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ABSTRACT

Motivation: Recent research has shown that gene expression profiles can potentially be used

for predicting phenotypes such as cancer types and survival time in biomedical research. Mi-

croarray technology which simultaneously measures expression values of thousands of genes

provides a powerful tool as well as new challenges in relating gene expression profiles to phe-

notypes. Expression data are often very high-dimensional, which makes statistical modeling

more difficult and complex, especially when the phenotypes such as time to death or cancer

recurrence are subject to right censoring. We consider in this paper a model-free sufficient

dimension reduction technique to reduce the dimension of microarray data in the context of

analyzing censored survival data.

Results: We propose a dimension reduction technique which does not assume a particular

model for survival time given gene expression values. After dimension reduction, the con-

structed gene expression components are used as covariates for predicting the survival proba-

bilities in the framework of censored data regression analysis. In particular we use the popular

Cox proportional hazards model to build a predictive model for survival. We demonstrate the

use of the methodology by applying to a large diffuse large B-cell lymphoma gene expression

data set, which consists of 240 patients and 7399 genes. The Cox proportional hazards model

with the derived gene expression components is shown to provide a good predictive perfor-

mance for patient’s survival as demonstrated by the receiver operator characteristics analysis.

The predictive model built using the training data set predicted highly significant survival

difference in the testing data.

Availability: R programs are available on request from the authors.

Contact: lexli@ucdavis.edu; hli@ucdavis.edu
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INTRODUCTION

DNA microarray technology is a ground-breaking advance in biomedical and genomic research.

It enables the simultaneous measurements of the expression levels of thousands of genes per

sample. It has been shown in various studies that the gene expression profiles can be used

successfully in molecular classification of tumor types (Golub et al. 1999), in therapeutic

prediction of drug response (Scherf et al. 2000), and in genomic prediction of patients’ survival

(Rosenwald et al. 2002).

Among those applications, cancer class prediction using gene expression data has been

studied extensively in recent years (See Dudoit et al., 2000 for a review.) However, there has

been less development in relating gene expression profiles to other phenotypes, such as survival

time, due to a number of challenges. First, the microarray-based high-throughput technology

generates a huge number of potential predictors, i.e., gene expression levels of thousands of

genes, and the expression levels of many genes are often highly correlated. On the other hand,

the sample size of patients or cell lines is usually very small compared to the number of genes

in the study. Modeling such high-dimensional data is a complex and challenging problem.

The problem becomes more difficult when the phenotypes such as time to death or time to

cancer recurrence are subject to right-censoring. Additionally, microarray data often possess

a great deal of noise.

There has been some recent development in relating gene expression profiles to censored

survival endpoints. One popular approach is built on clustering analysis. For example, Rosen-

wald et al. (2002) first identified a small number of ”signature” gene clusters using hierarchical

clustering analysis, and then built a Cox proportional hazards model for predicting time to

death in patients with large B-cell lymphoma based on the mean values of the expression

levels of genes in those gene clusters. One disadvantage of clustering genes is that the sample

phenotypes are not efficiently used. Bair and Tibshirani (2003) re-analyzed the lymphoma

data set of Rosenwald et al. by applying the nearest shrunken centroid supervised clustering

and the partial least squares techniques. Nguyen and Rocke (2002) proposed to construct a

partial least squares proportional hazards model using residuals for the Cox model. However,

the use of residuals in the estimation of parameters in the Cox model is not well-established in

the survival analysis literature since there are many different ways of defining residuals (Bar-

low and Prentice, 1988). In addition, smaller sum of squares of residuals in the Cox regression

model context does not always imply a better fit of the model. Li and Luan (2003) proposed
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a penalized Cox proportional hazards model within the framework of kernel estimation, and

they evaluated their method using a number of survival microarray data sets. But they did

not study how different choices of kernel functions affect the predictive performance of their

methods.

In this article, we introduce a dimension reduction strategy, in the context of survival

prediction, to transform the high-dimensional predictors to a low-dimensional space. The

proposed method capitalizes on the correlations of gene expressions among all the genes to

identify a small number of linear combinations of the gene expression levels. Those linear

combinations of genes may be regarded as “supergenes”, and they are then used for building

predictive survival model. The method differs from other approaches in that it does not impose

any probabilistic model in the dimension reduction process, thus it allows the investigators

to fit any model in the subsequent model building stage of analysis. We particularly consider

sliced inverse regression (SIR) based on the theory of sufficient dimension reduction, which was

first proposed by Li (1991) and Cook and Weisberg (1991) and was later formulated by Cook

(1998). Similar sufficient dimension reduction techniques have been used in the microarray

data analysis literature, including the studies by Chiaromonte and Martinelli (2002), Bura

and Pfeiffer (2003), and Antoniadis et al. (2003). However, all those studies focus on tumor

classification, in which the phenotype is binary or multi-class, rather than censored survival

time.

Due to the high-dimensionality of microarray data, the SIR method cannot be applied

directly to the microarray data. We propose to employ the principal components (PC) analysis

in conjunction with SIR to achieve dimension reduction. Principal components analysis uses

singular value decomposition (SVD) to recover the underlying structures and patterns of gene

expression variation and has been applied widely in microarray data analysis (Holter et al.,

2000; Chiaromonte and Martinelli, 2002).

The rest of the paper is organized as follows: we first present the methods for sufficient

dimension reduction for censored survival data. We propose an approach which combines

both PC and SIR. We also present the idea of using the time dependent receiver-operator

curve (ROC) and areas under the curves (AUCs) for evaluating the predictive performance of

the proposed methods. Following the Methods section, we evaluate the proposed methods by

analyzing the DLBCL data set of Rowenwald et al. (2002). Finally, we provide a summary

of the paper and a brief discussion of the methods.
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METHODS

Method of sufficient dimension reduction

The problem of classification, regression and survival time prediction can all be formulated

as predicting a response outcome Y , which can be binary, multi-categorical, continuous, or

censored, given a number of predictors X, with X ∈ IRp . The goal of sufficient dimension

reduction is to find a p× d matrix η, with d ≤ p, such that

Y X | ηT X, (1)

where stands for the statistical independence. The statement (1) implies that the p-

dimensional predictor vector X can be replaced by d-dimensional ηT X without loss of any

information on regression of Y given X, because given ηT X, X contains no further information

about Y . In practice, such η exists with d < p, and in many applications d is as small as

1, 2, or 3, therefore dimension reduction is achieved. Graphical data representation often

becomes feasible as well, and it provides a powerful means to facilitate the subsequent model

formulation.

It is easy to see that η in (1) is not unique, because we can multiply η by any non-zero

constant and (1) still holds. Therefore, we seek the linear subspace Span(η) which is spanned

columns of η. Such a space is called a dimension reduction subspace (Li, 1991; Cook, 1996).

The intersection of all the dimension reduction subspaces, which is also a dimension reduction

subspace itself under minor conditions (Cook, 1994, 1996), provides the most parsimonious

characterization of regression of Y given X. It is named central subspace, denoted by Sy|X ,

and is the main object of interest in our dimension reduction inquiry.

There are a number of methods to estimate Sy|X without making any model assumptions.

Such methods include sliced inverse regression (Li, 1991) and sliced average variance esti-

mation (SAVE) (Cook and Weisberg, 1991). SIR is employed in this article, but all ideas

discussed here apply to SAVE and other sufficient dimension reduction methods as well. SIR

first replaces Y by a discrete version Ỹ , constructed by partitioning its range onto h inter-

vals within which Ỹ is constant. It then shows that, under the linearity condition which will

be discussed later, the inverse mean E(X | Ỹ ) belongs to Sy|X , thus estimation of E(X | Ỹ )

provides useful information about Sy|X . Operationally, SIR performs eigen-decomposition of

matrix Σx|y = Cov[E(X | Ỹ )], with respect to Σx = Cov(X), i.e.,

Σx|y vi = λi Σx vi, with λ1 ≥ . . . ≥ λp, and vT
i Σx vi = 1. (2)
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With the linearity condition, the first d eigenvectors of the above decomposition provide a

consistent estimate of the basis of central subspace Sy|X . There is also an asymptotic test

available for finding the structural dimension d = dim(Sy|X) (Li, 1991). It involves a series of

tests of hypotheses of d = m versus d > m for m = 0, . . . , p− 1. Estimate of d is taken as the

minimum m that the null hypothesis d = m is not rejected. Note that SIR does not impose

any traditional assumption on the distribution of Y |X, therefore, any model can be applied

in the subsequent analysis. On the other hand, SIR requires a condition on the marginal

distribution of X, the linearity condition, which requires that E(X | ηT X) is a linear function

of ηT X. When X follows a normal distribution, the linearity condition is satisfied. Li (1991)

and Hall and Li (1993) argued that this condition is not a severe restriction, because most

low-dimensional projections of a high-dimensional data cloud are close to normal.

Modification of SIR to censored survival data

SIR cannot be applied directly to censored survival data. We propose here a modification of

SIR to accommodate censoring. Let X be the vector of gene expression values of p genes. We

first introduce the following notation related to survival data:

Y 0 = the true unobservable survival time,

C = the censoring time,

δ = the censoring indicator; δ = 1 if Y 0 ≤ C, and δ = 0 otherwise,

Y = the observed survival time; Y = Y 0 if Y 0 ≤ C, and Y = C otherwise.

Letting Y0 = (Y 0, C)T , and Y = (Y, δ)T , the goal of sufficient dimension reduction for survival

data is to find η such that

Y0 X | ηT X.

Implementation of SIR in this context requires estimation of E(X | Y0). However Y0 is not

observable, instead what can be observed is Y . Using the conditional probability arguments,

we have the following relationship between E(X | Y) and E(X | Y0),

E(X | Y) = E[E(X | Y ,Y0) | Y ] = E[E(X | Y0) | Y ], (3)

where the second equality holds because Y is a function of Y0, therefore X Y |Y0. With

the linearity condition, E(X | Y0) ∈ SY0|X . Then equation (3) implies that E(X | Y), which is
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a linear combination of E(X | Y0), also belongs to central subspace SY0|X of interest. Opera-

tionally, we slice Y = (Y, δ)T to obtain its discrete version Ỹ . Specifically, we first partition Y
to Y1 for δ = 1 and Y0 for δ = 0. We then partition Y1 and Y0 to h intervals respectively. This

procedure is called double slicing in Li et al. (1999). Once Ỹ is obtained, the same eigenvalue

decomposition as in equation (2) can be performed. See also Setodji (2003) for discussion of

SIR for survival data.

Combination of SIR and PC analysis

Implementation of SIR requires the covariance matrix Σx of X to be non-singular. This con-

dition is satisfied in many applications. However, for microarray data, the number of genes p

is often much larger than the number of sample n, and in this situation, Σx is singular. To

address this issue, we propose to first obtain q principal components from original X, with

q < n and then to apply sufficient dimension reduction methods with principal components

as input. Singular value decomposition is used to find principal components. Holter et al.

(2000) suggested that SVD is useful to recover the fundamental structures of gene expressions.

SVD has also been used in many other microarray studies (e.g., Chiaromonte and Martinelli,

2002). One advantage of using principal components, compared to alternative reduction strat-

egy such as identifying significant individual genes based on simple t test, is that PC analysis

takes into account correlations among genes. We illustrate this, as well as how to choose the

number of principal components q, in the following section.

Time dependent ROC curves and area under the curves

To evaluate the predictive performance of the proposed methods, we propose to utilize the

idea of time dependent ROC for censored data and AUC as our criteria. These methods were

recently developed by Heagerty et al (2002) in the context of the medical diagnosis. For a

given score function f(x), we can define time dependent sensitivity and specificity functions

as

sensitivity(c, t|f(x)) = Pr{f(x) > c|δ(t) = 1},
specificity(c, t|f(x)) = Pr{f(x) ≤ c|δ(t) = 0},

and define the corresponding ROC(t|f(x)) curve for any time t as the plot of sensitivity(c, t|f(x))

vs 1 − specificity(c, t|f(x)) with cutoff point c varying, and the area under the curve as the
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area under the ROC(t|f(x)) curve, denoted by AUC(t|f(x)). Here δ(t) is the event indicator

at time t. A nearest neighbor estimator for the bivariate distribution function is used for

estimating these conditional probabilities accounting for possible censoring (Akritas, 1994).

Note that larger AUC at time t indicates better predictability of time to event at time t as

measured by sensitivity and specificity evaluated at time t.

RESULTS

We present the results of application of the proposed dimension reduction techniques to the

DLBCL data set of Rosenwald et al. (2002).

Description of the data set and preprocessing of the data

The data set consists of measurements of 7399 genes from 240 patients. Of those 240 patients,

160 were used for training the model and 80 were reserved for model validation in Rosenwald

et al. (2002). To facilitate comparisons with results in Rosenwald et al and other analyses, the

same training and testing sets were used in our analysis. A survival time was recorded for each

patient, which ranges between 0 and 21.8 years. Among them, 138 were dead (uncensored)

during the study, and 102 were alive at the end of the study (censored). Detailed description

of the data can be found in Rosenwald et al. (2002).

There were a large number of missing gene expression values in the data set. Among the

7399 genes, only 434 genes have no missing values. We first applied a nearest neighbor tech-

nique (Troyanskaya et al., 2001) to estimate those missing values. Specifically, for each gene,

we first identified 8 genes which are the nearest neighbors according to Euclidean distance.

We then filled the missing with the average of the nearest neighbors. Our method is slightly

different from that of Troyanskaya et al. (2001) in that the nearest neighbors are not restricted

to those 434 genes with no missing. We also tried the method of Troyanskaya et al. (2001) for

filling the missing value, and the results of survival time prediction with two methods were

very close.

Principal components were then identified based on the complete data of the training sam-

ples. We chose q = 40 PCs, which accounts for about 70% of total variation, to construct the

predictive components in the following analysis. Choice of the number of principal compo-

nents is further discussed in later section.

8



Identification of the predictive components based on the training data set

Examining the marginal scatter plot of the 40 principal components revealed no strong vi-

olation of the linearity condition. Sliced inverse regression was then applied based on those

principal components. The p-values of asymptotic test for d = 0, 1, 2 and 3 were 0.063, 0.372,

0.679, and 0.873 respectively. It suggested that d = 1, and only the first SIR linear combi-

nation, abbreviated as SIR1, is needed for subsequent analysis. Figure 1 shows the patients’

survival time versus the first two SIR linear combinations, i.e., SIR covariates SIR1 and SIR2,

obtained from the training data. It is clear that SIR1 was able to differentiate between dead

and surviving patients, while SIR2 did not provide useful information. This agrees with the

result of asymptotic tests. In addition, by examining Figure 1, we noticed that the difference

of survival time with respect to SIR1 included both a location difference and a scale difference,

which in turn suggests that both the first and second order terms of SIR1 may be needed in

the model.

Since SIR imposes no model assumption in the stage of dimension reduction, we are free

to fit any model based on the identified SIR covariates. To compare our method with others,

we fitted a Cox proportional hazards model. The model suggested that both the linear and

quadratic terms of SIR1 was significant (p-value = 4.3 × 10−11 and 0.087 respectively), and

SIR2 was insignificant (p-value = 0.2). This agrees with what is observed in Figure 1. The

final model was

λi(t | SIR1) = λ0(t) exp(0.2418 SIR1i − 0.0046 SIR2
1i),

where λ0(t) is an unspecified baseline hazard function, and λi(t | SIR1) is the hazard function

for the ith patient. In this model, the gene expression profile measured over p genes is related

to the risk of death through the score function f(SIR1) = 0.2418 SIR1 − 0.0046 SIR2
1.

Figure 2 shows the Kaplan-Meier estimate of survival curves for two groups of patients, the

high-risk patients and the low-risk patients, defined by the scores f(SIR1) > 0 or f(SIR1) < 0.

The cutoff value of 0 was chosen for convenience and it was close to the median of all scores.

Figure 2(a) plots the survival curves for 160 training patients. The log-rank test of difference

between two survival curves yielded a p-value of 1.89× 10−15, indicating a large difference in

overall survival between the two groups. Figure 2(b) shows the survival curves for 80 testing

patients, where the scores were computed based on the coefficients estimated using the train-

ing samples only. The difference between the two risk groups is still very significant, with

p-value of the log-rank test of 2.17 × 10−5. Both the plots and the tests suggest that the

9



Cox model built based on the dimension reduction technique can indeed be used to identify

patients with different risk of death.

Effects of the number of PCs used in the model and time-dependent AUCs.

We further examine the issue of choosing the proper number of principal components q for

building the SIR components. We evaluated a series of values of q ranging between 10 and 150.

For each q, we performed dimension reduction and fitted a Cox model based on 160 training

patients. We then evaluated the model for both the training and the testing patients using

the area under ROC curve as a comparison criteria. Figure 3 shows the AUC for each value

of q for time ranging from 1 to 10 years. Note the ranges of the AUCs in the two plots are

different and are not from 0 to 1. We first noted that the AUCs are essentially the same for q

between 30 and 130. Second, the plots confirm what one would expect: under-fitting for small

q and over-fitting for large q. As an illustration, three q values, 10, 40, and 150 represented by

annotations 1, 4, and f respectively, were emphasized in the plot by thick lines. When q = 1,

the area under ROC in both the training and the testing data were low due to the lack of

fitting. When q = 150, the area under ROC was high in the training samples but low in the

testing samples, indicating over-fitting of the model. The number of PCs of q = 40 seems to

provide a nice balance.

Comparisons with PC analysis

We now compare the method which combines SIR and PC analysis with the principal com-

ponents Cox regression analysis. Although a Cox proportional hazards model can be fitted

with 40 PCs as covariates based on the training set of 160 patients, the model depends on 40

predictors, which makes its interpretation more complicated. In addition, with 40 predictors,

there is much less freedom to choose the form of the fitted model such as higher-order terms.

One possible solution is to use cross-validation methods to identify significant principal com-

ponents out of the 40 PCs and to build a model based on the selected PCs. We applied the

cross-validated partial likelihood (Verwij et al., 1993; Huang and Harrington, 2002) method

on the training data and identified that the model with the first three PCs gives the best

predictive performance.

Figure 4 compares the performance of the Cox proportional hazards models using the

combination of PC and SIR, using all 40 PCs and using only the three PCs chosen by cross-
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validation. It is clear that the model with combination of PC and SIR outperforms the other

two methods. The p-values of log-rank test of difference between two risk groups in the testing

data set are 0.000022, 0.0034 and 0.0333 respectively. For AUCs, SIR was the best for the

training samples, and SIR and PC regression analysis with all 40 components were the best

for testing samples. Overall, the Cox model built based on the combination of PC and SIR

shows the best predictive performance.

Comparisons with other analyses

While it is out of the scope of this paper to compare the proposed methods with all available

methods for relating gene expression profiles to censored outcomes, we compare our results

to a few other analysis of the DLBCL data set. We focused on the method’s performance

in predicting the patients’ survival time. It should however be noted that such comparison

cannot be comprehensive since methods proposed by the other studies have their own desirable

properties other than the survival prediction. In Bair and Tibshirani (2003), low-risk and high-

risk patients were classified according to the fitted model employing supervised clustering and

partial least squares. Comparing our Figure 2(b) to Figure 6 of Bair and Tibshirani, we

observe that the results are comparable, while our method shows slightly higher significance

in overall survival between the two risk groups in the testing data sets. The p-value of log-rank

test for the difference of two survival curves is 0.0000217 for our method and 0.000827 for that

of Bair and Tibshirani (2003).

Finally, it is interesting to compare our results with those presented in Rosenwald et al.

(2002). Instead of dividing the patients into high- and low-risk groups, Rosenwald et al. (2002)

divided these patients into fours risk groups based on the quartiles of the estimated scores

(see Figure 2 of Rosenwald et al. (2002)). Figure 5 (a), (b) and (c) show the plots of the

Kaplan-Meier estimates of overall survival among patients in the training group, the testing

group, and all patients based on the quartiles of the respective estimated scores. Significant

results are observed for all three plots. For panels (b) and (d), scores were evaluated for the

same testing patients, but the difference lies in how the SIR covariate was obtained. For (b),

the SIR covariate was obtained by applying principal component analysis and sliced inverse

regression to 80 testing patients, while for (d), the covariate was obtained solely based on 160

training patients. Panel (b) corresponds to panel (B) of Figure 2 in Rosenwald et al. (2002),

but panel (d) provides a better way of measuring the predictive performance for a future
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patient’s survival, because no testing patients information was used in building the prediction

model. The p-value of log-rank test of difference were also given. Again, both the survival

plot and the test indicate a good predictive performance of our proposed method.

DISCUSSION

We have proposed the use of sufficient dimension reduction techniques to reduce the high-

dimensional microarray data to a low-dimensional space for censored survival phenotypes.

The proposed dimension reduction method is non-parametric without making any distribu-

tional assumptions on the data, therefore, it allows a very flexible model formulation in the

subsequent model building step. Visualization is also available to facilitate the data analysis.

For DLBCL data of Rosenwald et al. (2002), the dimension reduction method, particularly

the sliced inverse regression, was combined with a Cox proportional hazards model, which

together provided a good predictive performance for a future patient’s survival.

Sufficient dimension reduction in the context of censored data was addressed, where the

goal is to recover the most parsimonious space, the central subspace, of the true survival

time Y 0 and censoring time C given dependent predictor variables. Since Y 0 and often C

are unobservable, reduction was achieved through observed survival time Y and status δ. In

some situations, only the central subspace of Y 0 given predictors is of interest. In this case,

the proposed method works without modification if C is a constant, or C is independent of

the true survival time as well as the dependent variables. Otherwise, slight modification is

needed, which was discussed in Li et al. (1999).

Since not all genes will be relevant to predicting censored survival phenotypes, we would

expect better prediction results using only genes that are related to the phenotypes. One

approach which is often employed in microarray analysis is to first select a number of indi-

vidual genes based on univariate analysis. In survival data, such selection is usually based

on the univariate Cox proportional hazards model. A disadvantage of this method is that

the significance of genes is measured individually without accounting for correlations among

genes and possible combinatorial effects of genes on the risk of event. For example, for the

DLBCL data set, applying an univariate Cox model to 160 training patients identifies 473

genes which are significant at 0.01 level. For 80 testing patients, however, only 67 genes were

significant, out of which only 4 genes were identified significant in both groups. Applying the

proposed methods on these 473 genes resulted in very poor performance due to the possible
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combinatorial effects of the gene expressions on the survival (details not shown). An alter-

native idea is to iteratively select genes based on the coefficients in the final Cox regression

models, i.e., iteratively removing those genes with small coefficients and refitting the model

until the resulted model gives significantly worse performance in prediction. We are currently

investigating this possibility.

In summary, we have proposed a procedure which combines the principal components anal-

ysis and efficient dimension reduction technique for censored survival data. The procedure

can be used for building a parsimonious predictive model for survival based on microarray

gene expression profiles.
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Figure 1: Survival time versus SIR covariates (a: SIR1, b: SIR2) for patients in the training

data set; dot: dead, circle: alive.
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Figure 2: Survival curves for patients in two groups of having positive and negative estimated

scores using gene expression profiles. (a) 160 patients in the training set; (b) 80 patients in

the testing set.
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Figure 3: Area under ROC at time 1 year to 10 years for models based on different number

of principal components (q) in estimating the SIR components. Numbers 1 through 9, plus

characters a through f represent q = 10, 20, . . . , 150 respectively.
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Figure 4: Comparisons between the principal components Cox models and the SIR Cox mod-

els. (a) Estimated survival curves for two groups of patients in the training data set. (b) Es-

timated survival curves for two groups of patients in the testing data set. (c) Time-dependent

AUCs comparison of different models. The three models are: SIR=Cox model with compo-

nents constructed by PC analysis and SIR; PC(40)=Cox model with 40 PCs; PC(3)=Cox

model with 3 PCs selected by cross-validation.

18



0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time to death

D
e

a
th

−
fr

e
e

 s
u

rv
iv

a
l Quartile 1

Quartile 2

Quartile 3

Quartile 4

p=1.11e−16

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time to death
D

e
a

th
−

fr
e

e
 s

u
rv

iv
a

l

Quartile 1

Quartile 2

Quartile 3

Quartile 4

p=1.16e−04

(a) Training data, p-value = 1.11e-16 (b) Testing data, p-value = 1.16e-04
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Figure 5: Survival curves for patients based on the their estimated scores using gene expression

profiles. (a) Four groups of patients in the training set defined by the quartile of their estimated

scores; (b) four groups of patients in the testing set defined by the quartile of their estimated

scores; (c) four groups of patients for all the patients defined by quartile of their estimated

scores; (d) four groups of patients in the testing set based on the quartiles of the scores

estimated by using the model derived from training data set.
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