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Abstract

The mountains of the Western United States provide a vital natural service 
through the storage and release of mountain snowpack, lessening impacts of
seasonal aridity and satiating summer water demand. However, climate 
change continues to undermine these important processes. To understand 
how snowpack may change in the headwaters of California's major 
reservoirs, the North American Coordinated Regional Climate Downscaling 
Experiment is analyzed to assess peak water volume, peak timing, 
accumulation rate, melt rate, and snow season length across both latitudinal 
and elevational gradients. Under a high‐emissions scenario, end‐of‐century 
peak snowpack timing occurs 4 weeks earlier and peak water volume is 
79.3% lower. The largest reductions are above Shasta, Oroville, and Folsom 
and between 0‐ and 2,000‐m elevations. Regional climate model and global 
forcing data set choice is important in determining historical snowpack 
character, yet by end century all models show a significant and similar 
decline in mountain snowpack.

Plain Language Summary

Mountains are natural water towers that store snowpack in winter and 
release it as snowmelt during spring to summer. However, climate change 
has and continues to undermine this natural service. To answer where and 
when water resource management may be impacted by a future of low‐to‐no
snowpack, we can leverage climate models, which are able to project the 
future conditions of mountain snowpack under various assumptions of global 
greenhouse gas emissions. In this study, we use five unique climate models 
under a high‐emissions scenario to evaluate a set of snowpack measures 
upstream of 10 California reservoirs. These 10 reservoirs represent nearly 
half of California's surface storage and by end century could face a 79% 
reduction in peak snowpack water volume. This work provides detailed 
guidance on the mountain snow conditions policymakers, water managers, 
and scientists will encounter in addressing adaptive resiliency in the face of 
climate change.



1 Introduction

North American mountains comprise a quarter of the continent's land surface

but store 60% of the 1,365 million acre‐feet (MAF) of annual peak snow 

water (Wrzesien et al., 2018). Water budgets of Western United States are 

largely dependent on mountain snowpack, which provides three fourths of 

the water supply via snowmelt (Palmer, 1988). In California, the Sierra 

Nevada mountain range supplies 60% of the consumptive water use and 

supplements the state's reservoir storage capacity by 72% through mountain

snowpack (Bales et al., 2011; Dettinger & Anderson, 2015). The recent 2012–

2016 drought, which featured record‐low snowpack and subsequently 

strained water resources, provided a poignant reminder of the importance of 

mountain snowpack to California's economy and population (Belmecheri et 

al., 2016). Insufficient water availability during this period led to a loss of 2.7 

billion dollars in agricultural revenue, 21,000 jobs, and a diminished ski 

season length and quality and led to a statewide mandatory urban water use

reduction of 25% (Mote et al., 2016).

Long‐term observational records reveal that the average volume and peak 

timing of mountain snowpack is decreasing and shifting earlier in the season 

(Kapnick & Hall, 2010, 2012; Mote et al., 2005). In addition, snow drought 

conditions akin to 2012–2016 could become more common and severe in the

future (Berg & Hall, 2017; Harpold et al., 2017; Huang et al., 2018; Ullrich et 

al., 2018). Sierra Nevada mountain snowpack is largely derived from a few 

extreme precipitation events that arrive in the form of atmospheric rivers. 

Because the temperatures of these events often hover at or near freezing, 

climatological warming has the potential to more readily transform snow 

events into rain events, which are in turn counterproductive for snowpack 

accumulation (Bales et al., 2006; Dettinger et al., 2011; Gershunov et al., 

2017; Gimeno et al., 2014; Guan et al., 2013).

Climate model simulations corroborate observed decreasing trends in 

mountain snowpack and show a future of consistent low‐to‐no snowpack 

largely due to surface warming and augmentation in precipitation phase 

associated with anthropogenic climate change (Cayan et al., 2008; Pierce et 

al., 2008; Pierce & Cayan, 2013). Recent work comparing bias‐corrected 

statistically downscaled global climate model (GCM) simulations, a variable‐



resolution GCM simulation, and a coordinated set of regional climate model 

simulations concluded that the Sierra Nevada may lose between 30% and 

60% of average snowpack by midcentury (Brekke et al., 2013; Maurer et al., 

2007; Mearns et al., 2012, 2013; Rhoades et al., 2016; Rhoades, Ullrich, et 

al., 2018). These studies, in combination with others in the fourth National 

Climate Assessment, led to the conclusion that with little‐to‐no climate 

change mitigation, and without changes to current water management 

strategies, there is very high confidence that reoccurring and persistent 

hydrological drought will become commonplace by the end of this century 

(Wehner et al., 2017).

As water managers look ahead to a future with decreasing snowpack, there 

is a need for more detailed information about the speed with which snow 

conditions are changing in different geographic locations and whether the 

choice of downscaling methodology has important implications on this, 

especially within catchment regions of major reservoirs. There is also a need 

to understand how climate change will affect seasonal and interannual 

variability in snow dynamics. However, the degree to which climate models 

and downscaling tools can adequately characterize changing snow dynamics 

at the spatial and temporal scales required has not been fully investigated. 

The magnitude of the impact of climate change on snow dynamics is 

affected by a number of interacting processes such as changes in both the 

mean and interannual variability of storm track location, precipitation phase, 

and the snow‐albedo feedback (Huang & Ullrich, 2017; Letcher & Minder, 

2015; Mountain Research Initiative EDW Working Group et al., 2015; Qu & 

Hall, 2007; Rhoades, Ullrich, et al., 2018; Sun et al., 2016).

To date, Pierce and Cayan (2013) has been the only study to systematically 

evaluate a broad range of snow measures in the Western United States 

within the larger scope of climate model simulations imposed by climate 

change scenarios. The authors used statistical downscaling to add regional 

detail to 13 CMIP5 GCM simulations. By end century, they found significant 

decline in the fraction of snow water equivalent per precipitation event and 

the persistence of mountain snowpack, especially in coastal mountains such 

as the Cascades and Sierra Nevada. Although statistical downscaling 

approaches provide a computationally efficient means to downscale GCM 



projections to higher resolution, the relationships built into statistical 

downscaling during the historical training period can break down under 

climate change due to the lack of positive feedback loops (e.g., snow‐albedo 

feedback) and modifications in synoptic‐to‐regional scale interactions 

(Walton et al., 2015; Walton et al., 2017). Both of these are captured by 

more computationally intensive dynamical downscaling and/or hybrid 

dynamical‐statistical downscaling approaches.

In California, a series of hybrid dynamical‐statistical downscaling efforts 

evaluated climate change influences on snow cover fraction and area and 

snowmelt timing and runoff throughout the Sierra Nevada as well as more 

focused efforts in understanding changes to precipitation phase and its 

influence on snowpack totals in the southern Sierra Nevada (Berg & Hall, 

2017; Huang et al., 2018; Schwartz et al., 2017; Sun et al., 2016; Walton et 

al., 2017). More broadly, several single‐model dynamical downscaling efforts 

have focused on various aspects of snowpack loss such as rainfall‐to‐snowfall

ratios, frequency of rain‐on‐snow events, peak snow water equivalent (SWE) 

amount and timing, and snowmelt rate in the major mountain ranges of the 

Western United States using both climate change scenarios and psuedo‐

global warming approaches (Ashfaq et al., 2013; Minder et al., 2018; 

Musselman et al., 2017, 2018; Rasmussen et al., 2014; Rhoades, Ullrich, et 

al., 2018).

With that said, even among dynamical downscaling approaches, significant 

historical biases have been identified in their ability to capture key features 

of the seasonal snow accumulation and melt cycle including the timing and 

magnitude of peak SWE, mean accumulation rate, and mean melt rate, all of 

which vary with model resolution and subgrid‐scale parameterizations 

(Rhoades, Jones, et al., 2018). Given the range in quantified model skill for 

capturing historical snow dynamics, an important question is how the choice 

of model, or downscaling methodology, affects future projections of snow 

conditions and dynamics that might be used in a water management 

planning context.

In this study, we aim to understand how the character of Sierra Nevada 

snowpack will change in a detailed fashion using process‐level metrics to 

quantify seasonal dynamics at spatial and temporal scales of relevance for 



major reservoir operations in California. We further examine how historic 

biases in these metrics affect future projections across an ensemble of 

regional climate models. We employ the multimetric framework from 

Rhoades, Jones, et al. (2018), referred to as the SWE triangle, to evaluate 

snowpack in the headwater regions of 10 major reservoirs in California under

a high‐emissions scenario. The SWE triangle allows for a systematic 

evaluation of the snow season at a process level using metrics that 

characterize unique features of the snow season including peak water 

volume, peak timing, average accumulation and melt rate, and snow season 

length. Consequently, this framework provides a more comprehensive 

assessment of model veracity beyond one measure of skill (i.e., average 

depth of winter season snowpack) and has the potential to elucidate 

compensating biases that may exist. To maximize the utility of the SWE 

triangle multimetric framework we apply it across latitudinal and elevational 

gradients to understand their role in shaping mountain snowpack.

In the following sections, we aim to answer four major questions surrounding

the regional spatiotemporal change in Sierra Nevada mountain snowpack:

(1) How will snowpack change in the headwater regions of major surface 
reservoirs?
(2) What are the latitudinal dependencies of snowpack change?
(3) How does snowpack change across elevational gradients?
(4) Does the choice of regional climate model influence future projections of 
snowpack?

2 Data and Methods

This study assesses snowpack statistics using the SWE triangle methodology 

of Rhoades, Jones, et al. (2018). The six SWE triangle metrics are a simple, 

informative means to quantify the key features of the annual snow season. 

These metrics include the snowpack accumulation start date, the snowpack 

accumulation rate (mm/day), the snowpack accumulation peak date and 

peak water volume at this date (MAF), the snowpack melt rate (mm/day), the

complete melt date, and the length of the accumulation and melt season 

(days). Hereafter, the term peak water volume will refer to the volume of 

peak SWE in MAF (1 MAF = 1.23348 km3).



To evaluate a wide range of RCM simulations, we utilize nine simulations 

within the North American Coordinated Regional Climate Downscaling 

Experiment (NA‐CORDEX, Mearns et al., 2018) comprised of six RCMs that 

are forced by five GCM simulations. These simulations are listed in 

supporting information Table S1. More details about these simulations can be

found in Mearns et al. (2012, 2013). The minimum requirement for inclusion 

in this study was that daily SWE output must be available for 20 simulated 

years over a historical (1985–2005), midcentury (2039–2059), and end‐

century (2079–2099) time period. Each of the future simulations were forced 

by the Representative Concentration Pathway (RCP) 8.5 (the high‐emissions 

scenario), which assumes high population growth, modest technological 

changes on energy intensity, and limited‐to‐no globally enacted climate 

change policies associated with greenhouse gas emissions (Riahi et al., 

2011). RCP8.5 was chosen for this analysis because our current greenhouse 

gas trajectory is on course with this emission scenario, the temperature 

response of RCP8.5 is similar to RCP4.5 (midrange emissions scenario) at 

midcentury and by end‐century RCP8.5 likely represents an upper bound on 

snowpack changes (Hawkins & Sutton, 2009).

The nine NA‐CORDEX simulations will be evaluated akin to Rhoades, Jones, et

al. (2018) by first regridding them to a common resolution (12 km) using the 

Earth System Modeling Framework and then masking them across 10 

headwater regions generated using U.S. Geological Survey Hydrologic Unit 8‐

digit Classifications and a surface water hydrologic connectivity algorithm 

(Tesfa et al., 2011). The headwater regions for this study were chosen as 

they directly feed into 10 of the major reservoirs of California: Shasta, 

Oroville, Folsom, New Melones, Don Pedro, Exchequer, Pine Flat, Terminus, 

Success, and Isabella (supporting information Figure S1). In total, these 10 

reservoirs represent 40% of the surface water storage for the State. To 

examine the elevation dependence of snowpack loss SWE triangle metrics 

will also be assessed at 100‐m intervals up to the median maximum 

elevation of 2,500 m across the 10 headwater regions.

The Landsat‐Era Sierra Nevada Snow Reanalysis (SNSR) product by Margulis 

et al. (2016) will be used to compare the NA‐CORDEX ensemble historical 

model skill across the SWE triangle metrics. The SNSR SWE estimates are 



derived from a Bayesian data assimilation method that utilizes 

probabilistically downscaled meteorological inputs from the North American 

Land and Data Assimilation Database phase 2 and snow cover 

area/vegetation cover fractions from the National Aeronautics and Space 

Administration Landsat 5, 7, and 8 satellite data across 20 watersheds in the 

Sierra Nevada. A more detailed comparison between SWE observation‐based

and model‐based snow products can be found in Rhoades, Jones, et al. 

(2018).

Although the NA‐CORDEX ensemble only provides simulation data at 25‐ and 

50‐km resolutions, coarser than generally preferred for mountain snowpack 

products (Ikeda et al., 2010; Letcher & Minder, 2015; Pavelsky et al., 2011; 

Wrzesien et al., 2015; Wrzesien et al., 2018), it is nonetheless a significant 

improvement over other multimodel ensembles such as the Coupled Model 

Intercomparison Project phase 5 (CMIP5) GCM ensemble. Further, it is at a 

sufficiently high resolution to still provide value for snowpack assessment 

when factoring in the important trade‐offs between model resolution, 

subgrid‐scale parameterizations, and global forcing data set (Rhoades, 

Ullrich, Zarzycki, et al., 2018; Xu et al., 2018).

3 How Will Snowpack Change in the Headwater Regions of Major Surface 
Reservoirs?

To understand the general characteristics of snowpack change in the 

watersheds of each major reservoir, we first evaluate the daily climatological

change in snowpack from 1985–2005 to 2039–2059 and 2079–2099 across 

the 10 headwater regions. SWE triangles for each of the NA‐CORDEX 

simulations are presented in Figure 1, and summary statistics are presented 

in supporting information Table S2. Further visualizations of interannual 

variability via individual water year SWE triangles for all nine NA‐CORDEX 

simulations are presented in supporting information Figures S1 and S2.



The peak water volume across the 10 reservoir headwater regions in 1985–

2005 is 8.76 MAF for the nine NA‐CORDEX simulations. Under future 

projections, the peak water volume declines by 54.4% to 4.00 MAF by 2039–

2059 and 79.3% to 1.81 MAF by 2079–2099. This decline is accompanied by 

a SWE peak accumulation date that occurs 13 days earlier than historical by 

2039–2059 and 25 days earlier than historical by 2079–2099 (to water year 

day 125 or 3 February). Snow season length, or the accumulation season 

plus the melt season, is shortened by 20 days by 2039–2059 and 39 days by 

2079–2099, with an equally diminished accumulation and melt season. The 

shorter snow season is driven by a reduction in total snowfall and/or 

increased ablation. This is shown by the steady reduction in the snowpack 

accumulation rate from 1.41 to 0.72 to 0.37 mm/day from 1985–2005 to 

2039–2059 to 2079–2099. The decline in the snowpack accumulation rate is 

mirrored by a decline in snowpack melt rate. However, the snowpack melt 

rate is generally twice that of the snowpack accumulation rate across all 

time periods.



Overall, these findings corroborate previous regional downscaling results 

that snowpack in California will decline substantially by midcentury and end 

century under a high‐emissions scenario. Our analysis expands the number 

of regional climate models assessed in California and evaluates the 

simulations across a consistent set of snow metrics that elucidates 

agreement or disagreement in the representation of the snow season 

historically and under climate change forcing. The 73% to 95% decline in 

peak water volume by end‐century across the nine simulations broadens the 

range of potential change but is still consistent with past literature. For 

example, Sun et al. (2016) calculated that 1 April SWE in the southernmost 

portions of the Sierra Nevada may decline by 46–74% (68–95%) across 

comparable elevations to this study by 2041–2060 (2081–2100). Using a 

variable‐resolution GCM, Rhoades, Ullrich, et al. (2018) observed that Sierra 

Nevada mean winter SWE could decline by 30–60% by 2040–2065 across 

several downscaling methods and 82% by 2075–2100. Pierce and Cayan 

(2013) claimed a more conservative estimate of changes in winter season 

SWE in the Sierra Nevada with an 80% probability of a 20% decline by 2040–

2069 up to a 60% decline by 2070–2099. Loss of Sierra Nevada winter 

season SWE will be further exacerbated during drought years as shown by 

Berg and Hall (2017) and Ullrich et al. (2018) through the recreation of a 

2012–2016‐like drought at midcentury and end century. Next, we evaluate 

the important spatial and temporal nuances of change in the California 

headwater regions.

4 What Are the Latitudinal Dependencies of Snowpack Change?

Climate change is hypothesized to impact California's precipitation 

characteristics, and therefore snowpack, via modifications to the intensity of 

extreme events and a northward shift in both the mean and interannual 

variability of winter season storm tracks (Kossin et al., 2017; Walsh et al., 

2014). The latter hypothesis was shown more conclusively in GCMs in the 

most recent CMIP5 than in earlier CMIPs, and as shown in Neelin et al. (2013)

the five GCMs used as boundary conditions to the NA‐CORDEX ensemble are 

in agreement of increased precipitation change over northern California by 

end century under a high‐emissions scenario.



To evaluate the potential latitudinal dependence of snowpack change across 

the NA‐CORDEX simulations, we combine the 10 headwater regions into 

three aggregate regions. These aggregates include the three northern 

regions (i.e., Shasta, Oroville, and Folsom), which span latitudes 38.6° to 

42.4°N and have a total area of 33,480 km2, the three central regions (i.e., 

New Melones, Don Pedro, and Exchequer), which span latitudes 37.5° to 

38.5°N and have a total area of 8,999 km2, and the four southern regions 

(i.e., Pine Flat, Terminus, Success, and Isabella), which span latitudes 35.4° 

to 37.2°N and have a total area of 11,807 km2.

A plot of each of the 10 headwater regions is given in Figure 2 along with 

histograms for each SWE triangle metric across all time periods. In the three 

northern regions, the NA‐CORDEX ensemble mean peak water volume 

declines by 59.5% by 2039–2059 and up to 83.8% by 2079–2099, or 4.63 

MAF to 1.87 and 0.75 MAF. This decline is coupled with a shorter snow 

season length that over 1985–2005 was 162 days and shortens 22 days by 

2039–2059 and 41 days by 2079–2099. Similar changes were found in the 

central and southern regions as well. In the central regions, a 48.4% decline 

in peak water volume was found by 2039–2059 and increases to 73.4% by 

2079–2099 from 2.43 MAF to 1.25 and 0.65 MAF coinciding with a reduction 

in the historical snow season length of 186 days by 20 and 37 days. Southern

regions decline by 48.8% in peak water volume from 1.70 to 0.87 MAF by 

2039–2059 and 75.6%, or 0.42 MAF, by 2079–2099 and a reduction in 

historical snow season length from 164 days by 18 and 38 days, 

respectively.



The greatest loss in the NA‐CORDEX ensemble average peak water volume is

in the northern latitudes, nearly double that found in the central and 

southern latitudes combined. A latitudinal dependence is found over 2039–

2059 with a 59.5% decline in the northern headwater regions and 48.4% and

48.8% in the central and southern headwater regions. Similarly, over 2079–

2099 the decline was 10% higher in the northern headwater regions than in 

the central and southern headwater regions with reductions of 83.8%, 

73.4%, and 75.6%, respectively. Therefore, given the dramatic snow loss in 

the NA‐CORDEX simulations, especially in the northern regions of California, 

and the findings of Neelin et al. (2013) it is likely that projected increases in 

precipitation in northern California comes primarily as rainfall rather than 

snowfall by end century. The implications of this phenomena across 

elevation gradients is explored in more detail in the subsequent section.

5 How Does Snowpack Change Across Elevational Gradients?

Climate change is expected to impact precipitation phase through a shift 

from snowfall to rainfall, especially at the surface (Huang & Ullrich, 2017; 

Rhoades, Ullrich, et al., 2018). This is particularly important for the northern 

reaches of the Sierra Nevada where elevations are, on average, lower than 

those found in the southern portions of the Sierra Nevada. For example, 

across the NA‐CORDEX simulations the average (maximum) elevation in the 

headwater regions of the northernmost reservoirs, Shasta, Oroville, and 



Folsom, is 1,320 m (1,730 m), whereas the southernmost reservoirs, Pine 

Flat, Terminus, and Isabella, is 1,670 m (2,150 m).

Figure 3 shows the changes in the NA‐CORDEX ensemble average SWE 

triangle metrics for the 10 headwater regions up to 2,500 m, the median 

maximum elevation shared across NA‐CORDEX simulations. To evaluate 

potential impacts surrounding precipitation phase with elevation, we first 

evaluate snowpack accumulation rates across the 10 headwater regions. In 

1985–2005, accumulation rates vary from 0.58 to 4.14 mm/day near 

monotonically for every 100 m of elevation gain. By 2039–2059, snowpack 

accumulation rates diminish 71.5% at 0–500 m, 54.4 to 64.8% between 500 

and 2,000 m, and 37.1% at 2,000–2,500 m. We attribute this change to 

elevation‐dependent warming, whereby surface temperatures warm due to 

anthropogenic climate change leading to more variability in the extent and 

duration of the freezing line and a higher propensity to snowpack ripening 

(Mountain Research Initiative EDW Working Group et al., 2015; Rangwala & 

Miller, 2012; Qixiang et al., 2018). Changes to the freezing line increase the 

ephemerality of snow cover, which modifies the local albedo, and can lead to

further warming as more shortwave and longwave radiation is absorbed and 

reemitted. By 2079–2099, snowpack accumulation rates reduce to 77.1–

80.3% between 0‐ and 2,000‐m elevations from historical rates. Thus, 

snowpack accumulation rates found in 1985–2005 at 0–500m are equivalent 

to those found at 1,500–2,000 m by 2039–2059 and 2,000–2,500 m by 2079–

2099.



In addition to shifts in accumulation rates, peak snowpack timing and spring 

snowmelt are particularly important to water managers who are tasked with 

balancing competing interests between flood management, reservoir 

storage, and the maintenance of species habitat in the spring season. The 

peak timing of snowpack, often assumed to be 1 April in California, is an 

important indicator of the start of the melt season. Across NA‐CORDEX 

simulations the historical snowpack peak accumulation date ranges between 

water year day 125 (3 February) to 154 (4 March) across 0–2,500 m. By 

2079–2099, this date shifts 1 to 3 weeks earlier. Akin to snowpack 

accumulation rates, an elevation gradient in snowpack melt rates is also 

shown. However, unlike snowpack accumulation rates, unique low‐to‐middle 

and middle‐to‐high elevation dependencies are seen. For example, at 0‐ to 

1,000‐m, 1,000‐ to 2,000‐m, and 2,000‐ to 2,500‐m elevations, historical 

snowpack melt rates were 1.59, 3.61, and 7.37 mm/day, respectively. By 

2039–2059, snowpack melt rates diminish to 15% at 0–500 m and 2,000–

2,500 m and up to 65% between 500 and 1,500 m relative to 1985–2005. 

The smaller change in snowpack melt rates at lower elevations is likely 

because low‐to‐no snow is deposited, whereas at middle elevations, where 

larger changes are seen, the variability of the snowline is maximized. By 

2079–2099, snowpack melt rates contract to 67–73% of historical rates 

across all elevations.

Thus, the NA‐CORDEX ensemble projects that by midcentury and end‐

century snowpack accumulation at higher elevations will resemble those that

were 1,500–2,000 m lower in elevation historically. Coupled with this, an 

earlier peak timing of 1 to 3 weeks is shown. In addition, slower snowmelt in 

a warming world has been corroborated by previous studies, for example, 

Musselman et al. (2017), and is partly due to less snow accumulation in early

winter leading to less available snow to melt but also due to shortwave 

radiation constraints as the snowpack peak accumulation date shifts earlier 

in the season when seasonal latitudinal gradients in shortwave radiation are 

maximized. We next evaluate the influence of model choice on future 

projections of snow measures.

6 Does the Choice of Regional Climate Model Influence Future Projections of 
Snowpack?



Besides physical mechanisms, regional climate model choice has important 

implications on simulated land‐atmosphere interactions through differences 

in atmospheric internal variability and structural and parameter decisions 

made in the representation of snowpack within the land surface model (Chen

et al., 2014; McCrary et al., 2017; Mudryk et al., 2015; Raleigh et al., 2015; 

Rhoades, Jones, et al., 2018; Slater et al., 2001). To evaluate the influence of

regional climate model choice on the projection of snowpack within the 10 

headwater regions of California, we first evaluate each NA‐CORDEX 

simulation independently.

Figure 4 shows the daily climate SWE triangle metrics across each of the 

nine NA‐CORDEX simulations for 1985–2005, 2039–2059, and 2079–2099. 

The SNSR SWE observational product daily climate mean and 20‐year min, 

interquartile range, median, and max are also shown. Although there were 

large differences in magnitude, all nine NA‐CORDEX models agree on the 

incremental downward trend from 1985–2005 to 2039–2059 to 2079–2099 in

snowpack accumulation rate, peak water volume, and snowpack melt rate. 

This agreement by midcentury and end century occurs despite the relatively 

wide range of historical results. Similarly, snowpack peak accumulation date 

moves earlier across most of the simulations from 1985–2005 to 2039–2059 

and 2079–2099; however, nonintuitively, the two Hadley Global Environment 

Model 2 (HadGEM2)_Weather Research and Forecasting model (WRF) 

simulations highlight a later timing. All NA‐CORDEX simulations are in 

agreement that total snowpack season length will diminish by midcentury 

and end century. However, there were disagreements on the portion of the 

total snowpack season length that led to the decline, especially at 

midcentury. For example, six models project a shortening of snowpack 

accumulation season length from 1985–2005 to 2079–2099, whereas three 

models project a lengthening. However, for snowpack melt season length 

four simulations project a shortening and five a lengthening. Even among the

four WRF simulations, which all use the same dynamical core, subgrid‐scale 

parameterizations, and Noah land surface model, there is significant 

divergence in snowpack melt season length. All four simulations agree to 

within a week of one another on the average historical melt season length. 

Yet by 2039–2059 and 2079–2099, the range in melt season length diverges 

between models by 48 and 51 days, respectively. Overall, the NA‐CORDEX 



models are largely in agreement about the magnitude, direction, and model 

order in the changes in accumulation rate, peak water volume, and melt rate

from historical to midcentury and end‐century, indicated by the color‐filled 

regions in Figure 4. More dispersion, even in model order, is seen in peak 

accumulation date and accumulation and melt season length.



In addition to regional climate model choice, the implications of global model

forcing data set is a particularly important factor for the simulation of 

mountain snowpack as it determines the timing and location of storms as 



they enter the regional climate model domain. Further, regional climate 

model resolution is an important factor as it determines how well the 

underlying topography and land surface cover is represented. In the nine NA‐

CORDEX simulations, two simulations were run at 25 km and the other seven

were simulated at 50 km, with the WRF model offering the only simulations 

that include both 50 and 25 km. Across the seven 50‐km simulations, both 

the lowest and highest daily climate snowpack accumulation rates, peak 

water volumes, snowpack melt rates, and snow season lengths occur in 

1985–2005. The range in NA‐CORDEX model simulations is 1.86 mm/day, 

14.1 MAF, 4.38 mm/day, and 21 days. For the two 25‐km simulations, a 

spread in SWE triangle metrics is also found; however, it is less severe with 

differences of 0.83 mm/day, 7.4 MAF, 1.72 mm/day, and 16 days. However, 

when comparing the trends in SWE triangle metrics at 50 versus 25 km from 

1985–2005 to 2039–2059, and 2079–2099, no significant difference is found 

across most of the SWE triangle metrics. For example, snowpack 

accumulation rate, peak water volume, and snow season length all show 

decreasing trends across resolutions from 1985–2005 to 2039–2059 and 

2079–2099. The largest disagreement between simulations run at 50 versus 

25 km is in snowpack melt rate, specifically from 1985–2005 to 2039–2059. 

Simulations run at 50 versus 25 km highlight that snowpack melt rate 

reduces by 63.4% versus 49.8% from 1985–2005 to 2039–2059. Despite 

model dispersion in 2039–2059, by 2079–2099, reductions in snowpack melt 

rates more closely align (i.e., snowpack melt rate reductions range between 

77.5% and 82.3% of historical values).

Focusing on just the WRF simulations that were run at 50 and 25 km, 

differences between Geophysical Fluid Dynamics Laboratory model 

(GFDL)_WRF at 50 versus 25 km are much larger than for HadGEM2_WRF. 

For instance, the GFDL_WRF simulation at 25 km compared with 50 km has 

snowpack accumulation and melt rates that are 0.60 and 1.33 mm/day faster

and peak water volumes that are 5.24 MAF larger in the historical period. 

Yet, by midcentury and end century, GFDL_WRF simulations at 50 and 25 km

project more similar reductions in snowpack accumulation rate and peak 

water volume. Within the HadGEM2_WRF simulations the largest resolution‐

dependent difference is found at midcentury in snowpack melt rate and melt 

season length. When comparing the impacts of global model forcing data set



between GFDL_WRF and HadGEM2_WRF some additional differences are 

seen. GFDL‐forced WRF simulations have nearly double the snowpack 

accumulation rates of HadGEM2‐forced WRF simulations over the historical 

period, which amplifies to five times at midcentury and end century. The 

significant difference in snowpack accumulation rate led to considerable 

differences in peak water volume of 6.01 MAF. Interestingly, GFDL‐forced 

simulations project a progressively shortened accumulation season length 

from the historical period to midcentury and end century, whereas HadGEM2

projects the opposite. In both simulations, snowpack melt rates are nearly 

double snowpack accumulation rates, yet GFDL‐forced simulations have 

snowpack melt rates that are 2 times faster than HadGEM2‐forced 

simulations. In addition to WRF being forced by two different GCM forcing 

data sets CRCM5 was forced by CanESM2 and MPI_ESM but was only run at 

50‐km resolution. Akin to the WRF simulations, a nearly twofold difference in 

historical snowpack accumulation rate and peak water volume is found in 

CRCM5 when using CanESM2 versus MPI‐ESM. Similarly, the RegCM4 

simulation forced by MPI_ESM has both the fastest accumulation rate (2.23 

mm/day) and largest peak water volume (16.3 MAF) across the historical NA‐

CORDEX simulations.

Therefore, it appears the snowpack accumulation season is dominated more 

by the choice of global model forcing data set than by regional climate 

model choice and/or resolution when looking across WRF, CRCM5, and 

RegCM4. It should be noted that a comprehensive assessment of regional 

climate model resolution was not possible using the NA‐CORDEX ensemble 

and resolution did appear to play a role in constraining the magnitude of 

change in SWE triangle metrics from 1985–2005 to 2039–2059 in simulations

that were both run at 50 and 25 km. With that said, the combination of 

global forcing data set and regional climate model choice had more of a 

determination in the historical representation and future projection of the 

SWE triangle metrics.

7 Conclusions

In this study, nine regional climate model simulations are analyzed using the 

SWE triangle multimetric framework in order to understand how the 

character of Sierra Nevada snowpack will change over the coming century 



under a high‐emissions scenario. The use of the NA‐CORDEX multimodel 

ensemble expands the number of regional climate models assessed in 

California and allows us to answer how the choice of regional climate model 

shapes future projections of mountain snowpack. The use of our multimetric 

framework allows for a more fine‐grained analysis of the character of the 

changing snowpack and how these changes differ across the community of 

models.

The ensemble average of the nine NA‐CORDEX simulations show that by end‐

century SWE peak timing may occur 4 weeks earlier coupled with a 79.3% 

reduction in peak water volume upstream of 40% of California's surface 

water storage. Given that Sierra Nevada snowpack approximately doubles 

California's surface water storage and releases the water gradually into 

downstream reservoirs during arid months, a 79.3% reduction presents a 

major challenge that likely will require fundamental changes in the way that 

water resources are managed in California.

Despite a slight projected increase in future northern California precipitation 

(Neelin et al., 2013), the greatest loss in simulated peak water volume at 

peak timing occurs in the northern latitudes, nearly double that in the central

and southern latitudes combined. By end century, the headwaters of Shasta, 

Oroville, and Folsom experience a reduction in peak water volume at peak 

timing of 83.8%. Shasta, Oroville, and Folsom provide more than 20% of 

California's surface water storage alone. Therefore, a significant reduction in 

snowmelt would likely undermine the effectiveness of the Central Valley 

Project given no changes to water management.

By end century, when elevation‐dependent warming is most pronounced, 

snowpack accumulation rates diminish by 77.1% to 80.3% between 0‐ and 

2,000‐m elevations. Therefore, snowpack accumulation rates at 1,500–2,000 

m by midcentury and 2,000–2,500 m by end century resemble those at 0–

500 m historically. Similarly, by end century, snowpack melt rates reduce to 

67–73% of historical rates across all elevations, which corroborates other 

single‐model studies of slower snowmelt in a warming world (e.g., 

Musselman et al., 2017).



Although regional climate model resolution had some impact on the 

historical representation and projected change in snowpack, regional climate

model choice and global forcing data set had more of an impact. This is 

shown in the broad range of projected snow measures based on the 

individual model chosen. Although there is spread in the magnitude of 

decline across models at midcentury, especially in snowpack melt season 

length and melt rate, by end century most models agree that peak water 

volume and accumulation and melt rates will diminish substantially.

Without changes to current water management practice based on the 

assumption of an abundance of mountain snowpack deleterious impacts on 

water resources could affect the prosperity of California's future (Hanak & 

Lund, 2012; Tanaka et al., 2006; Wehner et al., 2017). This work provides 

detailed guidance on the mountain snow conditions faced by policymakers, 

water managers, and scientists as they build adaptive resiliency and abate 

the risks related to a future of low‐to‐no snowpack.

Acknowledgments

We acknowledge the World Climate Research Programme's Working Group 

on Regional Climate and the Working Group on Coupled Modelling, former 

coordinating body of CORDEX and responsible panel for CMIP5. We also 

thank the climate modeling groups (listed in supporting information Table 1 

of this paper) for producing and making available their model output. We 

further acknowledge the U.S. Department of Defense ESTCP for its support of

the North American Coordinated Regional Climate Downscaling Experiment 

(NA‐CORDEX) data archive. This research was funded by the Department of 

Energy, Office of Science “An Integrated Evaluation of the Simulated 

Hydroclimate System of the Continental US” project (award DE‐SC0016605). 

Author Ullrich is also supported by the National Institute of Food and 

Agriculture, U.S. Department of Agriculture, hatch project under California 

Agricultural Experiment Station project CA‐D‐LAW‐2203‐H. We would also like

to thank Ruby Leung and Teklu Tesfa for their assistance in developing the 

10 upstream analysis region data masks and the Hyperion Project scientists 

and stakeholders for their iterative feedback regarding the SWE triangle. The

data sets used in this study are publicly available at their source repositories 

or via the Department of Energy National Energy Research Scientific 



Computing Center at 

http://portal.nersc.gov/archive/home/a/arhoades/Shared/www/GRL_2018. 

Last, we acknowledge the helpful insights from the two anonymous 

reviewers of this manuscript. This manuscript has been authored by an 

author at Lawrence Berkeley National Laboratory under Contract DE‐AC02‐

05CH11231 with the U.S. Department of Energy. The publisher, by accepting 

the article for publication, acknowledges that the U.S. Government retains a 

nonexclusive, paid‐up, irrevocable, worldwide license to publish or reproduce

the published form of this manuscript, or allow others to do so, for U.S. 

Government purposes.

Funding Information

U.S. Department of Agriculture (USDA). Grant Number: CA-D-LAW-2203-H

U.S. Department of Energy (DOE). Grant Number: DE-SC0016605

References

Ashfaq, M., Ghosh, S., Kao, S.‐C., Bowling, L. C., Mote, P., Touma, D., 
Rauscher, S. A., & Diffenbaugh, N. S. (2013). Near‐term acceleration of 
hydroclimatic change in the Western U.S. Journal of Geophysical Research: 
Atmospheres, 118, 10,676– 10,693. https://doi.org/10.1002/jgrd.50816

Bales, R. C., Battles, J. J., Chen, Y., Conklin, M. H., Holst, E., O'Hara, K. L., 
Saksa, P., & Stewart, W. (2011). Forests and water in the Sierra Nevada: 
Sierra Nevada Watershed Ecosystem Enhancement Project. Sierra Nevada 
Research Institute Report, 9( 11.1), 1– 39.

Bales, R. C., Molotch, N. P., Painter, T. H., Dettinger, M. D., Rice, R., & Dozier, 
J. (2006). Mountain hydrology of the Western United States. Water Resources
Research, 42, W08432. https://doi.org/10.1029/2005WR004387

Belmecheri, S., Babst, F., Wahl, E. R., Stahle, D. W., & Trouet, V. (2016). 
Multi‐century evaluation of Sierra Nevada snowpack. Nature Climate Change,
6( 1), 2– 3. https://doi.org/10.1038/nclimate2809

Berg, N., & Hall, A. (2017). Anthropogenic warming impacts on California 
snowpack during drought. Geophysical Research Letters, 44, 2511– 2518. 
https://doi.org/10.1002/2016GL072104



Brekke, L., Thrasher, B., Maurer, E., & Pruitt, T. (2013). Downscaled CMIP3 
and CMIP5 climate and hydrology projections: Release of downscaled CMIP5 
climate projections, comparison with preceding information, and summary of
user needs (pp. 1–47). US Dept. of the Interior, Bureau of Reclamation, 
Technical Services Center, Denver.

Cayan, D. R., Maurer, E. P., Dettinger, M. D., Tyree, M., & Hayhoe, K. (2008). 
Climate change scenarios for the California region. Climatic Change, 87( 1), 
21– 42. https://doi.org/10.1007/s10584-007-9377-6

Chen, F., Barlage, M., Tewari, M., Rasmussen, R., Jin, J., Lettenmaier, D., 
Livneh, B., Lin, C., Miguez‐Macho, G., Niu, G.‐Y., Wen, L., & Yang, Z.‐L. 
(2014). Modeling seasonal snowpack evolution in the complex terrain and 
forested Colorado headwaters region: A model intercomparison study. 
Journal of Geophysical Research: Atmospheres, 119, 13,795– 13,819. https://
doi.org/10.1002/2014JD022167

Dettinger, M. D., & Anderson, M. L. (2015). Storage in California's reservoirs 
and snowpack in this time of drought. San Francisco Estuary and Watershed 
Science, 13( 2), 1– 5. http://escholarship.org/uc/item/8m26d692

Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J., & Cayan, D. R. (2011). 
Atmospheric rivers, floods and the water resources of California. Water, 3( 2),
445– 478. https://doi.org/10.3390/w3020445

Gershunov, A., Shulgina, T., Ralph, F. M., Lavers, D. A., & Rutz, J. J. (2017). 
Assessing the climate‐scale variability of atmospheric rivers affecting 
western North America. Geophysical Research Letters, 44, 7900– 7908. 
https://doi.org/10.1002/2017GL074175

Gimeno, L., Nieto, R., Vázquez, M., & Lavers, D. (2014). Atmospheric rivers: A
mini‐review. Frontiers in Earth Science, 2, 2. 
https://doi.org/10.3389/feart.2014.00002

Guan, B., Molotch, N. P., Waliser, D. E., Fetzer, E. J., & Neiman, P. J. (2013). 
The 2010/2011 snow season in California's Sierra Nevada: Role of 
atmospheric rivers and modes of large‐scale variability. Water Resources 
Research, 49, 6731– 6743. https://doi.org/10.1002/wrcr.20537

Hanak, E., & Lund, J. R. (2012). Adapting California's water management to 
climate change. Climatic Change, 111( 1), 17– 44. 
https://doi.org/10.1007/s10584-011-0241-3



Harpold, A. A., Dettinger, M., & Rajagopal, S. (2017). Defining snow drought 
and why it matters, Eos, 98. 10.1029/2017EO068775.

Hawkins, E., & Sutton, R. (2009). The potential to narrow uncertainty in 
regional climate predictions. Bulletin of the American Meteorological Society,
90( 8), 1095– 1108. https://doi.org/10.1175/2009BAMS2607.1

Huang, X., Hall, A. D., & Berg, N. (2018). Anthropogenic warming impacts on 
today's Sierra Nevada snowpack and flood risk. Geophysical Research 
Letters, 45, 6215– 6222. https://doi.org/10.1029/2018GL077432

Huang, X., & Ullrich, P. A. (2017). The changing character of twenty‐first‐
century precipitation over the Western United States in the variable‐
resolution CESM. Journal of Climate, 30( 18), 7555– 7575. 
https://doi.org/10.1175/JCLI-D-16-0673.1

Ikeda, K., Rasmussen, R., Liu, C., Gochis, D., Yates, D., Chen, F., Tewari, M., 
Barlage, M., Dudhia, J., Miller, K., Arsenault, K., Grubišić, V., Thompson, G., & 
Guttman, E. (2010). Simulation of seasonal snowfall over Colorado. 
Atmospheric Research, 97( 4), 462– 477. 
https://doi.org/10.1016/j.atmosres.2010.04.010

Kapnick, S., & Hall, A. (2010). Observed climate–snowpack relationships in 
California and their implications for the future. Journal of Climate, 23( 13), 
3446– 3456. https://doi.org/10.1175/2010JCLI2903.1

Kapnick, S., & Hall, A. (2012). Causes of recent changes in Western North 
American snowpack. Climate Dynamics, 38( 9), 1885– 1899. 
https://doi.org/10.1007/s00382-011-1089-y

Kossin, J., Hall, T., Knutson, T., Kunkel, K., Trapp, R., Waliser, D., & Wehner, 
M. (2017). Extreme storms. In D. J Wuebbles (Ed.), Climate science special 
report: Fourth National Climate Assessment (Vol.  1, pp. 257–276). 
Washington, DC: U.S. Global Change Research Program. 
https://doi.org/10.7930/J07S7KXX

Letcher, T., & Minder, J. (2015). Characterization of the simulated regional 
snow albedo feedback using a regional climate model over complex terrain. 
Journal of Climate, 28( 19), 7576– 7595. https://doi.org/10.1175/JCLI-D-15-
0166.1



Margulis, S. A., Cortés, G., Girotto, M., & Durand, M. (2016). A Landsat‐Era 
Sierra Nevada Snow Reanalysis (1985–2015). Journal of Hydrometeorology, 
17( 4), 1203– 1221. https://doi.org/10.1175/JHM-D-15-0177.1

Maurer, E. P., Brekke, L., Pruitt, T., & Duffy, P. B. (2007). Fine‐resolution 
climate projections enhance regional climate change impact studies. Eos, 
Transactions American Geophysical Union, 88( 47), 504– 504. https://doi.org/
10.1029/2007EO470006

McCrary, R. R., McGinnis, S., & Mearns, L. O. (2017). Evaluation of snow 
water equivalent in NARCCAP simulations, including measures of 
observational uncertainty. Journal of Hydrometeorology, 18( 9), 2425– 2452. 
https://doi.org/10.1175/JHM-D-16-0264.1

Mearns, L. O., Arritt, R., Biner, S., Bukovsky, M. S., McGinnis, S., Sain, S., 
Caya, D., Correia, J. Jr., Flory, D., Gutowski, W., Takle, E. S., Jones, R., Leung, 
R., Moufouma‐Okia, W., McDaniel, L., Nunes, A. M. B., Qian, Y., Roads, J., 
Sloan, L., & Snyder, M. (2012). The North American Regional Climate Change 
Assessment Program: Overview of Phase I results. Bulletin of the American 
Meteorological Society, 93( 9), 1337– 1362. https://doi.org/10.1175/BAMS-D-
11-00223.1

Mearns, L. O., Arritt, R., Biner, S., Bukovsky, M. S., McGinnis, S., Sain, S., 
Caya, D., Flory, D., Gutowski, W., Takle, E. S., Jones, R., Leung, R., 
Moufouma‐Okia, W., McDaniel, L., Nunes, A. M. B., Qian, Y., Roads, J., Sloan, 
L., & Snyder, M. (2018). The NA‐CORDEX dataset, version 1.0, NCAR Climate 
Data Gateway, accessed [2018]. https://doi.org/10.5065/D6SJ1JCH

Mearns, L. O., Sain, S., Leung, L. R., Bukovsky, M. S., McGinnis, S., Biner, S., 
Caya, D., Arritt, R. W., Gutowski, W., Takle, E., Snyder, M., Jones, R. G., 
Nunes, A. M. B., Tucker, S., Herzmann, D., McDaniel, L., & Sloan, L. (2013). 
Climate change projections of the North American Regional Climate Change 
Assessment Program (NARCCAP). Climatic Change, 120( 4), 965– 975. 
https://doi.org/10.1007/s10584-013-0831-3

Minder, J. R., Letcher, T. W., & Liu, C. (2018). The character and causes of 
elevation‐dependent warming in high‐resolution simulations of Rocky 
Mountain climate change. Journal of Climate, 31( 6), 2093– 2113. 
https://doi.org/10.1175/JCLI-D-17-0321.1

Mote, P. W., Hamlet, A. F., Clark, M. P., & Lettenmaier, D. P. (2005). Declining
mountain snowpack in Western North America. Bulletin of the American 
Meteorological Society, 86( 1), 39– 50. https://doi.org/10.1175/BAMS-86-1-39



Mote, P. W., Rupp, D. E., Li, S., Sharp, D. J., Otto, F., Uhe, P. F., Xiao, M., 
Lettenmaier, D. P., Cullen, H., & Allen, M. R. (2016). Perspectives on the 
causes of exceptionally low 2015 snowpack in the Western United States. 
Geophysical Research Letters, 43, 10,980– 10,988. 
https://doi.org/10.1002/2016GL069965

Mountain Research Initiative EDW Working Group, Pepin, N., Bradley, R. S., 
Diaz, H. F., Baraer, M., Caceres, E. B., Forsythe, N., Fowler, H., Greenwood, 
G., Hashmi, M. Z., Liu, X. D., Miller, J. R., Ning, L., Ohmura, A., Palazzi, E., 
Rangwala, I., Schöner, W., Severskiy, I., Shahgedanova, M., Wang, M. B., 
Williamson, S. N., & Yang, D. Q. (2015). Elevation‐dependent warming in 
mountain regions of the world. Nature Climate Change, 5( 5), 424– 430. 
https://doi.org/10.1038/nclimate2563

Mudryk, L. R., Derksen, C., Kushner, P. J., & Brown, R. (2015). 
Characterization of northern hemisphere snow water equivalent datasets, 
1981–2010. Journal of Climate, 28( 20), 8037– 8051. 
https://doi.org/10.1175/JCLI-D-15-0229.1

Musselman, K., Clark, M., Liu, C., Ikeda, K., & Rasmussen, R. (2017). Slower 
snowmelt in a warmer world. Nature Climate Change, 7( 3), 214– 219. 
https://doi.org/10.1038/nclimate3225

Musselman, K. N., Lehner, F., Ikeda, K., Clark, M. P., Prein, A. F., Liu, C., 
Barlage, M., & Rasmussen, R. (2018). Projected increases and shifts in rain‐
on‐snow flood risk over Western North America. Nature Climate Change, 8(
9), 808– 812. https://doi.org/10.1038/s41558-018-0236-4

Neelin, J. D., Langenbrunner, B., Meyerson, J. E., Hall, A., & Berg, N. (2013). 
California winter precipitation change under global warming in the coupled 
model intercomparison project phase 5 ensemble. Journal of Climate, 26(
17), 6238– 6256. https://doi.org/10.1175/JCLI-D-12-00514.1

Palmer, P. L. (1988). The SCS snow survey water supply forecasting program:
Current operations and future directions. In Proc. Western Snow Conf (pp. 
43– 51). 
https://doi.org/westernsnowconference.org/sites/westernsnowconference.org
/PDFs/1988Palmer.pdf

Pavelsky, T., Kapnick, S., & Hall, A. (2011). Accumulation and melt dynamics 
of snowpack from a multiresolution regional climate model in the Central 
Sierra Nevada, California. Journal of Geophysical Research, 116, D16115. 
https://doi.org/10.1029/2010JD015479



Pierce, D. W., Barnett, T. P., Hidalgo, H. G., Das, T., Bonfils, C., Santer, B. D., 
Bala, G., Dettinger, M. D., Cayan, D. R., Mirin, A., Wood, A. W., & Nozawa, T. 
(2008). Attribution of declining Western U.S. snowpack to human effects. 
Journal of Climate, 21( 23), 6425– 6444. 
https://doi.org/10.1175/2008JCLI2405.1

Pierce, D. W., & Cayan, D. R. (2013). The uneven response of different snow 
measures to human‐induced climate warming. Journal of Climate, 26( 12), 
4148– 4167. https://doi.org/10.1175/JCLI-D-12-00534.1

Qixiang, W., Wang, M., & Fan, X. (2018). Seasonal patterns of warming 
amplification of high‐elevation stations across the globe. International 
Journal of Climatology, 38( 8), 3466– 3473. https://doi.org/10.1002/joc.5509

Qu, X., & Hall, A. (2007). What controls the strength of snow‐albedo 
feedback? Journal of Climate, 20( 15), 3971– 3981. 
https://doi.org/10.1175/JCLI4186.1

Raleigh, M. S., Lundquist, J. D., & Clark, M. P. (2015). Exploring the impact of 
forcing error characteristics on physically based snow simulations within a 
global sensitivity analysis framework. Hydrology and Earth System Sciences, 
19( 7), 3153– 3179. https://doi.org/10.5194/hess-19-3153-2015

Rangwala, I., & Miller, J. R. (2012). Climate change in mountains: A review of 
elevation‐dependent warming and its possible causes. Climatic Change, 114(
3), 527– 547. https://doi.org/10.1007/s10584-012-0419-3

Rasmussen, R., Ikeda, K., Liu, C., Gochis, D., Clark, M., Dai, A., Gutmann, E., 
Dudhia, J., Chen, F., Barlage, M., Yates, D., & Zhang, G. (2014). Climate 
change impacts on the water balance of the Colorado headwaters: High‐
resolution regional climate model simulations. Journal of Hydrometeorology, 
15( 3), 1091– 1116. https://doi.org/10.1175/JHM-D-13-0118.1

Rhoades, A. M., Huang, X., Ullrich, P. A., & Zarzycki, C. M. (2016). 
Characterizing Sierra Nevada snowpack using variable‐resolution CESM. 
Journal of Applied Meteorology and Climatology, 55( 1), 173– 196. 
https://doi.org/10.1175/JAMC-D-15-0156.1

Rhoades, A. M., Jones, A. D., & Ullrich, P. A. (2018). Assessing mountains as 
natural reservoirs with a multi‐metric framework. Earth's Future, 6, 1221– 
1241. https://doi.org/10.1002/2017EF000789



Rhoades, A. M., Ullrich, P. A., & Zarzycki, C. M. (2018). Projecting 21st 
century snowpack trends in Western USA mountains using variable‐
resolution CESM. Climate Dynamics, 50( 1), 261– 288. 
https://doi.org/10.1007/s00382-017-3606-0

Rhoades, A. M., Ullrich, P. A., Zarzycki, C. M., Johansen, H., Margulis, S. A., 
Morrison, H., Xu, Z., & Collins, W. D. (2018). Sensitivity of mountain 
hydroclimate simulations in variable‐resolution CESM to microphysics and 
horizontal resolution. Journal of Advances in Modeling Earth Systems, 10, 
1357– 1380. https://doi.org/10.1029/2018MS001326

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., 
Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5—A scenario of comparatively 
high greenhouse gas emissions. Climatic Change, 109( 1), 33– 57. 
https://doi.org/10.1007/s10584-011-0149-y

Schwartz, M., Hall, A., Sun, F., Walton, D., & Berg, N. (2017). Significant and 
inevitable end‐of‐twenty‐first‐century advances in surface runoff timing in 
California's Sierra Nevada. Journal of Hydrometeorology, 18( 12), 3181– 
3197. https://doi.org/10.1175/JHM-D-16-0257.1

Slater, A. G., Schlosser, C. A., Desborough, C. E., Pitman, A. J., Henderson‐
Sellers, A., Robock, A., Vinnikov, K. Y., Entin, J., Mitchell, K., Chen, F., Boone, 
A., Etchevers, P., Habets, F., Noilhan, J., Braden, H., Cox, P. M., de Rosnay, P.,
Dickinson, R. E., Yang, Z.‐L., Dai, Y.‐J., Zeng, Q., Duan, Q., Koren, V., Schaake,
S., Gedney, N., Gusev, Y. M., Nasonova, O. N., Kim, J., Kowalczyk, E. A., 
Shmakin, A. B., Smirnova, T. G., Verseghy, D., Wetzel, P., & Xue, Y. (2001). 
The representation of snow in land surface schemes: Results from PILPS 2(d).
Journal of Hydrometeorology, 2( 1), 7– 25. https://doi.org/10.1175/1525-
7541(2001)002<0007:TROSIL>2.0.CO;2

Sun, F., Hall, A., Schwartz, M., Walton, D. B., & Berg, N. (2016). Twenty‐first‐
century snowfall and snowpack changes over the Southern California 
Mountains. Journal of Climate, 29( 1), 91– 110. https://doi.org/10.1175/JCLI-D-
15-0199.1

Tanaka, S. K., Zhu, T., Lund, J. R., Howitt, R. E., Jenkins, M. W., Pulido, M. A., 
Tauber, M., Ritzema, R. S., & Ferreira, I. C. (2006). Climate warming and 
water management adaptation for California. Climatic Change, 76( 3), 361– 
387. https://doi.org/10.1007/s10584-006-9079-5

Tesfa, T. K., Tarboton, D. G., Watson, D. W., Schreuders, K. A. T., Baker, M. 
E., & Wallace, R. M.(2011). Extraction of hydrological proximity measures 



from DEMs using parallel processing. Environmental Modelling & Software, 
26( 12), 1696– 1709. https://doi.org/10.1016/j.envsoft.2011.07.018

Ullrich, P. A., Xu, Z., Rhoades, A. M., Dettinger, M. D., Mount, J. F., Jones, A. 
D., & Vahmani, P.(2018). California's drought of the future: A midcentury 
recreation of the exceptional conditions of 2012‐2017. Earth's Future, 6. 
https://doi.org/10.1029/2018EF001007

Walsh, J., Wuebbles, D., Hayhoe, K., Kossin, J., Kunkel, K., Stephens, G., 
Thorne, P., Vose, R., Wehner, M., Willis, J., Anderson, D., Doney, S., Feely, R., 
Hennon, P., Kharin, V., Knutson, T., Landerer, F., Lenton, T., Kennedy, J., & 
Somerville, R. (2014). Our changing climate. Climate change impacts in the 
United States: The Third National Climate Assessment (pp. 19– 67). 
Washington, DC: U.S. Global Change Research Program. 
https://doi.org/10.7930/J0KW5CXT

Walton, D. B., Hall, A., Berg, N., Schwartz, M., & Sun, F. (2017). Incorporating 
snow albedo feedback into downscaled temperature and snow cover 
projections for California's Sierra Nevada. Journal of Climate, 30( 4), 1417– 
1438. https://doi.org/10.1175/JCLI-D-16-0168.1

Walton, D. B., Sun, F., Hall, A., & Capps, S. (2015). A hybrid dynamical–
statistical downscaling technique. Part I: Development and validation of the 
technique. Journal of Climate, 28( 12), 4597– 4617. 
https://doi.org/10.1175/JCLI-D-14-00196.1

Wehner, M., Arnold, J., Knutson, T., Kunkel, K., & LeGrande, A. (2017). 
Droughts, floods, and wildfires. In Climate science special report: Fourth 
National Climate Assessment (Vol.  1, pp. 231– 256). Washington, DC: U.S. 
Global Change Research Program. https://doi.org/10.7930/J0CJ8BNN

Wrzesien, M. L., Durand, M. T., Pavelsky, T. M., Kapnick, S., Zhang, Y., Guo, J.,
& Shum, C. K. (2018). A new estimate of North American mountain snow 
accumulation from regional climate model simulations. Geophysical 
Research Letters, 45( 3), 1423– 1432. https://doi.org/10.1002/2017GL076664

Wrzesien, M., Pavelsky, T., Kapnick, S., Durand, M., & Painter, T. (2015). 
Evaluation of snow cover fraction for regional climate simulations in the 
Sierra Nevada. International Journal of Climatology, 35( 9), 2472– 2484. 
https://doi.org/10.1002/joc.4136

Xu, Z., Rhoades, A. M., Johansen, H., Ullrich, P. A., & Collins, W. D. (2018). An 
intercomparison of GCM and RCM dynamical downscaling for characterizing 



the hydroclimatology of California and Nevada. Journal of Hydrometeorology,
19( 9), 1485– 1506. https://doi.org/10.1175/JHM-D-17-0181.1


	The Changing Character of the California Sierra Nevada as a Natural Reservoir
	Abstract
	Plain Language Summary
	1 Introduction
	2 Data and Methods
	3 How Will Snowpack Change in the Headwater Regions of Major Surface Reservoirs?
	4 What Are the Latitudinal Dependencies of Snowpack Change?
	5 How Does Snowpack Change Across Elevational Gradients?
	6 Does the Choice of Regional Climate Model Influence Future Projections of Snowpack?
	7 Conclusions
	Acknowledgments



