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ABSTRACT

The technologies of unmanned aerial vehicles (UAVs) and miniature cameras
have been improved significantly in the last decade. It becomes more and more
popular to use UAVs and onboard cameras to collect high resolution multispectral
images with better operation flexibility. Although remote sensing using satellites or
field scanners has been researched for many years, there is still lack of a workflow to
fully explore the benefits of high resolution images from UAV-based remote sensing.
In this dissertation, three key parts of the workflow are discussed: extraction of
region of interest from high resolution images, extraction of related features for
further classification or regression problems and optimization of UAV-based remote
sensing practices, using almond tree water status detection as a case study.

Unlike satellites providing low resolution images, or field scanners with lim-
ited field of view, UAV-based remote sensing platforms can collect very high reso-
lution images with flexible temporal resolution and spectral band configuration. To
extract the region of interest more accurately, two types of methods are evaluated.
One uses manual features such as color, texture and morphological features, and the
other is based on the latest deep learning based instance-segmentation models.

After accurate extraction of region of interest, the next step is to extract
application related information from these high resolution images. A methodology
is proposed to convert the feature extraction problem to a dimensionality reduc-
tion problem. According to this methodology, moments, histograms and traditional
dimensionality reduction methods are discussed based on the performances of irriga-
tion treatment classification and almond tree variety classification, and stem water
potential (SWP) regression. For SWP regression, different regression regularization
methods are also experimented to extract more information from given tree canopy
pixels.

Finally, best remote sensing practices are discussed using irrigation treatment
classification and variety classification as reference applications. Effects of spatial
resolution, spectral configuration, band-to-band registration and image formats are
evaluated in terms of classification accuracies.
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Chapter 1

INTRODUCTION

1.1 Background

1.1.1 Water and Plants

Water plays an important role in plants [5]. Water is a constituent of cell
protoplasm and it weighs over 90% of fresh weights in plants. Water can serve as a
solvent, where nutrients are dissolved and then absorbed by plants.

In plants, water is pulled into the roots by transpiration, a process that water
evaporates via the stomata of leaves [6]. Nearly 90% of water in plants is used in
transpiration, with the remaining 10% used for photosynthesis and plant growth.
While water moves from the soil into roots, along stems and into leaves, nutrients and
minerals from the roots and sugars produced by photosynthesis are also transported
to different areas of the plants. As water vapors leave leaf stomata, they take lots
of energy from surroundings, cool down plant tissues and help maintain proper
temperature for plants.

Transpiration also helps maintain turgor pressure [7]. The hydrostatic system
is generated when water moves due to osmosis between semipermeable membranes.
The turgor pressure is the key for plants to interact with the environment. For
example, blood pressure in animals is around 0.003 Mpa, whereas turgor pressure is
around 0.6 Mpa. This is central to many plant functions, such as growth, transport,
movement and cell metabolism. Plant growth is driven by cell extension, because
of the forces generated by turgor pressure. Plant movements such as turning leaves
and flowers to track the sun to maximize photosynthesis or pollination are made by
turgor variation in different parts of the stems. Another important process driven
by turgor is the stomatal opening and closing. When water is available to plants,
turgor is increased and stomatal pores are opened. When water is scarce, pores are
closed to save water. It also helps transport proteins and pump solutes into plant
cells.

Water is also required in plants photosynthesis, a process that plants produce
their food using light energy, carbon dioxide and water [8]. Water is directly involved
in the photosynthesis and indirectly in the food creation, helping plants avoid de-
hydration. During the photosynthesis process, electrons are excited by light energy
and have reaction with the pigment chlorophyll. As a result, the light energy is
converted into adenosine triphosphate (ATP) and nictinamide adenine dinucleotide
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Figure 1.1: Portion of cropland under water stress [1].

phosphate (NADPH). Water is required to provide the hydrogen, which is combined
with carbon dioxide in the form of sugar. Gas exchanges such as carbon dioxide
uptake and oxygen release occur along with water transpiration through leaf stom-
ata. When plants are under stress during dry seasons, stomata are closed to prevent
water loss. As a result, the photosynthesis slows down or even stops [9].

If water evaporation exceeds absorption from the soil, plants experience water
stress [10]. Even short-term water deficits may affect growth processes [11]. On the
contrary, too much water in the soil prevents plants from getting enough oxygen
and even makes roots rotted [12]. Plant species vary in water use and their response
to water stress. A mature almond orchard for example, though a drought tolerant
species [13, 14], can exhibit an evapotranspiration rate 50% greater than that of
cotton [15,16].

1.1.2 Agriculture Is Under Water Stress

However, water is a limited resource. Water crises have become the biggest
concern for the next 10 years [17]. According to Hoekstra’s study, two-thirds of the
population all over the world are under severe water scarcity no less than 1 month
during the year [18]. Agriculture is under stress too. As indicated in Fig. 1.1, more
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than a quarter of global cropland is under high water stress. The portion of irrigated
crop land under stress is more than 50%. Agriculture already consumes more than
70 % of water withdrawn globally. In Unites States, around one third was under
drought in April, 2018 [19] and the size of the area in drought was as three times
large as that in 2017. In California, even after the long-lasting drought ended in
September, 2017, nearly 63% of the state was still experiencing drought conditions
in October, 2018 [20]. Considering water competition from urbanization and in-
dustrialization, 25 % to 40 % water in stressed regions will be reallocated among
different sections based on productivity and employment activities [21]. Because
agriculture takes such a big portion of water use, it is highly probable that water
in agriculture will be allocated from agriculture to other use. On the contrary, the
population is predicted to expand to over 10 billion by 2050. To supply the growing
population and increasing food consumption, agriculture production needs to rise
70% by 2050. To resolve this quandary, we need to produce more food with less
water. So it is imperative to come up with better water management to increase
water use efficiency to achieve ”more crop per drop” [22].

1.1.3 UAV-based Remote Sensing

Agriculture technologies such as precision agriculture, drip irrigation etc.
promise to increase the global yield as much as 67% by 2050 [23]. For example,
drip irrigation helped growers save water required for maize production by 50%
and 86% compared with sprinkler and surface irrigation respectively [24]. Preci-
sion agriculture is a management system based on information and technology and
focuses on the optimal use of the data of soil, crops, nutrients, pests, moisture or
field for optimum profitability, sustainability and the protection of the environment
(USDA). Through customized management input, precision agriculture improves
crop productivity, water efficiency and farm profitability [25] and leads to better
environment sustainability [26–28]. By monitoring soil moisture status, one of the
precision agriculture practices, over 25% of water savings were achieved in citrus
orchard in Spain and wheat fields in China, where irrigated agriculture has already
been under stress [24]. Studies showed that, if adequate and timely irrigation is
applied based on realtime water status monitoring , both yield and quality of plants
will be improved without consuming extra amount of water [29].

Generally, the operation of precision agriculture includes data collection, vari-
ability mapping, decision making and field practice. Remote sensing, involved in
the first three stages, is the key part in the whole process [30,31]. The use of remote
sensing based on satellite images in precision agriculture is limited by low spatial
resolution and/or poor acquisition times [30, 32]. Moreover, the use of manned
planes is limited by operational complexity and high cost [32–34]. There was a
study applying remote sensing in melon fields for pest monitoring [35]. However,
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Figure 1.2: Predicted value of drones in industries [2]

due to low resolution (10 m/pixel and 7 days for both cases) the imagery did not
show immediate help in pest management.

Unmanned aerial vehicles (UAVs), also called drones, as one of ten break-
through technologies by MIT Technology Review in 2014 [36], have become increas-
ingly popular. According to a FAA report in March 2018 [37], commercial drones
will be quadrupled in the next five years, from 110,604 in 2017 to 451,800 by 2022.
Drone technologies are estimated to provide service worth $127 billion, disrupting
many industries such as infrastructure, agriculture, and transport [2], as shown in
Fig. 1.2.

Drones are becoming very low cost. Small UAVs equipped with cameras are
less than $1000. Drones are easy to fly. Unlike old radio-controlled aircrafts, with
kinds of sensors such as accelerators, gyros, GPS modules and micro-processors,
these new model aircrafts are controlled by autopilots. They can take off, land, fly
autonomously and trigger cameras to capture images according to pre-programmed
flight paths. Growers can fly the drones and monitor fields monthly, weekly, daily
and even hourly, whereas traditionally they need to wait for satellites passing by
the fields, or turn to manned aircrafts with a much higher price.

Recently, small UAVs have shown great potential to collect up-to-date im-
ages for decision making in agriculture. Studies about UAVs, the smart farmer
companion, have been reported in many crops, like rice [38], wheat [39], corn [40],
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turf grass [41], vineyard [42] and coffee [43]. It is promising that UAV-based remote
sensing can monitor crops, provide inter- and intra- field variability of crops infor-
mation [44], and help optimize irrigation schedule and increase water use efficiency.

1.2 Literature Review

1.2.1 Crop Feature Extraction from Aerial Images

Popular technologies to measure physiological plant response under water
stress include stomatal conductance [45], water potential [46, 47], canopy temper-
ature [48–51], chlorophyll (Chl) fluorescence [45], sap flow measurement [52, 53],
dendrometry [54], gas exchanges [55], net assimilation [56], air vapor pressure di-
ficit [57] and leaf vibration [58], etc.

Currently, there are four types of vegetation indices for crop monitoring [59],
including simple ratio (SR), normalized difference (ND), red-edge indices (RI) and
derivative indices (DI) [60, 61]. Red-edge indices use the reflectance of the inflec-
tion point in the range from 680 nm to 780 nm [62], because of a strong chloro-
phyll absorption in the red band and a high relfectance in the near-infrared (NIR)
band. Derivative indices are suggested to overcome variations due to bidirectional
reflectance distribution function (BRDF), leaf surface scattering and background
noise [63].

Water potential has been applied effectively to monitor crop water stress
[64–66]. Research has shown that it can serve as an indicator in many fruit tree
species [67] to quantify both short-term and mid-term plant response to water stress.

It is, however, labor-intensive and time-consuming to take accurate water
potential measurements using pressure chambers [68]. Traditionally, to understand
water stress in the field level, growers have to measure some sentinel plants, assumed
to represent the whole field. There are, however, heterogeneous biophysical features
spatially in fields, trees and even leafs [69]. It is hard to obtain the spatial variability
of water stress by just measuring sample trees [29, 70, 71]. Remote sensing based
methods have been proposed to access the spatial distribution of water stress in the
larger field to replace field measurements [72].

Higher spatial and temporal resolution on water status monitoring is nec-
essary to optimize irrigation. Many studies have been conducted on water stress
detection using different sensors such as multispectral or hyperspectral cameras,
thermal cameras and fluorescence sensors based on UAVs.

The most popular index using canopy temperature to quantify water stress
is crop water stress index (CWSI) [73]. CWSI showed good correlations with SWP
in peach trees [74], pistachio trees [75], almond trees [76] and vineyards [77]. In
[56], tree canopy pixels were divided into four different regions according to the
25th, 50th and 75th quartiles. Correlation between CWSI calculated using the
pixels of the entire crown, the region under the 25th quartile, the region under 50th
quartile, the region above 75th quartile and leaf stomatal conductance (Gs) was
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analyzed. Relationships with Gs were improved remarkably, using colder areas pixels
from under the 25th quartile and the 50th quartile, and yielding the coefficients of
R2 = 0.77 and R2 = 0.78. CWSI was used to map spatial water status across using
aerial thermal images at different imaging time and resolution [78]. Experiments
showed that the relationship between CWSI and leaf water potential was the best
around noon with the highest resolution. In the early morning, it was hard to
separate canopies from the soil in thermal images. The sensitivity analysis of varying
pixel resolution showed that R2 decreased as the resolution increased from 0.3 m
to 2.0 m. This was explained that the lower resolution of pixels made it hard
to differentiate canopies from soil and therefore the canopy temperature was less
accurate. Studies showed temperature difference between canopies and air correlated
well with SWP in almond trees [76] and peach trees [51]. In [79], a hand-operated
thermal camera was used to evaluate the feasibility of canopy temperature as a
water stress indicator in citrus and persimmon trees during two seasons. Studies
were conducted to explore the relationship between standard deviation of the canopy
temperature and CWSI based on aerial images with resolution 2.5 m/pixel [80]
using cotton crops under different irrigation treatments. For both low and high
stress treatments, the standard deviation was not well correlated with CWSI. For
moderately stressed crops, the standard deviation had a linear relation with field-
scale CWSI. Furthermore, the relationship between standard deviation and CWSI
was compared at different grid size. The coefficient of determination was reduced
from 0.77 to 0.4 when the scale was aggregated from 5 m to 90 m. The use of thermal
cameras was investigated to monitor water stress of grape vines in [81] in the scale of
plots. It was shown that the variability of stomatal conductance increased when crop
water stress increased. However, the standard deviation of canopy temperature was
weakly correlated with stomatal conductance. Simulations in [82] demonstrated that
spatial averaging of the pixel DN value in the field of view decreased the sensitivity
of the thermal measurement of water stress. Studies in [83] showed that when the
standard deviation of midday canopy temperature in a corn plot was over 0.3◦C ,
some plants experienced water stress. In addition, within-crown structure of canopy
temperature showed a good relationship with physiological measurements. Studies
have demonstrated that canopy heterogeneity was also a good indicator for early
plant water stress [82, 83].

Xanthophyll, chlorophyll and structure related spectral indices were used to
detect water stress [84, 85]. In [85], the vegetation indices such as CWSI, photo-
chemical reflectance index (PRI) [86], normalized PRI, red edge ratio (ρ700/ρ670),
transformed chlorophyll absorption in reflectance index (TCARI) normalized by
optimized soil adjusted vegetation index (OSAVI) [87], were obtained via the aver-
age measurement at the object level in five different fruit tree species from aerial
images. Relationships between SWP, stomatal conductance and those vegetation
indices were analyzed for the five fruit tree species, including almond trees, apricot

6



trees, peach trees, lemon trees and orange trees. The temperature and PRI were the
first and second most sensitive to water stress conditions in all the fruit trees except
apricot trees. Normalized PRI was least sensitive to water stress. Experiments in
maize crops [84] showed that red-edge position was sensitive to water conditions
in terms of leaf water content, whereas PRI and normalized difference vegetation
index (NDVI) were sensitive indices to productive indicators. The temperature was
measured using a hand-held infrared thermometer, and the reflectance was mea-
sured with a field spectroradiometer. PRI, visible bands, the red-edge band and
the NIR band within the light spectrum were able to detect water stress in the
canopy level [88], considering the mechanism that water stress slows or even stops
photosynthesis process [89].

It has been demonstrated that solar-induced fluorescence (SIF), associated
with the photosynthetic reaction can indicate vegetation stress [90,91]. Imagery cap-
tured with both narrow bands (below 1 nm full width at half maximum (FWHM))
and broader bandwiths (5-7 nm) can detect fluorescence signal, so it can serve to
monitor photosynthesis status [92].

Artificial neural network (ANN), capable of modeling complex systems, was
used in water status monitoring for vine crops [93]. Compared with linear regres-
sion models, it yielded a higher accuracy with R2 = 0.96 to predict SWP using
soil moisture. In [94], an ANN model was built to estimate vineyard SWP, using
multispectral images in the bands 550, 570, 670, 700 and 800 nm, achieving the per-
formance with the coefficient of determination R2 = 0.56 − 0.87, root mean quare
error (RSME) of 0.12 MPa and mean absolute error (MAE) of 0.1 Mpa. It was in
the plot level, with six plants in each plot. The ANN model was applied in every
canopy pixel to calculate SWP. Then the field was classified into four stress levels
according to the predicted SWP, including non-water stress, moderate water stress,
strong water stress and severe water stress.

Five bands were used to predict SWP for vineyards [95] using ANN mod-
els [96]. Two ANN models were applied to predict SWP. For every pixel at a spatial
resolution of 10 cm/pixel, ten vegetation indices were calculated first, including dif-
ference vegetation index (DVI) [97], green index (GI) [98], modified soil adjusted
vegetation index (MADVI) [99], NDVI [100], normalized difference greenness veg-
etation index (NDGVI) [101], normalized difference red-edge index (NDRI) [102],
OSAVI [103], red green ratio index [101], renormalized difference vegetation index
(RDVI) [104] and simple ratio (SR) [105]. At the pixel level, the first ANN model
was composed of the above ten indices as inputs and SWP as outputs and the second
ANN model included ten indices as inputs and three stress levels as outputs.

Five vegetation indices were taken to differentiate effects of different treat-
ments including two light treatments and three nitrogen treatments [106] in Engel-
mann spruce. Experiments showed that the reflectance at 550 nm [107], red edge po-
sition and simple ratio were sensitive to both light and nitrogen treatments in terms
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of chlorophyll concentration. Structure independent pigment index (SIPI) [108], and
PRI were related to chlorophyll and carotenoid concentrations. PRI was sensitive
to both treatments, whereas SIPI was just affected by nitrogen treatment.

Effects of water stress were quantified using leaf spectrum measurement. A
one-way analysis of variance (ANOVA) was used to assess the effect of irrigation
treatment on both plant physiological parameters and spectral measurements [109].
In [70], the usefulness of high-spatial NDVI and soil electrical properties to define
water stress zones was evaluated. Significant differences in mean values of vine
physiological features, yield and water status were observed in NDVI based zones
with three years’ experiments according to non-parametric Krushkal-Wallis test.

In [59], 144 broad-band and narrow-band vegetation indices were evaluated
and compared to predict chlorophyll content within two years at both the leaf scale
and the canopy scale. Both spectral measurements were made in the scale of both
leaves and canopies. The canopy-scale measurement was made 1 meter above each
quadrat of the size 50 cm by 50 cm. The relationship at the canopy level was
generally stronger than that of the leaf scale, because leaf samples were collected
when chlorophyll in plants was uniform. Broad-band indices were found to be as
effective as narrow-band indices. Both narrow-band and broad-band indices were
stronger at the canopy than the leaf level in terms of temporal performance, the
capability to predict chlorophyll content variability between years.

1.2.2 Crop Segmentation in Aerial Images

Soil background exerts considerable influence on vegetation indices of crops
with partial canopy [110]. For example, the ratio vegetation index (RVI) and NDVI
increase when given crops are planted in darker soil [111–113]. In addition, tem-
perature based indices also rely on accurate segmentation of canopies from soil
background. The canopy edge and soil pixels usually have higher temperature, so
inclusion of non-canopy pixels can introduce significant errors in CWSI [29].

Previously, limited by low spatial resolution, adjusted indices were proposed
to address this issue such as TSAVI [114], SAVI [112], OSAVI [103], and generalized
soil-adjusted vegetation index (GSAVI) [115]. These indices minimize soil back-
ground related effects by introducing a soil-adjustment parameter, which has to be
determined empirically case by case.

With increased imagery resolution, it is possible to differentiate crop from soil,
and sunlit parts from shaded parts. Various methods were introduced to separate
crops from soil background. Visible images were used to create a binary mask of
potato canopies based on statistic descriptions of illumination levels first [116], and
the mask was used for the co-registered thermal images to calculate temperature
of sunlit leaves [117]. Then sunlit canopies were separated from shaded canopies,
mixture of canopies and soil according to NDVI. An empirical temperature threshold
was applied to distinguish canopy pixels in thermal images [118]. NDVI was used
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to differentiate vegetation from soil background, where the NDVI threshold was
the lowest point between two peaks of NDVI distribution [94, 119]. This method
was further compared with an ANN based method [120] and results showed the
performances of these two methods were similar. Because canopies are cooler than
their surroundings, canopies objects can be considered as basins. Inspired by this,
watershed algorithms were used for canopy segmentation in thermal images [56,71,
121]. Edge detection methods were also used for canopy detection. Experiments
[29] showed that Sobel and Canny methods were better than Prewitt and Robert
methods.

1.3 Motivation

UAV-based remote sensing has lower altitude and more flexible operation.
Though traditional methods for satellite-based remote sensing could be applied as
well without surprise, as the reviewed studies show. Lower altitude remote sensing
makes it possible to collect much higher resolution images. However, there is still
lack of a workflow to fully leverage such high resolution for better plant health
monitoring. Throughout the workflow, three key problems are as follows,

1. how to extract the region of interest with higher accuracy,

2. how to extract related features from these high resolution images for further
regression or classification,

3. what is the best remote sensing practice for specific applications, i.e., the best
spatial resolution and the best spectral configuration.

In this dissertation, these three problems will be discussed using almond tree
water stress monitoring as a case study.

1.4 Dissertation Contributions

Major contributions of this dissertation are as follows:

1. Developed a method to segment tree canopies using manual features such as
color, texture, morphological features.

2. Developed a deep-learning-based instance-segmentation model to segment tree
canopies.

3. Proposed a new methodology that each band or vegetation index can be con-
sidered as an image layer and that each pixel of a tree canopy in a layer
represents an observation for the tree.
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4. Proposed moments- and histograms-based dimensionality reduction methods
to extract information from UAV-based high resolution images at the tree
level.

5. Proposed distance-based methods using distribution distance for irrigation
treatment classification.

6. Evaluated effects of spatial resolution, spectral configuration, band-to-band
registration and image formats on classification accuracy.

7. Examined how view angles affect NDVI using a real-world flight mission.

8. Proposed regression models using stepwise and principal component analysis
(PCA) for SWP prediction.

1.5 Dissertation Outline

The dissertation is organized as follows. Motivations and contributions are
listed in Chapter 1. Chapter 2 examines the workflow of remote sensing using UAVs.
Chapter 3 discusses almond tree canopy segmentation using both manual features
and deep learning based instance-segmentation. In Chapter 4, different dimensional-
ity reduction methods are proposed and irrigation treatment classifiers are designed
and compared. Chapter 5 evaluates how image spatial resolution, spectral config-
uration, image band-to-band registration and image formats affect the accuracy of
irrigation treatment classification and almond tree variety classification. Chapter
6 researches how view angles change the observed NDVI. Then SWP prediction
models are built and compared between combinations of different dimensionality
reduction methods and regression regularization methods. Finally, the dissertation
is concluded in Chapter 7 and challenges and future work are presented.
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Chapter 2

PRELIMINARIES

2.1 Basics of Remote Sensing

Remote sensing is the science of acquiring and interpreting information about
objects without being in physical contact [122]. It includes sensing and recording
reflected or emitted energy, processing and analyzing that information.

The energy sensed is in the form of electromagnetic radiation. There are
two important characteristics to describe electromagnetic radiation, wavelength and
frequency. The electromagnetic spectrum is the range of frequencies and wavelengths
of electromagnetic radiations. There are several regions useful for remote sensing.
The region we see the objects is a part of visible spectrum. The visible wavelength
ranges from around 0.4 to 0.7 µm. Another portion of the spectrum is the infrared
region, from 0.7 µm to 100 µm. The infrared region can be divided into NIR, short-
wave infrared (SWIR) and thermal infrared (TIR), covering wavelengths from 0.7
µm to 1.4 µm, from 1.4 µm to 3.0 µm, and from 3 µm to 100 µm.

Although a primary electromagnetic energy source is the sun, all the objects
can emit electromagnetic energy when their absolute temperature is above zero. The
peak of thermal emission on the earth’s surface is around 10 µm. Therefore, thermal
detectors are usually designed to be sensitive to the radiation with the wavelength
from 7 µm to 14 µm [122].

When radiation reaches and interacts with objects, three forms of interaction
take place, absorption, transmission and reflection. The energy involved in each
form depends on the wavelength and the material. In remote sensing, the radiation
reflected by the objects or emitted from the objects is measured.

The ratio of reflected energy to incident energy is defined as reflectance. This
wavelength-dependent reflectance, denoted as spectral reflectance, plays a key role
in discriminating features of different materials. For example, green leaves have
a high reflectance in the NIR range, whereas clear water absorbs the energy of
wavelengths longer than the visible range, resulting a low reflectance in the NIR
range. Additionally, reflectance is directional and it depends on both incident and
view angles [123]. Bidirectional reflectance distribution function (BRDF) is used to
quantify the geometric reflectance distribution with regard to incoming and outgoing
directions.
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When the energy is recorded in an image, three resolutions help describe the
image measurement: spatial resolution, spectral resolution and temporal resolution.
Spectral resolution describes the ground dimension of an image pixel. Spectral reso-
lution describes the ability to differentiate different bands of measured wavelengths.
Temporal resolution is defined as the time interval between successive remote sensing
measurements [124].

2.2 Remote Sensing Using UAVs

UAV-based remote sensing system consists of unmanned aerial vehicles equipped
with an autopilot, imaging sensors, ground control stations and communication sys-
tems. With the help of the onboard autopilot, human intervention during flight mis-
sions is minimized. However, special care needs to be taken for UAV-based remote
sensing to obtain accurate and meaningful information. To summarize these re-
quired operations in UAV-based remote sensing, a workflow diagram is constructed
in Fig. 2.1. Different from the workflow proposed for environment management
in [125], radiometric correction and region of extraction are added, which are espe-
cially important for crop monitoring across days or growing stages. In the following
sections, we will discuss these steps in more detail.

2.2.1 Image Collection

The first thing in image collection is to select a UAV platform. The most
popular drone platforms are multi-rotors. They can take off and land vertically.
They can hover in one spot and allow very precise position control for framing. It is
easy and cheap to get an aerial view with multi-rotors. The downside of multi-rotors
is their limited flight time. They need a lot of energy to fight against gravity and stay
in the air. Fixed-wing drones have wings, they can fly like normal airplanes. They
are very energy efficient and can fly for a very long time, covering a large area. The
downside is that fixed-wing drones can not hover in one spot. It is also very hard to
launch and land because they require a runway and a skillful pilot. Therefore, multi-
rotors are ideal platforms for remote sensing studies in small agriculture research
test sites, whereas fixed-wings are better for large and long distance areas.

Cameras are the core component for image collection. Aerial cameras should
be small and light, so that they can be carried on a given UAV platform. In addition,
light weight and low power consumption allow a longer flight time and a larger
mapping area.

Spectral specifications of cameras are particularly important for remote sens-
ing. There are multispectral cameras providing a few broad spectral bands (less then
10), hyperspectral cameras with a large number of narrow spectral bands (more then
100). To make these cameras lightweight, special design is required to balance their
spectral resolution and performance. Spectral resolution is characterised by the

12



Figure 2.1: The workflow of UAV-based remote sensing

13



number of the spectral bands, band locations and band width. For agriculture ap-
plications, camera spectral range of interest includes red-green-blue (RGB), NIR,
SWIR, and TIR bands [126].

Sensor size, along with focal length and flight altitude, determines the ground
sample distance (GSD) of a mapping configuration, as described in equation (2.1),
where H is flight altitude above the ground, pz is pixel pitch, the size of each pixel in
the sensor,and f is focal length. According to equation (2.1), lower altitude, smaller
pixel pitch and longer focal length result to a smaller GSD. For the same target,
smaller GSD indicates that there are more image pixels recorded. In other words,
this target is described with a higher spatial resolution. On the contrary, for a given
camera, a larger GSD provides a larger field of view and, therefore, reduces flight
passes over an area to be mapped.

GSD =
H × pz
f

. (2.1)

Mission planning entails a lot of considerations. It is important to design
the flight paths. Flight paths need to ensure a decent amount of both forward and
side overlap so these aerial images can be stitched together. Large overlaps are also
required to overcome the flight drift caused by wind or GPS error [127]. There are
two ways to increase the overlap while designing flight missions, increasing flight
altitude and reducing flight speed. When the distance between two captures is
kept, increasing flight altitude will increase the coverage of each capture, and hence
increases the overlap between images. As required by the cameras, especially those
cameras recording raw images, the time interval between two captures has to be
longer than certain seconds. As a result, drones have to fly slowly enough between
two images to achieve the target overlap. However, higher flight altitude means
lower spatial resolution and lower flight speed causes a smaller mapping area under
a given flight endurance. Therefore, flight altitude and flight speed have to be tuned
to balance between image resolution, flight time and image overlap during the path
design [128].

Last but not the least, aerial photography requires different camera setting
from that of ground photography. To get rid of motion blur due to both flight and
vibration, shutter speed needs to be as high as possible. Figure 2.2 shows that
lower shutter speed causes motion blur in the capture. With higher shutter speed,
larger aperture and high ISO are needed, so that the sensor can capture enough
light energy. Figure 2.3 shows that small apertures result in dark images. On the
other hand, high ISO leads to low signal-to-noise ratio and large apertures decrease
the depth of view.
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(a) Camera setting of ISO 100, f-stop f/2.7,
shutter speed 1/1600

(b) Camera setting of ISO 100, f-stop f/2.7,
shutter speed 1/1000

Figure 2.2: Compare images under different shutter speed
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(a) Camera setting of ISO 100, f-stop f/2.7,
shutter speed 1/2000

(b) Camera setting of ISO 100, f-stop f/8.0,
shutter speed 1/2000

Figure 2.3: Compare images under different apertures
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2.2.2 Image Pre-processing

Image mosaicing is the process to stitch images together to obtain an entire
view of a scene. Typically, the onboard camera has a limited field of view. It can only
capture images of a small area when it is stationary. When being fixed onboard the
moving UAVs, cameras are triggered according to the programmed overlap setting.
The individual images, each covering a slice of an area, are then mosaicked. This
process increases the field of view and does not sacrifice the spatial resolution of the
cameras [125].

All aerial images contain some degree of geometric distortion. These geo-
metric distortion might come from both cameras and targets [129]. Camera optical
distortion, aspect ratio and camera position variations introduce scale variations.
Viewing geometry also causes scale variations, because the distance between the
target and the camera increases when the target is away from nadir view angle.
Distortion may be introduced by targets surface characteristics. For instance, tar-
gets of the same size appear bigger when they are captured with cameras at a lower
altitude. Two approaches are used for correction of geometric distortion [130]. One
is to model the sources of distortion when the distortions are well characterized.
The other is to establish mathematical relationships between the position of pixels
in an image and the corresponding coordinates of these pixels in a map. These
pixels in the map are often referred to as ground control points (GCPs). Geometric
correction is necessary for geo-scientific measurements, band-to-band registration
and the detection of the changes between images of different time.

Usually there is noise or error in the remote sensed images caused by the
sensors and the environment [131]. Within the sensors, these radiometric distor-
tions may come from either pixel-to-pixel sensitivity variations or vignetting effect.
Environmental factors such as solar angles, topography and atmospheric effects also
cause radiometric disturbances. Furthermore, when remote sensing data are com-
pared between different time, sensors, or sensor settings such as ISO, exposure and
apertures, radiometric calibration is especially important [132]. Flat field correction
can help remove the effects of pixel-to-pixel variations and vignetting [133]. Ground
reference targets with known reflectance can be used for correction of atmospheric
effects [131], changes of environment conditions and sensor settings.

2.2.3 Image Post-processing

With the development of sensing technologies, remote sensing images are
acquired with higher spatial resolution and temporal resolution, posing an increas-
ingly large challenge to process all the parts of these images. Region of interest
extraction, an operation that differentiates interesting areas from uninteresting ar-
eas in the images, has been recognized as an important part of remote sensing image
process to solve this problem [134–136]. The process of extracting region of inter-
est is called segmentation. Many methods have been introduced on segmentation
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based on global threshold, edge detection and contour filling, region growing and
region splitting etc [137]. Most recently, deep learning based methods are used for
segmentation in remote sensing images [138,139].

In the stage of quantitative analysis, features are extracted within the region
of interest in the images and high-level models are built for specific applications.
Most importantly, these models are validated with ground-truth field measurements.
Physiological measurement predictions regarding the target crops are then obtained
with these ground-truth calibrated models. These predictions are further combined
with agronomists’ knowledge to become actionable information for farmers.

Take irrigation monitoring of an almond orchard as an example. Given an
orthomosaic image of the orchard after geometric and radiometric calibration, an in-
dividual almond tree canopy is segmented from background first. Then a regression
model is built to predict water stress measurements according to canopy pixel digital
number (DN) values. These predictions are further combined with agronomists’ rec-
ommendation to become more specific actionable information. Therefore, a question
like how much water is needed for the target orchard can be answered.

2.3 Chapter Summary

In the previous sections, we discussed image pre-processing and image post-
processing in the operation workflow of UAV-based remote sensing. However, if
we consider UAV-based remote sensing as a system taking payload configurations,
camera settings and mission plans as input, generating crop feature information in
the desired spatial resolution, image collection and image processing can be exam-
ined together by means of dimensionality reduction. Taking images with less bands
and lower resolution can also be considered as a way of dimensionality reduction
operationally. In other words, rather than focusing on dimensionality reduction on
the collected images, it is necessary to reduce dimensionality in a systematic way
and try to collect images with less bands and lower resolution from the first step, the
beginning of UAV-based remote sensing. This systematic view also indicates that if
better dimensionality reduction methods can be applied in the second step, it may
relax certain restrictive requirements of image collection. Therefore, it is possible
to reduce operation time by canceling flight missions using cameras with different
band configuration, or flying the cameras at a higher altitude.

In the following chapters, we will examine how band selection and imag-
ing spatial resolution configuration as dimensionality reduction methods affect the
modeling performance in UAV-based remote sensing. Furthermore, we are inter-
ested in whether it is possible to obtain comparable performance by exploring new
dimensionality reduction methods in both image pre-processing and post-processing
stages.
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Chapter 3

ALMOND TREE CANOPY SEGMENTATION IN
AERIAL IMAGES

3.1 Introduction

When individual aerial images of almond are stitched and converted to an
orthomosaic, almond tree canopy segmentation is necessary to extract water stress
information in the single-tree level. More specifically, instead of semantic segmen-
tation, the process of labeling each pixel within a class, instance-based segmenta-
tion [140] is required for water stress monitoring in the single-tree level. Instance-
based segmentation differentiates pixels not only between classes, but also between
objects of the same class.

It has been found that [110] soil brightness affects vegetation indices. For
example, darker soil background results in a higher vegetation index value of NDVI.
Therefore, it is necessary to get rid of soil pixels and hence minimize the influence
before any further quantitative analysis. Moreover, classifying pixels in a single-tree
instance level makes it possible to make quantitative analysis in the single-tree level,
instead of the level of a single pixel or a block composed of multiple trees. A better
understanding about the tree stress could be achieved by leveraging the relationship
between these single pixels, as demonstrated by studies [76]. Aside from water stress
monitoring, as a general crop feature, crop size can serve other applications such as
evapotranspiration (ET) estimation [141], pesticide usage estimation [142] and yield
estimation [143].

Studies were conducted on citrus tree counting based on QuickBird satellite
images [144], where plant region was classified using K-means. Morphological skele-
ton algorithm was used to extract tree rows. Within tree rows, individual trees were
separated and initial tree positions were generated after morphological erosion. In
the end, tree positions and shapes were optimized by genetic algorithm. In [145], an
approach for olive tree extraction was proposed. Nonlinear diffusion algorithms were
used first to remove noise, smooth regions and prevent blurring edges. The second
step was to delineate olive blobs using blob detection. In [146], the images were con-
verted to binary images using a threshold. Then region growing was used to generate
candidate olive tree region. Finally, these candidate areas were filtered according to
shape and size parameters. Lidar was applied to delineate apple trees [147], where
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Figure 3.1: Overview of the test field, including three test blocks in the orchard,
each composed of five plots treated with 70%, 80%,90%,100%,110% of crop evapo-
transpiration.

local maxima points were classified as tops of crowns, and local minima points were
considered as boundary between trees. Lidar was also applied for forest tree segmen-
tation [148]. Similar to [147], local maxima points were extracted as seed points.
Seed growing methods were used to label the neighbor pixels. In [149], tree and
nursery segmentation was studied using airborne images. Green index (2*Green-
Blue-Red) was used to classify nursery from background. Morphological operations
were further applied to filter small falsely identified regions. As for Christmas tree
counting, color images were converted to gray images using index (Green-Rlue).
Then local maximum pixels in the sliding window of size 25 pixels by 25 pixels were
marked as tree locations. A minimum distance filter was further used to remove the
neighboring pixels belonging to the same tree, whereas background pixels falsely
identified as trees were filtered according to histogram difference between trees and
background. Darius [150] developed tree identification and delineation algorithm for
native Eucalypt trees using airborne images of spatial resolution approximately 1
meter/pixel. It involved three steps, local maxima detection, local minima detection
and top-down clustering.

3.2 Materials and Methods

3.2.1 Test Field

This work was conducted in a mature, commercial almond (Prunus dulcis)
orchard in Looney, Merced County, California (37.493498◦N, -120.634914◦W). There
are three varieties of almond trees, Nonpareil, Carmel, and Monterey, planted on
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Lovell peach rootstock. These trees are 15 years old, spacing at 5.5m×6.1m. The soil
is composed of Rocklin loam and Greenfield sand. The region has typical Mediter-
ranean climate, characterized by rainy, cool winters and hot, dry summers. Its
average annual lowest temperature ranges from 25 to 30 (◦F). In the orchard, five
water treatments were carried out in different plots, with the amount of irrigation
water from 70% to 110% of crop evapotranspiration (ETc), with increasement of
10%. These irrigation treatments started in 2013. Each treatment was replicated
in three blocks: the middle block, the west block and the east block. Each plot is
composed of three lines with 18 trees each. One line of 18 trees lies between two
adjacent plots (Fig. 3.1). Crop evapotranspiration was obtained according to Food
and Agriculture Organization (FAO) method [151],

ETc = Kc ∗ ETo, (3.1)

where ETo is the evapotranspiration rate of a reference surface under optimum
treatment and certain climatic conditions, and Kc crop coefficient is defined as the
ratio ETc/ETo.

3.2.2 Data Collection

(a) Top view (b) Bottom view

Figure 3.2: The quadcopter platform used for data collection

The UAV used in this study was built using DIY Quadkit (3DRobotics,
Berkeley, USA), modified to carry a single camera payload to do the remote sens-
ing. Its top view and bottom view of the quadcopter are shown in Fig. 3.2. The
maximum takeoff weight of the aircraft is 2.0 Kg and its flight time is about 15 min-
utes. One modified commercial-off-the-shelve (COTS) NIR camera (ELPH110HS,
Canon, Japan) was flown at an altitude 60 m above ground level (AGL) on May
20th, 2015. It includes three bands, NIR, green and blue, centered at 720 nm, 520
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Figure 3.3: Spectrum configuration of the modified NIR camera [3].

nm, and 470 nm, as shown in Fig. 3.3. It has a resolution of 4608×3459, with 16 bit
radiometric resolution. More specifications are listed in Tab. 3.1. The aerial images
were then stitched using Photoscan (Agisoft, Russia) to generate an orthomosaic
image. Canopy classification and segmentation were based on the orthomosaic im-
age.

3.2.3 Otsu’s Method

Otsu’s method provides a powerful tool for threshold selection which facili-
tates image segmentation. It was devised as a way of easily evaluating the effective-
ness of a threshold to produce an automated means of threshold selection [152]. This
variant of clustering creates tight clusters to prevent overlap. It is done by altering
thresholds, increasing the spread of one threshold while resulting in the decrease in
another threshold. As a rule, one needs to choose the threshold that will minimize
the combined spread. Through computational analysis Otsu is able to come up with
the between-class variance σ2

ω(t) which can be simplified to:
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Table 3.1: Specifications of the modified NIR camera

Camera ELPH110HS
Image width (horizontal, pixels) 4608
Image height (vertical, pixels) 3456
Focal length (mm) 4.3
CCD-width (mm) 6.16
CCD-height (mm) 4.62

σ2
ω(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t), (3.2)

ω0(t) =
t−1∑
i=0

p(i), (3.3)

ω1(t) =
L−1∑
i=t

p(i), (3.4)

µ0(t) =
t−1∑
i=0

ip(i)

ω0(t)
, (3.5)

µ1(t) =
L−1∑
i=t

ip(i)

ω1(t)
, (3.6)

σ2
0(t) =

t−1∑
i=0

(i− µ0(t))2 p(i)

ω0(t)
, (3.7)

σ2
1(t) =

L−1∑
i=t

(i− µ1(t))2 p(i)

ω1(t)
, (3.8)

where ω0(t) and ω0(t) are the probabilities of pixels assigned to two classes according
to a threshold t, µ0(t) and µ1(t) are pixel digital value means of two classes, and
σ2

0(t) and σ2
1(t) are class variances.

3.2.4 HSV Color Space

Hue, saturation, and value (HSV) is a three dimensional color space which
is used primarily in the generation of computer graphics. In the HSV space, hue
describes the color in an image in the form such as an angle, typically in the range
of 0◦ to 360◦. Saturation denotes the span of grey in the HSV color space, usually in
a range of 0% to 100%, where 0% represents the color grey, 100% a primary color,
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and anything in between is a mixture of the two. Value is the brightness of a color
which is dependent on the amount of saturation present. It is usually within the
scale of 0% to 100% in which 0% corresponds to a hue that is completely black while
one with 100% gives a very bright hue. By converting images from the RGB plane
into the HSV, an object’s specific hue, saturation, and value or intensity in a given
image can be exploited to isolate the selected image via color segmentation and a
threshold mask based on hue, saturation, or intensity [153].

3.2.5 Gray Level Concurrence Matrix

The unique texture of an image in question makes it distinguishable from
the textures of other objects or even from the background when combined with the
k-nearest neighbors (KNN) algorithm [154]. The two-step process first requires the
use of the gray level concurrence matrix (GLCM) method which extracts textural
features from a given image and stores them in matrix that has the same number of
rows and columns that a given image has gray levels [155]. The GLCM shows how
often two pixels pi and pj representing pixel intensity i and j respectively occur at a
given pixel distance (∆x,∆y) within a neighborhood denoted by the GLCM element
p(i, j|∆x,∆y). Additionally, the GLCM element p(i, j|d, θ) accounts for changes in
the gray levels of i and j at a distance d positioned at an angle θ. Haralick et al. [156]
developed a set of features for classifying pictorial data. Specifically, they provided
a general technique for the extraction of textural properties from gray-tone special-
dependency matrices. Haralick, et al. [156] created 14 measures for the extraction
of textural features. However, Newsam and Kamath [157] showed that only about
five are frequently used. These five include angular second moment (ASM), contrast
(CON), inverse different moment (IDM), entropy (ENT), and correlation (COR).
Denote the quantization levels of images as L. These five features are described as

ASM =
L∑
i=1

L∑
j=1

p(i, j), (3.9)

CON =
L∑
i=1

L∑
j=1

|i− j|2p(i, j), (3.10)

IDM =
L∑
i=1

L∑
j=1

p(i, j)

1 + |i− j|2
, (3.11)

ENT =
L∑
i=1

L∑
j=1

−ln(p(i, j))p(i, j), (3.12)
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COR =
L∑
i=1

L∑
j=1

(ij)p(i, j)− µiµj
σiσj

, (3.13)

where

µi =
L∑
i=1

L∑
j=1

ip(i, j), (3.14)

µj =
L∑
i=1

L∑
j=1

jp(i, j), (3.15)

σ2
i =

L∑
i=1

L∑
j=1

p(i, j)(i− µi)2, (3.16)

σ2
j =

L∑
i=1

L∑
j=1

p(i, j)(j − µj)2. (3.17)

3.2.6 K-Nearest Neighbors

K-nearest neighbors (KNN) classification is one of the most popular machine
learning methods [158]. It classifies an unknown sample according to its neighbors.
Usually to increase the accuracy, more than one neighbors are used. Given a test
sample and a training set with known labels, the distances between the test sample
and all the samples in the training set are calculated. Then the test sample is
assigned with the most frequent label of its k nearest neighbors.

The distance used in KNN is commonly based on the Euclidean distance [159].
Denoting xi as an test sample with p features xi = (xi1, xi2, ..., xip), n as the total
number of training samples, the Euclidean distance between xi and xt (t = 1, 2, ..., n)
is defined as

d(xi,xt) =
√

(xi1 − xt1)2 + ((xi2 − xt2)2 + · · ·+ (xip − xtp)2. (3.18)

3.2.7 Instance Segmentation Using Deep Learning

Deep learning [160] methods, composed of multiple levels of non-linear mod-
ules, extract representations automatically from the raw data. It has achieved sur-
prisingly good results in object detection [161] and image segmentation [162]. As a
general framework, it can solve the problem in an end-to-end way and save the effort
to design manual features and classifiers based on these features. Published studies
on aerial image processing using deep learning showed that deep learning methods
are robust to lighting conditions, camera settings, and background changes [163].
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Different from semantic segmentation, where different objects of the same
class are classified as the same, instance segmentation classifies different objects of
the same class as different instances. Considering the application of water stress
detection at an individual tree level, instance-aware segmentation can detect and
locate pixels of each individual tree. Many deep learning methods have been pro-
posed for instance segmentation [164–167]. As a case study, the method in [165] is
evaluated for tree canopy instance segmentation.

The basic idea of instance segmentation [165] is to separate two connected
instances by detecting segment instances. Then these segment instances are as-
sembled into instances according to the their relative positions in an instance. It is
converted from fully convolutional neural network segmentation [162] by adding two
fully convolutional networks. One is used for segment instance detection and the
other is estimating instance objectness score. Then an assembling module generates
the instance by combining the segment instance map and instance objectness map.

3.3 Canopy Segmentation Using Manual Features

The test image for this paper was taken on May 20th, 2015. In this section
two types of classification methods to differentiate trees from non-tree parts are
presented. One is an unsupervised Otsu threshold method. The other is a supervised
method based on histogram similarity in HSV color space and text features described
by GLCM. 20 samples are prepared as model samples for supervised classifications,
including 10 tree samples, 2 shade samples (the soil surface part shaded by trees),
3 soil samples and 5 grass samples. All these samples are of size 10×10. It is clear
that grass and trees have almost the same color, so the grass samples account for
50 percent of non-tree samples. All the 20 samples are displayed in Fig. 3.4. In
addition to 20 model samples, there are another 100 samples selected to test the
classification performance, composed of 50 tree samples and 50 non-tree samples.

3.3.1 Canopy Classification

3.3.1.1 Otsu’s Method

According to the fact that the difference of crops between the NIR band
and the visible band is larger than that of soil, the original image is converted to
a gray image by taking the difference between the NIR band and the blue band.
The threshold is calculated based on the large image in Fig. 3.5(a) using the Otsu’s
method. For each test sample, if the number of pixels, whose intensity is larger than
the threshold, is greater than 50, then this sample is classified as a tree sample.
Otherwise, it is marked as a non-tree sample. According to the results in Tab. 3.2,
all the tree samples are predicted as trees. The problem is that, however, more
than 40 non-tree samples are recognized as trees, which will cause a big trouble to
measure the size of tree canopies.
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Figure 3.4: Model samples, including 10 tree samples, 2 shade samples, 3 soil samples
and 5 grass samples

Table 3.2: Classification performance of Otsu’s method

Otsu (gray image) Tree (Predicted) Non-tree (Predicted)
Tree (Real) 50 0
Non-tree (Real) 40 10

3.3.1.2 HSV Histogram

The RGB color space is nonlinear and it is better to convert the image from
RGB to more uniform color space HSV. First, all the samples are converted to
the HSV color space. Then, histograms of all the samples in H, S, V are calculated
individually. The histograms are divided into 32 bins and each bin cuts 3.125 (1/32)
percent of the range of H, S, V intensity. The empty bins are set to one to make
the definition of distance between histogram distributions applicable according to
Kullback’s minimum cross-entropy principle, as described in Equ. 3.19, where sandm
stand for two histograms with n bins, si,mi represent the fractions of each bin i.
The distance in H, S, V is added together as the overall distance between training
samples and test samples. Finally, KNN is applied to predict the label of the sample,
where k is set as 5 in the test.
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d(s,m) =
n∑
i=1

siln
si
mi

. (3.19)

Table 3.3 shows that HSV method helps filter non-tree pixels, where only 10
non-tree samples are labeled as trees, although it increases the possibility to classify
tree pixels as non-tree pixels at the same time. Further checking indicates that all
the non-tree samples recognized as tree samples are grass samples, which means
grass and trees have similar color even in HSV space.

Table 3.3: Classification performance of HSV method

HSV Tree (Predicted) Non-tree (Predicted)
Tree (True) 45 5
Non-tree (True) 10 40

3.3.1.3 Combining GLCM and HSV Histogram

In order to get better classification accuracy, texture and color are combined
to help differentiate grass from trees. As an important texture feature, GLCMes has
been widely used in many applications. The GLCMes is calculated in 8 directions,
0, 45, 90, 135, 180, 225, 315, at 16 gray levels in NIR, red and blue bands. Contrast,
correlation, energy and homogeneity are obtained based on the matrixes and then
are averaged in 8 directions to become rotation invariant. For each sample, there
are three GLCM feature vectors composed of contrast, correlation, energy and ho-
mogeneity in NIR, green and blue bands. The GLCM distance between samples is
measured by sum of square of distance between their GLCM vectors in three bands.
The HSV distance and GLCM distance are normalized individually before being
added as a combined feature. Similarly, KNN is applied in the tests. As shown
in Tab. 3.4, the combined method decreases the fault rate of classifying non-trees
as trees, which is better than both HSV method and Otsu’s method. At the same
time, all the tree samples are recognized, which further indicates that the combined
method is better than the HSV method, and as good as the Otsu’s method.

3.3.2 Canopy Segmentation

As shown in Fig. 3.5, the original image is converted to binary images using
three methods, the Otsu’s method, the HSV method and the combined method.
HSV method does help filter out some grass patches. However, the combined method
recognizes many soil parts as canopies. Its performance is not as good as the one in
test samples. Considering the requirement of labeled samples, and downsampling
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Table 3.4: Classification performance of HSV combined with GLCM

HSV+GLCM Tree (Predicted) Non-tree (Predicted)
Tree (True) 50 0
Non-tree (True) 7 43

effect of texture methods, the Otsu’s method is used as for canopy pixel classification.
The Otsu’s method is unsupervised, so it does not need training samples. As for
the high fault rate of classifying grass as trees, morphological features can be used
in the postprocessing part to filter these pixels.

3.3.2.1 Filtering Small Grass Regions

There are some isolated patches labeled as canopies in the image obtained
directly from the Otsu’s method (Fig. 3.6(a)). These patches are either small grass
regions or soil regions, which can be deleted based on their size. Figure 3.6(b) shows
the image obtained after white patches with area less than 500 pixels are deleted.
In addition, there are some patches, shaded region in the canopies are labeled as
non-tree. These patches can be corrected according to their sizes too. Figure 3.6(c)
shows the image after the dark patches with area less than 500 pixels are re-labeled
as tree canopies. Note that erosion and dilation are not appropriate here, since they
will change the size of canopies in the images.

3.3.2.2 Filtering Large Grass Regions

Small isolated patches are easy to process according to their sizes. However,
there are still some large grass patches left connected with tree canopies. More
features are needed to cut these patches away from canopies according to certain
features. First, they are narrower than canopies. Figure 3.7(a) filters all the patches
less than 25 pixels wide. The problem is that two types of canopy regions are filtered
too. One part is from the top or bottom of the canopy circle. The other part is
from the region connecting two canopies. These two parts are characterized by their
orientations, height and major axis length. Figure 3.7(b) shows the image with
patches height less than 5 pixels. After patches with orientation angles (absolute
value) less than 5 degree and major axis length less than 25 pixels are deleted, the
obtained image is as Fig. 3.7(c), where all the large grass patches are left. After
taking all these large grass patches away, the final result is shown in Fig. 3.7(d).
There are two remaining troubles preventing counting trees and the pixels in each
canopy. First, there are certain regions between the forth row and the fifth row
connected. Second, there are many tree canopies connected in each row.
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(a) Original image (b) Binary image with the Otsu’s method

(c) Binary image with the HSV method (d) Binary image with the combined
method of HSV and GLCM. Tree canopy
is white and others are black

Figure 3.5: Comparing canopy classification using different features
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(a) The binary image obtained with the
Otsu’s method

(b) The binary image after deleting small
patches outside canopies

(c) The binary image after deleting small
patches within canopies.

Figure 3.6: Filtering small grass regions and shaded regions.
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(a) Connected regions less than 25 pixels in
the horizontal direction.

(b) After deleting regions less than 5 in the
vertical direction.

(c) After deleting regions with orientation
angles (absolute value) less than 5 degree,
major axes less than 25 pixels long.

(d) The cleaned result

Figure 3.7: Filtering large grass regions
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(a) Number of canopy pixels in each column (b) The binary image with lines separating
each row of trees

(c) Pixels on the lines marked as non-
canopy

(d) The binary image after deleting regions
smaller than 100.

Figure 3.8: Separating every row.

3.3.2.3 Separating Every Row

To separate the connected rows, the border for each row needs to be detected.
By calculating the number of pixels in each column, six local minimum points show
up in Fig. 3.8(a). In Fig. 3.8(b), lines are put between rows right at the points
with locally minimum number of canopy pixels. It turns out these lines are good
estimations of borders to separate each row. After deleting the canopy pixels in
the lines and small isolated patches generated, five separate rows are obtained in
Fig. 3.8(d).

3.3.2.4 Separating Every Tree

After obtaining the border for each row, the remaining step is to separate
each tree in a row. Similarly, segmentation of each tree can rely on the number
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Figure 3.9: Number of canopy pixels in each line within a row of trees.

of canopy pixels in each line within a row. Figure 3.9 shows the number of pixels
in each line in each row, where there is a local minimum every around 100 lines.
After deleting the pixels in the lines where these local minimum are, all the trees
are separated in Fig. 3.10(a). In both Fig. 3.10(a) and Fig. 3.10(b), centroid of each
tree canopy is marked in blue.

3.4 Canopy Segmentation Using Instance-aware Segmentation Method

3.4.1 Experiment Setting

In the study, 162 NIR images of tree canopies are manually labelled. Each
image covers around 6 trees, with the size 229×232. These images were collected in
May, June, July, August, September, and October 2014. So they can represent tree
canopies under all different growing stages. These images are further mirrored and
flipped to generate a larger dataset. After image augmentation, there are 648 images
in all, where 500 images are used as the training set, and 158 images are used as the
validation set. The images are then organized in the same format as VOC2012 [168].
This experiment is based on the released code along with the paper [165], where the
number of classes changes to 2 for only tree canopy segmentation, canopies and
background. The thresholds are set to 0.5 for both canopies and background.
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(a) Each tree is separated and its centroid
is marked in the binary image.

(b) The centroid of each tree is marked in
the original image.

Figure 3.10: The final results of tree canopy segmentation.

3.4.2 Results and Discussion

The instance-segmentation model is evaluated on the validation dataset in
terms of precision and recall while the model is under training, as shown in Fig. 3.12.
Precision and recall are defined as the following:

• True Positive(TP): A true canopy pixel is predicted as a canopy pixel.

• False Positive(FP): A true non-canopy pixel is predicted as a canopy pixel.

• False Negative(FN): A true canopy pixel is predicted as a non-canopy pixel.

• True Negative(TN): A true non-canopy pixel is predicted as a non-canopy
pixel.

• Precision: The ability of a model to identify only the correct objects, defined
as

Precision =
TP

TP + FP
. (3.20)

• Recall: The ability of a model to detect all the correct objects, defined as

Recall =
TP

TP + FN
. (3.21)

The results are better than that of canopy classification using textures and
colors. For example, the recall could be as high as 97.1% when the precision is still
above 90%. Considering these images were collected in different growing stages of
almond trees and different time of the day, the good performance indicates that the
trained model is robust to canopy size and lighting conditions. More detail about
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(a) (b)

(c) (d)

Figure 3.11: Canopy images (a), (c) and their masks (b), (d).
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Figure 3.12: Precision and recall of canopy instance-segmentation in the validation
dataset.
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(a) (b)

(c) (d)

Figure 3.13: Canopy segmentation results in test images using instance-
segmentation method.
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the instance-segmentation performance is shown in Fig. 3.13. The grass pixels which
are really similar to canopy pixels in color and texture are also classified correctly
as background. It is able to detect canopies of both big and small size (the green
canopy in Fig. 3.13(c)). The connected tree canopies (top right part in Fig.3.13(a),
3.13(b)) can be segmented well. Trees in Fig. 3.13(a) and 3.13(b) are not well
aligned in horizontal or vertical rows, indicating that the model is robust to row
orientation. However, segmentation using manual features assumes that trees are
aligned in horizontal or vertical rows.

3.5 Chapter Summary

With such high resolution aerial images, it is possible to monitor and analyze
the health of almond trees in the level of an individual tree. The first step for
tree-level monitoring and analysis is to segment canopies for each individual tree.

Two different approaches are discussed in this chapter to segment almond tree
canopies in high resolution aerial images. In the first approach, lots of effort were
involved in designing manual features, where color and texture features are used to
classify canopy pixels and morphological features are extracted to filter grass pixels
and segment tree canopies. The second approach is based on modern deep learning
convolutional neural networks. Instead of leveraging many manmade features and
parameters, deep learning instance-segmentation is an end-to-end method. It learns
all the related features automatically according to the prepared training images and
masks. More importantly, it is shown that these self-learned features are robust to
object size, object orientation, and lighting conditions.

The downside of deep learning instance-segmentation is time-consuming la-
beling and hyper-parameter tuning. Fortunately, there are many released models
pre-trained on million of images. These models will save the requirement of dataset
volume and the effort in hyper-parameter tuning as well. Moreover, with the exten-
sive research activities on few-shot learning [169], one-shot learning [170], transfer
learning [171], deep learning based segmentation will be more accurate while requir-
ing less labeling effort and training process.
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Chapter 4

IRRIGATION TREATMENT CLASSIFICATION OF
ALMOND TREES

4.1 Introduction

With the help of UAV-based remote sensing, it becomes much easier to collect
aerial images at a spatial resolution up to centimeters per pixel. The high spatial
resolution makes it possible not only to differentiate individual trees, as described
in Chapter 3, but also to analyze features at individual tree level.

Although many existing methods from satellite-based remote sensing can be
used for analyzing UAV-based remote sensing images, these methods are initially
designed for low-resolution images. They are mainly about various types of vegeta-
tion indices based on either broad band or narrow band spectral measurements for
a single pixel. Because the spatial resolution of these images is from kilometers per
pixel to meters per pixel, it is hard to conduct plant-level analysis. Considering the
task to monitor almond trees, there are only a few pixels for a single tree even with
the most recent satellite GeoEye-2, which can deliver multi-spectral images at 1.24
meter per pixel.

There have been many studies on plant-level water stress monitoring based
on high resolution UAV images [172] or hand-held scanners. In [173], spectral data
acquired via a fixed-wing airplane were used to detect physiological changes of citrus
trees under both water stress and saline stress. Average spectral indicators of re-
flectance in the red band, reflectance in the NIR band, and NDVI showed significant
differences among treatments. In [174], reflectance of sugar beet between 720 nm
and 1100 nm showed difference of irrigation levels. Yet small variations in irrigation
levels could not be distinguished with only spectral reflectance. In [175], the plant
senescence reflectance index [176] and area under curve in the SWIR region were
used to detect water stress of pear tress under deficit irrigation, yet the stress was
detected 17 days after the implementation of the treatment.

However, all the above studies used vegetation indices based on average re-
flectance of the region of interest. Studies in [177,178] showed that, the averages of
vegetation indices such as NDVI, were similar even if they were calculated with dif-
ferent image resolutions, whether the images were acquired using satellites, UAVs,
ground spectrometers or hand-held scanners.
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Inspired by this phenomenon, a new methodology beyond average vegetation
indices is proposed to fully explore the benefits of high spatial resolution enabled by
UAVs. Instead of just averaging the pixel DN values or vegetation indices in different
spatial scale, i.e., tree levels, row levels or plot levels, and in different bands such
as red band, green band and blue band, each pixel in each band or each type of
vegetation indices is considered as an individual observation for the tree the pixel
belongs. Furthermore, each observation adds one dimension to the measurement of
that tree. Therefore, high spatial resolution images provide a measurement with
significant higher dimensions.

For example, considering an image covering a single tree with the size of w
pixels in width and h pixels in height, the number of different bands b, the number
of different vegetation indices v based on b bands, the measurement dimension for
this tree is v in the traditional practice where only averages of vegetation indices
are used, whereas the measurement dimension becomes w ∗ h ∗ (b+ v) according to
the proposed methodology.

The remainder of this chapter addresses a classification problem, how to dif-
ferentiate the integral effects of irrigation levels of 70%, 80%, 90%, 100%, 110% on
almond trees using multispectral aerial images according to this proposed method-
ology. Section 4.2 describes data collection, preprocessing and basics of descrip-
tive statistics, dimensionality reduction methods of principal components analy-
sis (PCA), linear discriminant analysis (LDA), artificial neural network (ANN),
and distribution distance. Section 4.3.1 compares classification performances us-
ing descriptive statistics. Histograms based treatment classification is presented
in Section 4.3.2. Section 4.3.3 introduces treatment classification with distribution
distance between canopy histograms. Finally, all these methods are compared in
Section 4.4.

4.2 Materials and Methods

4.2.1 Data Collection

Two flight missions were conducted in the almond test field around noon on
June 29 and June 30 in 2017. RGB (Survey 2, MAPIR, USA), NIR (Survey 2,
MAPIR, USA), TIR (ICP9640P, ICI, USA) and SWIR (320P, ICI, USA) cameras
were flown at the altitude of 60 m above ground level (AGL) on June 29, 2017
over the middle block and at the altitude of 120 m AGL on June 30, 2017 over the
west, middle and east blocks. Specifications for these cameras are listed in Fig. 4.1,
Tables. 4.2, 4.3 and 4.4. Image spatial resolutions of different cameras at 60 m and
120 m are listed in Tab. 4.1.

Raw images of RGB, NIR, TIR, SWIR cameras are collected during flights
and then converted into tagged image file format (TIF) images in the lab. These
TIF images are stitched into orthomosaic images using Photoscan (Agisoft, Russia).
These orthomosaic images are georeferenced in ArcGIS (Esri, USA) with ground
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Figure 4.1: Spectrum configuration of the Survey II camera (NDVI NIR+RED) [4].

Table 4.1: Spatial resolutions of four cameras

Camera Spatial Resolution (60 m) Spatial Resolution (120 m)
RGB 2.03 cm/pixel 4.06 cm/pixel
NIR 2.03 cm/pixel 4.06 cm/pixel
TIR 6.25 cm/pixel 12.50 cm/pixel
SWIR 7.50 cm/pixel 15.0 cm/pixel

Table 4.2: Specifications of the NIR/RGB camera

Camera NIR/RGB
Image width (horizontal, pixels) 4608
Image height (vertical, pixels) 3456
Focal length (mm) 4.0
CCD-width (mm) 6.17
CCD-height (mm) 4.63
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Table 4.3: Specifications of the TIR camera

Camera TIR
Image width (horizontal, pixels) 640
Image height (vertical, pixels) 480
Focal length (mm) 1.0
CCD-width (mm) 0.8
CCD-height (mm) 0.6
Spectral band (µm) 7-14
Accuracy (◦C) ± 1

Table 4.4: Specifications of the SWIR camera

Camera SWIR
Image width (horizontal, pixels) 320
Image height (vertical, pixels) 240
Focal length (mm) 1
CCD-width (mm) 0.4
CCD-height (mm) 0.3
Spectral band (µm) 0.9-1.7

control points in the field. To exclude non-canopy pixels for post-processing, all the
tree canopies in three blocks are segmented manually in the NIR image, the image
collected via the NIR camera. This NIR image is georeferenced as well and served as
the mask for images of red, green, blue, TIR and SWIR bands. During the process,
all these images are in the format TIF.

Besides three bands red, green and blue in the RGB camera (Survey 2,
MAPIR, USA), two bands red and NIR in the camera NIR (Survey 2, MAPIR,
USA), two more layers are added in the image array. One layer is the difference
between the NIR band and the red band, as described in Equ. 4.1, where DNNIR

and DNred stand for digital value for a pixel. The other layer is normalized differ-
ence, in the format of Equ. 4.2, where pixels with zero sum of DNNIR and DNred

are filtered out. The band difference layer and the normalized difference layer are
used red and NIR bands from the NIR camera (Survey 2, MAPIR, USA). Therefore,
canopy images of 7 layers serve as input for irrigation treatment classification.

DV I = DNNIR −DNred. (4.1)

NDV I =
DNNIR −DNred

DNNIR +DNred

. (4.2)
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The canopy pixels and their coordinates for each tree are extracted using the
function regionprops in MATLAB2013b (Mathworks, USA). An irrigation treat-
ment label is assigned to a tree according to which irrigation experiment plot it is
planted in. Classification studies are based on Python libraries scikit-learn [179].

Finally, the dataset for irrigation treatment classification includes an ortho-
mosaic TIF image of 7 layers, with spatial resolution of 2.03 cm/pixel, covering the
middle block of 285 trees, and irrigation treatment labels for all these 285 trees.
These 285 trees are divided into two parts, 75% of the trees used for training and
25% used for validation. The designed classifiers are evaluated using 5-fold cross-
validation. The accuracies of these classifiers are evaluated using the fraction of
correctly classified samples in the validation dataset.

4.2.2 Descriptive Statistics

Given a dataset, when there exists a strong central tendency that these val-
ues cluster around a particular value, it maybe useful to summarize the set by its
moments [180].

Denoting this data set of N values as x1, x2, ..., xn, the mean of these values
is defined as,

xmean =
1

N

N∑
i=0

(xi). (4.3)

Having the central value of a dataset characterized by mean, another measure
is to characterize its ”width” around mean. One of the most popular measures is
the variance,

xvar =
1

N − 1

N∑
i=1

(xi − xmean), (4.4)

or the standard deviation, the square root of the variance,

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − xmean). (4.5)

The skewness is used to characterize the degree of asymmetry around the
mean of a distribution. Its definition is

xskewness =
1

N

N∑
i=1

(
xi − xmean

σ
)3. (4.6)

.
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The kurtosis is to measure the relative peakedness or flatness of a distribution
to a normal distribution, defined as

xkurtosis = { 1

N

N∑
i=1

(
xi − xmean

σ
)4} − 3. (4.7)

A positive skewness signifies a distribution whose asymmetric tail is extending
towards right and a negative skewness signifies distribution with a tail extending
towards left. In other words, the mass of a left-skewed distribution is leaning to the
right, whereas the mass of a right-skewed distribution is leaning to the left [181].

A kurtosis less than three means the distribution produces less extreme out-
liers than the normal distribution. For example, the uniform distribution has a
smaller kurtosis, and it does not produce outliers. A distribution with the kurtosis
greater than three produces more outliers, such as Laplace distribution [182].

4.2.3 Dimensionality Reduction

4.2.3.1 Principal Component Analysis

Principal component analysis (PCA) is a projection method that can project
the inputs from the original space to a new space, where the variances of the inputs
are maximized along the principal components.

Denote a measurement x containing d attributes as (x1, x2, ..., xd)
T , then N

measurements can be viewed as a data matrix:

X =


x1

1 x2
1 ... xN1

x1
2 x2

2 ... xN2
...
x1
d x2

d ... xNd

 . (4.8)

Its projection on the new direction w1, the first principal component, is

z1 = wT
1X. (4.9)

The variance of the projection is

Var(z1) = wT
1 Σw1, (4.10)

where Σ is the covariance matrix Cov(X). To obtain a unique solution, it is set
that ‖w1‖2 = 1. Then the problem is described as

max
w1

Var(z1)

s.t ‖w1‖2 = 1.
(4.11)
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According to the Lagrange method, the following equation holds

Σw1 = αw1. (4.12)

Substituting equation 4.15 into equation 4.10, the variance is

Var(z1) = wT
1 Σw1 = α. (4.13)

Therefore, the maximum variance can be obtained by choosing the largest eigenvec-
tor of the covariance matrix, and the principal component is the eigenvector with
that largest eigenvalue.

For the second principal component w2, it is also required to be orthogonal
to w1, in addition to the property of unit length and maximum variance of the
projection

wT
1w2 = 0. (4.14)

Again, according to the Lagrange method, the following equation holds

Σw2 = αw2, (4.15)

which indicates that w2 is the eigenvector with the second largest eigenvalue of the
covariance matrix. Similarly, the other principal components can be obtained by
eigenvectors with smaller eigenvalues.

4.2.3.2 Linear Discriminant Analysis

Rather than PCA, an unsupervised method that does not use class label
information, Fisher-linear discriminant analysis (LDA) is a supervised method for
dimensionality reduction [183].

Considering a problem of two classes, the purpose of LDA is to find the
direction w, so that after the data x are projected along w, the data are separated
as well as possible. Denoting the between-classes scatter matrix as

SB = (µ1 − µ2)(µ1 − µ2)T , (4.16)

the within-classes scatter matrix as

SW =
∑
c=1,2

∑
i∈c

(xi − µc)(xi − µc)T , (4.17)

Fisher’s linear discriminant is to find the direction maximizing

J(w) =
wTSBw

wTSww
, (4.18)
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where µc is the means of data in classes c = {1, 2}. In the case of K (K > 2) classes,
it amounts to finding the matrix W to maximize

J(w) =
|W TSBW |
|W TSWW |

, (4.19)

where SB is the between-classes scatter matrix,

SB =
K∑
c=1

(µc − x̄)(µc − x̄)T , (4.20)

SW is the within-classes scatter matrix,

SW =
K∑
c=1

∑
i∈c

(xi − µc)(xi − µc)T (4.21)

x̄ is the overall mean of all classes c and the determinant is used to measure the
spread of a scatter matrix.

4.2.4 Artificial Neural Network

ANN is a computational model developed under inspiration from the human
brains [184]. It can be used for both classification and regression.

The structure of ANN with one hidden layer ANN is shown in Fig. 4.2. At
the top, ok, k = 1, 2, ..., K are outputs of the network. Each output ok is a weighted
sum of the hidden units zm,m = 1, 2, ...M ,

ok =
M∑
m=1

wkmzm + wk0. (4.22)

Hidden units zm are defined as

zm = σ(
P∑
p=1

vmpxp + vm0), (4.23)

where σ(·) is an activation function and xp, p = 1, 2, ..., P are the inputs. Some pop-
ular activation functions are the sigmoid function, the hyperbolic tangent function
and Gaussian radial basis function.

For a K-class classification problem, the outputs are transformed further via
softmax functions to indicate the probability of the class k,

yk =
eok∑K
k=1 e

ok
, k = 1, 2, .., K, (4.24)
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Figure 4.2: The structure of a single hidden layer neural network

and the error function is

Eθ = −
K∑
k=1

N∑
i=1

riklogyik, (4.25)

where θ is the set of weights, rik is the desired class label for the sample input
xi = [xi1, xi2, ..., xiP ], i = 1, 2, ..., N , N is the number of samples,

rik =

{
1 if xi ∈ Ck
0 if xi ∈ Ct, t 6= k

. (4.26)

Finally, weights are obtained by minimizing the error function Eθ using back-
propagation [185]. More than one hidden layers are applied to implement more
complex functions, but many hidden layers will cause the network hard to ana-
lyze [186].

4.2.5 Distribution Distance

In addition to classification based on linear dimensionality reduction PCA
and LDA, and nonlinear dimensionality reduction ANN, there is another type clas-
sification methods called non-parametric methods. Instead of making any assump-
tion about the data input, it only assumes that similar inputs have similar outputs.
It makes prediction based on its nearby training instances using a suitable distance
measure.

Many studies [187, 188] have been published on finding distance measures
because it is very important in classification, clustering problems [189]. Generally,
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these distance measures for histograms can be divided into two types: bin-to-bin
and cross-bin [190].

Given two histograms P and Q, each histogram contains n bins, with the
value at the bin i denoted as Pi and Qi respectively.

Examples of bin-to-bin measures are Euclidean distance (4.27), city block
distance (4.28), Minkowski distance (4.29), Sørensen distance (4.30) [191], fractional
distance [192], intersection (4.31) [189], inner product (4.32) [189], fidelity (4.33)
[193], Chi square distance (4.34) [194], KL (Kullback-Leibler) divergence (4.35) [195].

dEuc =

√√√√ d∑
i=1

|Pi −Qi|2 (4.27)

dcity =
d∑
i=1

|Pi −Qi| (4.28)

dMink = p

√√√√ d∑
i=1

|Pi −Qi|p (4.29)

dSør =

∑d
i=1 |Pi −Qi|∑d
i=1(Pi +Qi)

(4.30)

dinter =
d∑
i=1

min(Pi, Qi) (4.31)

dinner =
d∑
i=1

(PiQi) (4.32)

dfid =
d∑
i=1

√
(PiQi) (4.33)

dChi =
1

2

d∑
i=1

(Pi −Qi)
2

Pi +Qi

(4.34)

dKL =
d∑
i=1

Piln
Pi
Qi

. (4.35)

Mahalanobis distance (4.36) [196] is one example of cross-bin distance,

dMah =
√

(P −Q)S−1(P −Q), (4.36)

where S denotes the covariance matrix.
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Table 4.5: Accuracies of treatment classification using ANN and moments

Features Accuracy(%) Hidden Layer Setting
Mean 46.94 (15, 15)
Mean+Variance 51.94 (13, 15)
Mean+Variance+Skewness 54.16 (17, 5)
Mean+Variance+Skewness+Kurtosis 52.50 (5, 17)

4.3 Results and Discussion

4.3.1 Treatment Classification Using Descriptive Statistics

Considering mean as the first order moment statistics for the canopy pixel
distribution, it is necessary to use one order moment features as well as higher order
moment features to extract more information from the distributions.

To explore whether higher order moment features can extract more infor-
mation and increase classification accuracy, four classifiers using ANN are designed
for the image input of 7 layers. These ANN classifiers are implemented in Scikit-
learn [179], where the solver for weights optimization is ’lbfgs’, L2 penalty (regular-
ization term) parameter α is set to 1e-05, and all the other parameters are default
setting. There are two hidden layers and the number of hidden neurons for each
layer is determined by using grid search in the range 5 to 20, with the step of 2.

The first classifier uses means of 7 layers as input, where each tree is described
with a vector of 7 dimensions. The second classifier uses means and variances of
7 layers as input, where each tree is described with a vector of 14 dimensions.
Similarly, the third classifier based on means, variances and skewness has a input
of 21 dimensions, and the forth classifier based on means, variances, skewness and
kurtosis has an input of 28 dimensions.

Table 4.5 lists the accuracies and hidden layer setting of these four classifiers.
It can be seen that adding features of higher order moments increases the accuracy
of irrigation treatment classification. Compared with the mean-based classifier, the
mean-variance-based classifier gains an accuracy increase of 5%. Adding skewness
features increases the accuracy with another around 3%. Adding kurtosis features
does not increase the accuracy further, though its performance is still better than
mean-based classifier with 5%. The reason might be that large number of features
makes the classifier overfitted in the relatively small training set.

4.3.2 Treatment Classification Using Dimensionality Reduction

Both means and other higher order moments can be considered as a pro-
cess of dimensionality reduction for the target canopy pixel distribution. According
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Figure 4.3: Comparing accuracies of treatment classification using ANN and his-
tograms with different bin sizes

Figure 4.4: Comparing accuracies of treatment classification using ANN, PCA with
different number of extracted components, histograms with different bin sizes
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Figure 4.5: Comparing accuracies of treatment classification using ANN, LDA with
different number of extracted components, histograms with different bin sizes

to this viewpoint, many other dimensionality reduction methods can also help ex-
tract information from distributions for treatment classification. One of the popular
methods to describe distributions is to use histograms. Therefore, dimensionality
reduction methods based on histograms are more general approaches to extract
related information.

The two most popular dimensionality methods are PCA and LDA, where
PCA is unsupervised and LDA is supervised. Both of these methods are linear
transformation of inputs. Considering ANN can not only serve as a classifier but
also a dimensionality reduction method, ANN can be an option of a nonlinear trans-
formation. Thus, three models based on canopy pixel distributions are explored for
treatment classification, PCA plus ANN, LDA plus ANN, and ANN. At the same
time, the number of components in PCA, LDA and the number of bins in histograms
are studied in these experiments.

The ANN configurations for these three types of models are the same as
Section 4.3.1. The number of components for both PCA and LDA is searched
between 2 to 28, where the maximum number of components is the same as the input
dimension of the classifier with means, variances, skewness and kurtosis features.

Five different bin sizes are explored at 8, 16, 32, 64, 128. The histogram of
a tree for one layer is extracted using minimum value and maximum values among
pixel DN values of all the trees in the same layer. The histograms of 7 layers are
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Figure 4.6: Comparing accuracies of treatment classification using ANN, LDA plus
ANN, PCA plus ANN based on histograms with different bin sizes

then concatenated into one histogram for each tree. For example, when the number
of bins is set as 8, the feature vector for each tree would be 56 dimensions.

Results of the classifier using ANN are in Fig. 4.3. Results of PCA plus ANN
classifiers are in Fig. 4.4 where top five classifiers are plotted. Results of LDA plus
ANN classifiers are in Fig. 4.5. Only the classifiers with the number of components
at 2, 4 are plotted, because the results of classifiers with more than 4 components
are the same as the classifiers with 4 components.

It can be seen that the best performance of ANN classifiers is with 128 bins
in histograms. For PCA plus ANN classifiers, the best performance is achieved with
24 components and 64 bins in the histograms. LDA plus ANN classifiers achieve
the best performance with 4 components and 8 bins.

ANN, PCA plus ANN, LDA plus ANN classifiers are compared in Fig. 4.6,
which shows that the best model is ANN with 128 bins. This indicates that the
irrigation treatment related features might be nonlinear transformations of original
input. Furthermore, it can be seen that this model is also better than the model
based on moments with an accuracy improvement by around 5%.

4.3.3 Treatment Classification Using Distribution Distance

Another type of classifiers is called distance based methods, a type of non-
parameter model. Instead of transforming original input space to lower dimension
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Figure 4.7: Comparing accuracies of treatment classification using KNN and differ-
ent distribution distances.

feature space, distance based methods operate in original input space. This saves ef-
fort for extracting features, although high dimensions of the input cause big variance
in the model performance.

KNN classifiers using ten different distribution distances described in Sec-
tion 4.2.5 are evaluated based on canopy pixel histograms. Two other hyper-
parameters are explored, the number of nearest neighbors k at 5, 7, 9, 11, 13, 15 and
the bin sizes of histograms at 8, 16, 32, 64, 128.

Because there exist negative values in band difference and normalized band
difference, the input for the distance based classifiers is only with 5 layers, with layers
of band difference and normalized band difference excluded. Similar to Section 4.3.2,
histograms of 5 layers are concatenated into one histogram for each tree, and then
the distance is calculated based on these concatenated histograms between trees.

The results of these classifiers are plotted in Fig. 4.7, where only the classifier
with the best k is chosen. It shows that most distances do not perform well except
Sørensen distance and Mahalanobis distance. The best performance is achieved with
Sørensen distance and histograms of 128 bins. Its performance is as good as the
ANN classifier using means of 7 layers input. It is interesting that the format of
Sørensen distance is similar to traditional normalized difference, although Sørensen
distance adding the difference and distribution respectively before normalization.
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4.4 Chapter Summary

In this Chapter, a new methodology for fully leveraging the high spatial
resolution of UAV-based remote sensing is proposed. According to this methodology,
the physical band can be considered as a layer. A vegetation index can also be
viewed as a new layer. In addition, each pixel in a layer of a tree is considered as an
observation for the tree. Then classification or regression using tree canopy pixels
can rely on dimensionality reduction to extract more related information.

As a case study, three types of models are built for irrigation treatment
classification, moments based classifiers, histograms based classifiers and distance
based classifiers. Experiments show that the best model is ANN with histograms of
128 bins, which produces an accuracy of 69%, 12% better than the model only using
means as feature input. In addition, as a simple non-parameter classifier, Sørensen
distance based KNN model also shows promising results.

The implications for UAV-based remote sensing based precision agriculture
practice are as follows.

• High resolution images enable plant health monitoring in the single-plant level.
This provides more flexibility for both feature description and extraction.

• Canopy histograms help keep more information to describe plant health.

• For the analysis of plant health in the instance level, beyond-mean feature
extraction can yield better classification accuracy.

• For a certain application, nonlinear feature extraction might work better than
linear feature extraction. For example, as a feature extraction method, ANN
might work better than both PCA and LDA.
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Chapter 5

DEPENDENCE OF IRRIGATION TREATMENT AND
VARIETY CLASSIFICATION ON IMAGE COLLECTION

5.1 Introduction

As discussed in Chapter 2, UAV-based remote sensing can be divided into
three steps, image collection, image pre-processing and image post-processing. Un-
like traditional satellite-based remote sensing, UAV-based remote sensing provides
great flexibility in image collection. Image spatial resolution can be modified by
flying the vehicles at different altitudes. Image spectral resolution can be configured
via mounting different cameras. Other adjustable factors during image collections
may include image formats, image overlap, flight speed, imaging angles and flight
time window etc.

So far, the main research focus on UAV-based remote sensing is image pre-
and post-processing, whereas little attention is put on image collection and its ef-
fect on final quantitative analysis. In [197], optimal vegetation index global envi-
ronment monitoring index (GEMI) was proposed with the guidelines that optimal
index should be very sensitive to the desired vegetation property but not sensitive to
possible perturbing factors such as soil background and atmospheric effects. Various
functions based on the red and near-infrared reflectances were evaluated in an ap-
proach that isolines of these functions were orthogonal to the displacements because
of target properties. In [198], optimal band was identified under the assumption that
the linear relationships between the vegetation index and green leaf area index (LAI)
had similar slopes and intercepts for four different crops of maize, potato, soybean
and wheat. When the NIR band was fixed in the range of 841-876 nm, the other
band was tuned between 500 nm and 750 nm. Most recently, optimization criteria
for remote sensing was proposed in [199] with regard to spatial resolution, spectral
bands and optimal time, yet no experiments were provided for further discussion.

Moving forward from Chapter 4, this Chapter studies how various factors
in UAV-based remote sensing affect the final analysis results and what is the best
practice. Examples of these factors include spatial resolution, spectral band con-
figuration, image registration and image formats. To avoid problems dependent
conclusions, these factors are evaluated according to classification accuracies in two
problems, irrigation treatment classification and treat variety classification.
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The rest of this Chapter is organized as follows. Data collection and pre-
processing, basics of image registration and image formats are described in Sec-
tion 5.2. In Section 5.3.1, effects of spatial resolution under the same band con-
figuration on classification accuracies are discussed. Effects of band configuration
on classification accuracies under the same spatial resolution are presented in Sec-
tion 5.3.2. How image fusions of different band configuration and spatial resolution
affect accuracies is studied in Section 5.3.3. In Section 5.3.4, effects of image band-
to-band registration are presented. In Section 5.3.5, classification accuracies using
images of different formats are compared. Finally, best UAV-based remote sensing
practices are described based on results of these experiments.

5.2 Materials and Methods

5.2.1 Data Collection

This study continues to use the data collected in Section 4.2.1. Images of
different spatial resolution but same band configuration were collected via flights at
120 m and 60 m AGL using the same cameras. Images of different band configuration
were collected using four different cameras, RGB, NIR, TIR and SWIR cameras.
Images of same spatial resolution but different band configuration were obtained by
registering RGB, NIR and TIR orthomosaic images to SWIR orthomosaic images
after downsampling in ArcGIS (Esri, USA).

Variety labels for each tree are provided by the owner of the almond orchard.
Experiments are based on Python library Scikit-learn [179]. Similar as Section 4.2,
the dataset includes 285 trees in the middle block, and two labels for each tree,
irrigation treatment and variety. 75% of the trees are in the training dataset and
25% of the trees are in the validation dataset. 5-fold cross-validation is used to
evaluate accuracies of different models using ANN based on histograms of canopy
pixels. Configuration of the ANN model is the same as Section 4.3.1.

5.2.2 Image Registration

Image registration, as a fundamental process in remote sensing, align images
of different spectral bands and different times [200]. It has a significant impact on
remote sensing tasks, such as change detection and image fusion [201].

Even misalignment greater than 0.25 pixels can be visually noticed in pseudo-
color image [202]. In [203], the impact of band-to-band registration in moderate
resolution imaging spectroradiometer (MODIS) images was analyzed. Snow classi-
fication results were compared using MODIS snow mapping algorithm before and
after registration correction, via which the image was shifted one pixel in the track
direction and kept unchanged in the scan direction. 8% out of around 2000 pixels
were classified differently because of the correction, and the correlation coefficient
between band 4 and 7 changed from 0.115 to 0.405.
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In addition to band-to-band shift error, image registration also introduces
pixel DN value changes during resampling and interpolation. For example, polar
Stockwell transform (PST) energy was used to analyze the impact of image reg-
istration on textures of magnetic resonance imaging (MRI) [204]. Results showed
that resampling by using linear, Blackman and B-spline led to significant difference
between interpolated images and original images.

Although many methods have been proposed for automatic image registration
[200, 205], the most popular approach still uses ground control points [206]. It was
shown that, 15 to 20 ground control points out of 160 images are required to achieve
good accuracy for image registration, where RMSEX and RMSEY are 3.3±0.346 cm
and 3.2±0.441 cm, similar as flight GSD of 3.291 cm.

5.2.3 Image Formats

Image formats are also an important consideration for remote sensing using
digital cameras [207]. In most digital cameras, there are two popular image formats,
tagged image file format (TIFF or TIF) and joint photographic expert group (JPEG
or JPG). TIF files support lossless compression, so images can be saved without
introducing information loss. JPG uses loss compression, which makes JPEG files
significantly smaller than those of TIF. It compresses images by retaining image
details that are most visually impactful and by taking the advantages that brightness
difference is more noticeable than color difference to human eyes [208].

Considering limited flight time of small unmanned aerial vehicles, it is desired
that cameras can capture images at a high speed. A higher capture speed means
more images are collected during a flight and hence larger area can be covered within
a single flight. The capture speed of a camera in JPG configuration is twice or ten
times as that in TIF or RAW configuration. For example, the NIR camera (Survey
2, MAPIR, USA) supports JPG video collection. It takes three seconds to capture
one RAW image.

It showed that mean reflectances calculated from JPG and TIF are the same
over a micro plot [209]. Again, in a plot level, mean normalized green-red differ-
ence index calculated from JPG images was shown to be linear correlated with the
mean normalized difference between green and red reflectances [210]. Similar studies
showed that, mean vegetation indices from JPG images provided results as good as
mean vegetation indices from TIF images in the target plots [211]. Soil color indices
based on average of the values in JPG images indicated similar or better correlation
than the field spectrometer [212].
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Figure 5.1: Comparing accuracies of treatment classification using images of same
bands but different spatial resolution.

Figure 5.2: Comparing accuracies of variety classification using images of same
bands but different spatial resolution.
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5.3 Results and Discussion

5.3.1 Effects of Spatial Resolution on Irrigation Treatment and Variety
Classification

Two orthomosaic images are used to compare classification accuracies of dif-
ferent spatial resolution. One image is with the resolution 2.03 cm/pixel collected
at 60 m. The other is with the resolution 4.06 cm/pixel collected at 120 m. Both
images include 7 layers, red, green, blue bands provided in the RGB camera (Survey
2, MAPIR, USA), red and NIR bands in the camera NIR (Survey 2, MAPIR, USA),
difference and normalized difference between the red band and the NIR band.

The performance of treatment classification at 60 m and 120 m is plotted
in Fig. 5.1 and the performance of variety classification is plotted in Fig. 5.2. Sur-
prisingly, it shows that higher spatial resolution does not always help improve the
accuracy. Lower spatial resolution helps increase the accuracy of treatment classi-
fication from 59% to 68%, whereas higher spatial resolution increases the accuracy
of variety classification from 60% to 83%. In addition, more bins in the histograms
help increase the accuracy of treatment classification, whereas the best accuracy of
variety classification is achieved at 8 bins.

It could be explained that lower spatial resolution helps filter high frequency
noise, which might cause trouble for later feature extraction with regard to certain
applications. On the other hand, for some applications, high frequency information
might be part of the target features.

Generally speaking, more bins in histograms provide better description about
distributions, and hence help increase classification accuracy. Although there is a
saturation effect in the parameter, the accuracy does not increase further with the
number of bins. Sometimes better performance is achieved with 8 bins in histograms
than that with 16 bins and this might be due to better optimization result with less
input dimensions.

5.3.2 Effects of Band Configuration on Irrigation Treatment and Variety
Classification

An orthomosaic image with 9 layers is used to compare accuracies under
different band configurations. These 9 layers include the red band, the green band
and the blue band from the RGB camera (Survey 2, MAPIR, USA), the red band
and the NIR band from the NIR camera (Survey 2, MAPIR, USA), difference and
normalized difference between the red band and the NIR band of the NIR camera
(Survey 2, MAPIR, USA), the TIR band, and the SWIR band. Spatial resolution
of all these 9 layers is 7.50 cm/pixel.

Five different band configurations are explored in this experiment for classi-
fication of treatments and varieties, the first 7 layers, the first 7 layers plus the TIR
band, the first 7 layers plus the SWIR band, the 7 layers plus both the TIR band
and the SWIR band.
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Figure 5.3: Comparing accuracies of treatment classification using images of same
spatial resolution but different bands.

The results of treatment classification are in Fig. 5.3 and the results of variety
classification are in Fig. 5.4. For both treatment and variety classification, adding
the NIR band does help significantly.

For treatment classification, adding the TIR band or the SWIR band can
further increase the accuracy by almost 5%. It shows that the TIR band helps
increase the accuracy better than the SWIR band. 8 layers configuration with the
TIR band can achieve almost the same accuracy as the configuration of 9 layers
with both the TIR band and the SWIR band, showing that the TIR band has
better sensitivity to irrigation effects on almond trees.

According to Fig. 5.1, lower resolution helps increase the treatment classifica-
tion accuracy. However, further lower resolution does not increase the accuracy,but
rather reduces it from 68% to 55%. This difference might also come from arti-
ficial downsampling such as nearest neighbor or bilinear resampling, where some
information gets lost.

For variety classification, adding the TIR band or the SWIR band does not
further improve the classification accuracy too much, although the best accuracy is
achieved with 9 layers of spectral configuration, around 3% better than the accuracy
without the TIR band or the SWIR band.
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Figure 5.4: Comparing accuracies of variety classification using images of same
spatial resolution but different bands.

5.3.3 Effects of Combining Images of Different Spectral Bands and Dif-
ferent Spatial Resolutions on Irrigation Treatment and Variety
Classification

Because specifications of various cameras are not the same, the spatial reso-
lutions of obtained images between bands are usually different. Traditional practice
to use all these images is based on band-to-band image registration. During this
process, images of source bands are either downsampled or upsampled to the same
resolution as the image in the target band for further registration.

Enabled by instance-segmentation of trees, image registration in the pixel
level is no longer needed. It is only necessary to register two images in the in-
stance level, which is much easier and saves lots of effort for ground control point
calibration.

Three stitched orthomosaic images are prepared for experiments. The first
image RGB NIR is collected using the RGB camera (Survey 2, MAPIR, USA) and
the NIR camera (Survey 2, MAPIR, USA), with the spatial resolution of 2.03
cm/pixel. It contains the red band, the green band and the blue band from the
RGB camera (Survey 2, MAPIR, USA), the red band and the NIR band from the
NIR camera (Survey 2, MAPIR, USA), difference and normalized difference between
the red band and the NIR band of the NIR camera (Survey 2, MAPIR, USA). These
layers are registered band to band in the pixel level to obtain the layers of difference
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Figure 5.5: Comparing accuracies of treatment classification using fused images of
different bands and different spatial resolution.

and normalized difference. The second image and the third image are in the TIR
band and the SWIR band respectively. These two images are registered band to
band in the pixel level, and they have the same spatial resolution 7.5 cm/pixel. For
abbreviation, these three images are denoted as RGB NIR, TIR and SWIR.

Four fusions of these three images are RGB NIR, RGB NIR and TIR, RGB NIR
and SWIR, RGB NIR, TIR and SWIR. Note that RGB NIR and TIR, SWIR are
registered in the tree level, not in the pixel level. The histograms of RGB NIR, TIR
and SWIR were then concatenated for each tree as the classifier input.

The results are shown in Fig. 5.5 and Fig. 5.6. For treatment classification,
similar results are obtained to Fig. 5.3. SWIR helps increase the accuracy slightly,
whereas TIR increased the accuracy a lot. For variety classification, similar to
Fig. 5.3, SWIR and TIR do not add extra improvement in the accuracy. The
accuracy becomes even worse with fusion of more layers into RGB NIR images.
This indicates that adding more layers does not always help increase the accuracy.
The best band fusion strategy is really application dependent.

5.3.4 Effects of Image Registration on Irrigation Treatment and Variety
Classification

In Section 5.3.3, although RGB NIR and SWIR, TIR are registered in the tree
level, difference and normalized difference layers are still included in the RGB NIR
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Figure 5.6: Comparing accuracies of variety classification by fused images of different
bands and different spatial resolution.

image. In the purpose of figuring out how much gains in accuracy introduced by the
layers of difference and normalized difference, accuracies of images with and without
the layers of difference and normalized difference are compared.

As shown in Fig. 5.7 and Fig. 5.8, accuracies of treatment classification im-
prove by 5% with layers of difference and normalized difference, and accuracies of
variety classification increase only 2%. Therefore it does help by adding layers of
difference and normalized difference, but the improvement of accuracies depends on
the specific application.

5.3.5 Effects of Image Formats on Irrigation Treatment and Variety
Classification

Published research shows means of vegetation indices extracted from JPG or
TIF images are similar. In the hope that the proposed feature extraction methods
have better capability to extract information, classification accuracies of treatments
and varieties are compared with images of different formats.

Images of different formats are made in the image pre-processing. Two con-
figurations to generate orthomosaic images determine the image formats. This first
one is to choose the desired format to convert individual RAW camera images for
further stitching. The second is to choose the desired format to export the stitched
orthomosaic image. Therefore, there are four possible different image formats to
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Figure 5.7: Comparing accuracies of treatment classification with or without band
difference between Red and NIR.

Figure 5.8: Comparing accuracies of variety classification with or without band
difference between Red and NIR.
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Figure 5.9: Comparing accuracies of treatment classification using images of different
formats.

Figure 5.10: Comparing accuracies of variety classification using images of different
formats.

66



be explored. More specifically, these four formats are an orthomosaic JPG im-
age stitched from individual JPG images, an orthomosaic JPG image stitched from
individual TIF images, an orthomosaic TIF image stitched from individual JPG
images and an orthomosaic TIF image stitched from individual TIF images. For
abbreviation, these four formats are denoted as jpg-st-from-jpg, jpg-st-from-tif, tif-
st-from-jpg, and tif-st-from-tif.

The images used for this experiment are collected with the RGB camera
(Survey 2, MAPIR, USA) and the NIR camera (Survey 2, MAPIR, USA) at 120
m, with the spatial resolution of 4.06 cm/pixel. These images are made in the
four different formats and registered band to band. For each format, difference and
normalized difference are calculated using the NIR band and the red band from the
NIR camera (Survey 2, MAPIR, USA). Therefore, four images with 7 layers of four
different formats are used as input for the classifiers.

Classification accuracies of treatments are shown in Fig. 5.9 and accuracies
of variety in Fig. 5.10. The format of tif-st-from-tif performs best for treatment
classification, and it is 6% better than the other formats, indicating that conversion
in JPG does lose treatment related information. On the other hand, the format jpg-
st-from-jpg introduces the best results for variety classification. The reason might
be that JPG helps filter some noise that is not related to variety classification.

These results show that the proposed methods are able to extract more infor-
mation as shown in the treatment classification. However, loss conversion sometimes
might help filter some unwanted noise with regard to the target application.

5.4 Chapter Summary

In this Chapter, effects of some remote sensing related factors are evaluated
in irrigation treatment classification and variety classification, with the best model
in Chapter 4. These factors are spatial resolution, spectral configuration, band-to-
band registration and image formats.

Based on the above experiments, the key contributions in this Chapter are
as follows.

• Higher spatial resolution increases the accuracy of variety classification, but
reduces the accuracy of irrigation treatment.

• More spectral bands, in particular TIR, can increase irrigation treatment clas-
sification accuracy, but do not introduce benefits in variety classification.

• Difference and normalized difference help improve classification performance
of both varieties and treatments, although slightly better accuracy is obtained
for variety classification. This indicates that for some application, it might
not be necessary to do band-to-band registration in the pixel level to obtain
band difference and normalized difference.
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• Using TIF images in the whole process helps achieve better treatment classi-
fication, whereas noise is better filtered using JPG images to introduce higher
accuracy of variety classification.

It is shown that for a given application, adding more information either in
spectral domain or spatial domain does not necessarily increase the classification
performance. One reason might be that it becomes harder to find the optimal
parameters for ANN models when more features are added for each sample but the
number of samples in the dataset is kept the same. The other explanation might
be that more features introduce both application related information and noise at
the same time. When there is no better feature extraction methods or noise filters
applied, more features may not deliver better results.

Implications of these contribution to UAV-based remote sensing suggest that
spatial resolution, spectral configuration, band-to-band registration and image for-
mats all matter. It is always good to start with higher dimension data collection,
i.e., higher spatial resolution, more spectral bands, higher accuracy of georeferencing
and raw images, and then to conduct routine flight mission with optimized setting
according to the target application.
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Chapter 6

WATER STRESS MONITORING OF ALMOND TREES

6.1 Introduction

In Chapters 4 and 5, UAV-based remote sensing is used to infer irrigation
treatments. It is helpful to detect trees that are under different irrigation treatments,
either over irrigated or under irrigated during a long term. However, it is more
desired to obtain real-time water stress monitoring of almond trees. Then farm
managers can optimize irrigation schedules more frequently to minimize stress of
almond trees and thus maximize the productivity.

As one of the popular water stress indicators, SWP has been proved to be
a standard method for real-time water status monitoring, able to provide a short-
time or medium-term plant response to water stress. Quite a few studies have been
conducted on the correlation between SWP and vegetation indices in different species
of crops using UAV based remote sensing. Crop water stress index (CWSI) showed a
good correlation with SWP in peach trees [74], pistachio trees [75] and almond trees
[76]. PRI was correlated well with SWP in olive trees [213] and significant correlation
was found between PRI and CWSI in vineyards [214]. NDVI was correlated well
with SWP in mandarin citrus trees [173]. Non-normalized NDVI showed a good
correlation with SWP in almond trees [215]. Although the image spatial resolutions
and camera band configurations in these studies were different, all these vegetation
indices were obtained by averaging the pixel DN values or vegetation indices in the
scales of canopies [85] or blocks.

This Chapter discusses how the proposed methodology in Chapter 4 can help
improve prediction of SWP by using high resolution multispectral images. For the
regression problem of SWP prediction, each pixel DN value in a spectral band or
a format of vegetation indices is considered as an individual variable for the tree.
Various methods are researched to explore the benefits of these high dimension
pixels or variables to accurate SWP prediction. Considering relatively small SWP
measurement dataset, only linear regression models are explored to minimize the
prediction variance.

Section 6.2 describes data collection and preprocessing, a brief introduction
about BRDF, linear model regression, regulation and dimensionality reduction in
liner regression. Section 6.3.1 describes how NDVI means and variances change
according to view angles. SWP regression using statistics moments is presented in
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Section 6.3.2, where different linear regression methods are compared with regard
to mean square error (MSE). Section 6.3.3 introduces SWP regression using canopy
histograms and MSE of models with different bin sizes of histograms is discussed.
Finally, all these linear regression models are compared in Section 6.4.

6.2 Materials and Methods

6.2.1 Data Collection

Midday stem water potential (SWP) was measured to monitor the plants
water status using a pressure chamber (PMS Instrument Model 600, USA) following
standard procedures [216]. The locations of sample trees are shown in Fig. 3.1, where
each cell stands for a tree and the sample tree is marked in red. In 2015, three
sample trees in the middle line of each plot were measured, hence there were fifteen
measurements in each block. SWP measurements for the middle block, the west
block, and the east block were rotated weekly. SWP measurements of 06/12/15,
06/18/15, 07/16/15, 08/20/15, 09/10/15 are used for regression analysis.

The modified NIR camera (ELP110HS, Canon, Japan) was flown at the same
time of SWP measurement with the spatial resolution of 1.87 cm/pixel at 60 m AGL.
The modified NIR camera contains three bands, NIR, green and blue. More detail
of its specification is listed in Tab. 3.1 and Fig. 3.3. RAW images are captured
during flights, and converted to TIF images for stitching in Photoscan (Agisoft,
Russia). Canopy images of samples trees are cropped manually from the most
nadir individual TIF image with the help of the stitched orthomosaic image. Both
original and cropped canopy images of a sample tree are shown in Fig.6.1(a) and
6.1(b), where surrounding non-canopy pixels are filtered.

6.2.2 Data Pre-processing

Besides three bands NIR, green and blue provided in the camera, two more
layers are added in the image array. One layer is difference between the NIR band
and the blue band, as described in Equ. 6.1, where DNNIR and DNblue stand for
digital value for a pixel. The other layer is normalized difference, in the format
of Equ. 6.2, where pixels with zero sum of DNNIR and DNblue are filtered out.
Therefore canopy images of five layers serve as input for later regression analysis. It
needs to be noted that DN values are used instead of reflectance. This is reasonable
because later regression is studied for measurements within one day rather than
across days.

DV I = DNNIR −DNblue (6.1)

NDV I =
DNNIR −DNblue

DNNIR +DNblue

. (6.2)
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(a) (b)

Figure 6.1: A sample tree canopy before (a) and after cropped (b).

6.2.3 Linear Regression

The most popular regression method is simple linear regression. It predicts
a quantitative response Y with regard to a single predictor variable X,

Y = β0 + β1X + ε, (6.3)

where β0 and β1 represent the intercept and slope in the line model respectively, ε
is the error term.

Given n observation points,

(x1, y1), (x2, y2), ..., (xn, yn)

define the residual sum of squares (RSS) as

RSS = e2
1 + e2

2 + ...+ +e2
n,

ei = yi − β̂0 − β̂1x1, i = 1, 2, ..., n,
(6.4)

where ·̂ is used to denote an estimated value. Then β̂0 and β̂1 can be obtained by
minimizing the RSS using the least squares approach,

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
,

β̂0 = y − β̂1x,

(6.5)
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where

y =
1

n

n∑
i=1

yi,

x =
1

n

n∑
i=1

xi.

(6.6)

When there are more than one predictors, instead of creating many simple
linear regression models separately, multiple linear regression model can be used,

Y = β0 + β1X1 + β2X2...+ βpXp + ε, (6.7)

where Xi denotes the ith predictor and βi the coefficients associated with that
predictor, p is the number of predictors, and ε is the error term. Similarly, these
coefficients βi, i = 1, 2, ..., p can be estimated by minimizing the RSS using the
multiple least squares approach.

One of the most popular statistics to compare linear regression models is
MSE defined as

MSE =
1

n

n∑
i=1

(yi − ŷi)2. (6.8)

6.2.4 Liner Model Regularization

When the number of predictors is grater than the number of observations, the
least squares method becomes unstable. There are no longer unique least squares
coefficients and the variance of these coefficients become infinite. To overcome this
issue, three classes of methods are usually used, subset selection, shrinkage and
dimensionality reduction [217].

6.2.4.1 Subset Selection

One method of subset selection is best subset selection. In best subset selec-
tion, 2p models will be evaluated and the best model is selected according to Akaike
information criterion (AIC), Bayesian information criterion (BIC) or adjusted R2.
The other method is stepwise regression. It adds or removes the variable one at
a time according to the statistical significance. Different from best subset selec-
tion [217], stepwise regression does not search through all the possible subsets. But
stepwise regression can save the computation a lot when p is large. It usually has a
lower variance due to the more constrained search.
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6.2.4.2 Shrinkage Methods

Two popular methods to shrink the regression coefficients are ridge regression
and least absolute shrinkage and selection operator (LASSO) regression [217]. Ridge
regression estimates the coefficients by minimizing the cost with `2 of coefficients,

n∑
i=1

(yi − β0 −
p∑
i=1

βjxij)
2 + λ

p∑
i=1

β2
i , (6.9)

where λ ≥ 0 is a parameter for tuning the penalty on the coefficients β. Similarly,
LASSO regression adds the penalty `1 of coefficients in the cost

n∑
i=1

(yi − β0 −
p∑
i=1

βjxij)
2 + λ

p∑
i=1

|βi|. (6.10)

When the penalty grows with increasing λ, it will make the coefficients approach
zero and less predictors will show up in the models.

6.2.4.3 Dimensionality Reduction Methods

In either subset selection, ridge regression or LASSO regression, original pre-
dictors are used in the regression model. Another approaches of model regularization
transform predictors first and build the model with the transformed variables. These
approaches are denoted as dimensionality reduction based methods [217].

The first dimensionality reduction method is principal component regression.
In principal component regression (PCR), the first M(M � p) principal components
are extracted using PCA, and a linear regress model is fitted using these compo-
nents. PCR can help avoid multicollinearity significantly, because these principal
components are uncorrelated. When the assumption of PCR is true, that the pre-
dictors show the most variation in the directions associated with Y , it can reduce
the coefficients to be estimated and hence reduces the risk of overfitting.

PCA is an unsupervised method, so PCR does not include information of the
response while extracting the transformed components. Consequently, the directions
representing the best variations of the predictors may not be the best directions to
predict the response. Unlike PCR, the partial least squares (PLS) method finds the
new features in a supervised way. PLS identifies the directions that can explain
both the response and the predictors [218].

In both PCR and PLS, the number of M is chosen by cross-validation. The
predictors and the responses are usually standardized before feature extraction.

6.3 Results and Discussion

6.3.1 Effects of View Angles on Canopy Vegetation Indices

It is well known that remote sensing measurement depends on both illumi-
nating angles and view angles. Disturbance of illuminating angles can be minimized
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(a) Flight path in Mission Planner (b) Collected images overlayed on the
stitched image

Figure 6.2: Flight path and collected images of the circle mission.

Table 6.1: Specification of the circle mission

Zenith angle 30◦

Azimuth angle −111.95◦

Altitude 120 m
Longitude 120.638 78◦W
Latitude 37.495 104◦N
Time (USA Pacific) 15:00

by finishing flight mission within a short time window. However, faster mapping
usually requires larger overlap, so the target area can be covered with less flight
paths. This leads to larger variations in view angles. Many simulations studies have
been published about how vegetation indices such as NDVI changes with the illu-
minating angles or view angles [219, 220]. In this Section, a circular flight mission
is designed to research how the view angles affect vegetation index NDVI.

A circle mission was conducted at 60 m in the west block, on June 4th, 2015.
Detailed information about mission location and the solar angle is in Tab. 6.1.
As shown in Fig. 6.2(a), the images were taken right above the tree, and eight
points along each circles. The radiuses of the circles are 10 m, 20 m and 30 m
respectively. The starting waypoint on the circle lies on the north of the target
tree. The second tree in the row is chosen to avoid the border effects of sunlight.
A white target is put on the road aligned with the sample row. The images are

74



(a) (b)

Figure 6.3: (a) Canopy NDVI means under different view angles, (b) Canopy NDVI
variances under different view angles.

stitched in Photoscan(Agisoft, Russia) first and a marker is placed on the target
tree (Fig. 6.2(b)). According to the marker, the sample tree is cropped from each
frame (Fig. 6.1(a)). Then the soil is cropped out and only the remaining canopy
pixels (Fig. 6.1(b)) are used to calculate the canopy NDVI mean.

The distributions of canopy NDVI mean and variance are shown in Fig. 6.3(a)
and Fig. 6.3(b), with the right side referring east, the up side north. The sample tree
is not captured in two images, and these two images were marked with the hollow
points. The hotspot appeared when the camera was on the southwest side of the
tree, where the view angle was the same as the illumination angle (azimuth angle)
of −111.95◦ with regard to north, 60.35◦ measured from the horizontal. In the solar
principle plane, canopy NDVI means become less when view angles get closer to the
illumination angle and they become larger when the view angles move further from
the illumination angle. The absolute error between the maximum and minimum is
up to 0.16, 24% with regard to the lowest value 0.66. Therefore, it is necessary to
conduct calibration to reduce the influence of view angles on canopy NDVI to infer
SWP.

6.3.2 Water Stress Monitoring Using Descriptive Statistics

Studies using means, variances or higher order moments to monitor plant
health have been published, where different order moments were applied to canopy
temperature [76,221,222] or vegetation indices such as DVI [223,224], NDVI, GDVI
and SAVI [225].

Following the methodology proposed in Chapter 4, moments can be consid-
ered as a dimensionality reduction method to extract information from the tree
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Figure 6.4: Comparing MSE of models using PLS, PCR, stepwise, LASSO, PCA
plus stepwise, PCA plus LASSO based on means.

Figure 6.5: Comparing MSE of models using PLS, PCR, stepwise, LASSO, PCA
plus stepwise, PCA plus LASSO based on means and variancse.
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Figure 6.6: Comparing MSE of models using PLS, PCR, stepwise, LASSO, PCA
plus stepwise, PCA plus LASSO based on means, variances and skewness.

Figure 6.7: Comparing MSE of models using PLS, PCR, stepwise, LASSO, PCA
plus stepwise, PCA plus LASSO based on means, variances, skewness and kurtosis.
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Figure 6.8: SWP values and histograms of pixel difference between the NIR band
and the blue band for 15 samples using images collected on 08/20/15.

canopy pixel distributions. Therefore, moments can be applied not only to temper-
ature, to vegetation indices, but also to each band of the images.

The first problem of extracting moments for each band is that too many
variables are introduced for the regression model. This is particularly bad when
there are only limited samples available. What is worse, as unsupervised methods,
extracted moments do not necessarily correlate well with the predictor. To solve
these two problems, regulation methods and dimensionality reduction methods are
used before these moments are fed to the regression model.

In this Section, four different groups of moment combination are explored,
including means, means and variances, means, variances and skewness, means, vari-
ances, skewness and kurtosis. Because the orthomosaic image contains 5 layers of
NIR, green, blue, difference between the NIR band and the blue band, normalized
difference between the NIR band and the blue band, the observation dimensions of
each tree are 5, 10, 15 and 20 for different moment combinations, respectively.

Six different strategies of regularization or dimensionality reduction are used
to build the regression model. Four separate strategies are partial least squares
regression (PLSR), PCR, LASSO and stepwise, where moments are fed directly to
regression models. The other two mixed methods are PCA plus LASSO, PCA plus
stepwise, where extracted principal components from moments serve as input to
LASSO or stepwise models.
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Figure 6.9: Comparing MSE of models using PLS, PCR, stepwise, LASSO, PCA
plus stepwise, PCA plus LASSO based on histograms of 16 bins.

Figure 6.10: Comparing MSE of models using PCA plus LASSO based on histograms
of 16, 32, 64, 128 bins.
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Figure 6.11: Comparing MSE of models using PCA plus stepwise based on his-
tograms of 16, 32, 64, 128 bins.

Figure 6.12: Comparing MSE of models using PCA plus stepwise based on both
moments and histograms.
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These models are compared based on five days’ measurements, which include
75 measurements in total. The models are built for each day with 15 measurements
and compared according to MSE. MSE is calculated via 5-fold cross-validation. The
number of components extracted in PLSR and PCA related models is determined
using cross-validation. All these models are implemented using libraries in Mat-
lab2013b (Mathworks, USA).

Results of these models with different moment combinations are shown in
Fig. 6.4, 6.5, 6.6, and 6.7. As for the regression strategies, stepwise performs con-
sistently better than LASSO and PLSR. PCR is the worst. The performances of
LASSO and PLSR depend on the dataset. For example, the MSE is small on the
dataset of 07/16/15, but very large on the dataset of 08/20/15. In addition, step-
wise models using principal components are better than the models based on direct
moments, indicating that PCA can extract response related information and filter
some unwanted noise.

MSE of stepwise models using PCA with different moment combinations are
compared in Fig. 6.12. The results show that adding more moments to the models
does not necessarily help increase the model performance. For example, on the
dataset of 06/18/15, means based models are better than the models using more
moment features. It also indicates that variances might not be good features for
SWP regression, as adding variances in the models decreases MSE consistently.

6.3.3 Water Stress Monitoring Using Histograms

Similar to Section 4.3.2, because moments are the methods to describe canopy
pixel distributions, histograms could provide a complete description about canopy
pixel digital values. As an example, Fig.6.8 shows SWP values and the histograms
of canopy pixel DN values of 15 sample trees in the middle block, where x axis
represents difference between the NIR band and the blue band of the modified NIR
camera (ELPH110HS, Canon, Japan), y axis is the percentage of the pixels with
a certain DN value, and SWP values are on the top. Besides features captured by
moments such as spread and skewness, other information of histograms might be
filtered out, i.e. the shape of tails or tops. Therefore, instead of using moments for
dimensionality reduction, it is promising that feeding histograms of canopy pixel DN
values directly as the regression input could improve the regression performance.

Figure 6.9 compares six different regression strategies using histograms of 16
bins. The orthomosaic used for histograms based regression is the same as the one
for moments based regression, which includes 5 layers. When the histograms are
described with 16 bins, a feature vector for each tree will be 80 dimensions. It shows
that stepwise with PCA is also the best for histograms based regression. Figure 6.10
and 6.11 show the results of LASSO with PCA, and stepwise with PCA fed with
histograms of different bin sizes, where both indicate that histograms of 16 bins
yield the consistently best model.
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Finally, results of stepwise with PCA using histograms are compared with
those of stepwise with PCA using moments in Fig. 6.12. It proves that histograms
based models can extract more SWP related information and produce better SWP
regression performances in terms of MSE.

In Fig. 6.9, it is also shown that there are day-to-day changes of MSE for both
histogram-based regression and moment-based regression. For example, the MSE
in 07/16/15 and 09/16/15 are small and the MSE in the other days are large. This
variation might come from different crop dynamics during different growing stages or
under different environment conditions. The variation might also be caused by SWP
measurements. In our study, only one SWP measurement is taken for each sample
tree by one technician. This practice usually introduces a significant measurement
noise [226]. This might explain that PLSR, a supervised regression method, is not
performing as well as the unsupervised regression methods, e.g., stepwise regression
and LASSO regression.

6.4 Chapter Summary

A regression problem of predicting SWP using tree canopy pixel DN values
is discussed in this Chapter. The key contributions of this Chapter are as follows.

• A circular flight mission is designed to study how view angles affect canopy
NDVI means and variances. Different regression regularization methods are
evaluated as well, Experiments shows that over 20% of canopy NDVI means
could be introduced by view angles.

• Regression models using moments of tree canopy pixel DN values are com-
pared in terms of SWP MSE. Six different regression regularization methods
are evaluated as well, including PLSR, PCR, LASSO, stepwise, LASSO with
PCA and stepwise with PCA. Results indicate that higher order moments
can help produce better models sometimes, but the performance increase is
not consistently. Out of these six regularization methods, stepwise with PCA
yields the best performance consistently in all the datasets.

• Regression models using histograms of tree canopy pixel DN values are com-
pared in terms of SWP MSE. Different regularization methods and bin sizes
of histograms are studied as well. It is revealed that stepwise with PCA and
histograms of 16 bins produce the best performance consistently across all the
datasets.

• Comparing moment based models to histogram based models shows that his-
tograms based model can provide consistently better models in terms of MSE.

Based on the above contributions, implications of these contributions to UAV
based remote sensing in precision agriculture are listed as follows.

82



• View angles can introduce significant amount of noise to remote sensing mea-
surements. In order to obtain consistent and precision measurements, it is
necessary to take special care of view angles during flight mission planing and
image collection.

• High resolution images not only provide a better capability to differentiate
objects, but also contribute extra measurement dimensions about the objects.
New types feature description and feature extraction methods are necessary
to obtain extra benefits from these high resolution images. For example, in
the application of almond tree SWP prediction, canopy description using his-
tograms and regression using regularization methods PCA and subset selection
can yield the best regression performance.
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Chapter 7

SUMMARY AND FUTURE WORK

7.1 Summary

The development of UAVs and imaging sensor technologies makes it much
easier to collect images with very high spatial resolution and even spectral reso-
lution. It becomes possible to monitor crop health in the level of a single plant.
However, there is lack of a workflow to make the best use of high resolution images
for plant health monitoring. With almond tree water stress monitoring as a case
study, this dissertation examines the whole process of remote sensing using UAVs,
and three key parts are discussed throughout the forgoing Chapters, region of inter-
est extraction, classification using high resolution images, and regression using high
resolution images.

The first step for information extraction in high resolution images is to ex-
tract region of interest, or object segmentation. Chapter 3 proposes two types of
methods for tree canopy segmentation. The first one is based on manual features
such as color, textures and morphological features. The second is using deep learning
based instance-segmentation. Instead of relying on many manual features and pa-
rameters, deep learning based segmentation provides a robust end-to-end solution
for canopy segmentation. Chapter 4 addresses a problem of irrigation treatment
classification using high resolution canopy images. Rather than traditional methods
using mean vegetation indices, three methods are proposed to leverage the benefits
of high dimensions of UAV-based high resolution images, moments based classifiers,
histograms based classifiers and distance based classifiers. In Chapter 5, the best
model developed in Chapter 4, that is based on histograms and ANN, is applied
in two classification tasks of almond variety classification and irrigation treatment
classification to the evaluate the effects of various factors involved in UAV based
remote sensing on classification accuracy. These factors include spatial resolution,
spectral configuration, band-to-band registration and image formats. Chapter 6 dis-
cusses a regression problem of predicting almond tree water stress via SWP using
high resolution images. A circular flight mission is conducted to explore the effects
of view angles on canopy NDVI means and variances. Then two feature extraction
methods and six regression strategies are explored to predict SWP, where two ex-
traction methods are the one using moments and the one using histograms, and
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six linear regression strategies include stepwise, PLSR, PCR, LASSO, stepwise with
PCA and LASSO with PCA.

7.2 Future Work

The workflow of extracting plant health information using UAV-based remote
sensing is far from being mature. The benefits from high resolution images are
demonstrated but more challenges are coming along with these new opportunities.

7.2.1 Region of Interest Extraction

In Chapter 3, deep learning based instance-segmentation achieves a great
success in almond tree canopy extraction, where canopy images of different light-
ing conditions and different growing stages are correctly segmented. However, this
model only works in the images with the spatial resolution of 1.87 cm/pixel col-
lected with the modified NIR camera (ELPH110HS, Canon, Japan). It does not
work on the images with different bands, or different spatial resolution. According
to current practice, to make it work in other situations, specific datasets in those
situations need to be collected and a brand new model needs to be trained. In
summary, more work is needed to minimize the data collection and labelling effort
and to maximize its generalization for images of various spatial resolution, spectral
configuration and plant species. Another issue is about the speed. Even just for
inference, deep learning based algorithms need GPU to accelerate the computation.
Ideally, field management needs real-time crop monitoring for decision making. It
might help by running all these segmentations in the cloud, but then it requires that
the onboard cameras have good access to the internet. A more promising solution
is to run inferences in the edge devices, which not only releases communication load
but also speeds up the processing.

7.2.2 Optimization of Model Parameters and Remote Sensing Settings

As shown in Chapters 4, 5 and 6, to design either a classifier or a regression
model using UAV-based remote sensing images, many model parameters and data
collection or preprocessing settings are involved. Examples of these parameters are
bin sizes of histograms, the number of hidden layers and the number of components
extracted in PCA. Examples of data collection settings are flight altitude, camera
band configuration and image formats. Current practices are based on many experi-
ments to grid search these best parameters and settings. However, these parameters
or settings are application dependent, which means a new group of parameters or
settings needs to be determined for each new application. It becomes very hard to
develop classification models for many different applications. As a result, all the
efforts in developing models are disconnected among different applications, rather
than accumulated with one application by another application. In some time critical
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remote applications, i.e., monitoring the crops within a short growing windows, lim-
ited number of experiments are available to explore the optimal settings. Therefore,
what is the right way to continue optimizing model parameters and remote sensing
settings based on existing dataset and knowledge needs further research.

7.2.3 Minimizing the BRDF Effects

Chapter 6 discusses how BRDF affects canopy NDVI means, indicating that
view angles will introduce significant disturbances for remote sensing based measure-
ments. In real-world remote sensing applications, it is very hard to make sure all the
observations of objects are under the same view angles and the same illuminating
angles. It is hard to collect consistent remote sensing measurements, which adds
large amount of uncertainties to the analysis results. Due to this inconsistency, only
SWP measurements within a day are used to build the regression model to minimize
the disturbances from solar angles between different days. Therefore, it is desired to
research either the calibration method to minimize the inconsistency, or regression
or classification models that are robust to these disturbances.

7.2.4 Development of Models Robust and Sensitive to Crop Changes

Besides the disturbance of BRDF effects, other big challenges are from the
crops. Unlike man-made objects, the crops grow all the time. They adjust them-
selves in realtime according to water, soil nutrients, sun light and other environmen-
tal conditions. How to design the models both robust and sensitive to crop changes
needs further exploration. For example, is the SWP prediction model for almond
trees in June the same as the model in July? Is the SWP model for almond trees
in Merced the same as the model for almond trees in Davis? More datasets are
necessary to answer these questions.
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[9] C. Van Leeuwen, O. Tregoat, X. Choné, B. Bois, D. Pernet, J.-P. Gaudillère,
et al., Vine water status is a key factor in grape ripening and vintage quality for
red Bordeaux wine. how can it be assessed for vineyard management purposes,
J. Int. Sci. Vigne Vin 43 (3) (2009) 121–134.

[10] R. Slayter, Plant-Water Relationships, London and New York: Academic
Press, 1967.

[11] T. Hsiao, E. Fereres, E. Acevedo, D. Henderson, Water stress and dynamics
of growth and yield of crop plants, in: Water and Plant Life, Springer, 1976,
pp. 281–305.

87



[12] S. Armstrong, How does water affect plant growth?,
https://www.gardeningknowhow.com/special/children/

how-does-water-affect-plant-growth.htm (2018).

[13] J. Castel, E. Fereres, Responses of young almond trees to two drought periods
in the field, Journal of Horticultural Science 57 (2) (1982) 175–187.

[14] E. Fereres, D. Goldhamer, Deciduous fruit and nut trees, Agronomy
(USA)(1990).

[15] S. J. Hake, T. Kerby, K. Hake, et al., Cotton production manual, Vol. 3352,
University of California, Agriculture and Natural Resources, 1996.

[16] W. Micke, Almond production manual, University of California, Division of
Agriculture and Natural Resources, 1996.

[17] World Economic Forum, Global Risks 2015, Geneva,Switzerland, 2015 (2015).

[18] M. M. Mekonnen, A. Y. Hoekstra, Four billion people facing severe water
scarcity, Science Advances 2 (2) (2016) e1500323.

[19] Stateline, Drought returns to huge swaths of U.S., raising fears of shortages,
http://www.governing.com/topics/transportation-infrastructure/

sl-drought-water-shortage.html.

[20] D. Wyatt, 63% of California in drought, https://www.mantecabulletin.

com/news/local-news/63-california-drought/.

[21] World Bank Group, Water in agriculture, http://www.worldbank.org/en/
topic/water-in-agriculture (2017).

[22] W. J. Davies, M. J. Bennett, Achieving more crop per drop, Nat. Plants
1 (15118) (2015) 10–1038.

[23] M. W. Rosegrant, J. Koo, N. Cenacchi, C. Ringler, R. D. Robertson, M. Fisher,
C. M. Cox, K. Garrett, N. D. Perez, P. Sabbagh, Food security in a world
of natural resource scarcity: The role of agricultural technologies, Intl Food
Policy Res Inst, 2014.

[24] T. Du, S. Kang, J. Zhang, W. J. Davies, Deficit irrigation and sustainable
water-resource strategies in agriculture for China’s food security, Journal of
Experimental Botany 66 (8) (2015) 2253–2269.

[25] N. Zhang, M. Wang, N. Wang, Precision agriculture-a worldwide overview,
Computers and Electronics in Agriculture 36 (2-3) (2002) 113–132.

88



[26] D. Mulla, P. Gowda, W. Koskinen, B. Khakural, G. Johnson, P. Robert,
Modeling the effect of precision agriculture: pesticide losses to surface waters,
ACS Publications, 2003.

[27] D. Mulla, C. Perillo, C. Cogger, A site-specific farm-scale GIS approach for
reducing groundwater contamination by pesticides, Journal of Environmental
Quality 25 (3) (1996) 419–425.

[28] L. Tian, Development of a sensor-based precision herbicide application system,
Computers and Electronics in Agriculture 36 (2-3) (2002) 133–149.

[29] S. Park, D. Ryu, S. Fuentes, H. Chung, E. Hernández-Montes, M. O’Connell,
Adaptive estimation of crop water stress in nectarine and peach orchards us-
ing high-resolution imagery from an unmanned aerial vehicle (UAV), Remote
Sensing 9 (8) (2017) 828.

[30] J. V. Stafford, Implementing precision agriculture in the 21st century, Journal
of Agricultural Engineering Research 76 (3) (2000) 267–275.

[31] G. Warren, G. Metternicht, Agricultural applications of high-resolution digital
multispectral imagery, Photogrammetric Engineering & Remote Sensing 71 (5)
(2005) 595–602.

[32] M. S. Moran, Y. Inoue, E. Barnes, Opportunities and limitations for image-
based remote sensing in precision crop management, Remote Sensing of En-
vironment 61 (3) (1997) 319–346.

[33] J.-H. Zhang, W. Ke, J. Bailey, W. Ren-Chao, Predicting nitrogen status of rice
using multispectral data at canopy scale1, Pedosphere 16 (1) (2006) 108–117.

[34] J. A. Berni, P. J. Zarco-Tejada, L. Suárez, E. Fereres, Thermal and nar-
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