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Abstract

This paper proposes a dynamic control method to overcome bunching and
improve the regularity of fixed-route transit systems. The method uses a combi-
nation of dynamic holding and en-route driver guidance to achieve its objectives.
It applies to systems with a mix of headway-based and schedule-based lines but
it is evaluated for scheduled systems as this is the more challenging application.
Improved schedule adherence is the goal.

The method’s calculation complexity per piece of advice does not increase with
system size. As a result, the method is scalable and can be used with large multi-
line systems, no matter how complex. When controled, each vehicle is mostly
affected by exogenous disturbances (e.g. traffic) and very little by other vehicles.
As a result, disruptions to a vehicle or group of vehicles caused by inattentive
drivers or control equipment failures remain confined to the vehicles experiencing
the problems. The control method effectively quarantines “disease”.

The method is evaluated analytically and with simulations over a broad range
of conditions, including schedules with zero slack. The method was also evaluated
by observing the performance of a real world multi-line system that uses inex-
pensive on-board tablets to apply the control. The evaluation addresses driver
compliance and equipment malfunction issues. It is found that the method is
resilient and improves reliability considerably even under challenging conditions.
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1. Introduction

Much of the scheduling/control research on transit reliability considers
isolated lines, and ignores real world complications such as intermittent com-
munications, temporary GPS failures and inattentive drivers. These simplifi-
cations are required by the scale and complexity of typical transit operations,
which are further complicated by the so called “bus (vehicle) bunching” phe-
nomenon.! This paper expands current knowledge by introducing a simple
control algorithm that can counterbalance bunching and improve the reli-
ability of transit systems consisting of any number of interacting lines, no
matter how many or how complex. It then evaluates the algorithm’s per-
formance recognizing the effect of the above-mentioned complications. The
work builds on Argote-Cabanero (2014), which presented a proto-algorithm
with some of these features and showed how to put it into practice.

Newell and Potts (1964) was the first scientific work to characterize the
bunching phenomenon. It noted that a bus’ travel time is not only affected
by traffic and driver behavior but also by its headway with the bus it follows
because long headways slow down a bus by forcing it to pick up more pas-
sengers. Building on this idea, the reference then showed that the equations
of bus motion exhibit a positive feedback loop; i.e., that if a bus is delayed
so that its headway increases then it is delayed even more. It further showed
that this feedback loop leads to unstable platoon travel, and ultimately to
bunching.

To compensate for this bunching instability, and to allow lagging buses
to get back on schedule, bus operating agencies often include slack into their
timetables. Drivers are asked to compare the current time against the sched-
ule at designated control points, and to hold if they would otherwise depart
early. An early analysis of this idea can be found in Osuna and Newell
(1972). Unfortunately, schedule-based control methods usually require too
much slack to be effective. For this reason, the slack time provided in real
systems is usually smaller, or nil, and reliability suffers.

Because schedule-based methods are myopic — each bus is controlled with-
out considering what others are doing — more systemic approaches have been

The word “bus” in this paper shall stand for any transit vehicle; e.g., a tram or train.



explored. Some works (Eberlein et al., 2001; Sun and Hickman, 2005; Del-
gado et al., 2009; Liu et al., 2013) have proposed dynamic control strategies
based on short term predictions of the system’s evolution. Holding times are
optimized with rolling horizon methods that consider real-time data for all
the buses simultaneously. Although this is a considerable improvement over
schedule-based control, the new methods’ calculation complexity increases
rapidly with system size. This restricts the domain of application to rela-
tively small systems. Complexity also limits the frequency with which drivers
can receive advice. So it is important that the advice is good for the time be-
tween refreshes. Unfortunately, this could be a challenge if traffic and drivers
do not behave as anticipated in the rolling horizon calculations.

A second type of approach that alleviates some of these drawbacks re-
places predictions with adaptation to the present. Works in this genre include
Daganzo (2009), Daganzo and Pilachowski (2011) and Xuan et al. (2011),
which used control theory to develop strategies for a single line that could
be operated either with a schedule or based on headways; and Bartholdi and
Eisenstein (2012), which used Markov chains to develop a rule for single lines
operated on headways. All the works in this adaptive genre are character-
ized by using neither predictions nor detailed optimizations. Instead, they
use simple preventive principles that can be refreshed frequently to prevent
bunching before it occurs. As such, they promise to be robust to errors in
the assumptions, and to be scalable.

To our knowledge, no adaptive works exist at present which have exploited
this scalability to consider systems of multiple interacting lines. Therefore,
the present paper attempts to fill this void. It develops and evaluates a simple
control rule that can be applied to any subset of a set of interacting lines
— no matter how large or complex. Control is exercised through dynamic
holding at stations, and by providing drivers with on board guidance while
cruising. Cruising guidance is useful because it enables drivers to absorb
holding time while en-route, reducing the need for holding at stations and
(as will be shown) increasing efficiency. Cheap mobile technology makes this
control feature economical and feasible.

Theoretical predictions of the control’s performance are compared both
with simulations and with the actual performance of a real bus system. Other
empirical evaluations of different control methods can be found in Bartholdi
and Eisenstein (2012) and Lizana et al. (2014). These two works, however,
deal with isolated lines and neither incorporates cruising guidance. The for-
mer tests an adaptive algorithm for headway-based lines and the latter a



predictive algorithm in the rolling horizon family. These experiments lasted
1 and 2 days, respectively. The tests in this paper last for months, include
cruising guidance, and involve two interacting lines with an underlying sched-
ule — both controlled. As such the tests extend and enrich the previous empir-
ical findings. The real system of the test also included some non-cooperative
drivers and temporary but recurrent failures in IT services; thus the tests
also speak to the proposed approach’s robustness.

For maximum generality, the paper focuses on systems run with a sched-
ule.? It is organized as follows. To begin, Sec. 2 introduces background
material, including an existing algorithm for isolated lines; and Sec. 3 un-
veils several properties of this algorithm that facilitate its generalization to
systems of interacting lines. Then, Sec. 4 presents this generalization; Sec. 5
examines the generalized algorithms’ performance under a broad range of
conditions, including schedules with zero and even negative slack; and Sec. 6
examines its resiliency to disruptions. Finally, Section 7 provides perfor-
mance predictions for applications where, in addition to holding advice at
stations, drivers also receive cruising guidance while en route; Sec. 8 presents
the results of several simulations and field tests of a real system; and Sec. 9
presents some concluding thoughts.

2. Background

This section outlines the modeling framework for control of isolated lines,
including notation and some known results. Section 2.1 describes the problem
and formulates its basic equations. The theory is developed assuming that
the slack in the schedule is ample enough to absorb the (small) schedule
deviations that arise despite the control. This keeps the models “linear” so
that analysis is possible. Section 2.2 then describes a simple form of control
that will play an important role in this paper.

2.1. Problem definition

The assumptions and notation are as in Daganzo (2009). Considered is
a single line with a given schedule. Its stations are denoted s and numbered

2The results in this paper can be also applied to systems run on headways merely
by introducing an underlying virtual schedule. The reverse is not true, however. Con-
trol methods designed to guarantee even headways do not necessarily guarantee schedule
adherence.



consecutively, s = 0,1,---, in the direction of travel. Likewise, bus trips
along the line are indexed by n, which increases as n = 0,1,--- with the
time of day. With this in mind, the following data are given:

tn,s: scheduled arrival time of bus n at station s.
« H, g the target headway. (H, s = tns — tn_1,, V1 > 0.)

* Cp0 the (cruising) time bus n is expected to take from its departure
from station s to its arrival at s 4+ 1, considering the time of day.

* Bn.s: Expected increase in the dwell time for bus n at station s due to
additional passenger boardings when its headway increases by one time
unit. (As explained in Daganzo (2009), 5, s is a dimensionless constant
that typically ranges from 1072 to 1071.)

e dys: the amount of pre-planned slack included in the schedule of bus
n at station s.

The above defines the schedule and the buses’” average behavior. Randomness
is introduced as follows:

e Unst1: zero-mean, independent, exogenous random noise in the trip
time of bus n from s to s + 1.

* 0721,5+1: variance of v, 441 . (Given parameter.)

The exogenous noise can be due to traffic, driver error and to variability in
passenger demand. It affects travel unpredictably and prevents buses from
being on schedule.

Figure 1a presents an influence diagram indicating how not just this noise,
but also the bus in front affects an uncontrolled bus’ travel, as per the head-
way effect in Newell and Potts (1964). The dark horizontal arrows denote
the direction of movement and the thin solid arrows causality. Note how thin
arrows pointing to the bus emanate both from the bus in front and from the
elliptical bubble at the bottom which represents the exogenous noise. The
dotted arrow between the schedule at the top and the bus stresses that the
schedule is not used if the bus runs uncontrolled.

The job of a control algorithm is compensating for both of the influences
in Fig. 1a so as to keep the schedule deviations as small as possible. A control
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(a) Uncontrolled line. (b) Controlled line.

Figure 1: Causal relations affecting a bus’ motion in an isolated line: (a) no control,
(b) with control.

mechanism can be qualitatively depicted by adding arrows. For example, an
arrow pointing from the schedule to the bus (replacing the dotted line) could
be used to represent schedule-control, since this control method only uses
the schedule to affect the bus. Part (b) of the figure represents the form of
adaptive control discussed later in this paper.

The following state and control variables are used to model the buses’
motion:

* a,s: actual arrival time of bus n at station s. (State variable.)

* Ens = Qns — lns: schedule deviation of bus n at station s. (State
variable: positive values are lateness and negative ones earliness.)

e hps = aps—an_1,: actual headway between bus n and its leading bus,
n — 1, at station s. (State variable.)

« D, s actual holding time of bus n at station s. (Control/decision
variable.)

Note from the above definitions that the line’s arrival-based schedule satisfies:
tn,s—‘rl = tn,s + ﬁn,an,s + dn,s + Cn,s- (1)

The actual arrival times satisfy an expression similar to (1), which uses
the actual headways and holding times, and includes the noise:

a/n,s+1 = an,s + ﬁn,shn,s + Dn,s + Cn,s + Vn,erl- (2>



This expression implies that an uncontrolled bus’ travel time between stations
is of the form, a,, s11 — ans = Bn shns + Cns + Vnstr1. The first term, 3, shy, s,
captures the endogenous influence of the previous bus depicted by the left-
pointing arrow of Fig. 1a, and the other two terms, ¢, s+v), s+1, the exogenous
influences depicted by the vertical arrow.

The constants H,, ; and ¢, , appearing in the previous two equations can
be eliminated from the formulation by subtracting (1) from (2), and then
expressing headways in terms of schedule deviations. With our definitions of
En,s, Hy s and hy, 5, these steps yield:

5n,s+1 = 6n,s + Bn,s(hn,s - Hn,s) + (Dn,s - dn,s) + Vn,s+1
= gn,s + 571,5(571,5 - gnfl,s) + (Dn,s - dn,s) + Vn,erl-

(3)

The system dynamics are fully specified when D, ; in the above expres-
sion is replaced by a non-negative function of all past system-wide schedule
deviations. Such a function is the holding control algorithm. The follow-
ing subsection describes a particular algorithm (Xuan et al., 2011) that will
be generalized in this paper to systems of interacting lines. The subsection
unveils a unique property of this algorithm that makes the generalization
practical.

2.2. A simple control

Considered here is the so-called “simple control” in Xuan et al. (2011).
Its holding time expression has a single degree of freedom — a parameter,
«, which is required to be in the (0,1) interval to ensure stability. The
expression is:

D, s = max{0, B, sen—1s+ (@ —1— B, s)ens +dnst where a € (0,1). (4)

The model is called “simple” because if the slack values d,, s are large
enough so the second argument of the maximum operation in (4) stays pos-
itive, then: (i) the holding time expression is linear,

Dn,s - 6n,s€n—1,s + (Oé —1- Bn,s)gn,s + dn,s where « € <07 1)7 (5>
and (ii) the dynamic equation simplifies to:

Ensil = Q€ps+ Vnsy1  where «a € (0,1). (6)



3. Preliminary Ideas

This section unveils some useful features of the simple control. Of par-
ticular interest are the decoupled bus dynamics that can be seen from (6) in
the linear regime. This will turn out to be useful, and therefore is the first
feature explored.

To isolate buses from one another while stabilizing their trajectories, the
control term D, ¢ must cancel out the (endogenous) influence from other
buses, and then smooth out the exogenous noise. Figure 1b illustrates this
idea by means of a controller box with two emerging arrows that correspond
to these two functionalities: a vertical arrow that isolates the bus and a
curved arrow that stabilizes it.

Mathematically, isolation in the linear regime is achieved by including
in the holding time a term, denoted DSL, equal to the negative of all the

terms in (3) that involve other buses; i.e., Dq(f)s = Pns€n-1s- Stabilization is

then achieved with a term, DSZQ, that cancels out the bus’ own endogenous
terms in (3) and replaces them by ae, ;. Consideration of (3) shows that
DS,ZS) - (a —1- Bn,s)gn,s + dn,s‘

Since the only dynamic variable in this last expression is €, s, i.e., the
difference between the actual and scheduled arrival times of bus n, the curved
arrow of Figure 1b points to the connection between the schedule and the
bus. A spring with the label “a” is used as an icon to represent the result of
this connection, as encapsulated in (6).

Explored next, is the relationship between o and the magnitude of the
schedule deviations in the linear regime. The metric used to quantify these
magnitudes is the expectation of the square of ¢, s, denoted (g, 5).

To do this, assume that all the buses are initially dispatched on time,
i.e., €,0 = 0 Vn. Then, recursively replace ¢, s on the RHS of (6) by its
expression in terms of €, ,_1, again using (6), and then iterate this recursion
until s = 0. The result is:

s

S
_stl i _ i
Enstl = @ Eng + E Q' sp1-i = E a'Vpsi1—i  where a€0,1). (7)
=0 i=0

Since the terms of the second sum in (7) are independent random variables
with zero mean, we can write:

S
(Ens+1) = var(ensi1) = Z O421"73@5—1-1—1" (8)
=0

8



This is the desired relationship.

Note that the RHS of (8) is a uniformly bounded quantity if the o,
are uniformly bounded. Thus, the buses operate in a stable manner (i.e.
with bounded deviations) no matter how long the route or how many buses
operate on it. In the homogeneous case where o, , = 0? the summation is a
geometric series, and therefore the bound is:

2

o
(€ns) = var(e,s) < o

Vn,s, where a € (0,1). 9)

It is evident from (8) and (9) that if the system is in the linear regime,
the smaller a the better the control. Thus, if the schedule has so much slack
that the system is in the linear regime for o = 0, then o* = 0.2 However, in
most real cases the schedules are not that lax. Thus, reliability is maximized
in these cases by an a* > 0 that must trigger some non-linearities; and the
tighter the schedule the more non-linear the behavior and the higher a*.

4. Systems of Interacting Lines

In the real world the situation is often more complex than the isolated line
discussed in Secs. 2 and 3. Fig. 2 illustrates the common case of interlining,
where buses are not just affected by their intra-line headways but also by
their headways with buses from other lines. This inter-line coupling effect
is triggered by passengers who are indifferent between multiple lines that
share a station, and by transfers. In view of this, the simple control is now
generalized to systems of interacting lines. It will be shown that all the
results from Secs. 2.2 and 3 apply to the generalization.

To capture multi-line interactions generally and directly, the connection
between a bus’ expected dwell time and the number of boarding passengers
is modeled as an arbitrary function of the schedule deviations of the bus
in question and those of all previous buses from all lines to have visited
the station.? In the case of an isolated line this function was specified as

3Consideration of (3 -6) shows that the selection o = 0 corresponds to the conventional
form of schedule control. In this context, the linear regime arises if there is so much
slack that buses always arrive early at every station so they are always held for a positive
amount of time. To our knowledge, no bus system operates in this way.

4Passenger counts and origin/destination tables are not used because these data are less
reliable and can only be integrated into a model of dwell time with additional assumptions
that could introduce systematic errors.
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Figure 2: Real world bus systems with multi-line corridors.

Bn.s(Ens — €n—15). In the general case it will be expressed as: [, s€ns —
F,s(Bns, Ens), where 3, s has the same interpretation as for a single line,
F, s is an arbitrary function that should make physical sense, B, ; is a set of
parameters and F,, , is the set of deviations by all buses that have visited s
prior to n.?

With these conventions, the dynamic equation for bus n of a non-isolated
line becomes:

8n,s—l—l - En,s + Bn,sgn,s - Fn,s(Bn,57 En,s) + (Dn,s - dn,s) + Vn,s+1- (10)

The term containing F;, ; captures the influence of all other buses on bus n.

Recall from Fig. 1b that the holding control expression for isolated lines
was the sum of an isolation term that canceled the influence of all other
buses on each bus, and a stabilization term that involved only data from the
bus in question. This structure allows buses from an isolated line to operate
independently from one another in the linear regime.

In the present case, the same effect can be achieved by modifying the
isolation term so it now cancels the endogenous influences from all relevant
buses from any line, as illustrated by Fig. 3; and then leaving the stabiliza-
tion term unchanged. As the figure suggests, such extended framework must
exhibit identical linear dynamics as the original, including the bus indepen-
dence property.

5 Appendix Appendix A shows how these parameters can be estimated from the buses
run-time data harvested during operations.

10
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Figure 3: Causal relations affecting the buses’ motion in a non-isolated line.
This can be verified algebraically. Since D,(f)s now must cancel the in-
fluence of all buses on bus n (not just the influence of the previous bus

from its own line to have visited the station) it has the form: Dﬁf)s =

F,s(Bns, Ens). And since the stabilization term DT(IMS) is left unchanged (i.e.,
D,(st) = (@ —1— Bhs)ens + dns) the complete holding time becomes:

Dn,s = Fn,s(Bn,sa En,s) + (O[ - ]- - Bn,s)gn,s + dn,s~ (11>

Now, obtain the dynamic equation by combining (11) and (10). The result is
still (6), as claimed. Thus, everything (6) implies, including (7 - 9), continues
to apply for the generalized algorithm.

Note that the derivation assumed nothing about the nature of the opera-
tion of the other lines; each can be controlled or uncontrolled. Lines can even
suffer from bunching. The only requirement is that the function F), ; and its
arguments B,, ; be known; and that the arguments of E,, ; be recorded and
made available to the controller in real time. The technology for this already
exists. The control method’s ability to easily deal with diverse, complex
scenarios stems from its non-forecasting nature which, unlike rolling horizon
methods, obviates the need for producing in real time complex, multi-line
predictions. The generalized version of the simple control only requires ob-
servation of what is.

5. Reliability

The system’s reliability with the proposed control method is now eval-
uated. The evaluation extends beyond the linear regime that has been our

11



focus so far. As such, the evaluation considers both, tight and lax schedules,
including situations where there is so little slack and the headways are so
short that it is impossible to find an « that will prevent, not just the target
holding time (5) from going negative, but also buses from catching up. It
shall be assumed that buses that catch up do not leapfrog.

Catch-ups can be incorporated into (2) and (3) using the FIFO rule; i.e.,
by requiring that a, s;1 > an—1,41, or equivalently €, ;11 > €p-1 541 — Hp s41-
With this in mind, (3) is rewritten as the maximum of its RHS and €,,_1 51—
H,, s+1. Therefore, the system’s dynamic equations for our evaluation are:

En,s+1 = max{£n—1,s+1 - Hn,s+17
5n,s + Bn,s(gn,s - 571—1,3) + (Dn,s - dn,s) + Vn,s—i—l}v (12>

D, s = max{0, B, sen-1s+(@—1—=LBhs)ens+dnst where o€ (0,1). (13)

Because (12) and (13) are cumbersome to analyze, they were simulated
instead. For added realism the simulations used not just buses as agents,
but also passengers. This agent-based framework, which is fully described
in Argote-Cabanero (2014), allowed us to model passenger arrivals explicitly
and accurately as Poison processes, instead of implicitly and approximately
as in (12) and (13).°

The results described below are restricted to the homogeneous case. This
enabled us to explore systematically a broad array of scenarios by varying
just a few parameters. Note from (12) and (13) that the parameters H, 3, o
and d suffice to define a homogeneous system. We also choose to measure
time in units of ¢ so that the parameter ¢ = 1 is eliminated. Thus, the space
of homogeneous systems is comprehensively described by H, 3 and d.

Each simulation run, representing 1 day of continuous operation, tracks
100 punctually-dispatched buses over 30 stations and records the bus arrival
deviations at s = 29, the line’s terminus. The root mean square, z, of
these 100 deviations, z = (g,20)'/?, is used as the daily evaluation metric.
To improve statistical significance this daily metric is then further averaged
over 30 runs, to get a monthly average, Zz.

For each scenario (H, [ and d), the simulations were run under three
control schemes: (i) uncontrolled; (ii) control by schedule; and (iii) simple
control. In (i), it is assumed that drivers do not hold at any stations until

6This is a minor point because the approximation is very good; see Daganzo (2009).
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arriving at the termini; this is modeled by using D,, ; = 0 instead of (13)
in (12). In (ii), drivers who are ahead of schedule hold at two intermediate
control points (s = 9 and s = 19) until they are back on schedule; this is
modeled by using D,, s = 0 for all stations that are not control points, and
using (13) with o = 0 for the control points. In (iii) drivers hold at every
station, and D,, s is given by (13) at every station.

Schemes (i) and (ii) are benchmarks representing traditional operations
against which the proposed control method (iii) is to be compared. Although
scheme (i) is a worst-case representation of traditional operations, the scheme
is sometimes used for systems with little or no slack, or systems with a small
number of buses. With its closely spaced control points, scheme (ii) is a
best-case representation of traditional operations.”

Twenty eight scenarios are considered allowing for: (i) 2 values of H
(15, 30) signifying high and low frequency; (ii) 2 values of £ (0.01, 0.05)
signifying low and high demand; and (iii) 7 values of d (-0.25, -0.125, 0,
0.125, 0.25, 0.50, 0.75) capturing a wide range of schedules, from overly tight
to somewhat relaxed. Non-linear effects turn out to play a significant role
in all the scenarios. Recall that H and d are measured in units of o. Thus,
for the special case where 0 = 20s which is typical of many applications,
H = (300,600)s and d = (—5,—2.5,0,2.5,5,10,15)s.

Figure 4a depicts the set of scenarios with low demand. It charts z vs
d for the three control schemes, and the high and low headway scenarios.
The scales running along the top and right sides of the chart express time
in multiples of o. The bottom and left scales express it in seconds for the
special case where o = 20s. Dashed lines are used for scheme (i), dotted lines
for scheme (ii) and solid lines for (iii). The circles on the solid lines represent
the simulation results for the simple control. The shading inside each circle
corresponds to the value of a* which, as was anticipated, declines as the
slack increases. The highest reliability with schedule control is achieved at
the minima of the curves for scenario (ii), marked by little stars.

Note how in Fig. 4a the curves for the high and low headway scenarios
are nearly superimposed, i.e., the results for low demand are not influenced
by the headway. Since the headway parameter only enters the simulation
model through the no-passing rule (12), this means that said rule seldom

"Typical systems space their control points more widely because more control points
require more field inspectors and increased work for dispatchers.
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comes into play; i.e., that bus catch-ups are infrequent when demand is low.®

More importantly, note from Fig. 4a how the simple control outperforms
the two benchmarks. In particular note from the two little stars, which are
superimposed in this figure, how it improves on the best that schedule control
can achieve by about 25% .

Figure 4b depicts the scenarios with high demand using the same conven-
tions. In the present case the non-linear effects due to bus catch-ups play a
significant role. This is revealed by the high and low headway curves, which
are now separated. Note from these separations how the catch-up frequency
declines with increasing slack, and how it is reduced by the proposed con-
trol. Note as well that the high-headway curves lie above the low-headway
curves. This occurs because catch-ups, which are more frequent with lower
headways, have the beneficial effect of slowing down the buses that do the
catching, which are usually ahead of schedule. This braking effect curbs the
growth of earliness and reduces Zz.

As occurred in the low demand case, the simple control continues to
outperform the two benchmarks. And the improvement is more significant
now as can be seen from Fig. 4b. The simple control improves on the best
that schedule control can offer by about 38% for low headways and by about
68% for high headways. In fact, the simple control now achieves a significant
improvement even when there is no slack.

The results in Fig. 4 give the optimum « for any given slack under a
variety of conditions. As such, the figure can be used by a transit provider
to optimize the control when the schedule is given. The charts can also be
used as a planning tool to optimize the schedule/slack, assuming that the
system is optimally controlled. This requires some care because a reduction
in slack reduces travel time, which is a good outcome, but as the figure reveals
it also degrades reliability. These conflicting outcomes affect in well-known
ways the passenger in-vehicle travel times, waiting times, and operator costs,
which should be the ultimate basis for the final choice. Since this is standard
textbook material, this issue is not explored further.”

8The other non-linear effect-negative target holding times— arose frequently.

9Details can be found in some of the early works on single lines, which take the planning
approach and jointly optimize o and d (Daganzo, 2009; Daganzo and Pilachowski, 2011;
Xuan et al., 2011). These works are limited, however, because they only consider the
linear regime.
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6. Resiliency to Disruptions

The bus isolation property of the proposed control method suggests that
disruptions to a group of buses operating in the linear regime should remain
confined to the buses experiencing them. Since this is a good thing, this
section explores the issue. It analyzes the linear behavior of both temporary
and sustained disruptions in Sec. 6.1, and then shows in Sec. 6.2 that these
analytic predictions are approximately reproduced under realistic conditions
that involve the non-linear regime.

6.1. Abundant slack: linear theory

Considered here are disturbances (small disruptions) to systems with so
much slack that they operate in the linear regime during and after the dis-
turbance.

Analyzed first is the dissipation mechanism of a temporary disturbance to
a single bus. To this end let m be the bus that experiences the disturbance,
and assume without loss of generality that m is at station s = 0 when the
disturbance ends. Also, let e, be the magnitude of the disturbance to
the bus’ schedule deviation at s = 0; i.e., so that if €, is the deviation
that would have arisen without the disturbance, then the actual deviation is
Em,0 + €m,0-

Now, consider the difference between the middle member of (7) evaluated
with two sets of initial deviations at s = 0 — one with and one without
the disturbance to bus m. This difference is the magnitude of the residual
disturbance downstream. As the reader can verify, it is 0 for all n # m. This
confirms that the disturbance effects remain confined to bus m. For n = m it
can be seen that the difference between the two expressions is asﬂemo, and
that the difference between the expressions’ second moments is a2 .
The latter means that the increase in the schedule deviation’s mean square
error caused by the disturbance declines by a factor o with every succeeding
station. For typical values of «, these residual effects are largely dissipated
in less than a dozen stops.

Analyzed now is the systems’ (linear) behavior under lasting disturbances
to a single bus, m, e.g., as could arise with inattentive drivers. A lasting
disturbance is defined by a time series of disturbances {e,, s} for s > 0. The
disturbances do not have to have zero mean. This allows us to model drivers
that are consistently fast or slow.
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The disturbances are modeled by subsuming them in the noise term of
(6) so that the dynamic equation for bus m continues to be (6), with its
noise term replaced by vy, s41 + €ms+1. The noise terms of all other buses
remain the same. Now, since the simple control ensures that a bus’ schedule
deviations only depend on its previous deviations, as per (6), it follows that
the effects of lasting disturbances, just like those of the temporary kind,
remain confined to bus m. They do not affect other buses.

The disturbance’s effect on bus m can be evaluated by introducing the
new noise terms in the RHS of (7) and repeating the logic leading to (9).
The result is particularly simple if the disturbances are uncorrelated with
one another and with the v’s. In this case the expectation of a squared
sum is the sum of the expected squared terms, so we have: (g,5411) =
i o0k 11 + (ens+1-i)). This quantity is uniformly bounded if the
variances and expectations on the RHS are bounded. In the uniform case,
where no subscripts are needed the bound is simple:

o? + (e

<5n,s> < 1——0<z2>

The analysis just concluded for single-bus disturbances also sheds light

on multi-bus disturbances. It implies that group disturbances must remain

confined to the affected buses, and that they must decay individually as if

the others did not exist. This happens because as we have just seen and was

qualitatively depicted in Fig. 1b, the simple control actively isolates buses,

which prevents the spread of disease. Consideration of general expressions

(3 - 6) shows that this disease-containment feature is a defining property of
the simple control. No other form of control achieves this feat.

Vn,s, where « € (0,1). (14)

6.2. Insufficient slack and non-linear effects

If the system does not have sufficient slack to stay in the linear regime
before, during and after the disruptions, the proposed control may not per-
fectly cancel all cross-bus interactions. Single-bus disruptions could then leak
to neighboring buses.

To explore this issue let us examine with the simulation tool of Sec. 5
what happens to a platoon of 5 buses, n = {0,1,2,3,4}, as it travels over
a 30-station homogeneous line when the middle bus, m = 2, loses GPS
reception for a stretch of 10 stations. A loss of GPS can be more serious
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than a communications failure because it also affects the following bus.!°

One scenario from each part of Fig. 4 was considered, representing low and
high demand levels: 5 = {0.01,0.05}. The remaining parameters are com-
mon to both scenarios: H = 300s; 0 = 20s; and d = 5s. They characterize a
system with frequent service, moderate noise and low slack, which together
imply considerable non-linearity. Used for each scenario were the correspond-
ing near-optimum values «, which are reflected in the figure, o* = {0.8,0.6}.

Figure 5 depicts the results of these simulations. It charts the average of
(€n.6)/? across 100 different runs vs s for the the five different n. The shaded
portion is the time window when bus 2 lacks GPS. For this reason, the line
for this bus diverges from the rest.

Note the little effect the disruption has on all other buses (including the
following bus n = 3), and how it dissipates quickly after it is over. The
disruption is reduced considerably in 3 stations when a = 0.8 and in 2
stations when o = 0.6, in agreement with the predicted decay rates for these
a’s, which are 0.64 and 0.36 per station.

The results do not show any effect on bus 3 even though some would be
expected. For this effect to be noticeable, the deviation of bus 2 would have
to have grown to be considerably larger than observed, which did not happen
because the GPS failure was too short. Slight disturbances to the following
bus can be seen in simulations of permanent GPS failures (Argote-Cabanero,
2014). In all cases simulated, however, the effects remain confined to at most
two buses.

7. Cruising Guidance

So far in this paper it has been assumed that control is achieved by
holding buses at stations. But on-board devices used to provide drivers with
this information can also be used to give them additional information while
cruising between stations. Figure 6 shows a possible way of doing this using
colored bars that move up and down. It seems intuitive that if drivers are able

10Without GPS, the time-space coordinates of bus m are unknown so that its schedule
deviation, €, s, cannot be updated. As (5) reveals, this unknown quantity is an input to
the holding times of both, bus m and bus m + 1, with a stronger influence on the former
than the latter. Thus, GPS failures should be expected to affect buses in pairs, and mainly
the leading bus. Failures can and will be handled in simulations by calculating holding
times using the most recent observed value for any missing deviation.
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Figure 5: Average simulated /(g) across 100 simulation runs of a GPS disruption
in bus n = 2 of a 5-bus platoon. The GPS disruption duration is highlighted by a
gray shading.

to vary their average speed just a little based on this type of cruising guidance
then schedule adherence may improve. This section presents approximate
formulae that quantify this effect for non-isolated lines regulated with the
simple control and operating in the linear regime.

It is assumed as a first approximation that drivers are identical and that
their stimulus/response behavior while traveling between stations is consis-
tent. The stimulus is quantified numerically by a numerical score ranging
from +5 (when the display is intense red signifying to slow down) to —5 (for
intense green signifying to speed up safely). The drivers’ responses are quan-
tified by the number of extra seconds, A, cruising between stations. This is
a negative number when the drivers speed up.

When designing the cruise control, one is free to choose any relationship
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Figure 6: Cruising guidance on board device interface.

whatsoever between the system’s state variables and the stimulus presented
to the driver. In our tests, the stimulus used for the bus trip from s to s+1 was
assumed to be —&,, s (expressed in minutes). The resulting stimulus/response
relation can be measured experimentally and plotted as a curve that passes
through the origin. While this curve is expected to be slightly S-shaped, it
will be taken to be linear in the analysis below. Thus, the added cruising
time for the bus trip from s to s + 1 is approximated by A, = —7,&,,, for
some 75 > 0.

To model cruising guidance, it is assumed that the control (11) is applied
to the following generalization of (10), which includes an extra term for the
cruising delay, A;,, = —T&p.4:

8n,erl = (1 + ﬁn,s - Ts)en,s - Fn,s(Bn,Sa En,s) + (Dn,s - dn,s) + yn,erl' (15>

Then, on combining (11) and (15) we find the following cruising-guidance
version of (6):

En,s+1 — (O./ - T)En,s + Vn,s+1 where a — 71 € (Oa 1) (16)

This expression has the same structure as (6), with the smaller coefficient
(av—7) playing the role of a. The analogous structure means that the control
with cruising guidance continues to confine small disturbances to the bus
that generates them. The reduced coefficient is also a good thing since this
coefficient is the dampening factor expressing how much disturbances are
reduced when a bus advances by one station. This clearly shows that cruising
guidance makes the system more resilient.
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The arguments leading to (9) and (14) expressing the average steady
state behavior of a homogeneous line can be repeated and the result is again
analogous:

) < 0% + {e)

S T (a-rp where a — 7 € (0,1). (17)

This expression quantifies how punctuality improves with cruising guidance
in the linear regime.

The effect of cruising guidance should also be explored for the non-linear
regime. In the interest of brevity, a simulation of idealized systems parallel-
ing the non-linear explorations of Sec. 5 is not provided, since it is reasonable
to expect a similar relationship between the linear and non-linear cases now.
Instead the system’s performance was tested with less broad but more de-
tailed simulations and field tests of a real system. This is explained in the
following section.

8. Field Study and Simulation Tests

The experiments were carried out in San Sebastian (Spain) with the coop-
eration of Dbus, the local bus agency. Dbus is recognized internationally as a
provider of good service and a leader in the adoption of novel technologies.!
The site was a long, busy corridor served by two overlapping lines (numbers
5 and 25); Argote-Cabanero (2014) provides more detail. Line 25 was sched-
uled with headways of 20 minutes and line 5 with alternating headways of 6
and 8 minutes.

Dbus’ goal was to provide the most regular and frequent service possible
in the common corridor. To this end, their analysts had constructed a sched-
ule that optimally interleaved both lines to produce 4-6 minute headways in
the corridor. Dbus’ analysts recognized that to achieve this kind of regular-
ity the buses had to be tightly kept on schedule. Since this level of schedule
and headway reliability was difficult to ensure with their existing operational
methods — controlling buses at the terminal stations on a schedule basis —
management agreed to test the proposed dynamic approach. Dbus purchased
consumer Android tablets (Samsung Galaxy Tab 2) and mounted them on

1Tt was one of the first agencies in Spain to achieve public transit standard UNE-EN
13816 for several of its lines.
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bus dashboards. VIA Analytics developed an app to implement the pro-
posed control algorithm and archive all the performance data for evaluation.
The value of Z at the last station of the common corridor, where schedule
deviations would be greatest, was selected as the evaluation’s measure of
performance.

Prior to activating the control, Dbus’ performance with their original form
of static control at the terminal stations was benchmarked from historical
data. The dashed horizontal line of Fig. 7 is this benchmark. Departures
from their termini where static control was applied were already very reliable
—over 95% on time (Vallejo, 2014). This system was also simulated to provide
a secondary benchmark. This is shown by the solid horizontal line of the
figure. The simulated results are better than the real presumably because
real drivers do not follow the control instructions as well as the ideal.'?

The simulation tool was also used to evaluate the proposed control for
different values of o. To this end, rule (11) without cruising guidance, was
applied to the two lines in the corridor for 50 simulated days. The average
performance is displayed in Fig. 7 by means of a curved solid line, which at
its lowest is more than 35% below the horizontal benchmarks. This suggests
that the control algorithm might be able to reduce z by up to 35% over what
is already a very reliable system.

Pursuant to this exercise the control was activated in the real world with
a high value of a (v = 0.9). This was done for reasons of driver psychology
because smaller values imply larger and more variable holding times, which
could stress drivers and reduce acceptance. After a period of training, driver
compliance turned out to be fairly good; see Fig. 8a. Non-compliance was
quantified by the frequency with which each driver violated his/her holding
orders by departing too early. The figure includes data from 355 drivers who
received at least 100 holding instructions over the course of 5 months. The
median driver violates instructions only 13.8% of the time, and the worst
driver only by 26%. (The violation values range from -6s to -12s, and are
higher for the less compliant drivers.)

The observed reliability level with a = 0.9 is shown by the square of
Fig. 7. This is about 22% better than the original performance. The square

12The simulation tool is trustworthy because its predictions matched Dbus’ metrics
quite well (Argote-Cabanero, 2014), and prior to this has reproduced successfully the
performance of larger systems such as those in Hong Kong and Barcelona, see Via Analytics
(2015).
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Figure 7: Simulated and observed performance of Dbus’ real system.

is even below the solid (simulated) curve. This positioning suggests that
Dbus’ drivers are doing something above and beyond the ideal drivers of the
simulation. The extra improvement is most likely due to cruising guidance
because only the real drivers receive it — in the form of a continuously updat-
ing stimulus-bar that indicates the current schedule deviation as suggested
in Sec. 7.13

To test the cruising-benefit hypothesis, scatter-plots of the stimulus, ¢,, s,
vs. the resulting relative difference of the cruising time with the mean, (c;,  —
Cn.s)/Cn,s, Were produced. To control for spatio-temporal effects, each plot
consists of inter-stop trips outbound from a specific station s in a specific time
window of the day. Figure 9 shows the plots for the fifth and sixth stations in
the downtown direction in the 4:00-5:00 PM time window over a period of a

month. The figure also shows a line fitted to these data, denoted ¢, s(€,5). A

13The feature was not simulated a priori because the response of drivers to stimuli could
not be calibrated until after the system was activated.
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Figure 8: Driver compliance results for two deployed « values. Top: violation per-
centage histogram. Bottom: violation percentage vs average violation magnitude.

similar analysis was performed for all other stations in the two lines. It was
found that all statistically significant slopes were negative (as expected) but
significance was only achieved where the bus lane was segregated from other
vehicular traffic for a significant distance: for 8 out of 23 stations. These
negative trends show that drivers respond to cruising stimuli when they can
in the way assumed in Sec 7, which was found to improve reliability in the
linear regime. Thus, it is reasonable to expect that cruising guidance also
improves the reliability of the real (non-linear) system.
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Figure 9: Schedule deviation vs relative cruising time difference for trips outbound
from stations 43 and 42, 4:00-5:00pm during October 2014. Darker tones indicate

higher measurement density.

To confirm this hypothesis, the ideal-driver simulations were repeated
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with cruising guidance a posteriori; i.e., using the dynamic cruising times
Cn.s(n.s) estimated from the scatter-plots instead of the static cruising times.!4
The dashed curve at the bottom of Fig. 7 depicts the results. With per-
fectly compliant drivers, cruising guidance has an effect roughly equal to the
sparation between the solid and dashed curves. With real drivers, the im-
provements should be similar because the degradation in reliability due to
driver non-compliance appears to be invariant with control — as Fig. 7 shows,
it is roughly the same with cruising guidance (measured by the separation
between the square and the dashed curve) and with static control (measured
by the separation between the real and simulated benchmarks).

Because Fig. 7 points to an additional benefit by reducing «, a smaller
value was also tried (a = 0.5). This was done without alerting or retraining
the drivers. Perhaps for this reason the results were not as good as expected;
see the solid triangle in Fig. 7. This is probably due to driver compliance
which turned out to be much lower, as we had feared; see Fig. 8b and compare
with Fig. 8a. The new data were collected over a period of three weeks from
224 drivers who received at least 10 holding instructions. The median driver
violated holding instructions 42.1% of the time, the best 5% and the worst
80%. (The average magnitude of these violations ranged from -5s to -32s
with an average of -15.8s.) Pending further evaluation, the experiment was
ended and the value reset to the original, o = 0.9.

It should be said in defense of drivers that hardware imperfections can
also contribute to discrepancies between real results and the simulations. A
system audit during the aforementioned five months revealed that the GPS
function of the on-board tablets malfunctioned 1.73% of the time. This must
have hindered performance, albeit probably very little. Be that as it may,
the improvement in reliability was achieved despite both, imperfect drivers
and imperfect hardware. This confirms the resiliency claims of Sec. 6.

9. Concluding thoughts

This paper has shown that it is possible to control dynamically very com-
plex transit systems so they can better stay on schedule. With the proposed
control algorithm, reliability can be improved considerably even for systems
that have negligible slack as often occurs in practice. Improvements are

14This is the same as adding a correction term equal to n,s(En,s) — Cn,s to the right
hand side of (10).
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obtained with both versions of the algorithm — with and without cruising
guidance — but the benefits are greater with cruising guidance.

The algorithm reacts in such a simple way to the current state of the
system that its application does not increase in complexity with system size.
In addition, buses are isolated from one another so that a bus’ performance
mostly depends on what’s happening to it. As a result, the algorithm is
resilient to commonplace disruptions such as those due to malfunctioning
equipment or non-cooperative drivers.

The algorithm’s overall performance does depend on the average driver
behavior, however. It was also shown that driver compliance was highly
variable. Thus, an area of further research is the identification of triggers
that would motivate reluctant drivers to better follow instructions. Other
areas deserving of research include the coordination of inter-line transfers,
and the coordination of the control with smart forms of traffic signal priority.
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Appendix A. Parameter Estimation

Appendix A.1, below, shows how to estimate 3, and B, s in (10) and
(11) from the data that is harvested during the course of operation. Appendix
A.2 then explores how estimation errors affect punctuality.
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Appendiz A.1. Estimation method

The proposed estimation method assumes that the bus is operated with a
control formula (11) based on erroneous initial estimates Bn,s and J;’n,s. The
bus, however, responds according to (10) with the true unknown values. The
system therefore obeys a dynamic equation that combines these two versions
of (10) and (11).

Consideration shows that this combination can be succinctly expressed
as follows:

5n,s+1 - ]n,s + ﬁn,sgn,s - Fn,s(Bn,sa En,s) + Vn,s+1> (A]->

where 3 B
In,s = Fn,s(Bn,57 En,s) + (O./ - Bn,s)gn,& (AQ)

Note that I, is observed. Thus, in (A.1l), the variables e, 11, Ins,
ens and B, ; are observed data, the variables (3, and B, ; are unknown
parameters, and v, .41 is an unobserved error term. In other words, (A.1)
defines a non-linear regression model for the estimation of 3, s and B, 5, with
data spanning a number of days.

In most practical applications the system effect term can be specified
to be linear in the parameters, so the regression is linear and one can use
consistent BLUE estimators. These can then be used to update the old
estimates with standard statistical methods, and update the control. The
estimation/updating procedure can be repeated on an ongoing basis to always
run the control with a “fresh” set of estimates.

Appendixz A.2. Effect of estimation errors on punctuality

Let us now examine the effect of inaccuracy in Bms and Bn,s on the sys-
tem’s performance between parameter updates. For this analysis Bn,s and
Bms are treated as known constants, 3, s and B, ; as unknown constants,
and €, 5, B, s and v, 441 as random variables that vary from day to day.
With this in mind, let us put (A.1) and (A.2) in the following form:

En,s+1 = df‘:n,s + Dn,s—i—la (AB)

where
&= (@~ Bus — Brs), and (A.4a)
ﬁn,s-i—l - [Fn,s(én,sa En,s) - Fn,s(Bn,57 En,s)] _I' Vn,s—i—l- (A4b)
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Note that & is fixed and 7, 511 is random. Furthermore, since the control
does not affect any of the random variables on the RHS of (A.4b), its LHS
(Dns+1) can be treated as exogenous noise. The variance of 7, 541 shall be
denoted &7 ,,,. Note, 62 .., > 05 ;.

In most applications the systems’ deviations from schedule E,, ; should
not be significantly correlated with the line’s deviations €, 511, so the noise
U s+1 should be uncorrelated with the €, s+1’s. This means that (A.3) has
the same physical interpretation as in the case with known parameters and
can be treated recursively as (6) with the same results. In particular, the

new version of (9) for a homogeneous line becomes:

6’2

1——642 where a € (O, 1) (A5>

var(e,s) =

A comparison of (9) and (A.5) reveals how estimation errors affect sys-
tem reliability. Note from (A.4) that the estimation error in J determines
& and the error in the system parameters, B, determines &%, where % >
o%. Thus, the inaccuracy in B has the same effect as an increase in the
driver/traffic/passenger noise from o2 to 2.

The estimation error in the line’s parameter S has a different effect. It
affects the choice of the control parameter a through the constraint & € (0, 1).
Because the difference 3 — 3 in the homogeneous version of (13) is unknown,
to satisfy the constraint we need to choose o assuming that this difference
is at the upper end of what is likely, say, two standard deviations of our
estimator for 3, og. But this is the same as assuming in (A.4a) that the true
dimensionless demand (3 is 204 units larger than in reality, and that there is
no estimation error. Thus, the effect on punctuality of not knowing the line’s
parameter is akin to that of an increase in demand equal to the amount of
the uncertainty. The relationship between demand and unpunctuality has
been studied extensively in Daganzo (2009) and Xuan et al. (2011).
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