Friedman & Wise-76l]. Such

properties are of interest in many areas of computer science.

For example, much of the movement towards structured programming

can be viewed as a drive towards a more functional and less

procedural semantics. Program verification and proof of formal

properties also appear less complex when only functional modules

are involved [Guttag-77, Arvind & Gostelow-77b, Ashcroft & Wadge-77].

We feel such points are important, even though they are not well

understood.

Finally, we expect that a machine with large numbers of

small asynchronous processors will be well-equipped to provide
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new and more sophisticated error handling, reliability, and

protection capability than might be possible in a more conven

tional system. Such would be due in part to the dataflow

basis, the existence of a pool of similar units, and the incorporation
of these features into the lowest machine levels where the many

processors can provide the capacity to absorb the overhead such

facilities would require. These points are expanded upon in

Section III - The Proposed Machine.

3. Method

Our primary objective is to devise an effective architecture

for a machine comprising large numbers of small processors. To

do this we noted that a new semantic basis was necessary, and

that dataflow, we felt, could provide that basis. Towards that

end we have developed the high-level dataflow language ID and a

low level base machine language into which ID programs are

compiled. (Some examples appear in the following section.)

The language allows for highly asynchronous execution by automat
ically unfolding loops and by allowing simultaneous execution of

distj.nct invocations of the same operation. Here an operation
may be any function, for example, an addition, a function application,
or even a loop. The primary manifestation of such unfolding

and simultaneous operation invocation is that even simple programs
can make demands for large numbers of small tasks. These tasks

would allow a machine, with sufficient and properly controlled

processor resources, to allocate space (the processors) rather

than time for program execution. During the research period we
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propose to successively refine and evaluate an architecture

beginning with a design presented in Section III. We propose

to evaluate each refinement by incorporating it into a simulator*

and making performance measurements on a set of real programs**.

We hope to determine, for example, what a good interprocessor

communication system would be. Currently we are using a simple

but flexible ring bus. Would a Wittie nwittie-76l] or some other

system be preferrable? Or perhaps a Fierce-ring [Pierce-723

system? Also, scheduling of tasks is important. How might this

be done? These and other questions are discussed later in

this proposal.

We also propose to investigate the ability of people

to program in dataflow by considering the experiences of

both undergraduate and graduate students who will be writing

ID programs. We hope to determine the basic ability of people

to think in dataflow, and the suitability of ID in both its syntax

and semantics. Finally, we plan to modify the language (or to

reject it altogether) based in part on these experiences.

*The simulator is currently 30QQ lines of SIMULA code and has
been operational for about 6 months on the campus computing
facility PDP-IQ.

**We have a compiler that translates ID programs into the base
language for direct input into the simulator.
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II. Semantic Basis of the Machine

1. Introduction

In this section we give an example of an ID program along

with Its translation into the base language. We also discuss

the execution of this program on an ideal dataflow computer.

We hope to demonstrate that it is possible to program in a

high-level dataflow language, and that ID programs are capable of

generating demands for large numbers of processors. It should

be stated explicitly that the semantics of an ID program are

defined by the base language translation. Programs have the same

meaning if they produce the same compilation.

We wish to emphasize here that ID is a complete programming

language and includes facilities for resource handling via data

flow monitors [Arvind, Gostelow, &Plouffe-??] and for programming
with streams; ID is also extensible and incorporates programmer-

defined data types. Because of limited space, only some of the

fundamental programming constructs will be demonstrated here;

nevertheless the execution behavior of ID programs and the

demands placed by ID programs on machine resources will be evident

even in the small examples.

This section is thus an introduction to dataflow and discusses

material already well-developed by our group. Section III following
proposes the architecture we wish to investigate.

2. Elementary Programming in ID

ID is a block-structured expression-oriented single-assignment

language. This subsection briefly explains the four fundamental
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kinds Of ID expressions - blocks, conditionals, loops, and
procedure application - by giving examples of each and their
translation into the base language.

21 Block Expressions

To evaluate the two roots of a quadratic we can write the
following list of expressions or program;

( (-b + sqrt(bi2 - 4*a*c))/(2*a) ,
(-b - sqrt(bf2 - 4*a*c) )/ (2*a) )

However, it is often more convenient for the ID programmer instead
to identify and to reference certain partial results, as in
the following functionally equivalent block expression, the
compilation of which is shown in Figure 1:

( X ^ sqrt(bf2 - 4*a*c)•
y ^ 2*a
return (-b+x)/y, (-b-x)/y)

To define some terminology, an assignment statement assigns
a variable as the name of the output of an operator (any box in
Figure 1); note that assignment is not itself an operator,

variables are used to specify the interconnections among the
operators. Assignment statements in a block are separated by
semicolons and can always be commuted without affecting the
result of the expression. The inputs to a block are those

variables referenced but not assigned within that block. The
re^^ clause is the last item in a block and specifies the

ordered outputs of that block.
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A variable can be assigned exactly once within its context.

This single-assignment rule makes the connection shown in Figure 2

illegal and guarantees that once defined, an instance of a variable

never changes in value. This is a concrete implementation of the

second principle of dataflow (functionality) for it removes

the need for two processes to synchronize the updating of memory \

since there are no memory cells to update. As a final point of '

syntax, variable names are scoped to the most recent instance of [
assignment within the same or an encompassing block, thus

allowing variable names to be reused in distinct contexts.

Values in the base language are carried by tokens that flow ^

along lines. According to the first principle of dataflow, an A

operator executes when and only when all its required input tokens L
are present. It does so by absorbing those tokens as input,

computing a result, and producing an output token that carries

that result as its value. Execution of an operator is illustrated

in Figure 3a. Figure 3b shows that whenever a token encounters

a fork while traversing a line, the token is replicated and follows

all outbranches of the fork. In this way a single result may

be sent asynchronously as input to many different operators.

Note that the order of execution of enabled operators is unimpor

tant since there are no races, i.e., computation is determinate

I Arvind & Gostelow-77b, Patil-70l].

In a von Neumann machine, the operators address the data;

in dataflow, the data addresses the operators. That is, each

token actually comprises two fields: value and activity (address).
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Figure 2

An impossible connection

Figure 3a

Execution of a dataflow operator

Figure 3b

A fork
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The activity field does not physically specify a location, rather
it too is composed of two parts: activity name and opcode. The
activity name portion uniquely identifies an instance of

execution of the destination operator, termed on activity, while the
opcode simply specifies what primitive is to be executed. Thus

If the program of Figure 1 were placed in the body of a loop, the
token moving from operator s to operator t on each iteration of
the loop would specify the same opcode, but distinct activity
names. The important point is that each execution of each

operator becomes independent of all other executions of every
other (and the same) operator because it has a unique name.
Since no memory cells or side-effects exist, it is possible
for many instances of the same variable and executions of the
same operator to exist at the same time. The method of

generating activity names is a simple and mechanical process
and is detailed in the Appendix.

2.2 Conditional expressions

Consider the ID conditional expression

^if P(x) then f(x) else g(x)) (2)

and Its base language translation in Figure 4. If the predicate
P(x) is true, then a tr^ valued token input to the SWITCH causes
Xto be sent to box f; otherwise x goes to box g. The MERGE
operator ((g)) executes when either of the two inputs arrives
and simply copies the input to its output. Thus if p(x) is
true, the result of the conditional is f(x), else it is g(x).
Both f(x) and g(x) must return the same number of ordered results
(one or more).
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2.3 Loop expressions

All looping constructs in ID are expressions consisting

of four parts; an initial part, a predicate to decide further

iteration, a loop body, and a list of expressions to be returned

as the value of the loop. Consider the loop in the following

expression for Simpson's Rule where f is to be integrated from

a to b over n intervals of size h:

(initial s-«-f(a)/2;
x-«-a+h

for i from 1 ^ n-1 do
new x-^x+h;

y^f (x) ;
new s-<-s+y

return s+f(b)/2)*h

A loop expression is essentially a set of recurrence

relations, where new values of recurrence variables are specified

as functions of old values and initial values. In the above

example, statements 4 and 6 are recurrence statements where

the recurrence variables new x and new s are being computed,

both variables having been given initial values. (It is

important to notice that y in statement 5 is not a recurrence

variable; it is simply a partial result that is referenced

in statement 6.) Any reference to a recurrence variable in

the body of a loop is to the "old" value of that variable

unless the word new precedes the reference. Thus, the x in

line 5 does not refer to the value new x computed in line 4.

(The value of new x could have been referenced on the

right-hand side of line 5 by writing new x instead of just x.)
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ID differs from recurrence relations in mathematics only in

that a stopping condition must be specified, and the final

value(s) of interest must be specified in the return clause

of the loop. Changing the order of statements within

the loop body does not affect the results (nor the base

language translation).

Now let us briefly consider an execution of the above

loop expression, compilation of which appears in Figure 5.

Suppose function f of line 5 takes a long time to execute.

Since the loop predicate i<n-l does not depend on f(x), the

production of n-1 values for x over the range a+h to b will

be a relatively fast process. Recalling that each activity is an

instance of execution of an operator, we see that instead of

accumulating toxens at the x input of box f, many instantiations

of f (independent activities) may proceed currently.

We can now briefly explain the operators D, D~^, L, and

L ^ seen in Figure 5. The Doperator changes the activity name
(logical destination address) of tokens within a loop for

every value which cycles; it does so simply by incrementing a

cycle counter position within the activity name. The D~^ operator

sets that cycle counter back to a 1 — the same value that the

cycle counter begins with at loop initiation. The L and L~^

operators enclose every loop. Their purpose is to create a

new context for all activity names within a loop by stacking the

input activity name (done by the L operator), and to return the

results back to the old context upon loop exit (done by L~^).

For example, if the function f in the above examole were
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a loop, then each iteration of the outer loop would create

an independent execution of the inner loop, so all initiations

of that inner loop could proceed concurrently. This can

dramatically reduce the time complexity of an algorithm as
«

shown below.

2 . 4 Procedure application

Figure 1 shewed the ID sqrt function implemented by the

machine primitive SQRT. If sqrt were implemented instead as

a procedure application, then the SQRT box would be replaced

by the APPLY schema at the extreme left in Figure 6. The

APPLY operator expects one input token carrying a procedure

definition value and another token carrying the argument value.

It applies the procedure definition to the argiament when both

have been received. Note also that "sqrt" is a reference to an

output, and we would now say that the block expression to compute

the roots of a quadratic needs sqrt in addition to a, b, and

c as inputs. The output sqrt then, presumably, refers to a

box that produces a constant value of type "procedure definition"

that describes a square root function, for example;

sqrt procedure (x) (x+(0.5))

APPLY is actually two operators: A (activate) and A~^

(terminate) as shown in Figure 6. The A operator accepts the

procedure description and creates an instance of its execution .

It does so in a manner similar to that already described by

the L and L ^ operators by creating a new context for activity
names. This allows concurrent executions of procedures from
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the same APPLY.

3. Program Execution

This section gives an example program in ID, its base

language translation, and explains its execution. In particular,

we hope to show how demands for large numbers of small processors

can be created by dataflow programs and the tradeoff possible bet

ween time and space complexity. However we must first explain

structure values which are used to represent arrays and other

value aggregates.

A structure value is either the distinguished empty structure

A, or a set of <selector:value> ordered pairs, where "value" may

be a simple value (such as an integer or a string) or a structure

value. There are exactly two operators defined on structure

values SELECT and APPEND. If t is the structure in Figure 7a,

then tC3!]=103 (i.e., the selection of component 3 from t) , tC4ll is

itself a structure, and tC5ll=A. Multiple selectors are also

allowed, so t[4,1]= (t[4]) Cll]=201. To create the structure of

Figure 7b, we append the value 102 to t with selector 2 by

writing t+ll2l|102. Most importantly, the structure created by

append in Figure 7b is neither the original structure t nor any

modified version of t, since dataflow values cannot be modified.

^^3ther, each append creates a new and logically distinct structure,

meaning that the input stucture t has an existence independent

of and possibly concurrent with the new structure that is the

output of the APPEND operator. This means that the value of t
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Compilation and execution of
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may be referenced by some other expression in the program even

after an append to t has been completed. (In most cases

implementation tricks can be used to avoid the copying implied by

APPEND.)

Also, reminiscent of contemporary languages, we use the

syntactic shorthand of (5) for (4):

new X ^ x+Ci3y (4)

new x[i] •<- y (5)

The following ID procedure multiplies an £xm matrix a by

an mxn matrix b in the straightforward way. A matrix is represented

as a vector of row vectors.

)rocedure multiply (a,b,£,m,n)
(initial c-«-A
for i from 1 t do

new cLiJ^ (initial d^A
for j from 1 n do

new dLj J ^ (initial dp^O
for k from 1 to m do

new dp •<- dp+iiri,k"T*bCk, jH
return dp)

return d)
return c)

A compiled version of the above orocedure is shown in Figure

8. In order not to obscure the principles, only the non-constant

variables are shown inside the loops. That is, in the formal

system (but not necessarily the implementation), the variables

a,b,i,j,m are all constants but must all cycle in the innermost

loop since they are all inputs to operators in the body of the loop.

To include them would simply clutter the Figure. Also, each loop
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has been outlined by a box to indicate its scope.

Recall from the discussion of Section 2.3 that the L and

L~^ operators allow each instance of execution of a loop to proceed

independently, just as if that loop were a primitive box relative

to the surrounding context. However, a loop is unlike a

primitive in that the loop itself may be composed of other loops

(nesting), each of which might again proceed independently in

execution. The effect of this at execution is for the program

loops to "unfold," and its significance in terms of generating

large numbers of small tasks is most clearly seen in terms of

the time complexity of execution. For matrix multiply the time

complexity is 0 (-^+m+n) rather than the 0(-&tin) for a sequential

machine. The space complexity (processors) for our dataflow

interpreter is O (£m), whereas for a sequential machine it is a

constant 1.

The reduction in time complexity for matrix multiply is

dramatic; nevertheless, it is quite common for the unfolding

2
interpreter to reduce complexity by a factor of n or n . This

is not always the case, and some programs maintain the same time

complexity in dataflow as for a sequential machine. Others show

only marginal gains, for example, Hoare's quicksort goes from

0 (n log n) to O (n) .

We wish to emphasize that there is no centralized controller

issuing commands for parallel operation such as in ILLIAC IV.

The basic operation here is the generation of activities, each

activity being carried out independently by a small processing

element that forwards its result tokens to other activities

for continued processing.
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III. The Proposed Machine

1. Introduction

This section presents the initial architecture we plan to

investigate during the proposed research period. The goal of the

design is to implement the unravelling interpreter discussed in

Section II. Many problems associated with such a machine must

be solved. Some of these problems are directly related to

the architecture (such as selecting an appropriate token bus,

and ensuring a modular and expandable design) while most are

"system"-oriented (such as how to achieve fault-tolerance, and

some problems in programming and implementing input/output).

The focus of the work is the eventual specification of the

machine and its components. To that end we intend to study

several issues required for a complete system. Even though

the major portion of the following discusses architecture (Section 2),

we will devote no less attention during the research period to

these other important issues (Section 3).

2. The architecture

Figure 9 shows an ensemble of processing elements (PEs)

connected on the one side to a token communication system (token

bus) and on the other side to a memory system. Memory, of course, \

is not intrisic to dataflow semantics; its purpose is simply 1

to avoid transmission of large pieces of data (such as structures

and program code) by tokens. This is accomplished by storing i

the structure in the memory and by sending only a pointer to the /
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structure on the token itself. This scheme implies a memory

controller MC attached to each PE which, when presented with

a pointer, can retrieve the corresponding structure (or portion

thereof) from the memory. We assume there is a large number of

memory modules, each module connected to one MC. A PE makes all

requests for stored information through its attached MC. Since

data may be stored in a non-local memory, it is clear that an

MC must have the ability to communicate with other MCs. Memory

controllers are therefore interconnected by a bus as shown in

Figure 9.

The semantics of the high-level language ID guarantee that

no two invocations of a procedure interact with one another

except through input parameters and results. A similar statement

holds for invocations of a loop expression. All activities

(invocations of operators) belonging to the execution of a

particular procedure or loop, but not to any inner procedure or

loop, are said to comprise a logical domain. it is clear, then,

that tokens belonging to two different logical domains are best

kept physically apart. Similarly, structures stored in memory
and referenced by activities in different logical domains should

also be kept apart from one another and near their respective

accessing domain. To actually separate logical domains, the

machine will have the ability to partition into separate

physical domains where each physical domain will comprise some

number of PEs, MCs, and associated bus capacity. Hence, initiation

of a logical domain may bring about the creation of a new physical
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domain. One or more logical domains may share the resources of

^ single physical domain. The ability of the system to partition

itself into disjoint physical domains is considered very important

in reducing communication interference and overhead. We plan to

verify (or disprove) this conjecture during the research period.

The following subsections describe the token bus, memory

bus, and PEs in greater detail and what we need to learn about

them. The primary tools include the simulator and the compiler

to translate ID programs into base language code for input to

the simulator. The simulator collects many useful statistics

regarding PE and bus requirements as a function of time. Besides

the size of the machine (which may vary dynamically according

to load), the relative speed of the communication system and the

PEs are also input parameters.

2.1 The token bus

The system with which we are currently experimenting employs

a segmented ring as a token bus with PEs attached to each segment.

By attaching or detaching segments, the ring can be made larger

or smaller during execution. A ring defines a physical domain,

and by dividing a ring into separate sub-rings we can create

physical domains dynamically.

Concerning addressing of tokens to PEs, simulation results have

shown that purely logical addressing (by activity names) of

tokens to PEs is not practical — performance was not good and

degraded severely under sub-optimal conditions (e.g., shortage

of PEs). To implement physical addressing, we must assign an
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activity to a particular PE and be sure that every token input

for the activity is sent to that PE. More than one activity

may be assigned to one PE. Operationally, each PE in a physical

domain of N PEs is given an address between 0 and N-1. When

a token is output by a PE, a physical address is computed and the

token moves via the bus to that PE. For speed and efficiency, a

hash function is used to compute a physical destination PE

address from the activity name. So far, we have experimented

with only a very simple hashing function: a linear combination

of the operator label and a numeric label given to the token's

logical domain, modulo N. However, any such hashing function

must satisfy several criteria:

1. Activities should be evenly distributed over time
and space (the PEs).

2. To avoid set-up time for PEs (such as code fetch)
many invocations of the same operator should take
place on the same PE.

3. The hash function must operate over a physical domain
of any given size.

We hope during the research period to measure machine

performance under various hashing functions and thereby to

determine a good activity assignment algorithm. However, it may

be that no simple function can be found, in which case we will

supplement it with heuristics to incorporate the most important

parameters. This is, in fact, just a first attack on the

assignment and scheduling problem which we have selected for

special investigation and listed separately in Section 3 below.
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In describing the token bus, we have been using the example

of a ring implementation. The proper bus structure, however, is

a matter we intend to study. There appears to be a wide variety

of possibilities here, and we propose to study at least three

schemes: the ring structure (the current system). Pierce loops

CPierce-723, the Wittie bus Cwittie-763, and possibly other communica

tion networks. It is very difficult to determine a priori what

the machine's behavior should be under each of these schemes, and

theoretical analysis is not possible due to the non—stationary

nature of the system. Thus, we must simulate. One characteristic

of the ring system, however, is that as the number N of PEs increases

in a physical domain, communication delay increases as 0(N),

while other more point-to-point systems (the Wittie bus, for

example) tend to O(log N) increases in delay. Each of the above

busing systems is capable of partitioning in some way and thereby

capable of supporting physical domains, however the ring systems

may require more complex control than, again, a Wittie bus. On the

other hand, the Wittie bus appears less amenable to modular construct

ion than the ring systems.

2.2 Processing elements (PEs)

Basically, each PE is a three-component pipeline composed of

token input, computation, and token output sections. Since

there may be many activities assigned to a given PE, a token

(which may belong to any one of several activites) enters the

input section of a PE where it is queued. Part of the duty of

the computation section is to cycle and remove each token from
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the input queue, sort it, and append it to the appropriate

partial (as yet incomplete) activity list. When the last token

arrives and completes an activity, a request to carry out that

activity is queued. These requests are also processed by the

computation section (according to a scheduler yet to be devised) .

When the activity has been processed, the computation section

manufactures the output tokens and queues them for output. The

output section then sends the tokens back into the token communication

system to make their way to their respective destinations.

The most unusual aspect of a PE is the need to queue tokens

and sort them. Experiments conducted so far on our set of sample

programs show that a properly balanced system (a system where the

number of PEs per physical domain achieves minimum execution time)

requires that the list of partial activities holds an average of

15 tokens; the maximum we have seen is 64 tokens for the worst

case of one physical domain with one PE to execute an entire

'^^hrix multiplication. In terms of capacity (we assume a maximum

of 100 bits per token) no problem is foreseen. Speed, however,

will quite possibly require careful design, for although average

token arrival rates may be reasonable, burst rates may often

exceed (high-speed) queue lengths. We are aware of the potential

for problems here, and plan to resolve them during the research

period.

The computation section appears straightforward, though it

may be appropriate to have more than one computation section in

a single PE in order to handle all the duties that a PE must
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perform, including token sorting, code and data fetch, and the

computation itself. There are, however, at least three ways

in which performance may be improved. First, code fetch

requests can be generated even before an activity is complete.

Second, we anticipate that a single PE will be assigned to

execute several invocations of the same operator and the code

need be fetched only the first time that operator is executed.

Third, even though previous discussion has implied that each

operator box in the base language program is a distinct

activity, this need not be so. For example, the sequence of

operators in Figure 10 could be coalesced into a single operator

or macro-activity, all of which the computation section carries

out internally in sequence. This eliminates unnecessary token

traffic and PE set-up overhead.

We do not intend to emphasize fast PEs, but rather hope

for speed of processing (along with reliability) as a result of

distributing the work over a large number of processors and

eliminating overhead where possible. We expect that the coalescing

of operators mentioned above will be significant here. Thus

we propose to investigate the effects of coalescing, one result

of which is to increase the "grain" of an activity in an indirect

way. That is, we are quite sure that scalar addition is, in most

cases, too small to be treated alone as an activity. Coalescing

can be used to raise the granularity in a natural way to an

appropriate level.

Finally, the output section poses no functional problems
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other than one shared by all sections of a PE — finiteness of

its local working store. Overflow is possible at any point, and

if not handled deadlock will follow. We assume that as a last

resort storage can be obtained from the memory system to avoid

deadlock, but we need to study the effects of these boundary

conditions on performance.

2.3 The memory system

The memory system is perhaps the least understood component

of the machine, though we anticipate patterns of use similar

to that for the token bus. As mentioned before in motivating the

concept of a physical domain, just as locality is a factor in the

token communication system, so is locality a factor in the

memory system. For example, we can imagine a situation where

each of several physical domains contains some logical domains

that repetitively reference a particular structure. Since values

in dataflow can never be modified, the memory system can make

copies of the structure and send the copies once and for all to

the respective physical domains rather than suffer repeated delays

from non-local access. Such an arrangement can be compared to

conventional cache memory organizations used to speed memory

access. We expect that only parts of a (large) structure will be

copied on demand. As the computation proceeds, copies may be ~

deleted to make room for more active data structures.

We have much to investigate in this area of the machine, j
and during the research period we plan to determine just what

kinds of memory system demands are generated by the PEs. We then

plan to investigate some alternative bus structures and to deter

mine their performance. Finally, we must investigate the mechanisms
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that will accomplish the above mentioned copying of data structures

to avoid non-local access and permit parallel accessing of future

memory requests.

3. Other Areas of Investigation

Along with our investigation into the architecture of the

dataflow machine, we plan detailed studies in the following areas

which must be understood before such a machine can be built.

3.1 Fault-tolerance

Reliability and fail-soft are two very important characteristics

of any complex system. Computers, however, have been notoriously

deficient in this regard. (Reference [Misunas-76] shows a first

approach for one dataflow machine.) We feel that the unique

characteristics of the machine proposed here bring new opportunity

for improvements in this area. Our approach is multi-level. At

the highest level is programmer-controlled error handling and

protection. In this regard two projects are currently underway.

One graduate student is investigating a software-reliability and

error-handling facility for ID which also impacts the base language

operators. The goals here are to develop a model by which the

programmer can view exceptional conditions and handle them

completely in ID, if desired. A second goal is that computation

should otherwise proceed asynchronously as far as possible, but

without allowing the computation to run away. Also at the higher-

level is the work of another graduate student on incorporating a

protection mechanism into ID ([Bic-77a,b]). This work is
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scheduled for completion in June 1978, and results are

encouraging. The scheme is based on attaching "password" tags

to the data to define that data's protection domain. Every

base language operator then accepts tagged input data and computes

a new tag (or aborts the operation if the tags are not commensurate)

for the output data. The scheme is capable of solving protection

problems not previously solved on any machine, including the

proprietary services problem in all published (and several

unpublished) forms. It is a general scheme that is quite easy

to implement, and its success is based in large measure on the

fact that dataflow is a functional (side-effect free) language.

Chce this higher-level work is complete, we will be able to

begin work on the lower-level aspects involving message retry,

and logical removal of failed components (such as processors and

memory boxes) from the pool of available resources. We hope to

be able to accomplish this by explicitly incorporating error

checking facilities into the design of the machine's components,

and by taking advantage of the fact that the major resources are

already pooled and that much of the data may exist in several

copies in different areas of the machine.

3.2 Performance analysis

This is a broad area which, even for a particular architecture,

requires investigation in order to achieve the most from the design.

Within this category we include activity assignment and scheduling

studies, and similar investigation into the memory system's MCs

and how they represent and manage the data they store.

To get a feel for the machine's behavior and what we hope

to be able to achieve, we give some preliminary results recently
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gathered from the simulator for the current design. Figure 11a

shows how execution time varies with the number of PE resources

devoted to the computation* when the entire computation is

confined to one physical domain. The leftmost end of

the graph is the total execution time for one PE. However, as

additional PEs are allocated to the computation, execution time de

creases rapidly. In general, there is a broad flat portion of the curve

where the minimiim execution time is produced by a range of PE

resources (typically a factor of 5 between points A and B).

Points to the right of B indicate that the benefits of additional

PEs are offset by increased communication costs. The relatively

flat spot between A and B is advantageous since a rather crude

resource estimate may be sufficient to produce the best performance.

In fact, it appears that the parameters

C = mean token transmission time
Q = mean computation section queue time
0 = mean output section queue time

are good monitors of the optimum number of PEs. That is, whenever

the number of PEs N is increased or decreased so that

C ^ Q + 0

then N invariably falls between the points A and B. If N is outside A

and B, these same parameters also indicate the direction in which N should

be moved. The parameters are easily measured by a machine during execution,

so self-regulation may be possible. How many PEs is optimum depends

*The programs we have used in our tests (compiled from ID code)
are matrix multiply. Gauss elimination, Gauss-Seidel approximatiom,
least square regression, quicksort, and optimal binary-tree gener
ation.
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upon the program, but numbers range from five to forty PEs on

our (small) test programs; for example, forty PEs was optimum

for multiplying two 7x7 matrices.

Figure lib compares the simulator with theoretical bounds.

The complexity k is the size of the input, where for the case of

multiplying an £xm and an mxn matrix we let k=£+m+n. Observing

the bounds we do not achieve the minimum performance 0(k), but

2 3we do better than 0(k ) and certainly better than the 0(k ) of a

sequential machine. The two solid lines may be compared to show

the effect of a memory system. In fact, the measure shown

that includes memory is for a system that takes advantage of

locality of reference by copying structures as discussed in

Section 3.3 above. Without this very important feature, performance

falls, dramatically and approaches O(k ).

A final point concerns the utility of dynamically varying

the size of a physical domain in concert with the demands of an

ongoing computation. Experiments have shown that tracking a

computation so that near optimal PE resources are provided at

all times reduces computation time only minimally. That is,

a good constant domain size has low internal costs. However,

high external costs can result since other neighboring physical

domains can suffer from inadequate resources that otherwise might

have been available had that domain reduced its size and thus

freed PEs for use by those neighbor domains. This result is in

many respects a verification of Figure 11a, and has important

implications for how resources might be allocated in a dataflow

machine — a problem we have only begun to touch.
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3.3 Evaluation and improvement of ID

ID is a complete programming language. However, several

aspects are in need of study and improvement. A particularly

tricky problem is specifying sequentiality in a convenient and

efficient manner. This need arises especially in input/output

programming.

We also plan a more overall appraisal of ID by gathering the

experiences of undergraduate and graduate students who will be

using the language through our ID to LISP compiler. Some particular

difficulties we expect to find in ID are in nested loops where

the language often forces the programmer to be aware of and to •

name partial results in which he has no interest, for example the

results passed back from an inner loop to the next outer loop.

4. Summary

The system presented here is not in the usual mold of a

"parallel" computer. Rather it is based upon sound fundamentals

markedly distinct from the more traditional approaches. Many old

problems (e.g., scheduling of tasks) must be solved anew in order to

create a useful machine, but many other problems (e.g.,

protection) seem significantly eased. It has been the purpose

of this section to discuss our ideas on the architecture for a

machine, and to present some of the problems we hope to solve.

These problems include the basic design of the computer and its

components, and how these components are linked together.

Communication is the fundamental difficulty, and is followed

closely by scheduling and the memory system; other principal

areas in need of study are fault-tolerance and some special

issues in language design.
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APPENDIX

The Interpreter - The Details of Activity Name Creation

Activity names are generated in such a way that those tokens

with identical activity names are exactly those input tokens

destined for that named activity. To demonstrate, the symbology

a = X u.c.s.i

means that output a of a dataflow operator in a program is

producing a token that carries the value x to the destination

th
activity named "u.c.s.i", i.e., to the i initiation of the

operator labelled s found within the procedure code c executing

in context u. Thus a is the output name, x is the value of the

token produced by that output, and u.c.s.i is the name of that

token's destination activity. For example, consider Figure 1

and let

a = a u.c.s.1

be the token from output a destined for operator s. (We note that

i^l would imply that the code in Figure 1 was within the body

of a loop and that this token was produced on the i iteration

of that loop.) Let the remaining token input to activity u.c.s.i

4lu.c.s.i

(Note that the output of the constant function 4 has no name.) Thus

the output of operator s is

4alu.c.t.i
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Consider the activity names of these input and output tokens

and note that the i set of input tokens to operator s produces

th
the i set of output tokens. In fact, observing the input

activity name, only the operator label is different on output.

In the following, we generally assume u.c.s.i is the activity

being executed, and operator t is the output destination.

1. Functions and predicates; The following more formally

characterizes the manipulation of activity names by the class

of function and predicate operators. That is, if operator s

performs the binary function F and if operator t is a destination

of the output of operator s, then

a b

input; a=x|u.c.s.i

b = ylu.c.s.i

output; F(x,y)Iu.c.t.i

Also, if an output forks to n distinct inputs, then that output

will produce n distinct tokens, one for each input. Note that an

acyclic.circuit composed of any number of interconnected function

and predicate operators has the property that the i^^ set of
t hinput tokens produces the i set of output tokens over that

entire circuit.

2. Conditionals: An if-expression is composed of the following

two additional operators. Note that an if-expression behaves as

4- In

a function box from input to output, that is, the i set of

, til
input tokens produces the i set of output tokens.
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(a) The SWITCH operator:

data

SWITCH

T F

boolean

input: data = x|u.c.s.i

boolean = y|u.c.s.i

output: to = xju.c.t.i ify = true

fo = x|u.c.t^.i ^ y = false

The MERGE operator: This operator requires only one of its
two inputs, so

input: a or b = x|u.c.s.i

output: x|u.c.t.i

3. Loops: We consider these four new operators.

(a) The D operator: This operator is used if and only if there
is a cycle in the base language program. A token going
through this box is an indication that preparation for the
next iteration of the loop is underway. The D box
simply increments the initiation count of the token passing
through it.

input: X u'. c.s.i

output: X u'.c.t.i+l

The D operatQt.: This operator is the inverse of the
D operator, and serves to return the initiation count of
the token output along the F branch of the SWITCH back to
the value 1. Recall that this was the initiation count
of the input that originally began the loop.

input: x|u*. c.s.i

output: XI u'. C.S.I
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The remaining two operators are L and L ^. We note here that it

is possible to define a language without them CKosinski-73,

Dennis-73]; they are key to the unfolding interpreter.

(c) The L (loop begin) operator; The L operator creates a new
logical loop by the following manipulation of activity names

input: X u. c. s . 1

output: x|u'. c.t.l where u' = (u.s.i)

The L~ (loop end) operator: This operator is the inverse
of the L operator. It expects only one token on each logical
input and changes the activity name back to the environment
to which the output token belongs.

input: x|u'.c.r.l where u' = (u.s.i)

output: X u.c.t.i

Each instantiation of a loop and the corresponding new

context u' is called a logical domain. All activities within

a logical domain can proceed independent of activities outside

that domain and any inner domain at arbitrary nesting levels.

4. Procedure application: The purpose of the activate operator

A is to create a new logical domain similar to the way in which

the L operator creates a logical domain. The BEGIN operator serves

only to distribute arguments passed by A to the procedure body.

The END operator gathers results and returns them to the caller,

specifically to the terminate operator A Assiame the A operator
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is labelled s and its mate A ^ is labelled s_; let BEGIN and
A T

END be labelled b and e, respectively. The value is the

procedure value being applied.

(a) The A(activate) operator; This operator changes the context
and passes the argument list copied from a along with a
"return address" to the new domain.

input: a = x|u.c.s^.i

q = c^lu.c.s^.i

output: XIu'.Cq.b.1
where u' = u.c.s^.i

(b) The BEGIN operator: This operator matches input arguments
with formal parameters. Assume operator t is a destination.

BEGIl

input: XIu'.Cq.b.1

output: x|u'. c^.t.l

(c) The END operator: This operator simply returns the results
back to the calling domain.

input: x|u'.CQ.e.l
where u' = (u.c.s^p.i)

output: X u.c.s^.i

(d) The A (terminate) operator: This operator serves only to
interface the applied procedure back to the applying
procedure. Assume operator t is a destination.

input: xju.c.s^.i

output: X u.c.t.i
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