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Big data analyses reveal patterns 
and drivers of the movements of 
southern elephant seals
Jorge P. Rodríguez  1, Juan Fernández-Gracia2, Michele Thums3, Mark A. Hindell  4, Ana M. 
M. Sequeira 5, Mark G. Meekan3, Daniel P. Costa6, Christophe Guinet7, Robert G. Harcourt  8,  
Clive R. McMahon9, Monica Muelbert10, Carlos M. Duarte11 & Víctor M. Eguíluz  1

The growing number of large databases of animal tracking provides an opportunity for analyses of 
movement patterns at the scales of populations and even species. We used analytical approaches, 
developed to cope with “big data”, that require no ‘a priori’ assumptions about the behaviour of the 
target agents, to analyse a pooled tracking dataset of 272 elephant seals (Mirounga leonina) in the 
Southern Ocean, that was comprised of >500,000 location estimates collected over more than a 
decade. Our analyses showed that the displacements of these seals were described by a truncated 
power law distribution across several spatial and temporal scales, with a clear signature of directed 
movement. This pattern was evident when analysing the aggregated tracks despite a wide diversity of 
individual trajectories. We also identified marine provinces that described the migratory and foraging 
habitats of these seals. Our analysis provides evidence for the presence of intrinsic drivers of movement, 
such as memory, that cannot be detected using common models of movement behaviour. These results 
highlight the potential for “big data” techniques to provide new insights into movement behaviour 
when applied to large datasets of animal tracking.

Movement is a fundamental aspect of animal behaviour1. The need to search for food, mates and shelter shapes 
many aspects of animal ecology and is central to developing conservation and management strategies for any spe-
cies2, 3. Studies of animal movement were catalysed by the introduction of satellite-linked tags and the Argos sat-
ellite system in the late 1970’s4, 5, which for the first time allowed animals to be tracked in a near-real time across 
habitats such as the forests, skies and open oceans that had previously been largely inaccessible to researchers.

Observations describing horizontal displacements have been the most common product of satellite-linked 
tags. Analysis of these tracks can reveal the processes that underlie the movement strategies of the target species6 
and have mostly focused on the role of prey distribution in determining movement patterns7–9. However, move-
ment patterns are unlikely to be solely a response to the spatial and temporal distribution of food10, 11. Animals 
have the capacity to learn and react to important aspects of their environment for many reasons, such as repro-
duction and anti-predator behaviour12, or even fear13, 14. Some movement behaviours may even be genetically 
programmed15, 16. Examination of these ideas has been limited in the past by the small sample sizes of most 
tracking studies due to the expense of satellite tags. Such low replication led to mostly individual-based analysis 
rendering any intrinsic (learning, genetic) component of movement behaviour difficult to detect. In recent years, 
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satellite tagging has become more widespread not only in research but also as a cost-effective monitoring tool, so 
the limitation of small sample size can now be overcome through pooling data across multiple studies2, creating 
large datasets of movement. Using new powerful computational resources, these large datasets can now be subject 
to powerful numerical and analytical approaches capable of identifying collective movement patterns, such as 
those previously used in studies of human mobility17–19. Such analytical tools offer the opportunity to examine 
how animals utilise space both at the level of individuals and that of populations and species, thereby identifying 
the roles of intrinsic drivers of movement patterns.

Here, we use analytical tools originally developed for the analysis of ‘big data’ produced by studies of human 
mobility to explore movement patterns of southern elephant seals. These seals are recognized as a keystone pred-
ator within cool-temperate and Antarctic food chains, and an understanding of the drivers of their movement 
patterns is essential, given they are likely to be strongly affected by anthropogenic threats such as global warm-
ing20. Southern elephant seals are an ideal candidate with which to explore variability in movement patterns and 
space occupancy in a data-centric approach, as earlier studies have compiled large datasets composed of hundreds 
of individual tracks. Such large sample sizes reflect aspects of the life history of elephant seals that make them 
amenable to tracking studies, since they are large, long-lived animals capable of carrying tracking instruments 
with large storage and processing capacity. They are also long-distance (100s–1000s km) migrants across open 
oceans, showing fidelity to colony locations on land for breeding and moulting, offering the opportunity to deploy 
and retrieve satellite-tracking devices so that archives of high-frequency sampling can be recovered from tags. 
The aim of our study was to search for unifying patterns in the space use of elephant seals, from the scale of indi-
viduals to the entire species. In so doing, we sought to identify and quantify both extrinsic and intrinsic drivers of 
movement patterns of these animals.

Results
We analysed a dataset of 550,537 individual locations obtained from Argos platform transmitting terminals 
(PTT) deployed on 272 southern elephant seals (SES) between 2004 and 2013 at seven different locations in the 
Southern Ocean (Fig. 1, see Supplementary Fig. S1). The probability density function (pdf) of their aggregated 
displacements displayed a universal shape across several spatial and temporal scales characterized by a power-law 
scaling regime. After rescaling, dividing each displacement by the average displacement =D d

d
, the pdf of dis-

placements for a given time window T, p (d; T), led to P(D):

= −p d T d T P D( ; ) ( ) ( ), (1)1

where P(D) had a universal shape, described by a power-law with a sharp cut-off (Fig. 2a, see previous approaches 
for animal movement analysis in Supplementary Fig. S2 21, 22). For displacements shorter than the average dis-
placement, i.e., where D < 1, the behaviour was described by a power-law decay P(D) ~ D−γ, with the expo-
nent γ = 0.60 that characterized the movement. For larger displacements, D > 1, the pdf decayed abruptly. The 
scale-free behaviour observed indicated that the elephant seals used the same movement strategy across multiple 
spatial scales up to a characteristic distance corresponding to the maximum travel speed of the species. Both 
the average displacement and the mean square displacement scaled as a power of time, 〈d〉 ~ Ta and 〈d2〉 ~ Tb 
respectively, with exponents a = b/2 = 0.83 (see Supplementary Fig. S3), above the value known to correspond to 
Brownian motion (adif = 1/2). Such scaling exponents are characteristic of directed movement.

Figure 1. Description of southern elephant seals trajectories. (a) Map of all SES’s trajectories. Land is shown 
in dark grey. Different colours correspond to elephant seals tagged at seven different deployment locations, 
which are represented with star symbols: Kerguelen (yellow), Macquarie (blue), Campbell (orange), Livingston 
(magenta) and Elephant (cyan) Islands, Casey (red) and Davis (green) Stations. (b) Occupancy map of the 
trajectories. The colour scale is logarithmic, from violet (low occupancy) to yellow (high occupancy). Maps 
generated with Matplotlib Basemap Toolkit55.

http://S1
http://S2
http://S3


www.nature.com/scientificreports/

3Scientific RepoRts | 7: 112  | DOI:10.1038/s41598-017-00165-0

Further in-depth inspection of movement patterns revealed that the scale-free behaviour of elephant seals 
at micro-scales (i.e. statistical features of the displacements) translated into a complex pattern at macro-scales 
(spatial densities). Our site occupancy, that is the number of locations in a grid cell per unit area, analysis based 
on the aggregated dataset showed that a large fraction of the area used by the seals was characterized by low occu-
pancy, while a small fraction of grid cells had high occupancy (Fig. 1b). The low occupancy areas corresponded to 
long displacements conducted at relatively high speeds, while high occupancy areas were characterised by short 
displacements at low but highly variable speeds (Fig. 2b). The two pdf ’s of displacements based on occupancy 
revealed that only high-occupancy areas retained a distribution characterised by a power-law with an exponent 
of 1.17. Movements in these high-occupancy areas were thus responsible for the scale-free nature of the overall 
distribution of displacements. The occupation densities ρev were broadly distributed, with a pdf that displayed 
a power-law decay with exponent 1.88, making 80% of the observations occur in the 23.7% of grid cells that 
received the most visits (see Supplementary Fig. S4).

The general movement laws described above emerged from the aggregation of behaviours of individual south-
ern elephant seals. Focusing on the individual tracks, we analysed the spatial spread of observed trajectories, the 
impact of displacement correlations in spatial analysis, and the fidelity to particular grid cells. We found that the 
gyration radius, an indicator of the spatial dispersion of individual trajectories, ranged from <10 to 2000 km, 
highlighting the enormous variation in spatial dispersion among individuals (Fig. 3).

Previously, we showed that SES movement has two distinct main modes, described in high and low occupied 
regions (Fig. 2b), with clear evidences for directed movement (see Supplementary Fig. S3). These displacement 
features suggest the presence of correlations in the sequences of both displacements and turning angles. In order 
to test this, we compared observed individual trajectories with a reshuffling of them to break these correlations 
(see Methods and Supplementary Fig. S5), finding that the patterns of space use for actual trajectories included a 
higher number of visited grid cells than for the reshuffled trajectories (Fig. 4a inset). This means that the observed 
trajectories lead to a more extended exploration of space than would be the case in trajectories without correla-
tions. We measured the fidelity of an individual to particular grid cells with the entropy of its pattern of spatial 
visitation S, so that frequent visits to the same area led to low values of entropy, while uniform random visitation 
led to large values23, 24. The distribution of the entropy for the trajectories of individual SES revealed high variabil-
ity with most trajectories showing large entropy (>0.6), which indicates a relatively uniform probability of 

Figure 2. Analysis of displacements. (a) Probability density function (pdf) of normalized displacements D for 
0.5 day (green), 1 day (black), 4 days (blue), and 10 days (magenta). The pdf ’s collapse into a universal function: 
for displacements below the average (D < 1), the probability decays as a power-law with exponent γ = 0.60, 
while for larger displacements, the pdf decays abruptly; (b) Distribution of displacements d for origins located at 
both high (black) and low (red) occupancy grid cells with T = 1 day.
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Figure 3. Spatial extent of the trajectories. Map of the position of the centre of mass of each trajectory. Symbol 
size is proportional to the gyration radius rG; colours indicate different deployment locations (associated with 
different populations) which are represented with star symbols: Kerguelen (yellow), Macquarie (blue), Campbell 
(orange), Livingston (magenta) and Elephant (cyan) Islands, Casey (red) and Davis (green) Stations. Map 
generated with Matplotlib Basemap Toolkit55.

Figure 4. Analysis of the use of space. (a) Distribution of the limit of predictability, ΠMAX. The red line 
indicates the average of the maximum predictability distribution for reshuffled trajectories, and the shaded 
area represents the range of the limit of predictability obtained for the reshuffled trajectories within a standard 
deviation from the average. Inset: Number of visited grid cells, for each individual, for the reshuffled (Mresh) and 
the observed trajectories (Morig). Symbol size represents the limit of predictability of the individual trajectory. 
The plots (b–d) depict typical trajectories whose values for the limits of predictability are 0.069, 0.206, and 
0.999, respectively.
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visiting each grid cell of the trajectory; hence, most SES did not make repeated visits to particular grid cells (see 
Supplementary Fig. S6). From the entropy Si and the number of visited cells Mi of an individual i, we calculated its 
limit of predictability Πi

MAX(see Methods). The distribution of limits of predictability showed a smooth decay 
from the maximum around 0.2 to 0.8 (Fig. 4a), with 60% of the individual trajectories represented in the limit of 
predictability range between 0.2–0.4. However, our analysis also revealed some limit of predictability values close 
to 1, indicating that the corresponding trajectories were indeed highly predictable. In fact, longer trajectories 
(measured in terms of the number of visited grid cells) led to a uniform probability to visit each grid cell and thus 
to a low limit of predictability, whereas short trajectories led to fidelity to a few areas of the grid and then had a 
high limit of predictability (Fig. 4b–d). This analysis revealed high levels of heterogeneity among trajectories, 
highlighting again the range of individual variation in the movements of seals. Although most limits of predicta-
bility were low, we found that the limit of predictability for the reshuffled trajectories averaged at 0.18 ± 0.07 
(standard deviation), having smaller values than in the observed trajectories for most individuals.

Collective movements revealed marine provinces25, 26, geographical areas used consistently by several elephant 
seals from different sub-populations. In this analysis, we applied community detection methods to the transition 
probability matrix obtained from the trajectories, in which entries represented the flux between two cells, that 
is, the fraction of trips coming from one cell that ended up in another (see Methods). The community detection 
software identified a hierarchy of provinces (aggregated grid cells) from the most (level 0) to the least inclusive 
(numbered in successively from 0). For transitions after a day (T = 1), we found two provinces at level 0, and six 
at level 1 (Fig. 5a). The provinces also characterized the mobility range of individual seals given that 80% of the 
seals spent more than 80% of their time in a single province (Fig. 5b). Seals from Elephant and Livingston Islands 
had an overlapping province (light blue), as did those from Macquarie, Campbell and Livingstone Islands (dark 
blue), while the seals tagged at Kerguelen Island, Casey and Davis Stations shared four provinces (red) (Fig. 5c).

Discussion
The integrated analyses used here characterised both individual and collective movement behaviours of elephant 
seals, a key top-order predator in the Southern Ocean. We found that scale-free signatures of movement patterns 
emerged from these analyses were indicative of search strategies likely related to prior knowledge of the location 
of foraging grounds, thus providing evidence that memory is likely to be an intrinsic driver of the movement.

The resulting pdf of the aggregated displacements was described by a power law with an exponent smaller 
than 1. Power-law distributions are characterized by scale-freeness, leading to scale invariance: elephant seals 
used the same strategy to search their environment not only across many spatial but also across temporal scales, 
as evidenced from the collapse of the distribution function for different temporal resolution used to measure 
displacements. In the controversial27 Lévy foraging (LF) hypothesis, scaling exponents close to 1 are argued to 
occur in situation of sparsely distributed resources7. Alternatively, the probability of return to a breeding site may 

Figure 5. Marine provinces of southern elephant seals in the Southern Ocean. Marine provinces were obtained 
based on the movement of elephant seals for the transition probability matrix Ω for time window T = 1 day. (a) 
Map of the marine provinces. Red and blue colours indicate the communities at level 0, while the darkness of 
the colours separates communities at level 1. Map generated with Matplotlib Basemap Toolkit55; (b) Fraction 
of time spent at a given province per individual. Each row corresponds to a single animal, which was tagged 
at the locations indicated by the colour bar: Kerguelen Island (KI, yellow), Davis Station (DS, green), Casey 
Station (CS, red), Livingston (LI, magenta), Macquarie (MI, blue), Campbell (CI, orange) and Elephant (EI, 
cyan) Islands. The rows were divided into the colours of the provinces that each seal uses, and their lengths are 
proportional to the time spent in them; (c) Number of elephant seals visiting each marine province (MP) for 
every deployment location; marine provinces were ordered according to (a).
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control the scaling exponent of probability function distributions28, with measures of entropy showing a maxi-
mum at a scaling exponent that shifts from 2 to 1 as the probability of return increases. This situation is likely to 
occur in elephant seals, given that the majority of tracks we analysed were return journeys between breeding col-
onies and foraging grounds. When areas of high occupancy were analysed separately, seals had trajectories char-
acterised by short displacements at low speed, which were likely to be representative of foraging, with a scaling 
exponent bigger than 1. Such behaviour is also consistent with area-restricted search29. In contrast, trajectories in 
grid cells that were infrequently occupied included longer displacements that occurred at speeds twice the average 
rate. Thus, our results support the idea that these wide-ranging predators combine deterministic movement over 
very large (100–1000 s km) spatial scales11, 30 with more probabilistic movement over smaller (10–100 km) spatial 
scales31. Our evidence for such combinations of behaviour might also account for the vertical movements of ele-
phant seals32 since it is known that these deep diving animals (average dives of 300 m at night and 600 m during 
the day) also target specific foraging depths33.

The analytical techniques we applied offer a number of advantages compared to alternative approaches21, 22, 

32. We were not required to define turning points in order to resolve steps in the data, removing a priori assump-
tions about the movement of the individuals. This technique also allowed the assessment of differences in move-
ment behaviours at different time scales and importantly, enabled the description of an entire movement strategy, 
rather than just the movement assumed to correspond to foraging. The latter has been a principal goal of many 
studies of animal movement and much of this work has focused on the Lévy foraging hypothesis32, 34, 35. This 
hypothesis contends that Lévy walks are optimal search strategies for animals over a very broad range of foraging 
conditions, most typically where food is scarce and unpredictable36. This has led to a focus on resource abundance 
and distribution (and the environmental factors that determine this phenomenon) as drivers of the movement 
patterns of marine predators7. Evidence for this hypothesis is, however, equivocal; reviews of the literature have 
argued that Lévy walks are ubiquitous in many marine species32, whereas others have argued that the hypothesis 
does not adequately describe movement patterns of some animals. The Levy foraging hypothesis has also been 
challenged from several perspectives, for reasons including the unrealistic nature of underlying model and the 
lack of optimality at relevant spatial scales37, among other criticisms27. As noted above, our analysis departs from 
the Levy foraging hypothesis, since we do not identify ‘turning points’ indicative of behaviour or assume an 
underlying Lévy-like behaviour. However, the universal shape of the pdf of displacements found here supports the 
hypothesis that it is a signature of the movement pattern. Indeed, the robustness of the displacement distribution 
across temporal scales with a scaling exponent (less than 1) was outside the stable regime according to the central 
limit theorem. This result was a signature of non-Markovianity and suggests that memory was a driving force of 
movement patterns38.

Occupancy and entropy of spatial patterns of visitation were used to characterise the fidelity of elephant seals 
to particular grid cells during a track23, 24. The scale-free nature of the distribution of occupancy, the hierarchy 
of occupation, ranging from grid cells that were occupied frequently and for a long duration to others that were 
occupied briefly and rarely, were a signature of the complex movement patterns we observed. The entropy of the 
individual trajectories had a broad distribution, revealing that the seals tendency to occupy areas varied widely 
among individuals. The distribution of individual entropies peaked at a large value of around 0.9, indicating that 
most individuals visited different parts of the grid with a probability distribution close to uniform (i.e., random; 
S = 1), so that the limit of predictability was low (mostly between 0.2 and 0.4; Fig. 4), particularly when compared 
to patterns of human movement (ΠMAX = 0.9)39. However, the limit of predictability of reshuffled movement 
data of elephant seals was even lower (0.18 ± 0.07 SD; Fig. 4), pointing out that visitation patterns deviated from 
random, a result consistent with previous observations10, 11, 31. The idiosyncratic and temporally variable nature 
of the movement patterns of animals can make it difficult to characterise movement at the scale of populations or 
species. When trajectories were analysed on an individual basis, the distribution of the gyration radii revealed a 
large range of characteristic spatial scales among individuals (from <10 km up to 2000 km). Low gyration radii 
were recorded for individuals staying close to tag deployment locations, while the highest radii were recorded for 
individuals undergoing long distance migrations, independent of tag deployment location (Fig. 3). While individ-
ual seals show idiosyncratic behaviours making it challenging to formulate generic descriptions of movement at 
the species level, the combination of the results we obtained for occupancy, entropy and gyration radius suggests 
that a wide range of movement patterns is related to the presence and distance of foraging grounds relative to the 
location of the colony sites, where the animals aggregate to breed, moult or rest.

Previous approaches for the spatial representations of animal use describe individual animal tracks, so they are 
difficult to use in a population context, which requires some type of statistical aggregation of individual tracks. Our  
application of community detection techniques to the transition probability matrix given by aggregate mobility 
patterns provides an automatic, widely applicable and computationally-easy means of dividing the movement 
space into relevant sections or provinces dictated by the mobility patterns of the study species, and can even be 
applied to flows with memory40. Our community detection analysis identified geographical borders between 
areas that showed different use patterns by the seals encompassing the routes that southern elephant seals used 
to travel from their colonies to their foraging grounds and back. These methods provided the most balanced 
distribution of province size and connectivity at a time window of T = 1 day (Fig. 5). The fact that low occupancy, 
transiting areas were included in the provinces associated with each colony highlights the general utility of this 
method for identifying migration corridors between the home colonies and foraging grounds. This is important 
because such corridors are typically disregarded by traditional methods for estimating space use, such as time 
in area approaches or kernel densities. The provinces identified by our approach agree well with what is already 
known for this species. For example, the analysis captures the migratory regions for each population. However, 
as the seals are wide-ranging, there is considerable joint usage of geographic regions among the populations, and 
our new approach is able to easily account for this, clearly identifying provinces that are universally migration 
corridors, or foraging regions. Previous studies have described distinct foraging strategies among populations. 
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For example, at Kerguelen Island, seals either use sub-Antarctic foraging grounds or high-Antarctic foraging 
grounds41, and there is a similar division at Macquarie Island. These regions appear to yield contrasting energy 
gains, due to differing habitat quality, and this seems to play an important role in population trajectories. Our big 
data approach provides a quantitative basis for identifying these differing provinces which will enable rigorous 
development and testing of hypotheses regarding foraging decisions.

Through the application of big data techniques developed for studies of human movement to the tracking of 
elephant seals, we found evidence that at large spatial scales, southern elephant seals do not behave in ways con-
sistent with the assumptions of analytical approaches commonly used in animal ecology. Such approaches tend 
to be based on the idea that animal movement decisions are made purely on some current assessment of envi-
ronmental and/or resource conditions, principally the density of prey. We argue that such conceptual framework 
is incomplete, because movements are, at least in part, likely to be associated with some prior experience of the 
location of prey (i.e. memory), and with activities other than foraging. Moreover, our approach also highlights 
the ability of the analyses to quantitatively depict the idiosyncratic behaviour of individual elephant seals, by 
describing plasticity of movements in relation to the varying distances to foraging areas and position of the colony 
site. Finally, the marine province analysis revealed that elephant seals partitioned space into consistent units of 
use, or provinces, which encompassed corridors for migration and foraging locations. Such information is fun-
damental for ecological spatial planning and management tasks, as we were able to identify provinces including 
not only moulting or breeding locations, but also corridors between them, and we detected highly diverse areas in 
regions including several marine provinces. Thus, our analytical approaches not only provide a new framework 
for describing and classifying the use of space by marine animals, it also offers insights into the likely drivers of 
these patterns of movement.

Methods
Data. The dataset of locations was obtained from Argos platform transmitting terminals (PTT) deployed on 
272 individuals at seven locations in the Southern Ocean, 15 southern elephant seals tagged at Macquarie Island, 
11 at Campbell Island, 97 at Kerguelen Island, 29 at Elephant Island, 52 at Livingston Island, 24 at Casey Station 
and 44 at Davis Station (Antarctica), between 2004 and 2014 (Fig. 1a, see Supplementary Fig. S1). All deploy-
ments were made at the end of the seal annual breeding haul-out (prior to the post-breeding migration) or at 
the end of the annual moult haul-out (prior to the post-moult migration). Macquarie and Kerguelen Islands are 
breeding and moulting locations for the seals of both sexes, whereas Casey and Davis Stations are only moult-
ing (and resting) locations for predominantly non-breeding seals that are also predominantly male. The dataset 
also included adult and juvenile females and juvenile and sub-adult males. For tagging, seals were chemically 
sedated42, weighed and measured43 and a Sea Mammal Research Unit (University of St Andrews) satellite relay 
data logger (SRDL) was glued to the back or head of the seal. The combined weight of the tags and glue was 
approximately 0.5 kg, i.e. 0.15% and 0.10% of the mean departure weight of adult female southern elephant seals 
(338 ± 65 kg) and sub-adult males (469 ± 202 kg), respectively. We are confident that the instruments did not 
affect at-sea-behaviour given that the smallest instrumented seal weighed 169 kg (<0.3% of the seals’ weight). 
Previous studies have demonstrated that seals carrying twice this load (instruments up to 0.6% of their mass) were 
unaffected in either the short-term (growth rates) or the long-term (survival) by carrying these instruments44.

Seal movements at-sea were determined using the ARGOS satellite tracking system, which uses the Doppler 
shift in transmitted frequencies to estimate animal position. Positions are subsequently classified into one of seven 
location classes (LC 3, 2, 1, 0, A, B, and Z) that have a 68th percentile spatial error ranging from 0.5 km (LC 3) to 
36 km (LC B)45. Location and quality of the location estimate were provided for each uplink. The SRDLs remained 
on the seals until they either fell off or were shed with the hair during the next annual moult. State-space models46 
were used to minimize positional errors and to estimate location points along movement paths at two-hour time 
steps. All southern elephant seal data used in these analyses was collected by a large team of investigators and has 
previously been published in some form47–51.

All procedures were approved by the respective ethics committees and licensing bodies including, the 
Australian Antarctic Animal Ethics Committee (ASAC 2265, AAS 2794, AAS 4329), the Tasmanian Parks and 
Wildlife Service, the University of California, Santa Cruz and the Programa Antártico Brasileiro, and were carried 
out in accordance with current guidelines and regulations.

Probability density function (pdf) of displacements. Displacements were calculated by measuring the 
geographic distance (great circle distance) di,t(T) between two positions of the same individual trajectory i at time 
t, that were separated by a time window T, i.e., we measured the distance between locations at t and t + T. We then 
aggregated all the displacements from all the individual tracks for each time window considered to obtain the pdf 
of displacements for each time window. To compare the functional shape of the pdf at different time windows, we 
rescaled the displacements, dividing each displacement by the average displacement 〈d(T)〉, =D d T

d T
( )
( )

. The aver-
age displacement was calculated for the corresponding time window T: = ∑d T d T( ) ( )

C i t i t
1

, , , where C is the 
total number of displacements of duration T, i represents the runs for all the considered individuals and t is the 
time. The root-mean-square-displacement, for a given time T, was calculated with the square root of the average 
of the square displacements occurring after a time window T, =d T d T( ) ( )RMS

2 . We checked that different 
number of locations per individual did not influence the aggregate statistics, with an alternative analysis in which 
every individual had the same contribution to the aggregated pdf, irrespective of its number of locations in the 
dataset, obtaining results with no significant differences.

Fitting power-law distributions. We used the maximum likelihood estimation (MLE) method52, 53 for 
fitting the exponents of the power-law distributions. For Fig. 2a, we chose a truncated Pareto distribution, 
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= γ γ−

−
−

γ γ− −f D D( )
D D

1

max
1

min
1

, between the minimum displacement in our data (Dmin) and 3(Dmax), and finding the 
value of γ which maximized the log-likelihood function with numerical methods. For Supplementary Fig. S4, we 
fitted a truncated Pareto distribution between ρmin = 0.3 km−2 and ρmax = 100 km−2.

Discretization of space. We discretised the space in grid cells of resolution 0.25° × 0.25°. Each grid cell i 
was then characterized by its occupancy ρ =

∑
i

n

A
j i j

i

, , where ni,j is the number of locations of individual j that fell in 
grid cell i, j represents for all individuals, and the area of that grid cell is Ai. The resolution of 0.25° was chosen 
after examining the pdf of grid cell occupancy density for different resolutions, where we found a delta function 
for low resolutions (all the events located in a single grid cell) and also for very high resolutions (all the visited 
grid cells are visited once). We considered that the suitable resolution for this analysis was the one far from the 
limits leading to a pdf of occupancies displaying delta functions, according to our data (see Supplementary 
Fig. S4). We then ranked the grid cells according to the occupancy and considered the first third of the ranking to 
be highly occupied grid cells and all the others as low occupancy. We chose the first third of ranked grid-cells to 
compensate for the larger number of observations occurring at a few highly-occupied locations (a consequence 
of the scale-free distribution of occupancy).

Gyration radius. Using each individual track, we calculated the centre of mass of each trajectory by convert-
ing the observed locations from cylindrical to Cartesian coordinates with the origin at the Earth centre, and then 
calculating the average position of the individuals. We then calculated the gyration radius17 (i.e., the dispersion of 
the observed positions), measured as the standard deviation of the distances from every location to the centre of 
mass (Fig. 3): = ∑ → →

=r x t x[dist( ( ), )]
N i N iG
1

1, CM
2 , where →x t( )i  is the position on the Earth surface of the seal at 

time ti, →xCM is the centre of mass of the trajectory calculated by averaging the position in a three-dimensional 
sphere, and projecting the average in the sphere surface; and dist → →y z( , ) is the distance between →y  and →z  along 
the greatest circle connecting both points on the sphere.

Reshuffling of trajectories. From the observed trajectories, we reshuffled the sequence of displacements 
in such way that they kept the same pdf of displacements but without correlations. For each individual, between 
each position and the next, we calculated the projected distances of the movement on directions N-S (y axis) and 
W-E (x axis), obtaining the change in latitude ∆y and the change in longitude ∆x, i.e., a vector (∆x, ∆y) for each 
time with a recorded location. Keeping the same origin point, we obtained a sequence of vectors that we then 
randomized. The end point is defined by the origin point plus the sum of all the vectors, and therefore, the order 
of the sequence did not change the end point (see Supplementary Fig. S5).

Entropy of trajectories. The probability that an individual j visited cell i, that is, the fraction of data points 
from that seal’s trajectory located in that cell, pj(i), was used to compute the entropy of that trajectory defined as 

= − ∑S p i p i( )log ( )j i j j , where the sum runs over all visited cells. Given that individual j visited Mj areas, we nor-
malized the entropy of its trajectory by the entropy that corresponds to a uniform visitation probability 

= = − ∑ − =p S p p M, log logj M j j j junif,
1

unif unif, unif,j
. This normalization allows for direct comparison of the 

entropies of trajectories with different numbers of visited areas and informs about the complexity of the visitation 
pattern ranging between 0 (one visited cell) and 1 (uniform, every cell is visited with the same probability).

Predictability. We calculated the limit of predictability ΠMAX, a measure of the theoretical maximum proba-
bility to predict the location of a trajectory39, based on estimated entropy (S) and the number of visited cells (M). 
ΠMAX was, therefore, obtained solving the following implicit equation:

= Π + − Π −S H M( ) (1 )log( 1), (2)MAX MAX

where H(x) = −xlog(x) − (1 − x)log(1 − x).

Provinces and community detection algorithms. We identified the spatial areas of use for elephant 
seals, which we refer to as ‘provinces’, based on the transition probability matrix. Each element of this matrix, Ωij, 
measured the probability of going from the grid cell i to j after a specific time window T. The element Ωij was then 
the number of those dyadic interactions representing the visitation patterns from i to j divided by the total num-
ber of visitation patterns from i to any other cell within the prescribed time window T. Therefore, our transition 
probability matrix described a weighted directed network of the grid cells accounting for situations when the 
trajectories remained in the same grid cell or returned to it within the time window T (self-loops). We specified 
T = 1 day to identify marine provinces describing the movement of elephant seals with the community detection 
algorithm Infomap54. Infomap makes use of random walkers to explore a network and determines the existence 
of ‘communities’ by minimizing the information needed to describe a walker’s trajectory. In that way, regions 
where the random walker remained for considerable amounts of time were identified as ‘communities’, without 
the need for prior information. This method works hierarchically, i.e. by finding different levels of communities 
that have different inclusiveness. We started our analyses from the most inclusive level (level 0), and the partitions 
were increasingly smaller as we progressed in the hierarchy, mimicking the shape of a phylogenetic tree. We show 
results for the two most inclusive levels of hierarchy only: 0 and 1 (Fig. 5).
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