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ABSTRACT 

Freight forecasting models are data intensive and require many explanatory variables to be 

accurate. One problem, particularly in the United States, is that public data sources are mostly at 

highly aggregate geographic levels, while models with more disaggregate geographic levels are 

required for regional freight transportation planning. Second, supply chain effects are often 

ignored or modeled with economic input-output models which lack explanatory power. This 

study addresses these challenges by considering a structural equation modeling approach, which 

is not confined to a specific spatial structure as spatial regression models would be, and allows 

for correlations between commodities. A FAF-based structural commodity generation model is 

specified and estimated and shown to provide a better fit to the data than independent regression 

models for each commodity. Three features of the model are discussed: indirect effects, supply 

chain elasticity, and intrazonal supply-demand interactions. A validation of the geographic 

scalability of the model is conducted using data imputed with a goal programming method.  

Keywords: freight, forecasting, structural equations, commodity generation, supply chain, 

regression 
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1 INTRODUCTION  

Regional commodity-based freight forecasting research has gained steady traction in the last 

fifteen years. In the United States, national [1] and statewide freight modeling studies [2] are 

now required in transportation plans. A number of innovations in advanced freight forecasting 

have been developed ([3], [4]) to address these needs. However, data sources for these models 

are difficult to obtain due to their high costs and the proprietary nature of the private sector [5]. 

Existing public data sources tend to be at highly aggregate geographic levels, beyond what 

would be useful for regional freight transportation planning.  

Freight modeling researchers have dealt with this issue in two ways. The first is to forego 

the use of public data in favor of expensive, firm-level (or highly disaggregate zones) data for 

freight models. Examples range from integrated land use models ([6]-[8]) to agent-based 

simulation models ([9]-[12]).  

The second approach is to make the most use of publicly available data to produce 

aggregate freight models. Many of the statewide models in the U.S. fall into this category [2]. 

Freight models in this direction tend to focus on ways of either maximizing the use of limited 

data or introducing sophisticated models. Giuliano et al. [13] and Anderson et al. [14] imputed 

data from multiple secondary sources. Novak et al. [15], on the other hand, proposed a more 

sophisticated spatial regression model with a conventional public data source. In this study, we 

argue in favor of public data using both sophisticated modeling and data imputation techniques. 

In order to address this challenge, one key point needs to be clarified. Many freight 

models rely on disaggregation of aggregate data [16] so that models can be estimated and 

applied at a finer level of geographic detail. However, the geographical disaggregation error ends 

up being bundled with other unobservable noise in the data. As stressed by Holguín-Veras et al. 

[17], inconsistency between model structures from one geographical zone to another can be 

problematic. A more measurable approach is to estimate a model at a coarser geographic level 

and to define the model in such a way that it is scalable to different geographic aggregations. The 

structure remains consistent and the error from disaggregation is bundled with the model error 

instead, which can be quantified with fitness measures at both geographic levels.  

This study presents an alternative modeling framework to capture relationships between 

commodities at coarse geographies with public data that can then be applied to finer geographies. 

We consider a structural equation modeling (SEM) framework that makes the most use out of 

available public data. A commodity generation model is developed along with the data 

preparation necessary to run the model.  

The remainder of this study is organized as follows. Section 2 is a literature review that 

highlights freight modeling with public data in the last few years. Section 3 focuses on the data 

preparation and the application of a goal programming approach to impute data for county and 

sub-county zone forecasting. Section 4 describes the specification and fitness measures of the 

proposed SEM framework for commodity generation, and an analysis of the model elasticities. 

Section 5 presents a validation using California data as a case study. Section 6 is the conclusion. 

2 LITERATURE REVIEW 
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The limitation of freight data is well documented ([3], [5]). Unlike household travel survey data 

for passenger models, equivalent data at the same level of detail (i.e. firms) are prohibitively 

expensive to acquire. While vehicle-based data is more accessible in the form of GPS trajectories 

[18] or truck diaries [19], commodity-based data is often limited to such highly aggregate 

geographies as the Commodity Flow Survey (CFS) in the U.S [20].  

The consequence is that regional freight forecasting models that rely on these public data 

sources cannot explain higher resolution geographical effects. Researchers have sought ways to 

overcome this challenge. Giuliano et al. [13] acknowledged this “data problem”, which is not 

just an issue of data aggregation but the need to build a closed model under an environment of 

increasingly open and global trade and goods movement. For example, freight transportation in 

the United States spans multiple states and/or regions, so statewide or Metropolitan Statistical 

Area (MSA) freight models need to consider national freight flows as well [21]. Anderson et al. 

[14] also constrained themselves to using only public data sources to develop a model for 

Alabama. For more advanced model techniques to overcome this data limitation, Ben-Akiva and 

de Jong [22] considered a hybrid modeling framework that blended aggregate and disaggregate 

methods.  

Commodity generation models are forecast tools that estimate the amount of 

commodities produced or consumed at a zone or by a firm, typically based on socioeconomic 

data. They require commodity data such as the CFS or the imputed Freight Analysis Framework 

(FAF) data. As such, commodity generation models offer an opportunity to study ways of 

maximizing the use of coarse public data. An example of mutually exclusive commodity groups 

based on aggregations of 2-digit SCTG codes [20] is shown in TABLE 1. NCHRP Synthesis 298 

[23] provides a comprehensive synthesis of freight generation.  

TABLE 1. Commodity groups (Base on FAF 2007 data base) 

Commodity group 2-dig SCTG Total production 

(K ton) in U.S 

% share of total 

G1- Agriculture products 1-4 2,288,940 12.1% 

G2- wood and paper products 26-29 739,761 3.9% 

G3 Crude petroleum 16 836,581 4.4% 

G4-Fuel and oil products 17,18,19 3,045,422 16.1% 

G5- Gravel, sand and non metallic minerals 10-13 3,266,321 17.3% 

G6- Coal and metallic ores 14-15 1,565,204 8.3% 

G7- Food, beverage, tobacco products 5-9 937,853 5.0% 

G8- Manufactured products 24,30,39,40,42,43 1,003,725 5.3% 

G9- Chemical, pharmaceutical products 20-23 862,184 4.6% 

G10- Nonmetal mineral products 31 1,392,666 7.4% 

G11- Metal manufactured products 32-34 813,600 4.3% 

G12- Waste material 41 1,324,523 7.0% 

G13- Electronics 35,38 85,548 0.5% 

G14- Transportation equipment 36-37 198,996 1.1% 

G15-Logs and lumber 25 517,410 2.7% 

Total - 18,878,735 100% 
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Linear regression is the most widely used approach for freight generation modeling ([24], [25]). 

This approach has several drawbacks, however. Production and consumption is typically 

estimated independently for different commodities or groups of commodities. This independence 

assumption ignores the high correlations between different commodities due to supply chains 

and land use patterns. Novak et al. [15] pointed out the correlations present between productions 

and consumptions of different commodity groups in the CFS data. 

 Alternative methodologies have been proposed to overcome these issues. Bastida and 

Holguín-Veras [26] proposed a cross classification approach for urban truck trip generation. 

Like other classification and decision tree approaches, this method may result in better fitting 

models but may lose explanatory power. Novak et al. [15] and Chun et al. [27] proposed spatial 

regression to correct for spatial autocorrelation—a linear correlation or dependence among 

variables based on spatial proximity. However, spatial regression assumes a fixed spatial 

structure in order to characterize the relationships. The fixed structure prevents the model from 

scaling to different geographical zone sizes. For example, the model from [15] is calibrated on 

CFS zones, which in California consist of five regions, and cannot be used to explain commodity 

production and consumption within the 58 counties in the state.  

Structural equation modeling (SEM) is a flexible linear-in-parameters multivariate 

statistical modeling technique that has gained acceptance in the travel behavior research 

community [28]. SEM is a more generalized form of linear regression that allows endogenous 

variables to serve as causal variables for other endogenous variables, and can identify 

unobservable factors called latent variables (hence the structure). There are different methods of 

estimating the parameters of these models, such as full information maximum likelihood 

estimation or three stage least squares estimation. SEM allows for both confirmatory and 

exploratory modeling, such that hypothesized causal relationships and correlations can be tested.  

Nonetheless, very few freight models have been estimated based on this method. 

Jonnavithula [29] proposed an SEM-based direct demand model to estimate total commodity 

flows by mode for the state of Florida using proprietary TRANSEARCH zip code data. SEM 

was used in that context to capture the inter-dependencies among different freight modes, while 

keeping commodities independent.  

 Instead of capturing inter-dependencies between mode shares, SEM can be used to 

capture inter-dependencies between different commodity groups and productions and 

consumptions, effectively inferring the unobserved supply chain and land use relationships at an 

aggregate industrial level, much like economic input-output models. It is more flexible than 

spatial regression because it does not require a fixed spatial structure and can be applied to a 

different geographic resolution. For example, a model can be estimated based on FAF data, and 

can then be applied to a finer FAZ level defined at county or sub-county level. SEM is used as a 

confirmatory approach in this study: the structure design is hypothesized and the sample data is 

evaluated to confirm whether it fits the hypothesized design. Even if a good fitting structure 

naturally exists, it needs to be identified prior to the estimation.  
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3 DATA PREPARATION 

Suppose that a structural commodity generation model is estimated using national FAF3 data. In 

order to apply it to a finer geographical level, the model would require input data at a finer level 

of detail. Using California as an example, a five zone aggregation would be too coarse for 

statewide freight analysis. Figure 1 shows the state of California with 96 freight analysis zones 

(FAZs) that are defined at approximately county or sub-county level. The FAZ boundaries were 

chosen to respect county and air basin boundaries that are important to analyzing statewide 

policies. The zones are delineated to have a maximum of 500,000 employment, 1.5 million 

population, and maximized homogeneity in land use within each FAZ. A spatial regression 

model calibrated at the FAF level cannot be applied to these finer geographic zones.  

 

FIGURE 1. Five California FAF zones (1a) and 96 proprietary FAZs (1b).  

Further disaggregation is not attempted because significant data suppression issues exist even at 

this level. Employment and number of establishment data at the county and state level by 3-digit 

North American Industry Classification System (NAICS) (hereafter 3-digit level) was obtained 

from the 2007 County Business Patterns (CBP) [30]. CBP provides employment by industry for 

up to 6 hierarchical levels. For confidentiality reasons, the number of employees in certain CBP 

entries is suppressed and substituted by a flag. A flag provides information on where the 

suppressed value lies (e.g., a flag means that the number of employees lies between 0 and 19). 

More detailed levels (4, 5 or 6 digits) have higher percentages of flags, whereas 3-digit industrial 

employment categories are compatible with 2 digit SCTG commodity grouping used in many 

freight models ([2],[16]). Data suppression problems are also present in the Census of 

Agriculture (CoA) [31], which was used to gather agriculture related variables, and in the 

Bureau of Economic Analysis’ (BEA) Regional Economic Accounts, used to obtain 

manufacturing sector GDP [32].  

(1a) (1b) 
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3.1 Data Imputation Methodology 

Zhang and Guldmann [33] showed that midpoint approximation of suppressed data can lead to 

severe data inconsistencies, and proposed a goal programming approach to impute suppressed 

2000 county-level CBP data. Their method was adapted for our study to impute the suppressed 

employment data for California CBP data at the 3-digit level. This methodology was selected 

since it ensures internal data consistency across geographical areas and industrial sectors. The 

following linear optimization problem in Equations (1) – (7) was solved. 

	min�	 � � ���	
�� + �	
�����
   (1) 

�������	��   �min
 	 ≤ � � �
���� ≤ �max
 ∀	� (2) 

�min�� ≤ � �
��
 ≤ �max�� ∀	�� (3) 

ℎmin
� ≤ � �
��� ≤ ℎmax
� ∀	�, � (4) 

�min
�� ≤ �
�� ≤ �max
�� ∀	�, �, � (5) �	
�� − �	
�� = �
�� − �#
�� ∀	�, �, � (6) �	
�� ≥ 0, �	
�� ≥ 0, �
�� ≥ 0 ∀	�, �, � (7) 

 

The �
�� represent suppressed employment data of 3-digit industries in county k. dj is the 3-digit 

industry code where d represents the 2-digit parent and � is the 3-digit level identifier (e.g., �
&'( 

implies � = 21 and � = 3). �#
�� is the target estimate related to �
��’s true value. �#
�� is 

assumed as the product of the number of establishments of �
��, which is never suppressed, and 

the midpoints of the employee size classes in which the establishments are grouped (e.g., an �
�� 

with only six establishments in size class 1 to 4 employees implies a midpoint estimate of 15 

employees). �	
��  and �	
�� are non-negative variables that measure the positive or negative 

deviation, respectively, between �
�� and �#
��. Objective function (1), in conjunction with 

constraint set (6), is equivalent to the problem of minimizing the sum of the absolute difference 

between the �
�� and �#
��, as shown in [33]. 

The first set of constraints ensures that the �
�� sum is consistent with the provided total 

county employment boundaries ,�-./
, �-0�
1. The second set of constraints relates the sum of 

all suppressed �� industries at the county level with the known �� industry employment 

boundaries 2�-./�� , �-0���3 at the state level. In the third set of constraints, ℎ-./
� (ℎ-0�
�) 

is the minimum (maximum) 2-digit industry bound for industry �� in county �. Hence, this set of 

constraints guarantees that the sum of the 3-digit industries’ employment is consistent with their 

respective 2-digit parent employment at the county level. The fourth set of constraints determines 

the bounds 2�-./
�� 	�-0�
��3 given by the flags. Note that �-./
 = �-0�
, �-./�� =�-0���, and ℎ-./
� = ℎ-0�
� if the quantity under consideration is known. Additionally, the 

bounds of the first three constraint sets are the employment information minus the known 3-digit 

employment. For example, if county �′s total employment is 500 and the sum of all 
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unsuppressed 3-digit employment information is 450, then �-./
 = �-0�
 = 50. For FAF 

regions without metropolitan subregions, the suppressed 3-digit information was imputed using 

national level data. The final set of imputed CBP data in California has been made public for 

other researchers and practitioners, and is available for download from the Cal-FRED web 

repository (freight.its.uci.edu/calfred) [5].  

For sub-county FAZs in California the imputed county level data was disaggregated 

using sub-county information such as land-use maps, ZIP code level employment information, 

and statewide farmland maps.  

4 A STRUCTURAL COMMODITY GENERATION MODEL 

4.1 Model Specification 

Production and consumption of the commodity groups in Table 1 were modeled using FAF data 

for the U.S. Each commodity group is associated with production and consumption dependent 

variables, which are all estimated simultaneously, considering direct correlation and causal 

effects defined in a confirmatory manner using paths. The sample size is limited since there are 

123 FAF regions in the U.S. and each zone is a sample. The small sample size means that we 

have to be very careful in specifying the model to avoid under-identification. In order to have an 

identified model, correlation is not assumed between every dependent variable and error term. 

Instead, those commodities with higher correlations are selected based on factor analysis when 

specifying the structural model. The model includes 12 of the 14 commodity production 

variables and 5 of the 14 commodity consumption variables, while the other commodities are 

estimated independently. The general formulation of the model is shown in Equation (8). 

7 �89 = ∑ ;<8

 + =�8> + ?@8> + �98@89 = ∑ ;<8

 + =�8> + ?@8> + �′98cov(<
, <E), cov(�9, �>), cov(�9, �′>), cov(�′9, �′>), cov(�8>, �9), cov(@8>, �′9)G	HI (8) 

�89 and @89 are production and consumption of commodity group - in zone .. <8
 are 

exogenous socioeconomic or industrial related explanatory variables and ;, = and ? are 

calibration parameters. �98 and �′98 are unobserved error terms in production and consumption 

equations. The model does not assume independence between explanatory variables (indicators) 

and error terms.  

The model exhibits high skewness (3.5) and kurtosis (15.7), evidence of data with non-

normal distributions. Kline [34] discussed different methods to deal with non-normal data in 

SEM. The asymptotically distribution free (ADF) method is the most popular method to deal 

with non-normality if the sample size is large (which this case is not). Maximum likelihood (ML) 

estimation is robust to non-normality, but the standard error is underestimated in the absence of 

the normality assumption. Nevitt and Hancock [35] recommended bootstrapping with more than 

250 bootstrap samples for estimating the test statistic, the p values, and the standard errors under 

non-normal data conditions with original sample sizes greater than 100. In this study, 300 

bootstrap samples resulted in meaningful analysis. All generated samples were usable.  

Since SEM is a confirmatory approach, the covariance assumptions in the structure 

between endogenous and error residuals can be tested to find statistically significant relations. 
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For example, significant covariance was identified between the residuals of the consumption 

functions for commodity groups 3 (petroleum) and 4 (fuel and oil products). This could mean 

that there is some latent variable affecting consumption of both commodity groups 3 and 4.  

A path diagram is a convenient method to represent SEM models. Figure 2 shows a path 

diagram of the proposed model drawn in SPSS AMOS. Straight single-end arrows show 

causality effects and double-end curved arrows show covariance effects [34]. The graph is color 

coded. Green arrows correspond to residuals. Blue arrows are secondary effects of consumption 

and production of different commodity groups on each other. Black arrows are causal effects of 

explanatory variables in production and consumption functions. Pink arrows correspond to 

correlation of exogenous variables. For simplicity of presentation, not all pink arrows are shown 

in this figure. A set of socioeconomic and industry related variables are chosen to estimate this 

model, with the estimated coefficients shown in Table 2, which is separated into production (2A) 

and consumption (2B) variables for presentation.  

 
FIGURE 2. Path diagram for Structural Commodity Generation Model  
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TABLE 2A. Structural Commodity Generation Model (Production) 

Dependent 

Variables 

Independent 

Variables 
Coefficient 

Standardized 

Coefficient 

Critical 

Ratio
ϯ
 

G1_P 
Emp311(Food Mftg. Emp.) 0.434 0.151 2.95 

Harvested Land (acreage) 0.006 0.855 6.00 

G2_P 

Emp321 (Wood Products Mftg. Emp.) 0.794 0.739 8.82 

Emp322_323 (Paper Mftg., Printing & Related 

Support Activities Emp.) 
4.894 0.3 4.490 

G3_P 

 
Emp211 (Oil & Gas Extraction Emp.) 4.63 0.783 3.481 

G4_P 
Emp324 (Petroleum & Coal Mftg. Emp.) 23.646 0.845 7.305 

Refinery Capacity (Barrels per Day) 0.006 0.061 0.545 

G5_P 
Est212 (No. Mining Establishments) 44.194 0.136 2.692 

G5_C 0.907 0.855 16.796 

§G6_P 
Emp212 (Mining Emp.) 8.24   0.536  7.005 

Est213 (Support Activities for Mining Emp.) 34.77   0.171  2.240 

G7_P 

Emp312 (Beverage & Tobacco Prod. Mftg. Emp.) 0.861 0.278 3.588 

Emp311(Food Mftg. Emp.) 0.194 0.368 4.042 

G1_P 0.056 0.307 4.000 

G8_P 0.337 0.39 3.210 

G8_P 

Emp325 (Chemical Mftg. Emp.) 0.142 0.155 1.560 

Emp313 to 316 (Textile, Apparel & Leather Mftg. 

Emp.) 
0.179 0.26 3.729 

Emp339 (Misc. Mftg. Emp.) 0.221 0.189 2.125 

Emp327 (Nonmetallic Mineral Prod. Mftg. Emp.) 0.678 0.264 4.431 

G4_C 0.12 0.538 3.750 

G9_P 
Emp325 (Chemical Mftg. Emp.) 0.041 0.031 0.258 

G4_P 0.235 0.821 5.341 

G10_P 
Emp327 (Nonmetallic Mineral Prod. Mftg. Emp.) 0.179 0.049 1.32 

G10_C 0.927 0.956 23.77 

G11_P 

Est332 (No. Fabricated Metal Prod. Mftg. 

Establishments) 
5.313 0.357 2.46 

Manufacturing GDP (Millions USD) 0.193 0.419 2.01 

G12_P 

Est334 (No. Computer & Electronic Prod. Mftg. 

Establishments) 
42.085 0.685 7.46 

G5_C 0.163 0.277 7.09 

Manufacturing GDP (Millions USD) 0.091 0.11 1.90 

G13_P Emp339 (Misc. Mftg. Emp.) 0.039 0.272 1.39 
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G8_P 0.059 0.492 3.93 

Est334 (No. Computer & Electronic Prod. Mftg. 

Establishments) 
1.464 0.298 1.38 

G14_P 
Emp336 (Transportation Equp. Mftg Emp.) 0.082 0.545 2.41 

Manufacturing GDP (Millions USD) 0.062 0.29 2.82 

G15_P Emp113(Forestry & Logging Mftg. Emp.) 6.742 0.802 3.58 

 

TABLE 2B. Structural Commodity Generation Model (Consumption) 

Dependent 

Variables 

Independent 

Variables 
Coefficient 

Standardized 

Coefficient 

Critical 

Ratio
ϯ
 

§G1_C 
Emp311 (Food Mftg. Emp.) 0.775 0.406 7.042 

Sold live stock (KTons) 0.012 0.554 9.606 

§G2_C 

Emp322 (Paper Mftg., Printing Emp.) 0.635 0.423 9.781 

Emp337 (Furniture Mftg. Emp.) 0.051 0.045 0.980 

Population 0.001 0.559 12.246 

G3_C 
Emp324 (Petroleum & Coal Mftg. Empl.) 3.086 0.272 3.040 

Refinery Capacity (Barrels per Day) 0.029 0.724 5.800 

G4_C 
Emp324 (Petroleum & Coal Mftg. Emp.) 21.444 0.857 4.886 

Population 0.003 0.179 3.000 

G5_C 
Est212 (No. Mining Establishments) 131.365 0.428 5.564 

Emp23 (Construction Emp.) 0.155 0.428 2.422 

 
Manufacturing GDP (Millions USD) 0.295 0.211 2.418 

§G6_C 
Coal power plants consumption(tons) 0.001  0.869 19.359  

Est213 (Support Activities for Mining 7.367  0.084  1.877  

G7_C Population 0.002 0.7 10.000 

 

Emp311 (Food Mftg. Emp.) 0.2 0.46 7.692 

Manufacturing GDP (Millions USD) 0.074 0.19 2.741 

Emp312 (Beverage & Tobacco Prod. Mftg. 

Emp.) 
0.135 0.053 0.692 

§G8_C 

Population 0.002 0.513 9.119 

Emp325 (No. of Establishments Chemical 

Mftg.) 
34.114 0.481 8.551 

§G9_C 
Emp325 (No. of Establishments Chemical 

Mftg.) 
53.452 0.768 13.258 

G10_C 
Emp23 (Construction Emp.) 0.17 0.831 9.444 

Emp211 (Oil & Gas Extraction Emp.) 0.516 0.163 2.123 

§G11_C 
Emp332 (Fabricated Metal product Mftg. 

Emp.) 
0.276 0.557 7.025 
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Emp336 (Transportation Equp. Mftg Emp.) 0.086 0.199 3.965 

Manufacturing GDP (Millions USD) 0.110 0.233 3.034 

§G12_C 

 

Total Emp. 0.009 0.696 10.012 

Manufacturing GDP (Millions USD) 0.217 0.266 3.823 

§G13_C Population 0.0003 0.942 31.026 

§G14_C 
Manufacturing GDP (Millions USD) 0.043 0.287 3.895 

Emp336 (Transportation Equp. Mftg Emp.) 0.085 0.611 8.300 

§G15_C Emp321 (Wood Products Mftg. Emp.)  0.163   0.111  1.487  

 Emp113 (Forestry and Logging Emp.) 6.465   0.758  10.130  

§Estimated independently but included for completeness  
ϯ
Critical Ratio = coefficient divided by bootstrap standard error 

 

The first column is the dependent variable, the second column is the set of corresponding 

explanatory variables for each dependent variable, and the last three columns represent the 

coefficient value, standardized coefficient, and critical ratio. Most of the regression and 

covariance estimates are significant at the 0.05 level. Coefficients with lower significance are not 

discarded because this is the best result given available data, given the structural design that 

relates the dependent variables together. 

4.2 Model Fitness Evaluation 

There are different fitness measures in the SEM literature, as summarized by Hooper et al. [36]. 

Bollen and Long [37] suggested guidelines for presenting fitness indices of structural models. 
Table 3 summarizes the fitness indices of independent, hypothesized and saturated models.  

TABLE 3. Model Fit Indices 

Model Fit Index Independent Model Hypothesized Model Saturated model 

Sample size  119 119 119 

Chi Square 8648 852 0.000 

Degrees of Freedom (d.f.) 741 395 0 

Goodness-of-fit index (GFI) 0.094 0.714 1.000 

Normed fit index (NFI) 0.309 0.099 - 

Akaike information criterion (AIC) 0.000 0.945 1.000 

Incremental fit index (IFI) 0.000 0.942 1.000 

Comparative fit index (CFI) 0.000 0.901 1.000 

Expected Cross-Validation Index (ECVI) 70.937 13.091 12.559 

 

 The Chi-Square test can fail because the data is not multivariate normal, even though the 

model itself is properly specified. Since the data is indeed non-normal in this case, the Chi-

Square test is disregarded. McIntosh [38] recommended that other fitness measures and 

predictive ability of the model should be considered in these cases. He suggested that “Merely 

setting for close fit could hinder the advancement of knowledge in a given substantive field, 

since there is little impetus to seek out and resolve the reasons why exact fit was not attained.”  
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The Independent Model assumes all relationships among measured variables are 0 – it is 

the assumption of having no structure in place and serves as a baseline for comparison. The 

Saturated Model would perfectly reproduce all of the variances, covariances, and means; it has 

the best fit possible with zero degrees of freedom. The gap between the Independent and 

Saturated models signifies the degree of correlations present in the data that is not captured by 

the Independent Model. The proposed Hypothesized Model falls in between the two extremes; 

the closer it is to the Saturated Model and further from the Individual, the more the structural 

design is able to accommodate all the structural relationships present in the data. Clearly, the 

proposed model outperforms independent linear models in all measures shown in Table 3. 

4.3 Analysis 

Having shown that the structural model has a better fit, a few examples are discussed in 

this section to investigate the advantages of a structural commodity generation model for 

policy analysis.  

The total effect (sum of direct and indirect effects) of each explanatory variable on 

production of each commodity group is presented in Table 4. The variables are in their original 

units. Since only five commodity consumption variables are included in the structural model, the 

total effects of those explanatory variables are similar to the coefficients and therefore left out of 

this table for brevity (readers are referred to Table 2B for essentially the same values). Effects of 

different variables on generation of freight in the entire system can be compared. For example, 

adding one employee in food manufacturing (Emp311) in a zone will generate about 434 tons of 

agricultural products (G1) and 218 tons of food and beverages products (G7) in a year.  

TABLE 4. Total effects in structural production model 

Variables G1_P G2_P G3_P G4_P G5_P G7_P G8_P G9_P 
G10_

P 

G11_

P 

G12_

P 

G13_

P 

G14_

P 

G15_

P 

Mftg. GDP - - - - 0.267 - - - - 0.194 
0.138 - 0.062 - 

Harvested 

land 
0.006 - - - - - - - - - 

- - - - 

Refinery 

Capacity 
- - - 0.007 - - - 0.002 - - 

- - - - 

Population - - - - - - - - - - 
- - - - 

Est322 323 - 4.897 - - - - - - - - 
- - - - 

Est334 - - - - - - - - - - 
42.10 1.46 - - 

Est212 - - - - 163.3 - - - - - 
21.46 - - - 

Est332 - - - - - - - - - 5.268 - - - - 

Emp113 - - - - - - - - - - - - - 6.746 

Emp313 to 

316 
- - - - - 0.06 0.179 - - - - 0.011 - - 

Emp336 - - - - - - - - - - - - 0.082 - 

Emp312 - - - - - 0.860 - - - - - - - - 

Emp23 - - - - 0.141 - - - 0.158 - 0.025 - - - 

Emp339 - - - - - 0.075 0.221 - - - - 0.052 - - 

Emp211 - - 4.632 - - - - - 0.478 - - - - - 
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Emp325 - - - - - 0.047 0.141 0.037 - - - 0.008 - - 

Emp327 - - - - - 0.229 0.679 - 0.179 - - 0.04 - - 

Emp311 0.434 - - - - 0.218 - - - - - - - - 

Emp324 - - - 23.31 - 0.869 2.576 5.483 - - - 0.153 - - 

Emp321 - 0.792 - - - - - - - - - - - - 

4.3.1 Indirect Effects 

Table 4 can be used to analyze indirect effects. For example, as shown in Table 2, the factors 

for �8J (food and beverage production) are: employment in food manufacturing (Emp311), 

employment in beverage and tobacco product manufacturing (Emp312), production of 

commodity group 1, and production of commodity group 8. It means production of commodity 

group 7 relates to production of two other commodity groups in each region. This is compared 

with an independent model estimated from similar data. 

Structural  model:                   �8J = 0.861N-O('& + 0.194N-O('' + 0.056�8' + 0.337�8S  

Standardize structural model �8J = 0.278N-O('& + 0.368N-O('' + 0.307�8' + 0.390�8S 

Independent model with standardized coefficients: �8J = 0.249N-O('& + 0.743N-O('' 

In this example, the effect of Emp312 on �8J is very similar in both the structural and 

independent models. However, the effect of Emp311 on the independent model is 2.02 times 

greater than the structural model. The better fitting structural model suggests that Emp311 should 

actually be divided between its direct effect on �8J and an indirect effect from its effect on �8', 

which in turn has an effect on �8J.  

4.3.2 Supply Chain Elasticity 

The structural model is able to capture aggregate industry-level supply chain interactions so that 

elasticities can be measured. For example, Figure 2 shows that Population → C[\ → P[S → P[J. 

Production of food products (G7) is affected by production of manufactured goods (G8), which 

are in turn affected by consumption of fuel and oil products (G4), which is affected by 

population. An increase in population by 10 results in 30 additional tons of fuel and oil 

consumption per year, which leads to 3.6 more tons of manufactured goods produced, resulting 

in 1.2 more tons of food, beverage, and tobacco products produced. This model framework gives 

a better understanding of supply chain elasticities between explanatory variables of different 

commodity groups which was largely ignored in previous freight transportation studies.  

4.3.3 Intrazonal Freight 

The model can capture the relationship between production and consumption of low value 

commodities that are typically not transported long distances. One example is commodity group 

10, nonmetallic mineral products. This group is mainly composed of ready-mix concrete, which 

is a relatively cheap product and cannot be transported long distances due to its physical 

properties. Production of this product is highly driven by demand for it. In Figure 2, construction 

employment is the main driver for	C['#, which in turn is a factor for production of the commodity 

group: N-O23 → @8'# → �8'#. Whereas an independent model would likely have a difficult fit for �8'#, this model indicates that one additional employee in the construction industry in a region 
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could lead to 170 tons of nonmetallic mineral products consumed in that same region, which 

results in 927 tons of that product being produced in the same region.  

5 VALIDATION OF GEOGRAPHIC SCALABILITY WITH CALIFORNIA FREIGHT 

ANALYSIS ZONES 

The calibrated model was applied to the California FAZs using 2007 imputed data to investigate 

the geographic scalability of the model. The forecast productions and consumptions of each 

commodity group based on the structural model using the imputed data at the FAZ level were 

then aggregated up to the FAF level for comparison. Two commodity groups are shown in 

Figure 3 to illustrate the distribution of production forecast across FAZs in California.  

 

FIGURE 3. Comparison of Production of commodity group 7 (3a) and 8 (3b) in California FAZs. 

The forecast FAZ production and consumption values were then aggregated back up to the FAF 

level for validation. Figure 4a compares the FAF-level observed and estimated production of all 

commodity groups, except six (14 groups x 5 x 2 data points = 140 observations). Commodity 

group 6 (coal and metallic ores) is excluded because there is no production of coal or metallic 

ores in California and consumption is limited to three small coal power plants and a few firms. 

Since the consumption of all commodities was not included in the structural model due to limited 

sample size, the production model is a mixed structural/independent model.  

The mean absolute percentage error (MAPE) for the California FAF-level production 

model and aggregated FAZ-level are respectively 38.4% and 38.9%. In other words there is only 

a 0.5 percentage point loss of accuracy between these two models. On the other hand, the MAPE 

for the aggregated independent FAZ production model is 44.8%.  In fact, the present error 

appears to be primarily from estimating with national level data and applying it to California, not 

(3a) (3b) 
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from scaling from FAF regions to FAZs. The total production in California predicted by the 

structural model for the FAZs differs from the total observed production by 2%. As for the 

consumption model, the MAPE also remains unchanged from the FAF-level to FAZ-level at 

33%. The total consumption in California predicted by the model differs by 7.9% from the total 

observed consumption. The results demonstrate the improved robustness of the structural model 

and the geographic scalability of the estimated parameters and hypothesized structure.  

  

FIGURE 4. Geographic scalability. Structural production model (4a) versus independent production model 

(4b). 

6 CONCLUSION  

This is the first study to propose and geographically validate a structural commodity generation 

model using only public data. SEM can capture inter-dependencies between different commodity 

groups and production and consumption, effectively inferring the unobserved supply chain, land 

use, and intrazonal supply-demand relationships without sacrificing geographical scalability.  

Several interesting empirical findings were made with the structural model. Independent 

models may overemphasize the direct effects of certain explanatory variables because of the 

inability to capture indirect effects. Several supply chain interactions can be identified by the 

model, such as the relationship between fuel and oil consumption, production of manufactured 

goods, and production of food, beverage, and tobacco products. The structural model is also able 

to explain intrazonal freight generation, such as ready-mix concrete.  

The results of this study can help to identify major data gaps and the contribution of each 

variable in the entire model. The user can prioritize the data needs to improve overall results 

based on the covariance matrix and total effect of each variable. The covariance matrix shows 

where the relationship between dependent and independent variable is weak, which may result in 

poor estimation and new variables are then required to fill the data gap. Also, improving the 

quality of variables with highest total effect will improve the model fitness.      

Given the aggregate nature of public data, the accuracy of the results may be affected by 

how poorly some commodity groups were captured in FAF. For example, farm based products, 
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fisheries, logging, construction and crude petroleum are not included in CFS. FAF used other 

data sources to estimate the flow of these commodities. On the other hand, manufactured 

products, electronics, and food and beverages are covered more in the CFS sample, so we were 

able to get better results for these groups. The results of this study serve as a benchmark so that 

future replication studies with improved data or improved structural designs can build from this 

foundation.  

Future studies should consider further specifications of commodity generation, 

distribution, or integrated land use models based on a SEM structure. Studies of this nature on 

both commodity and vehicle based freight transportation in an urban setting would be of interest 

to researchers and practitioners alike. This model framework can be readily integrated with 

disaggregate models (agent-based demand models, firm-based mode/shipment choice models) or 

assignment and simulation models (transshipment, scheduling, and queueing optimization or 

simulation).  
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