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Crapse TB, Basso MA. Insights into decision making using choice probability.
J Neurophysiol 114: 3039-3049, 2015. First published September 16, 2015;
doi:10.1152/jn.00335.2015.—A long-standing question in systems neuroscience is
how the activity of single neurons gives rise to our perceptions and actions. Critical
insights into this question occurred in the last part of the 20th century when
scientists began linking modulations of neuronal activity directly to perceptual
behavior. A significant conceptual advance was the application of signal detection
theory to both neuronal activity and behavior, providing a quantitative assessment
of the relationship between brain and behavior. One metric that emerged from these
efforts was choice probability (CP), which provides information about how well an
ideal observer can predict the choice an animal makes from a neuron’s discharge
rate distribution. In this review, we describe where CP has been studied, locational
trends in the values found, and why CP values are typically so low. We discuss its
dependence on correlated activity among neurons of a population, assess whether
it arises from feedforward or feedback mechanisms, and investigate what CP tells
us about how many neurons are required for a decision and how they are pooled to
do so.

signal detection theory; sensation; perception; neurophysiology; vision; eye move-

ments; correlated variability; multiple neuron recording

HOW ACTION POTENTIALS GENERATED from single neurons and
groups of neurons give rise to our perceptions, emotions,
decisions and actions is arguably the most vexing question in
neuroscience. From the pioneering work of Adrian (1928),
Hartline and McDonald (1947) and Barlow (1972) to Kiang et
al. (1965) and Siebert (1970) in the auditory system, Mount-
castle and Vallbo in the somatosensory system (Johansson and
Vallbo 1979; Mountcastle et al. 1967), Hubel and Wiesel
(1962) in the visual system, and Evarts (1968) in the motor
system, the search for the neuronal correlates of our percep-
tions and actions remains a dominant focus of experiments in
neuroscience. Without question, a significant breakthrough in
efforts to understand the relationship between neuronal activity
and perception came with the application of signal detection
theory in psychophysics (Green and Swets 1966) to neurophys-
iology. Whereas most of the initial experiments focused on
correlating individual neuronal activity to varying levels of
sensory stimulation (examples cited above and Bradley et al.
1987, Britten et al. 1992; Newsome et al. 1989; Parker and
Hawken 1985; Skottun et al. 1987; Tolhurst et al. 1983; Vogels
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and Orban 1991), a major advance came when investigators
began directly linking modulations in neuronal activity to an
animal’s reported percept (e.g., Logothetis and Schall 1989).
Later work built on this insight and used signal detection
theory approaches to quantify precisely the relationship be-
tween neuronal responses and behavioral responses of mon-
keys performing sensory discrimination tasks (Britten et al.
1992; Newsome et al. 1989). This new approach capitalized on
the rigorous quantitative measures provided by signal detection
theory, as had previous work, but now was being applied to
internal, perceptual experiences. Specifically, this advance led
to the ability to correlate variations in neuronal activity occur-
ring with sensory signals to variations in behavioral choices
based on those same sensory signals (Britten et al. 1996).
Because the metric quantifies how well an ideal observer can
predict a choice, the investigators coined the term choice
probability (CP). CP as a measure provides a way to link
trial-to-trial fluctuations in neuronal activity to fluctuations in
internal percepts as indicated by behavior.

CP may be used to shed light on how the brain makes
decisions. Here we focus on three issues: /) what brain areas
contain neurons with activity correlated with perceptual deci-
sions?; and 2) how many neurons are required and how is their
activity pooled to inform or reach a decision? Using CP to ask
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the second question includes a tacit assumption that CP orig-
inates from feedforward mechanisms. Recent work on CP calls
this assumption into question. Therefore, we also ask, 3) what
is the origin of CP?; does it result from feedforward pooling of
neuronal activity or from feedback mechanisms such as atten-
tional allocation? We should point out that CP can be applied
to brain areas thought to report only the sensory evidence or to
areas that directly mediate decisions. In either case, CP pro-
vides useful information about how well a brain area’s activity
is predictive of an animal’s perceptual report. Whereas single
neuron recording techniques applied to different brain regions
while animals perform behavioral tasks is sufficient to address
the first question, advances toward answering the second ques-
tion are aided by the implementation of multiple neuron re-
cording techniques. With the introduction of these techniques,
investigators are able to eavesdrop on large populations of
neurons and measure correlations in variability of activity
between many neurons participating in decision making. De-
tailed information about the correlation structure in neuronal
populations provides powerful constraints on our interpretation
and understanding of CP and, as a result, on models describing
how neuronal activity gives rise to our decisions.

After a brief introduction describing what CP is and how it
is calculated, we discuss recent work that addresses the ques-
tions posed above. We review evidence revealing that many
brain areas show significant CPs but that the values are typi-
cally low. Two important research directions developed from
this curious observation: first, are there task or stimulus con-
ditions in which CPs can be improved? Second, what do CPs
tell us about the pooling mechanisms used by neurons to arrive
at decisions? We review the evidence for two types of pooling
models of decision making stemming from observations made
using CPs and illustrate how measurements of correlated ac-
tivity among neurons reveal new ways of thinking about these
models. Pooling models assume feedforward mechanisms, sig-
nals converging from lower areas are integrated in higher
areas, and CPs are tacitly assumed to reflect the process of
feedforward pooling of neuronal activity. However, recent
work calls into question this assumption and suggests that other
mechanisms, notably feedback, may be at play in determining
CP values and, therefore, decision making.

The Calculation of CP and Signal Detection Theory

The CP metric is based on signal detection theoretic methods
and requires the calculation of a receiver operating character-
istic (ROC) curve. The ROC is a nonparametric statistical
measure that assesses how likely an event is, given random
draws from two response distributions. In a typical experiment,
an animal judges the presence, or quality, of a sensory stimu-
lus, and reports its perceptual decision, as either “yes, I see the
stimulus” or “no, I do not see the stimulus” or, as another
example, the stimulus direction is “left” or “right.” In either
case, animals report their decision often by making an eye
movement to a target that indicates which of two possible
percepts it experienced. The difficulty of the task varies from
trial-to-trial by experimental manipulations of the strength of
the sensory stimulus, and neuronal activity is monitored as the
animal arrives at and reports its decision. The resulting data are
distributions of discharge rates associated with each of two
choices in response to varying strengths of sensory stimuli.

CHOICE PROBABILITY

One of the distributions is referred to as the “noise” distribu-
tion, and the other as the “signal” distribution. In a detection
task, the “noise” distribution represents the discharge rates
measured on trials in which no stimulus appeared, whereas the
“signal” distribution represents discharge rates on trials in
which a stimulus appeared. In a discrimination task, such as the
random dot motion task, discharge rates occurring during one
direction of motion, usually in the neuron’s nonpreferred
direction, make up the “noise” distribution, whereas discharge
rates occurring in trials in which the motion direction is in the
neuron’s preferred direction make up the “signal” distribution
(Fig. 1, A and B). The ROC curves quantify the differences
between these distributions by determining how much of each
distribution exceeds a given threshold or criterion level. A
“hit” occurs when the neuron’s activity on a ‘“signal” trial
exceeds the criterion and a “false alarm” occurs when the
neuron activity on a “noise” trial exceeds the criterion. To
calculate the entire ROC curve, hits and false alarms are
calculated at each criterion level, a process that is iterated from
a minimum (e.g., 0 sp/s) to a maximum discharge rate (Fig. 1,
B and C). Plotting all the hit rates vs. all the false alarm rates
yields the ROC curve (Fig. 1C, right) and integrating the area
under the ROC curve (auROC) yields a single-value (ranging
from 0-1) that quantifies the degree of separation between the
two distributions. Values of 0.5 indicate that the two distribu-
tions overlap completely, and an ideal observer would be
unable to determine from which distribution a discharge rate
originated. Values >0.5 indicate separation between the two
distributions. A value of 1 indicates no overlap and an ideal
observer could determine from which distribution the draw
originated precisely.

ROC may be used to calculate the sensitivity of a neuron to
stimuli varying parametrically or to quantify the relationship
between the activity of a neuron and behavioral choice, the CP.
The former, referred to as the neurometric function, was used
in a now classic experiment involving neuronal recordings in
area MT, a motion-selective area of the monkey brain, during
performance of a motion direction discrimination task (Britten
et al. 1992). Monkeys judged the direction of clouds of moving
dots and the difficulty of the discrimination varied from trial-
to-trial by experimentally manipulating the coherence of the
moving dots; more coherent motion resulted in easier discrim-
ination. Two distributions of discharge rates were acquired for
each coherence level; one for leftward and one for rightward
motion. ROC areas were plotted as a function of stimulus
coherence level (or motion strength), and these data were fitted
with a logistic function yielding the neurometric function. This
function describes an individual neuron’s sensitivity or ability
to discriminate between the two stimulus directions across
different motion strengths.

In contrast to the neurometric function, which characterizes
a neuron’s tuning or sensitivity, CP relates neuronal discharges
directly to behavioral choices and thus provides information
about how well a neuron tracks an internal percept. The
calculation of CP begins with ROC analysis and the determi-
nation of auROC, but for CP, the two distributions are associ-
ated with the two possible choices for each stimulus level. For
example, in tasks involving judgments of leftward or rightward
directions of moving dots, one set of discharge distributions
comes from trials in which the animal chose rightward, and the
other comes from trials in which the animal chose leftward.
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Fig. 1. Receiver operating characteristics (ROC) and its calculation. A: in a random dot motion discrimination task, 2 motion directions are possible (leftward
or rightward) and the animal’s task is to indicate which direction occurred. A hypothetical MT neuron monitored during this task would yield a distribution of
discharge rates for each direction, 1 in the preferred direction (rightward) called the signal distribution and 1 in the nonpreferred direction (leftward), called the
noise distribution. B, left: 2 distributions of firing rates for a hypothetical neuron monitored during the random dot motion task. The 2 distributions may represent
leftward and rightward motion directions, respectively, relevant for neurometric calculation, or leftward and rightward choices, respectively, relevant for choice
probability (CP) calculation. In either case, ROC is used to quantify the difference between the 2 distributions. B, right: ROC is calculated by systematically
sliding a criterion across the 2 distributions and integrating the area of each distribution that exceeds each criterion level. Shown are 3 example criterion levels
for the hypothetical neuron and the resulting ROC values (C, left) obtained at each level. The ROC curve is constructed by plotting all ROC points thus obtained

(C, right).

Due to differences in firing rate associated with each stimulus
strength, CP is typically calculated for each stimulus value. For
discrimination tasks such as the random dot motion task, this
means that CP would be calculated for each coherence level.
Investigators may group all coherence levels and report a
single CP, but the discharge distributions must be z-trans-
formed first to remove differences in discharge rate related to
the differing stimulus levels. CP values near 0.5 indicate
chance performance and reveal that a neuron’s activity has no
detectable relation to behavior. Values closer to 1 indicate that
the neuron’s activity is correlated with an animal’s perceptual
experience as revealed by its behavioral choices. In any case,
CP provides a simple and intuitive way of gauging the rela-
tionship between a neuron’s activity and an animal’s percep-
tual behavior.

CPs Appear in Many Brain Areas

CPs have been measured in many cortical areas during
performance of a variety of perceptual decision-making
tasks, for example MT, MST, lateral intraparietal area (LIP),
somatosensory cortex areas S1 and S2 and premotor and
motor cortical areas, as well as subcortical areas involved in
eye movement selection (Britten et al. 1996; Celebrini and
Newsome 1994; Cohen and Newsome 2009; de Lafuente
and Romo 2005, 2006; Dodd et al. 2001; Gu et al. 2008;
Kim and Basso 2008; Law and Gold 2008; Liu and New-
some 2005; Nienborg and Cumming 2006, 2009, 2014;
Price and Born 2010; Romo et al. 2002; Sasaki and Uka
2009; Uka and DeAngelis 2004). What is evident from this
literature is that CPs typically increase in value as one
approaches the site of decision making, and CPs in early
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sensory areas are often particularly low. For example, Romo
and colleagues recorded from somatosensory and motor
areas involved in the discrimination of vibrotactile stimuli
(Hernandez et al. 2010). Monkeys compared two vibratory
tactile stimuli sequentially applied to their fingertip and
reported their decision by pressing a button indicating
whether the second stimulus frequency was lower or higher
than the first stimulus. Significant CPs were absent in S1 and
emerged gradually starting in S2, with maximal CPs ob-
tained in prefrontal cortex and movement-related premotor
cortex.

A similar progression of increasing CP values appears in the
visual system while monkeys report the direction of an appar-
ent motion stimulus (Williams et al. 2003). In this experiment,
the stimuli were designed carefully so that one of two percepts
could be obtained from the same stimulus and neuronal record-
ings were made from cortical areas MT, MST, and LIP.
Neurons in MT responded to the sensory stimulus but ulti-
mately had little information about the reported percept and
thus had no correlation with perceptual choice, as measured by
CP. Areas MST and LIP, however, did exhibit significant CPs,
with area LIP, a putative site of decision making, exhibiting
both a higher fraction of neurons with significant CPs and a
larger mean CP across neurons. Similar CP values are observed
in the superior colliculus, a structure considered a final pro-
cessing stage for eye movement generation, during a target
selection task. There the values could be as high as 0.7 (Kim
and Basso 2008). Consistent with the underlying idea that CPs
predict an internal state related to behavioral choice, these
results indicate that CPs increase further from the sensory
periphery and closer to the putative sites of decision making
and movement generation.

In sum, CPs appear in a variety of areas and they tend to
increase in value further in the processing hierarchy as though
decisions are made in a feedforward fashion. These signals
could emerge from feedforward processing, or alternatively,
they could reflect the contribution of feedback signals origi-
nating from structures further downstream. In the next section
we explore the implications of CP values for possible pooling
mechanisms assuming a feedforward architecture. In a later
section we review the evidence that calls this assumption into
question.

Does Size Matter?

In the apparent motion study described above, the mean CPs
in MST and LIP were 0.53 and 0.58, respectively (Williams et
al. 2003). These values are within the typical range of values
that are observed in dorsal visual stream areas during motion
discrimination tasks (Britten et al. 1996; Celebrini and New-
some 1994; Cohen and Newsome 2009; Law and Gold 2008;
Price and Born 2010; Purushothaman and Bradley 2005; Sa-
saki and Uka 2009). An obvious question is why are these CP
values so close to chance, i.e., 0.5? CP values at chance or near
chance levels would be expected if the decision was based on
the aggregate activity of large numbers of neurons conveying
independent, nonredundant signals. In this scenario, each neu-
ron would bare very little relation to the group signal deter-
mining the decision, and so one might well ask, “why are
observed CP values so big?” Much of the information carried
by neurons is correlated and redundant (Pitkow et al. 2015),

CHOICE PROBABILITY

however, with many neurons exhibiting a strong relationship
with the group signal. Therefore, here we focus on the fact that
the values stay so close to chance despite this and so we ask
“why so low?” Measuring a low CP from a sensory area may
not be surprising when the sensory information on which the
decision is based is weak. However, CP values tend to be
relatively constant across all stimulus strengths, so why are CP
values typically low for even those discriminations involving
strong sensory information? Moreover, why are CPs so low in
areas such as LIP? These areas are thought to be involved in
converting sensory evidence into a decision, so even if an
animal were to guess about a stimulus with no sensory evi-
dence, these areas should show a high CP since the activity of
these neurons is considered to be causal for the decision. One
possibility explaining why CPs values are so low is that the
epoch used for measuring the discharge rate matters. Decisions
take time to evolve so the epoch used for calculating CP may
be critical to ensure measurement of the most accurate CP
value. To overcome this limitation, many investigators calcu-
late running CPs by sliding a window beginning at the onset of
a sensory stimulus and terminating at the time of the choice
report. To return to our apparent motion example (Williams et
al. 2003), CPs in MST and LIP calculated over time peak at
~0.58 and 0.68, respectively, values that are considerably
higher than the reported means. Such studies reveal interesting
temporal dynamics of CPs that must be considered when
choosing an appropriate epoch of interest. As we will discuss
below, changes in CP over time reveal important information
about when an area is most likely involved in a decision.
Furthermore, the timing of maximal CP values places con-
straints on models of whether a brain area is causally involved
in decision making, since peaks occurring after the animal
makes its decision would have no impact on the decision
process itself.

A second possible reason for low CPs may be related to the
type of stimulus used. Experiments measuring CPs in sensory
areas MT, V1, and V2 hint at this possibility. Dodd et al.
(2001) trained monkeys to make directional judgments about a
rotational cylinder composed of randomly moving dots. At
zero disparity the perceived direction of rotation undergoes
spontaneous changes; sometimes it is perceived as rotating
leftward and sometimes rightward. In other words, the stimulus
is perceptually ambiguous but has identical retinal stimulation.
The average CP for MT neurons measured during this task was
~ 0.67, appreciably larger than that reported in MT during
motion direction discrimination tasks. A possibility for the
discrepancy is that the motion stimulus used in this experiment
had strong depth cues that may drive MT neurons better than
motion direction cues alone. In another study, trained monkeys
detected motion pulses induced by phase shifts of Gabor
patches (Ghose and Harrison 2009). Mean CP values of 0.67,
identical to that reported by Dodd et al. (2001), were observed.
Similar to Dodd et al., the stimulus differed from the random
dot motion stimulus. The Gabor stimuli used contained little
noise, indicating that a low CP, as observed in other studies,
could be related to noise in the stimulus itself rather than noise
in the nervous system. Together, these studies bring to the fore
the important point that the type of stimulus used and task
requirements can influence the magnitude of CP values.

Work described in a pair of recent papers by Nienborg and
Cumming (2006, 2014) further emphasizes the importance of
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stimulus specificity for determining a maximal CP. In the first
study, they recorded from V1 and V2 during a depth-disparity
judgment task and found surprisingly, that V2 had significant
CPs while V1 had no significant activity correlated with the
animal’s disparity judgment (Nienborg and Cumming 2006).
This was surprising because both V1 and V2 neurons exhibit
disparity tuning. In a followup paper, they discovered why this
was the case (Nienborg and Cumming 2014). They returned to
V1, but this time instead of a disparity task, they used an
orientation judgment task. They reasoned that the presence or
absence of significant CPs may depend on the presence of
maps coding for the discriminandum used. This could explain
why V2, with its strong disparity map, had significant CPs
during a disparity judgment task. V1 has a strong orientation
map, so they predicted that V1 would show significant CPs in
an orientation task. Indeed, V1 neurons showed significant CPs
while animals made judgments about orientation. These re-
sults, taken together with the higher CPs obtained in MT using
a structure from motion task, or an “easy” phase change
detection task, suggest that the type of stimulus used and the
coding properties of the brain area are critical determinants of
the size of the observed CPs.

A third reason that measured CPs are low could be related to
pooling operations occurring downstream of the sensory pro-
cessing stage. Noise introduced at such later stages, arising
from stochastic cellular events related to random vesicle re-
lease and ion channel dynamics (Faisal et al. 2008), could
effectively de-yoke the sensory pool signals from the decision
stage, leading to lower correlations of sensory pool neuronal
activity with behavior. This would translate into lower CPs.

It should be pointed out that the low CP applies typically to
the mean CP. Brain areas possess neurons that exhibit a range
of CP values, with some individual neurons having CP values
as high as 0.8 and some as low as 0.5 (e.g., Britten et al. 1996).
Therefore, a mean CP value is only informative if the signals
from all neurons are weighted equally. That distributions of CP
values are observed may indicate that signals from neurons are
not weighted equally. Rather, some receive higher weights,
some receive lower weights toward the decision. Neurons with
signals more heavily weighted would exert a greater influence
on the decision process and thus would show tighter correla-
tions with behavior as measured by CP. This leads to the
question of which neurons receive the highest weight. Many
neurons with high CP tend to be very sensitive to sensory
stimulation as evidenced by their neurometric functions (Brit-
ten et al. 1996; Gu et al. 2008; Parker et al. 2002; Purushotha-
man and Bradley 2005) suggesting that downstream areas may
ignore signals from neurons with low sensitivity and only listen
to those with high sensitivity. Indeed, a modeling exercise by
Purushothaman and Bradley found that psychophysical thresh-
olds measured in monkeys performing a fine perceptual dis-
crimination task could be replicated only if the decision stage
consulted the most informative neurons, those with greatest
precision (Purushothaman and Bradley 2005). Although they
did not calculate model neuron CPs, their result suggests that
only neurons with high sensitivity are averaged together selec-
tively to inform a decision. Such selective pooling would result
in some neurons exhibiting relatively high CPs. These consid-
erations suggest that an emphasis on the mean CP may be
misleading since it tacitly assumes that all neurons are contrib-
uting equally to a decision.

Review
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How Many Neurons Does It Take To Make a Decision?

Another assumption in the interpretation of CP is that it
reflects a feedforward process in which signals within an area
are integrated and then passed on to subsequent stages where
further integration occurs. The integration occurs among neu-
rons with similar tuning preferences, a process referred to as
pooling. Trial-to-trial fluctuations in the response of neurons
are thought to give rise to trial-to-trial behavioral variability
without the need for feedback signals. The idea that neurons
are pooled (summed or averaged) in a feedforward fashion to
mediate a decision was proposed in a now classic computa-
tional study (Shadlen et al. 1996). The investigators explored
systematically many of the conditions required for the ob-
served relationships between neuronal activity and perceptual
decisions. In their model, the activity of two simulated pools of
oppositely tuned MT neurons were averaged separately and
then compared on each trial (Fig. 2A). The pool with the
highest activity dictated the decision, rightward or leftward.
The model was constrained by several variables, one of which
was information about known interneuronal noise correlations.
Noise correlations quantify the degree to which neurons covary
in their responses to repeated presentations of a given stimulus
and arise from shared afferent connections, and/or intercon-
nectivity among neighboring neurons, and are possibly indic-
ative of circuit connectivity (Cohen and Kohn 2011). Informa-
tion about known CP values and known psychophysical thresh-
olds, which quantify discrimination abilities, were the
remaining constraints for the model. The investigators found
that the best replications of the observed CP values and
psychophysical thresholds occurred with noisy pools of ~100
weakly correlated neurons, many of which were suboptimally
tuned for the motion stimulus. Noise correlations and pooling
noise, were especially critical in simulating the observed CP
values.

Figure 2B, left, shows the relationship the investigators
uncovered as the essential determinant of CP. Neuron k’s CP
was due to the strength of the correlation between its activity
level and the average activity of the pool. As we discussed,
many CP values are relatively low. Part of the explanation
could be due to pooling noise, which effectively reduces the
coupling strength between a pool’s fluctuations and fluctua-
tions in behavior. Correlated variability has the paradoxical
implication that even neurons with no causal role in the
decision could show a significant CP simply because their
activity is correlated on a trial-to-trial basis to the activity of
the larger pool (Fig. 2B, leff) or to the activity of specific
neurons that are causal to the decision. Such correlations
between causal and acausal neurons may reflect associative
connections between the neurons resulting from the perceptual
history of the animal, which may benefit the animal in certain
perceptual contexts (Parker 2013).

Correlated variability makes it difficult to determine whether
a nonselective pooling scheme is used to reach a decision or
whether a selective pooling scheme is used in which the most
informative neurons are consulted for the decision. It should be
noted that modifying the weights of the neuronal signals had no
effect on CP values in their simulations, a result that may be
related to the noise correlation structure imposed on the neu-
ronal activity. Two types of noise were important in their
simulations: /) correlated or dependent noise arising from

J Neurophysiol » doi:10.1152/jn.00335.2015 « www.jn.org
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Fig. 2. Pooling models, correlation structures and CP. A: schematic depiction of the classic pooling model informing most studies linking neuronal activity to
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is a function of not only the noise correlation between a neuron k and other members of the pool, but also the signal correlation structure between neuron k and
other members of the pool. The dependence of CP on signal correlation structure indicates that selective connectivity among neurons with similar tuning curves
is especially important in CP determination. B, right: a recent computational model derived a relationship between pooling weights, correlation structure, and
CP. Pooling weights () appear prominently in the model, indicating that CP for neuron k is a function of the noise correlation strength between neuron k and
each member of the pool and their respective weights (8;) where j represents neuron j. Weights are a necessity given recent work indicating that NC between
rival pools is nonzero. This suggests that CP is ultimately a function of the difference between the weighted distributions of the leftward-biased pool (here shown
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with positive weights) and the rightward-biased pool (shown with negative weights).

shared inputs and recurrent connectivity among neurons, and
2) independent noise, arising from stochastic events related to
neurotransmitter release and channel dynamics. The latter can
be averaged away, whereas the former cannot. In their simu-
lations, correlation coefficients, which represent the correlated
variability or noise, were assigned randomly within a set range
of values to neuronal pairs within each pool. We now know
that noise correlations are a function of tuning curve similarity:
neurons with similar tuning preferences tend to have higher
noise correlations (Cohen and Kohn 2011). With this correla-
tion structure, the suboptimally tuned neurons would have
lower degrees of correlated activity relative to neurons tuned
optimally for the stimulus direction of interest and thus show a
minimal CP. The low CP, however, could be adjusted by
manipulating the neuron’s weight, effectively scaling up its
low noise correlation with the pool. In this case, neuronal
weights would be important. Below, we will discuss the im-
portance of correlation structure and neuronal weights on CP
determination.

A recent study by Angelaki and colleagues (Liu et al. 2013)
reveals the importance of neuronal correlation structure for
understanding CP. They recorded from vestibular nuclei
(VTN), cerebellar nuclei (CN), and area MSTd, while monkeys
performed a vestibular heading discrimination task and found
that CP was much higher in the subcortical vestibular nucleus
than in area MSTd. This is a surprising result given the tacit
assumption that CP is determined by a feedforward integration
of neuronal activity, since the vestibular nucleus is at the front

end of sensory perception and, therefore, should have the
lowest CP values. The critical difference in CP value between
the cortical and subcortical areas occurred because of the
relationship between noise correlations and tuning curve cor-
relations (also known as ““signal correlations™). Noise correla-
tions quantify how two neurons covary in their responses to
repeated presentations of an identical stimulus and likely arise
from inherited noise from common driving inputs and synaptic
noise from their mutual connectivity. Tuning curve correla-
tions quantify how similar the responses of two neurons are
with respect to their stimulus preference. Two neurons with
high tuning curve correlation means that their tuning curves are
very similar and they likely receive similar driving inputs. In
net, tuning curve correlations reveal input similarity and noise
correlations reveal how much of those inputs are shared be-
tween the neurons.

Noise correlations and tuning curve correlations are closely
related, implying that neurons with similar tuning either re-
ceive common driving inputs or are more strongly connected
with each other, or both. Through simulations, Angelaki and
colleagues found that higher CPs for subcortical neurons could
be explained by a greater dependence of noise correlations on
the degree of tuning similarity, as indicated by steeper slope
relationships between noise correlations and tuning curve cor-
relations. What this means is that, at least for subcortical
nuclei, neurons receiving similar driving input assessed by
tuning curve correlations also exhibit strong shared variability
in trial-to-trial responses, indicating that these neurons are
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strongly interconnected with each other and/or receive com-
mon driving inputs. These relations are shown schematically in
Fig. 2B, middle. Neuron k’s high CP is a result of the noise
correlation structure between its activity and that of other
neurons in the pool (NC,;, where j represents the activity of
neuron j), which in turn is conditioned by the strength of the
tuning curve correlation between it and each member of the
pool (SCy)). A tight linkage of activity among similarly tuned
neurons in the form of noise correlations is thus an important
factor in determining high CP. This observation was supported
further by the same authors in a causal followup study in which
they compared vestibular nuclei CPs, noise correlations, and
tuning curve correlations both before and after a unilateral
lesion to the vestibular labyrinth, the principal input to the
vestibular system. They hypothesized that the unusually high
dependence on noise correlation-tuning curve relationships in
the vestibular nuclei arises from the bilaterally converging
inputs from each vestibular labyrinth. A unilateral lesion
should affect these relationships. They found indeed that CPs
and noise correlation-tuning curve correlation dependencies
both decreased following the lesion. These results raise the
possibility that a mechanism by which similarly tuned neurons,
featuring high noise correlations, and by inference, putative
strong interconnectivity, organize into functional micropools
that are consulted during the decision process. These
micropools would be weighted heavily, translating into high
CPs, a conjecture supported by the work of Purushothaman and
Bradley (2005). Computational studies together with the de-
velopment and increasingly widespread use of multiple neuron
recording techniques will provide critical data to address the
relationships between neuronal weights and CP values. A
recent computational study, which we discuss next, offers a
first step toward inferring a population’s weight distribution.
With the advent of multiple electrode recording techniques,
it is now possible to acquire rich information about a neuronal
population’s correlation structure. Together with CP values
calculated from the activity of all members of the population,
we have two pieces of the puzzle for distinguishing between
possible pooling models. The critical missing piece of infor-
mation is the distribution of neuronal weights, that is, how is
the activity of individual neurons weighted when forming a
decision? With this information we can determine whether or
not the activity of neurons is pooled selectively. A recent
computational study sheds light on this by deriving an analyt-
ical relationship between correlation structure, neuronal
weights and CP (Haefner et al. 2013). The first order approx-

imation is:
1 V2 (cB),

CPk = E + o ma (1)
(CB)y = 2.1 Cugh;
BTCB = Xizi 2j=1 BiCuB

Equation 1 shows that the CP value for neuron £ is a function
of both the noise covariance matrix C, which characterizes how
the response of neuron k covaries with that of all other neurons,
and the weight distribution 3, which describes how the activity
of neurons in the population is pooled. The resulting numerator
(CB), is normalized by C,,87CpB, which is the total summed
variance of the activity of all neurons in the population, scaled

where,
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by their weights, plus the weighted covariance of the activity of
all possible pairs in the population. The numerator provides
information about whether all neurons have the same CP or
whether they vary depending on the degree of tuning. In other
words, it provides information about the total population’s CP
“shape.” The denominator provides a normalization factor that
determines the magnitude of this shape by factoring in the total
variance of the population, the total weight distribution, and the
total covariance of all possible neuronal pairs. To provide some
intuition about this, Eq. 2 shows the linear portion of Eq. I:

1 1
CP, — 5 * 225;1 CiiBj (2)

Equation 2 states that the CP for neuron k is proportional to the
average of neuron k’s correlation with all neurons in the
population (C; ;), where j represents neuron j, and their respec-
tive weights (3;). This implies that the larger the population,
the less neuron k’s weight contributes to the decision. There-
fore, CP is a function of population size, correlation structure,
and the weight distribution (shown schematically in Fig. 2B,
right). Haefner et al. (2013) assessed this model of CP through
simulations involving neurons with varying tuning curves,
response variances, interneuronal correlations and belonging to
populations of different sizes with different weight distribu-
tions. For each set of parameters, a psychophysical decision
based on the random dot motion task was simulated on a
trial-by-trial basis by taking the sum of the activity of all
neurons in the population, scaled by each neuron’s weight.
This decision rule, used commonly in the field, e.g., Law and
Gold (2009), is linear and appears below:

decision = >,7_, By (3)

where (3 is the weight of neuron k and r is the response of
neuron k. Within the context of the random dot motion task in
which the animal is discriminating rightward from leftward
motion, all neurons with a greater bias toward leftward tuning
would belong to a leftward-biased pool and receive a positive
weight, and all neurons with a greater bias toward rightward
tuning would receive a negative weight within a rightward-
biased pool. The magnitude of each neuron’s weight depends
on the pooling scheme used (uniform, selective, or optimal).
For a uniform scheme, all neurons belonging to the leftward-
biased pool receive identical positive weights and all neurons
belonging to the rightward pool receive identical negative
weights. For a selective scheme, neurons with tuning matching
exactly the two possible motion directions receive maximal
weights, and all other neurons receive a weight of zero. For an
optimal pooling scheme, the weight magnitude is informed by
a neuron’s tuning similarity to the motion direction and also the
noise correlation structure of the population. If the total
weighted sum is positive, then the model reports a leftward
choice and vice versa for a negative weighted value. Through
these simulations the authors were able to generate CP values
while manipulating such variables as population size, correla-
tion structure and weights. They found that CP was dependent
on correlation structure and population size. Consistent with
recent work (Cohen and Newsome 2009), they imposed posi-
tive noise correlations between rival pools. This means that a
neuron preferring rightward motion could have a non-zero
noise correlation with a neuron preferring leftward motion
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indicating that shared variability cannot be averaged out. Given
these facts, and assuming a differencing operation between
rival pools (but see Heeger et al. 1999 for a different model),
the sign and magnitude of the weights do matter in determining
CP, since the sign of B, provides information about how neuron
J’s noise correlation with neuron k should be weighted. Ulti-
mately, then, Eq. I tells us:

1
CP, — 5 & mean weighted Cy jefiward-biased(+)

— mean Weighted Ck,righlward—biased(—) ()]

This means that CP for neuron k, with its leftward-bias (pos-
itive weight), is proportional to the difference between the
mean weighted correlation structure of neuron k and all neu-
rons with a leftward bias (positive weights), and the mean
weighted correlation structure of neuron k and all neurons with
a rightward bias (negative weights) (Fig. 2B, right). Relative to
neuron k’s leftward stimulus preference, all neuron £’s
weighted correlations with leftward-biased neurons have pos-
itive values, whereas each of neuron k’s weighted correlations
with the rightward-biased neurons have negative values. In
principle, a strong noise correlation between the activities of
two oppositely tuned neurons would hinder a decision, since
the activity of each neuron would contribute to either decision
and result in a reduced CP. The relationships between weights,
noise correlations and CP are explored in more detail in a
recent review (Nienborg et al. 2012).

Future work will undoubtedly make use of the computa-
tional scheme introduced by Haefner and colleagues (2013) to
determine whether the activity of large numbers of neurons
with disparate tuning preferences and variable weights is con-
sulted at the decision stage or whether the activity of select
subsets of highly weighted neurons is the real determinant of
choice. With multielectrode recording technology, rich infor-
mation about the correlation structure can be obtained and the
computation of CPs for hundreds of individual neurons is
possible, providing the critical data needed. As Haefner and
colleagues show, this information makes it possible in princi-
ple to distinguish between uniform, selective, and optimal
pooling schemes since each scheme predicts a specific CP
profile given the existing correlation structure [but see Pitkow
et al. (2015) for some possible complications]. Below we
review further evidence that supports a selective pooling
scheme for decision making.

The Origin of CP: Feedforward or Feedback?

A prominent model of CP assumes that neuronal activity
correlated with behavior is a consequence of feedforward
processing. According to this model, CP values are intrinsic to
an area and are characterized by the pooling of activity from
neurons within that area alone. One prediction of the feedfor-
ward model is that the correlation structure critical for CP
should be driven by feedforward inputs. A recent causal study
put this prediction to the test by reversibly inactivating areas
V2/V3 and monitoring MT single units while monkeys alter-
nately performed a motion direction detection task or a depth
change detection task (Smolyanskaya et al. 2015). Area MT
receives rich disparity information but no explicit motion
information from areas V2/V3. The prediction was that during
the depth task MT neurons would show a reduction in noise
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correlation structure and therefore CP following V2/V3 cool-
ing due to the removal of highly structured and correlated
disparity tuned inputs from V2/V3. Motion detection task
correlation structure, however, should remain intact since V1
provides strong directionally selective information to MT di-
rectly, bypassing the site of inactivation. The investigators
found that CP values were reduced during the depth task but
not the motion task, a result that they traced to a reduction in
the correlation structure in MT during depth change detection.
These results provide evidence that some portion of CP and the
correlations it depends on is derived from feedforward inputs
from early processing stages. As we discuss next, however,
some of these feedforward inputs may be caused by feedback
signals from downstream processing stages that ultimately
determine the CP activity.

A second model prediction is that the temporal course of CP
activity should track how a subject weighs information in a
stimulus. For example, weighing stimulus information heavily
in the early phase of a trial should be associated with high CP
values early in the course of a trial and weighing stimulus
information less strongly at later phases of the trials should be
associated with lower CP values at the same time points in the
trial. This hypothesis was tested directly in a recent study by
Nienborg and Cumming (2009). Using a white-noise analysis,
the investigators correlated neuronal activity in V2 with frame
to frame changes in disparity in a random dot stereogram.
Trained monkeys indicated whether the stimulus was “near” or
“far.” This task design enabled the investigators to construct
psychophysical kernels indicating which portion of the trial the
monkey weighted most heavily to arrive at its decision. They
found that monkeys weighted information early in the trial
more heavily than information later in the trial. Surprisingly, an
analysis of the temporal course of CP revealed that CP started
out low and gradually increased as the trial progressed. This
result indicates that at least in V2 high CPs appear later than
would be expected from a feedforward model, as if driven by
a delayed feedback signal. According to this interpretation, V2
choice-related activity is not causal to the decision but repre-
sents a time-lagged copy of the decision process occurring
elsewhere. An earlier study observed similar CP dynamics in
area MST during a motion discrimination task. CP values
peaked during the second half of the stimulation epoch rather
than the first half (Celebrini and Newsome 1994). These data
provide evidence against a feedforward model of CP genera-
tion.

A third prediction of the feedforward model is that CP
should vary in magnitude depending on the strength of the
sensory evidence on which the animal bases its decision. In
most perceptual decision tasks, the stimulus varies in difficulty
or sensory strength, and the strength of the sensory stimulus
influences neuronal activity differently; strong signals will
drive neuronal activity well, whereas weak signals will drive
neuronal activity poorly. Neurometric functions show that
most neurons respond maximally to strong sensory signals and
less so to weak sensory signals. The feedforward model of CP
predicts that this same trend should extend to CP, since the
information leading to a decision varies in strength and there-
fore ambiguity. Weak stimuli should result in low CP values
and strong stimuli should lead to high CP values. However, CP
values tend to be relatively constant across varying stimulus
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difficulty levels, suggesting that something other than feedfor-
ward pooling of neuronal activity influences CP.

A second and polar opposite view of CP is one based on
feedback. In this model, CP results from signals related to
attention or decision making in other areas. Romo and col-
leagues found evidence for this idea in their recordings from
the somatosensory and motor system while monkeys per-
formed a vibrotactile discrimination task (Hernandez et al.
2010). Secondary somatosensory area S2 had significant CP
values, but the latency of onset of the significant CP values
lagged the latency measured in prefrontal and premotor cortical
areas by tens of milliseconds, suggesting that CP developed in
later areas before earlier areas. Similarly, experiments per-
formed in primary auditory cortex (area Al) revealed signifi-
cant ramps in CP just before the behavioral report, presumably
after the decision was made (Niwa et al. 2013).The late
occurrence of significant CP values in a primary sensory area
point toward a role for feedback in the generation of CP.

Equation 1 indicates that CP is a function of a population’s
correlation structure and weight distribution. That a feedback
signal could cause CP implies that the correlation structure and
pooling scheme is under strong control by attention or a
feedback signal. Indeed, recent work reveals that attention
significantly influences the structure of correlations among
neurons. When animals deploy attention to targets, interneu-
ronal noise correlations between the activity of neurons be-
longing to the same pool decrease (Cohen and Maunsell 2009;
Mitchell et al. 2009; Ruff and Cohen 2014) while noise
correlations between the activity of pairs of neurons belonging
to rival pools increase (Ruff and Cohen 2014). The latter
finding means that with attention during the motion direction
decision task, noise correlations would increase between the
activity of neurons preferring leftward and rightward motion.
Figure 3 shows these attention-induced effects for hypothetical
data obtained from two rival pools of neurons recorded during
the motion task, one codes for leftward-biased motion and the
other codes for rightward-biased motion. According to Egq. 1,
the attention-induced alteration has the paradoxical prediction
that CPs should be relatively low among neurons belonging to a
leftward-biased or rightward-biased pool, since the noise correla-
tion structure (NCiopward-piased.lefiward-biased> T1€- 3) 18 weakened
among neurons belonging to the leftward-biased pool, and
strengthened between the leftward-biased pool and rightward-
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biased pOOI (NCIeftward—biased,rightward—biased; Flg 3) This relation is
a consequence of Eg. I, which indicates that a neuron’s CP is
determined by the strength of its noise correlation with each
member of the population and the weights of the remaining
neurons within the population. Since the noise correlation strength
between the leftward-biased pool and the rightward-biased pool is
non-zero, this introduces negative weights into the calculation
since the rightward-biased pool neurons have negative weights
relative to a leftward stimulus. This, together with the reduction in
correlation strength among neurons in the same pool, would result
in a reduced CP value.

The above reasoning may explain why observed CP values
are typically low. Attention alters the correlation structure and
interferes with a neuron’s relationship to behavior. However,
there are many examples of high CP values. The hypothetically
low CP therefore is contrary to the actual CP values observed.
Examination of Eq. I reveals that there are several ways that a
network could reconfigure itself to generate a high CP given
the alteration in correlation strength induced by attention. Each
of the hypothetical mechanisms we illustrate has implications
about the possible pooling mechanism used by neuronal pop-
ulations when correlational structures are modified by cogni-
tive signals such as attention. One possibility is that attention
dynamically alters the weights that offset the alteration in
correlation structure. Neurons are known to undergo changes
in discharge rate with attentional allocation (Maunsell and
Cook 2002), so the increase in neuronal activity could be the
implementation of enhanced weights. A second possibility is
that attentional allocation engages the most sensitive neurons.
Such selective pooling would adjust the weight distribution of
the population by carving out a select subset of it (a micropool)
and thereby compensate for the alteration of interneuronal
noise correlation structure. This would result in a distribution
of CP values, some low, some high, with the highest presum-
ably reflecting those neurons that are receiving the highest
weight in the decision. The wide range of CP values reported
in many studies and the correlations between sensitivity and
CP lend support to this second possibility and highlight the
importance of modifiable weight distributions in compensating
for the effects of altered correlation structure.

A third possibility focuses on the well-known relations
between tuning curve correlations and noise correlations. As
we described above, the findings of Angelaki and colleagues

Fig. 3. Attention, correlation structures, and
CP. Attentional allocation to a particular
stimulus, here to leftward motion (repre-
sented by the gray circle), has significant
effects on correlation structure and conse-
quently on CP. Attention has been shown to
decrease noise correlations between neurons
belonging to the same pool (e.g., leftward-biased
pool; | NCieard-biased tefiward-biasea) and o in-
crease correlations between neurons belonging to
rival pools (leftward-biased pool and rightward-
biased pool; T NCiepyard-biased.sightward-biased)- AC~
cording to Eq. I (see text and Fig. 2B, right),
this has the effect of decreasing the expected
CP values of neurons belonging to the left-
ward-biased pool, during trials in which left-
ward motion direction is shown.

1 . .
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(Liu et al. 2013) indicate that CP is dependent on the relation-
ship between the tuning curve correlation structure and the
noise correlation structure of the population. Computational
work shows that neuronal populations convey more informa-
tion when the tuning curve correlation structure and noise
correlation structure move in opposite directions: a relatively
high tuning curve correlation coupled with a relatively low
noise correlation leads to better discrimination (for a review
see, Averbeck et al. 2006). A possibility, then, is that with
attention the decrease in noise correlation structure is accom-
panied by an increase in tuning curve correlation. According to
the computational work, this would result in better discrimi-
nation capabilities of the population and lead to the oft-
observed improved perceptual performance. There is evidence
that attention can shift tuning curves towards values closer to
the attended stimulus value (Connor et al. 1996, 1997; David et
al. 2008; Womelsdorf et al. 2006, 2008). This type of alteration
would lead to increases in signal correlations among the
activity of neurons since the tuning curves are shifting towards
a common value. A direction for future inquiry would be to
examine not only the noise correlation structure but also the
signal correlation structure during attentional allocation to
understand the mechanistic underpinnings of CP generation.

The Future of CP

CP is a valuable metric and its introduction led to a boon in
knowledge of how the brain makes decisions. However, as
with any scientific advance, the introduction of CP also raised
many questions. Recent technological advances in systems
neuroscience, such as multiple neuron recording, make these
questions infinitely more tractable. For example, our knowl-
edge of correlations between the activity of neurons and how
they change with task demands is incomplete. Yet, this infor-
mation is the key to understanding CP. What we know now
suggests that much of the correlation structure required for CP
results from well-structured and formatted signals generated
locally or inherited from other areas that code explicitly for the
stimulus feature used (Nienborg and Cumming 2014; Smoly-
anskaya et al. 2015). Is this similar for all areas with CP? Does
the structure of activity correlations leading to CP vary with
each brain area? A related question is the role of attention in
causing CP, which presumably does so by altering the corre-
lation structure on which CP strongly depends. We know
attention reduces noise correlations, but this appears paradox-
ical given the importance of strong noise correlation structure
on CP. Does attention increase tuning curve correlations to
compensate for noise correlation reduction? Other questions
concern the locational and magnitude trends of CP. For exam-
ple, why do CPs peak early in the vestibular system only to
plummet at later stages? Is the early peak related to the explicit
coding format of the vestibular system, where explicit signals
related to heading discrimination are already present in the
vestibular nuclei? CPs in the vestibular pathway decrease by
the time of MT. Is this because MT lacks a topographic map
for heading discrimination? Neurons in nontopographically
arranged pools share fewer common inputs with neighboring
neurons and thus presumably share less correlated information
with each other through recurrent connectivity. This could
result in a relatively weak correlation structure, translating into
lower CPs.

CHOICE PROBABILITY

A final question concerns the origin of CP: is it due to
feedforward or feedback signaling? The answer likely resides
somewhere in the middle, reflecting contributions of both
feedforward and feedback signals in CP determination (Wim-
mer et al. 2015). The relative contribution of each signal could
be assessed by recording from multiple areas simultaneously
while animals engage in perceptual discrimination tasks. This
would provide trial-by-trial information about the temporal
dynamics and relationships between areas as CP evolves.
Causal experiments such as the one performed by Born and
colleagues discussed above should be performed to assess the
relative importance of feedback signals on CP calculated from
activity recorded from upstream areas. One possible experi-
ment would involve stimulating in a downstream area closer to
the decision process while an animal makes perceptual deci-
sions and noting the changes in CP that occur in upstream areas
in consequence. This would be an explicit causal test of the
role of feedback signaling on CP. In sum, these are just a few
of the questions that are left open, many more will likely arise
as investigators continue to utilize and explore the CP metric in
the quest to understand how neuronal activity gives rise to
perception.
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