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Abstract

Genes involved in circadian regulation, such as circadian locomotor output cycles kaput
[CLOCK], cryptochrome [CRY1], and period [PER], have been associated with sleep outcomes in
prior animal and human research. However, it is unclear whether polymorphisms in these genes
are associated with the sleep disturbances commonly experienced by adults living with human
immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Thus, the purpose of
this study was to describe polymorphisms in selected circadian genes that are associated with
sleep duration or disruption as well as the sleep-wake rhythm strength and phase timing among
adults living with HIV/AIDS. A convenience sample of 289 adults with HIVV/AIDS was recruited
from HIV clinics and community sites in the San Francisco Bay Area. A wrist actigraph was worn
for 72 hours on weekdays to estimate sleep duration or total sleep time (TST), sleep disruption or
percentage of wake after sleep onset (WASQ), and several circadian rhythm parameters: mesor,
amplitude, the ratio of mesor to amplitude (circadian quotient), and 24-hour autocorrelation.
Circadian phase measures included clock time for peak activity (acrophase) from actigraphy
movement data, and bed time and final wake time from actigraphy and self-report. Genotyping
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was conducted for polymorphisms in 5 candidate genes involved in circadian regulation: CLOCK,
CRY], PER1, PER2, and PER3. Demographic and clinical variables were evaluated as potential
covariates. Interactions between genotype and HIV variables (i.e., viral load, years since HIV
diagnosis) were also evaluated. Controlling for potentially confounding variables (e.g., race,
gender, CD4+ T-cell count, waist circumference, medication use, smoking, depressive symptoms),
CLOCK was associated with WASO, 24-hour autocorrelation, and objectively-measured bed time;
CRY1 was associated with circadian quotient; PER1 was associated with mesor and self-reported
habitual wake time; PER2 was associated with TST, mesor, circadian quotient, 24-hour
autocorrelation, and bed and wake times; PER3 was associated with amplitude, 24-hour
autocorrelation, acrophase, and bed and wake times. Most of the observed associations involved a
significant interaction between genotype and HIV. In this chronic illness population,
polymorphisms in several circadian genes were associated with measures of sleep disruption and
timing. These findings extend the evidence for an association between genetic variability in
circadian regulation and sleep outcomes to include the sleep-wake patterns experienced by adults
living with HIV/AIDS. These results provide direction for future intervention research related to
circadian sleep-wake behavior patterns.
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Introduction

Sleep disturbance is a common symptom in chronic illness populations, and it is estimated
that up to 75% of adults living with human immunodeficiency virus or acquired
immunodeficiency syndrome (HIV/AIDS) experience sleep problems (Rubinstein &
Selwyn, 1998). The most common type of sleep problem in HIV disease is difficulty with
sleep maintenance (Phillips et al., 2005; Lee et al., 2012; Gamaldo et al., 2013b), although
short sleep duration (Lee et al., 2012; Gamaldo et al., 2013a) and disturbed sleep-wake
rhythm (Taibi et al., 2013) are also reported. Sleep problems can be influenced by mood
disorders, lifestyle factors, and HIV disease processes and treatments. In addition, the
inability to work may influence one’s regular daytime schedule of activity and affect
circadian rhythms as well as sleep. Not surprisingly, sleep patterns and disturbances have
also been associated with genes involved in circadian regulation, such as circadian
locomotor output cycles kaput [CLOCK], cryptochrome [CRY1], and period [PERL, PER2,
PER3] (Allebrandt et al., 2010; Ojeda et al., 2013; Zhang et al., 2013; Hida et al., 2014;
Parsons et al., 2014). However, there are no published genetic association studies evaluating
the extent to which such circadian genes might account for phenotypic sleep problems
commonly experienced by adults living with HIV. Therefore, the purpose of this study was
to describe associations between polymorphisms in selected candidate genes related to
circadian regulation (i.e., CLOCK, CRY1, PER1, PER2, PER3) and phenotypes that include
sleep duration, maintenance, and circadian sleep-wake phase timing and rhythm strength in
a sample of adults living with HIV.
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Circadian rhythms are under control of the circadian oscillator found in the anterior
hypothalamus (Takahashi et al., 2008). The circadian oscillator is considered the master
circadian clock and regulates the 24-hour cycle through interacting positive and negative
feedback loops (Ko & Takahashi, 2006). These feedback loops act at the levels of molecular
clock gene transcription and protein degradation (Dunlap, 1999; Lincoln et al., 2003; Ko &
Takahashi, 2006). The core clock genes that drive circadian-related feedback loops include
CLOCK, CRY1, PER1, PER2, and PER3 (Osland et al., 2011). CLOCK acts as a positive
regulator, while CRY1, PER1, PER2, and PER3 act as negative regulators (Gekakis et al.,
1998; Shearman et al., 2000; Ko & Takahashi, 2006). Circadian rhythms in the human body
are driven by these clock genes, and we hypothesize that polymorphisms of CLOCK, CRY1,
PER1, PER2, and PER3 will be associated with sleep-wake phenotypes in adults with HIV/
AIDS. Circadian rhythm phenotype can also be influenced by employment, with fixed work
schedules reinforcing 24-hour entrainment. Thus, unemployment and disability in a sample
of adults with HIV infection may more readily reveal underlying circadian preferences.

Materials and Methods

Participants and Setting

Measures

The Symptom and Genetic Study was a longitudinal study aimed at identifying biomarkers
of symptom experience among HIV-infected adults (Lee et al., 2009). This analysis focuses
on potential circadian-related genetic markers of insomnia related to poor sleep maintenance
and duration, as well as circadian rhythm and timing. The Committee on Human Research at
the University of California at San Francisco (UCSF) approved the study protocol.
Participants were recruited using flyers posted at local HIV clinics and community sites.
Participants provided written informed consent and signed a Health Insurance Portability
and Accountability Act release to access their protected medical information for this
research. Study visits were conducted at a clinic visit in the UCSF Clinical Research Center.

Eligible participants were English-speaking adults at least 18 years of age in whom HIV had
been diagnosed at least 30 days before enrollment. To specifically address HIV-related
symptom experience, potential participants were excluded if they currently used illicit drugs
(as determined by self-report or by positive urine drug testing); worked nights (i.e., at least 4
hours between midnight and 06:00 a.m.); reported having bipolar disorder, schizophrenia, or
dementia; or were pregnant within the prior 3 months. Participants were not excluded for
insomnia, but were excluded for other diagnosed sleep disorders, such as apnea or
narcolepsy.

Demographic, clinical, and laboratory characteristics—A demographic
questionnaire was used to collect information about the participant’s age, gender, race/
ethnicity, and employment status. Health history (e.g., time since HIV diagnosis, prior AIDS
diagnosis) and current medication regimen were obtained by self-report. Medications were
categorized as antiretroviral therapy (ART), sleep medication, anxiolytic, antidepressant,
neuroleptic, opiate, antiemetic, or anti-histamine based on the potential for such medications
to affect sleep. Lifestyle factors likely to exacerbate sleep disturbance (smoking and daily
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consumption of caffeine and alcohol) were assessed using a 3-day diary. Trained research
staff obtained measures of body mass index (BMI, weight in kilograms divided by squared
height in meters) and waist circumference during the clinic office visit. CD4+ T-cell count
and HIV viral load values were obtained from the most recent laboratory report in the
patient’s medical record and were usually obtained from morning blood draws. Because
circadian genes have been widely associated with mood disorders (Bunney et al., 2015), the
Center for Epidemiological Studies — Depression Scale (CES-D) (Radloff, 1977) was used
to assess depressive symptomatology as a potentially confounding variable. The CES-D has
well-established concurrent and construct validity, and the Cronbach’s alpha coefficient in
this study was .88. A cutpoint of 16 is used to identify individuals at risk for clinical
depression.

Gene selection and genotyping—Five candidate genes related to circadian regulation
were selected for analysis. Genomic DNA was extracted from peripheral blood mononuclear
cells and maintained by the UCSF Genomic Markers of Symptoms Tissue Bank (Aouizerat
et al., 2009) using the PUREGene DNA Isolation System (Invitrogen, Carlsbad, CA). Of the
350 participants enrolled in the study, DNA could be isolated from 348 samples.

Genotyping was performed blinded to clinical status and included positive and negative
controls. DNA samples were quantitated with a Nanodrop Spectrophotometer (ND-1000;
Thermo Fisher Scientific, Waltham, MA) and normalized to a concentration of 50 ng/puL
(diluted in 10 mM Tris/1 mM ethylenediaminetetraacetic acid [EDTA]). Samples were
genotyped using the GoldenGate genotyping platform (lllumina, San Diego, CA) and
processed according to the standard protocol using GenomeStudio (I1lumina). Signal
intensity profiles and resulting genotype call rates for each single nucleotide polymorphism
(SNP) were visually inspected by two blinded reviewers. Disagreements were resolved by a
third reviewer.

A combination of tagging SNPs and literature driven SNPs (i.e., SNPs reported as being
associated with altered function) were selected for analysis. Tagging SNPs were required to
be common (defined as having a minor allele frequency = 0.05) in public databases (e.g.,
HapMap [http://www.hapmap.org]). In order to ensure robust genetic association analyses,
quality-control filtering of SNPs was performed. All SNPs had call rates of > 95% and five
SNPs were excluded with Hardy-Weinberg p-values of < 0.001. To maximize the power to
detect genetic associations due to common genetic risk factors, SNPs with allele frequencies
of <5% (n = 1) or with fewer than three individuals homozygous for the rare allele (n = 3)
were also excluded from analysis. In order to control for potential confounding due to
population substructure (e.g., race/ethnicity), 106 ancestry informative marker (AIM) SNPs
were genotyped. Nineteen SNPs among the 5 candidate genes (i.e., CLOCK, CRY1, PER1,
PER2, PER3) passed all quality-control filters and were included in the genetic association
analyses.

Actigraphy and sleep diary—Sleep and activity were estimated with a noninvasive
battery-operated wrist actigraph microprocessor with a piezoelectric beam that detects
movement and acceleration (Mini Motionlogger Actigraph model AAM-32, Ambulatory
Monitoring, Inc. Ardsley, NY). Actigraphy provides continuous movement counts and data
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were sampled in 30-second epochs using zero-crossing mode. The actigraphy monitor was
worn continuously on the nondominant wrist for 72 hours on three consecutive weekdays
between Monday and Friday to control for potential weekend variability and to reduce
subject burden in this chronic illness population. Sleep diaries were also completed each
morning and evening of the actigraphy monitoring period for the purpose of cross-validating
bed times and wake times. Wrist actigraphy has been validated with polysomnography
measures of sleep and wake time for healthy and disturbed sleepers (Cole et al., 1992;
Ancoli-lIsrael et al., 1997; Lichstein et al., 2006).

To reduce researcher scoring bias, actigraphy data were analyzed using an automatic sleep
scoring program with the Cole-Kripke algorithm (Action4® Software Program, Ambulatory
Monitoring Inc.). Bedtime and final wake times used in sleep scoring were determined by
one of two approaches: (1) participant pressing the event marker on the actigraph to indicate
“lights out” and “lights on” or (2) if no reliable event marker indication, the diary entry of
clock time was used if it matched with a 50% change in movement during the same 10-min
block of time on actigraphy. The Action 4 automatic scoring program was also used to
conduct cosinor analysis and calculate lag correlations to estimate circadian rhythm strength
and phase timing phenotypes. To obtain valid and reliable circadian rhythm estimates, we
required a minimum of 48 hours of continuous actigraphy data with no more than 60
consecutive minutes of missing data on any given day and a minimum of either two peaks
and a nadir or one peak and two nadirs; actigraphy recordings that did not meet these criteria
(n = 28) were excluded from analyses.

Sleep disruption and duration phenotypes were estimated using two parameters: 1) wake
after sleep onset (WASO) as a measure of disrupted sleep or poor sleep maintenance, and 2)
total sleep time (TST) in minutes as a measure of sleep duration. WASQO was standardized
as a percentage of the person’s sleep period to control for varying sleep durations. The
intraclass correlation coefficient across the 3 nights was 0.83 for WASO and 0.76 for TST.
The 3-night means for WASO and TST were used for all analyses.

Circadian rhythm strength phenotypes were estimated from four parameters derived from
the cosinor analysis and lag correlations: 1) middle estimated statistic of rhythm (mesor),
which estimates the 24-hour adjusted mean level of activity, 2) amplitude, the difference
between the mesor and peak (or nadir) activity, 3) circadian quotient, the ratio of amplitude
to mesor, and 4) 24-hour autorcorrelation, an indicator of circadian rhythm strength.

Circadian phase timing phenotypes were estimated using three parameters: acrophase (time
of peak of activity derived from the cosinor analysis) and bed times and wake times as
estimates of sleep timing. The intraclass correlation coefficient across the 3 nights was 0.79
for bedtime, and 0.85 for wake time, and 3-night means were used for all analyses.

Self-reported habitual bed times, wake times, and chronotype—In addition to the
3-day sleep diary entries, habitual bed times and wake times were taken from the two items
in the Pittsburgh Sleep Quality Index (PSQI) that ask about usual bed time and wake time
during the prior month (Buysse et al., 1989). In cases where the participant reported a range
for bed-time or final wake time, the range was averaged to obtain the estimates. The 19-item
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Horne-Ostberg Morningness-Eveningness Questionnaire (MEQ) was administered to all
participants (Horne & Ostberg, 1976). While valid and reliable in most healthy populations,
many of our participants had difficulty completing the entire 19-item instrument and thus,
this measure was used to validate other measures of circadian phase, but was not included as
a phenotype in this analysis.

Statistical Analysis

All statistical analyses were conducted using Stata (version 13, College Station, TX).
Descriptive statistics were used to summarize demographic and clinical characteristics.
Square root transformation was sufficient to normalize skewed distributions for WASO,
wake time (PSQI), and CD4+ T-cell count, log transformation was sufficient to normalize
acrophase, bed time (actigraphy and PSQI), and wake time (actigraphy) values, and square
transformation was sufficient to normalize mesor and amplitude values. CD4+ T-cell count
and HIV viral load were analyzed both as continuous variables and in clinically meaningful
categories. Demographic and clinical associations with the sleep and rhythm parameters
were evaluated using Spearman correlations, independent sample t-tests, or analysis of
variance with Scheffé post hoc tests. Allele and genotype frequencies were determined by
gene counting. Hardy-Weinberg equilibrium was assessed by the chi-square exact test.
Measures of linkage disequilibrium (i.e., D’ and r2) were computed from participants’
genotypes with Haploview 4.1 (Barrett et al., 2005).

Unadjusted genetic associations with each sleep/rhythm parameter were determined using
linear regression models. Three genetic models (i.e., additive, dominant, recessive) were
tested, and the model that best fit the data by maximizing the significance of the p-value
(barring trivial improvements of delta < 10%) was reported for each SNP. Genetic markers
were further evaluated in adjusted linear regression models controlling for relevant
covariates. Given evidence that sleep phenotypes differ by ancestry (Halder et al., 2015), all
regression models controlled for genomic estimates of ancestry (described below) as well as
self-reported race/ethnicity (i.e., White/Caucasian, Black/African American, other). In
addition, all demographic and clinical variables associated with the sleep/rhythm parameters
(p<.10) were evaluated as potential covariates. Covariates were retained if their significance
was p<.05 prior to including genotype in the model. A model was fit for each genetic
marker to estimate its unique contribution to the sleep/rhythm parameter when controlling
for relevant demographic and clinical covariates. Given prior evidence that HIV interacts
with CLOCK and PER3 (Konig et al., 2008), interactions between each genetic marker and
measures of HIV exposure (i.e., HIV viral load, time since HIV diagnosis) were also
evaluated.

Ancestry informative markers (AIMs) are used to minimize bias due to population
substructure (Hoggart et al., 2003; Halder et al., 2008; Tian et al., 2008). Homogeneity in
ancestry among participants was estimated by principal component analysis with orthogonal
rotation (Price et al., 2006) using HelixTree software (GoldenHelix, Bozeman, MT). With
106 AIMs included in this analysis, principal components (PC) were sought that
distinguished the major racial/ethnic groups in the sample (i.e., White/Caucasian, Black/
African American, other) by visual inspection of scatterplots of orthogonal PCs (e.g., PC1
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versus PC2, PC2 versus PC3). This procedure was repeated until no discernible clustering of
participants by self-reported race/ethnicity was possible. The first three PCs for the AlMs
were included as genomic estimates of ancestry in all adjusted regression models to allow
for potential confounding due to genomic differences in ancestry.

Sample Characteristics

A convenience sample of 350 adults with HIV was enrolled in the study, and 61 participants
were excluded prior to analysis: 31 screened positive for illicit drugs, 2 were unable to
submit a urine or blood sample, and 28 had incomplete or invalid actigraphy data. Sample
characteristics for the 289 participants included in the analysis are presented in Table 1. The
sample was ethnically diverse and predominantly male, reflecting the local population of
adults with HIV. Participants had been living with HIV for an average of 12.1 £ 6.9 years;
AIDS had been diagnosed in 51%; 29% with a current AIDS diagnosis had a CD4+ T-cell
count below 200 cells/mm3. Most were unemployed and receiving medical disability
assistance (84%), 71% were currently receiving ART, and study participants were taking a
daily average of 5.9 + 4.0 different medications (median 6, range 0-20).

Sleep duration (TST) and disruption (WASO)

The sample generally had short sleep duration and poor sleep maintenance. Almost half
(45%, n = 130) of the sample averaged less than 6 hours of sleep at night, and 35% (n = 101)
had mean WASO values of more than 25% of their sleep period. As shown in Table 1,
WASO and TST were both associated with race, and higher WASO was also associated with
unemployment. Of the clinical variables, lower CD4+ T-cell count and antiemetic
medication use were both associated with higher WASO and lower TST; depressive
symptoms and neuroleptic medication were associated with more TST, and opiate
medication was associated with more WASO. Consumption of alcohol or caffeine was
unrelated to WASO and TST, but smoking was associated with shorter sleep duration (TST).
Higher BMI and larger waist circumference were associated with shorter TST among men,
but this pattern was not evident among women and was weaker among transgender adults.

Circadian rhythm strength

All circadian rhythm strength parameters were obtained from the wrist actigraphy analyses.
The mean mesor value was 68.6 + 14.5, mean amplitude was 45.6 £+ 10.6, and mean
circadian quotient was 0.68 + 0.15. The mean 24-hour autocorrelation was 0.38 £ 0.16. As
shown in Table 2, these rhythm parameters differed by gender, race, employment status,
CDA4+ T-cell count, viral load, smoking status, depressive symptoms, as well as use of sleep,
opiate, and antidepressant medication. In general, stronger circadian rhythms were observed
for women, Caucasians, and participants who were employed, did not smoke, were not
depressed, and did not take sleep, opiate or antidepressant medication. Stronger rhythms
were also associated with higher CD4+ T-cell counts and lower viral load. Among men,
higher BMI and larger waist circumference were associated with lower circadian quotients.
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Circadian phase timing

Measures of circadian phase were obtained from both the wrist actigraphy and self-report
questionnaires. The sample had a mean acrophase of 14:53 + 1:31, a mean bed time of 23:00
+ 1:29 by actigraphy, and 22:36 £1:38 by PSQI self-report. Mean wake time was 7:07 +
1:28 by actigraphy and 7:02 + 1:43 by PSQI self-report. For the subset of 214 participants
who also completed the entire MEQ, the correlations between the MEQ and our five
measures of circadian phase ranged from 0.41 to 0.52 (all p<.001). As shown in Table 3,
measures of circadian phase differed by race, employment, AIDS diagnosis, ART, smoking
status, and use of opiate medication or alcohol. In general, later circadian phase timing was
observed among Caucasians and participants who were employed, diagnosed with AIDS,
taking ART, consumed alcohol, and did not smoke or take opiate medication. Among men,
higher BMI and larger waist circumference were associated with earlier acrophase and wake
time. Depressive symptoms were associated with slightly later wake times, but only by self-
report.

Genetic Associations with Sleep Disruption (WASO) and Duration (TST)

Of the 19 SNPs examined, 4 SNPs (i.e., PER1 rs2253820, PER2 rs10198215 and
rs10462023, PER3 rs2640908) in 3 of the 5 candidate genes were significantly associated
with WASQO in unadjusted analyses, and 5 SNPs (i.e., CLOCK rs11932595, PER1
rs2253820, and PER2 rs10198215, rs2304674, and rs10462023) in 3 of the 5 candidate
genes were significantly associated with TST in unadjusted analyses (Supplemental Table
1). To better estimate the magnitude of the genetic associations when adjusting for relevant
covariates, multiple linear regression models were fit predicting WASO, and separate
models were fit predicting TST. Genomic estimates of ancestry and self-reported race/
ethnicity were forced into all models. All WASO models were also adjusted for gender, the
interaction of gender and race/ethnicity, CD4+ T-cell count, waist circumference, and use of
opiate or antiemetic medication. All TST models were also adjusted for gender, use of
antiemetic or neuroleptic medication, smoking status, and waist circumference. One of the
TST models (i.e., PER2 rs10198215) was also adjusted for viral load and its significant
interaction with genotype.

Of the 4 SNPs associated with WASO and the 5 SNPs associated with TST in unadjusted
analyses (Supplemental Table 1), only one (PER2 rs10198215) remained significant in
adjusted analyses (Table 4). PER2 rs10198215 and its interaction with viral load were
significantly associated with TST after adjusting for relevant covariates (Table 5). The
overall model explained 20.6% of the variance in TST, with the genotype and its interaction
with viral load accounting for 3.1% of the variance (Table 5). Adjusted differences in TST
by this PER2 polymorphism are illustrated in Figure 1.

In addition, two CLOCK SNPs (rs3736544 and rs11735267) that were not associated with
WASO in bivariate analyses were significantly associated with WASO after adjusting for
relevant covariates (Table 4). Due to the complete collinearity, or shared variance, between
these SNPs (i.e., linkage disequilibrium r2 = 1.0), we selected rs3736544 as a surrogate for
rs11735267, and the model for rs11735267 is not shown (Table 5). The overall model
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explained 24.7% of the variance in WASO, with genotype accounting for 2.4% of the
variance. Adjusted differences in WASO by CLOCK genotype are illustrated in Figure 1.

Genetic Associations with Circadian Rhythm Strength

Of the 19 SNPs examined for the candidate genes in unadjusted analyses, three PER2 SNPs
(i.e., rs10198215, rs2304674, rs10462023) were associated with mesor and circadian
quotient, one PER3 SNP (rs2640908) was associated with 24-hour autocorrelation, and none
were associated with amplitude (Supplemental Table 2). All multivariate models adjusted
for Genomic estimates of ancestry and self-reported race/ethnicity, and an interaction
between genotype and either viral load or years since HIV diagnosis was included in the
model when significant (Table 4). In addition, mesor models also adjusted for anti-
depressant use, and amplitude models adjusted for gender, viral load, anti-depressant use,
and smoking status. Circadian quotient models adjusted for gender, employment status, and
smoking status, and 24-hour autocorrelation models adjusted for gender, smoking status, use
of anti-depressant or opiate medication, and depressive symptoms (i.e., CES-D scores).

In adjusted analyses, 10 of the 19 SNPs across CLOCK, CRY1, PER1, PER2, and PER3
were associated with one or more of the circadian rhythm strength measures, for a total of 12
observed associations (Table 4). Five associations included an interaction between the
polymorphism and viral load, five associations included an interaction with the number of
years since HIV diagnosis, one included interactions with both HIV variables, and one
association did not include an interaction with either HIV variable. Three of the adjusted
associations were also significant in the unadjusted analyses, but 9 polymorphisms were
only significantly associated with circadian rhythm strength after adjusting for other relevant
covariates. As shown in Table 5, the overall models explained between 8.2% and 20.5% of
the variance in the circadian rhythm strength measures, with genotype accounting for 1.5%
to 3.8% of the variance. Adjusted differences in 24-hour autocorrelation rhythm strength by
genotype are illustrated in Figure 2.

Genetic Associations with Circadian Phase Timing

Of the 19 SNPs examined for the candidate genes, 6 SNPs were associated with at least one
of the five circadian phase timing parameters in unadjusted analyses (Supplemental Table
3). Acrophase and actigraphy bed time were associated with PER3 rs707465; habitual bed
time was associated with CLOCK rs6850524 and PER2 rs10198215. Actigraphy wake time
was associated with PER2 rs10198215 and four PER3 SNPs (i.e., 15228729, rs228682,
rs707465, rs2640908) and habitual wake time was associated with three PER3 SNPs (i.e.,
rs228729, rs228682, rs707465).

As in prior adjusted analyses, genomic estimates of ancestry and self-reported race/ethnicity
were forced into all multivariate models, and an interaction between genotype and either
viral load or years since HIV diagnosis was included in the model when significant (Table
4). In addition, acrophase models adjusted for smoking status and use of alcohol, actigraphy
bed time models adjusted for employment status and AIDS diagnosis, and actigraphy wake
time models adjusted for smoking status and waist circumference. All habitual bed time and
wake time models adjusted for smoking status.
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In adjusted analyses, 4 SNPs that were significant in bivariate analyses (i.e., PER3
rs228729, rs228682, rs707465 and rs2640908) remained associated with at least one of the
circadian timing parameters after adjusting for relevant covariates (Table 4). In addition, 5
SNPs that were not significant in bivariate analyses (i.e., CLOCK rs1801260 and rs2070062,
PER1 rs2253820, PER2 rs10462023, PER3 rs1012477) were significantly associated with at
least one of the circadian phase parameters after adjusting for relevant covariates. Of the 16
observed genetic associations, 3 associations involved an interaction between the
polymorphism and viral load, 6 associations included an interaction with the number of
years since HIV diagnosis, and 7 associations did not include an interaction. Overall, the
adjusted models explained between 6.7% and 15.8% of the variance in the circadian phase
measures, with genotype accounting for 1.2% to 3.6% of the variance (Table 5). Adjusted
differences in wake times by genotype are illustrated in Figure 3.

Discussion

The results of this study indicate that polymorphisms in several circadian genes (i.e.,
CLOCK, CRY1, PER1, PER2, PERR3) are associated with poor sleep maintenance and
disturbed sleep-wake rhythms among adults living with HIVV/AIDS. These findings are
consistent with some prior studies documenting associations between circadian genes and
sleep behavior in healthy populations, but to our knowledge, this is the first study to report
such associations among adults with chronic illness where the majority are receiving
unemployment disability compensation, and thus do not have fixed schedules related to
employment. Mood disorders have been associated with circadian genes in prior studies, but
controlling for depressive symptoms had minimal effect on the observed associations in this
study.

CLOCK polymorphisms have been previously associated with short sleep duration
(Allebrandt et al., 2010; Parsons et al., 2014), insomnia risk (Serretti et al., 2005; Ziv-Gal et
al., 2013), and diurnal preference (Katzenberg et al., 1998), but other studies have yielded
conflicting findings (Serretti et al., 2010; Barclay et al., 2011). The CLOCK gene, located on
4912, encodes for a protein that is an important transcription factor for the molecular
circadian clock and plays an important role in circadian rhythm regulation (Allebrandt et al.,
2010; Ziv-Gal et al., 2013). In the present study, there were several unadjusted CLOCK
associations with TST and circadian phase timing. After adjusting for genomic estimates of
ancestry, self-reported race/ethnicity, and other relevant covariates, genetic variations in
CLOCK were associated with poor sleep maintenance as indicated by high WASO
(rs3736544), with circadian rhythm strength, as indicated by 24-hour autocorrelation (i.e.,
rs6849474 and its interaction with years since HIV diagnosis), and with circadian phase as
indicated by actigraphy bed time (i.e, interaction between rs2070062 and the number of
years since HIV diagnosis). CLOCK rs3736544 is a synonymous polymorphism, and it has
been suggested that this SNP may affect biological function in the brain (Kishi et al., 2009).
Our findings suggest CLOCK rs3736544 may play a role in regulating sleep maintenance.
Furthermore, CLOCK rs3736544 is in complete linkage disequilibrium with rs11735267,
which is part of haplotype block of six SNPs (i.e., rs534654, rs2412648, rs4340844,
rs11735267, rs6850524, rs7660668) previously associated with insomnia in bipolar disorder
(Shi et al., 2008). In the present study, CLOCK rs11735267 was also associated with
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WASO, but was not reported in Table 5 due to its complete linkage disequilibrium with
rs3736544. CLOCK rs6849474 is located in an intron and CLOCK rs2070062 is located in
the 5" untranslated region. Little is known about the functional impacts of these SNPs on the
expressions of the gene. The present findings indicate that the number of years since HIV
diagnosis may attenuate the relationship between these SNPs and circadian rhythm strength
in the HIV population.

Similarly, CRY1, PER1, PER2 and PER3 have been previously associated with diurnal
preference (Ojeda et al., 2013; Parsons et al., 2014), sleep quality, and insomnia severity
(Brower et al., 2012), although some studies have reported contradictory findings (Barclay
etal., 2011; Osland et al., 2011). CRY1, a protein-coding gene, plays a major role in
repressing the transcription of CLOCK/BMAL1 and activating the transcription of PER (Ko
& Takahashi, 2006; Weger et al., 2011; Hua et al., 2014). An interaction between CRY1
rs10746075 and number of years since HIV diagnosis was associated with circadian
quotient. Little is known about the effects of this intronic SNP on sleep-wake rhythms. The
findings in the present study suggest that longer HIV exposure may relate to the effects of
this SNP on circadian rhythm strength in adults with HIV infection.

A previous study reported an association between PER1 synonymous rs2735611 and diurnal
preference (Carpen et al., 2006). In the present study, PER1 SNPs were associated with
mesor (i.e., interaction between rs885747 and number of years since HIV diagnosis,
interaction between rs2253820 and number of years since HIV diagnosis) and waketime
based on self-report (interaction between rs2253820 and viral load). PER1 rs885747 is an
intronic SNP associated with risk of more aggressive prostate cancer and autistic disorder
(Nicholas et al., 2007; Zhu et al., 2009). PER1 rs2253820 is a synonymous SNP, which has
not been associated with sleep-related parameters or other outcomes to date. Our findings
suggest that these two SNPs may affect circadian rhythm strength and circadian rhythm
timing through interacting with viral load as well as longer HIV exposure. Replication
studies focusing on these interactions are warranted.

PER2 has been previously associated with self-reported sleep duration (Parsons et al., 2014)
and diurnal preference (Carpen et al., 2005; Lee et al., 2011; Ojeda et al., 2013). Although
the present study did not evaluate the same polymorphisms as these prior studies, all three of
the intronic SNPs examined in the present study (i.e., rs10198215, rs2304674, rs10462023)
were associated with either circadian rhythm strength or phase in adjusted models, often
interacting with either viral load or years since HIV diagnosis. PER2 rs10462023 has been
associated with depression (Lavebratt et al., 2010) and psychosis (Liu et al., 2015), but to
our knowledge, these three SNPs have not been associated with sleep or other circadian-
related outcomes. In addition to its links to sleep duration and diurnal preference, PER2 has
been associated with reward behavior (Forbes et al., 2012), cocaine addiction (Shumay et
al., 2012), and alcohol consumption (Blomeyer et al., 2013). In one study (Comasco et al.,
2010), alcohol consumption among adolescent boys was associated with an interaction
between a PER2 polymorphism and self-reported sleep problems. Given the prevalence of
substance use and sleep disturbance among adults living with HIV, future studies might
investigate whether similar associations exist in this population as well.
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The PER3 polymorphism most commonly associated with diurnal preference, the coding
region variable number tandem repeat (VNTR; rs57875989), was not evaluated in the
present study. However, several other PER3 SNPs (i.e., rs228729, rs228682, rs1012477,
rs707465, rs4908482, rs2640908) were associated with either circadian rhythm strength or
phase. Inhibition of PER3 expression in cell culture results in the inhibition of the early
stages of HIV replication (Konig et al., 2008); however, it is unclear if the inhibition is
bidirectional. Moreover, whether the variations in PER3 identified herein influence the
PER3-mediated inhibition of HIV replication is unknown. A PER2 SNP was associated with
self-reported wake time, and the varying associations between PER2 and PERS across the
circadian timing measures may reflect the challenges of comparing self-report and
objectively-measured sleep parameters.

Sleep timing and duration are affected by a homeostatic process and a circadian process
(Daan et al., 1984; Borbely, 1998). Circadian process refers to the circadian clock that is
regulated by clock genes such as CLOCK, CRY, and PER (Allebrandt et al., 2010; Osland et
al., 2011). The association between circadian phase timing and PER3 rs707465 (an intronic
SNP) was especially strong in our participants. PER3 rs707465 was associated with
acrophase and wake time (habitual and actigraphy) rather than bedtime. These results would
suggest that bedtimes are more behaviorally based, while final wake time is genetically
influenced by PER3. Given the strong relationship between PER3 rs707465 and circadian
phase in the present study, it is possible that this SNP may be in linkage disequilibrium with
an unmeasured functional polymorphism elsewhere in the PER3 gene, and further
investigation is warranted.

PER3 rs2640908 is a synonymous polymorphism (p.Thr977) associated with circadian
rhythm strength (autocorrelation) and circadian phase (objectively measured wake time) in
our sample. PER3 rs2640908 is thought to be related to overall survival of hepatocellular
carcinoma (Zhao et al., 2012), but little is known about the effects of the SNP on sleep
patterns or sleep disturbance in adults with HIV/AIDS.

In this racially/ethnically diverse sample of adults with chronic illness, adjusting for the
influence of potentially confounding variables was essential for the identification of genetic
associations. Of the 27 unadjusted associations reported, only eleven were significant in
adjusted analyses. Furthermore, 17 associations were revealed after adjusting for potential
confounders and/or accounting for a possible interaction between genotype and HIV. These
findings highlight the importance of identifying and controlling for potentially confounding
variables to inform the design of validation studies. Race/ethnicity, waist circumference, use
of medications, and smoking were the most common confounders, although their relative
influence varied across sleep-wake rhythm parameters. Another recent study reported
similar racial differences in sleep disruption and duration as observed in our study and also
found that African ancestry is associated with a lower percentage of slow wave sleep
(Halder et al., 2015). While our study did not assess slow wave sleep, such racial differences
underscore the importance of controlling for genomic estimates of ancestry in genetic
association studies. Lifestyle variables, such as smoking and alcohol use, were also relevant
covariates for some of the rhythm strength and timing phenotypes. These lifestyle behaviors
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are likely to be potential efforts to self-manage dysynchrony between genetically-based
biological rhythms and societal or cultural rhythms.

We also controlled for HIV-related clinical variables, such as CD4+ T-cell count and viral
load, to better isolate genetic associations from disease processes. Although salient HIV
clinical variables were associated with some sleep-wake rhythm parameters in bivariate
analyses, they were generally not sufficiently significant to warrant being retained as
covariates in the adjusted models, suggesting they played a relatively modest role after
controlling for other variables. Nonetheless, the majority of the adjusted associations
observed did include a significant interaction between genotype and either HIV viral load or
the number of years since HIV diagnosis. These two variables were selected for the
interactions because they each represent different aspects of HIV exposure: viral load as an
estimate of the magnitude of exposure to the virus, and time since HIV diagnosis as an
estimate of duration of viral exposure. Because these two HIV variables were generally
found to interact with different polymorphisms, our findings suggest that HIV may interact
with genotype in different ways. For example, some interactions (e.g., PER3 and viral load)
represent direct interactions of gene and virus functioning while other interactions may be
due to the indirect impact of poorly controlled viral load on biological functioning (e.g.,
chronic inflammation and sleep disruption). In addition, evaluation of the beta coefficients
for both the genotypes and HIV-genotype interactions would indicate that more intense or
longer HIV exposure may attenuate the genotypic effects on phenotype. These interactions
were evaluated in light of prior evidence of HIV interactions with both CLOCK and PER3,
but the present findings suggest that there may also be interactions between HIV and CRY1,
PER1, and PER2. Thus, replication of these interactions in other studies and further
exploration of the underlying mechanisms is needed.

This study has a number of limitations that need to be acknowledged. Participants were
screened for sleep disorders by self-report rather than formal clinical polysomnography
(PSG) assessment. While actigraphy estimates of sleep duration (TST) and disruption
(WASO) are not a substitute for PSG estimates, bedtimes and final wake times during
actigraphy monitoring are not influenced by PSG electrode monitoring or laboratory
environments and are thus more indicative of habitual bedtime and wake time behaviors
than PSG. In addition, SNP associations with actigraphy circadian phase estimates of bed
times and wake times over 3 weekdays differed in some respects from SNP associations
with habitual self-reported bedtimes and wake times. When an individual is asked to
indicate a habitual bedtime and final wake time, considering the past month, the response
may reflect either a stable and consistent behavior, or represent an average of a fluctuating
behavior. Responses with a range of bed and wake times may be indicative of a weak
circadian rhythm when not influenced by a daily schedule or routine.

Furthermore, circadian sleep-wake rhythm phenotypes were determined from 48-72
consecutive hours on week days, and longer objective monitoring periods (at least 7 days is
recommended) would likely have resulted in more reliable estimates, particularly for 24-
hour autocorrelation. In addition, by not monitoring weekend sleep/wake behaviors, the
potential for weekend sleep rhythm variability could not be evaluated. Although blood
draws for CD4+ T-cell counts usually occurred in the morning, blood draws occurring later
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in the day could have resulted in lower counts related to the circadian nadir (Haus &
Smolensky, 1999), thereby limiting the reliability and validity of this measure. Analysis of
additional molecular clock genes may result in the identification of additional gene
variations associated with these sleep traits. Although this representative sample of adults
living with HIV infection in the United States was adequate for our analysis, the sample size
was modest for a genetic association study, and larger samples are needed to extend these
findings and validate the associations found in our sample. Moreover, this study did not
include a comparison group of HIV-seronegative adults, and thus it remains unclear whether
the findings are specific to adults with HIVV/AIDS or can be generalized to other populations.
Findings from this study do, however, contribute to the growing evidence for an association
between genes that regulate circadian rhythms and human sleep behavior, regardless of the
clinical characteristics of a chronic illness population. Further research is warranted to
develop circadian interventions for improving sleep and reducing circadian rhythm
disturbances in this patient population. Finally, the PER3 VNTR polymorphism has been
strongly linked to circadian rhythmicity and tolerance of sleep debt, but was not evaluated in
the present study. Future examination of this polymorphism is also warranted.
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Figure 1.
Adjusted mean wake after sleep onset (WASO) and total sleep time (TST) by genotype.

Each dose of the CLOCK rs3736544 rare allele (A) was associated with an increase in wake
after sleep onset (p=.005). Carriers of two doses of the PER2 rs10198215 rare allele (GG)
had significantly longer TST than carriers of the common allele (A; p=.028). The interaction
between PER2 rs10198215 and viral load resulted in minimal differences in TST and is not
shown.
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CLOCK rs6849474 PER2? rs2304674  PER3 rs228729  PER3 rs2640908
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Adjusted mean 24-hour autocorrelation by genotype. Carriers of two doses of the CLOCK
rs6849474 rare allele (AA) had a weaker circadian sleep-wake rhythm than carriers of the
common allele (G; p=.003). Carriers of the PER2 rs2304674 rare allele (C) had a stronger
circadian sleep-wake rhythm than carriers of two doses of the common allele (TT; p=.031).
Carriers of the PER3 rs228729 rare allele (A) had a weaker circadian sleep-wake rhythm
than carriers of two doses of the common allele (GG; p =.011). Lastly, carriers of two doses
of the PER3 rs2640908 rare allele (TT) had a stronger circadian sleep-wake rhythm than
carriers of the common allele (C; p=.041). The genotype-HIV interactions had minimal
impact on 24-hour autocorrelation and are not shown.

Chronobiol Int. Author manuscript; available in PMC 2016 November 01.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Leeetal.

Page 20

8:00
PER?2 rs10462023 PER3 rs707465
7:30 ;
1 T t T
v 7:00 - L
E
= |
o 630
<
S X
3 6:00
5:30
5:00 . ' ' ' ' ' ' ' ' ' '
GG/GA AA GG/GA AA AA/AG GG AA/AG GG
Actigraphy  Self-report Actigraphy  Self-report
Genotype
Figure 3.

Adjusted mean wake times (actigraphy and self-report) by PER2 rs10462023 and PER3
rs707465 genotype. Carriers of two doses of the PER2 rs10462023 rare allele (AA) or the
PER3 rs707465 rare allele (G) had a significantly earlier wake time by both actigraphy and
self-report than carriers of the common allele (G for PER2 rs10462023 and A for PER3
rs707465; all p<.05). The genotype-HIV interactions had minimal impact on wake time and
are not shown.
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Table 4

Page 27

Patterns of adjusted associations between genotypes, their interactions with HIV, and sleep/circadian rhythm

measures

GENE  SNP

SLEEP DISRUPTION
AND DURATION
(SNP-HIV interaction)

CIRCADIAN RHYTHM
STRENGTH (SNP-HIV
interaction)

CIRCADIAN RHYTHM PHASE (SNP-HIV

interaction)

CLOCK  rs1801260

rs3736544
s6849474
rs11932595
rs11735267

1s2070062
rs6850524

WASO (none)

WASO (none)b

AUTO (X YRS)

BED-A (x YRS) @

BED-A (x YRS)

CRY1 rs10746075

CQ (x YRS)

PER1 2253820
rs885747

MESOR (x YRS)
MESOR (x YRS)

WAKE-P (x VL)

PER2 rs10198215

TST (x VL)C

MESOR (x VVL)C

CQ (x VL, YRS)Sd

rs2304674 AUTO (x YRS)

rs10462023 BED-A (none)
WAKE-A (x VL, YRs)d
WAKE-P (none)

PER3 5228729 AMP (x VL) WAKE-P (x YRS)C
AUTO (x VL)

rs228682 WAKE-A (none) ©

rs1012477 AMP (x VL) WAKE-P (x VL)

rs707465 ACRO (none)©
WAKE-A (none) ©
WAKE-P (none)©

rs4908482 AMP (x VL)

rs2640908 BED-A (x YRS)

AUTO (none)C

WAKE-A (YRS) €

Interactions (x) between genotype and HIV are listed in parentheses: none, no significant interaction; VL, interaction with viral load (log-

transformed); YRS, interaction with years since HIV diagnosis.

ACRO, acrophase; AMP, amplitude; AUTO, 24-hour autocorrelation; BED-A, bed time by actigraphy; BED-P, habitual bed time by self-report
PSQI; CLOCK, circadian locomotor output cycles kaput gene; CRY, cryptochrome gene; CQ, circadian quotient (amplitude/mesor); PER, period
circadian clock gene; PSQI, Pittsburgh Sleep Quality Index; SNP, single nucleotide polymorphism; TST, total sleep time; WAKE-A, wake time by

actigraphy; WAKE-P, habitual wake time by self-report PSQI; WASO, wake after sleep onset.

aCLOCK rs1801260 was in complete disequilibrium with CLOCK rs2070062.
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bCLOCK rs11735267 was in complete disequilibrium with CLOCK rs3736544.

This association was also significant in unadjusted analyses.

dThe genotype interacted with both viral load and years since HIV diagnosis in separate models.
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