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Daniël Kroes

Committee in charge:

Professor Brendon Rhoades, Chair
Professor Fan Chung Graham
Professor Russell Impagliazzo
Professor Jonathan Novak
Professor Alexander Vardy

2021



Copyright
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ABSTRACT OF THE DISSERTATION

Two topics in combinatorics:
Generalized coinvariant algebras and Catalan-pair graphs

by

Daniël Kroes

Doctor of Philosophy in Mathematics

University of California San Diego, 2021

Professor Brendon Rhoades, Chair

In this dissertation we study two combinatorial problems. The starting point of the

first problem are coinvariant algebras, quotients of the polynomial ring in n variables that

serve as a remarkable connection between symmetric functions, representation theory and

permutation statistics. Recently, inspired by the Delta Conjecture, generalized quotients

were introduced, whose combinatorics are controlled by set partitions of a set of size n into

a given number of blocks. We exhibit quotients of the Stanley-Reisner ring of the Boolean

xii



algebra isomorphic to the given generalizations, extending an isomorphism known in the

classical setting. Additionally, we introduce a quotient whose combinatorics are related

to all set partitions of a given set, without any restrictions on the number of blocks.

Secondly, we look at Catalan numbers, a well-known combinatorial sequence with a

variety of interpretations and applications. We study the interaction between two objects

chosen from one of these interpretations, and represent this interaction in terms of a

graph, also known as a bipartite circle graph. We introduce a random model to generate

such graphs, and describe the asymptotic behaviour of various properties, including the

number of edges, the number of isolated vertices, and its subgraphs.

xiii



Chapter 1

Introduction

1.1 Coinvariant algebras

The polynomial ring Q[xn] := Q[x1, . . . , xn] carries an action of the symmetric

group Sn by variable permutation. Elements of the corresponding invariant subring

Q[xn]Sn are known as symmetric functions, and the subring has algebraically independent

homogeneous generators given by the elementary symmetric functions e1(xn), . . . , en(xn).

The invariant ideal In = 〈e1(xn), . . . , en(xn)〉 leads to a quotient Rn = Q[xn]/In, called

the coinvariant algebra.

As In is Sn-stable, Rn is a Sn-module and it is known [Che55] that as ungraded

Sn-module its structure concides with that of the regular representation Q[Sn]. In par-

ticular, Rn has dimension n! and Rn has many interesting ties with permutations. For

example, the Hilbert series of Rn agrees with the generating function of many important
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permutation statistics, and Rn has vector space bases naturally indexed by permuta-

tions. Moreover, the graded Sn structure of the has been studied extensively and can (for

example) be described in terms of dual Hall-Littlewood symmetric functions.

Inspired by the Delta Conjecture [HRW18] of Haglund, Remmel and Wilson, a

generalization of these coinvariant algebras was introduced by Haglund, Rhoades and

Shimozono [HRS18]. The Delta Conjecture asserts an equality between three quasisym-

metric functions, two of which are Risen,k(x; q, t) and Valn,k(x; q, t) for positive integers

k ≤ n. These functions are defined in terms of combinatorial objects and following work

of Rhoades [Rho18] and Wilson [Wil16] it is known that

Risen,k(x; q, 0) = Risen,k(x; 0, q) = Valn,k(x; q, 0) = Valn,k(x; 0, q) (1.1)

and denoting this common function by Cn,k(x; q) we can write

Cn,k(x; q) =
∑

T∈SYT(n)

qmaj(T )+(n−k2 )−(n−k)·des(T )
[
des(T )

n− k

]
q

sshape(T )(x). (1.2)

Haglund, Rhoades and Shimozono introduced quotients Rn,k of Q[xn] whose graded Sn-

structure, up to some minor twists, coincides with Cn,k(x; q). Additionally, as ungraded

modules the structure is equal to Q[OPn,k] where OPn,k is the set of set partitions of

[n] := {1, 2, . . . , n} into exactly k blocks. Finally, the Hilbert series of Rn,k is governed

by various statistics on ordered set partitions similar to those on permutations in the

classical case.

The third quasisymmetric function in the Delta Conjecture is defined in terms

of symmetric functions and Macdonald eigenoperators. Recently, D’Adderio and Mellit
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[DM20] and Blasiak, Haiman, Morse, Pun and Seelinger [BHM+21] announced proofs

that show the equality between this third quasisymmetric function and the function

Risen,k(x; q, t) from above.

The expression of Cn,k in Equation (1.2) also appears in the setting of the super-

space ring Ωn. Originally studied in physics, recently this ring has received attention in

coinvariant theory as well, see [RW20] and [Zab19]. Here, superspace of rank n is the

tensor product

Ωn := Q[x1, . . . , xn]⊗ ∧{θ1, . . . , θn}

of a rank n polynomial ring with a rank n exterior algebra. We let Sn act diagonally

on Ωn and let (Ωn)Sn+ be the Sn-invariants with zero constant term. The superspace

coinvariant ring Ωn/〈(Ωn)Sn+ 〉 is a bigraded Sn-module and the Combinatorics Group

and Fields Institute conjectured [Zab19] that

grFrob(Ωn/〈(Ωn)Sn+ 〉; q, z) =
n∑
k=1

zn−k · Cn,k(x; q). (1.3)

We will build upon the work of Haglund, Rhoades and Shimozono in two directions.

Firstly, it has been shown that the coinvariant algebra can also be obtained as a quotient

of the Stanley-Reisner ring of the Boolean algebra

C[B∗n] :=
C[yS]

〈yS · yT 〉

where C[yS] is the polynomial ring in 2n − 1 variables indexed by non-empty subsets

S ⊆ [n], and the generators of the ideal range over all pairs (S, T ) such that S 6⊆ T and

T 6⊆ S. We will define a quotient of C[B∗n] that is isomorphic to Rn,k and using methods

3



inspired by those used by Braun and Olsen in the classical case k = n [BO18] we describe

a basis of our quotient that intimately relates to a basis found for Rn,k. Moreover, our

quotient carries a multigraded Frobenius series that can be viewed as a refinement of

the graded Frobenius series of Rn,k. Finally, our methods carry over to a similar family

of quotients for certain reflection groups, which were introduced by Chan and Rhoades

[CR20].

Secondly, we develop a quotient of Q[xn] whose combinatorics are controlled by all

set partitions of [n], or equivalently by the set of all packed words of length n. Packed words

have appeared in various other settings, including Hopf algebras [NT06] and polytopes

[CL20]. Let Wn be the set of packed words of length n, then we introduce a Sn-module

Sn with ungraded structure

Sn ∼= Q[Wn].

Moreover, the graded Frobenius series of Sn is equal to

grFrob(Sn; q) =
n∑
k=1

qn−k · (revq ◦ ω)Cn,k(x; q), (1.4)

which has a striking similarity with the conjectured superspace Frobenius series in Equa-

tion (1.3). Therefore, studying Sn in more detail and exploring similarities between Sn

and Ωn/〈(Ωn)Sn+ 〉 might inspire a proof of Equation (1.3).
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1.2 Catalan-Pair graphs

The sequence 1, 1, 2, 5, 14, 42, . . . of the Catalan numbers 1
n+1

(
2n
n

)
is a famous and

abundant sequence in combinatorics. A large body of work has been devoted to studying

this sequence and the objects it enumerates. An overview of many of these objects and

properties can be found in [Pak14] and [Sta15]. Among these objects are polygon trian-

gulations, binary trees, plane trees, and Dyck paths. One more object counted by the

Catalan numbers is the set of all ways to draw n non-intersecting chords given 2n points

on a circle.

While there are many generalizations and many unanswered questions about Cata-

lan numbers, we will be concerned with studying the interaction between two sets of

non-intersecting chords on a circle. By interpreting the chords as vertices of a graph,

and connecting two vertices if their corresponding chords intersect, we obtain a bipartite

graph. These graphs appeared [BDD+] as a result of studying and generalizing a magic

trick involving a dollar bill and some paperclips, and the graphs were named paperclip

graphs as a result.

In general, graphs that represent the intersection pattern of a set of chords on a cir-

cle are known as circle graphs, and hence paperclip graphs are precisely the bipartite circle

graphs. Circle graphs have been extensively studied, especially from an algorithmic point

of view. For example, Spinrad [Spi94] produced an O(n2)-time algorithm for identifying

whether a given graph is a circle graph. Many problems that are know to be NP-complete

for general graphs turn out to have polynomial time algorithms when restricted to circle
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graphs. Recently Tiskin showed that a maximum clique of a circle graph can be found in

O(n(log n)2) time [Tis15], and Gregg and Nash have shown that a maximum independent

set can be found in time O(αn), where α denotes the independence number of the circle

graph [NG10].

We will introduce a random model for these graphs, and study its various prop-

erties. The idea of studying graphs through various random models is well known, see

[Bol84], [ER60] and [Gil59] for a few famous examples. Our model for these graphs allows

us to study the behaviour of these graphs as the number of vertices n increases. In par-

ticular, when n→∞ we show that the expected number of edges is asymptotically equal

to 1
π
n log n and by studying the variance we show that we have a strong concentration

around this mean.

Due to the frequent occurence of short chords, our graphs will have many isolated

vertices and small components. In particular, we will show that the number of isolated

vertices is linear in the total number of vertices, determine the coefficient, and show strong

concentration around the mean in this case as well. Additionally, we show that our random

graph is expected to have many components of various small sizes, with components of

sizes of at least order log(n) to be expected.
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1.3 Structure of this dissertation

The remainder of this dissertation is organized as follows. In Chapter 2 we will

cover the necessary background material for the remainder of the dissertation. The ma-

jority of this chapter is devoted to the details of the (generalized) coinvariant algebras and

the necessary algebraic definitions and techniques. The final part of this chapter is used

to discuss Catalan-arc matchings, and a probability result needed to study the random

graph model.

In Chapter 3 we will introduce our quotient of the Stanley-Reisner ring of the

Boolean algebra and prove the desired isomorphisms with the rings introduced by Haglund,

Rhoades and Shimozono, and Chan and Rhoades. In Chapter 4 we introduce the quotient

Sn, study its combinatorics and algebraic structure. Finally, in Chapter 5 we introduce

the random model for the bipartite circle graphs and study various interesting properties

of these random graphs.

This chapter contains material from: D. Kroes, ”Generalized coinvariant algebras

for G(r, 1, n) in the Stanley-Reisner setting”, Electronic Journal of Combinatorics, vol.

26 (3), P.3.11, 2018. The dissertation author was the primary investigator and author of

this paper.

This chapter also contains material from: D. Kroes and B. Rhoades, ”Packed words

and quotient rings”, submitted (2021). The dissertation author was one of the primary

investigators and authors of this paper.
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This chapter also contains material from: D. Kroes and S. Spiro, ”Random Graphs

Induced by Catalan Pairs”, Journal of Combinatorics, Accepted (2020). The dissertation

author was one of the primary investigators and authors of this paper.
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Chapter 2

Preliminaries

In this chapter we will cover the background material needed to state and prove

the main results of our thesis. We will also prove some initial results that will be of use in

the later chapters. With an eye towards our results about generalized coinvariant algebras

we will discuss permutations, ordered set partitions, and statistics thereon. Additionally,

we will cover symmetric functions, representation theory, Gröbner theory, and some of

the previous results on (generalized) coinvariant algebras.

In a different direction, looking ahead to the Catalan-pair graphs we will cover

Catalan numbers, as well as a concentration result on the sum of independent identically

distributed random variables.
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Notation

First we fix some notation. We denote by x = (x1, x2, x3, . . .) an infinite set of

variables and by xn = (x1, x2, . . . , xn) a set of n variables. Similarly, for any field K,

K[xn] denotes the polynomial ring K[x1, x2, . . . , xn] in n variables.

For any positive integer we write [n] = {1, 2, . . . , n}. For integers 1 ≤ k ≤ n we let

Sn be the symmetric group of degree n and OPn,k the set of ordered set partitions of [n]

into k blocks.

The expression Cn will denote the nth Catalan number 1
n+1

(
2n
n

)
.

2.1 Permutations and ordered set partitions

We start this section by describing some statistics on permutations. Let σ =

σ1σ2 · · · σn be a permutation written in one-line notation. The ascent set Asc(σ) and

descent set Des(σ) are defined by

Asc(σ) = {1 ≤ i ≤ n− 1 : σi < σi+1} and Des(σ) = {1 ≤ i ≤ n− 1 : σi > σi+1},

and asc(σ) = |Asc(σ)| and des(σ) = |Des(σ)| denote the number of ascents and descents

of σ respectively. The major index and comajor index of σ are defined via

maj(σ) =
∑

i∈Des(σ)

i and comaj(σ) =
∑

i∈Asc(σ)

i, (2.1)

which are complimentary in the sense that maj(σ) + comaj(σ) =
(
n
2

)
.

10



We define the inversion and coinversion statistics via

inv(σ) = |{1 ≤ i < j ≤ n : σi > σj}| and coinv(σ) = |{1 ≤ i < j ≤ n : σi < σj}|,

(2.2)

which once again satisfy inv(σ) + coinv(σ) =
(
n
2

)
.

The q-binomials are given by

[n]q := 1 + q + · · ·+ qn−1, [n]!q := [n]q[n− 1]q · · · [1]q,

[
n

k

]
q

:=
[n]!q

[k]!q · [n− k]!q
.

Theorem 2.1.1. The statistics maj, comaj, inv and coinv are equidistributed on Sn.

Proof. By [Mac15] (for maj) and [Net01] (for inv) we know that

∑
σ∈Sn

qinv(σ) = [n]q! =
∑
σ∈Sn

qmaj(σ)

showing that inv and maj are equidistributed. As by definition [n]q! is invariant under

reversal of its coefficients, both coinv and comaj have the same generating function as

well.

An ordered set partition is a set partition of [n] with a total order on the blocks.

For example, {1, 2} ≺ {3} and {3} ≺ {1, 2} are two different ordered set partitions of [3].

We will have two alternative ways to represent ordered set partitions, where we will use

σ = {1, 3, 6} ≺ {2, 4} ≺ {5, 7} ∈ OP7,3 as the running example. We let B1 = {1, 3, 6},

B2 = {2, 4} and B3 = {5, 7}

1. We can write the blocks in list form, seperated by vertical bars. In this notation,

σ = (B1 | B2 | B3) or even more succintly σ = (136 | 24 | 57).

11



2. We can write σ using the ascent starred model. In this model, write the numbers in

the blocks in increasing order, write them in one-line notation, and put stars between

numbers in the same block. This turns our above example into 1∗3∗6 2∗4 5∗7.

Alternatively we can represent this by σ = (τ, S) where τ = 1362457 ∈ S7 and

S = {1, 2, 4, 6} ⊆ Asc(τ) indicates the positions of the stars.

Upon close examination the ascent starred model identifies OPn,k with

{(τ, S) | τ ∈ Sn, S ⊆ Asc(τ), |S| = n− k}.

We now define generalizations of maj and inv to the set OPn,k. Consider σ =

(B1 | B2 | · · · | Bk) ∈ OPn,k an inversion is a pair 1 ≤ i < j ≤ n such that i is the

minimal element of Bm, j ∈ B` and ` < m. Let inv(σ) denote the number of inversions.

We let coinv(σ) = (n− k)(k− 1) +
(
k
2

)
− inv(σ) where (n− k)(k− 1) +

(
k
2

)
is the maximal

value of inv(σ) on OPn,k, (uniquely) achieved by

σ = (k (k + 1) · · · n | k − 1 | · · · | 1).

To define maj(σ) we use the ascent-starred representation σ = (τ, S). Write ic =

n+ 1− i and for τ = τ1τ2 · · · τn let τ c = τ c1τ
c
2 · · · τ cn. We define

maj(σ) = maj(τ c)−
∑
i∈S

|Asc(τ) ∩ {i, i+ 1, . . . , n− 1}|. (2.3)

Again, maj(σ) has maximal value (n− k)(k − 1) +
(
k
2

)
with unique maximizer

σ = (1 | · · · | k − 1 | k (k + 1) · · · n),

so we define comaj(σ) = (n− 1)(k − 1) +
(
k
2

)
−maj(σ).

12



Remark. Note that in the case n = k, so when OPn,k = Sn, this actually reverses the

roles of maj and comaj on the symmetric group. J

Just as in the case of the symmetric group, one can compute the generating func-

tions of these statistics to show the following result, see for example [Ste19] and [RW15].

Theorem 2.1.2. The statistics inv and maj are equidistributed on OPn,k.

Lastly, we introduce the notion of a partition. Let n be a positive integer, then

a partition of (size) n is a non-increasing sequence of positive integers λ = (λ1, . . . , λk)

with λ1 + . . .+ λk = n. We denote λ ` n to indicate that λ is a partition of n, and write

|λ| = n and `(λ) = k for the size and number of parts of λ respectively.

2.2 r-colored ordered set partitions

Let OP(r)
n,k be the set of r-colored ordered set partitions, which are the ordered set

partitions of [n] where each number 1 ≤ i ≤ n is assigned a color from {0, 1, . . . , r − 1}.

Similar to before we can represent these ordered set partitions as ascent-starred words on

the alphabet {ic | 1 ≤ i ≤ n, 0 ≤ c ≤ r− 1} where we order the alphabet in the following

way

1r−1 < 2r−1 < · · · < nr−1 < 1r−2 < · · · < nr−2 < · · · < 10 < · · · < n0.

13



Given any word w = wc11 · · ·wcnn on the above alphabet we define the descent set Des(w) =

{1 ≤ i ≤ n− 1 | wcii > w
ci+1

i } and the major index

maj(w) = c(w) + r ·
∑

i∈Des(w)

i, (2.4)

where c(w) = c1 + · · ·+ cn denotes the sum of the colors of w.

When n = k we get the set of r-colored permutations, which can also be inter-

preted as the reflection group G(r, 1, n) ⊆ GLn(C) consisting of all monomial matrices

with entries in {1, ζ, ζ2, . . . , ζr−1} where ζ = exp(2πi/r) is a primitive r-th root of unity.

The correspondence extends the usual connection between permutation matrices and per-

mutations by choosing the color according to the exponent of ζ in the respective column.

For example, the monomial matrix

0 i 0 0 0

0 0 0 −1 0

−i 0 0 0 0

0 0 0 0 1

0 0 −1 0 0


∈ G(4, 1, 5)

will be interpreted as 3311522240.

We can now represent the ascent-starred representations of elements of OP(r)
n,k as

pairs (g, λ) where g ∈ G(r, 1, n) satisfies des(g) < k and λ is a partition with k−des(g)−1

parts that are all at most n− k. For example, consider

{43, 22, 32} ≺ {91} ≺ {61, 10} ≺ {52} ≺ {72, 81} ∈ OP(4)
9,5

14



which we can represent as 43
∗2

2
∗3

2 91 61
∗1

0 52 72
∗8

1. Here g = 432232916110527281 and of the

ascents at positions {1, 2, 3, 5, 7, 8}, only the third and fifth are unstarred. Representing

each star by a step left and each non-star by a step down, this traces out the following

path from (0, 2) to (4, 0)

(0, 0)

(0, 2)

(4, 0)

(4, 2)

Figure 2.1: A partition traced out by the ascent-starred representation.

which represents the corresponding partition λ = (3, 2). We define the comajor

index on OP(r)
n,k via

comaj((g, λ)) = maj(g) + r · |λ|. (2.5)

Lemma 2.2.1. For r = 1 the statisic comaj in (2.5) coincides with the statistic comaj

introduced after (2.3).

Proof. Consider σ ∈ OPn,k, which is represented as σ = (g, λ) where in this case g ∈ Sn.

We note that maj(σ) as in (2.3) equals the sum over all the ascents of σ with

respect to the weight sequence (w1, . . . , wn), where wi is the number of completed blocks

when reaching the ith element of g. Also, comaj(g) is the sum over all ascents of σ with

respect to the weight sequence (1, 2, . . . , n).

15



Now observe that every starred ascent of (g, λ) results in the weights of that ascent

and all ascents after it to be decreased by 1. As λ is a partition with parts at most

n−k, and the stars correspond to horizontal segments in the bottom left justified Ferrers

diegram, the number of affected ascents is equal to

(1+the height of the last column) + (2 + the height of the second to last column) + . . .

+ ((n− k) + the height of the first column) = (1 + 2 + . . .+ (n− k)) + |λ|.

Therefore, we have

maj((g, λ)) = comaj(g)− (1 + . . .+ (n− k))− |λ|,

so we can compute

comaj((g,λ)) = (1 + . . .+ (k − 1)) + (n− k)(k − 1)−maj((g, λ))

= (1 + . . .+ (k − 1)) + (n− k)(k − 1) + (1 + . . .+ (n− k))− comaj(g) + |λ|

= (1 + . . .+ (k − 1)) + (k + . . .+ (n− 1))− comaj(g) + |λ|

= 1 + 2 + . . .+ (n− 1)− comaj(g) + |λ| = maj(g) + |λ|,

where we expanded
(
k
2

)
= 1 + . . .+ (k − 1).

We need one small generalization of r-colored ordered set partitions.

Definition 2.2.2. A G(r, 1, n)-face is a set partition of [n] where the letters in every

block, with the possible exception of the first block, are colored with one of r colors from

{0, 1, . . . , r − 1}. J
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If the letters of the first block are uncolored we call this block the zero block. In

particular, G(r, 1, n)-faces come in two types: (1) r-colored ordered set partitions and (2)

a subset of [n] together with an r-colored set partition on the remaining elements of [n].

We write Fn,k for the set of G(r, 1, n)-faces with exactly k nonzero blocks.

Remark. The use of the word face originates from the fact that Fn,k can be identified

with the set of k-dimensional faces in the Coxeter complex of G(r, 1, n). As such, a

G(r, 1, n)-face in Fn,k is also said to have dimension k. J

2.3 Symmetric functions and representation theory

of Sn

Let Λ ⊆ Q[x] be the set of symmetric functions. This ring has many bases, but

the most useful from the perspective of representation theory is the set of Schur functions

sλ(x) where λ is a partition. In particular, the degree n graded piece Λn has a basis

{sλ(x) | λ ` n}. For a thorough definition and properties of Λ, the Schur functions, and

other bases we refer to [MR15] and [Sag01].

We now focus on the representation theory of Sn. It is well known that the

irreducible representations of Sn biject with partitions λ ` n. Consequently, every Sn-

module V decomposes as

V =
⊕
λ`n

(
Sλ
)cλ (2.6)
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for some integers cλ ≥ 0. The Frobenius character of V is the symmetric function

Frob(V ) =
∑
λ`n

cλ · sλ(x). (2.7)

Lastly, let V be a graded vector space such that for every d ≥ 0 the degree d homogeneous

component Vd is finite dimensional. The Hilbert series of V is the power series in q given

by

Hilb(V ; q) =
∑
d≥0

dim(Vd) · qd. (2.8)

If further V carries a graded Sn-action, we define the graded Frobenius character by

grFrob(V ; q) =
∑
d≥0

Frob(Vd) · qd. (2.9)

A thorough description of the representation theory of Sn can be found in [Sag01].

2.4 Generalized coinvariant algebras

The classical coinvariant algebra is defined as follows. The symmetric functions in

n variables have algebraically independent generators e1(xn), . . . , en(xn) where

ed(xn) =
∑

1≤i1<...<id≤n

xi1 · · ·xid (2.10)

is the elementary symmetric function of degree d. Consider the ideal in Q[xn] generated

by all symmetric functions with zero constant term:

In = 〈Q[xn]Sn+ 〉 = 〈e1(xn), . . . , en(xn)〉. (2.11)

The coinvariant algebra Rn = Q[xn]/In has long been studied and this algebraic object

turns out to interact with permutations and their statistics in the following way.

18



• dim(Rn) = n! and Hilb(Rn) = [n]q!, which we have seen to be the generating

function of any of inv, coinv, maj and comaj on Sn.

• As ungraded Sn-module Rn
∼= Q[Sn] is isomorphic to the regular representation of

Sn.

• As graded Sn-module we have

grFrob(Rn; q) =
∑

T∈SYT(n)

qmaj(T )sshape(T ) =
∑

w=w1···wn

qmaj(w)xw1 · · ·xwn ,

where w ∈ Wn is a word of length n on the alphabet of positive integers.

Inspired by the Delta Conjecture, Haglund, Rhoades and Shimozono [HRS18] gen-

eralized this and provided a family of algebraic quotients whose combinatorics is controlled

by OPn,k rather than Sn.

Definition 2.4.1. [HRS18, Def. 1.1] Given two positive integers k ≤ n, let In,k ⊆ Q[xn]

be the ideal

In,k := 〈xk1, . . . , xkn, en(xn), en−1(xn), . . . , en−k+1(xn)〉. (2.12)

Let Rn,k be the corresponding quotient ring:

Rn,k :=
Q[xn]

In,k
. J (2.13)

Remark. It can be shown that when k = n, xni belongs to In, hence we have In,n = In and

Rn,n = Rn. J

They show various similar properties to above, namely
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• dim(Rn) = k! ·Stir(n, k) = |OPn,k| and Hilb(Rn,k; q) = revq([k]q! ·Stirq(n, k)), which

is the generating function of coinv and comaj on OPn,k.

• As ungraded Sn-module we have Rn,k
∼= Q[OPn,k].

• As graded Sn-module we have

grFrob(Rn,k; q) =
∑

T∈SYT(n)

qmaj(T )
[
n−des(T )−1

n−k

]
q
sshape(T )(x).

This equation can also be written as grFrob(Rn,k; q) = (revq ◦ ω)Cn,k(q), where

Cn,k(x; q) is as in Equation (1.2) and revq is the operator that reverses a polynomial

with respect to the variable q. Finally, ω is the involution on symmetric functions

that sends sλ(x) to sλ′(x), or equivalently trades en(x) for hn(x).

Chan and Rhoades [CR20] further generalized this to r-colored ordered set parti-

tions. We use xrn to denote (xr1, . . . , x
r
n).

Definition 2.4.2. [CR20, Def. 1.1] Let n, k, and r be nonnegative integers which satisfy

n ≥ k, n ≥ 1, and r ≥ 2. We define two quotients of the polynomial ring C[xn] as follows.

(1) Let In,k ⊆ C[xn] be the ideal

In,k := 〈xkr+1
1 , xkr+1

2 , . . . , xkr+1
n , en(xrn), . . . , en−k+1(x

r
n)〉 (2.14)

and let Rn,k be the corresponding quotient:

Rn,k := C[xn]/In,k. (2.15)
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(2) Let Jn,k ⊆ C[xn] be the ideal

In,k := 〈xkr1 , xkr2 , . . . , xkrn , en(xrn), . . . , en−k+1(x
r
n)〉 (2.16)

and let Rn,k be the corresponding quotient:

Rn,k := C[xn]/In,k. J (2.17)

Remark. Note that there is a slight conflict in notation here: the quotient Rn,k by Haglund,

Rhoades and Shimozono is obtained by taking the r = 1 specialization of Sn,k introduced

by Chan and Rhoades. J

Once again, these quotients have nice combinatorial properties: Chan and Rhoades

show that as ungraded G(r, 1, n)-modules we have

Rn,k
∼= C[Fn,k] and Sn,k ∼= C[OP(r)

n,k].

For the Hilbert series and graded Frobenius series of Rn,k and Sn,k we refer to [CR20].

2.5 Gröbner theory

Let K be any field and let I ⊆ K[xn] be an ideal. On various occasions we

will be interested in the dimension of K[xn]/I. One useful tool in such calculations is

Gröbner theory. Following [CLO15], a monomial order < on K[xn] is a total order on

the monomials satisfying

1. 1 ≤ m for any monomial m;
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2. for any monomials m,m1,m2 with m1 < m2 we have m ·m1 < m ·m2.

Given such an order and a nonzero f ∈ K[xn], the leading monomial LM(f) is the largest

monomial (with respect to the monomial order) that has nonzero coefficient in f . For an

ideal I ⊆ K[xn] we let LM(I) be the ideal generated by the leading monomials of all the

nonzero elements of I.

Gröbner theory [CLO15, Ch.5, §3, Prop. 1] tells us that one basis for the vector

space K[xn]/I is given by all the monomials that do not belong to LM(I), or equivalently

all monomials that are not divisible by any LM(f) for f ∈ I. We will refer to this basis

as the standard monomial basis of K[xn]/I with respect to <.

The following monomial orders are of interest to us.

1. The lexicographical order : Here, for two monomials m1 6= m2 write m1 = xa11 · · ·xann

and m2 = xb11 · · ·xbnn . Let j ∈ {1, 2, . . . , n} be minimal such that aj 6= bj, then

m1 <lex m2 if and only if aj <lex bj.

2. The graded lexicographical order : Here, for we have m1 <grlex m2 if and only if

either deg(m1) < deg(m2) or deg(m1) = deg(m2) and m1 <lex m2

2.6 Catalan numbers

The Catalan numbers Cn = 1
n+1

(
2n
n

)
form a sequence of numbers that is ubiquitous

in combinatorics. They enumerate a wide variety of objects, including polygon triangula-

tions, binary trees, plane trees, and Dyck paths. For a thorough background of Catalan
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numbers and their properties we refer to [Pak14] and [Sta15]. In our case we will be inter-

ested in yet another set of objects counted by the Catalan numbers, which we will refer

to as the Catalan-arc matchings (of size n), which are placements of n non-intersecting,

semi-circular arcs on 2n given collinear points.

For example, below one can see the C3 = 5 Catalan-arc matchings of size 3.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Figure 2.2: Catalan-arc matchings of size 3.

2.7 Results in probability

In our probabilistic approach to the Catalan-pair graphs we will use the following

concentration result.

Lemma 2.7.1. Let n be a positive integer and let X1, X2, . . . , Xn be mutually independent

random variables with P[Xi = 0] = P[Xi = 1] = 1
2
. Define Sn = X1 + X2 + . . . + Xn and

let a > 0. Then

P[|Sn − n/2| > a] < 2e−2a
2/n. (2.18)

Proof. Let Yi = 2Xi− 1, and Tn = Y1 + Y2 + . . .+ Yn = 2Sn−n. Using [AS08, Cor A.1.2]

we see that

P[|Sn − n/2| > a] = P[|Tn| > 2a] < 2e−(2a)
2/2n = 2e−2a

2/n.
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Additionally, we will make use of Chebyshev’s inequality [AS08, Thm. 4.1.1].

Lemma 2.7.2. Let X be a random variable with finite expected value E[X] and finite

nonzero variance Var[X]. Then, for any positive k we have

P[|X − E[X]| ≥ k] ≤ Var[X]

k2
. (2.19)

This chapter contains material from: D. Kroes, “Generalized coinvariant algebras

for G(r, 1, n) in the Stanley-Reisner setting”, Electronic Journal of Combinatorics, vol.

26 (3), P.3.11, 2018. The dissertation author was the primary investigator and author of

this paper.

This chapter also contains material from: D. Kroes and B. Rhoades, “Packed words

and quotient rings”, submitted (2021). The dissertation author was one of the primary

investigators and authors of this paper.

This chapter also contains material from: D. Kroes and S. Spiro, “Random Graphs

Induced by Catalan Pairs”, Journal of Combinatorics, Accepted (2020). The dissertation

author was one of the primary investigators and authors of this paper.
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Chapter 3

Generalized coinvariant algebras in

the Stanley–Reisner setting

3.1 The Stanley-Reisner ring

Consider the polynomial ring C[yS] where yS = {y{1}, . . . , , y{n}, . . . , y{1,2,...,n}} is

a list of variables indexed by the non-empty subsets S ⊆ [n]. The Stanley–Reisner ring

of the Boolean algebra is given by C[B∗n] := C[yS ]
〈yS ·yT 〉

, where the generators of the ideal

satisify S 6⊆ T and T 6⊆ S. It is easy to see that C[B∗n] has a C-basis given by multichain

monomials, which are monomials of the form y = yS1 · · · ySt with ∅ 6= S1 ⊆ S2 ⊆ . . . ⊆

St ⊆ [n].

One important tool will be the following ring homomorphism C[yS]→ C[xn].

Definition 3.1.1. Let n be a positive integer. Let ϕ : C[yS] → C[xn] be the ring
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homomorphism defined by

ϕ(yS) =
∏
i∈S

xi. J

Note that ϕ does not vanish on 〈yS · yT 〉, so ϕ does not induce a ring isomorphism

between C[B∗n] and C[xn]. However, it is well known that defining ϕ on the multichain

basis of C[B∗n] yields a Sn-module isomorphism between C[B∗n] and C[xn]. Furthermore,

this even gives us a Gn-module isomorphism if we equip C[B∗n] with a Gn-structure in

the following way. For g ∈ Gn and yS we set g · yS = αyT where α and T are selected

according to g ·
∏

i∈S xi = α
∏

j∈T xj, and extend this multiplicatively to C[yS].

Garsia and Stanton [GS84] show that one can obtain the coinvariant algebra as a

quotient of C[B∗n]. For 1 ≤ i ≤ n, denote

θi =
∑

S⊆[n],|S|=i

yS. (3.1)

Note that applying our homomorphism from above we have ϕ(θi) = ei(xn). It is shown

by Garsia and Stanton that there is an isomorphism between the coinvariant algebra Rn

and the quotient

Rn =
C[B∗n]

〈θ1, . . . , θn〉
.

3.2 The main result

For the remainder of this chapter we fix r ≥ 1, and we denote Gn = G(r, 1, n) as

usual. From now on, we also write OPn,k to denote OP(r)
n,k. We first define the quotients
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of C[B∗n] that will be the analogues of Rn,k introduced in Definition 2.4.1 and Rn,k and

Sn,k from Definition 2.4.2.

Definition 3.2.1. Let 0 ≤ k ≤ n be integers with n ≥ 1. In C[yS] we define the following

ideals:

In,k = 〈yS · yT , θn−k+1, . . . , θn, yS1 · · · ySkr+1
〉; (3.2)

Jn,k = 〈yS · yT , θn−k+1, . . . , θn, yS1 · · · ySkr〉, (3.3)

where S and T range over all pairs of nonempty subsets S, T ⊆ [n] with S 6⊆ T and

T 6⊆ S,

θi =
∑

S⊆[n],|S|=i

yrS

and (S1, . . . , Skr+1) and (S1, . . . , Skr) range over all multichains S1 ⊆ . . . ⊆ Skr+1 and

S1 ⊆ . . . ⊆ Skr of nonempty subsets of [n] of length kr + 1 and kr respectively.

Lastly, define Rn,k = C[yS]/In,k and Sn,k = C[yS]/Jn,k. J

Remark. Even though we will show that there exist bases for Rn,k and Rn,k (and Sn,k

and Sn,k) such that the image of the y-variable basis under ϕ is exactly the x-variable

basis, the map ϕ will not define a Gn-module isomorphism on these bases, not even in

the case of the classical coinvariant algebra. Instead, ϕ is often referred to as the transfer

map, indicating the analogy between the Stanley–Reisner quotients and the traditional

x-variable quotients. J

The main result of this chapter is the following.
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Theorem 3.2.2. For r ≥ 2, we have Gn-module isomorphisms Rn,k
∼= Rn,k and Sn,k ∼=

Sn,k.

Remark. Note that the assumption r ≥ 2 is introduced to have notational consistency

with [CR20] as in Definition 2.4.2. However, all the proofs transfer over to the case r = 1

to show an isomorphism between Sn,k and Rn,k from [HRS18] as in Definition 2.4.1. J

3.3 Preliminary results

Before proving Theorem 3.2.2 we will need some auxiliary results. In this section,

we will work towards bases for Rn,k and Sn,k that resemble bases introduced in [CR20].

Often we will show a result for the Sn,k quotient and then most of the arguments will

directly transfer over to the case of Rn,k.

In order to prove some results we need a monomial order on C[yS]. In our case,

we will equip C[yS] with the graded lexicographical monomial order with respect to the

ordering of the variables by yS > yT if |S| > |T | or |S| = |T | and min(S\T ) < min(T\S).

For example, for n = 3, this order is given by

y{1,2,3} > y{1,2} > y{1,3} > y{2,3} > y{1} > y{2} > y{3}.

We remark that only this ordering on the variables is essential, because we will mainly

work in homogeneous components of C[yS]. Therefore, one could use any monomial order

with this ordering on the variables instead.
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3.3.1 Garsia–Stanton type bases

Let us recall the Garsia–Stanton type bases for Rn,k and Sn,k, as introduced by

Chan and Rhoades [CR20, Def. 5.7 & Def. 5.9]. In order to do so we need the classical

Garsia–Stanton basis for Rn, indexed by elements g ∈ Gn. When g = πc11 · · · πcnn , set

di(g) = #{j ≥ i : j ∈ Des(g)} for the number of descents at or after position i. The

descent monomial bg is defined by

bg =
n∏
i=1

xrdi(g)+ciπi
. (3.4)

Now, the following set descends to a C-vector space bases for Sn,k [CR20, Def. 5.7 &

Thm. 5.8]:

Dn,k = {bg · xri1π1 · · ·x
rin−k
πn−k

: g ∈ Gn, des(g) < k, k− des(g) > i1 ≥ . . . ≥ in−k ≥ 0}. (3.5)

Furthermore, Rn,k has a similar basis En,k [CR20, Def. 5.9 & Thm. 5.10] given by all

elements of the form ∏
j∈Z

xkrj · bπcz+1
z+1 ···π

cn
n
· xriz+1

πz+1
· · ·xrin−kπn−k

, (3.6)

where Z ⊆ [n] satisfies 0 ≤ |Z| = z ≤ n − k, π
cz+1

z+1 . . . π
cn
n is a word on [n] − Z with

des(π
cz+1

z+1 . . . π
cn
n ) < k and k − des(π

cz+1

z+1 . . . π
cn
n ) > iz+1 ≥ . . . ≥ in−k ≥ 0.

Since, |Dn,k| = |OPn,k| one might wonder whether there is a natural way to index

those basis elements by elements of OPn,k. One way to do so is using our ascent starred

model for OPn,k.

Definition 3.3.1. Given an element in OPn,k represented by (g, λ) we define

b(g,λ) := bg · xri1π1 · · ·x
rin−k
πn−k

, (3.7)
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where ij = #{m : λm ≥ j}. J

Similarly, since |En,k| = |Fn,k| we would like to index elements of En,k by elements

of Fn,k. Again, we will use our model for elements of Fn,k. To this end, note that the

definitions of bg and b(g,λ) make sense even if g is just a word on the alphabet {ij : 1 ≤

i ≤ n, 0 ≤ j ≤ r − 1}. Therefore, we have the following definition.

Definition 3.3.2. Let (Z, g, λ) represent an element in Fn,k. Set

b(Z,g,λ) =
∏
i∈Z

xkri · b(g,λ). J (3.8)

It is an easy check that Dn,k = {b(g,λ) : (g, λ) ∈ OPn,k} and En,k = {b(Z,g,λ) :

(Z, g, λ) ∈ Fn,k}.

3.3.2 An intermediate quotient

We will first consider the quotient C[yS] by the ideal 〈yS · yT , θn−k+1, . . . , θn〉.

Definition 3.3.3. Let g ∈ Gn with g = σc11 · · ·σcnn , and let d ∈ Zn≥0.

1. Define b̃g =
∏n

i=1 y
mi
Ti

, where Ti = {σj : 1 ≤ j ≤ i} and

mi =



ci − ci+1 + r if i < n and i ∈ Des(g);

ci − ci+1 if i < n and i 6∈ Des(g);

cn if i = n.

2. Set b̃(g,d) = b̃g ·
∏n

i=1 y
rdi
Ti

. J
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As an example let n = 5, r = 3 and g = 4022523211. Then we have descents at

positions 1 and 3, so b̃g = y{4}y
3
{2,4,5}y{2,3,4,5}y{1,2,3,4,5}.

Lemma 3.3.4. Every multichain monomial y = yS1 · · · ySt is equal to b̃(g,d) for a unique

(g, d) ∈ Gn × Zn≥0.

Before we give the proof, let us illustrate the idea of the proof. Let n = 6, r = 3

and consider y = y5{4}y
7
{1,3,4}y{1,2,3,4,6}y

4
{1,2,3,4,5,6}. If we want to write this in the form b̃(g,d)

the underlying permutation of g has to be 4abcd5 with {a, b} = {1, 3} and {c, d} = {2, 6}.

Now, note that if ab = 31, then y{4,3} will have exponent at least 1 in bg, either because

3 and 1 have different colors, or because 3 and 1 have the same color, which implies

that g has a descent at the second position. Similarly, we have cd = 26 and hence the

underlying permutation is 413265. Now, let c1, . . . , c6 be the colors (of 4, 1, 3, 2, 6 and

5). By the above, we have c2 = c3 and c4 = c5. Note that y{1,2,3,4,5,6} has exponent c6

in bg, hence exponent equivalent to c6 modulo 3 in b(g,d). Therefore, since 0 ≤ c6 ≤ 2,

we need c6 = 1. Equivalently, y{1,2,3,4,6} has exponent equivalent to c5 − c6 modulo 3 in

bg (it is either c5 − c6 or c5 − c6 + 3) hence we have c5 − c6 ≡ 1 mod 3 in b(g,d) as well.

We conclude that c4 = c5 = 2. Similarly, c2 = c3 = 0 and c1 = 2, hence the only option

for g is 421030226251. Note that in this case bg = y2{4}y{1,3,4}y{1,2,3,4,6}y{1,2,3,4,5,6}, so we can

uniquely write y = b(g,d) for d = (1, 0, 2, 0, 0, 1).

Proof. Suppose that our multichain monomial is of the form y = ya1Si1
· · · yajSij , where 1 ≤

i1 < . . . , ij ≤ n, |Sik | = ik for 1 ≤ k ≤ j and a1, . . . , aj > 0. Let Si1 = {g1 < . . . < gi1},
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Sim\Sim−1 = {gim−1+1 < . . . < gim} for 2 ≤ m ≤ j and [n]\Sij = {gij+1 < . . . < gn} (if

this set is non-empty). Note that if y = b̃(g,d) then the one-line notation of the underlying

permutation of g has to be g1g2 . . . gn and all elements that are in the same set (from

{g1 < . . . < gi1}, {gim−1+1 < . . . < gim} and {gij+1 < . . . < gn}) need to have the same

color. Let these colors be c1, . . . , cij and cij+1 (the last one appearing only if necessary).

Indeed, from the definition, if h ∈ Gn and hi and hi+1 have different colors then y{h1,...,hi}

has exponent ci−ci+1 or ci−ci+1+r (depending on whether there is a descent or not) and

in both cases this exponent is nonzero, so b̃(h,d) does not equal y. And if hi and hi+1 have

the same color, but hi > hi+1, then y{h1,...,hi} would appear with exponent r > 0, so again

this cannot happen. Therefore, the underlying permutation of g is uniquely determined

(if it exists). On the other hand, if such c1 up to cj (and possibly cj+1) exist, they are

also uniquely determined, by a backwards inductive argument. Indeed, if Sij 6= [n], then

Y[n] has coefficient 0 modulo r, hence we need cj+1 = 0, and else Sij = [n] and cj has to

be the exponent of Sij taken modulo n. Now, suppose ck has been determined, then we

will determine ck−1. It is clear that we need ck−1 − ck ≡ ak−1 mod r, and since ck−1 has

to be taken from {0, . . . , r − 1} this gives a unique choice. Now, for this choice of the

colors, and the corresponding g, we show that there is a suitable d ∈ Zn≥0. Note that by

construction, b̃g = yb1Si1
· · · ybjSij , where bi ≡ ai mod r. Furthermore, bi ∈ {0, 1, . . . , r}. It

is clear that we can get d by taking dm = 0 when m 6= it and taking dim = (bm − am)/r

when m ∈ {1, . . . , j}. Note that this is an integer by bm ≡ am mod r. Furthermore, it is

nonnegative, since am > 0, bm ≥ 0, am ≡ bm mod r and bm ∈ {0, 1, . . . , r} implies that
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bm ≥ am.

Using this we can find a different basis for C[B∗n].

Definition 3.3.5. Let g ∈ Gn and d ∈ Z≥0. Define

b̃′(g,d) = θ
dn−k+1

n−k+1 · · · θ
dn
n b̃(g,(d1,...,dn−k,0,...,0)). J

Lemma 3.3.6. The set {b̃′(g,d) : g ∈ Gn, d ∈ Z≥0} is a C-basis for C[B∗n].

Proof. Order the basis b̃(g,d) according to the monomial order from above. Note that for

each monomial y, the set of monomials y′ with y′ ≤ y is finite, since any such monomial

y′ must have deg(y′) ≤ deg(y) and there are finitely many such monomials.

Now, if we expand b̃′(g,d) in terms of the basis {b̃(g,d)} we find that

b̃′(g,d) = b̃(g,d) + lower terms with respect to <.

Indeed, suppose g has underlying permutation g1 · · · gn. Set Si = {g1, . . . , gi}. Note that

if gi > gi+1, or ci 6= ci+1 then necessarily we have that ySi occurs in b̃g with a positive

exponent. Note that (since we only allow multichains), we have θba =
∑
|S|=a y

rb
S . Now,

terms in b̃′(g,d) correspond to picking one of the terms from each of the θba with positive

b, in such a way that the result is still a multichain. Because of our monomial order, we

should pick from larger a first. Suppose we are picking a subset of size i and suppose

it < i < it+1 (set ij+1 = n) (we can exclude i = it, because of the multichain condition we

must pick Si). Then, we are asking for the largest yS with |S| = i and Sit ⊆ S ⊆ Sit+1 ,

which is S = {g1, . . . , gi}, due to the fact that git+1, . . . , git+1 all have the same color and
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are in increasing order, by the proof of the lemma above. Therefore, the largest possible

monomial that could possibly appear is obtained by picking ySi for every i > n− k with

di > 0. Now note that if we take this choice for all i simultaneously we indeed get a

multichain monomial, and this monomial is equal to b̃(g,d), as desired.

Therefore, b̃′(g,d) expands in a unitriangular way in terms of the basis {b̃(g,d)} and

because of the initial observation in this proof, it follows that {b̃′(g,d) : g ∈ Gn, d ∈ Z≥0}

is a basis for C[B∗n].

For (d1, . . . , dn−k) = d ∈ Zn−k≥0 set b̃(g,d) = b̃(g,(d1,...,dn−k,0,...,0)). Then the following is

immediate.

Corollary 3.3.7. C[B∗n] is a free C[θn−k+1, . . . , θn]-module with basis given by

{b̃(g,d) : g ∈ Gn, d ∈ Zn−k≥0 }. (3.9)

Furthermore, this set descends to a vector space basis for C[B∗n]/〈θn−k+1, . . . , θn〉 =

C[yS]/〈yS · yT , θn−k+1, . . . , θn〉.

Additionally, this allows us to quickly determine a vector space basis for the quo-

tient C[yS]/〈yS · yT , θn−k+1, . . . , θn, yS1,...,Sm〉, of which we will be interested in the cases

m = kr and m = kr + 1. Again, the result is immediate, so the proof is omitted.

Corollary 3.3.8. Let m ∈ Z>0 and consider C[yS]/〈yS · yT , θn−k+1, . . . , θn, yS1 · · · ySm〉,

where (S, T ) runs over all pairs with S 6⊆ T and T 6⊆ S, and (S1, . . . , Sm) runs over all

∅ 6= S1 ⊆ . . . ⊆ Sm ⊆ [n]. This is a finite-dimensional C-vector space with basis given by

all elements b̃(g,d) with g ∈ Gn, d ∈ Zn−k≥0 and deg(b̃(g,d)) < m.
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3.3.3 Bases for the rings Rn,k and Sn,k

Note that Corollary 3.3.8 yields bases for Rn,k and Sn,k. In this section we will

show that these bases can be indexed by elements of Fn,k and OPn,k respectively. We

will use the models introduced before.

Definition 3.3.9. 1. For (g, λ) ∈ OPn,k, let b̃(g,λ) = b̃g · yrS1
· · · yrSt , where Si = {gi :

1 ≤ j ≤ λi}.

2. Let (Z, g, λ) ∈ Fn,k. If (loosely extending the definition above) we have b̃(g,λ) =

yS1 · · · ySj , then set b̃′(g,λ) = yS1∪Z · · · ySj∪Z . Now, set b̃(Z,g,λ) = y
kr−deg(b̃(g,λ))
Z ·b̃′(g,λ). J

It is an easy check that ϕ(b̃(g,λ)) = b(g,λ) and ϕ(b̃(Z,g,λ)) = b(Z,g,λ). The main result

is now the following.

Theorem 3.3.10. The sets {b̃(g,λ) : (g, λ) ∈ OPn,k} and {b̃(Z,g,λ) : (Z, g, λ)} are bases

for Sn,k and Rn,k respectively.

Proof. Let us first show that there is a bijection between elements of the form b̃(g,λ) and

b̃(g,d) with deg(b̃(g,d)) < kr. Note that for any partition λ with parts at most n − k, we

have (after extending the above definition to allow for any partition) b̃(g,λ) = b̃(g,d), where

d = (d1, . . . , dn−k) with di = #{j : λj = i}. Therefore, it suffices to show that λ has at

most k− des(g)− 1 parts if and only if deg(b̃(g,λ)) < kr. Now, note that if λ has m parts,
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we have

deg(b̃(g,λ)) = deg(b̃g) +mr =
n−1∑
i=1

(ci − ci+1 + r · χ(i is a descent)) + cn +mr

= c1 + rdes(g) +mr = c1 + (m+ des(g))r,

where χ is the indicator function given by χ(S) = 1 if statement S is true and χ(S) = 0

otherwise. Now, since c1 ∈ {0, 1, . . . , r − 1} we have deg(b̃(g,λ)) < kr if and only if

m+ des(g) ≤ k − 1, that is if and only if λ has at most k − des(g)− 1 parts.

Similarly, we have to show that there is a bijection between elements of the

form b̃(Z,g,λ) and b̃(g,d) with deg(b̃(g,d)) ≤ kr. A similar calculation to above shows that

deg(b̃(Z,g,λ)) < kr if Z = ∅ and clearly deg(b̃(Z,g,λ) = kr when Z 6= ∅, so it suffices to show

that there is a bijection between elements of the form b̃(Z,g,λ) with Z 6= ∅ and b̃(g,d) with

deg(b̃(g,d)) = kr. Note that deg(b̃(g,d)) = c1 +r(des(g)+d1 + . . .+dn−k), so deg(b̃(g,d)) = kr

if and only if c1 = 0 and des(g) + d1 + . . .+ dn−k = k.

Now, given b̃(g,d) with deg(b̃(g,d)) = kr, we show that there is a unique (Z, h, λ)

such that b̃(Z,h,λ) = b(g,d). Let S be the smallest subset (in size) such that yS has positive

exponent in b̃(g,λ). It is clear that if (Z, h, λ) exists we must have Z = S. Now, suppose

that |S| > n−k. Then in particular we have d1 = . . . = dn−k = 0, and g has no descents at

positions 1, . . . , n−k. But then, using c1 = 0, we have deg(b̃g,d) = deg(b̃g) = c1+rdes(g) =

rdes(g) < r(k − 1), a contradiction. Therefore, let z = |S|, so that 1 ≤ z ≤ n− k. Using

c1 = 0 and minimality of S, we see that g = g01 · · · g0z · · · with g1 < . . . < gz. Additionally,
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d1 = . . . = dz−1 = 0. Set b = b̃(g,d)/y
e
S, where e is the exponent of yS, and write

b =
m∏
i=1

yS∪Si ,

where ∅ 6= S1 ⊆ . . . ⊆ Sm ⊆ [n]\S. Note that
∏m

i=1 ySi = b̃(h,d) for h = g
cz+1

z+1 · · · gcnn

and d = (dz+1, . . . , dn−k). We now want to show that there is a unique (h, λ) such that

(Z, h, λ) ∈ Fn,k and b̃(h,λ) = b̃(h,d). However, since deg(b̃(h,d)) < kr the first part of the

proof shows that indeed we can find such a (h, λ).

Conversely, we show that b̃(Z,h,λ) is of the form b̃(g,d) for a unique (g, d). Write

Z = {g1 < . . . < gz} and let h = hc11 · · ·h
cn−z
n−z . It is clear that we must have g =

gc1 · · · gczh
c1
1 · · ·h

cn−z
n−z for a suitable c. Furthermore, since we need deg(b̃g) ≡ 0 mod r, we

in fact have to pick c = 0. Therefore, g is uniquely determined, and hence d (if it exists)

is also uniquely determined. By construction, if St = {g1, . . . , gt}, the exponent of ySt in

b̃g and in b̃(Z,h,λ) agree modulo r. Indeed, this is obvious for t > z, and for t ≤ z the choice

of c = 0 guarantees this. Furthermore, for t > n − k we still have that the exponents

agree as integers (so not only modulo r). Therefore, it only suffices to show that for any

1 ≤ t ≤ n−k the exponent of ySt in b̃(Z,h,λ) is at least the exponent of ySt in b̃g. Again, this

is obvious for z < t ≤ n− k. Additionally, it is clear for 1 ≤ t < z, since by construction

ySt has exponent 0 in b̃g. Now, for t = z, we are immediately okay if ySz = yZ occurs with

exponent less {0, 1, . . . , r − 1} in b̃g. Therefore, the only thing that might fail is that yZ

occurs with exponent r in b̃g but exponent 0 in b̃(Z,h,λ). However, since deg(b̃(h,λ)) < kr,

we know that yZ occurs with exponent at least 1 in b̃(Z,h,λ) and therefore, with exponent

at least r, as desired.
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3.3.4 A Gröbner theory result

In this section we will show that the above bases are actually the standard mono-

mial bases with respect to the monomial order used. Our proof methods are inspired by

Braun and Olsen [BO18], who obtain similar results in the case that n = k.

Theorem 3.3.11. Let 0 ≤ k ≤ n be integers with n ≥ 1. Then the set {b̃(g,λ) : (g, λ) ∈

OPn,k} is precisely the standard monomial basis for Sn,k.

Proof. Since we know that the given set is a basis, it suffices to show that the standard

monomial basis of Sn,k is contained in {b̃(g,λ) : (g, λ) ∈ OPn,k}.

Similar to Braun and Olsen [BO18] we show that y ∈ {b̃(g,λ) : (g, λ) ∈ OPn,k} if

and only if y is not divisible by any of the monomials in the list below. The proof will

then be completed by showing that each of these monomials occurs as the leading term

of some element of Jn,k. The list of monomials is given by

1. yS · yT for S 6⊆ T and T 6⊆ S;

2. yr[m] for m ≥ n− k + 1;

3. yr+1
S for |S| ≥ n− k + 1;

4. yrS · yT for S ( T , |S| ≥ n− k + 1 and min(T\S) > max(S);

5. yS · yrT for S ( T , |T | ≥ n− k + 1 and T = S ∪ [`] for some `;

6. yS1 · yrS2
· yS3 for S1 ( S2 ( S3, |S2| ≥ n− k+ 1 and max(S2\S1) < min(S3\S2);
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7. yS1 · · · ySkr where S1 ⊆ . . . ⊆ Skr.

We will first show necessity of these conditions, then sufficiency and lastly will exhibit

these monomials as leading terms in Jn,k.

Necessity: we will assume that g is of the form πc11 · · · πcnn . Note that if yS with

|S| ≥ n−k+1 occurs in some b̃(g,λ) then its contribution completely comes from b̃g. Now,

if there is no descent at position |S|, yS will have exponent c|S|+1− c|S| ≤ (r− 1)− 0 < r.

Furthermore, if there is a descent at position |S|, we have c|S|+1 ≥ c|S|, so yS will have

exponent r + c|S|+1 − c|S| ≤ r. Therefore, if yS occurs with exponent at least r, it occurs

with exponent exactly r, we have a descent at position |S| and c|S|+1 = c|S|.

1. Each variable occurring in b̃(g,λ) is of the form ySi for 1 ≤ i ≤ n, where Si =

{π1, . . . , πi}. Since S1 ⊆ S2 ⊆ . . . ⊆ Sn, every two variables in b̃(g,λ) will automati-

cally be indexed by subsets one of which is contained in the other.

2. Since m ≥ n−k+1, yr[m] would have to come from a descent of g at position m with

cm = cm+1. In order to have a descent we need πm+1 < πm. However, πm ∈ [m],

hence πm ≤ m, whereas πm+1 ∈ [n]\[m], so πm+1 ≥ m+ 1.

3. This was observed above.

4. Suppose such a product yrS ·yT actually occurs. Since |S| ≥ n−k+1, yrS comes from

a descent at position |S| with c|S|+1 = c|S|, so π|S| > π|S|+1. Since {π1, . . . , π|S|} = S

and {π1, . . . , π|T |} = T , we have min(T\S) ≤ π|S|+1 < π|S| ≤ max(S), which is an

obvious contradiction.
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5. Suppose that such a product occurs. Again, yrT has to come from a descent at

position |T | with c|T | = c|T |+1, hence π|T | > π|T |+1. Note that π|T | ∈ T\S ⊆ [`],

so π|T | ≤ `. Furthermore, π|T |+1 6∈ T , hence in particular π|T |+1 > `, which is a

contradiction.

6. Suppose such a triple product occurs. Since |S2| ≥ n − k + 1, yrS2
comes from a

descent at position |S2| with c|S2| = c|S2|+1, so we must have π|S2| > π|S2|+1. However,

π|S2| ∈ S2\S1 and π|S2|+1 ∈ S3\S2, so by assumption we have π|S2| ≤ max(S2\S1) <

min(S3\S2) ≤ π|S2|+1.

7. We note that

deg(b̃(g,λ)) ≤ deg(b̃g) + (k − des(σ)− 1)r =
n∑
i=1

mi + (k − des(σ)− 1)r

=
n∑
i=1

(ci − ci+1 + rχ(i is a descent)) + (k − des(σ)− 1)r

= c1 + rdes(σ) + (k − des(σ)− 1)r = kr + c1 − r ≤ kr − 1,

where cn+1 = 0, and χ is the indicator function of the indicated event.

Sufficiency: Let m = yS′1 · · · yS′t be a monomial not divisible by any of the above

mentioned monomials. Then combining properties 1. and 7. we may assume S ′1 ⊆

S ′2 ⊆ . . . ⊆ S ′t and t < kr. However, we will rewrite this as m = yt1S1
· · · ytuSu , where

S1 ( S2 ( . . . ( Su.

We will first construct the corresponding g ∈ Gn, after which the augmentation λ

will follow automatically. Firstly, the underlying permutation of σ will be given by putting
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the elements of S1 in ascending order, then the elements of S2\S1, . . ., the elements of

Su\Su−1 in ascending order and finally the elements of [n]\Su in ascending order. Now,

we have to assign colors to each of the elements. We will give all elements of S1 the same

color, all elements of S2\S1 the same color, . . ., all elements of Su\Su−1 the same color

and finally all elements of [n]\Su the same color. We will assign these colors in reverse

order. Firstly, assign color 0 to everything in [n]\Su, then assign color tu to Su\Su−1,

then color tu + tu−1 to Su−1\Su−2, . . . and finally color tu + tu−1 + . . . + t1 to S1. Here,

everything should be interpreted modulo n. It is an easy check that m = b̃g · yrv1S1
· · · yrvuSu

,

where v1, v2, . . . , vu ≥ 0.

Now, let us check that g together with some appropriate λ satisfies the condition

that m = b(g,λ). Firstly, using a similar computation to above, rdes(g) ≤ deg(b̃g) ≤

deg(m) < kr, hence des(g) < k, as desired. So, to see that the augmented part corresponds

to an appropriate λ we have to check two things, namely that vj = 0 if |Sj| ≥ n− k + 1

and that v1 + . . .+ vu ≤ (k − des(g)− 1). For the latter, note that

r(v1 + . . .+ vu) = deg(m)− deg(bg) < kr − deg(bg) ≤ kr − des(g)r = (k − des(g))r,

so v1+. . .+vu < k−des(g), as desired. For the first part, note that if m = |Sj| ≥ n−k+1,

then ySj has exponent at most r by condition 3. Therefore, if vj > 0, we need vj = 1, and

the exponent of ySj in bg equals 0. In particular, σm and σm+1 have the same color and

σm < σm+1. Furthermore, note that ySj now has exponent exactly r, so in particular we

have Sj 6= [m] by condition 2. Now, we distinguish four cases.
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• j = u = 1: In this case, σm = max(S1) > m and σm+1 = min([n]\S1) ≤ m, a

contradiction.

• j = 1, u > 1: In this case, σm = max(S1) and σm+1 = min(S2\S1). By condition 4.

this implies σm > σm+1, a contradiction.

• 1 < j < u: Now, σm = max(Sj\Sj−1) and σm+1 = min(Sj+1\Sj), but then σm <

σm+1 contradicts condition 6.

• 1 < j = u: Now min([n]\Su) = σm+1 > σm, so [σm] ⊆ Su. Furthermore,

max(Su\Su−1) = σm] hence Su\Su−1 ⊆ [σm] so by [σm] ⊆ Su this implies Su =

Su−1 ∪ [σm]. However, this contradicts condition 5.

Therefore, we need to have vj = 0 if |Sj| ≥ n− k + 1, completing this part of the proof.

Leading monomials:

1. These monomials are among the generators of Jn,k.

2. These monomials are the leading monomials of θm ∈ Jn,k.

3. Write m = |S| and consider ySθm ∈ Jn,k. All monomials in this polynomial are

of the form yS · yrT where |T | = m = |S|. Note that all such products have S and

T incomparable, except for when T = S. Therefore, modulo Jn,k this equals yr+1
S ,

showing that yr+1
S in fact occurs in Jn,k.

4. Write m = |S| and consider θm · yT . All monomials in this polynomial are of the

form yrR · yT where |R| = m = |S|. Modulo Jn,k this is equal to
∑

R y
r
R · yT where
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R runs over all such subsets with R ⊆ T . By assumption, S is the smallest such

set with respect to the monomial order, hence yrS · yT is the leading term of this

monomial.

5. Let m = |T | and note that Jn,k contains yS · θT which modulo Jn,k reduces to∑
R yS · yrR where S ⊆ R and |R| = m. Since T = S ∪ [`] it is clear that T is the

lexicographically smallest such set, so this polynomial has leading monomial yS ·yrT .

6. Let m = |S2| and consider yS1yS3 · θm. Similarly, this equals
∑

T yS1y
r
TyS3 modulo

Jn,k where T runs over all m-element subsets S1 ⊆ T ⊆ S3. By assumption, S2 is

the lexicographically smallest such set, hence yS1yS2yS3 can be obtained as a leading

monomial.

7. These monomials are among the generators of Jn,k.

This completes the proof.

Similarly, we have the following result.

Theorem 3.3.12. Let 0 ≤ k ≤ n be integers with n ≥ 1. Then the set {b̃(Z,g,λ) :

(Z, g, λ) ∈ Fn,k} is precisely the standard monomial basis for Rn,k.

Proof. Again it suffices to show that the standard monomial basis of Rn,k is contained in

{b̃(Z,g,λ) : (Z, g, λ) ∈ Fn,k}. We will show that a monomial y belongs to this set if and

only if it is not divisible by any of the monomials in the exact same list as before, except

that we need to change the 7th condition into
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7’. yS1 · · · ySkr+1
where S1 ⊆ . . . ⊆ Skr+1.

Again we will go through the steps necessity, sufficiency and show that they occur as

leading monomials in Jn,k.

Necessity: Condition 1 is clearly still satisfied, and conditions 2-6 follow by the

exact same argument, since the appropriate monomials yS with |S| ≥ n−k+1 still have to

come from the contribution of g to b(Z,g,λ), since neither Z, nor λ will affect the exponent

of these. For condition 7’, we note that b(Z,g,λ) might now have degree kr (when Z 6= ∅),

but will never have degree kr + 1 or more.

Sufficiency: There are two cases to consider. Let y be a monomial not divisible

by any of the monomials specified in the list. We will show that y is of the form b(Z,g,λ). If

deg(y) < kr, then we set Z = ∅ and use the same procedure as in Theorem 3.3.11 to find

the appropriate (g, λ). If deg(y) = kr, set Z to be the smallest subset S of [n] (in size)

such that yS has positive exponent in y. Let eS be the exponent of S and set y′ = y/yeSS .

Now, set y′′ to be the same monomial as y′ where each yT is replaced by yT\S. Since

deg(y′′) < kr, the same procedure as in Theorem 3.3.11 can be used to find appropriate

(g, λ) to complete the triple (Z, g, λ).

Leading monomials: For conditions 1-6 the reasoning is exactly the same, since

none of them use the multichain generators of In,k. For condition 7’, it again follows

immediately since these multichain monomials belong to the generators of Jn,k.
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3.4 A filtration of Rn,k and Sn,k.

We are now ready to prove Theorem 3.2.2. We first need two definitions.

Definition 3.4.1. 1. For y = yS1 · · · ySm ∈ C[yS] a multichain monomial with S1 ⊆

. . . ⊆ Sm, we let µ(y) be the partition (|Sm|, . . . , |S1|).

2. For m ∈ C[xn] a monomial, we let µ(m) be the partition given by µ(y), where y is

the unique multichain monomial with ϕ(y) = m. J

Let D be the dominance order on partitions and let (A, A) be (Rn,k, Rn,k) or

(Sn,k, Sn,k). Now fix d ≥ 0 and let µ ` d. Set

UDµ = span{m : µ(m) ` d, µ(m)D µ} and UDµ = span{y : µ(y) ` d, µ(y)D µ}.

(3.10)

and define U.µ and U.µ in a similar fashion. Let VDµ be the image of UDµ in A, VDµ be the

image of VDµ in A and similarly for the other 2. Now, A and A decompose as Gn-modules

as ⊕
d≥0

⊕
µ`d

VDµ/V.µ and
⊕
d≥0

⊕
µ`d

VDµ/V.µ,

respectively. The proof of Theorem 3.2.2 now follows from the lemma below.

Lemma 3.4.2. For each µ, VDµ/V.µ and VDµ/V.µ have bases {b : µ(b) = µ} and

{b̃ : µ(b̃) = µ} respectively, where b and b̃ belong to the Garsia-Stanton type bases

mentioned before. Furthermore, the map b̃→ b = ϕ(b) induces a Gn-module isomorphism

VDµ/V.µ → VDµ/V.µ.
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In turn, this lemma follows from two other lemmas, for which we need another

definition.

Definition 3.4.3. Let (A, A) = (Sn,k, Sn,k) (resp. (A, A) = (Rn,k, Rn,k)). Given a

partition µ ` d with parts that are at most n we say that µ is

1. admissible if µ has less than kr (resp. kr + 1) parts, n− k + 1 ≤ i ≤ n− 1 occurs

at most r times and n occurs at most r − 1 times.

2. semi-admissible if λ has less than kr (resp. kr + 1) parts, has at most r − 1 parts

equal to n, but some n− k + 1 ≤ i ≤ n− 1 occurs at least r + 1 times.

3. non-admissible if λ has at least kr (resp. kr+ 1) parts or has at least r parts equal

to n. J

For example, when n = 6, k = 3 and r = 2, the partitions (5, 5, 2, 2, 2), (6, 5, 5, 5, 1),

(6, 5, 4, 4, 2, 2, 2, 1) and (6, 6, 2) are admissable, semi-admissable, non-admissable and non-

admissable respectively, both when (A, A) = (Sn,k, Sn,k) and when (A, A) = (Rn,k, Rn,k).

However, the partition (6, 5, 5, 2, 2, 2) is non-admissable if (A, A) = (S6,3, S6,3), but ad-

missable for (R6,3, R6,3).

Note that µ is admissible if and only if there exists a basis element b̃ with µ(b̃) = µ.

A move is replacing yrS by yrS−θ|S| and cancelling out all non-multichain terms or replacing

xri1 · · ·x
r
ij

by xri1 · · ·x
r
ij
−ej(xrn) (for i1 < . . . < ij), depending on what setting one is working

in.

The two main lemmas are now as follows:
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Lemma 3.4.4. Let y be a multichain monomial in C[yS] with µ(y) = µ. Then

1. if µ is semi-admissible or non-admissible, y = 0 in A.

2. if µ is admissible, one can perform a finite number of moves to find the expansion

of y in A in terms of the Garsia-Stanton type basis. Additionally, any multichain

monomial Y that ever appears in this process has µ(Y ) = µ.

Proof. For part 1, note that since µ is semi-admissible or non-admissible, y is divisible by

yr[n], y
r+1
S for n−k+1 ≤ |S| ≤ n−1 or a multichain monomial of length kr (resp. kr+1).

Since the ideal we quotient out by to get A contains yr+1
S ≡ yS · θ|S| for n− k+ 1 ≤ |S| ≤

n−1, we see that all of yr[n], y
r+1
S and the multichain monomials belong to the ideal, hence

y = 0 in A.

For the second part, recall the monomial order on C[yS] from before. Now, consider

a monomial y with µ(y) = µ. We claim that if y is not a Garsia-Stanton type monomial

we can perform a move and rewrite y as a C-linear combination of smaller monomials

y′ with µ(y′) = µ(y). Indeed, since µ is admissible, a monomial y that is not a basis

monomial is this for one of four reasons (by the classification of monomials that are of

this form given in Theorems 3.3.11 and 3.3.12):

1. y is divisible by yr[t] for some n− k + 1 ≤ t ≤ n− 1.

2. y is divisible by yrSyT for S ( T , |S| ≥ n− k + 1 and min(T\S) > max(S).

3. y is divisible by ySy
r
T for S ( T , |T | ≥ n− k + 1 and T = S ∪ [`] for some `.
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4. y is divisible by yS1y
r
S2
yS3 for S1 ( S2 ⊆ S3, |S2| ≥ n − k + 1 and max(S2\S1) <

min(S3\S2).

In these cases, apply the move, replacing yr[t], y
r
S, yrT and yrS2

respectively. Any monomial

that remains after crossing out non-multichain monomials is obtained by replacing this

specific variable by some yrR, so it suffices to show that yR is smaller than the replaced

monomial. In the first case, |R| = t, so yR < y[t]. In the second case, R is a subset of T

of size |S| and since min(T\S) > max(S), S was the subset corresponding to the largest

possible monomial over all R, and similarly in the other 2 cases. Therefore, we can rewrite

each non-basis monomial in terms of smaller monomials, so at some point we will be left

with only basis-monomials as desired.

For the proof of the second lemma we need the following observation. Note that if

y is any monomial in C[yS] we can still define µ(y), even if y is not a multichain monomial.

Now, if y is a non-multichain monomial, let y′ be the unique multichain monomial with

ϕ(y) = ϕ(y′). We claim that µ(y′) . µ(y). Indeed, starting from y we can repeatedly

replace yAyB (for A and B incomparable) by yA∪ByA∩B. Note that on the µ-level this

corresponds to replacing (. . . , |A|, . . . , |B|, . . .) by (. . . , |A ∪ B|, . . . , |A ∩ B|, . . .) which

strictly increases the corresponding partition in dominance order (since A and B are

incomparable). Note that this local replacement does not change the image under ϕ and

since µ increases every time we can only do this finitely many times. So we will end up

with some multichain monomial and by uniqueness this is y′. Also, we have done at least

one replacement, so indeed µ(y′) is strictly larger than µ(y).
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The xn-variable analogue of the above lemma is the following.

Lemma 3.4.5. Let m be a monomial in C[xn] with µ(m) = µ. Then

1. if µ is non-admissible, m = 0 in A.

2. if µ is semi-admissible, then in A we can rewrite m as a sum of monomials mα with

µ(mα) . µ.

3. if µ is admissible, then a finite number of moves can be used to rewrite m as a C-

linear combination of Garsia-Stanton monomials m′ with µ(m′) = µ, together with

monomials mα with µ(mα).µ. Moreover, if the moves in part 2 of Lemma 3.4.4 are

replacing yrS1
, yrS2

, . . ., yrSm respectively, then the moves in this case are replacing∏
i∈S1

xri ,
∏

i∈S2
xri , . . .,

∏
i∈Sm x

r
i respectively.

Proof. Let y be the multichain monomial associated to m.

For the first case, since λ is non-admissible, y is divisible by either yr[n] or a mul-

tichain of length kr (resp. kr + 1). In the first case, en(xrn) = xr1 · · ·xrn divides m, hence

m = 0 in Rn,k. In the second case, let j be an element that is in the smallest S such that

yS occurs in the multichain. Then xkrj (resp. xkr+1
j ) divides m and consequently m = 0

in A.

In the second case, we have that y is divisible by yr+1
S for some S with n− k+ 1 ≤

S ≤ n − 1. Suppose S = {i1, . . . , ij}. Then apply the move by replacing xri1 · · · x
r
ij

. We

can “pull back” the move to C[yS], where we replace yrS by yrS − θ|S|, but we do not get

rid of non-multichains. Now, any monomial that occurs will contain ySyT for |S| = |T |
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but S 6= T , hence would have been removed in the y-setting, but in the x-setting these

monomials remain. However, by the above observation, all of these monomials have

strictly smaller µ-partition, as desired.

In the third case, again “pull back” to the y-setting and do the exact same sequence

of moves as in part 2 of the above lemma, but again we do not get rid of non-multichains.

Instead, we replace them by multichains with the same image under ϕ and again this will

strictly increase the µ-partition.

As an example of this phenomenon, consider r = 2 and S5,4. In the y-variable

setting, consider y = y3{5}y
2
{2,5}y

2
{1,2,3,5}. Note that this is not yet of the form b̃(g,λ), for

example since the appearance of y{2,5}y
2
{1,2,3,5} violates condition 5 in the proof of Theorem

3.3.11. Therefore, we apply a step and replace y2{1,2,3,5} by y2{1,2,3,5} − θ4 and after getting

rid of any monomial that is not a multichain monomial we find that

y ≡ −y3{5}y2{2,5}y2{1,2,4,5} − y3{5}y2{2,5}y2{2,3,4,5}.

Here, the first monomial is b̃(5120104030),(1) is of the desired form. However, the second

monomial contains y{5}y
2
{2,5}y{2,3,4,5}, which violates condition 6 in the proof of Theorem

3.3.11. Therefore, we perform a step on y2{2,5} and get that

y ≡ −y3{5}y2{2,5}y2{1,2,4,5} + y3{5}y
2
{3,5}y

2
{2,3,4,5} + y3{5}y

2
{4,5}y

2
{2,3,4,5},

and one can check that all monomials appearing here are indeed of the form b̃(g,λ). Also,

note that we started with a monomial with µ-partition (4, 4, 2, 2, 1, 1, 1) and each mono-

mial kept that form.
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Now, in the x-variable setting we have to consider x75x
4
2x

2
1x

2
3. Replacing the mono-

mial (x1x2x3x5)
2 by (x1x2x3x5)

2 − e4(x21, x32, x23, x24, x25) we get

x75x
4
2x

2
1x

2
3 ≡ −x75x42x21x24 − x75x42x23x24 − x75x21x22x23x24 − x55x42x21x23x24.

Here, the first monomial is a generalized Garsia-Stanton monomial, the second mono-

mial is one we have to perform another step on. Now, the last two monomials have y-

monomial y5{5}y
2
{1,2,3,4,5} and y{5}y

2
{2,5}y

2
{1,2,3,4,5} respectively, hence they have µ-partitions

(5, 5, 1, 1, 1, 1, 1) and (5, 5, 2, 2, 1). Now, it holds that (5, 5, 1, 1, 1, 1, 1) . (4, 4, 2, 2, 1, 1, 1)

and (5, 5, 2, 2, 1) . (4, 4, 2, 2, 1, 1, 1). Therefore,

x75x
4
2x

2
1x

2
3 ≡ −x75x42x21x24 − x75x42x23x24 + monomials with larger µ-partition,

and hence the first step of the algorithm carries out in the a way similar to the first step

in the y-variable setting. Now, applying an analogous step to x75x
4
2x

2
3x

2
4 we find that

x75x
4
2x

2
1x

2
3 ≡ −x75x42x21x24 + x75x

4
3x

2
2x

2
4 + x75x

4
4x

2
2x

2
3 + monomials with larger µ-partition,

which indeed show that even though the expansion of y and x75x
4
2x

2
1x

2
3 in the Garsia-

Stanton bases are not identical, the monomials that appear and have the same µ-partition

as the original monomial do coincide, and their coefficients agree.

Lemma 3.4.2 is now an easy application of the Lemmas 3.4.4 and 3.4.5.

Proof of Lemma 3.4.2. If µ is non-admissible or semi-admissible the above lemmas show

that VDµ/V.µ and VDµ/V.µ are both trivial Gn-modules.
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Now, suppose µ is admissible. We need to show that sending b̃ to b = ϕ(b̃) (for b̃ a

Garsia-Stanton monomial with µ(b̃) = µ) induces a Gn-module isomorphism. For g ∈ Gn

we can rewrite g · b̃ in the Garsia-Stanton basis using the moves from part 2 of Lemma

3.4.4. Since the multichain monomial corresponding to πb is given by πb̃ we can use part

3 of Lemma 3.4.5 to rewrite πb in the same way in this given basis (viewed as basis for

VDµ/V.µ), since all the additional monomials that appear belong to V.µ and hence are 0

in the quotient.

3.5 Multi-graded Frobenius series

We now specialize to the case r = 1 and determine the multi-graded Frobenius

character of Sn,k. We show that the appropriate specialization of this Frobenius character

agrees with the graded Frobenius character of Rn,k, as seen in [HRS18, Corollary 6.13]

and [HR18, Corollary 6.3].

Note that if µ is a partition with parts at most n and if d is a nonnegative integer,

the subspaces Ud = span{m : deg(m) = d} and Uµ = span{m : µ(m) = µ} are

Sn-stable subspaces of C[xn] and C[yS] respectively, and hence so are their images Vd

and Vµ in Sn,k and Sn,k (for r = 1) respectively. The graded Frobenius character and
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multi-graded Frobenius character of Sn,k and Sn,k are

grFrob(Sn,k; q) =
∞∑
d=0

qdFrob(Vd);

grFrob(Sn,k; t1, . . . , tn) =
∑
µ

t
m1(µ)
1 · · · tmn(µ)n Frob(Vµ),

where the sum is over all partitions with parts at most n, and mi(µ) is the number of parts

of µ equal to i. We can determine the graded Frobenius image grFrob(Sn,k; t1, . . . , tn).

Theorem 3.5.1. Suppose that r = 1. Then

grFrob(Sn,k; t1, . . . , tn) =
∑
α|=n
`(α)≤k

 ∏
i∈D(α)

ti

 ∑
j1+···+jn−k≤k−`(α)

n−k∏
i=1

tjii

 sα,

where the sum runs over compositions α = (α1, . . . , αm) of n and D(α) = {α1, . . . , α1 +

. . .+αm−1}. Furthermore, by setting ti = qi we recover the graded Frobenius character of

Sn,k, in accordance with [HRS18, Corollary 6.13] and [HR18, Corollary 6.3].

Proof. We write β � α if D(β) ⊆ D(α). It is well known that

hα =
∑
β�α

sβ.
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It follows from work of Garsia and Stanton [GS84] that

grFrob(C[B∗n];t1, . . . , tn) =
∑
γ|=n

 ∏
i∈D(γ)

(ti + t2i + · · · )

hγ

=
∑
α|=n

∑
α�γ

 ∏
i∈D(γ)

(ti + t2i + · · · )

 sα

=
∑
α|=n

 ∏
i∈D(α)

(ti + t2i + · · · )

∑
α�γ

 ∏
i∈D(γ)\D(α)

(1 + ti + t2i + · · · )

 sα

=
∑
α|=n

 ∏
i∈D(α)

(ti + t2i + · · · )

 ∏
i∈D(αc)

(1 + ti + t2i + · · · )

 sα

=

(
n∏
i=1

(1 + ti + t2i + · · · )

)∑
α|=n

 ∏
i∈D(α)

ti

 sα

The Hilbert series of the polynomial algebra C[θn−k+1, . . . , θn] is

Hilb(C[θn−k+1, . . . , θn]; t1, . . . , tn) =
n∏

i=n−k+1

(1 + ti + t2i + · · · ). (3.11)

Since C[B∗n] is a free module over C[θ1, . . . , θn] (Corollary 3.3.7) and the action of Sn on

C[B∗n] is linear over C[θ1, . . . , θn], we can rewrite grFrob(C[B∗n]; t1, . . . , tn) as

Hilb(C[θn−k+1, . . . , θn]; t1, . . . , tn) · grFrob(C[B∗n]/〈θn−k+1, . . . , θn〉; t1, . . . , tn),

hence we have

grFrob(C[B∗n]/〈θn−k+1, . . . , θn〉; t1, . . . , tn) =

(
n−k∏
i=1

(1 + ti + t2i + · · · )

)∑
α|=n

 ∏
i∈D(α)

ti

 sα.

Modulo all length k multichains, which results in retaining everything in degree less than

k and removing everything in degree k and above, we have

grFrob(Sn,k; t1, . . . , tn) =
∑
α|=n
`(α)≤k

 ∏
i∈D(α)

ti

 ∑
j1+···+jn−k≤k−`(α)

n−k∏
i=1

tjii

 sα.
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We can interpret each (j1, . . . , jn−k) as a partition fitting inside a (n−k)×(k−`(α))

box, by letting ji be the number of rows of length ji (and by letting (j1, . . . , jn−k) run

we obtain all such partitions). Now, the size of the corresponding partition is equal to

j1 + 2j2 + . . .+ (n− k)jn−k so setting ti = qi yields

∑
α|=n

qmaj(α)
∑

λ∈(n−k)×(k−`(α))

q|λ|sα =
∑
α|=n

qmaj(α)

(
n− `(α)

k − `(α)

)
q

sα

using the fact that
∑

λ∈a×b q
|λ| =

(
a+b
b

)
q
. Note that this is indeed the expression for

grFrob(Sn,k; q).

Remark. The Frobenius character map has an analogue for Gn as well [CR20, Section

2.4]. The proofs in Section 3.4 show that Rn,k and Sn,k are a refined version of the graded

Gn-modules Rn,k and Sn,k, in the sense that

grFrob(Rn,k; q, q
2, . . . , qn) = grFrob(Rn,k; q);

grFrob(Sn,k; q, q2, . . . , qn) = grFrob(Sn,k; q),

of which we just explicitly handled the case (Sn,k, Sn,k) for r = 1. By finding the graded

Frobenius image of C[B∗n] as a Gn-module and factoring out
∏n

i=1(1 + xri + x2ri + . . .) one

can obtain a similar result for general r. J

This chapter contains material from: D. Kroes, “Generalized coinvariant algebras

for G(r, 1, n) in the Stanley-Reisner setting”, Electronic Journal of Combinatorics, vol.

26 (3), P.3.11, 2018. The dissertation author was the primary investigator and author of

this paper.
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Chapter 4

A quotient ring for packed words

4.1 Packed words

In this chapter we consider a quotient ring of Q[xn] whose combinatorics is con-

trolled by the set of packed words. A word w = w1 . . . wn over the alphabet {1, 2, . . . } of

positive integers is packed if, for all i > 0, whenever i+ 1 appears as a letter in w, so does

i. Let Wn be the family of packed words of length n. For example, we have

W3 = {123, 213, 132, 231, 312, 321, 112, 121, 211, 122, 212, 221, 111}.

By interpreting wi as the index of the block the number i belongs to, packed words inWn

are in natural bijection with the family OPn of all ordered set partitions of [n].

We will consider the following ideal inside Q[xn], where we use the notation e
(i)
d :=

ed(x1, . . . , xi−1, xi+1, . . . , xn) for the degree d elementary symmetric polynomial with the

variable xi omitted.
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Definition 4.1.1. Let Jn ⊆ Q[xn] be the ideal

Jn = 〈xdi · e
(i)
n−r : 1 ≤ i ≤ n, 1 ≤ r ≤ d〉 (4.1)

and let Sn := Q[xn]/Jn be the corresponding quotient ring. J

By convention, the degree 0 elementary symmetric polynomial is 1, so that Jn

contains the variable powers xni . Additionally, we use the convention that ed ≡ 0 for

d < 0.

Although the generators of the ideal Jn may appear unusual, they will arise natu-

rally from the perspective of orbit harmonics as follows. More precisely, suppose X ⊆ Qn

is a finite locus of points. Consider the ideal

I(X) := {f ∈ Q[xn] : f(x) = 0 for all x ∈ X} (4.2)

of polynomials in Q[xn] which vanish on X and let

T(X) := 〈τ(f) : f ∈ I(X)− {0}〉, (4.3)

where τ(f) denotes the highest degree component of a nonzero polynomial f ∈ Q[xn]. The

homogeneous ideal T(X) is the associated graded ideal of I(X) and we have isomorphisms

of Q-vector spaces

Q[X] ∼= Q[xn]/I(X) ∼= Q[xn]/T(X) (4.4)

which are isomorphisms of ungraded Sn-modules when X is closed under the natural

action of Sn on Qn; the quotient Q[xn]/T(X) has the additional structure of a graded

Sn-module.
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Given n distinct rational parameters α1, . . . , αn, we have a natural point locus

Xn ⊆ Qn in bijection with Wn, namely

Xn = {(β1, . . . , βn) ∈ Qn : {β1, . . . , βn} = {α1, . . . , αk} for some k}. (4.5)

It will develop that

T(Xn) = Jn. (4.6)

In other words, the quotient Sn = Q[xn]/T(Xn) is the graded quotient of Q[xn] arising

from the packed word locus Xn. Equation (4.6) may be viewed as a more natural, but

less computationally useful, alternative to Definition 4.1.1. We prove the following facts

regarding the module Sn.

• The ungraded Sn-structure of Sn coincides with the natural Sn-action onWn (with-

out sign twist)

Sn ∼= Q[Wn]. (4.7)

• The graded Sn-structure is described by

grFrob(Sn; q) =
n∑
k=1

qn−k · (revq ◦ ω)Cn,k(x; q). (4.8)

Here Cn,k is as in Equation (1.2) and revq is the operator on polynomials in q which

reverses their coefficient sequences and ω is the symmetric function involution which

trades en(x) for hn(x).
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4.2 A combinatorial bijection

We first establish a bijection between ordered set partitions and coinversion codes.

The starting point will be a bijection established by Rhoades and Wilson [RW19, Thm.

2.2]. Given an ordered set partition σ = (B1 | · · · | Bk) ∈ OPn,k, define a sequence

code(σ) = (c1, . . . , cn) as follows. If 1 ≤ i ≤ n and i ∈ Bj, then

ci =


|{` > j : min(B`) > i}| if i = min(Bj);

|{` > j : min(B`) > i}|+ (j − 1) if i 6= min(Bj).

(4.9)

The sequence code(σ) was called the coinversion code of σ in [RW19] and is a variant of

the classical Lehmer code on permutations in the case k = n.

The coinversion code(σ) of ordered set partitions σ ∈ OPn,k were characterized

in [RW19] as follows. Given a subset S = {s1 < · · · < sd} ⊆ [n], define the skip sequence

by γ(S) = (γ1, . . . , γn) where

γi =


i− j + 1 if i = sj ∈ S

0 if i /∈ S.

(4.10)

Also let γ(S)∗ = (γn, . . . , γ1) be the reverse skip sequence. For example, if n = 7 and

S = {2, 3, 6} we have γ(S) = (0, 2, 2, 0, 0, 4, 0) and γ(S)∗ = (0, 4, 0, 0, 2, 2, 0).

Theorem 4.2.1. ([RW19, Thm. 2.2]) Let 1 ≤ k ≤ n. The map σ 7→ code(σ) is

a bijection from ordered set partitions of [n] with k blocks to the family of nonnegative

integer sequences (c1, . . . , cn) such that
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• for all 1 ≤ i ≤ n we have ci < k,

• for any subset S ⊆ [n] with |S| = n− k + 1, the componentwise inequality γ(S)∗ ≤

(c1, . . . , cn) fails to hold.

For future reference we recall the inverse map introduced in the proof of the above

theorem. This inverse map uses the following insertion procedure.

For (B1 | · · · | Bk) a sequence of k (possibly empty) sets of positive integers we

define the coinversion labels as follows. First, label the empty sets 0, 1, . . . , j from right

to left, and then label the nonempty sets j + 1, . . . , j + k − 1 from left to right.

For a sequence (c1, . . . , cn) satisfying the conditions in Theorem 4.2.1, we construct

an ordered set partition as follows. Start with a sequence (∅ | · · · | ∅) of k copies of the

empty set, and for i = 1, 2, . . . , n insert the number i in the block with label ci under the

coinversion labeling.

For example, let n = 7, k = 4 and consider the sequence c = (2, 1, 2, 0, 2, 0, 2). The

resulting ordered set partition will be (6 | 13 | 257 | 4), as shown by the following process,

starting with the labeled sequence of blocks (∅3 | ∅2 | ∅1 | ∅0).
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Table 4.1: Construction of the ordered set partition in OP7,4 with coinversion code
(2, 1, 2, 0, 2, 0, 2).

i ci updated labeled sequence of blocks

1 2 (∅2 | 13 | ∅1 | ∅0)

2 1 (∅1 | 12 | 23 | ∅0)

3 2 (∅1 | 132 | 23 | ∅0)

4 0 (∅0 | 131 | 22 | 43)

5 2 (∅0 | 131 | 252 | 43)

6 0 (60 | 131 | 252 | 43)

7 2 (60 | 131 | 2572 | 43)

In our algebraic analysis of Sn we will need a version of this insertion which maps

the family of ordered set partitions of [n] with at least k blocks bijectively onto a certain

collection (c1, . . . , cn) of length n ‘code words’ over the nonnegative integers. In the

bijection code of Theorem 4.2.1, the ordered set partition (1|2| · · · |m,m + 1, . . . , n) has

code (0, 0, . . . , 0) for any number of blocks m, so we cannot simply take the union of these

maps for m ≥ k.

We resolve the problem in the above paragraph by working with a different version

of the coinversion code, which we will call the boosted coinversion code. For an ordered

set partition σ = (B1 | · · · | Bk) we define code(σ) = (c1, . . . , cn) as follows. Suppose
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1 ≤ i ≤ n and i ∈ Bj, then

ci =


|{` > j : min(B`) > i}| if i = min(Bj);

|{` > j : min(B`) > i}|+ j if i 6= min(Bj).

(4.11)

Compared to the coinversion codes from before, the difference is that all the numbers

corresponding to non-minimal elements of blocks are raised by one, and we say that these

numbers are boosted.

The remainder of the section will be devoted to the proof of the following theorem.

Theorem 4.2.2. Let 1 ≤ k ≤ n. The map σ 7→ code(σ) is a bijection from the set

of ordered set partitions of [n] with at least k blocks to the family of nonnegative integer

sequences such that

• for all 1 ≤ i ≤ n we have ci < n.

• for any subset S ⊆ [n] with |S| = n − k + 1 the componentwise inequality γ(S)∗ ≤

(c1, . . . , cn) fails to hold.

• for any 1 ≤ i, d ≤ n and any T ⊆ [n−1] with |T | = n−d and γ(T )∗ = (γn−1, . . . , γ1),

the componentwise inequality (γn−1, . . . , γi, d, γi−1, . . . , γ1) ≤ (c1, . . . , cn) fails to hold.

The proof of the necessity of these conditions will be similar to that of the proof

of [RW19, Thm.2.2]. For the sufficiency of the conditions we use an insertion map similar

to that considered above. We begin by showing that both the number of blocks of an

ordered set partition of [n], as well as its classical coinversion code, can be recovered from

its boosted coinversion code.
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Lemma 4.2.3. Let σ be an ordered set partition of [n]. Given the boosted coinversion

code code(σ) one can recover the coinversion code code(σ), as well as the number of

blocks of σ.

Proof. Note that the second part is immediate once we have recovered code(σ), as the

number of blocks will be equal to the number of unboosted numbers, which is easily found

by comparing code(σ) and code(σ).

Given a boosted coinversion code (c1, . . . , cn) corresponding to an ordered set par-

tition with ` blocks (where ` is unknown), we can think of creating the ordered set

partition by following the same procedure as described before, with the only difference

that the labels of all the nonempty blocks should be raised by one.

No matter what, at some point we will fill in the last nonempty block with some

number i, which necessarily has ci = 0. Additionally, from the boosting, it is clear that

cj > 0 for all j > i, hence we can recover i by looking for the last entry in our sequence

that equals 0.

Now, assume that we have identified that i1 < . . . < ij are minimal in their block

and that all other numbers in [i1, n] are not minimal in their block. If i1 = 1 we are

done. Otherwise, it is clear that we must have at least j + 1 blocks (as clearly 1 will be

minimal in its block). Now, let i0 < i1 be the largest number that is also minimal in its

block. By the inverse map, this must correspond to some index with ci0 ≤ j, as at the

time of inserting i0 there are exactly j + 1 empty blocks, labeled 0, 1, . . . , j. Additionally,

for any i0 < i < i1, at the time of insertion there will be exactly j empty blocks, hence
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the coinversion label of i will be at least j+ 1 (because of the boosting). Therefore, given

code(σ) we can recognize i0 as the largest index i0 < i1 with ci0 ≤ j. By induction we

are done.

Explicitly, the procedure above is as follows. Given a sequence (c1, . . . , cn), trace

the sequence from right to left, marking the first 0, then the first 0 or 1, then the first

0, 1 or 2, etcetera. Now, decrease all the unmarked numbers by 1 and one recovers the

coinversion code. We call this procedure the unboosting of a sequence (c1, . . . , cn).

As an example, consider the boosted coinversion code c = (2, 4, 2, 4, 0, 0, 1, 4).

Working from right to left we mark c6 as it is the first 0, then c5 as it is at most 1, then c3

as it is the next number at most 2 and finally c1 as it is the next number that is at most 3.

Therefore, the number of blocks is equal to 4 and the unboosted coinversion code is given

by (2, 3, 2, 3, 0, 0, 0, 3). Applying the earlier bijection this coinversion code corresponds to

(37 | 124 | 6 | 58).

We are now ready to prove the main result of this section.

Proof of Theorem 4.2.2. We first prove the necessity of the conditions. Let σ be an or-

dered set partition of [n] with at least k blocks and let code(σ) = (c1, . . . , cn) be its

boosted coinversion code.

• If i is minimal in its block, ci will be at most the number of blocks following the

block containing i, which is at most n−1. If i is not minimal we have at most n−1
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blocks, and if i ∈ Bj we have

ci = j + |{` > j : min(B`) > i}| ≤ j + |{` > j : the `th block exists}| ≤ n− 1.

• Suppose S = {n + 1 − tn−k+1, . . . , n + 1 − t1} (with t1 < . . . < tn−k+1) satisfies

γ(S)∗ ≤ (c1, . . . , cn). We show that none of the numbers {t1, . . . , tn−k+1} is minimal

in its block of σ, contradicting that σ has at least k blocks.

If tn−k+1 is minimal in its block, then

ctn−k+1
= |{` > tn−k+1 : ` is minimal in its block and

occurs to the right of tn−k+1 in σ }|

≤ |{tn−k+1 + 1, . . . , n− 1, n}| = n− tn−k+1.

However, the term in γ(S)∗ in position tn−k+1 equals n − tn−k+1 + 1, hence we

conclude that tn−k+1 is not minimal in its block.

Now, if tn−k were minimal in its block, we would have

ctn−k = |{` > tn−k : ` is minimal in its block and occurs to the right of tn−k in σ}|

≤ |{tn−k + 1, . . . , n− 1, n} − {tn−k+1}| = n− tn−k − 1.

But again, the term in γ(S)∗ in position tn−k equals n− tn−k, which shows that tn−k

cannot be minimal in its block either. An inductive argument now shows that none

of {t1, . . . , tn−k+1} is minimal in its block.

• For d = n this is equivalent to the fact that ci < n for all i, so assume 1 ≤ d <

n. Assume for contradiction that (γn−1, . . . , γi, d, γi−1, . . . , γ1) ≤ (c1, . . . , cn) where
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(γn−1, . . . , γ1) = γ(T )∗ for some T ⊆ [n − 1] of size |T | = n − d. Since cn+1−i ≥ d,

this implies that σ has at least d blocks. Let T = {i1 < . . . < it ≤ n + 1 − i <

it+1 < . . . < it+s}. By the same argument used in the previous bullet, we see that

all n+ 1− ij with j ≤ t are not minimal in their block. Now we consider two cases.

– If n+ 1− i is not minimal in its block either, we can continue the argument as

in the previous case to show that none of n+ 1− ij is minimal in its block. In

particular we have 1+(n−d) elements that are not minimal in their respective

blocks, contradicting the fact that σ has at least d blocks.

– Now suppose that n + 1 − i is minimal in its block. Since cn+1−i = d, this

implies that among {n + 2 − i, . . . , n} at least d numbers are also minimal in

their respective blocks. In particular, there are at least d numbers that are not

of the form n + 1 − j with j ∈ T . But this implies that T has size at most

(n− 1)− d < n− d, which is a contradiction.

Now, we show that these conditions are sufficient. Given a sequence (c1, . . . , cn)

we can first unboost the sequence (as we can apply this procedure to every sequence of

nonnegative integers) to determine how many blocks our intended ordered set partition

must have. Given this extra information, we can basically run the same inverse map as

before, with the exception that we should increase the label of every nonempty block by

1. It now suffices to check that we don’t run into any troubles by doing so. Our proof

will go through the following steps.
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• First we will show that the unboosting procedure concludes that there are at most

n− k boosted numbers, as this will ensure that the ordered set partition we aim for

has at least k blocks.

• Then we will inductively show that can basically run the same inverse map as before.

– First we show that the conclusion of the unboosting is that 1 is unboosted,

ensuring we have enough blocks to insert 1 as a minimal element in its block.

– After that we will show that if the first j − 1 numbers have been placed, we

can place j following the appropriate procedure. This argument will depend

on whether j is supposed to be minimal in its block or not (something that we

know from the unboosting procedure).

We will now prove each of these steps.

• Assume that we have t boosted numbers cn+1−ij (with i1 < . . . < it) and assume

that t ≥ n−k+1. Let S = {i1, . . . , in−k+1}, then we claim that (c1, . . . , cn) ≥ γ(S)∗.

If i 6∈ S, we have γ(S)∗n+1−i = 0, so cn+1−i ≥ γ(S)∗n+1−i indeed holds. Furthermore,

for i = ij by assumption on cn+1−ij there are (ij−j) unboosted numbers to the right

of n + 1− ij. Therefore, since cn+1−ij was boosted, we have cn+1−ij ≥ ij − j + 1 =

γ(S)∗n+1−ij , as desired.

• As mentioned before, we now show that we can run the inverse map without any

issues.
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– If c1 = 0 it is clear that we can insert 1, so assume c1 = d with 1 ≤ d ≤ n− 1.

Our goal is to show that in the unboosting procedure we conclude that 1 has to

be minimal in its block. As c1 = d this happens precisely if the procedure shows

that among {2, 3, . . . , n} at least d numbers were not boosted. For the sake of

contradiction, assume that we have at least n−d boosted numbers, and let the

largest n−d be n+1−i1 > n+1−i2 > . . . > n+1−in−d. Let T = {i1, . . . , in−d}

then by a similar argument to before we have (c1, c2, . . . , cn) ≥ (d, γn−1, . . . , γ1)

where (γn−1, . . . , γ1) = γ(T )∗.

– Assume that the inverse map successfully inserted all the numbers in [j − 1]

(with j ≥ 2) and that we now try to insert j according to cj.

First assume that cj = t is unboosted. Since this is unboosted, there are still

at least t unboosted numbers among {cj+1, . . . , cn}. As so far only indices

corresponding to unboosted numbers have been inserted in empty blocks, and

the number of total blocks it the number of unboosted numbers, we have at

least t + 1 empty blocks at this point. As a result, there will be some empty

block labeled with t, so we can insert j into an empty block, as desired.

Hence, assume that cj was boosted. Suppose that at the time we still have t

nonempty blocks, then by the unboosting procedure we know that cj ≥ t+ 1,

so we can insert j appropriately, unless cj is too big. In other words, the

only thing that can go wrong is that there were ` unboosted numbers (hence `

blocks in the ordered set partition), but that cj ≥ `+ 1. Let n+ 1− i1 > . . . >
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n+ 1− ia > j > n− ia+1 > . . . > n− in−`−1 be all the boosted numbers. But

then, for T = {i1, . . . , in−`−1} of size n−(`+1), with γ(T )∗ = (γn−1, . . . , γ1), we

have (c1, . . . , cn) ≥ (γn−1, . . . , γn−j+1, `+ 1, γn−j, . . . , γ1), a contradiction.

4.3 The algebraic quotient

Recall that a word w = w1w2 · · ·wn on the alphabet Z>0 is packed if whenever

i+1 appears, then so does i. It will be convenient for our inductive arguments to consider

packed words in which every letter in some segment 1 ≤ i ≤ k must appear. To this end,

we define

Wn,k := {length n packed words w = w1w2 . . . wn : the letters 1, 2, . . . , k appear in w}.

(4.12)

Words in Wn,k are in bijection with ordered set partitions of [n] with at least k blocks.

We have the further identifications Wn,1 =Wn and Wn,n = Sn.

The symmetric group Sn acts on Wn,k by the rule σ · (w1 . . . wn) := wσ(1) . . . wσ(n).

The quotient rings Sn,k of the following definition will give a graded refinement of this

action. Their defining ideals Jn,k contain the ideal Jn defining the ring Sn appearing in

the introduction.

Definition 4.3.1. Let Jn,k ⊆ Q[xn] be the ideal

Jn,k := Jn + 〈en, en−1, . . . , en−k+1〉 (4.13)

and let Sn,k := Q[xn]/Jn,k be the corresponding quotient ring. J
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Each of the quotients Sn,k is a graded Sn-module. Their defining ideals are nested

according to Jn = Jn,1 ⊆ Jn,2 ⊆ · · · ⊆ Jn,n. Note that en ∈ Jn will follow from the equality

Jn = T(Xn), using the fact en is the top degree component of (x1 − α1) · · · (xn − α1) ∈

I(Xn). We study Sn,k by making use of a point locus Xn,k ⊆ Qn corresponding to Wn,k.

Fix n distinct rational numbers α1, . . . , αn ∈ Q. For any packed word w1 . . . wn ∈ Wn,k,

we have a corresponding point (αw1 , . . . , αwn) ∈ Qn. We let Xn,k ⊆ Qn be the family of

points corresponding to all packed words in Wn,k.

The set Xn,k ⊆ Qn is closed under the coordinate-permuting action of Sn and we

have an identification Q[Wn,k] ∼= Q[Xn,k]. Recall that we have isomorphisms of ungraded

Sn-modules

Q[Wn,k] ∼= Q[Xn,k] ∼= Q[xn]/I(Xn,k) ∼= Q[xn]/T(Xn,k).

It turns out that T(Xn,k) coincides with Jn,k.

Theorem 4.3.2. For any 1 ≤ k ≤ n, we have the ideal equality Jn,k = T(Xn,k). Conse-

quently, we have an isomorphism of ungraded Sn-modules Q[Wn,k] ∼= Sn,k.

Proof. To show that Jn,k ⊆ T(Xn,k), it suffices to show that every generator of Jn,k arises

as the highest degree component of some polynomial in I(Xn,k). Fix 1 ≤ i ≤ n and

1 ≤ r ≤ d; we begin by showing that the generator xdi e
(i)
n−r lies in T(Xn,k).

Note that if (x1, . . . , xn) ∈ Xn,k, we either have xi ∈ {α1, . . . , αd}, or for any

1 ≤ j ≤ d the number αd must appear among {x1, . . . , xi−1, xi+1, . . . , xn}. We let t be a
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new variable, and define the function

f(x1, . . . , xn, t) := (xi − α1) · · · (xi − αd) ·
(1− tx1) · · · (1− txi−1)(1− txi+1) · · · (1− txn)

(1− tα1) · · · (1− tαd)

(4.14)

and expanding this function in terms of the parameter t yields

f(x1, . . . , xn, t) =

(xi − α1) · · · (xi − αd) ·
∑
r≥0

( ∑
a+b=r

(−1)ae(i)a · hb(α1, . . . , αd)

)
tr

Specialization of f(x1, . . . , xn, t) at (x1, . . . , xn) = (β1, . . . , βn) yields an element of Q[[t]].

We analyze this specialization when (β1, . . . , βn) ∈ Xn,k. If βi ∈ {α1, . . . , αd}, then

f(β1, . . . , βn, t) = 0. Otherwise, d of the terms in the numerator of f will cancel with

the d terms in the denominator, so that hence f(β1, . . . , βn, t) is a polynomial of degree

(n− 1)− d in t. Either way, the coefficient of tn−r in f(x1, . . . , xn, t) vanishes on Xn,k, so

that

(xi − α1) · · · (xi − αd) ·

( ∑
a+b=n−r

(−1)ae(i)a · hb(α1, . . . , αd)

)
∈ I(Xn,k)

and taking the highest degree component gives

xdi · (−1)n−re
(i)
n−r ∈ T(Xn,k).

The remaining generators ed (for d > n − k) are handled by a similar argument.

We consider the rational function

g(x1, . . . , xn, t) :=
(1− tx1)(1− tx2) · · · (1− txn)

(1− tα1)(1− tα2) · · · (1− tαk)

=
∑
r≥0

( ∑
a+b=r

(−1)aea · hb(α1, . . . , αk)

)
· tr.
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Evaluating (x1, . . . , xn) at a point in Xn,k forces the k factors in the denominator to

cancel with k factors in the numerator, yielding a polynomial of degree n − k in t. For

any d > n− k, we conclude that

∑
a+b=d

(−1)aea · hb(α1, . . . , αk) ∈ I(Xn,k),

which implies

ed ∈ T(Xn,k).

This proves the containment Jn,k ⊆ T(Xn,k), so that

dimQ[xn]/Jn,k ≥ dimQ[xn]/T(Xn,k) = |Wn,k| (4.15)

In light of Equation (4.15), to prove the desired equality Jn,k = T(Xn,k) it is

enough to show that dim(Q[xn]/Jn,k) ≤ |Wn,k|. This is a Gröbner theory argument.

Since the elementary symmetric polynomials en, en−1, . . . , en−k+1 in the full variable

set {x1, . . . , xn} lie in Jn,k, [HRS18, Lem. 3.4] implies that for any subset S ⊆ [n] with

|S| = n−k+1, the Demazure character κγ(S) corresponding to the length n sequence γ(S)

also lies in Jn,k. The lexicographical leading monomial of κγ(S) has exponent sequence

γ(S)∗. Similarly, for 1 ≤ i, d ≤ n, since

xdi · e
(i)
n−d, . . . , x

d
i · e

(i)
n−1 ∈ Jn,k,

for any T ⊆ [n− 1] of size |T | = n− d, [HRS18, Lem. 3.4] again implies that

xdi · κγ(T )(x1, . . . , xi−1, xi+1, . . . , xn) ∈ Jn,k.
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Writing γ(T )∗ = (γn−1, . . . , γ1), the exponent sequence of the lexicographical leading term

of xdi · κγ(T )(x1, . . . , xi−1, xi+1, . . . , xn) is (γn−1, . . . , γi, d, γi−1, . . . , γ1). It follows that

the exponent sequence (c1, . . . , cn) of any member of the standard monomial
basis of Q[xn]/Jn,k satisfies the conditions in the statement of Theorem 4.2.2.

Theorem 4.2.2 implies the desired dimension bound dimQ[xn]/Jn,k ≤ |Wn,k|, completing

the proof.

The standard monomial basis of Sn,k is governed by coinversion codes.

Corollary 4.3.3. The standard monomial basis of Sn,k with respect to the lexicographical

term ordering are the monomials xc11 · · ·xcnn where (c1, . . . , cn) = code(σ) is the boosted

coinversion code of some ordered set partition σ of [n] with at least k blocks.

Proof. This follows from Theorem 4.2.2 and the last paragraph of the above proof.

Our next goal is to derive the graded Sn-module structure of the quotients Sn,k.

This result is stated most cleanly in terms of the generalized coinvariant algebra’s from

Definiton 2.4.1.

Theorem 4.3.4. As graded Sn-module we have

Sn,k ∼= Rn,n〈0〉 ⊕Rn,n−1〈−1〉 ⊕ · · · ⊕Rn,k〈−n+ k〉.

Proof. We proceed by descending induction on k. In the case n = k, we claim that

Jn,n = In,n = 〈e1, . . . , en〉 is the classical invariant ideal so that Sn,n = Rn,n. Indeed, each

elementary symmetric polynomial ed appears as a generator of Jn,n. On the other hand,
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Theorem 4.3.2 implies that dimSn,n = n! = dimRn,n. This finishes the proof in the case

k = n.

Now suppose 1 ≤ k ≤ n− 1. We exhibit a short exact sequence of Sn-modules

0→ Rn,k
ϕ→ Sn,k

π→ Sn,k+1 → 0, (4.16)

where ϕ is homogeneous of degree n−k and π is homogeneous of degree 0. The exactness

of this sequence implies

Sn,k ∼= Sn,k+1 ⊕Rn,k〈−n+ k〉,

proving the theorem by induction.

Since every generator of Jn,k+1 is also a generator of Jn,k, we may take π : Sn,k �

Sn,k+1 to be the canonical projection. We have a map

ϕ̃ : Q[xn]→ Sn,k (4.17)

given by multiplication by en−k followed by projection onto Sn,k. We verify that ϕ̃ descends

to a map ϕ : Rn,k → Sn,k by showing that ϕ̃ sends every generator of In,k to zero. Indeed,

we have ϕ̃(ej(x1, . . . , xn)) = 0 for any j > n− k since ej(x1, . . . , xn) is a generator of Jn,k.

Furthermore, for 1 ≤ i ≤ n we have

ϕ̃(xki ) = xki en−k = xki e
(i)
n−k + xk+1

i e
(i)
n−k−1 = 0,

where the final equality follows because both xki e
(i)
n−k and xk+1

i e
(i)
n−k−1 are generators of

Jn,k. We conclude that ϕ̃ descends to a map ϕ : Rn,k → Sn,k of Sn-modules which is

homogeneous of degree n−k. It is clear that ϕ surjects onto the kernel of π. The exactness
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of the sequence (4.16) follows from the dimensional equality

dim(Sn,k) = |Wn,k| = |Wn,k+1|+ |OPn,k| = dim(Sn,k+1) + dim(Rn,k).

The graded Frobenius image of Sn,k is most naturally stated in terms of the C-

functions defined in Equation (1.2).

Corollary 4.3.5. For any 1 ≤ k ≤ n, the graded Frobenius image of Sn,k is given by

grFrob(Sn,k; q) =
n∑
j=k

qn−j · (ω ◦ revq)Cn,j(x; q). (4.18)

Proof. Apply [HRS18, Thm. 6.11] and Theorem 4.3.4.

This chapter contains material from: D. Kroes and B. Rhoades, “Packed words

and quotient rings”, submitted (2021). The dissertation author was one of the primary

investigators and authors of this paper.
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Chapter 5

Catalan-pair graphs

5.1 Definitions and statement of results

We start by introducing the main object of study of this chapter.

Definition 5.1.1. Let n be a positive integer. A Catalan-pair graph on n vertices is a

graph G that can be obtained by the following procedure. Start with 2n collinear points,

of which we color 2k points red for some 0 ≤ k ≤ n and color the remaining points blue.

Then, choose Catalan-arc matchings of sizes k and n− k and place them on the red and

blue points, respectively, with the latter being faced downwards rather than upwards.

Finally, construct a graph G with one vertex for each of the n arcs, where two vertices

are adjacent if and only if the endpoints of the corresponding arcs alternate. J

For example, below is a Catalan-pair graph on 9 vertices, where we colored the

arcs according to the color of the points they connect. We say that the pair of Catalan-arc
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matchings on the left is a representative for the graph on the right, or alternatively that

it represents the graph on the right.

• • • • • • • • • • • • • • • • • •

u2

u1

u3

u5

u4

v1

v2
v3

v4

•u1 •u2 •u3 •u4 •u5

•
v1

•
v2

•
v3

•
v4

Figure 5.1: A Catalan-Pair graph on 9 vertices.

As a first observation, note that all of the arcs on the top are chosen to be non-

intersecting, and similarly for all of the arcs on the bottom. Therefore, if the endpoints

of two arcs alternate (and hence correspond to an edge in G) these arcs necessarily come

from different sides. Thus every Catalan-pair graph is bipartite.

The main purpose of this section is to introduce a model to randomly generate

a Catalan-pair graph on n vertices, which we denote by CPn, and to establish various

properties about this random graph. Before we precisely define our random graph model,

we briefly summarize our main results.

Theorem 5.1.2. The expected number of edges of the random Catalan-pair graph CPn

satisfies

E[e(CPn)] ∼ 1

π
n log n. (5.1)

Moreover, for any ε > 0 we asymptotically almost surely have |e(CPn) − 1
π
n log n| <
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εn log n.

We also obtain an asymptotic formula for the expected number of isolated vertices

in CPn.

Theorem 5.1.3. Let In denote the number of isolated vertices in CPn. Then

E[In] ∼ γn, (5.2)

where γ is the constant defined by

γ = 4
∞∑
m=1

16−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb = 0.3023 . . . .

Moreover, for any ε > 0 we asymptotically almost surely have |In − γn| < εn.

In addition to this, we deduce the order of magnitude for the expected number of

(induced) subgraphs of any connected Catalan-pair graph with at least three vertices. To

this end, Let NH(G) denote the number of subgraphs of G that are isomorphic to H and

let N∗H(G) denote the number of induced subgraphs of G that are isomorphic to H.

Theorem 5.1.4. Let H be a connected Catalan-pair graph on v ≥ 3 vertices. The expected

number of (induced) subgraphs of the random Catalan-pair graph CPn isomorphic to H

satisfies

E[NH(CPn)] = Θ(nv/2).

E[N∗H(CPn)] = Θ(nv/2).
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Notation. Let a Catalan-pair graph on n vertices be given. For 1 ≤ a < b ≤ 2n, we

say that (a, b) match if the ath and bth point have the same color and if there is an arc

connecting these two points. In the earlier example, the matching pairs are (1, 7), (2, 4),

(3, 5), (6, 12), (8, 9), (10, 16), (11, 14), (13, 18) and (15, 17). We similarly say that (a, b)

match in a single Catalan-arc matching of size n if there is an arc connecting these two

points. For 1 ≤ a < b < c < d ≤ 2n we say that (a, b, c, d) is an edge if (a, c) and

(b, d) match. For example, in the the graph from before (6, 10, 12, 16) is an edge, and it

corresponds to the edge between u4 and v2. We say that an arc in a single Catalan-pair

matching has length k if it covers k − 1 smaller arcs, or equivalently if the two points it

connects have 2k − 2 points between them. J

5.2 Random Catalan-pair graphs

Let us define a model to generate a random Catalan-pair graphs on n vertices.

Consider the following procedure, starting with 2n collinear points.

1. For each of the first 2n− 1 points, uniformly and independently color each of these

points either red or blue. Then color the last point red or blue, whichever makes it

so that the total number of points of each color is even.

2. Suppose that we have 2k red points, and consequently 2(n − k) blue points. Inde-

pendently and uniformly pick Catalan-arc matchings of size k and n − k from the

set of all possible Catalan-arc matchings of that size, and place these above and
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below the red and blue points respectively.

3. Create a graph according to Definition 5.1.1, and denote this (random) graph by

CPn.

One of the advantages of this model is that due to Lemma 2.7.1 with high proba-

bility roughly half of the points (or any large enough subset of the points for that matter)

will be colored red. Note that because of the forced choice of the color of the last point,

our setting is not completely identical to that of the above result. However, it does apply

for any proper subset of the points, and the concentration result for the total number of

points of a given color is almost unaffected.

5.3 Random Catalan matchings

To generate CPn we must choose a random Catalan-arc matching from all such

matchings of a given size. In this section we compute the probability of having a given

set of arcs connecting a given set of points within this randomly chosen Catalan-arc

matching. We note that studying the structure of a random object enumerated by the

Catalan numbers is of independent interest, and other work in this direction has been

done in, for example, [DFH+99] and [FS09].

Let Cn denote the set of Catalan-arc matchings of size n. We recall the asymptotic

formula

Cn ∼
4n√
πn3/2

, (5.3)
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which can be derived, for example, by Stirling’s formula.

Throughout this section, let C be a Catalan-arc matching chosen uniformly from

Cn. As mentioned, we are interested in the probability of having a given set of arcs

connecting a given set of points within C. It is clear that in order for this to be able to

happen, the points and arcs have to satisfy some conditions. First of all the endpoints of

any given arc must have an even number of points between them, since any arc connecting

at least one of these points must connect two of these points. Additionally, it is clear that

none of the given arcs are allowed to intersect.

This leads to the following definition, where one should think of having specified

arcs connecting points xi and xi + 2ki − 1 for all i.

Definition 5.3.1. Let x = (x1, . . . , xs) and k = (k1, . . . , ks) be s-tuples of positive

integers with x1 < . . . < xs. We say that (x,k) is a valid pair if

1. For all i we have 1 ≤ xi < xi + 2ki − 1 ≤ 2n.

2. The integers x1, x1 + 2k1 − 1, . . . , xs, xs + 2ks − 1 are all distinct.

3. There are no i 6= j with xi < xj < xi + 2ki − 1 < xj + 2kj − 1. J

As an example, for n = 8, we have the valid pair ((2, 4), (5, 2)) which we think of

as having specified arcs connecting points 2 and 11 and 4 and 7.
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• • • • • • • • • • • • • • • •

Figure 5.2: Specified arcs in a Catalan-arc matching for n = 8.

As mentioned before, the conditions imposed on (x,k) are necessary for there to

be a Catalan-arc matching with arcs on these specified positions. In this case, it is not

so hard to see that we can indeed extend this to a Catalan-arc matching, for example as

follows.

• • • • • • • • • • • • • • • •

Figure 5.3: A completed Catalan-arc matching with the specified arcs.

Below we will see that the condition of (x,k) being a valid pair is also a sufficient

condition to have a Catalan-arc matching with arcs connecting xi and xi + 2ki − 1. In

fact, we will determine the explicit probability of having arcs on these given positions. To

this end, let A(x,k) denote the event that (xi, xi + 2ki − 1) match in C for all i.

Before we can determine the probability of this happening we need some notation.

In the above example, we see that in order to extend to a Catalan-arc matching, we have
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to connect the two points within the smaller arc, we have to connect the four points

within the larger arc (but outside of the smaller arc), and finally we have to connect the

six points outside of the larger arc. Below we define integers that are analogues of the

two, four, and six above.

For a valid pair (x,k) and 1 ≤ i ≤ s, let Mi be the set of x such that xi < x <

xi + 2ki− 1 and such that there exists no j 6= i with xj ≤ x ≤ xj + 2kj − 1. We let M0 be

the set of x such that 1 ≤ x ≤ 2n and such that there exists no i with xi ≤ x ≤ xi+2ki−1.

Observe that every x with 1 ≤ x ≤ 2n is either of the form xi or xi + 2ki − 1 for some i,

or else belongs to a unique Mi. Furthermore, it is easy to see that each Mi has an even

(possibly 0) number of elements, so the numbers mi = |Mi|/2 are nonnegative integers,

and from the definition it follows that these numbers sum to n− s.

We can now explicitly compute the probability that (xi, xi + 2ki − 1) match in C

for all i.

Lemma 5.3.2. If (x,k) is a valid pair, then

P[A(x,k)] =
1

Cn
·

s∏
i=0

Cmi . (5.4)

Proof. Since each Catalan-arc matching is chosen with probability 1
Cn

, it suffices to show

that there are
∏s

i=0Cmi Catalan-arc matchings for which (xi, xi + 2ki − 1) match for all

i. We show that a Catalan-arc matching satisfies this condition if and only if points in

some Mi are only connected to points in that Mi and the set of arcs on the points in Mi

is a Catalan-arc matching.
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First, assume for contradiction that there exists i 6= j such that there is a Catalan-

arc matching that connects a point x in Mi to a point y in Mj. Without loss of generality

we may assume that j 6= 0 and that we do not have xj < xi < xi + 2ki− 1 < xj + 2kj − 1

(if the latter happens, simply switch i and j). This implies that xj < y < xj + 2kj − 1

and x 6∈ [xj, xj + 2kj − 1], but then the arc connecting x and y would intersect the arc

connecting xj and xj + 2kj − 1, a contradiction. Furthermore, it is clear that the induced

set of arcs on the points in Mi still has no intersecting arcs.

Conversely, suppose we choose Catalan-arc matchings to go on the points of each

Mi. By definition, there do not exist points a < b < c < d with a, c ∈ Mi and b, d ∈ Mj

for i 6= j, so arcs in Mi and Mj will not intersect when i 6= j, and clearly also not for

i = j. Lastly, points in Mi either lie completely inside an interval [xj, xj + 2kj − 1] or

lie completely outside of it, so arcs on the Mi will also not intersect arcs of the form

(xj, xj + 2kj − 1).

Therefore, since a Catalan-arc matching on the points of Mi has mi arcs, there are

Cmi choices for this matching. Since these choices can be made independently, the total

number of desired Catalan-arc matchings equals
∏s

i=0Cmi , as desired.

By combining (5.3) and Lemma 5.3.2 we can obtain bounds for this probability.

Corollary 5.3.3. Let (x,k) be a valid pair. There exist positive real numbers αs, βs such

that

αs
n3/2∏′m3/2

i

≤ P[A(x,k)] ≤ βs
n3/2∏′m3/2

i

, (5.5)
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where
∏′ indicates the product over all 0 ≤ i ≤ s with mi 6= 0.

Proof. Let us prove the lower bound, the proof for the upper bound is analogous. Because

of the asymptotic formula in (5.3) there exist positive numbers a < 1 < A such that

a
4n√
πn3/2

≤ Cn ≤ A
4n√
πn3/2

(5.6)

for all n ≥ 1. Since C0 = 1 we find

P[A(x,k)] =
1

Cn
·

s∏
i=0

Cmi =
1

Cn
·
∏′

Cmi

≥
√
πn3/2

A · 4n
·
∏′ a · 4mi
√
πm

3/2
i

≥ 4
∑′mi−n · as+1

A · πs/2
n3/2∏′m3/2

i

= αs
n3/2∏′m3/2

i

,

where we use that
∑′mi =

∑s
i=0mi = n− s.

5.4 The expected number of edges

We will determine the asymptotic behavior of the expected number of edges of

CPn. To this end, we start by establishing a general upper bound on the probability that

CPn contains a given structure on a given set of points.

We consider two analogues of the valid pairs introduced in Section 5.3.

Definition 5.4.1. Let x = (x1, . . . , xs), k = (k1, . . . , ks), y = (y1, . . . , yt), l = (`1, . . . , `t)

be tuples of positive integers with x1 < . . . < xs and y1 < . . . < yt.

We say that this quadruple is valid if for all 1 ≤ i ≤ s and 1 ≤ j ≤ t we

have 1 ≤ xi < xi + ki ≤ 2n and 1 ≤ yj < yj + `j ≤ 2n, and if there exists at least one
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representative for a Catalan-pair graph on n vertices for which (xi, xi+ki) and (yj, yj+`j)

match for all i, j.

Similarly, we say that such a quadruple (x,k,y, l) is good if

1. 1 ≤ xi < xi + ki ≤ 2n and 1 ≤ yj < yj + `j ≤ 2n for all 1 ≤ i ≤ s and 1 ≤ j ≤ t.

2. Any two numbers of the form xi, xi + ki, yj or yj + kj differ by at least 2.

3. There exists no i 6= j such that xi < xj < xi + ki < xj + kj or yi < yj < yi + `i <

yj + `j. J

In the proof of Lemma 5.7.1 we will see that the conditions for a good quadruple

imply that there exists a representative for a Catalan-pair graph G such that (xi, xi + ki)

and (yi, yi + `i) match for all 1 ≤ i ≤ s and all 1 ≤ j ≤ t. Therefore, any good quadruple

is also a valid quadruple.

Given a valid quadruple (x,k,y, l), we would like to have an analogue of the

integers mi defined in Section 5.3. To this end, for 1 ≤ i ≤ s, set fi to be the number of

xi < x < xi + ki such that there is no i′ with xi′ ≤ x ≤ xi′ + ki′ and such that x is not of

the form yj or yj + `j for any j. Set f0 to be the number of 1 ≤ x ≤ 2n that do not belong

to any interval [xi, xi + ki], nor are of the form yj or yj + `j. Similarly define g0, g1, . . . , gt.

Let (x,k,y, l) be a valid quadruple where x and y have length s and t respectively.

Let A(x,k,y, l) denote the intersection of the following events.

1. The points xi and xi + ki are colored red and the points yj and yj + `j are colored

blue for all i, j.
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2. For all i and j the number of red points x with xi < x < xi + ki and the number of

blue points y with yj < y < yj + `j is even.

3. For all i and j we have that (xi, xi + ki) and (yj, yj + `j) match in CPn.

We would like to point out that the second condition is necessary for (xi, xi + ki) and

(yj, yj + `j) to match for all i and j. Therefore, we could technically omit this condition,

but we have included it to improve the readability of our proofs.

We have the following upper bound for the probability that A(x,k,y, l) occurs.

Lemma 5.4.2. There exists a positive real number βs,t such that for sufficiently large n,

and for any valid quadruple (x,k,y, l) (with x and y of length s and t respectively) we

have

P[A(x,k,y, l)] ≤ βs,tn
3 ·
∏̃
i

f
−3/2
i ·

∏̃
j

g
−3/2
j , (5.7)

where
∏̃

indicates the product over all i and j for which fi, gj ≥ 16(s+ t) log n.

Proof. Let v = (s+t). Note that with probability 2−2(s+t) = 4−v all of xi, xi+ki, yj, yj+`j

have the correct color. From now on we condition on this event happening. For each

0 ≤ i ≤ s, let 2ri denote the number of points counted by fi which are colored red, where

we note that ri may not be an integer. For each i with fi ≥ 16v log n, we use Lemma 2.7.1

to conclude that

P[|2ri − fi/2| >
√
vfi log n] < 2n−2v.

Note that if |2ri−fi/2| ≤
√
vfi log n, then in particular we have 2ri ≥ fi/2−

√
vfi log n ≥

fi/4, where we used fi ≥ 16v log n in the last step. Therefore, with probability at most
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2(v + 2)n−2v we have ri < fi/8 or bj < gj/8 for some i or j for which fi, gj ≥ 16v log n.

Let Bn and Rn be the total number of blue and red points respectively. We

condition on the event that ri ≥ fi/4 and bj ≥ gj/4 for all i and j for which fi, gj ≥

16v log n. If any of the numbers ri, bj is not an integer, or equivalently if the number

of red/blue points in some appropriate region is not even, the probability that all of

(xi, xi + ki) and (yj, yj + `j) match is 0, which definitely agrees with the proposed upper

bound. If all the ri and bj are integers we can apply Corollary 5.3.3 to show that the

probability that all of the (xi, xi + ki) and (yj, yj + `j) match is at most

βsR
3/2
n ·

∏̃
i

r
−3/2
i · βtB3/2

n ·
∏̃
j

b
−3/2
j

≤ βs · (2n)3/2 ·
∏̃
i

(fi/8)−3/2 · βt(2n)3/2 ·
∏̃
j

(gj/8)−3/2

= O

(
n3 ·

∏̃
i

f
−3/2
i ·

∏̃
j

g
−3/2
j

)
,

where in the first expression we ignored all i for which fi < 16v log n since in the formula

of Corollary 5.3.3 these terms either do not appear, or they contribute a multiplicative

factor of the form x−3/2 for some x ≥ 1, hence leaving it out will still yield an upper

bound.

Therefore, we know that

P[A(x,k,y, l)] ≤ 4−v ·

(
2(v + 2)n−2v +O

(
n3 ·

∏̃
i

f
−3/2
i ·

∏̃
j

g
−3/2
j

))
.

Since fi ≤ 2n, gi ≤ 2n, and since the above products contain at most s + 1 and t + 1
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terms respectively, we find

n3 ·
∏̃
i

f
−3/2
i ·

∏̃
j

g
−3/2
j ≥ n3(2n)−3/2(s+1+t+1) = 2−3/2(v+2) · n3−3/2(v+2) � n−2v

for sufficiently large n, and hence the n3 ·
∏̃

if
−3/2
i ·

∏̃
jg
−3/2
j term dominates this expression.

Using similar ideas, we can deduce an upper bound on the expected number of

arcs in CPn whose lengths lie in a specific range.

Lemma 5.4.3. For any 1 ≤ α ≤ β ≤ 2n, let Aα,β denote the number of matching arcs

in CPn of the form (i, i+ k) with α ≤ k ≤ β. Then

E[Aα,β] = O(α−1/2n+ βne−α/16). (5.8)

In particular, if 32 log n ≤ α we have

E[Aα,β] = O(α−1/2n). (5.9)

Proof. We first consider some reductions of the problem. If α = O(1) the bound is trivial,

so we will assume that α = ω(1). For any α ≥ n the proposed bound is O(
√
n), so in

this range it suffices to prove the result for α = n and thus we can assume without loss

of generality that α ≤ n. Also, for any k ≥ 2n− 32 log n, CPn contains at most two non-

intersecting arcs of length k (one for each color) since k > n. Thus we can assume that

β ≤ 2n−32 log n, which will cause E[Aα,β] to decrease by at most 2 ·32 log n = O(α−1/2n)

when α ≤ n.
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For α ≤ k ≤ β, let A(i, k) denote the event that (i, i + k) matches in CPn. Let

2r1 denote the number of points x in i < x < i + k colored red and let 2r2 denote the

number of points x with x < i or x > i + k colored red, where as before we note that r1

or r2 may not be an integer. The probability that either |2r1 − (k − 1)/2| > (k − 1)/4 or

|2r2 − (2n − k − 1)/2| > (2n − k − 1)/4 is at most e−(k−1)/8 + e−(2n−k−1)/8. Conditional

on neither of these events occurring, we can proceed as in Lemma 5.4.2 and find that the

probability of (i, i + k) matching is at most cn3/2(k − 1)−3/2(2n − (k + 1))−3/2 for some

absolute constant c. Combining all this we see that

P[A(i, k)] ≤ cn3/2(k − 1)−3/2(2n− (k + 1))−3/2 + e−(k−1)/8 + e−(2n−k−1)/8.

Moreover, we have that P[A(i, k)] = 0 for i > 2n− k. Because

E[Aα,β] =

β∑
k=α

2n∑
i=1

P[A(i, k)],

we have that

E[Aα,β] ≤
β∑

k=α

(2n−k)(cn3/2(k−1)−3/2(2n−(k+1))−3/2+e−(k−1)/8+e−(2n−k−1)/8). (5.10)

Let γ = min(β, n). For α ≤ k ≤ γ and n sufficiently large, we have that (2n−(k+1)) ≥ 1
2
n

and (k − 1) ≥ 1
2
k. Thus the terms in (5.10) are at most

2n(2−3ck−3/2 + 2e−α/16 + 2e−n/16) ≤ 2−2cnk−3/2 + 4ne−α/16.

Thus (5.10) restricted to this range is at most

γ∑
k=α

2−2cnk−3/2 + 4ne−α/16 ≤ 2−2n

∫ ∞
α−1

cx−3/2dx+ 4γne−α/16 = O(α−1/2n+ βne−α/16).
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If β ≤ n then this completes the proof. Otherwise we can assume β = 2n − 32 log n.

Using similar logic as before, for n ≤ k ≤ 2n− 32 log n we have that the terms of (5.10)

are at most

2−2c(2n− k)−1/2 + 4ne−2 logn = 2−2c(2n− k)−1/2 + 4n−1.

Again summing over the relevant range and bounding our sum with an integral gives an

upper bound for (5.10) in this range of

2n−32 logn∑
k=n

(2n− k)−1/2 + 4n−1 = O(
√
n) = O(α−1/2n).

Summing the contributions from these ranges gives the desired result.

5.4.1 The expected number of edges

We are now ready to prove the first part of Theorem 5.1.2. We will do so by

showing that for any ε > 0 we have

(1− ε) 1

π
n log n+ o(n log n) ≤ E[e(CPn)] ≤ (1 + ε)

1

π
n log n+ o(n log n). (5.11)

It is clear that

E[e(CPn)] =
∑

P[A(x, k, y, `)], (5.12)

where the sum is over all valid quadruples (x, k, y, `) of positive integers such that 1 ≤

x < y < x+ k < y + ` ≤ 2n or 1 ≤ y < x < y + ` < x+ k ≤ 2n.

We break up this sum into various parts, and we will show that all but one will

contribute o(n log n), and that the remaining part will contribute between (1− ε) 1
π
n log n
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and (1+ε) 1
π
n log n. Let c < 1 be a positive real number and d be a positive integer, where

eventually we will pick c small and d large to get our bounds within the desired (1 ± ε)

region.

Proposition 5.4.4. Consider the contribution to (5.12) coming from each of the following

subsets of the quadruples.

(i) Valid quadruples (x, k, y, `) with k < d log n or ` < d log n.

(ii) Valid quadruples (x, k, y, `) with k > 2n− d log n or ` > 2n− d log n.

(iii) Quadruples (x, k, y, `) with d log n ≤ k, ` ≤ 2n− d log n that are valid but not good.

(iv) Good quadruples (x, k, y, `) with d log n ≤ k ≤ cn < ` ≤ 2n − d log n or d log n ≤

` ≤ cn < k ≤ 2n− d log n.

(v) Good quadruples (x, k, y, `) with cn < k, ` ≤ 2n− d log n.

Each of these contributions is o(n log n).

Proof. (i) This contribution counts the expected number of edges that come from pairs

of arcs with at least one arc of length at most d log n. We first show that the number

of such edges with at least one arc of length at most
√

log n is of order o(n log n) in

any Catalan-pair graph, and therefore also in expectation. Indeed, any arc of length

at most
√

log n has degree at most
√

log n since every interlacing arc must have one

of its endpoints within the given arc. Since we have at most n arcs of length at most

√
log n, the total number of such edges is at most n

√
log n = o(n log n).
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Now consider the edges involving an arc of length between
√

log n and d log n. By

Lemma 5.4.3 there are at most O(n(log n)−1/4 + log n ·ne−
√
logn/16) = o(n) such arcs

in expectation. Since each such arc can be involved in at most d log n edges, we

conclude that the total expected number of edges involving vertices of this type is

at most o(n log n).

(ii) This contribution counts the expected number of edges that come from a pair of

arcs where at least one of the arcs has length larger than 2n − d log n. We show

that the number of such arcs is O((log n)2) = o(n log n) for any Catalan-pair graph,

which implies the same bound for the expected number of such edges. First, note

that for n large enough and each N > 2n−d log n there is at most one arc of length

N on either side. Indeed, since 2n − d log n > n for n large enough, if we had two

arcs of length N on one side this would contradict the condition that the arcs do not

intersect. Therefore, there are at most 2d log n arcs of length at least 2n − d log n.

Furthermore, each such arc interlaces with at most d log n arcs on the opposite side.

Indeed, any such interlacing arc must have one of its endpoints outside the arc in

question, and there are at most d log n such points. Therefore, we have at most

2d log n · d log n = O((log n)2) such edges, as desired.

(iii) We assume d > 32 in order to apply Lemma 5.4.2.

We know that for any (x, k, y, `) in this range we have

P[A(x, k, y, `)] = O(n3(2n− (k + 2))−3/2k−3/2(2n− (`+ 2)−3/2`−3/2).
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Furthermore, given k and ` we claim that there are at most 16n quadruples (x, k, y, `)

that are valid but not good. This follows since there are at most 2n possibilities for

x, and given x we must have that y or y + ` belongs to {x± 1, x+ k ± 1}.

Therefore, the total contribution is at most of the order of

n4
∑
k,`

(2n− (k + 2))−3/2k−3/2(2n− (`+ 2))−3/2`−3/2

= n4

(∑
k

(2n− (k + 2))−3/2k−3/2

)2

.

We can break up
∑

k(2n− (k+ 2))−3/2k−3/2 in the regions k ≤ n and k > n. When

k ≤ n we have (2n − (k + 2))−3/2 ≤ (n − 2)−3/2, hence the contribution is at most

(n − 2)−3/2
∑

k k
−3/2 = O(n−3/2) since the sum of k−3/2 is bounded. By similar

reasoning the other contribution is O(n−3/2), so

n4

(∑
k

(2n− (k + 2))−3/2k−3/2

)2

= n4O(n−3/2)2 = O(n) = o(n log n),

as was to be shown.

(iv) Again we assume d > 32. Also, we only consider the case d log n ≤ k ≤ cn < ` ≤

2n− d log n, the other case being analogous.

We claim that for given k and ` there are at most (2n − `) · 2k good quadruples

(x, k, y, `). This holds since y has to satisfy y + ` ≤ 2n, and after choosing y we

must have that y − k ≤ x ≤ y − 1 or y + `− k ≤ x ≤ y + `− 1, leaving at most 2k

choices for x. Therefore, this region contributes at most

cn∑
k=d logn

2n−d logn∑
`=cn

(2n− `) · 2k · n3(2n− (k + 2))−3/2k−3/2(2n− (`+ 2))−3/2`−3/2.
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Note that this sum breaks up as

2n3

(
cn∑

k=d logn

k−1/2(2n− (k + 2))−3/2

)

·

(
2n−d logn∑
`=cn

`−3/2(2n− `)(2n− (`+ 2))−3/2

)
.

Using (2n− (k + 2))−3/2 ≤ 23/2n−3/2 we find that

cn∑
k=d logn

k−1/2(2n− (k + 2))−3/2 = O(n−3/2) ·
cn∑

d logn+2

k−1/2

= O(n−3/2) ·O(n1/2) = O(n−1)

where the second equality follows from comparison of the sum with an integral. An

analogous computation shows that

2n−d logn∑
`=cn

`−3/2(2n− `) · (2n− (`+ 2))−3/2 = O(n−1),

and therefore this range of k and ` contributes at most 2n3 ·O(n−1) ·O(n−1) = O(n),

which is in particular o(n log n) as desired.

(v) Again we estimate the number of good quadruples (x, k, y, `) for given k, `. Similar

to above we have at most (2n − k) and (2n − `) choices for x and y respectively,

and therefore we have at most (2n− k)(2n− `) good quadruples in total. Thus this

part of the sum contributes at most

2n−d logn∑
k,`=cn

(2n− k)(2n− `) · n3(2n− (k + 2))−3/2k−3/2(2n− (`+ 2))−3/2`−3/2.
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As in case (iv), this factors as

n3

(
2n−d logn∑
k=cn

k−3/2(2n− k)(2n− (k + 2))−3/2

)

·

(
2n−d logn∑
`=cn

`−3/2(2n− `) · (2n− (`+ 2))−3/2

)
.

Each of the above sums will be O(n−1) by the same argument as before. We conclude

that the total contribution of these terms to the original sum is at most n3 ·O(n−1) ·

O(n−1) = O(n) = o(n log n), completing the proof.

We point out that using Lemma 5.4.2 and similar arguments to the ones used in

cases (iv) and (v) can be used to show that the region d log n ≤ k, ` ≤ cn will contribute

O(n log n) to the expected number of edges. In fact, using a later result, Lemma 5.7.1,

we can also show a lower bound of Ω(n log n) for this contribution. However, with a little

bit more care it is possible to determine the exact constant. We first require a probability

lemma.

Lemma. Let X1, X2, . . . be independent random variables with P[Xi = 0] = P[Xi = 1] =

1/2, and set Sj =
∑j

i=1Xi. For ε > 0, d ≥ 20/ε2 and j > d log n we have

P[|Sj − j/2| < εj/2] < 2n−10. (5.13)

Proof. By Lemma 2.7.1, the desired probability is at most

2 exp(−2(εj/2)2/j) = 2 exp(−ε2j/2) ≤ 2 exp(−ε2d log n/2) = 2n−ε
2d/2 ≤ 2n−10

since d ≥ 20/ε2.
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By Proposition 5.4.4, in order to show (5.11) it suffices to prove that for suitably

small c and sufficiently large d the contribution from good quadruples with d log n ≤

k, ` ≤ cn is between

(1− ε) 1

π
n log n and (1 + ε)

1

π
n log n.

To this end we introduce the following notation, which intuitively means that two expres-

sion asymptotically gets arbitrarily close for n → ∞, independent of all other variables,

provided one picks a suitably small c and a suitably large d.

Definition 5.4.5. Let f and g be two functions with the same domain taking positive

values, and whose inputs depend on some positive integer n and some other integer

variables, some of which are restricted to the interval [d log n, cn]. We say that f ∼ac g if

for any ε > 0 there exist suitable c, d and N with

(1− ε)f(x) ≤ g(x) ≤ (1 + ε)f(x) (5.14)

for any input x with n ≥ N . J

Here the subscript ac denotes that we do not have the exact asymptotic behavior,

but that we get arbitrary close asymptotic behavior by choosing suitable c and d.

We now want to show that

∑
(x,k,y,`)

P[A(x, k, y, `)] ∼ac
1

π
n log n (5.15)

where the sum is over all good quadruples (x, k, y, `) with d log n ≤ k, ` ≤ cn. The desired

result follows by the steps in the proposition below.
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Proposition 5.4.6. We have the following statements.

(i) P[A(x, k, y, `)] ∼ac
1

16π
k−3/2`−3/2.

(ii) Let g(k, `) be the number of pairs (x, y) such that (x, k, y, `) is a good quadruple.

Then g(k, `) ∼ac 4n ·min{k, `}.

(iii) We have

n

4π

∑
d logn≤k,`≤cn

k−3/2`−3/2 ·min{k, `} ∼ac
1

π
n log n.

Before proving this proposition, we first show that this implies the asymptotic

result of Theorem 5.1.2.

Corollary 5.4.7. The expected number of edges of CPn satisfies

E[e(CPn)] ∼ 1

π
n log n. (5.16)

Proof. Given Proposition 5.4.6, for any ε > 0 there are some c, d and N such that for all

n ≥ N we have

P[A(x, k, y, `)] ≤ (1 + ε)
1

16π
k−3/2`−3/2

g(k, `) ≤ (1 + ε)4nmin{k, `}

n

4π

∑
d logn≤k,`≤cn

k−3/2`−3/2 ·min{k, `} ≤ (1 + ε)
1

π
n log n.
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This implies

∑
(x,k,y,`)

P[A(x, k, y, `)] ≤ (1 + ε)
∑

(x,k,y,`)

1

16π
k−3/2`−3/2

= (1 + ε)
∑
k,`

g(k, `) · 1

16π
k−3/2`−3/2

≤ (1 + ε)2
n

4π

∑
k,`

k−3/2`−3/2 min{k, `}

≤ (1 + ε)3
1

π
n log n,

and similarly for the lower bound.

We now prove this proposition.

Proof of Proposition 5.4.6. (i) It is clear that with probability 2−4 all of x, x + k, y,

y + ` have the correct color. We now claim that, conditioning on the event that

this happens, with probability 2−2 there is an even number of red points between

x and x + k and an even number of blue points between y and y + `. Indeed,

consider the case where x < y < x + k < y + `. Then for any possible coloring of

x+ 2, . . . , y− 1, y+ 1, . . . , x+ k− 1, x+ k+ 1, . . . , y+ `− 2 there is a unique choice

of colors for x + 1 and y + ` − 1 that makes the number of red and blue points in

the respective regions even, and with probability 2−2 these points will receive this

color (here we used our assumption that y ≥ x+ 2 and y + ` ≥ x+ k + 2).

Condition on the event that all of this happens. Let r1 and r2 be defined such that

there are 2r1 red dots between x and x+ k and 2r2 red dots outside, and similarly
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define b1 and b2. Then, conditional on the aforementioned event, the probability of

having arcs between x and x+ k and y and y + ` is given by

Cr1 · Cr2
Cr1+r2+1

· Cb1 · Cb2
Cb1+b2+1

. (5.17)

By Lemma , with probability at least 1−8n−10 we have r1 ∼ac k/4, r2 ∼ac n/2−k/4,

b1 ∼ac `/4 and b2 ∼ac n/2 − `/4. Furthermore, since k, ` ≥ d log n and d log n →

∞ we may replace all Catalan numbers by their asymptotic expressions, which

yields that the probability of having arcs on the desired positions is (asymptotically

arbitrary closely) given by

1

16π
·
(
r1 + r2 + 1

r2

)3/2

r
−3/2
1 ·

(
b1 + b2 + 1

b2

)3/2

b
−3/2
1 .

Since r1 + r2 + 1 ∼ac n/2 − k/4 + k/4 + 1 ∼ac n/2 and r2 ∼ac n/2 − k/4 ∼ac n/2

(the latter since n/2 ≥ n/2− k/4 ≥ n/2− cn/4), we find r1+r2+1
r1

∼ac 1, and hence

1

16π
·
(
r1 + r2 + 1

r2

)3/2

r
−3/2
1 ·

(
b1 + b2 + 1

b2

)3/2

b
−3/2
1

∼ac
1

16π
(k/4)−3/2(`/4)−3/2 = 26 1

16π
k−3/2`−3/2.

Therefore, for any ε, and suitable c, d and large enough n we have

(1− 8n−10)(1− ε) 1

16π
k−3/2`−3/2 ≤ P[A(x, k, y, `)]

≤ (1− 8n−10)(1 + ε)
1

16π
k−3/2`−3/2 + 8n−10.

Since 1 − 8n−10 → 1 for n → ∞, and since k−3/2`−3/2 ≥ n−3 we have n−10 =

o(k−3/2`−3/2) (uniformly in n). This shows that P[A(x, k, y, `)] ∼ac
1

16π
k−3/2`−3/2.
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(ii) Without loss of generality we may assume that k ≤ `. We show that (4− 6c)n(k −

3) ≤ g(k, `) ≤ 4nk. Since k ≥ d log n and d log n→∞ we have k− 3 ∼ac k, and the

result follows.

For the upper bound, note that we have at most 2n choices for x. Furthermore,

given x, either y or y+ ` must be among {x+ 1, x+ 2, . . . , x+k−1}, hence we have

at most 2 · (k− 1) ≤ 2k choices for y afterwards. Therefore, g(k, `) ≤ 2n · 2k = 4nk.

For the lower bound, let cn ≤ x ≤ (2−2c)n. We claim that for any such x there are

at least 2(k− 3) good quadruples with that x. Indeed, let y ∈ {x+ 2, . . . , x+k− 2}

or y ∈ {x + 2 − `, . . . , x + k − 2 − `}, and we claim that any such y works. Since

` ≥ k these two sets are disjoint, giving us 2(k − 3) good quadruples.

First suppose that y = x+ j for 2 ≤ j ≤ k − 2. Then we clearly have 1 ≤ x < y <

x + k < y + `, y ≥ x + 2 and x + k ≥ y + 2. Furthermore, y + ` ≥ x + 2 + ` ≥

x+ 2 + k = (x+ k) + 2. Lastly, y+ ` ≤ x+ k− 2 + ` ≤ 2n− 2cn+ k+ ` ≤ 2n, since

k, ` ≤ cn. A similar argument holds in the case y = x+ j − `.

(iii) We consider the contribution to the sum coming from k < `, the analysis for the

contribution coming from k ≥ ` is analogous. First, note that

∑
k<`

k−1/2`−3/2 =
cn∑

`=d logn

`−3/2
`−1∑

k=d logn

k−1/2 ≤
∑
`

`−3/2
∫ `

1

x−1/2dx

=
∑
`

`−3/2(2`1/2 − 2) ≤
cn∑

`=d logn

2`−1

≤ 2

∫ cn

d logn−1
x−1dx ≤ 2 log(cn) ≤ 2 log n.
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In the other direction, note that we have a lower bound of

cn∑
`=(logn)2

`−3/2
`−1∑

k=d logn

k−1/2 ≥
cn∑

`=(logn)2

`−3/2`−3/2
∫ `

d logn

x−1/2dx

=
cn∑

`=(logn)2

`−3/2(2`1/2 − 2(d log n)1/2).

For any ε we have (d log n) ≤ ε2(log n)2 ≤ ε2`2 for n large enough, hence 2`1/2 −

2(d log n)1/2 ≥ 2(1− ε)`−1/2 for n large enough. Therefore, we get a lower bound of

2(1− ε)
cn∑

`=log(n)2

`−1 ≥ 2(1− ε)
(
log(cn+ 1)− log((log n)2)

)
by again comparing the sum with an integral. The desired result now follows from

the fact that

log(cn+ 1)− log(log(n)2) ≥ log n+ log c− log(log(n)2) ∼ log n,

hence we have log(cn+ 1)− log(log(n)2) ≥ (1− ε) log n for n large enough.

5.5 The number of isolated vertices

In this section we will determine the asymptotic behavior of the number of isolated

vertices, as stated in Theorem 5.1.3. Recall that In denotes the number of isolated vertices

of CPn and that we defined

γ = 4
∞∑
m=1

16−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb. (5.18)

Before proving Theorem 5.1.3, let us first show why the sum defining γ is a convergent

sum. Let γm = 4 · 16−m
∑m−1

b=0

(
2m−2
2b

)
Cm−1−bCb, then as noted in [BDD+, Section 5] we
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have γm ≤ 1
4(m−1)2 for m ≥ 2, from which the convergence follows since the sum of the

reciprocals of the squares converges.

In fact, this gives us an error bound on how quickly the finite sums
∑M

m=1 γm

converge to γ. Indeed

γ =
∞∑
m=1

γm =
M∑
m=1

γm +
∞∑

m=M+1

γm ≤
M∑
m=1

γm +
∞∑

m=M+1

1

4(m− 1)2

≤
M∑
m=1

γm +

∫ ∞
x=M

1

4(x− 1)2
dx =

M∑
m=1

γm +
1

4(M − 1)
.

Using the trivial lower bound γ ≥
∑M

m=1 γm and taking M = 104 one can compute that

0.30234 ≤ γ ≤ 0.30238.

We first show that E[In] is asymptotically at least γn. As a first observation we note

that any arc yielding an isolated vertex must have an even number of points between its

endpoints, as otherwise there would be an arc connecting a point between its endpoints

with a point outside. Such an arc would necessarily be on the other side and would

yield an edge involving the arc in question. Therefore, In =
∑n

m=1 In,m where In,m is the

number of isolated vertices induced by an arc connecting two points with 2m− 2 points

between them.

The following result will suffice to prove the lower bound for E[In].

Proposition 5.5.1. For m a fixed positive integer we have E[In,m] ∼ γmn.

As a result of this proposition, we can see that

E[In] ≥
M∑
m=1

E[In,m] ∼
M∑
m=1

γmn, (5.19)
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which gets arbitrarily close (in the multiplicative sense) to γn by picking M large enough.

However, this approach does not immediately yield the upper bound, since each E[In,m]

will converge to γmn at its own rate, hence a bit more care is needed to handle the full

sum E[In] =
∑n

m=1 E[In,m].

Proof of Proposition 5.5.1. We count the expected number of such arcs that come from

the top, and by symmetry we can multiply this quantity by two to get our final answer.

As mentioned above, an arc connecting x and x + 2m − 1 is isolated if and only if the

2m− 2 intermediate points are only connected to themselves. The total number of ways

to connect those points is given by

m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb, (5.20)

where b is the number of arcs on the bottom,
(
2m−2
2b

)
counts the number of ways to select

the 2b points for these arcs, and Cm−1−b and Cb count the number of ways to choose the

arcs on the top and the bottom.

Now fix one such configuration with b arcs on the bottom and a arcs on top

(including the arc between x and x + 2m − 1). We claim that the expected number of

such configurations in CPn is given by

(2n− 2m+ 1)2−2m
n−m∑
r=0

pr
Cr
Cr+a

· Cn−m−r
Cn−m−r+b

,

where pr = pr(n, a, b) is the probability that 2r of the points not among the 2m specified

points are colored red.
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This formula follows from the fact that there are 2n − 2m + 1 possibilities for x,

namely 1 ≤ x ≤ 2n − 2m + 1, and that for each such x the probability of the points

x, x + 1, . . . , x + 2m − 1 colored exactly as in our configuration is given by 2−2m. After

that, given x and conditioning on these points having the correct colors and conditioning

on there being 2r other red points, the probability that the top Catalan-arc matching

(which has size r + a) has exactly the desired configuration on our given 2a red points is

exactly Cr
Cr+a

by Lemma 5.3.2, and a similar result holds for the probability of the bottom

Catalan-arc matching coinciding with our given configuration on the 2b points.

To complete the proof it suffices to show that

n−m∑
r=0

pr
Cr
Cr+a

· Cn−m−r
Cn−m−r+b

∼ 4−m,

since then

E[In,m] ∼ 2

(
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb

)
(2n− 2m+ 1)2−2m · 4−m ∼ γmn.

Using Lemma 2.7.1 with exponential small probability we have r ≤ n/4 or n−m−r ≤ n/4.

As a trivial lower bound we have

n−m∑
r=0

pr
Cr
Cr+a

· Cn−m−r
Cn−m−r+b

≥
n−m−n/4∑
r=n/4

pr
Cr
Cr+a

· Cn−m−r
Cn−m−r+b

.

Now in this region, since r, r+a, n−m−r, n−m−r+b ≥ n/4 we can use the approximation

105



for the Catalan numbers from (5.3) and find the lower bound

n−m−n/4∑
r=n/4

pr
Cr
Cr+a

· Cn−m−r
Cn−m−r+b

∼
n−m−n/4∑
r=n/4

pr
4r

4r+a

(
r + a

r

)3/2

· 4n−m−r

4n−m−r+b

(
n−m− r

n−m− r + b

)3/2

∼
n−m−n/4∑
r=n/4

pr4
−(a+b) = 4−m

n−m−n/4∑
r=n/4

pr ∼ 4−m,

where the last step follows from the fact that r < n/4 or r > n − m − n/4 holds with

exponentially small probability.

Similarly, we have

n−m∑
r=0

pr
Cr
Cr+a

· Cn−m−r
Cn−m−r+b

≤
n−m−n/4∑
r=n/4

pr
Cr
Cr+a

· Cn−m−r
Cn−m−r+b

+ Pr(r ≤ n/4 or n−m− r ≤ n/4)

∼ 4−m + Pr(r ≤ n/4 or n−m− r ≤ n/4) ∼ 4−m,

completing the proof.

We now prove the desired asymptotics for the number of isolated vertices.

Proposition 5.5.2. Let γ be the constant defined by

γ = 4
∞∑
m=1

16−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb = 0.3023 . . . . (5.21)

Let In denote the number of isolated vertices of CPn. Then E[In] ∼ γn.

Proof. As mentioned after the statement of Proposition 5.5.1 we have shown an asymp-

totic lower bound of γn on the number of isolated vertices. For the upper bound, note
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that using the notation of Lemma 5.4.3 we have that In,m ≤ A2m−1,2m−1, since the number

of isolated vertices coming from arcs of length 2m−1 is clearly at most the the total num-

ber of arcs of this length. By this observation, the fact that
∑n

m=16 logn+1A2m−1,2m−1 ≤

A32 logn+1,2n, and Lemma 5.4.3, we have

n∑
m=16 logn+1

E[In,m] ≤ E[A32 logn+1,2n] = o(n),

which shows that

E[In] =

16 logn∑
m=1

E[In,m] + o(n).

Using the argument from Proposition 5.5.1 we see that

16 logn∑
m=1

E[In,m] ≤ 4n

16 logn∑
m=1

4−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb

n−m∑
r=0

pr(n, a, b)
Cr
Cr+a

· Cn−m−r
Cn−m−r+b

.

We now see that for any m, a and b we have that there are at least n points outside of

the configuration, hence 2r is the sum of at least n independent 0− 1 Bernoulli p = 1/2

variables. This means that with at most some exponentially small probability c−n we

have r, n−m− r ≤ n/10.

Therefore, for all cases where r, n −m − r ≥ n/10 we can again (uniformly over

all summands) replace Cr
Cr+a

by 4−a
(
r+a
r

)3/2
. Since r+a

r
= 1 + a

r
≤ 1 + 16 logn

n/10
we can

asymptotically replace r+a
r

by 1 over all summands. Using this and the approach as in

Proposition 5.5.1 we have an asymptotic upper bound
∑n−m

r=0 pr(n, a, b)
Cr
Cr+a
· Cn−m−r
Cn−m−r+b

≤

107



4−m + c−n, hence (asymptotically up to arbitrarily small multiplicative factors) we have

16 logn∑
m=1

E[In,m] ≤ 4n

16 logn∑
m=1

4−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb

(
4−m + c−n

)
≤ γn+ 4n

(
16 logn∑
m=1

4−m
m−1∑
b=0

(
2m− 2

2b

)
Cm−1−bCb

)
c−n

≤ γn+ 4n

(
16 logn∑
m=1

4−m16m

)
c−n ≤ γn+ 4nc−n

16 logn∑
m=1

4m

≤ γn+ 4nc−n · 16 log n416 logn

= γn+ 64nc−n · log n · n16 log 4 = γn+ o(1),

since c−n goes to zero faster than n1+16 log 4 log n grows to infinity.

We can use a similar proof to bound the variance of In.

Proposition 5.5.3. The variance of the number of isolated vertices in CPn satisfies

Var[In] = o(n2).

Before giving this proof, let us point out that using Chebyshev’s inequality from

Lemma 2.7.2 we can use this result to complete the proof of Theorem 5.1.3.

Proof of Theorem 5.1.3. The asymptotic result for the expected number of isolated ver-

tices follows from Proposition 5.5.2. From this we know |E[In]− γn| < ε/2 · n for n large

enough. Hence, for sufficiently large n we have,

P[|In − γn| > εn] ≤ P[|In − E[In]| > ε/2 · n].

Now, applying Chebyshev’s inequality we find

P[|In − E[In]| > ε/2 · n] ≤ Var[In]

(ε/2 · n)2
=

o(n2)

(ε/2 · n)2
= o(1), (5.22)
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as desired.

We will now prove the result on the variance.

Proof of Proposition 5.5.3. By definition we have Var[In] = E[I2n]−E[In]2, where E[In]2 =

(γn)2 + o(n2) by the first part of Theorem 5.1.3. Therefore, since variance is nonnegative,

it suffices to show that

E[I2n] ≤ (γn)2 + o(n2). (5.23)

Observe that I2n is the number of ordered pairs of isolated vertices.

Just as above we show that we can restrict ourselves to the isolated vertices induced

by arcs of length at most 32 log n. Indeed, let Aα,β be as in Lemma 5.4.3. Then the number

of pairs where at least one vertex comes from an arc of length at least 32 log n is at most

2 ·A32 logn,2n ·n, where the factor 2 represents the choice of the vertex coming from a long

arc being the first or second vertex in the pair, A32 logn,2n is the number of ways to pick

this long arc, and n is the number of ways to pick the remaining vertex. Therefore, this

contribution to E[I2n] is at most E[2 · A32 logn,2n · n] = o(n2) by Lemma 5.4.3.

Additionally, the number of pairs of isolated vertices coming from two arcs of

length at most 32 log n, where one arc is contained in the other arc (possibly facing the

other way) is deterministically at most O(n log n), since one can pick the outer arc in at

most n ways and then there are at most 32 log n ways to pick the smaller arc. Therefore,

these pairs contribute o(n2) to E[I2n] as well. Furthermore, the number of pairs where

both arcs are the same are at most n, so these will also contribute o(n2) to E[I2n].
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Therefore, we can restrict our attention to pairs of isolated vertices coming from

different arcs of length at most 32 log n such that neither arc is contained in the other.

Note that since the arcs yield isolated vertices their endpoints cannot interlace, so the

sets of points covered by this arc are disjoint.

Suppose we want to calculate the probability of having a pair of isolated vertices,

one of them induced by an arc connecting (x, x + 2m − 1) and the other connecting

an arc connecting (y, y + 2k − 1), where m, k ≤ 16 log n. By a similar argument as in

Proposition 5.5.1, after specifying configurations for {x + 1, . . . , x + 2m − 2} and {y +

1, . . . , y+ 2k− 2} the probability is (asymptotically up to arbitrarily small multiplicative

factors) at most

4−(m+k) · (4−(m+k) + c−n),

where 4−(m+k) is the probability that all of {x, x+1, . . . , x+2m−1} and {y, y+1, . . . , y+

2k−1} receive the correct color, and c−n is once again an upper bound on the probability

of not having at least n/10 more blue and red points, and the 4−(m+k) is once again the

factor that shows up by considering the asymptotic behavior of the appropriate quotient

of Catalan numbers. Also, by the same argument we can do these asymptotics for all

possible x, y, k, m and choice of configurations simultaneously.

Taking into account that there are at most (2n)2 ways to choose x and y, and

4 ways to choose the side (top or bottom) for the arcs, and considering the possible

configurations for {x+1, . . . , x+2k−2} and {y+1, . . . , y+2k−2} we find an asymptotic
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upper bound for the desired contribution of

16 logn∑
k,m=1

16n2

(
m−1∑
b1=0

(
2m− 2

2b1

)
Cm−1−b1Cb1

)

·

(
k−1∑
b2=0

(
2k − 2

2b2

)
Ck−1−b2Cb2

)
4−(m+k)

(
4−(m+k) + c−n

)
.

Using 4−(m+k) + c−n ≤ (4−m + c−n/2)(4−k + c−n/2), we can separate the sums over k and

m. Thus the contribution is at most(
16 logn∑
m=1

4n ·
m−1∑
b1=0

(
2m− 2

2b1

)
Cm−1−b1Cb1 · 4−m(4−m + c−n/2)

)2

≤ (γn)2 + o(n2),

where the last inequality once again follows from the proof of Theorem 5.1.3.

Remark. Essentially the same proof can be used to show that E[Imn ] ∼ γmnm for all

m ≥ 2. J

With all this we can conclude the results on the number of edges of CPn.

Proof of Theorem 5.1.2. The asymptotic formula for the expected number of edges fol-

lows from Corollary 5.4.7. The concentration result follows from Proposition 5.6.1 and

essentially the same proof used in the proof of Theorem 5.1.3.

5.6 The variance of the number of edges

This section will be devoted to bounding the variance of the random variable

e(CPn). We will prove the following result, which with a proof similar to that of Theo-

rem 5.1.3 will imply the concentration result of Theorem 5.1.2.
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Proposition 5.6.1. The variance of the number of edges in CPn satisfies

Var[e(CPn)] = o(n2 log2 n). (5.24)

Similar to the case of isolated vertices, we will prove this statement by showing

that for any ε > 0 and n large enough we have

E[(e(CPn))2] ≤ (1 + ε)
1

π2
n2 log2 n+ o(n2 log2 n).

In other words, we want to count the expected number of pairs of edges in CPn. Just

as when we determined the expected number of edges, we first have to handle some

exceptional cases and show that all of these cases contribute of order o(n2 log2 n). The

general approach of these proofs are similar to Proposition 5.4.4 and Proposition 5.5.3.

However, there will be more exceptional cases to take care of, and each of the individual

proofs will be slightly longer due to the involvement of more arcs and edges.

Therefore, we will first state the necessary lemmas, and show how they lead towards

the proofs of Proposition 5.6.1 and consequently Theorem 5.1.2, and we will defer the

proofs of the lemmas to the end of the section.

As mentioned, e(CPn)2 is the number of pairs of edges in CPn. Typically, such a

pair of edges will be induced by four arcs in the representative for CPn. The first step

will be to show that these pairs are indeed the main contribution to E[(e(CPn))2].

Lemma 5.6.2. The expected number of pairs of edges in CPn induced by at most three

arcs in its representative is at most o(n2 log2 n).
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Therefore, we can restrict to valid quadruples

q = (x,k,y, l) = ((x1, x2), (k1, k2), (y1, y2), (`1, `2)),

where (xi, ki, yi, `i) is a possible edge for i = 1, 2. Our goal is now to show that

∑
q

P[A(x,k,y, l)] ≤ (1 + ε)
1

π2
n2 log2 n+ o(n2 log2 n), (5.25)

where the sum is over all valid quadruples q = (x,k,y, l). We use the notation for

f0, f1, f2, g0, g1, g2 as in Section 5.4. Similar to the proof for the expected number of

edges, the first step will be to show that the main contribution comes from quadruples

with fi, gj ≥ d log n. That is, we will show that if Q1 is the set of quadruples for which

at least one of fi, gj is less than d log n, then

∑
q∈Q1

P[A(x,k,y, l)] = o(n2 log2 n).

Without loss of generality we can consider the case where one of the fi is less than d log n.

Then the result follows from the two lemmas below, the first one of which deals with the

case that the two arcs on top are nested, and the second one deals with the unnested case.

Lemma 5.6.3. Let Q1,1 be the set of all valid quadruples q for which x1 < x2 < x2 +k2 <

x1 + k1 and for which k2, k1 − k2 or 2n− k1 is less than d log n. Then

∑
q∈Q1,1

P[A(x,k,y, l)] = o(n2 log2 n).

Lemma 5.6.4. Let Q1,2 be the set of all valid quadruples q for which neither x1 < x2 <

x2 + k2 < x1 + k1 nor x2 < x1 < x1 + k1 < x2 + k2 holds, and for which k1, k2 or
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2n− (k1 + k2) is less than d log n. Then

∑
q∈Q1,2

P[A(x,k,y, l)] = o(n2 log2 n).

In order to complete the proof of Proposition 5.6.1 we can now assume that all

fi, gj are at least d log n. The first step will be to deal with the case that some of the arcs

are nested.

Lemma 5.6.5. Let Q2 be the set of quadruples with x1 < x2 < x2 + k2 < x1 + k1 and

fi, gj ≥ d log n. Then ∑
q∈Q2

P[A(x,k,y, l)] = o(n2 log2 n).

For the remainder of this section on we will assume that any quadruple has no

nested arcs. First we take care of the quadruples where one of the arcs is too large.

Lemma 5.6.6. Let Q3 be the set of quadruples with max{k1, k2, `1, `2} > cn. Then

∑
q∈Q3

P[A(x,k,y, l)] = o(n2 log2 n)

We lastly rule out all of the remaining quadruples that are valid but not good.

Lemma 5.6.7. Let Q4 be the set of valid quadruples that are not good and have d log n ≤

k1, k2, `1, `2 ≤ cn. Then

∑
q∈Q4

P[A(x,k,y, l)] = o(n2 log2 n).

Before we give the proof of Proposition 5.6.1 we recall a definition from Proposi-

tion 5.4.6. For positive integers k, `, we defined g(k, `) as the number of pairs (x, y) such
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that (x, k, y, `) is a good quadruple. We are now ready to prove our desired result on the

variance.

Proof of Proposition 5.6.1. By Lemmas 5.6.2 through 5.6.7 we only have to consider

quadruples (x,k,y, l) that are good, have no nested arcs, and which have d log n ≤

k1, k2, `1, `2 ≤ cn. In this case, given k1, k2, `1, `2 there are g(k1, `1) ways to pick x1, y1

and after that at most g(k2, `2) ways to pick x2, y2.

Therefore, it suffices to show that for d large enough and c small enough we have

P[A(x,k,y, l)] ≤ (1 + ε) · 1

16π
k
−3/2
1 `

−3/2
1 · 1

16π
k
−3/2
2 · `−3/22 , (5.26)

as this implies that the desired contribution is at most

∑
k1,k2,`1,`2

g(k1, `1) · g(k2, `2) · (1 + ε) · 1

16π
k
−3/2
1 `

−3/2
1 · 1

16π
k
−3/2
2 · `−3/22 ,

which factors as

(1 + ε)

(∑
k1,`1

g(k1, `1)
1

16π
k
−3/2
1 `

−3/2
1

)
·

(∑
k2,`2

g(k2, `2)
1

16π
k
−3/2
2 `

−3/2
2

)
,

which by Proposition 5.4.6 is at most (1 + ε)3 · ( 1
π
n log n)2 for d large enough and c small

enough.

In order to show (5.26) we follow the same approach as the proof of part 1 of

Proposition 5.4.6. First, with probability 2−8 all of xi, xi+ki, yi, yi+ `i receive the correct

color and with probability 2−4 the number of red points between xi and xi + ki and the

number of blue points between yj and yj + `j are all even. This follows immediately from

the aforementioned proof when neither (x1, x1 + k1) and (y2, y2 + `2) nor (x2, x2 + k2)
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and (y1, y1 + `1) intersect. Otherwise, we may without loss of generality assume that

x1 < y1 < x1 + k1 < x2 < y1 + `1 < y2 < x2 + k2 < y2 + `2. In this case, color all the

remaining points between x1 and y2 + `2 except for x1 + 1, y1 + 1, x2 + 1, y2 + 1. Then,

given any such coloring there is a unique choice for the remaining four colors that makes

the number of red/blue in the desired regions even, as first y2 + 1 is uniquely determined,

then x2 + 1, then y1 + 1 and lastly x1 + 1.

Now suppose that ri is half the number of red points between xi and xi + ki for

i = 1, 2, r0 is half the number of red points outside of the arcs, and b0, b1, b2 are defined

similarly. Conditioned on the values of ri and bj we can write the desired probability as

Cr0Cr1Cr2
Cr0+r1+r2+2

· Cb0Cb1Cb2
Cb0+b1+b2+2

.

Again by Lemma , with high enough probability we can approximate ri with ki/4 (i =

1, 2) and r0 with n/4 − k1/4 − k2/4, and similarly for the bi, and the same asymptotic

considerations as in Proposition 5.4.6 will now yield the desired result.

5.6.1 Proofs of the technical lemmas

We are now ready to prove all the lemmas from above. First, we prove the lemma

that concerns all pairs of edges coming from at most three arcs.

Proof of Lemma 5.6.2. Since it is clear that at least two arcs must be involved, there

are two cases to consider. First, suppose that the total number of arcs involved equals

two. Then both edges in the pair are the same edge, so the number of such pairs equals
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e(CPn) ≤ n2. On the other hand, if there are a total of three arcs involved, there are at

most n ·e(CPn) pairs of such edges. Indeed, there are e(CPn) ways to choose the first edge

in the pair, which yields two arcs, and then there are at most n ways to choose a third arc

that interlaces with either of the two arcs used already. Therefore, in expectation there

are at most

E[n · e(CPn)] =
1

π
n2 log n = o(n2 log2 n)

such pairs.

The next two lemmas are used to show that we may assume that each of the gap

sizes is of order at least log n. We define e′(CPn) as the number of edges in CPn, at

least one of whose arcs has size at most d log n or at least cn. We refer to such edges as

exceptional edges. In Proposition 5.4.4 we showed that E[e′(CPn)] = o(n log n).

Proof of Lemma 5.6.3. First we consider the number of pairs with 2n − k1 < d log n.

We claim that there are at most (d log n)2 · e(CPn) such pairs. Indeed, we can pick

the edge (x2, k2, y2, `2) in at most e(CPn) ways, and the edge (x1, k1, y1, `1) in at most

(d log n)2 ways: we can pick k1 in d log n ways, after which there is at most one x1

such that x1 and x1 + k1 are connected (since k1 > n) and the vertex corresponding to

this arc has degree at most d log n (as each interlacing arc must have an endpoint less

than x1 or larger than x1 + k1). By taking expectations we see that we have at most

(d log n)2E[e(CPn)] = o(n2 log2 n) such pairs.

Now suppose that k1 − k2 < d log n or k2 < d log n. First consider the pairs with
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(x1, k1, y1, `1) an exceptional edge. We claim that the number of such pairs is at most

n · d log n · e′(CPn), from which taking expectations will suffice. In order to prove this,

note that there are at most e′(CPn) ways to pick an exceptional edge. Then, in the case

k1− k2 < d log n, there are at most d log n ways to pick x2, and the corresponding arc has

degree at most n. Similarly, if k2 < d log n, there are at most n ways to pick x2, and the

corresponding arc has degree at most d log n.

Therefore, we may assume that (x1, k1, y1, `1) is not an exceptional edge. Assume

that k1 and `1 are given. By the same logic as the proof of Proposition 5.4.6, we know that

there are at most 4nmin{k1, `1} options for x1 and y1, and by Lemma 5.4.2 the probability

of having arcs connecting (x1, x1+k1) and (y1, y1+`1) is O(k
−3/2
1 `

−3/2
1 ). Furthermore, given

(x1, k1, y1, `1) there are at most k1 · d log n possible second edges by a similar argument

as above, where we now use k1 instead of n since we have fixed the size of the outer arc.

Hence, the expected number of such pairs of edges is given by

O

(
2n log n ·

∑
k1,`1

min{k1, `1}k−1/21 `
−3/2
1

)

so it suffices to show that
∑

k1,`1
min{k1, `1}k−1/21 `

−3/2
1 = o(n log n). The contribution

from k1 ≤ `1 is at most

∑
`1≤cn

`
−3/2
1

∑
k1≤`1

k
1/2
1 ≤

∑
`1≤cn

`
−3/2
1 O(`

3/2
1 ) = O(n),

and the contribution from `1 ≤ k1 is at most

∑
k1≤cn

k
−1/2
1

∑
`1≤k1

`
−1/2
1 =

∑
k1≤cn

k
−1/2
1 O(k

1/2
1 ) = O(n)

completing the proof.
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Proof of Lemma 5.6.4. We first consider the case that one of k1, k2 is less than d log n.

By symmetry we can assume that k1 < d log n. As in the previous lemma, the number

of pairs of edges with (x2, k2, y2, `2) an exceptional edge is at most n · d log n · e′(CPn) as

there are at most n · d log n edges where one vertex has degree at most d log n, and there

are at most e′(CPn) ways to pick the second edge. Therefore, in expectation, there are at

most O(n log n) · E[e′(CPn)] = o(n2 log2 n) such pairs.

Thus we may assume that (x2, k2, y2, `2) is not an exceptional edge. Consider all

pairs of edges where k1 <
√

log n. The number of such pairs is at most n·
√

log n·e(CPn), as

one can pick the arc (x1, x1+k1) in at most n ways, this vertex has degree at most
√

log n,

and there are at most e(CPn) ways to pick the second edge. In particular, the expected

number of such pairs is at most n ·
√

log n · E[e(CPn)] = O(n2(log n)3/2) = o(n2 log2 n).

Lastly we handle the case where
√

log n ≤ k1 ≤ d log n. We consider the expected

number of pairs of an arc and an edge ((x1, k1), (x2, k2, y2, `2)) such that k1 is in the given

range, and the arcs (x1, x1 + k1) and (x2, x2 + k2) are not nested. If we can show that

the expected number of such pairs is o(n2 log n) the result follows. Indeed, any pair of

edges of interest comes from such an arc-edge pair together with an arc that interlaces

with (x1, k1), and there are at most O(log n) such arcs. Thus in total we will get at most

o(n2 log n) ·O(log n) = o(n2 log2 n) pairs of edges.

To accomplish this, consider any valid quadruple q = ((x1, x2), (k1, k2), (y2), (`2))

giving an arc-edge pair as described above. We show that we have

P[A(q)] = O
(
k
−3/2
2 `

−3/2
2 ·

(
k
−3/2
1 + e−

√
logn/16

))
. (5.27)
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Showing the above bound on the probability suffices because then the number of arc-edge

pairs is at most

∑
q

P[A(q)] = O

((∑
x1,k1

k
−3/2
1 + e−

√
logn/16

)
·

( ∑
x2,k2,y2,`2

k
−3/2
2 `

−3/2
2

))

where we note that some combinations of some (x1, k1) used in the first sum and some

(x2, k2, y2, `2) used in the second sum will not give a desired quadruple q, but this is no issue

since we are only interested in an upper bound. By Lemma 5.4.3 and Proposition 5.4.6

the first sum is o(n) and the second sum is O(n log n), showing the desired result. We

will deviate slightly and assume that `2 is at least 2d log n, but we note that this change

will not affect our previous arguments.

To prove (5.27) we note that P[A(q)] can be written as

P[A(q)] = 2−2n
∑
c

Cn0Cn1Cn2

Cn0+n1+n2+2

· Cm0Cm2

Cm0+m2+1

, (5.28)

where the sum is over all colorings c of the points such that all the points coming from

q receive the correct color and the number of points of the desired color in each region is

even. Here n0 and m0 are half the number of red and blue points outside of the desired

arcs, n1 is half the number of red points within arc (x1, x1 + k1) and n2 and m2 are half

the number of red an blue points respectively in the arcs (x2, x2 + k2) and (y2, y2 + `2).

Note that `2 > 2d log n, hence the number of points between y2 and y2 + `2 that do not

lie between x1 and x1 + k1 is at least d log n.

Consider all the possible colorings of all the points except for the points in the

interval [x1, x1+k1]. By using Lemma , for d large enough, we can say that with probability
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at least 1−O(n−10) we have n0,m0 = Ω(n), n2 = Ω(k2) and m2 = Ω(`2), where the bound

on m2 follows by the above remark that there are still at least d log n points that we are

considering. Since

n−10 = o
((
k
−3/2
1 + e−

√
logn/16

)
·
(
k
−3/2
2 `

−3/2
2

))
we can restrict our attention to all colorings where the above bounds are satisfied. Now,

for any such coloring, using the asymptotic formula for the Catalan numbers, we have

Cm0Cm2

Cm0+m2+1

= O(`
−3/2
2 ).

Furthermore, we can rewrite

Cn0Cn1Cn2

Cn0+n1+n2+2

=
Cn0+n2+1Cn1

Cn0+n1+n2+2

· Cn0Cn2

Cn0+n2+1

,

then as in Lemma 5.4.3 we can show that
Cn0+n2+1Cn1
Cn0+n1+n2+2

, which is the probability of an arc

connecting x1 and x1+k1, is given by O
(
k
−3/2
1 + e−

√
logn/16

)
, where this case is even a bit

easier since we already specified the number of red points outside the arc. Furthermore,

plugging in n0 = Ω(n) and n2 = Ω(k2) we find
Cn0Cn2
Cn0+n2+1

= O(k
−3/2
2 ), and plugging all

these results into (5.28) yields

P[A(q)] = 2−2n
∑
c

O
((
k
−3/2
1 + e−

√
logn/16

)
·
(
k
−3/2
2 `

−3/2
2

))
,

which is O
((
k
−3/2
1 + e−

√
logn/16

)
·
(
k
−3/2
2 `

−3/2
2

))
since there are at most 22n valid color-

ings c. The finishes the case that one of k1, k2 is less than d log n.

Secondly, consider the case that 2n − (k1 + k2) < d log n. By the above we may

assume that k1, k2 > d log n. For any d log n < k1 < 2n−d log n there are at most O(log n)
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values of k2 for which 2n− (k1 + k2) is satisfied. Furthermore, given k1 and k2 there are

at most O((log n)2) ways to pick x1 and x2, as there are at most d log n dots outside of

the arcs (x1, x1 + k1) and (x2, x2 + k2). A variant of the proof of Lemma 5.4.2 shows that

with probability O(n3/2k
−3/2
1 k

−3/2
2 ) we have arcs connecting x1 and x1 + k1, and x2 and

x2 + k2.

Given k1, k2, x1 and x2, and assuming that (x1, x1 + k1) and (x2, x2 + k2) match

there are at most k1 · k2 edges involving these two arcs. Therefore, the expected number

of pairs of edges is at most

∑
k1,k2

O((log n)2) ·O(n3/2k
−3/2
1 k

−3/2
2 ) · k1k2 = O(n3/2(log n)2)

∑
k1,k2

k
−1/2
1 k

−1/2
2 .

We now claim that k2 ≥ 1
2
(2n− k1). Indeed, if k1 ≥ 2n− 2d log n we have 1

2
(2n− k1) ≤

d log n, whereas k2 ≥ d log n. Otherwise, we have k2 ≥ 2n − k1 − d log n ≥ 1
2
(2n − k1)

since the last inequality is equivalent to k1 ≤ 2n− 2d log n. Using this, together with the

earlier observation that there are at most O(log n) choices for k2 given k1, we find

O(n3/2(log n)2)
∑
k1,k2

k
−1/2
1 k

−1/2
2 = O(n3/2(log n)2)

∑
k1,k2

k
−1/2
1 (2n− k1)−1/2

= O(n3/2(log n)3)
∑
k1

k
−1/2
1 (2n− k1)−1/2.

Using that x 7→ (x(2n − x))−1/2 is decreasing on (0, n) and increasing on (n, 2n) we can
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compare the last sum with an integral to find that

∑
k1

k
−1/2
1 (2n− k1)−1/2 ≤

∫ 2n−1

1

(x(2n− x))−1/2 dx

= 2 arctan

(√
x

2n− x

)∣∣∣∣2n−1
1

= 2 arctan(
√

2n− 1)− 2 arctan

(√
1

2n− 1

)
≤ π.

Therefore, the expected number of pairs of these edges is O(n3/2(log n)3) = o(n2 log2 n).

The next lemma takes care of the cases where the arcs on at least one side are

nested.

Proof of Lemma 5.6.5. There are three cases to consider, based on the relative position

of the arcs coming from the bottom:

1. These arcs are unnested.

2. We have y2 < y1 < y1 + `1 < y2 + `2.

3. We have y1 < y2 < y2 + `2 < y1 + `1.

We will prove that in each case we have

P[A(x,k,y, l)] = O
(
n3k

−3/2
1 (2n− k1)−3/2`−3/21 (2n− `1)−3/2k−3/2m `−3/2m

)
, (5.29)

where km = min{k2 − k1, k2} and `m is defined based on which of the three cases we are

working in. Furthermore, in all cases we will show an upper bound of O(g(k1, `1) · k1 ·
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min{km, `m}) on the number of choices for x1, x2, y1, y2 given k1, k2, `1, `2. Here g(k, `)

is the number of pairs (x, y) such that (x, k, y, `) is a good quadruple, as defined in

Proposition 5.4.6 . We note that given km and k1 there are only two possibilities for k2

and we will define `m in such a way that the same thing holds for `2 given `m and `1.

Therefore, the desired contribution will be of the order

∑
k1,`1,km,`m

g(k1, `1) · k1 ·min{km, `m} · n3k
−3/2
1 (2n− k1)−3/2 · `−3/21 (2n− `1)−3/2k−3/2m `−3/2m .

Simply allowing all the variables in this sum to run between d log n and 2n − d log n we

can factor this as(∑
km,`m

min{km, `m}k−3/2m `−3/2m

)

·

(∑
k1,`1

g(k1, `− 1) · k1 · n3k
−3/2
1 (2n− k1)−3/2`−3/21 (2n− `1)−3/2

)
.

Note that the first sum is of order O(log n). Now, if max{k1, `1} > cn we can use the

estimate k1 = O(n), to show that the total contribution is given by

O(n log n) ·

(∑
k1,`1

g(k1, `− 1) · n3k
−3/2
1 (2n− k1)−3/2`−3/21 (2n− `1)−3/2

)
= o(n2 log2 n),

as the last sum is of order o(n log n) by Proposition 5.4.4. Else, we can use n3(2n −

k1)
−3/2(2n−`1)−3/2 = O(1) and the estimate g(k1, `1) ≤ 4nmin{k1, `1} ≤ 4n`1 to see that

the total contribution is of the order

O(n log n) ·

(∑
k1,`1

k
−1/2
1 `

−1/2
1

)
= O(n2 log n) = o(n2 log2 n),
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where we used that

∑
k1,`1

k
−1/2
1 `

−1/2
1 =

( ∑
d logn≤k1≤cn

k
−1/2
1

)
·

( ∑
d logn≤k1≤cn

k
−1/2
1

)
= O(

√
n) ·O(

√
n).

We now show (5.29) and the desired bounds on the number of quadruples for each

of the cases. We handle the first case in full detail, the other two cases are very similar

so we only highlight the details.

1. We know from Lemma 5.4.2 that P[A(x,k,y, l)] equals

O
(
n3(2n− k1)−3/2(k1 − k2)−3/2k−3/22 (2n− `1 − `2)−3/2`−3/21 `

−3/2
2

)
.

In this case, we define `m = min{2n− `1− `2, `2}. Now, since (k1−k2) +k2 = k1 we

have max{k1 − k2, k2} ≥ k1/2, so (k1 − k2)−3/2k−3/22 = O(k
−3/2
1 k

−3/2
m ) and similarly

we find (2n− `1 − `2)−3/2`−3/22 = O((2n− `1)−3/2`−3/2m ).

Furthermore, given k1, k2, `1, `2 there are at most g(k1, `1) + O(n) = O(g(k1, `1))

ways to pick (x1, y1), where we have to add O(n) to account for the option that

(x1, k1, y1, `1) is not a good quadruple. Now suppose that (x1, y1) has been chosen.

If km < `m there are at most (k1 − k2) ways to pick x2 and after that at most 2k2

ways to pick y2, so there are at most O((k1−k2)k2) = O(k1km) ways to pick (x2, y2)

(where we used k1 − k2, k2 ≤ k1).

Similarly, if `m < km there are at most k1 ways to pick x2 and we claim that there

are at most O(`m) ways to pick y2. Indeed, if `m = 2n − `1 − `2 then there are at

most two ways to pick the relative order of the arcs, after which y1 is determined
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by how many of the 2n− `1− `2 = `m outside points are to the left of y2, whereas if

`m = `2 the value of y2 is determined by the relative order of x2 and y2 and by how

many points the arcs (x2, x2 + k2) and (y2, y2 + `2) have in common. For the first

option we have two choices and for the last one we have `2 = `m choices.

2. In this case we see that P[A(x,k,y, l)] equals

O
(
n3(2n− k1)−3/2(k1 − k2)−3/2k−3/22 (2n− `2)−3/2`−3/21 (`2 − `1)−3/2

)
,

so defining `m = min{2n− `2, `2 − `1} gives the desired bound on the probability.

For the count of the number of options for (x1, y1, x2, y2) the only thing that changes

is the number of ways to pick (x2, y2) given (x1, y1) and given `m ≤ km. Again, there

are at most k1 ways to pick x2. If `m = `2− `1 then y2 is determined by the number

of dots between y1 and y2, whereas if `m = 2n− `2 the value of y2 is determined by

choosing how many of the outside points should be to the left of y2.

3. Here we can bound P[A(x,k,y, l)] by

O
(
n3(2n− k1)−3/2(k1 − k2)−3/2k−3/22 (2n− `1)−3/2`−3/22 (`1 − `2)−3/2

)
,

so we define `m = min{`1 − `2, `2}.

Again, the only thing that remains is to bound the number of ways to pick y2 given

(x1, y1, x2) in the case `m ≤ km. If `m = `1 − `2 then y2 is determined by picking

the distance between y1 and y2, whereas if `m = `2 the value of y2 is determined by
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picking the relative order of x2 and y2 and choosing the number of points that the

two arcs (x2, x2 + k2) and (y2, y2 + `2) have in common.

Next we handle the case where at least one of the arcs has size linear in n.

Proof of Lemma 5.6.6. We assume k1 = max{k1, k2, `1, `2} without loss of generality. Let

k0 = 2n − k1 − k2 and `0 = 2n − `1 − `2 and set mi = min{ki, `i} for i = 0, 1, 2. First

assume that `1 6= max{`0, `1, `2}.

We claim that given k1, k2, `1, `2, the number of quadruples is at mostO(m2
0m1m2) =

O(m2
0`1m2). Since there are only finitely many options for the orderings of the endpoints

of the arcs, it suffices to show the bounds for each specific ordering. But, given the or-

dering of the arcs, we claim that there are at most m0mi ways to pick (xi, yi). Indeed,

consider the case that k0 = min{k0, `0}. Then we can pick xi in at most k0 ways, as it is

determined by the number of points to the left of xi (if the arc (xi, xi + ki) is the leftmost

arc) or to the number of points to the right of xi + ki (if the arc is the rightmost arc), so

xi can be picked in at most k0 = m0 ways. After that, yi is determined by the number of

points that the arcs (xi, xi + ki) and (yi, yi + `i) have in common and this is at most mi.

The case `0 = min{k0, `0} is similar.

Now given a quadruple, by Lemma 5.4.2 the probability that that all the desired

arcs match is O(n3/2k
−3/2
0 `

−3/2
0 `

−3/2
1 k

−3/2
2 `

−3/2
2 ) where we used that k1 ≥ cn. Therefore,

the desired contribution is at most

O(n3/2) ·
∑

m2
0`
−3/2
0 k

−3/2
0 · `−1/21 ·m2k

−3/2
2 `

−3/2
2 . (5.30)
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Since `0 + `1 + `2 = 2n we have max{`0, `1, `2} ≥ 2n/3. Since we assumed that `1 is not

the maximum we have two cases.

• `0 is the maximum. In this case n3/2`
−3/2
0 = O(1). As `0 + `1 + `2 = 2n, `0

is determined by `1 and `2 and similary k1 is determined by k0 and k2, so the

contribution to (5.30) is

O(1) ·
∑

k0,k2,`1,`2

m2
0k
−3/2
0 `

−1/2
1 m2k

−3/2
2 `

−3/2
2 ,

where the sum is over some appropriate range. To find an upper bound we can split

this sum as

O(1) ·

(∑
k0

m2
0k
−3/2
0

)
·

(∑
`1

`
−1/2
1

)
·

(∑
k2,`2

m2k
−3/2
2 `

−3/2
2

)
,

which after merging back involves more terms than before, but that is fine as we

are only interested in an upper bound. We will now estimate each individual sum.

For the first one, if k0 ≤ `0 this contributes
∑

k0
k
1/2
0 = O(n3/2), whereas if k0 ≥ `0

this sum is at most O(n2)
∑
k
−3/2
0 = O(n2) ·O(n−1/2) = O(n3/2) where we used that

k0 ≥ 2n/3 in this case. For the second sum we get a bound of O(n1/2). For the last

sum we may assume k2 ≤ `2 by symmetry and see that this sum is

O

(∑
`2

`
−3/2
2

∑
k2≤`2

k
−1/2
2

)
= O

(∑
`2

`−12

)
= O(log n),

so altogether we get O(n2 log n) in this case.

• Now assume that `2 = max{`0, `1, `2}. Using the estimate O(n3/2) · `−3/22 = O(1)
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the contribution to (5.30) is at most

O

((∑
k0,`0

m2
0k
−3/2
0 `

−3/2
0

)
·

(∑
`1

`
−1/2
1

)
·

(∑
k2

m2k
−3/2
2

))
.

Similar arguments to above give that the first sum is O(n), the second one is O(n1/2)

and the last one is O(n1/2) where here one has to distinguish cases based on whether

k2 ≥ `2 or k2 ≤ `2 just as for the first sum in the case above, so the total contribution

will be O(n2) = o(n2 log2 n), as desired.

It remains to handle the case `1 = max{`0, `1, `2}. In this setting, we claim that (after

being given an ordering of the endpoints of the arcs) we can choose x1, x2, y1 and y2 in

k0 · `0 ·m0 ·m2 ways. Indeed, we can still pick x2, y2 in m0 ·m2 ways, whereas we have at

most k0 ways to pick x1 and `0 ways to pick y1. In this case, we get a contribution of at

most

O(n3/2) ·
∑

m0`
−1/2
0 k

−1/2
0 · `−3/21 ·m2k

−3/2
2 `

−3/2
2 .

Using O(n3/2) · `−3/21 = O(1) we have to evaluate(∑
k0,`0

m0`
−1/2
0 k

−1/2
0

)
·

(∑
k2,`2

m2k
−3/2
2 `

−3/2
2

)
,

where the second sum is O(log n) as before and by a similar argument we find that the

first sum is O(n2), showing that this contribution is O(n2 log n) = o(n2 log2 n).

Lastly, we handle all quadruples that are valid but not good.

Proof of Lemma 5.6.7. By Lemma 5.4.2 we know

P[A(x,k,y, l)] = O(k
−3/2
1 k

−3/2
2 `

−3/2
1 `

−3/2
2 ).
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Also, we know by Proposition 5.4.6 that
∑

ki,`i
g(ki, `i)k

−3/2
i `

−3/2
i = O(n log n) and by

Proposition 5.4.4 that
∑

ki,`i
nk
−3/2
i `

−3/2
i = o(n log n).

Our goal is to show given (k1, k2, `1, `2) there are at most O(g(k1, `1)n+ng(k2, `2)+

n2) quadruples q ∈ Q4, since then the desired contribution is at most

O

( ∑
k1,`1,k2,`2

(g(k1, `1)n+ ng(k2, `2) + n2)k
−3/2
1 `

−3/2
1 k

−3/2
2 `

−3/2
2

)
,

which is the sum of

O

((∑
k1,`1

g(k1, `1)k
−3/2
1 `

−3/2
1

)
·

(∑
k2,`2

nk
−3/2
2 `

−3/2
2

))
= O(n log n) · o(n log n)

O

((∑
k1,`1

nk
−3/2
1 `

−3/2
1

)
·

(∑
k2,`2

g(k2, `2)k
−3/2
2 `

−3/2
2

))
= o(n log n) ·O(n log n)

O

((∑
k1,`1

nk
−3/2
1 `

−3/2
1

)
·

(∑
k2,`2

nk
−3/2
2 `

−3/2
2

))
= o(n log n) · o(n log n)

so the total contribution is o(n2 log2 n) as well.

Now, given (k1, k2, `1, `2) there are only a few ways in which we can have a valid

but not good quadruple.

• (x1, k1, y1, `1) is good, but (x2, k2, y2, `2) is not good. In this case we can pick (x1, y1)

in at most g(k1, `1) ways and (x2, y2) in O(n) ways, so we are done.

• (x2, k2, y2, `2) is good, but (x1, k1, y1, `1) is not good. Similarly to the previous case

this will give a bound of O(ng(k2, `2)).

• Neither of the (xi, ki, yi, `i) are good. In this case we get a bound of O(n2) as there

are O(n) ways to pick any individual (xi, ki, yi, `i).
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• Both of the (xi, ki, yi, `i) are good, but the endpoint of one arc of the first four-tuple

is adjacent to the endpoint of an arc of the second four-tuple. Note that there are

only finitely many possible orderings of the endpoints of the arcs. Given an ordering,

there are now at most g(k1, `1) ways to pick (x1, y1), which determines either x2 or

y2 since one of {x2, x2 + k2, y2, y2 + `2} is adjacent to a now known point, and after

that there are at most 2n ways to pick the other of x2, y2, so there are O(g(k1, `1) ·n)

possible quadruples in this case.

5.7 Induced subgraphs and connected components

In this section we prove results on the number of induced subgraphs of CPn iso-

morphic to a given Catalan-pair graph H on at least 3 vertices, and we will use this to

prove Theorem 5.1.4. At the end of the section we will also discuss a result about the

connected components of CPn.

5.7.1 A lower bound for the number of induced subgraphs

Recall that N∗H(G) denotes the number of induced subgraphs of G isomorphic to

H, and that A(x,k,y, l) denotes the intersection of the following events.

1. The points xi and xi + ki are colored red and the points yj and yj + `j are colored

blue for all i, j.

2. For all i and j the number of red points x with xi < x < xi + ki and the number of

131



blue points y with yj < y < yj + `j is even.

3. For all i and j we have that (xi, xi + ki) and (yj, yj + `j) match in CPn.

The following lemma will be a key step to proving the general lower bound. Note

that this lemma can be seen as a converse to Lemma 5.4.2.

Lemma 5.7.1. There exists a positive real number αs,t with

P[A(x,k,y, l)] ≥ αs,t

s∏
i=1

k
−3/2
i

t∏
j=1

`
−3/2
j (5.31)

for all good quadruples (x,k,y, l) where x and y have length s and t respectively.

Proof. We first show that with probability 2−3(s+t) the first two conditions are satisfied.

It is clear that with probability 1/2 all of the points xi, xi + ki, yj, yj + `j receive the

correct color, so with probability 2−2(s+t) all of these points have the correct color. Now

conditioned on all of these points having the correct color, we show that with probability

2−(s+t) the second condition is satisfied. Consider all the points of the form xi + 1 and

yj + 1, and note that by assumption of (x,k,y, l) being a good quadruple all of these

points are different and not equal to any of the xi, xi + ki, yj and yj + `j. Consider the

rightmost of these points, and suppose that it is equal to xi+1 for some i. Since all of the

points to the right have been colored, we have that in particular all of the points x with

xi < x < xi + ki except for this one have been colored. Therefore there is a unique choice

for the color of xi + 1 that makes the number of red points x with xi < x < xi + ki even.

Inductively apply this argument for the remaining points, always taking the rightmost

uncolored point.
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Now suppose the first two conditions are satisfied. We apply Lemma 5.3.2 to

determine a lower bound for the probability that the third condition is met. To this end,

for each 1 ≤ i ≤ s, let 2ri be the number of red points x with xi < x < xi + ki that do

not satisfy xj ≤ x ≤ xj + kj for any j 6= i. Let 2r0 be the number of red points that

have not been counted for any of the ri and that are not of the form xi or xi + ki. Define

b0, b1, . . . , bt similarly. Let Rn and Bn denote the total number of red and blue points

respectively. Note that for any 1 ≤ i ≤ s we have 2ri ≤ ki, hence in particular ri ≤ ki.

Applying the aforementioned lemma we find that

P[A(x,k,y, l)] ≥ 2−3(s+t) · αs
∏′ R

3/2
n

r
3/2
i

· αt
∏′ B

3/2
n

b
3/2
j

≥ αs,t

s∏
i=0

R
3/2
n

max(ri, 1)3/2
·

t∏
j=0

B
3/2
n

max(bj, 1)3/2

≥ αs,t

s∏
i=1

k
−3/2
i

t∏
j=1

`
−3/2
j ,

where we used that Rn ≥ max(r0, 1), Bn ≥ max(b0, 1), max(ri, 1) ≤ ki and max(bj, 1) ≤

`j.

We are now ready to prove the lower bound of Theorem 5.1.4. In fact, we will give

a lower bound for any Catlan-pair graph regardless of whether it is connected or not.

Proposition 5.7.2. Let H be a Catalan-pair graph on v vertices with i isolated vertices

and m isolated edges. Then

E[N∗H(CPn)] = Ω(n
v+i
2 (log n)m). (5.32)
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Proof. We will prove this by first showing that the result holds for m = i = 0, then for

i = 0, and finally for arbitrary m and i. We note that one can prove the most general case

without first going through the other two cases, but this would decrease the readability

of the proof.

First assume m = i = 0, and let qH be any quadruple representing H. Our goal

will be to find a large number of “blowups” of qH . Let c ≥ 4v be a fixed constant, and let

Pj := {1 + (j − 1)bn/cc, 2 + (j − 1)bn/cc, . . . ,−1 + jbn/cc},

P := P1 × · · · × P2v.

Given p = (p1, . . . , p2v) ∈ P , we will define a quadruple qc(p) as follows. If in qH we have

xj = a and xj + kj = b, then in qc(p) we let xj = pa and xj + kj = pb, and we similarly

define yj and yj + `j to correspond to the bottom jth arc of qH . We note that the reason

we force all the points of the left of 2vbn/cc ≤ n/2 is to make sure that in the general case

we have enough space left to place or find arcs yielding the isolated edges and vertices.

We claim that qc(p) is a good quadruple that represents H for any p ∈ P . First

observe that the points of qc(p) have the same relative order as the points of qH , which

shows that qc(p) satisfies the third condition for being a good quadruple (since qH satisfies

this condition), and moreover that qc(p) represents H. The first condition for being a good

quadruple follows since the largest point we could choose for qc(p) is −1 + 2vbn/cc ≤ n/2

since c ≥ 4v, and the second condition follows since |maxPj −minPk| ≥ 2 for all j, k by

the way we defined these sets. This proves our claim.
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Now let QH(c) denote the set of all qc(p) with p ∈ P . Observe that for large n we

have

|QH(c)| = (bn/cc − 1)2v ≥ (2c)−2vn2v.

Also observe since kj, `j ≤ 2n for all j, Lemma 5.7.1 gives that P[A(x,k,y, l)] ≥ αvn
−3v/2

for all (x,k,y, l) ∈ QH(c), where αv := 2−3v/2 maxs+t=v αs,t. In particular, we have that

E[N∗(H)] ≥
∑

(x,k,y,l)∈QH(4v)

P[A(x,k,y, l)] ≥ (8v)−2vn2v · αvn−3v/2 = Ω(nv/2).

Now assume that i = 0 and let c = 4m+ 4v. We will say that two vectors k, l each

of length m are nice if we have 4 ≤ kj ≤ `j ≤ bn/cc for all j. Let Qc(k, l) denote the set

of all quadruples (x,k,y, l) such that

1 + (2j − 2 + 2v)bn/cc ≤ xj ≤ −1 + (2j − 1 + 2v)bn/cc,

xj + 2 ≤ yj ≤ xj + kj − 2,

We claim that each quadruple of Qc(k, l) is good whenever k, l is nice. The first condition

follows since the largest point we pick is ym + `m ≤ −1 + (2m + 2v)bn/cc ≤ n
2

since

c = 4m+ 4v. Similarly one can verify that

xj ≤ yj − 2 ≤ xj + kj − 4 ≤ yj + `j − 6 ≤ xj+1 − 8,

where the first two inequalities follow from xj + 2 ≤ yj ≤ xj + kj − 2, the third inequality

from `j ≥ kj and yj ≥ xj +2, and the last inequality from yj +`j ≤ −1+(2j+2v)bn/cc ≤

xj+1 − 2. This shows that the second and third conditions of being a good quadruple are
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satisfied, proving the claim. We also note that, for n sufficiently large,

|Qc(k, l)| = (bn/cc − 1)m
m∏
j=1

(kj − 3) ≥ (8c)−mnm
m∏
j=1

kj,

where we have used that kj − 3 ≥ 1
4
kj for all j.

Now let H ′ denote H after deleting its m isolated edges. For k, l nice, let Q(k, l)

be the set of all quadruples q which are obtained by taking the union of the arcs of some

q1 ∈ QH′(c) and some q2 ∈ Qc(k, l). We claim that every such q is good. Indeed, the

first condition holds since it holds for both q1 and q2. The second condition holds since

it holds restricted to any two points of q1 or q2, and because the largest point of q1 is at

most −1+2vbn/cc while the smallest point of q2 is at least 1+2vbn/cc. This also implies

that the third condition is satisfied since it is satisfied for both q1 and q2, so the claim is

proven.

Observe that each quadruple (x,k,y, l) ∈ Q(k, l) represents H and that

P[A(x,k,y, l)] ≥ αvn
−3(v−2m)/2

m∏
j=1

k
−3/2
j `

−3/2
j

by Lemma 5.7.1. Also observe that our previous work shows that

|Q(k, l)| = |QH′(c)| · |Qc(k, l)| ≥ βcn
2v−3e

m∏
j=1

kj

for some absolute constant βc. We conclude that

E[N∗(H)] ≥
∑

k,l nice

∑
(x,k,y,l)∈Q(k,l)

P[A(x,k,y, l)] ≥
∑

k,l nice

αvβcn
v/2

m∏
j=1

k
−1/2
j `

−3/2
j

= αvβcn
v/2

 ∑
4≤k≤`≤bn/cc

k−1/2`−3/2

m

= Ω(nv/2(log n)m),

136



where we use the fact that the above sum is of order Ω(log n).

Now let H be an arbitrary Catalan-pair graph. Let H ′′ be H with its isolated

vertices removed, and let N ′∗(H) be the number of induced copies of H ′′ in CPn which

have all of its points in the interval [1, n/2]. Note that implicitly our above argument

shows that E[N ′∗(H)] = Ω(n(v−i)/2(log n)m).

We claim that, deterministically, N∗(H) ≥ N ′∗(H) ·
(
n/4
i

)
. Indeed, observe that

there are at most n/2 arcs which have an endpoint in the interval [1, n/2], and hence

there exists at least n/2 arcs with both endpoints not in this interval. Let AR denote the

set of these arcs that are colored red, and similarly define AB. One of these sets must

have size at least n/4, so let C be such that |AC | ≥ n/4.

We claim that any induced copy of H ′′ contained in [1, n/2] together with i arcs of

AC is an induced copy of H. Indeed, by definition no arc in AC can interlace with any arc

of the H ′′, and none of the AC arcs interlace with one another since they are all colored

the same way. Thus the graph that these arcs induce will be H ′′ together with i isolated

vertices, which is precisely H. We conclude that

N∗(H) ≥
(
|AC |
i

)
·N ′∗(H ′′) ≥

(
n/4

i

)
N ′∗(H

′′).

The result now follows by taking expectations of the above inequality and using that

E[N ′∗(H)] = Ω(n(v−i)/2(log n)m).
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5.7.2 An upper bound for the number of induced subgraphs

A key step in finding the expected number of edges was to bound the number of

good quadruples (x, k, y, `) for given k and `. Therefore, for general H we would like to

bound the number of valid quadruples (x,y,k, l) for given k and l. One of the reasons

this is more complicated in the general setting is that H might have several different

representatives. However, since there are only finitely many representatives, it suffices to

prove the desired bounds for each of them separately.

In order to do this we introduce some new notation. Let H be a Catalan-pair

graph on v vertices and let q = (x̄, k̄, ȳ, l̄) be a quadruple with x̄ and ȳ increasing such

that the following conditions are satisfied.

• The lengths of x̄ and ȳ add to v.

• We have {x̄i} ∪ {x̄i + k̄i} ∪ {ȳj} ∪ {ȳj + ¯̀
j} = {1, 2, . . . , 2v}.

• The quadruple q is valid and the resulting Catalan-pair graph is isomorphic to H.

We say that a valid quadruple (x,k,y, l) represents H by q if the relative order of the xi,

xi + ki, yj and yj + `j coincides with the relative order of x̄i, x̄i + k̄i, ȳj and ȳj + ¯̀
j. Note

that the fi and gj as defined in the beginning of Section 5.4 depend solely on k, l, and q,

and are independent of the exact values of x and y.

We wish to prove a lemma that upper bounds the number of valid quadruples for

given k, l, and representing quadruple q. From now on we assume that H is a connected

Catalan-pair graph on v ≥ 3 vertices that has s and t vertices in its bipartite components
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respectively. Additionally, let q be a quadruple as above where x̄ and ȳ have length s and

t respectively.

When k and l are known we denote by (xi) the arc (xi, xi + ki). For a valid

quadruple (x,k,y, l) we say that (xi) is a maximal arc if there is no j with xj < xi <

xi+ki < xj+kj. We say that arc (xi) covers arc (xj) if we have xi < xj < xj+kj < xi+ki

and there is no i′ with xi < xi′ < xj < xj + kj < xi′ + ki′ < xi + ki. Note that each

arc is either maximal, or has a unique arc that covers it. However, a single arc can cover

multiple arcs.

Lemma 5.7.3. Let k and l be s and t-tuples of positive integers for which there exists a

valid quadruple (x,k,y, l) representing H by q. The number of such quadruples is at most

(min{f0, g0}+ 2v + 1) ·
∏
i≥1
i 6=i0

(fi + 2v + 1) ·
∏
j≥1

(gj + 2v + 1) (5.33)

for any i0 6= 0, and it also at most

(f0 + 2v + 1)(g0 + 2v + 1) ·
∏
i≥1
i 6=i0

(fi + 2v + 1) ·
∏
j≥1
j 6=j0

(gj + 2v + 1) (5.34)

for any i0, j0 6= 0.

Proof. In order to prove the first bound we first consider the case that f0 = min{f0, g0}.

Let i0, i1, . . . , id be such that (xid) is maximal and such that (xip) covers (xip−1) for all

1 ≤ p ≤ d. We claim that there are at most

(f0 + 2v + 1) ·
d∏
p=1

(fip + 2v + 1)
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ways to choose xid , xid−1
, . . ., xi1 , xi0 . Indeed, since we specified q, k, and l (and hence

the fi and gj), we know how many points m < xid are of the form m = yj, m = yj + `j, or

which satisfy xi′ ≤ m ≤ xi′ + ki′ for some i′. By definition of f0, we know that there are

at most f0 ≤ f0 + 2v points outside of arc xid that are not of this form. We can choose

amongst these at most f0 + 2v points how many lie to the left of xid , and such a choice

uniquely determines xid (since we now know the total number of points which lie to the

left of xid). We conclude that we can place xid in at most f0 + 2v + 1 ways. A similar

argument shows that there are at most fij + 2v+ 1 ways to place each xij−1 given that xij

has already been placed, where now fij plays the role of f0 by restricting our attention to

points of the form xij < m < xij + kij . This completes the proof of the claim.

Now suppose that we have inductively placed some (proper) subset of the arcs.

Let Z denote the set of arcs z which have not been placed and whose endpoints alternate

with some arc that has already been placed. Since H is connected, Z 6= ∅. Since Z is

finite, let z ∈ Z be such that z covers no other z′ ∈ Z. Without loss of generality, assume

that z is of the form (yj). Then, we are in one of the following situations.

1. The arc (yj) is minimal.

2. The arc (yj) is not minimal and all the arcs covered by (yj) have been placed already.

3. The arc (yj) is not minimal, at least one arc covered by (yj) has not been placed

and any such arc does not alternate endpoints with any of the arcs placed so far.

We claim that in all cases there are at most gj + 2v + 1 ways to choose yj.
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1. Note that in this case there are at most gj + 2v points between yj and yj + `j.

Indeed, there are gj points that are not of the form xi or xi + ki and there are at

most 2v points that are of this form. By assumption, the endpoints of (yj) alternate

with the endpoints of some (xi). Consider the case where yj < xi < yj + `j. Then

the number of points between yj and xi is at most gj + 2v, else there would be too

many points between yj and yj + `j. Note that this number of intermediate points

uniquely determines yj since xi is known. Therefore we have at most gj + 2v + 1

ways to choose yj.

2. In this case we can follow a similar argument as used when choosing xid . Note

that since the yj are increasing, yj+1 is the leftmost arc that is covered by (yj). By

definition of gj, there are at most gj + 2v points between yj and yj+1 and the value

of yj is known, so we again have at most gj + 2v + 1 ways to choose yj.

3. In this case, suppose that (yj) intersects (xi) and that we have yj < xi < yj + `j.

We again count the possible number of points between yj and xi. As before, there

are between 0 and gj + 2v such points that do not lie below an arc covered by (yj).

We claim that we know how many of the other points lie between yj and xi, which

again yields that there are at most gj + 2v + 1 options for yj.

Indeed, consider an arc (yj′) that is covered by (yj). If (yj′) has not been placed,

then it does not alternate endpoints with (xi) by assumption. Thus this arc either

lies completely between yj and xi or completely between xi and yj + `j, and since
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we specified the quadruple q representing H, we know which of these two cases

happens. Thus we know exactly how many such points lie between yj and xi. Now

if (yj′) has been placed, we know all of yj′ , yj′ + `j′ and xi, so clearly we also know

how many of the points between yj′ and yj′ + `j′ lie to the left of xi.

Inductively, we can place the arcs one by one (in the order described above) and note

that in this process we get the product of all of the numbers of the form fi + 2v + 1 and

gj + 2v + 1 except for the numbers fi0 + 2v + 1 and g0 + 2m + 1, establishing the first

bound when f0 = min{f0, g0}.

Now assume that g0 = min{f0, g0}. Since H is connected, there exists some j0 6= 0

such that (yj0) and (xi0) interlace, and moreover we can choose j0 such that it does

not cover any (yj′) that also interlaces with (xi0). Let j0, j1, . . . , je be such that (yje) is

maximal and such that (yjp) covers (xjp−1) for all 1 ≤ p ≤ e. By the same reasoning as

above, there are at most (g0 + 2v + 1) ·
∏e

p=1(gip + 2v + 1) ways to choose yje , yje−1 , . . .,

yj1 , yj0 . We now place the remaining arcs Z as we did before. We use almost all of the

same bounds as before, except we now use the bound gj0 + 2v + 1 instead of fi0 + 2v + 1

when we place (xi0). We are justified in using this bound since, by assumption of (yj0)

not covering any arc that interlaces with (xi0), one of the endpoints of (xi0) must be one

of the points counted by gj0 . Ultimately this gives us the product of all of the numbers of

the form fi + 2v + 1 and gj + 2v + 1 except for the numbers fi0 + 2v + 1 and f0 + 2m+ 1

as desired.

To prove the final bound, let i0, i1, . . . , id be such that (xid) is maximal and such
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that (xip) covers (xip−1) for all 1 ≤ p ≤ d, and similarly define j0, j1, . . . , je. By reasoning

similar to that above, the number of ways we can place all of these arcs down in at most

(f0 + 2v + 1)(g0 + 2v + 1) ·
d∏
p=1

(fip + 2v + 1) ·
e∏

p=1

(gip + 2v + 1).

We then place the remaining arcs and use the same bounds as we did before, and this

ultimately gives us a product of all of the terms except for fi0 +2v+1 and gj0 +2v+1.

Proposition 5.7.4. Let k and l be s and t-tuples of positive integers for which there exists

a valid quadruple (x,k,y, l) representing H by q. Then the number of such quadruples is

at most

(h1 + 2v + 1) · (h2 + 2v + 1) · (h4 + 2v + 1) ·
v+2∏
i=6

(hi + 2v + 1), (5.35)

where h1 ≤ h2 ≤ . . . ≤ hv+1 ≤ hv+2 are f0, f1, . . . , fs and g0, g1, . . . , gt written in increasing

order.

Proof. Without loss of generality we may assume that fi0 = maxi,j 6=0{fi, gj}. Observe

that fi0 ≥ h3 since we assume v ≥ 3, and further that fi0 ≥ h5 if max{f0, g0} ≤ h4. First

assume that {f0, g0} 6= {h1, h2}. In this case we apply the first bound of Lemma 5.7.3

with our choice of i0. This bound consists of the product of all the values hi + 2v + 1

except for the terms fi0 + 2v + 1 and max{f0, g0} + 2v + 1, and in this case we say that

our bound “omits” the values fi0 + 2v + 1 and max{f0, g0}+ 2v + 1. If max{f0, g0} ≥ h5

then these two terms are at least h3 + 2v + 1 and h5 + 2v + 1. If max{f0, g0} ≤ h4, then

we again omit at least h3 + 2v + 1 and h5 + 2v + 1 since {f0, g0} 6= {h1, h2} implies that

max{f0, g0} ≥ h3. Thus in this case we achieve our desired result.
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Now assume that {f0, g0} = {h1, h2}. In this case we apply the second bound of

Lemma 5.7.3 to i0 and j0 = 1. Now we omit only fi0 +2v+1 (which is at least h5+2v+1)

and g1 + 2v + 1 (which is at least h3 + 2v + 1). We conclude the result.

With this proposition we can prove an upper bound on the expected number of

induced subgraphs.

Proposition 5.7.5. Let H be a connected Catalan-pair graph on v ≥ 3 vertices. Then

E[N∗H(CPn)] = O(nv/2). (5.36)

Proof. First notice that there are only finitely many valid quadruples q = (x̄, k̄, ȳ, l̄) for

which {x̄i} ∪ {x̄i + k̄i} ∪ {ȳj} ∪ {ȳj + ¯̀
j} = {1, 2, . . . , 2v} and such that the resulting

Catalan-pair graph is isomorphic to H. Therefore, it suffices to show for each such q that

the expected number of induced Catalan-pair graphs of CPn that is represented by q is

O(nv/2).

Consider 1 ≤ h1 ≤ h2 ≤ . . . ≤ hv+1 ≤ hv+2 ≤ 2n. We claim that the number of

pairs (k, l) such that there exist a valid quadruple (x,k,y, l) representing H by q and for

which {hi} = {fi}∪ {gj} is at most (v+ 2)!. Indeed, note that since q defines the relative

order of all the points, knowing the values of fi and gj uniquely determines k and l. Since

there are (v + 2)! ways to distribute the hi over the fi and gj, there are at most (v + 2)!

possible pairs (k, l).

Therefore, using Lemma 5.4.2 and Proposition 5.7.4 we find that the expected
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number of induced subgraphs isomorphic to H and represented by q is at most

(v + 2)! ·
∑
h

(
(h1 + 2v + 1) · (h2 + 2v + 1) · (h4 + 2v + 1)

·
v+2∏
i=6

(hi + 2v + 1) · βs,tn3 ·
∏̃
i

h
−3/2
i

)

where the sum is over all possible sequences h = (h1, h2, . . . , hv+1, hv+2) and
∏̃

indicates

the product over all i with hi ≥ 16v log n. Note that implicitly this sum is over all possible

(k, l), and we will break up this sum into the cases where {max fi,max gj} = {ha, hv+2}

for all possible a. We will show the desired upper bound of O(nv/2) in each of these cases.

Note that
∑
fi = 2n− 2v, so max fi is at least linear and is uniquely determined by the

other fi. We first consider v ≥ 5.

First, assume that a ≥ 6. In this case, we can take out the factors (ha + 2v + 1) ·

(hv+2 + 2v + 1) · h−3/2a · h−3/2v+2 and note that this is O(n−1), by virtue of ha, hv+2 being

linear in n. Therefore, the remaining part can (up to some large constant) be estimated

by

n2 ·
2n∑

hv+1=1

· · ·
ha+2∑
ha+1=1

ha+1∑
ha−1=1

· · ·
h2∑
h1=1

(h1 + 2v + 1) · (h2 + 2v + 1) (5.37)

· (h4 + 2v + 1) ·
v+1∏
i=6
i 6=a

(hi + 2v + 1) ·
∏̃
i

h
−3/2
i ,

where the last product no longer involves ha nor hv+2. Note that this expression is actually

independent of a, so for simplicity we assume that a = v + 1. Let b be the number of hi

for which hi ≤ 16v log n. First consider the case where b = 0. In this case, (5.37) is of the

145



order

n2 ·
2n∑
hv=1

h−1/2v

hv∑
hv−1=1

h
−1/2
v−1 · · ·

h7∑
h6=1

h
−3/2
6

h6∑
h5=1

h
−3/2
5

h5∑
h4=1

h
−1/2
4

h4∑
h3=1

h
−3/2
3

h3∑
h2=1

h
−1/2
2

h2∑
h1=1

h
−1/2
1 .

Once again estimating these sums by integrals we find that

h6∑
h5=1

h
−3/2
5

h5∑
h4=1

h
−1/2
4

h4∑
h3=1

h
−3/2
3

h3∑
h2=1

h
−1/2
2

h2∑
h1=1

h
−1/2
1

= O

(
h6∑
h5=1

h
−3/2
5

h5∑
h4=1

h
−1/2
4

h4∑
h3=1

h
−3/2
3

h3∑
h2=1

1

)

= O

(
h6∑
h5=1

h
−3/2
5

h5∑
h4=1

h
−1/2
4

h4∑
h3=1

h
−1/2
3

)

= O

(
h6∑
h5=1

h
−3/2
5

h5∑
h4=1

1

)

= O

(
h6∑
h5=1

h
−1/2
5

)
= O(h

1/2
6 ) = O(n1/2).

Furthermore, each of the remaining sums is at most
∑2n

x=1 x
−1/2 = O(n1/2), so the total

sum is O(n2 · (n1/2)v−5 · n1/2) = O(nv/2).

All of the cases b = 0 and 2 ≤ a ≤ 5 have essentially the same proof as one another,

so we will only explicitly go through one of these cases, namely a = 3. In this case we

take out the factors (hv+2 + 2v + 1)h
−3/2
3 h

−3/2
v+2 = O(n−2) from (5.37), and we use the fact

that hi ≥ h3 is linear for all i ≥ 3 to conclude (5.37) is of the order of magnitude at most

n·
2n∑

hv+1=1

n−1/2 · · ·
2n∑
h6=1

n−1/2
2n∑
h5=1

n−3/2
2n∑
h4=1

n−1/2
2n∑
h2=1

h
−1/2
2

h2∑
h1=1

h
−1/2
1

= O

(
nv/2−1

2n∑
h2=1

h
−1/2
2

h2∑
h1=1

h
−1/2
1

)
= O(nv/2).
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Now consider the case that a > b ≥ 5, and again we can assume for simplicity that

a = v + 1. Then (5.37) is at most of the order of

n2 ·
2n∑
hv=1

h−1/2v

hv∑
hv−1=1

h
−1/2
v−1 · · ·

hb+2∑
hb+1=1

h
−1/2
b+1 ·

16v logn∑
hb=1

(hb + 2v + 1) · · ·

· · ·
16v logn∑
h6=1

(h6 + 2v + 1)

16v logn∑
h5=1

16v logn∑
h4=1

(h4 + 2v + 1)

16v logn∑
h3=1

16m logn∑
h2=1

(h2 + 2v + 1)

16v logn∑
h1=1

(h1 + 2v + 1).

Note that each of the rightmost b sums will contribute at most O((log n)2) each, and the

remaining sums will contribute O(n(v−b)/2) by an argument similar to the one above. Thus

the total contribution will be of the order O(n2 · n(v−b)/2 · (log n)2b) = o(nv/2).

Similar arguments give a bound of o(nv/2) when b ∈ {1, 2, 3, 4} and for any a > b.

Note that since ha is linear in n, we always have b < a for n large enough, so these

finitely many cases are all that need to be checked for v = 5. The proofs for v = 3, 4 are

essentially the same, and we note that we did not deal with these cases earlier because

we could not write, for example, h6. We omit the details.

We note that the above proof shows the somewhat stronger result that the only

quadruples that contribute to the order of magnitude of nv/2 are those which have all of

their gap sizes at least 16v log n. With this we can now prove Theorem 5.1.4.

Proof of Theorem 5.1.4. The result for induced subgraphs follows from Proposition 5.7.2

and 5.7.5. For any H we claim that

N∗H(CPn) ≤ NH(CPn) ≤ v! ·
∑
H′

N∗H′(CPn),
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where the sum is over all Catalan-pair graphs H ′ on v vertices that contain H as a

subgraph. The lower bound is obvious. For the upper bound, note that for any given

subgraph of CPn isomorphic to H, the induced subgraph on these vertices is isomorphic

to some H ′ appearing in this sum, and for given H ′ there are at most v! subgraphs of H ′

isomorphic to H. Taking the expectation of both sides of this inequality and using the

result for induced subgraphs gives the desired conclusion.

5.7.3 The sizes of the connected components

Computational evidence suggest that a typical random Catalan-pair graph on n

vertices will have one large component with roughly n/2 vertices and many smaller com-

ponents. As we proved in Section 5.5, many of these components will be isolated vertices,

but a significant amount will have larger size. In fact, we show that for any fixed Catalan-

pair graph the number of connected components of CPn isomorphic to this graph is linear

in n.

Proposition 5.7.6. Let H be a connected Catalan-pair graph on v vertices and let n ≥

v + 2. There exists a constant C, independent of H, such that the expected number of

connected components of CPn isomorphic to H is at least C · (n− v + 1/2) · 16−v.

Proof. Let a and A be as in (5.6) and take C =
(
a
A

)2
. Assume that H has bipartite

components of sizes s and t. We show that for any 1 ≤ x ≤ 2n−2v+1, we have probability

at least 1/2 · (a/A)2 · 16−v that there are v arcs connecting {x, x+ 1, . . . , x+ 2v− 1} and
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that the resulting Catalan-pair graph on these 2v points is isomorphic to H, which in

particular yields a connected component of CPn isomorphic to H.

Consider a fixed representative for H. With probability (1/2)2v the points x, x +

1, . . . , x + 2v − 1 are colored in the exact same order as the points in the representative.

Furthermore, since there are at least four other points, with probability at least 1/2 the

other points do not all have the same color. Therefore, we have r > s and b > t red

and blue points in total. Given r and s, the probability that we the arcs on the points

x, x+ 1, . . . , x+ 2v − 1 exactly match those in the representative for H is given by

1

2
· Cr−s
Cr
· Cb−t
Cb
≥ 1

2
· a · r3/2

4s · A · (r − s)3/2
· a · b3/2

4t · A · (b− t)3/2
≥ 1

2
·
( a
A

)2
· 1

4s+t
.

Since s+ t = v this implies that with probability at least 4−v · 1
2
· (a/A)2 · 4−v we get such

a connected component isomorphic to H starting at point x. By linearity of expectation,

the expected number of connected components isomorphic to H is at least

(2n− 2v + 1) · 4−v · 1

2
·
( a
A

)2
· 4−v = (n− v + 1/2) ·

( a
A

)2
· 16−v.

In particular, we expect a typical Catalan-pair graph on n vertices to have con-

nected components of size at least logarithmic in n.

This chapter contains material from: D. Kroes and S. Spiro, “Random Graphs

Induced by Catalan Pairs”, Journal of Combinatorics, Accepted (2020). The dissertation

author was one of the primary investigators and authors of this paper.
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