
UC Irvine
ICS Technical Reports

Title
Efficient system-level co-design environment using split level programming

Permalink
https://escholarship.org/uc/item/6j1032gw

Authors
Doucet, Frederic
Otsuka, Masato
Gupta, Rajesh K.
et al.

Publication Date
2001-07-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6j1032gw
https://escholarship.org/uc/item/6j1032gw#author
https://escholarship.org
http://www.cdlib.org/

Efficient System-Level Co-Design
Environment using Split Level Programming

Frederic Doucet
Masato Otsuka

Rajesh K. Gupta
Sandeep K. Shukla

ICS
TECHNICAL REPORT

Technical Report# 01-34.
(July 1, 2001)

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425

Information and Computer Science
University of California, Irvine

Technical Report #01-34

Efficient System Level Co-Design Environment using Split
Level Programming

Frederic Doucet j\!Iasato Otsuka* Rajesh Gupta Sandeep Shukla

Center for Embedded Computer Systems, University of California at Irvine
*FUJITSU Ltd, Japan

E-mail: { doucet ,masato, rgupta, skshukla}©ics. uci. edu

LI

l

Contents

1 Introduction

2 Related Work

3 Component Integration Environment
:3.1 Component Integration Language (CIL)
:3.2 Split Level Interface (SLI)
:3.:3 BALBOA Interface Definition Language (BIDL)

:3.:3.1 SLI Class Library

4 Type System and Delayed Instantiations
4.1 Type Verification ...
4.2 Delayed Instantiations

5 Design Example: AMRM Adaptive Memory System
.S. l Component Integration . . .
.S.2 Communication Refinement

5.2.l .Method Invocations .
5.2.2
5.2.:3
. j.2.4

Link Classes .
Queue Links .
Signal Links .

6 Implementation and Experimental Results

7 Conclusion

A BALBOA Environment and Tool Description

B Code Examples

2

3

7

9

9
10
11
11

12
1:3
1:3

14
l .S
16
16
17
17
18

19

20

24

27

List of Figures

1
:2
;3
4

:)

6
I

8

9

r Se-case diagram for the BALBOA component integration environment
Simplified SLI class hierarchy .
Al'vfRl'vI models in different levels of abstraction
AMRM component integration models ·with communication refinement: the upper
row is for the class diagrams, and the lower row is for the corresponding block
diagrams
1fain \Vindmv of Balboa Environment
\Vindow to navigate the top level design components
Panel for Introspection: Results of Querying a Class for Available :Methods
The Block Diagram of The Configuration/Design Architecture Automatic Display
Panel
The Simulation Control vVindovv .

;3

10
12
l:j

16
24
2:j

:25

26
•)'""'.'
~I

Abstract

IP component based system-on-chip design demands an integration, architectural trade-off ex­

ploration, and verification environment. Such an environment can only be effective, if system

integrators can integrate components from libraries easily, with fast turn-around time. and can

efficiently simulate for functional and performance validation.

The advent of c++ based design libraries such as SystemC, Cynlib, and other similar design

environments, such as SpecC, allows IP designers to create C++ component libraries, which are

either pre-packaged generic elements, or specialized IP blocks. However, mer.e availability of such

components does not necessarily imply ease of integration, or fast architectural exploration. The

designers/system integrators need an environment that allows them to think about composable

design elements, as hardware elements, and lets them use such elements without having to go

through c++ software engineering cycles, such as intergation coding in c++, recompilation, and

the corresponding softvvare problems.

tTnfortunately, the design and reuse of hardware system level components written in C++, as

it exists nov;, is ad hoc and tedious because of the strong emphasis on inheritance as the ba­

sic composition mechanism. Hardware system integrators should be given a better abstraction

for composability than having to deal with inheritance, association and other artifacts of object

oriPnted software development. More over, during the architecture exploration phase, reconfig­

urability in existing methodologies for using c++ based harchvare. design libraries is .static in

the following sense. Every time the component interaction, and architecture is changed, a new

compile-link-test cycle needs to be initiated. This leads to unnecessarily elongated design time

and effort. As a result, we feel a strong need for dynamic reconfigurability, without sacrificing

the simulation efficiency of compiled objects. However, to achieve this goal, we need to be able

to configure component architecture and interconnections in an interprefrue domain, while sim­

ulating at the compilul code domain. Also, dynamic runtime configuration requires interaction

between the compiled and the interpretive domain at run time. The semantic structure of the

compiled objects need to be nfiected at the interpretive domain for useful interactions at runtime

from the interpretive domain to compiled domain, and vice versa. Moreover, C++ being strongly

typed. and most interpretive languages being ·weakly typed or completely untyped, the type in-

1

formation from compiled objects need to be e.rportfd to the interpretive domain. At the time

of reconfiguration of component architecture and interaction from the interpretive domain, one

needs to be able to infer the types of compiled objects at the interpreter run time, and accordingly

instantiate compatibly typed objects. This also requires C++ objects in the design library to be

type parameterizable.

\Ve solve these problems by 1) creating a interpreted component integration language CIL

which is based on Object Tel, 2) inventing type instardiation algorithm that dynamically assign

types. and keeps type compatibility between compiled objects when the object configuration is

done from the interpretive domain, :3) allowing introspection through a split level inte1j'ace. 'which

is an application of reflection pattern from software architectural patterns, 4) creating a special

interface definition language (IDL), named BIDL, vvhich allows the hardware library designers

to define the e;rportable irde1j'ace of the design library objects, 5) designing a compiler for BIDL,

which automatically generates the split level interface (SLI) for such objects, and 6) applying

the notion of split level programming to the system level design paradigms, such that compiled

objects are manipulated from the interpretive domain via the split-level interface, and verification

monitors can watch/manipulate~ and interact with the activities of the compiled objects from the

split level interface.

In this technical report. we elaborate on our framework, called the BALBOA cornponent inte­

gration fmm e u·orlc· designed for component integration, dynamic reconfiguration, simulation and

verification based on any C++ based hardware design libraries. The rnain focus in this report are

on describing the language (CIL) for the integration of a system from IP Ii brary components, the

interface definition language (BIDL), the dynamic type instantiation algorithm, and concepts, the

verification facilities in our framework, and, briefly describe our implementation. \Ne illustrate the

concepts using three high level models of a moderately complex design, the AMRl\:f adaptive cache

system, using the BALBOA CIL, and BIDL. and the corresponding SystemC based component

library.

1 Introduction

The use of c++ class libraries [28] [2.S] [18] and C++ based languages [8] [20] for hardware and

system level modeling is growing steadily. The major advantage of existing methodologies with

c++ is that the designers can easily build components that can become a part of intellectual

property (IP) libraries. Hmvever, design composition with C++ is still tedious and reuse is a.cl

hoc in the current compile-link-test methodologies.

One major disadvantage \Ve see in such design paradigms, is that the hardware engineers need

to be able to program in c++ for object composition, configure connection between components,

and then go through the compilation linking phase which requires them to deal with software

engineering artifacts orthogonal to design issues and thus requires extra design time and effort.

Our goal is two fold:

• Relieve the system designer/integrator of the problems of dealing with the artifacts of C++

programming and let them concentrate on design issues,

• Create an environment that allows the designer to dynamically change design configuration,

add or delete components, and quickly run simulation to test functionality and performance.

One direct approach could have been using a object oriented scripting language for creating

design components and integration. Hmvever, simulating non-trivial designs in intrepreted envi­

ronments would be too inefficient for quick design exploration. On the other hand, if the designer

has to use a C++ based library such as SystemC, or Cynlib, they have to learn how to program

the glue to connect the components, as well as, have to waste time for every reconfiguration in

the compile-link-test cycles.

In the networking research a similar problem \Vas tackled in the VINT [7] project while design­

ing the ~S simulator environment. They used a split-programming model to create a network

simulation environment, where there are t\vo layers of programming facilities. At the lower layer,

they have compiled c++ objects for various network protocol objects, and an the upper layer

based on OTcl scripting environment for configuration.

\Ve take a similar approach, albeit. ad pated to harchvare-software co-design requirements. These

requirements are slighly different from the needs of a network simulation environment. In a net-

\\'ork simulation environment. building dynamic heterogenous network configuration. and efficient

simulation are the main concerns. In the harchvare design context. the main concerns are

• creating an abstraction layer to separate concerns about system architecture and software

design artifacts 1

• creating a rapid design space exploration environment which avoids a compile-link-test cycle

of a fully compilation based environment,

• creating an environment that has introspection capabilities to dynamically query types and

attributes of design components, and create architecture maintaining type compatibility in

the underlying compiled object layer,

• efficient capability to dynamically add test benches and monitors for checking simulation

events sequences,

• providing an abstraction from the component library implementation to the designer/system

integrator

• providing sufficient efficiency of simulation. comparable to fully compiled design environ­

ments

• providing capabilities to mix and match design components of various different abstraction

levels, and adding transducers to match the interface behaviors and types, in case of mix

and match, and.

• provide visualization, and dynamic control of component interconnection configuration.

In order to resolve all these design forces [9], we created a two layer environmenL vvith a top

layer of interpretive domain, and a lower layer of compiled domain. The interpretive domain is

implemented as a scripting environment, and the language that is used for achieving component

composition. simulation control, test bench creation, and monitoring events, is named CIL, or

Component Integration Language. The simulation is run at the compiled domain, thereby, achiev­

ing the right level of efficiency. The interfacing between the two domains is clone through SLis,

4

or Script Leud Interfaces. vVe provide the designers of component libraries, with an interface

definition language. named BIDL, or Balboa Inte1facc Definition Language. A designer of a

component, must provide a BIDL interface, for the exportable interface of the compiled objects.

vvhich are then automatically compiled using a compiler called the BIDL compiler. to generate

the split level interfaces. Once, the SLis for the components, are available, the upper interpretive

layer. communicates with the compiled layer through the SLis, and there by. abstracting away

the implementation details of the compiled components. The type introspection is implemented.

so that the component integrator can .query the interfaces from the upper interpretive layer. and

decide at the integration/ composition time, the choice and interconnection ~.rchitecture.

The test benches can be either compiled objects added to the compiled component library,

or can be implemented using CIL scripting from the interpretive layer. Similarly verification

monitors can either be objects at the compiled object library, or implemented in CIL. This gives

flexibility to system integrators to control configurability, and simulation from the interpretive

layer. \Ve have implemented a Graphical User Interface, which can be used in place of scripting,

to use point-and-click mechanism for object composition, simulation, and monitoring.

The CIL has type-less scripting to relieve the designer of providing typing details that can

be inferred. The type system implements type management during the composition, by using a

mechanism called ·~delayed insta.ntiation11 to abstract the typing. Connectivity is also abstracted

by using object relationships: the associations, aggregation and composition relationships of a

component are manipulatable through the CIL to abstract port-signal-port connection patterns.

This infra.structure to compose, instantiate and simulate a design is used at va.rious levels of

abstraction.

A few words on Composability: In the current C++ based hardware design libraries

inheritance seems to be the prefered object oriented relationship used in reuse methodology, and

it tends to be over-used. For example, when designers want to extend a component, they usually

derive a rww class from a. base class and add attributes or behaviors in it. They need to know and

understand the hierarchy and the behavior of the base class before that. Because not all classes

can be efficiently reused by derivation, they often end up rewriting or replacing the base class by

something simpler or more appropriate [19]. ·unfortunately, the unconstrained use of inheritance

tend to make reuse difficult. There is no doubt that inheritance is useful. but it should not be the

only mechanism used to reuse designs.

To build a complex behavior that cannot be elegantly expressed with only one class, object

composition is used. Composition builds a set of objects and relationships implementing a behav-

10r.

To reuse a class in a composition. the class relationships for an object of that class have to be

dynamically established (at run-time) to another object with a different functionality, but ·with a

compatible interface.

To reuse a class by extending its behavior, inheritance is used. However, judicious design deci­

sions have to be made in order to choose whether to compose or inherit to build nevv functionality.

To ensuring reuse, there need to be a clear distinction between how a design is built, from what

is built [9]. These are design decisions that have to be captured in design frameworks, like the

Ai\IRM composition framework presented in Section .5

Main Contributions: The main contribution of this work is that the CIL provides the

designer \Vith the ease of a scripting language, to do design components composition without ex­

plicit typing or connection specification. Our system does type inference for proper instantiation,

and then takes advantage of SystemC compiled code for simulation efficiency. The impact of this

contribution is that the usage of the CIL for design specification enables the use of C++ mainly

inside CAD tools for internal design representation. The CIL introduces another abstraction level

around the components.

In the jargon of software design patterns. our framework is based on the refiectzon pattern [:3],

that is built around an introspection capability. for dynamically querying the type information

of the underlying design library, and accordingly enable type instantiation from the interpretive

layer of the system. Our delayed type instantiation mechanism, allows users to dynamically ask

for configuration of system architecture based on objects in the compiled class library at the run

time.

Organization of the Report: The outline of this paper is as follows. In Section 2, we

give a more detailed discussion of the related work in the area. In Section :3, \Ve introduce

the BALBOA component integration environment which consist of the tool environment, the

6

integration language. the split level interface and the class library for the SLI. Section 4 presents

the type system and the delayed instantiation and type propagation subsystems. In Section .s, we

present the component integration model of the AMRM adaptive memory system [24] on which

we performed communication refinements. In Section 61 \Ve present and discuss the experimental

results. Finally, we conclude in Section I.

\Ve also describe our tool and provide some code listing to show examples of our BID L, CIL

code fragments in the appendix of this technical report.

2 Related Work

Composition is the design activity of assembling small components focused on one task into a

more complex component with a richer functionality. Composition is performed at run-time when

objects acquire references to other objects. The advantage of composition is that the behavior of

a ne·w system will depend on object relationships instead of being defined and hard-coded in one

big class. Component technology is emphasized in the software engineering community as a key

element [11] in the development of complex softvvare systems. This work draws upon a rich body

of work in software engineering and in system level component frameworks.

Design patterns: A design pattern captures a design decision, a class/object architecture to

be reused to solve a category of design problems. Design patterns are used to avoid the re­

design of system architectures and ensuring that a system can be extended only in specific

\vays that respect the architecture. Several design patterns exist for efficient and retisable

composition of object oriented software [9]. Usually1 the composition is by relationships

that are set to base types that can be extended by inheritance. For instance, a ''creational

pattern 1 ~ is a pattern.

Component Connectivity: Connectivity is a measure of component interfaces. For instance,

a component with a large number of signals v.rill be more strongly connected than a compo­

nent with a smaller number of signals. But, the communication semantic implemented over

a relation is also important. For example~ a set of signals 1 that implements the same message

passmg as a method invocation, can be said more strongly connected. Most hardware or

7

system level component frame-vvorks have strong connectivity. In SpecC [8]. channels \Yit h

encapsulated protocols or ports with signals are used for communication between behaviors

or processing elements. The Colif [4] connections are through ports and nets [22]. :0.Iod­

els in NS (Network Simulator [26]) are also strongly connected, because of the nature of

the network topologies. For the SystemC and Cynlib c++ class libraries, connectivity is

also strong because a discrete event simulation is used to implement RTL VHD L /\'erilog

semantics. On the other hand, Ptolemy II [2:3] is less strict because ports can be loosely

bound. For all these approaches, inheritance is used to define component types, and port

relations/ connections are established for the com position. However, class relationships [6]

have a ver.y rich semantic for message passing which are powerful connectivity abstractions.

In the context of hardware modeling, a relationship between two classes can be successively

refined into a handshake over a set of signal connections [12] [16].

Component Integration Strategies: Component integration can be done in the compiled

code, graphically, or by scripting. Compiled code integration has been credited as a major

factor for the very slow spread of CO RBA [1:3]. It is tedious because many syntactical

details that are not necessary for the composition are involved. Graphical integration is

easy with the very intuitive block diagram as in VCC [l] and SpecC, but it is difficult to

manage for very large designs. Scripting has been used with software component integration

for many years. Ousterhout argues that a scripting language for component integration is

essential for API abstraction and reuse [l:j]. Script interfaces for compiled code can be

generated using \\Tapper generators such as SvVIG [27] [.SJ, or Tel Blend [2:3]. However,

wrapper generators present two problems: script syntax is very difficult to generate for

complex and parameterized (template) component types [2], and component navigation is

impossible because we cannot go inside component hierarchies. On the other hand, NS does

not use wrapper generators, but custom scripting interfaces too partially.

Type Systems: Ptolemy has an elaborate type system [14] that statically resolves data types

to the most specific type that meets all specified constraints. The type resolution in ML

[21 J is similar to the type resolution. Colif has a type system to characterize modules

(either as software or hardware) and to characterize ports and nets (data and address width

8

and protocol). Protocol determination can be delayed and solved by propagation in Colif.

SystemC has a type system similar to Run Time Type Identification (RTTI). the standard

type information checking system in c++, \Vhere each SystemC class has a string that can

be queried to know its type. But, it is not possible to know template types. because SystemC

uses polymorphism in that case.

Communication Refinern.ent: Communication refinement is often discussed in the context of

separating computation from communication [17). In Ptolemy, changes of communication

often causes changes of model of computation. In Colif communication refinement is clone by

using and refining service requests to lower abstractions such as messages (through channels).

and port-signal read/write mechanisms. SpecC has a very well defined methodology for

communication refinement that involves protocol encapsulation and inlining.

3 Con1ponent Integration Environ111ent

The BALBOA design composition environment consists of a component integration language.

a split levl interface, c++ and SystemC and IP libraries. The most basic composition element

of the CIL is an object. Objects are composed using one of the relationships shown in Table 1.

·while objects can be described in any object oriented language. these are turned into reusable

components by providing an interface layer to the common c++ /SystemC models. Any objects

can be used in the frame\vork as a component.

Figure 1 shows the lTML use-case diagram for the BALBOA component integi'ation environ­

ment. There are two user roles in this system: the system architect uses the component integration

language (CIL) to assemble and configure predefined library components; and the library compo­

nent engineer designs reusable classes using C++ with the SystemC class libraries, and place them

in the IP libraries. and generate split level interfaces (SLI) for them using the BIDL language and

the BIDL compiler.

3.1 Component Integration Language (CIL)

CIL provides a script-like ease to integrate a system. Table 1 presents a set of object relationship

semantics and their syntax implementations in the BALBOA CIL. For most commands, the syntax

9

Component Ubrary ~
Engineer

BIDL <<generute»>

Compiler

C++
Compiler

BOTd
lntt!rprt!lt!r

Figure 1. Use-case diagram for the BALBOA component integration environment

is:

<entity> <command> <relationship> <value>

\vhere the command is applied to the entity. In the association example 1 the set_association

command adds to entity A an association to entity B, named x. The syntax for the structural

composition command is:

<class> <entity name>

\Yhere <class> is the type of the object to instantiate. The composition is specified with the

clot (··. ~') operator in the entity name. In the structural composition example, the entity name

A. B composes (instantiates) an entity B inside an entity A. The difference between structural and

functional composition is that functional composition 'Will invoke the subcomponent behavior 1

while the structural composition \Vill not necessarily invoke it. Functional composition includes

structural composition. but structural composition may not include functional composition. The

clot operator is also used to navigate object hierarchies. For example, the connect command in

Table 1 is applied to entity B which is inside of entity A. The command will connect the reset

port of entity B to a signal named sig1. The name with the dot operator is the full name of an

entity with its hierarchy (such as in SystemC). CIL commands also configure and use SystemC

for simulation.

3.2 Split Level Interface (SLI)

The SLI is a set of C++ objects that establish the link between the CIL commands and the

C++ /SystemC models. The OTcl interpreter does not recognize the CIL commands and forwards

10

Relationship Semantic CIL Syntax Example

Association A set_association x B

Aggregation A set_aggregation y B

Structural Composition Entity A.B

Functional Composition A set_composition z B

Connection A.B connect reset sig1

Table 1. BALBOA CIL semantics and syntax constructs

the control to the SLI to handle them. \Ne call it a split level interface because it does the link

betvveen the interpreted domain of the OTcl interpreter to the compiled domain of the C++

models. The SLI provides a layer around each design component in the C++ design model. From

the system architect point of view, the SLI is the design component, because it encapsulates the

design component and provides access to only those parts and parameters of the model that enable

its use, reuse and adaptation in different design.

3.3 BALBOA Interface Definition Language (BIDL)

The BIDL is a language to export a set of attributes, methods and characteristics of a C++

compiled component to the interpreted hierarchy. A BID L file is a declarative file, where the class

C++ file is pasted and pruned from features that the designer do not want to export. A BIDL file

is parsed by the BIDL compiler. This compiler emits the SLI for the input class as C++ output,

and also initialization code for some attributes. The BIDL Compiler emit the appropriate code

for each component to implement the reflection and some crea.tional design patterns. The BIDL

file is used to setup the configuration of these patterns. In other words, the BID L Compiler will

parse a class declaration to emit its SLI. Examples of BIDL files are in the appendix.

3.3.1 SLI Class Library

The SLI class hierarchy is shmvn in Figure :2. The SLI base class is the interface for split level

components. All design information used by the BALBOA component integration environment,

but not used by the design component behavior should be put in the SLI. When the designer

sends a command to the SLI. the command() method is invoked with the parameters provided by

the designer. The SLI class is specialized, and the command() method is implemented for specific

11

SLI behaviors. The Entity SLI class is the SLI for all design entities. Design components are

aggregated in the Entity SLI class. Entities export their relationships to the entity SLI. where

they are aggregated in a set. The Relationship base class defines the type and the interface for

a relationship object and is specialized into the Association 1 Aggregation. Composition and

Inheritance sub-classes. The command method accesses this set when it needs to read/set a

relationship with the aggregated object. For example 1 a port-signal connection is captured as

a composition relationship with a port object. The SLI will search the relationships set for

composition with the port name 1 and if it finds it 1 it vvill call the bind method to the port. with

the signal argument. The connection command in Table 1 is an example o(this procedure. The

SLI ·will search the reset composition for the port to bind the sig1 signal.

SLI

command(argc: int, argv: char**): virtual int
6

Entity SLI ~ rv
relationships: set<Relationships*> *
command(argc: int, argv: char**): virtual int l Relationship J

1<> 6

1

• l I I l
[Entity] [Association J Aggregation J [Composition] (Inheritance J

Figure 2. Simplified SLI class hierarchy

4 Type Syste111 and Delayed Instantiations

The type system is intended to implement the typing abstraction of the CIL scripting language

in the strongly types underlying compiled models. This is subdivided in two tasks: verify if types

are compatible when relationships are set; delay a component instantiation when the component

is untyped.

12

4.1 Type Verification

The type verification depends if the type is parameterizable (if a class is temp lated) or not. If

a class is not templa.te 1 we use RTTI to assert that the types a.re compatible with the expected

types when setting a. relationship. If the class is template, it is difficult to verify with RTTL

but there are two possibilities: check only the parameterizable cla.ss 1 or check only the template

parameter(s). For example, checking only the parameterizable class occurs when composing a.ii

entity with a. port: \Ye only need to check that ifs a port, not the data. format. On the other

hand. vvhen connecting two ports together, only the data. format needs to be checked. This

means only checking the template para.meter. vVe defined a design pattern for template class type

checking: every template class will inherit from a base class that is not templatecl. To type check

the parameterizable cla.sses 1 we compare the type bases with RTTI. To type check the template

parameters, we need to capture the type information stored in the class as a. string.

The type base class is an abstract interface that is specialized into template classes, ea.ch one

specific to a. real type available in the type system. The instantiation of the template classes is

controlled to store the value of the template para.meter in the specialized type class as the type

of the class. Design template classes will compare these types to assess that the types a.re right

before setting a. relationship. Basically, this is an extension to RTTI, which uses almost the same

mechanisms as RTTI. But our extension is extendible to multi-templa.tecl classes.

4.2 Delayed Instantiations

\Vhen an entity is untyped in a CIL script, the BALBOA system delays its instantiation inside

the SLI until the type is solved. For example, consider the CIL script 1. Line 1 instantiate an

adder. line :3. 4 and 5 instantiate signals. Line 7, Sand 9 connect the signals to the a.elder inputs and

output. The formats of the data for the a.elder a.ncl the signals a.re not specified in this script. The

parameterizable classes for the component are known: Adder a.ncl Signal C++ classes. H~wever,

the templates for the data. types a.re unknmvn. Thus the component instantiation will be delayed

inside the SLL and all CIL commands issued involving that component will be delayed. A type

can be solved by propagation: if an untyped entity is connected to a typed entity, the type of the

typed entity is propagated to the untyped entity. Type resolution is basically type propagation

in a component graph. where each untyped component solves a type lattice to determine its own

type. If no types are propagated and the design needs to be .. closed" for simulation. then the

system will allocate the components vvith a default type. In our current implementation. we use

integer as the default type because it is the most convenient type for hardware specification. but

a designer can change this type value.

If a class has multiple parameterizable types, then a type lattice needs to be solved before

the component can be allocated. This means that all relationships need to be typed before the

allocation can happen. A lattice default value is also specified for every component in case the

lattice is not solved before simulation.

Script 1 Type-less data composition example
1 Adder adder

2

3 Signal sig1

4 Signal sig2

5 Signal sig_result

6
/ adder connect op1 sig1

8 adder connect op2 sig2

9 adder connect out sig_result

5 Design Exa1nple: AMRM Adaptive Me1nory Syste111

A~IR~l is an adaptive cache memory system [24] that can have its properties dynamically

changed by software. For example, associativity and line size can be changed by the compiler.

The hardware part of the design is a regular cache subsystem, with a modified controller that can

execute the extra instructions for cache adaptation.

Figure :3 shows the outline of the procedure we followed for the component integration and

communication refinement for the AMR~vl models. The first step is to integrate and link them

with abstract associations in a conceptual model. vVe implement the concrete message passing

semantics and do communication refinement. Figure 4 shows the UIVIL class diagrams and the

block diagrams for the component integration and the communication refinements.

14

Component Abstract ID-DI Integration Association

Communication [}-1>[] Refinement Method

j
Queue [}ID{]

Signal ~

Figure 3. AMRM models in different levels of abstraction

5.1 Component Integration

Script 2 shmvs the CIL file used at all refinement levels. Line 2 loads the AJvIR.LvI component

library that includes the classes for the cache and memory components and their SLis to be used

in the script. Lines ,5 to 7 instantiate tvm cache controller components named 11 and 12, and

a memory controller component named Mem. Line 10 instantiates a testbench that aggregates a

configurable stimulus list. Line 1:3 to 1.5 are OTcl procedure calls that set the associations betvveen

the components to enable them to communicate with each other. The refinement process is to

re-implement these procedures as the abstract associations are detailed.

Script 2 Component Level Integration
1 # Load the AMRM component library

2 load ./libamrm.so

:3
~ # Component instantiations

.J Cache Li

6 Cache L2

-
I Memory Hem

8
9 # Testbench instantiation

10 Testbench CPU

11

12
1:3

Procedure calls to connect components

connect_cpu2cache CPU L1

1 ~ connect_cache2cache Li L2

l.S connect_cache2memory L2 Hem

1:)

O, 1 <<abstract»
Merrcry _Base

read()
lower_m~rmry write()

I ..__~~

I
I Merrcry I

I

~

{a)

t
¢·

I

~
¢··

~
IMEM I

(e)

<<abstract>>
<<active>>

Memory_Base

{b)

...

(f)

<<abstract>>

(c)

(g)

1 <<abstract>>
-------<>< <<active>>

Mem_Bus

req Signal
rrcde Signa I

, addr Signal
, din Signal
'dout Signal
'ack Signal

Cache

Memory_Base

clock lnport
u_req lnport
u_rrcde lnport
u_address lnport
u_din lnport
u_dou1 Outport
u_ack Ou1por1

__ __,1 l_req Outport i
l_rrcde Outport /

:=~~rln~;;:;ort I

l_dout Outport i
l_ack lnport i

(d)

{h)

Figure 4. AMRM component integration models with communication refinement: the upper row is for the class diagrams,

and the lower row is for the corresponding block diagrams

5.2 Communication Refinement

In the BALBOA system. we perform communication refinement by replacing a communication

design pattern by another one ·with a lower abstraction.

5.2.1 Method Invocations

The first refinement of the abstract associations is to use method invocations to implement

the message passing. This is also the model with the highest abstraction that can be simu­

lated. In the class diagram of Figure 4(a)~ Memory _Base is the base class for Cache and Memory

classes. Memory _Base has read and write virtual abstract methods to implement the behavior.

These methods are implemented in Cache and Memory classes. Cache class has an association to

Memory _Base class named lower ..Jnemory. This association is used to navigate to the lower level

of memory. For example. on an L1 cache read miss, L1 cache \vill use this association to call read

method of L2 cache. If there is also a read miss for L2~ L2 will use its lower memory association

16

to read the data from Mem. The block diagram on Figure 4(e). shmvs how these lower memory

associations implement the control flow between the memory levels. In this configuration. two

levels of cache are instantiated with one main memory. The Tel procedure to set the associa­

tion between two caches is listed in Script 3. This sets the lower _memory pointer in the C++

code that 'Was previously exported to the SLI. In this abstract level, the behaviors in the design

are sequential. The control flows sequentially from the test bench to the caches~ and then to the

memory.

Script 3 Cache association through method invocations
1 proc connect_cache2cache { U_Cache L_Cache } {

2 $U_Cache set_association loqer_memory $L_Cache

:3 }

5. 2. 2 Link Classes

Let us now refine further the associations by introducing link classes. Link classes are used to

encapsulate a communication protocol through shared structure between the two communicating

objects. Figure 4(b). illustrates this conceptual model. The Link Base class is introduced to

refine the lower memory association. Figure 4(f), shmvs the block diagram where the link base

objects are shared between the components. In this abstraction. \Ve assume that the shared objects

are passive: they do not have their O\Vn control thread. Therefore. the components need to be

active (have their own threads). A reactive process named proc is added to Memory _Base class.

The proc process is triggered by an event on clock input port and it transitively calls the same

private methods as the method invocation model did from read and write methods. However,

because the control goes through that process prior to going to every private method, we need to

implement a coarse grain state machine to manage the control flow. A second association named

upper _memory is added to specify an explicit backward navigation.

5.2.3 Queue Links

Let us refine each association with link class on Figure 4(b) into two associations with the queue

shared link objects: one queue for the requests and one queue for the answers. The class dia-

17

gram on Figure 4(c) illustrates this change. The Lrequest and Lanswer associations refine the

lowermemory association, and the u.....request and u_answer associations refine the upper _memory

association. Script 4 lists the procedure to connect two caches together with queues as link ob­

jects. Lines :3 and 4 instantiate the queue components from the BALBOA class library: these

components are type-less. Their compiled types will be set according to the types of the associ­

ations to which they will connect. Lines 7, 9~ 1:3 and 1.5 establish the associations between the

caches and the queues. Please note that the introduction of abstract data types (ADT) for the

request and ans\"ver tokens \Vas necessary at this level. These ADTs were not necessary at the

method invocation level because the method itself carries the semantic of the request.

Script 4 Cache to cache association \v'ith queues
1 proc connect_cache2cache { U_Cache L_Cache } {

2 # instantiate queues

3
4
.s
6

7

8
9

10
11

12

1:3
14

1.5

16

17 }

Queue ${U_Cache}to${L_Cache}_requests_q

Queue ${U_Cache}to${L_Cache}_answers_q

connect queues to the upper cache

${U_Cache} set_association l_requests \

${U_Cache}to${L_Cache}_requests_q

${U_Cache} set_association l_answers \

${U_Cache}to${L_Cache}_answers_q

connect queues to the lower cache

${L_Cache} set_association u_requests \

${U_Cache}to${L_Cache}_requests_q

${L_Cache} set_association u_answers \

${U_Cache}to${L_Cache}_answers_q

5.2.4 Signal Links

The lmvest level of abstraction m our Al\IR1\l models uses signal as the association class. \Ne

refine the queue associations into handshake associations. Figure 4(cl) shows the class diagram

for this model. The lowermemory and uppermemory associations of Figure 4(b) a.re still in the

design, but their concrete implementations are through the ports beginning by "1 11 for the lower

memory, and by .. u" for the upper memory. These ports are bound to the Mem_Bus link class,

18

which encapsulates the signal link classes. Figure 4(h) shows the block diagram \\·ith the memor.v

hierarch,y and the busses. Script .5 lists the procedure to connect t\vo caches through a bus. \Ye use

the connect directive instead of the set_associat ion command, because we bind the concrete

signal-port associations. Line ;3 instantiates a cache bus named cb. Lines 6 to 11 connect the

ports of the upper cache to the bus signals, and lines 14 to 19 connect the lmver cache to the bus

sigmds. At this level, we remove the abstract data types used at the queue level.

Script 5 Cache to cache association with signals
1 proc connect_cache2cache { U_Cache L_Cache } {

2 # instantiate a cache bus

3 Cache_Bus cb

.J

.s
6
-
I

8
9
10

11
12
1:3
1-1

l.S

16
11
18
19
20 }

connect bus signals to the upper cache

${U_Cache} connect l_req ${cb}.req

${U_Cache} connect l_mode ${cb}.mode

${U_Cache} connect l_addr ${cb}.addr

${U_Cache} connect l_dout ${cb}.din

${U_Cache} connect l_ack ${cb}.ack

${U_Cache} connect l_din ${cb}.dout

connect bus signals to the lower cache

${L_Cache} connect u_req ${cb}.req

${L_Cache} connect u_mode ${cb}.mode

${L_Cache} connect u_addr ${cb}.addr

${L_Cache} connect u_din ${cb}.din

${L_Cache} connect u_ack ${cb}.ack

${L_Cache} connect u_dout ${cb}.dout

6 hnple111entation and Experhnental Results

The BALBOA component integration environment is implemented in C++ and SystemC with

the packages of the l\S simulator for the OTcl extent.ion. We have implemented three AMRM

models of different abstract levels in this environment. The statistics of our experimentation are

as follows.

The sequential model is composed of 7 classes implementing 1 process usmg method invoca­

tions as the C++ control method. The CIL script size is about ;30 lines including set associa-

19

tion/aggregation commands. This level of abstraction does not use SystemC.

The concurrent model using queues is implemented using 8 classes. The ne\\' class is to define

an abstract data type to pass in the queues. It has 4 processes and uses queued associations for

communication. The script size is about 40 lines including set association/ aggregation commands.

SystemC starts to be used at this level to capture the process concurrency that was introduced

by the shared link objects.

The concurrent model using signals is implemented with 7 classes, 4 processes, and the asso­

ciations a.re implemented with the signal-port link pattern. The script size is about 150 lines

including signal connection commands.

Finally, the RTL concurrent model [10] is implemented using more that 90 classes. It is com­

posed of 8.5 processes and the script size is more than 1000 lines including signal connection

commands.

As associations a.re refined, the script sizes grow larger but the number of classes changes very

little. This is because the changes of the communication interfaces imply minimal changes on the

behaviors. As the abstraction is lO\vered, the changes are isolated in either the connection proce­

dures in the CIL script, or the well defined message passing interfaces (associations), minimizing

the changes to the C++ components. The reason why the number of classes decreases from the

queue model to the signal model is that we used an abstract data type (ADT) class to format the

data for the cache requests in the queues, but in the signals this ADT is not necessary.

In summary, the size of the design description is not smaller, but the designer works -vvith a

much smaller description to make the changes in the total model. The actual model in our case

is also as long (or perhaps longer) but it consists of reusable C++ /SystemC component code.

\.Ve introduced another abstraction level that reduces the size of the model but keeps an excellent

capability of manipulation, rather than manually changing the underlying SystemC/C++ code.

7 Conclusion

In this paper we presented the BALBOA component integration environment. A design is

integrated using a component integration language (CIL) with a split level interface (SLI) that

provides an abstraction layer around C++ models. The environment also uses the SystemC

20

compiled simulator for efficiency. The CIL language abstracts connectivity using object relations.

and also abstracts typing. A delayed instantiation type system is used in the SLI to coordinate the

underlying strongly typed C++ compiled model. vVe built models of the Al\IR!\I adaptive memory

system on which we performed communication refinement design tasks using the BALBOA CIL.

\Ve showed how the CIL enables a designer to focus on communication refinement and isolate the

changes in CIL procedures with minimum impact on the IP components.

In a broader scope. our ·work seeks to enhance the ability of hardware system integrators to

use c++ based design components in the system integration without worrying about software

programming artifacts. vVe shovv that C++ based design components can be used in CAD tools

for internal design representation. CILs could be used to compose complex designs with a higher

abstraction- in other words, to abstract the internal representation and composition mechanisms

details of the CAD tool. This \Vas demonstrated by the efficiency of the composition and code

reuse in the A.MRi\I models.

Future work includes defining an advanced interface generator to export the SLI API to OTcl,

a graphical notation for the CIL, and the refinement of the CIL to include composition into

collections (set. vector. bag, etc).

References

[l J ~I. Baleani. A. Ferrari: A. Sangiovanni-Vincentelli, and C. Turchetti. H v.)sw codesign of an

engine management system. In DATE 2000.

[2] D. Berner. D . .Jansen. and D. Gajski. Development of a visual refinement and exploration

tool for specc. Technical Report TR-01-12. Univ. of Cal., Irvine, 2001.

[:3] F. Buschmann. R. i\leunier, H. Rohnert. P. SommerlacL and J\1. Stal. Pattern Oriented

SofttNLrf Architecture: A Sy.stem of Patterns . .John \Viley and Sons. 1996.

[4] \V. Cesario, G. ~icolescu, L. Gauthier. D. LyonnarcL and A . .Jerraya. Calif: a multilevel design

representation for application-specific multiprocessor system-on-chip design. In International

ll'ork.shop on Rapid System Prototyping. 2001.

21

[.SJ P. Chen. D. A. h:irkpatrick. and h~. h:eutzer. Fast integration of eda tools and scripting

language. In IEEE/DA.TC Electronic Design Processes l-Vorkshop, 2001.

[6] B. P. Douglas. Real-time UML: developing efficient objects for embedded systems. Addison

vVesley, 1998.

[I] L. B. et. al. Advances in netvvork simulation. IEEE Cornpzder, l\Iay 2000.

[SJ D. Gajski, .J. Zhu, R. Domer, A. Gerstlauer. and S. Zhao. SpecC.· Speczficahon Language and

Methodology. I\]uwer Academic Publishers. 2000.

[9] E. Gamma, R. Helm. R . .Johnson, and .J. Vlissicles. Design Patterns: Elemerd.s of Reusable

Object-Oriented Software. Addison-vVesley. 1995.

[10] P. Garg, S. Shukla, and R. Gupta. Efficient usage of concurrency models in an object-oriented

co-design framevvork. In De.sign Azdomation and Te.st in Europe, 2001.

[11] .J. Hopkins. Component primer. Commun. A CJ1!, October 2000.

[12] T. h:uhn, W. RosenstieL and U. I\:ebschull. Description and simulation of hardware/software

systems with java. In De.sign Automation Conference, 1999.

[1:3] G. Larsen. Component-based entreprise frameworks. Cornrnun. ACJI. October 2000.

[14] E. A. Lee and '{. Xiong. System-level types for component-based design. Technical Report

ERL I\I00/8, Fniv. of Cal., Berkeley. Febuary 2000.

[l:S] .J. I\:. Ousterhout. Scripting: Higher-level programming for the 21st century. IEEE Computer,

.\larch 1998.

[16] l\I. Radetzki and \V. Nebel. S.ynthesizing hardware from object-oriented descriptions. In

FDL. 1999.

[11] .J. A. Rmvson and A. Sangiovanni-Vincentelli. Interface-based design. In Design A zdornation

Conference 1991.

22

[18] P. SchaumonC S. Vernalcle. L. Rijnders. ~I. Engels. and I. Bolsens. A programming en­

vironment for the design of complex high speed asics. In Design Automation C'onfcrrna.

1998.

[19] A. Taivalsaari. On the notion of inheritance. ACJJ Computing Surveys, 28(:3). September

1996.

[20] I\:. \rakabayashi and T. Okamoto. C-based soc design flow and eda tools: An asic and system

vendor perspective. IEEE Transactions on Computer-Aided Design of Integrated c:ircuit.s and

Systems, December 2000.

[21] -~{. Xiong and E. A. Lee. An extensible type system for component-based design. In 6th Inter­

national Conference on Tools and Algorithms for the Construction and Analysis of Systems,

2000.

[•)')] s '1' ~~ . 100, G. Nicolescu, D. Lyonnard, A. Baghdadi, and A. A. Jerra.ya. A generic wrapper

architecture for multi-processor soc cosimulation and design. In CODES, 2001.

[2:3] Ptolemy 2 home page: http://ptolemy.eecs.berkeley.edu/.

[24] Amrm v»ebsite: http://wwvv.cecs.uci.edu/ amrm.

[2.S] CynApps home page: http://www.cynapps.com.

[26] N's: The network simulator home page: http://www.isi.edu/nsnam/ns.

[27] Simplified wrapper and interface generator (swig) home page: http://wvvvv.swig.org.

[28] SystemC home page: http://www.systernc.org.

A BALBOA Environ111ent and Tool Description

Figures 5 to -8, shmv the various screen snapshots for the different windows of the B:-\LBO:-\

GUI. The design configuration can be done using the graphical user interface. or through CIL

scripts runned through the BALBOA Shell. Figure 5, shows the graphical control panel. which al­

lows user to navigate through the environment, and configure designs, control simulation. visualize

the design configuration, and view introspective information about design objects etc.

[KJJALBOA Too[QJWWf I !ii• l(iew Run !!elp

Available aass List I
Toplevel Component List I
Toplevel Block Diagram I

I

I
I

Simulation

Source File

'I [Quit I

Figure 5. Main Window of Balboa Environment

\Yhen the BALBOA shell is started, a number of library a.re loaded through initialization scripts.

They are the follmving:

1. Core Classes: this library contains all the classes for the basic modeling. It holds the design

data.base and the class for the split level interfaces, the OTcl and the TclCL linkages, the

meta model, and the simulator. In the current implementation, the core package is linked

'With the SystemC simulator.

:2. Base Classes: this library contains the classes for the module-clock-signal simulation seman­

tics. It also contains the SLI classes for these basic components. It also holds the linkage

code to make sure that when a design class is loaded in the environment it goes add itself

to the list of available classes for instantiation.

:3. Extra SLI classes: this library provides SLI for basic types.

4. Simulator classes: this library provides the SLI for the simulation control.

24

5. Test bench and :c\fonitor classes: this library provides the classes to set up design stimulus as

a set of signal assignments. or as a set of script commands to be executed. Theses stimulus

are setup to be sent at a specified simulation cycle.

6. Behavioral components: this library holds a number of utility classes for design composition.

For nmv. it holds queue classes that vve used in the 11 AMRM model.

These library can be found in the sfe2/* and classJib2/* directories of the source tree.

Toplevel components •Iii

Subcomponents

Figure 6. Window to navigate the top level design components

Figure 6 is a screen snapshot of the window ·which shmvs the top level design components for

the example design of A?\IR~I reconfigurable memory controller. This window is a generic \vindow

that can be called in the hierarchy to list subcomponents (by introspection). The buttons at the

bottom can call sub-windows to see the information about a component, to list the subcomponents

(which instantiate a new instance of this kind of window, but with the list foi· the inside of

the component). the methods that can be applied to a component and the block diagram of a

component.

CKJ•zm1mnmma;1CQJ~C~
[!set_ associativity r~1
:!set_ cache _size 1_; I
;!set line size j ; /
I t d l

1

Invoke _J aose ii

Figure 7. Panel for Introspection: Results of Querying a Class for Available Methods

Figure I shows a glimpse of the introspection capabilities. which are needed for dynamic type

25

and capability information about objects in the design libraries. When selected. and asked for type

and attribute and methods of an object from the c++ design library, this window displays those

information, which is very useful for dynamic discovery by the user of the design components, and

how to interconnect and use them.

Figure 8. The Block Diagram of The Configuration/Design Architecture Automatic Display Panel

Figure 8 shows the design configuration visually, which automatically updates, as the user enters

more design blocks into the configuration. Also, the left hand check box panel in the window,

shows that the user can selectively turn on or off display of certain components kinds, for better

visualization of some selected components and their interconnections. This window can also be

invoked hierarchically (such as the sub-component list window) to view the composition inside of

components. This diagram is built by using the introspection provided by the SLI layer.

26

X J SimUlation
CUrrent Simulation Cycle: JOO

·Additional Cycle: :10

I RUf1 J aose _:

Figure 9. The Simulation Control Window

Figure 9 shmvs a snapshot of the simulation control vvinclow. The current simulation cycle is

displayed and the simulation can be runnecl for a specified number of cycles.

I\fost of the information displayed in the shown windows are queried by introspection through

attributes and methods exported to the SLis. In the next appendix we show some examples

of design, the interface definition for a selected design component (,;vTitten in BIDL), and the

corresponding SLI interface file generated automatically by the BIDL compiler.

B Code Exa111ples

In this appendix, vve shm'' code list~ng for our mixed level AMRM design. In particular, vve list

an example of a BIDL file, used to provide the exportable interface definition, and also a CIL file,

which creates the mixed level design for simulation.

The graphical view of this design composition is illustrated in Figure 8. This Al\IRlVI design

configuration is composed of two cache memory hierarchy, and one main memory bank. The

memory controllers are not at the same level of abstraction: the first one is at Level 5, which

means that its communications are through ports-signals-ports style connections, and the second

one is of level 1. which means that its communication are through queues. Between the two cache

controller sits a transducer that converts signal handshakes into a queue mode communication.

On the figure. clotted arrow are signal communications, dotted boxes are signals, and filled arrows

are associations (pointer communications) and filled box are design components/ entities.

BIDL Listing B.l shmvs the description of the interface for the cache controller of level LL The

header description of the class was pasted into the module description, and edited to remove the

attributes and methods that were not to be exported. Also, a BEHAVIORAL characterization for

this class was added. This is the specification for the ';component family'' that can be set through

the buttons on the left side of the block diagram figure. All attributes and method in the listing

BIDL Listing B.l Interface File for the Ll Cache Controller
1 class Cache_Ctrl_Ll {
2 kind BEHAVIORAL;
;3

enum replacement_policy_t {RANDOM, LRU}; .J
.s
6

enum Yrite_policy_t {WRITE_THROUGH, WRITE_BACK};

I

8
9
10
11
12
1:3
14
1.5
16
17
rn
19
20
21
22
2:3
24
2.S
26
27
28
29
:30
;31
:32
;3:3
;3._i
:3.s
:36

enum Yrite_miss_policy_t {WRITE_ALLOCATE, NOWRITE_ALLOCATE};

Inport<bool> clock;

II upper queues for data transmission
Queue<Queue_Data*>* u_request_queue;
Queue<unsigned int>* u_ansyer_queue;

II loyer queues for data transmission
Queue<Queue_Data*>* l_request_queue;
Queue<unsigned int>* l_ansyer_queue;

II counters
unsigned int read_counter;
unsigned int Yrite_counter;
unsigned int read_hit_counter;
unsigned int Yrite_hit_counter;
unsigned int Yrite_back_counter;

II configurations
bool
unsigned int
unsigned int
unsigned int
replacement_policy_t
Yrite_policy_t
Yrite_miss_policy_t

II cache array
Cache_Array cache_array;

} ;

enabled;
cache_size;
line_size;
associativity;
replacement_policy;
Yrite_policy;
Yrite_miss_policy;

are accessible from the CIL Scripting domain. In this entity, the communications are through

queues. Pointers on these queues are set to NULL when the component is instantiated, and then

a queue is instantiated in the script and the association to that queue is set by CiL commands.

BIDL Listing B.2 shows the description of the interface for the cache controller of level L5. The

header description of the class was pasted into the module description, and edited to remove the

attributes and methods that were not to be exported. A STRUCTlJRAL characterization for this

class was added. All attributes and method in the listing are accessible from the CIL Scripting

domain.

CIL Script B.1-B.2 do the design setup for the example. The syntax of the commands are

different than the ones described in the technical report body because we now use the second

implementation of the BALBOA software. However, the semantics are the same. The difference

28

is that the associations and the ports now have SLis. so we use them directly to emit the com­

mand. In the first version we emitted the commands at the entity level, that used to go to its

subcomponent list to perform the command. ·vnrnt happens now is that the command is executed

directly in the SLI of the attribute, not in the SLI of the entity. Syntactically, the differences are

that the .. seLassociation~· command is ;'link_ton, and the port binding ("connecC) are through

"'bincLto''. However, the old commands should also be executable because the implementation

\vill be for both of the syntax in the next version.

The CIL Script B.:3 sets up the testbench and the monitoring for this Al\IRM example. Note

that these classes accept interpreted stimulus in the simulation.

29

BIDL Listing B.2 Interface File for the L5 Cache Controller
1
2
:3
4
.)

6
7
8
9
10
11
12
13
14
l.S
16
17
18
19
20
21
22
2:3
24
2.S
26
27
28
29
:30
:31
:32
:3:3
;34
:3.5
;35
37
:38
;39
40
41
42
4;3
44 }

Module amrm_l_five {
class Cache_Ctrl_LS {

kind STRUCTURAL;
enum replacement_policy_t {RANDOM, LRU};
enum write_policy_t {WRITE_THROUGH, WRITE_BACK};
enum ~rite_miss_policy_t {WRITE_ALLOCATE, NOWRITE_ALLOCATE};
Inport<bool> clock;
Inport<bool> reset;
I I upper ports
Inport<bool> u_req;
Inport<bool> u_mode;
Inport<unsigned int> u_address;
Inport<unsigned int> u_data_in;
Outport<bool> u_ack;
Outport<unsigned int> u_data_out;
I I lower ports
Outport<bool> l_req;
Outport<bool> l_mode;
Outport<unsigned int> l_address;
Dutport<unsigned int> l_data_out;
Inport<bool> l_ack;
Inport<unsigned int>
II counters

l_data_in;

unsigned int read_counter;
unsigned int write_counter;
unsigned int read_hit_counter;
unsigned int write_hit_counter;
unsigned int write_back_counter;
II configurations
bool
unsigned int
unsigned int
unsigned int
replacement_policy_t
write_policy_t
write_miss_policy_t
II extra commands

enabled;
cache_size;
line_size;
associativity;
replacement_policy;
write_policy;
write_miss_policy;

void set_cache_size(unsigned int arg_cache_size);
void set_line_size(unsigned int arg_line_size);
void set_associativity(unsigned int arg_associativity);
II cache array
Cache_Array cache_array;

};

:30

CIL Script B.1 Design setup
1
2
;3

source $env(HDHE)/work/src/balboa/designs2/amrm2/amrm.tcl

4
5
6
I

8
9
10
11
12
13
14
l.S
16
11
18
19
20
21
22
2:3
24
25
26
21
28
29
:30
;31
:32
;33
;34
;3,5
:36
:31
:38
;39
40
41
42
,±:3

add stimuli for reading data

proc add_read_stimuli {time address} {

cpu add_signal_stimuli $time 11_req_sig
cpu add_signal_stimuli $time 11_mode_sig
cpu add_signal_stimuli $time 11_address_sig

}

add stimuli for writing data

proc add_write_stimuli {time address data} {

cpu add_signal_stimuli $time 11_req_sig
cpu add_signal_stimuli $time 11_mode_sig
cpu add_signal_stimuli $time 11_address_sig
cpu add_signal_stimuli $time 11_data_in_sig

}

Clock
Signal
Test bench

clk_sig
reset_sig
cpu

cpu.clk bind_to clk_sig

signal definitions
Signal 11_req_sig
Signal 11_mode_sig
Signal 11_address_sig
Signal 11_data_in_sig
Signal 11_ack_sig
Signal l1_data_out_sig

Cache Li with very low interface abstraction
Cache_Ctrl_L5 cache_l1

cache_ 11 set enabled true
cache_l1 set cache_size 256
cache_ 11 set line_size 8
cache_l1 set associativity
cache_l1 set replacement_policy LRU
cache_ 11 set write_policy WRITE_ THROUGH

1
0

$address

$address
$data

44
4,5
46
47
48

cache_l1 set write_miss_policy NOWRITE_ALLOCATE

connect CPU to cache
connect signals to the cache

49
.so
.51
52
,5;3

cache_l1.clock bind to clk_sig
cache_l1.reset bind_to reset_sig

,54
.s.s
.56
.JI

.58

connect to the cpu/tb
cache_l1.u_req bind_ to
cache_l1.u_mode bind_ to
cache_l1.u_address bind_ to
cache_l1.u_data_in bind_ to
cache_l1.u_ack bind_ to
cache_l1.u_data_out bind_ to

,59 # Connect to the transducer
60 ignal trans_req_sig
61 Signal trans_mode_sig
62 Signal trans_address_sig
6:3 Signal trans_data_in_sig

11_req_sig
11_mode_sig
11_address_sig
11_data_in_sig
11_ack_sig
11_data_out_sig

:31

CIL Script B.2 Design Setup
64
6.S
66

Signal trans_ack_sig
Signal trans_data_out_sig
cache_l1.l_req bind_to trans_req_sig

67 cache_l1. l_mode bind_to trans_mode_sig
68 cache_l1. l_address bind_ to trans_address_sig
69 cache_l1. l_data_in bind_ to trans_data_out_sig
70 cache_l1. l_ack bind_ to trans_ack_sig
71
72
7;3
74
I·}

76
I I

78
79
80
81
82
8:3
84
8.S
86
87
RR
89
90
91
92
9:3
94
9.S
96
97
98
99
100
101
102
10:3
104
10.s
106
107
108
109
110
111
112
11:3
114
11.S
116
117

cache_l1.l_data_out bind_to trans_data_in_sig

Instantiate the transformer (LS to Li)
Transformer 15_11transducer

Connect the transducer to the lower signals
15_11transducer.clock bind_to clk_sig
15_11transducer.u_req bind_to trans_req_sig
15_11transducer.u_mode bind_to trans_mode_sig
15_11transducer.u_address bind_to trans_address_sig
15_11transducer.u_data_in bind_to trans_data_in_sig
15_11transducer.u_ack bind_to trans_ack_sig
15_11transducer.u_data_out bind_to trans_data_out_sig

Instantiate the queues to connect the L2 cache to
Queue 11_request_queue
Queue 11_answer_queue

15_11transducer.l_request_queue link_to 11_request_queue
15_11transducer.l_answer_queue link_to 11_answer_queue

Cache L2
Cache_Ctrl_L1 cache_l2

cache_l2 set enabled
cache_l2 set cache_size
cache_ 12 set line_size
cache_l2 set associativity
cache_ 12 set replacement_policy

true
256
8
2

LRU
cache_l2 set write_policy WRITE_BACK
cache_l2 set write_miss_policy WRITE_ALLOCATE
connect the L2 cache
cache_l2.clock bind_to clk_sig
cache_l2.u_request_queue link_to 11_request_queue
cache_l2.u_answer_queue link_to 11_answer_queue

Queue mem_request_queue
Queue mem_answer_queue

cache_l2.l_request_queue link_to mem_request_queue
cache_l2.l_answer_queue link_to mem_answer_queue

Memory_Ctrl_L1 memory
memory.clock bind_to clk_sig
memory.request_queue link_to mem_request_queue
memory.answer_queue link_to mem_answer_queue

:32

CIL Script B.3 Testbench and .Monitor Configurations
118 Monitor m_l1_ack_sig
119 m_l1_ack_sig.input bind_to 11_ack_sig
120
121 #
122 # stimuli
12:3 #
124 # nite data
12.J add_qri te_stimuli 100 2 3
126 cpu add_signal_stimuli 110 11_req_sig 0
121
128 cpu add_tcl_stimuli 110 {

m_l1_ack_sig add_tcl_callback { 129
1:30
1:31
1:32
13:3
1:34
1:3.S
1:36
1:3/
138
1:39
140
1-±1
l.J2
l.J:3

i£ { [cache_l1.cache_array read_valid O]
[cache_l1.cache_array read_dirty O]

!= "£alse"
!= "£alse"

II
} {

puts "ERROR, test 1 £ailed £or cache_l1"
}

!= "true" II i£ { [cache_l2.cache_array read_valid O]
[cache_l2.cache_array read_dirty OJ ! = "£alse" 11
[cache_l2.cache_array read_data 0 2J != 3 } {

}

puts "ERROR, test 1 £ailed £or cache_l2"
puts [cache_l2.cache_array read_valid OJ
puts [cache_l2.cache_array read_dirty O]
puts [cache_l2.cache_array read_data 0 2J

i£ { [memory.memory_array read_data 2J != 3 } {
l .J.J
l.J.5
l.J6
l.J/
l.J8 }
l.J9

}

puts "ERROR, test 1 £ailed £or memory"
}
m_l1_ack_sig add_tcl_callback {;}

l.JO # read data
l.Jl add_read_stimuli 200 2
1.52
1.5:3 cpu add_signal_stimuli 220 11_req_sig 0

cpu add_tcl_stimuli 220 {
m_l1_ack_sig add_tcl_callback {

!= "true" 11

1.5.J
1.5.J
1.56
1.5/
l.S8
1.59
160
161
162
16:3
16.J
16.J
166
161
168
169

i£ { [cache_l1.cache_array read_valid O]
[cache_l1.cache_array read_dirty O] != "£alse" I I

110
111 }
112

}

[cache_l1.cache_array read_data 0 2J != 3 } {

puts "ERROR, test 1 £ailed £or cache_l1"
}

!= "true" II i£ { [cache_l2.cache_array read_valid OJ
[cache_l2.cache_array read_dirty OJ != "£alse" I I
[cache_l2.cache_array read_data 0 2] != 3 } {

}
i£ { [memory.memory_array read_data 2J != 3 } {

puts "ERROR, test 1 £ailed £or memory"
}
m_l1_ack_sig add_tcl_callback {;}

CIL Script B.4 Simulation and Report of Statistics
17:3 simulator run 300
174
17.5 #
176 # report of counters

177 #
178 set x "cache_l1 read counter =" ;
179 puts [lappend x [cache_l1 set read_counter]]

180 set x "cache_l1 'ITri te counter =";
181 puts [lappend x [cache_l1 set 'ITrite_counter]]

182 set x "cache_l1 read_hit_counter =";
183 puts [lappend x [cache_l1 set read_hit_counter]]
184 set x "cache_l1 1Trite_hit_counter =";
18.S puts [lappend x [cache_l1 set Hi te_hi t_counter]]
186 set x "cache_l1 1Tri te_back_counter=";
187 puts [lappend x [cache_l1 set 'ITrite_back_counter]]
ms
189 set x "cache_l2 read counter =" ;
190 puts [lappend x [cache_l2 set read_counter]]
191 set x "cache_l2 1Trite counter =";
192 puts [lappend x [cache_l2 set 'ITrite_counter]]
19:3 set x "cache_l2 read_hit_counter =";
194 puts [lappend x [cache_l2 set read_hit_counter]]
19.S set x "cache_l2 1Trite_hit_counter =";
196 puts [lappend x [cache_l2 set 'ITrite_hit_counter]]

19/ set x "cache_l2 1Tri te_back_counter=";
198 puts [lappend x [cache_l2 set 'ITrite_back_counter]]

199
200 set x "memory read_counter =";
201 puts [lappend x [memory set read_counter]]

202 set x "memory 1Tri te counter =";
20:3 puts [lappend x [memory set write_counter]]

;34

