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ABSTRACT OF THE DISSERTATION

Robust Symbol Level Precoding Designs in Multiuser MIMO Systems

By

Lu Liu

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2024

Professor A. Lee Swindlehurst, Chair

Multiple-user (MU) multiple-input multiple-output (MIMO) technology, which involves us-

ing multiple antennas to simultaneously serve multiple users or devices, is a cornerstone of

both 5G and 6G. The use of MIMO in ultra-dense networks with smaller cell sizes and more

antennas will result in a proportional increase in both inter- and intra-cell interference. To

manage the interference, precoding or beamforming is needed to steer the transmit signals

towards intended users and mitigate interference.

Symbol level precoding (SLP) techniques exploit information about the symbols to be trans-

mitted in addition to the channel state information (CSI), which can significantly improve

performance at the expense of increased complexity at the transmitter. The additional de-

grees of freedom (DoF) provided by the symbol-level information make it possible to exploit

the constructive component of the interference, converting it into constructive interference

(CI) that can move the received signals further from the decision thresholds of the constel-

lation points. CI-based SLP recasts the traditional viewpoint of interference as a source of

degradation to one where interference is a potential resource that can be exploited.

In this dissertation, we firstly study the use of SLP in the downlink of a multiuser multiple-

input-single-output (MU-MISO) cognitive radio (CR) network, where a primary base station

(PBS) serving primary users (PUs) and a cognitive base station (CBS) serving cognitive users

xv



(CUs) share the same frequency band. The SLP approach is designed using the symbol-wise

Maximum Safety Margin (MSM) criterion, which exploits the constructive multiuser inter-

ference present in such a network. We adapt the non-linear MSM precoder to both underlay

and overlay CR scenarios, depending on whether or not the primary system shares its infor-

mation with the cognitive system. Secondly, we investigate robust SLP designs in an overlay

CR network, where the primary and secondary networks transmit signals concurrently, how-

ever, the PBS shares imperfect CSI with the CBS. We propose robust SLP schemes in this

scenario and consider two different CSI error models. For the norm-bounded CSI error

model, we adopt a max-min philosophy to conservatively achieve robust SLP constraints;

for the additive quantization noise model (AQNM), we employ a stochastic constraint to

formulate the problem. Simulation results show that, rather than simply trying to eliminate

the network’s cross-interference, the proposed robust SLP schemes enable the primary and

secondary networks to aid each other in meeting their quality of service constraints.

Moreover, we propose precoding design in multi-antenna systems with improper Gaussian

interference (IGI), characterized by correlated real and imaginary parts. We first study

block level precoding (BLP) and SLP assuming the receivers apply a pre-whitening filter

to decorrelate and normalize the IGI. We then shift to the scenario where the base station

(BS) incorporates the IGI statistics in the SLP design, which allows the receivers to employ

a standard detection algorithm without pre-whitenting. Finally we address the case where

the non-circularity of the IGI is unknown, and we formulate robust BLP and SLP designs

that minimize the worst case performance in such settings. Interestingly, we show that for

BLP, the worst-case IGI is in fact proper, while for SLP the worst case occurs when the

interference signal is maximally improper, with fully correlated real and imaginary parts.

The numerical results reveal the superior performance of SLP in terms of symbol error rate

(SER) and energy efficiency (EE), especially for the case where there is uncertainty in the

non-circularity of the jammer.
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Chapter 1

Introduction

The evolution from 5G to 6G represents a transformative leap in wireless communication

technology, promising unprecedented advancements in speed, capacity, and connectivity.

Building upon the foundation of 5G’s innovations, the development of 6G aims to provide

the services including ubiquitous mobile ultra broadband (uMUB), ultra-high-speed-with-

low-latency communications (uHSLLC), and ultra-high data density (uHDD) [1,2]. Multiple-

user (MU) multiple-input multiple-output (MIMO) technology, which involves using multiple

antennas to simultaneously serve multiple users or devices, is a cornerstone of both 5G and

6G.

1.1 Background and Prior Work

In the MU-MIMO scenario, beamforming or precoding at the multi-antenna transmitter can

be employed to mitigate the multiuser interference (MUI) and compensate for its adverse

affect on the received signals [3, 4]. Existing precoding schemes can be classified as either

block-level precoding (BLP) or symbol-level precoding (SLP). In recent decades, a number
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of sophisticated algorithms have been proposed to implement block-level precoders that only

depend on the current channel state information (CSI), such as maximum ratio transmission

(MRT), zero-forcing (ZF), regularized ZF and optimum interference-constrained or power

constrained precoding [5–10]. These papers all treat the MUI as a detrimental effect that is

suppressed as much as possible.

Unlike BLP, SLP techniques exploit information about the symbols to be transmitted in

addition to the CSI, which can significantly improve performance at the expense of increased

complexity at the transmitter [11, 12]. The additional degrees of freedom (DoFs) provided

by the symbol-level information make it possible to exploit the constructive component of

the MUI, converting it into constructive interference (CI) that can move the received signals

further from the decision thresholds of the constellation points [13–15]. CI-based SLP recasts

the standard viewpoint of interference as a source of degradation to one where interference

is a potential resource that can be exploited. The classification of MUI into constructive

and destructive components was first introduced in [16], where a CI-based precoder was

proposed for DS/CDMA systems. The authors then applied this idea to the downlink of

MIMO systems, preserving CI and eliminating destructive interference (DI) by means of

channel inversion precoding [13]. This early work showed that SLP enhances the effective

signal-to-interference and noise ratio (SINR) at the receivers without investing additional

power at the base station. To further improve this design, the SLP technique in [14] strictly

aligns DI with the users’ desired symbols so that the DI is converted to CI through a

symbol-based correlation rotation matrix that depends on the combined data and channel

information. Later, in [17], the phase alignment constraints were relaxed in order to extend

the feasible region of the optimal precoding and achieve additional power savings. All of

the above work was developed for either phase-shift keying (PSK) or quadrature-amplitude

modulation (QAM) constellations.
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As the number of wireless devices and their applications grow explosively, the availability

of unoccupied radio spectrum is becoming increasingly scarce and occupied bands are in-

creasingly congested. Over the past two decades, cognitive radio (CR) technology has been

extensively studied as a means to alleviate this problem through more efficient, flexible and

comprehensive use of the spectrum [18–22]. Compared with conventional radios, CRs have

the ability to sense for available spectrum and rapidly adjust transmission parameters in or-

der to co-exist with incumbent or primary users (PUs). Generally speaking, CR systems can

interweave, overlay or underlay their transmissions with those in existing primary systems.

In this dissertation, we focus on the last two categories where the primary and cognitive

systems transmit concurrently. In standard underlay CR, the cognitive base station (CBS)

can transmit simultaneously with the primary base station (PBS) as long as the average

interference from the CR transmission to the PUs does not exceed a certain predefined limit,

commonly known as the interference temperature constraint [23, 24]. In overlay CR, the

PBS shares information with the CR, which allows the CR to not only transmit simultane-

ously, but to also facilitate the primary transmission. For example, by using a fraction of

its power to relay the PUs’ signals in exchange for transmitting at any power level, the CR

can compensate for its interference to the PUs and also achieve optimal performance for its

own network [25, 26]. The fundamental challenge for CR lies in balancing the interference

it generates at the PUs with the quality of service (QoS) of the cognitive users (CUs). To

address this issue, both the inter-system and inter-user interference need to be successfully

managed.

To date there has been limited research on SLP for CR applications. The authors of [27]

further formulated the CI-based precoder design in the underlay CR scenario to minimize the

worst-case CU symbol error probability, but this work is limited to the Z-channel where the

interference from the PBS to SUs is assumed to be negligible. It has been demonstrated that

interference-driven precoding outperforms conventional precoding for CR networks when the

cross-interference between the primary and cognitive systems is manipulated to be mutually
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constructive, such as in [28] for a relay-assisted CR and [29] for an overlay scenario with

the CBS transmitting the primary message. However, the phase alignment linear precoder

(PALP) in [28] and [29] was derived from the sub-optimal CI correlation rotation (CICR)

algorithm in [14] initially designed for conventional broadcast systems, and was applied with

the MMSE criterion. A related approach for underlay CR is the CI-based SLP algorithm

CCIPM in [30], which minimizes the transmit power at the CBS with interference temper-

ature constraints as well as strict phase constraints for the CI. While this technique can

achieve a desired SNR at each CU with much less power than conventional methods, the

phase alignment constraint is sub-optimal and does not fully exploit the available DoFs in

solving the problem. Even though the authors extended the aligned phase to a relaxed region

to design the CCIMPM precoder in [31], they gave the phase constraint of the CI for QAM

symbols, while in our work we will formulate the constructive interference region (CIR) in a

more general form.

[27] [28] [29] [30] [31]
Algorithm WSUSEP PARP PALP CCIPM CCIMPM

Cognitive
Radio

Underlay ✓ ✓ ✓ ✓
Overlay ✓
W/ relay ✓ ✓

Channel
X Channel ✓ ✓ ✓ ✓
Z Channel ✓

Constructive
Interference

Strict Phase
Alignment

✓ ✓ ✓

General Relaxed
Detection Region

✓ ✓

Precoder
Linear ✓ ✓

Nonlinear ✓ ✓ ✓

Objective
Min Power ✓ ✓
Max QoS ✓

Power
Constraint

Average ✓ ✓
Instantaneous ✓ ✓ ✓

Interference
Constraint

Average
Instantaneous ✓ ✓ ✓

Table 1.1: Related Work of SLP in CR
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The performance of both BLP and SLP are sensitive to channel uncertainties due for ex-

ample to channel estimation errors, quantization noise or latency-related effects [32–34]. To

mitigate the impact of such errors, robust designs are needed that properly model the errors

and account for their effect in the optimization of the precoders. Two general approaches

for doing so include assuming worst-case bounded error models or exploiting known sta-

tistical properties of the CSI error. The former case involves the use of deterministic CSI

error bounds that assume the error is confined to a convex uncertainty region (typically an

ellipsoid) surrounding the true CSI [35]. In these approaches, robustness is achieved by con-

straining the users’ QoS or other design objectives to be satisfied for all channel realizations

in the convex uncertainty region, effectively minimizing the impact of the worst-case channel

within the given error bound [33, 36]. This max-min philosophy can lead to a relatively

conservative design depending on the tightness of a priori error bound. In the second case, a

particular distribution (e.g., Gaussian) is assumed for the error, and Bayesian or other prob-

abilistic approaches [35] are employed to optimize the QoS or transmit power under certain

stochastic SINR or rate-outage probability constraints [37,38]. In this case, the probability-

constraint formulation is typically not deterministic and various techniques must be used to

obtain a tractable problem [39, 40]. In either of the two cases described above, the penalty

paid for increasing the robustness to imperfect CSI is increased transmit power.

In overlay or cooperative CR systems, CSI errors beyond those due to channel estimation are

anticipated due to the limited cooperation between the PBS and CBS. While robust BLP

designs for traditional MIMO or CR scenarios have been widely investigated [36, 41–43],

robust SLP algorithms for general CR scenarios have not been considered. Prior work on

robust designs for SLP includes [44], which derived a robust SLP algorithm suitable for

imperfect CSI with bounded CSI errors, but it is based on a multicast formulation without

fully taking advantage of CI. The work described in [45] considered a linear channel distortion

model with bounded additive noise and Gaussian-distributed channel uncertainties. They

designed robust SLP schemes to minimize transmission power subject to CI constraints as
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well as QoS or SINR requirements. While not focused on CR applications, this prior work

demonstrates that robust SLP designs can be formulated to improve and achieve a better

balance between QoS and power consumption.

In this dissertation, we propose robust CR SLP algorithms for each of two different CSI error

models that account for the quantization error in the CSI shared by the PBS with the CBS.

In particular, we focus on overlay CR downlink channels [20,46] where the PBS shares with

the CBS its CSI to the PUs and CUs, as well as its data intended for the PUs. The shared

CSI is assumed to be quantized, which is known to often make achieving the desired user QoS

constraints infeasible without introducing robustness into the problem formulation [47,48]. In

addition, the imperfect CSI also means that the PBS precoding is not precisely known at the

CBS, and thus the CBS has an imperfect estimate of the transmitted PBS signal, even if the

PBS data symbols are perfectly known. This makes finding a robust solution in the cognitive

radio case more complicated than in prior SLP-related work, where the transmitted signals

are assumed to be perfectly known. If left unaddressed, the combination of these effects

will almost certainly cause the noise-free received symbols at both the PUs and CUs to fall

outside the desired CIR. To derive a robust SLP formulation for CR systems, we formulate

the problem as one of minimizing the transmit power at the CBS while simultaneously

satisfying the safety margin (SM) constraints at both the PUs and CUs to guarantee the

worst-case user’s QoS.

We first derive a power-minimizing SLP approach for overlay CR with SM constraints at

both the PUs and CUs assuming perfect CSI, leading to a quadratic optimization problem

with linear constraints that can be efficiently solved. We then derive the SM at each user

for two different imperfect CSI models, including the effect of the imprecisely known PBS

transmit signal. We first consider the case where the quantization error is norm-bounded

as in [35], and we derive a robust SLP algorithm based on maximizing the worst case SM.

This leads to a conservative design that trades transmit power for increased protection of
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the PUs from the CR interference due to the quantized CSI. Then we study a stochastic

approach based on the additive quantization noise model (AQNM) [49,50] that is sufficiently

accurate to approximate the quantization error at low and medium signal-to-noise ratios

(SNR) and has been widely used in the analysis of quantized MIMO systems [51–53]. In

this case, the SM of the PUs and CUs are constrained to meet a preset threshold with a

certain probability. We then apply the Safe Approximation I method in [45] to reformulate

the intractable probabilistic constraints as deterministic constraints and finally construct an

optimization problem to obtain the robust SLP solution.

The use of SLP for overlay CR has not been considered previously in the literature. The

work in [29] is the most related prior effort, but it requires that the CBS directly transmits

the PBS data together with its own data, which is not as energy efficient as our proposed

approach. In addition, unlike our proposed approaches, [29] does not consider the impact of

the PBS interference at the cognitive users, it does not assume imprecise knowledge of the

PBS waveform, it uses a less effective SLP technique, and it does not take into account the

fact that the PBS CSI exploited at the CBS may be imperfect due to quantization or other

effects. Most notably, our proposed SLP algorithms enable the PUs to exploit constructive

interference as well as the CUs, and thus we can demonstrate that the presence of the

cognitive network can actually improve the PU network performance rather than degrade it.

This result is unique to the literature on CR, which focuses on not impairing the PU QoS.

We conduct a number of simulations assuming the PBS channel is quantized using the scalar

Lloyd Max algorithm that minimizes the average quantization noise power [54, 55]. These

simulations demonstrate the flexibility of the proposed robust SLP algorithms in trading

transmit power for improved performance when quantized CSI is present. They further

demonstrate the ability of the proposed methods to improve the performance of both the

primary and cognitive networks. Furthermore, inspired by the results of [56], we study the

problem of allocating bits to the CSI of the PBS to the PUs and CUs, and demonstrate that
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the bit allocation strategy in our robust SLP algorithm is not as important as that in the

non-robust methods. Note that a subset of the results presented in this dissertation were

previously reported in [57].

In communication systems, random noise and interference are often modeled as zero-mean

Gaussian processes whose real and imaginary parts are uncorrelated and of equal vari-

ance [58]. Such signals are referred to as “circular” or “proper,” and are generally more

convenient to deal with in transceiver design [59]. However, proper Gaussian signals are

not always justified in practice, and the transceiver design must be correspondingly ad-

justed [60]. For example, improper signals arise due to hardware impairments (HWI) that

result from phase noise, imperfections in power amplifier manufacturing, non-linearities and

I/Q imbalances in RF front ends, etc. [61, 62]. Such factors are more severe in 5G-and-

beyond communication systems due to higher carrier frequencies, and thus deserve more

attention. Another source of non-circular signals arises from improper complex interference,

self-interference, and asymmetric noise [63–65].

There are relatively few studies about improper Gaussian interference (IGI) in MIMO down-

link communication systems. In [66], a maximum likelihood sequence estimation receiver

is proposed when the data is corrupted by non-circular zero-mean Gaussian noise in single-

input multiple-output (SIMO) systems. In [67], the authors investigated the effects of IGI

on quadrature spatial modulation where the constellation symbols are expanded to in-phase

and quadrature dimensions separately transmitting the real and imaginary parts of an am-

plitude/phase modulated data symbol. Besides taking IGI as an destructive effect, some

studies exploited the non-circularity feature of the improper Gaussian signaling (IGS) to

get better achievable rates and energy efficiency in the interference channel, which has been

shown to be better than the traditional circular Gaussian signaling [68–70]. In [71], IGS was

designed to managing interference in order to maximize the users’ minimum rate subject to

transmit power constraints. The widely linear precoding has been commonly used to tackle
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the non-circularity, considering the IGS is a linear transformation of transmit signals and

noise, which requires a joint design of transmitter and precoder [72–75]. However, to the

best of our knowledge, there is no research about SLP designs in systems with IGI.

In this dissertation, we focus on precoding design at the transmitter for scenarios involving

a jammer transmitting IGI. Assuming the non-circular covariance of the jammer is available

at both the base station (BS) and the users, we first study the application of individual pre-

whitening filters at each of the users in order to account for the IGI, and develop modified

BLP and SLP approaches. We then study a modification to the SLP design that enables

the precoding to be implemented solely by the BS without any receiver preprocessing. The

non-circular IGI requires the definition of both an “upper” and “lower” SM for PSK signals

defined by a bounding box that contains a confidence ellipse for the non-circular noisy ob-

servations [76, 77]. The confidence ellipse is centered at the noise-free received signal, and

is defined as the region in which the noisy received signal will lie with a certain probability.

Finally, we consider scenarios where the degree of non-circularity of the jammer is unknown,

and the BS must design a precoder that is robust to this uncertainty. In particular, we take

the conservative approach of designing the BLP and SLP approaches to maximize perfor-

mance for the worst case IGI, and demonstrate that BLP and SLP lead to fundamentally

different robust solutions.

1.2 Summary of Contributions

For the first part, the SLP designs are proposed in CR. Below we summarize the main

contributions of this part:

1) We design an optimum interference-constrained CI-based precoder for underlay CR

scenarios, which solves the dual problem of that addressed by CCIMPM in [31], but
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we formulate the phase constraint in a more general and concise form. We refer to this

approach as Underlay Constructive Interference SINR Balancing (UCISB).

2) We develop a precoder based on maximum SM (MSM) for the underlay CR system,

referred to as Underlay Cognitive Maximum Safety Margin (UCMSM), and show that

it outperforms traditional precoding algorithms based on ZF.

3) We generalize the MSE-based ZF and PALP precoders in [29] to overlay CR scenarios

with separate scaling factors for the primay and cognitive systems. This improves the

methods in [29] since it guarantees that the PUs’ QoS is not degraded. The generalized

algorithms are called Overlay Cognitive Radio Zero Forcing (OCZF) and Overlay Phase

Alignment Linear Precoding (OPALP).

4) We adapt the MSM-based precoder to overlay CR scenarios and show that it is able to

exploit additional CI from the cross-system transmission. The free power gleaned from

CI generally improves the QoS of both the PUs and CUs without investing additional

power at either the PBS or CBS. Moreover, in our approach it is not necessary for the

CBS to relay the PUs’ signals to compensate for the loss of QoS due to the cognitive

transmission as in [28, 29]. This new algorithm is referred to as Overlay Cognitive

Maximum Safety Margin (OCMSM).

5) We further amplify the conclusion in [31] and [78] that SLP has the capability to

perform effectively in situations where the number of concurrently active PUs and

CUs is more than the number of CBS antennas, which is not possible for conventional

BLP.

6) We explore the robustness of our proposed MSM-based precoder to imperfect CSI and

compare it with the state-of-the-art techniques in overlay CR scenarios. We show

empirically that the loss due to CSI errors at the PUs is largely offset by the gain in

CI from the cognitive system.
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In the second part, we propose robust SLP designs in overlay cognitive radio systems for two

different CSI error models that account for the quantization error in the CSI shared by the

PBS with the CBS. Below we summarize the main contributions of this part:

1) We apply the SLP idea to the overlay CR problem where the PBS shares (possibly

imperfect) information with the CBS to facilitate the co-existence of the two networks.

This problem has not been addressed previously in the literature. The work in [29]

is the most related prior effort, but it requires that the CBS directly transmit the

PBS data together with its own data, which is not as energy efficient as our proposed

approach. In addition, [29] does not consider the impact of the PBS interference at the

cognitive users, it uses a less effective SLP approach, and it does not take into account

the fact that the PBS CSI exploited at the CBS may be imperfect due to quantization

or other effects. Our proposed SLP approach enables the PUs to exploit constructive

interference as well as the CUs, and thus we can demonstrate that the presence of

the cognitive network can actually improve the PU network performance rather than

degrade it. This result is unique to the literature on CR.

2) We first derive a power-minimizing SLP approach for overlay CR with SM constraints

at both the PUs and CUs assuming perfect CSI, leading to a quadratic optimization

problem with linear constraints that can be efficienty solved.

3) Assuming a norm-bounded quantization error in the shared CSI from the PBS to the

CBS, we derive a robust SLP algorithm based on maximizing the worst case SM. This

leads to a conservative design that trades transmit power for increased protection of

the PUs from PBS interference due to the quantized CSI.

4) As an alternative approach, we employ AQNM to approximate the quantized CSI

from the PBS. In this case, the SM of the PUs and CUs are constrained to meet a

preset threshold with a certain probability. We then apply the Safe Approximation I
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method in [45] to reformulate the intractable probabilistic constraints as deterministic

constraints and finally construct an optimization problem to obtain the robust SLP

solution [57].

5) To validate the effectiveness of our proposed robust precoders, we conduct simulations

assuming the PBS channel is quantized using the scalar Lloyd Max algorithm which

minimizes the average quantization noise power [54,55]. Our simulations demonstrate

the flexibility of the proposed robust SLP algorithms in trading transmit power for

improved performance when quantized CSI is present. Furthermore, inspired by the

results of [56], we study the problem of allocating bits to the CSI of the PBS to the

PUs and CUs, and demonstrate that the bit allocation strategy in our robust SLP

algorithm is not as important as that in the non-robust methods.

In the third part, we mainly focus on the SLP designs for systems with IGI, especially the

robust designs when the non-circularity is unknown at the BS. Our main contribution in this

topic is summarized as follows:

1) We have shown how to modify the BLP approach based on the minimum mean square

error (MMSE) for IGI using pre-whitening at each user, assuming that the non-circular

covariance of interference is known. We have further shown that when the non-

circularity of the jamming is unknown, the MMSE BLP should assume a circular

covariance in order to minimize the worst case mean-squared error (MSE).

2) We have shown how to modify SLP-based designs for IGI using both pre-whitening at

each user, and also using transmit-only processing where the receivers do not perform

a pre-whitening step.

3) We have further investigated the case when the non-circularity of the jamming is un-

known, and shown that, unlike MMSE BLP, the worst case for SLP always occurs with
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maximally improper interference, where the real and imaginary parts of the jammer

signal are fully correlated. We then show how to modify the SM-based SLP algorithm

to find the worst-case design.

4) Finally, we provide comprehensive numerical results to compare MMSE BLP with

SLP in various settings, particularly in the case where the non-circularity of the IGI

is unknown. We also illustrate our theoretical conclusions regarding the worst-case

jammer covariances via some graphical examples.

1.3 Outline of Dissertation

The rest of this dissertation is organized as follows.

In Chapter. 2, the symbol level precoding, constructive interference region and safety margin

are introduced, which are fundamental of this dissertation.

In Chapter. 3, the SLP is applied in cognitive radio systems. We take a more fundamental

approach and formulate optimal MSM precoder designs that maximize the QoS of the CUs

without significantly impairing the instantaneous performance of the PUs. Both underlay

and overlay scenarios are considered.

In Chapter. 4, the robust SLP designs are proposed in overly CR systems, where the primary

and secondary networks transmit signals concurrently. When the primary base station (PBS)

shares imperfect CSI to the CBS, we propose robust SLP schemes for a norm-bounded CSI

error model as well as the additive quantization noise model (AQNM).

In Chapter. 5, the SLP designs are proposed in MUI systems with IGI characterized by

correlated real and imaginary parts. Additionally, in scenarios where covariance of the non-
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circular interference is not accessible at the base station (BS), we introduced a robust SLP

design and simplified the search strategy for the optimum solution.

In Chapter. 6, we introduce an user selection strategy for SLP designs. Moreover, a possible

closed-form SLP is proposed.

In Chapter. 7, we concludes the dissertation and provide some insights for the future work.

1.4 Notations

Bold lower case and upper case letters indicate vectors and matrices, and non-bold letters

express scalars. The N ×N identity (zero) matrix is denoted by IN (0N×N). The N dimen-

sional vector of ones (zeroes) is denoted by 1N (0N). Amn denotes the (m,n)-th element in

the matrix A and am denotes them-th element in the vector a. The operators (·)∗, (·)−1, (·)T

and (·)H stand for the conjugation, the inverse, the transpose and the Hermitian transpose

operations, respectively. Cm×n represents the space of complex matrices of dimension m×n.

E(·) and ∥ · ∥ respectively represent the expectation operator and the Euclidean norm. |(a)|

denotes the absolute value of a scalar a, whereas |(A)| denotes the size of a set A. CN (µ, σ2)

denotes the complex normal distribution with mean µ and variance σ2. The functions Tr{·}

and diag{·} respectively indicate the trace of a matrix and a vector composed of the diag-

onal elements of a square matrix, while diag{a} denotes a square diagonal matrix with the

elements of vector a on the main diagonal. blockdiag {H1, · · · ,HK} represents the block

diagonal matrix with diagonal blocks Hk, k ∈ {1, · · · , K}. R{·} and I{·} denote the real

and imaginary parts of a complex number, respectively. For matrices and vectors, ≥ and

≤ denote element-wise inequalities, and A ⪰ 0 denotes that the matrix A is semi-definite

positive. ◦ is the Hadamard product which is the element-wise product. a ≜ b represents a

is defined as b.
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Chapter 2

Symbol Level Precoding

SLP techniques exploit information about both CSI and transmitted symbols [11, 12, 79],

and generally result in a nonlinear design. Although SLP requires significantly increased

complexity, it enables the precoder to take advantage of the MUI and convert it to CI [13–15],

thus increasing the DoFs available for the precoder design.

A number of SLP approaches have been proposed in recent years. The authors of [13] applied

SLP using channel inversion precoding, and showed that it enhances the effective SINR at

the receivers without investing additional power at the base station. To further improve this

design, the technique in [14] strictly aligns the MUI with the users’ desired symbols so that

it is converted to CI through a symbol-based correlation rotation matrix that depends on

the combined data and channel information. Later, in [17], the phase alignment constraints

were relaxed in order to extend the feasible region of the optimal precoding and achieve

additional power savings. All of the above work was developed for either phase-shift keying

(PSK) or quadrature-amplitude modulation (QAM) constellations. To tackle the complexity

of SLP, an optimal “closed-form” SLP solution has been introduced in [80] to make the design
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more practical for PSK modulation. Recently, [81] proposed an end-to-end learning based

approach to optimize the modulation orders for SLP communication systems.

A key strength of SLP is that the received signals can be moved further from the symbol

decision boundaries using CI, which provides robustness against noise and interference. In the

literature, CIRs have been defined to describe the degree to which the received symbols will

be robust to noise and unmodeled perturbations. Recent SLP approaches have been designed

to maximize the distance of the received signals to the decision boundaries, also referred to

as the safety margin (SM) [79, 82, 83], for a given maximum transmit power. The methods

described in [84, 85] introduce Maximum Safety Margin (MSM) precoder designs that are

able to minimize an upper bound on the symbol error rate (SER). The MSM approach can

be contrasted with algorithms based on MMSE between the desired and received symbols

[15, 44]. MSM precoders generally guarantee a better QoS for the same level of transmit

power, or equivalently the same QoS with less power consumption. CI-based SLP recasts

the traditional viewpoint of interference as a source of degradation to one where interference

is a potential resource that can be exploited.

2.1 Constructive Interference Region

Constructive inteference regions (CIRs), which define the degree to which the received sym-

bols will be robust to noise and unmodeled perturbations, are fundamental to SLP de-

signs. While early CI-based SLP approaches were intended to increase the distance of

the CIRs from the symbol decision boundaries, they did not directly optimize the CIR.

More recent techniques have focused on designing the precoder to directly optimize this dis-

tance [17, 44, 79, 80, 83, 84, 86–89], which has been referred to as the safety margin. Optimal

Maximum Safety Margin (MSM) precoders generally result in a non-linear mapping between

the symbols and the transmitted waveform, and can be shown to minimize an upper bound
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Figure 2.1: Symbol region for conventional precoding

on the SER [84]. This is contrasted with algorithms that minimize the mean squared-error

between the transmitted and received symbols, which do not offer the same guarantee [15,44].

MSM precoders are in general able to achieve a better QoS for the same level of transmit

power, or equivalently the same QoS with less power consumption.

2.2 Safety Margin for PSK Signaling

Conventional precoding methods such as MMSE, ZF and maximum-SINR beamforming are

designed with the objective of minimizing the inter-user interference so that the received

symbols lie as close as possible to the nominal constellation points (or scaled versions thereof

in the case of PSK). In particular, to limit the effect of interference from other data streams,

the transmit vector after precoding is chosen such that every user’s received noise-free symbol

is contained within a circle centered at its corresponding constellation point [44]. This is
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Figure 2.3: Symbol region and safety margin in a modified coordinate ststem

illustrated in Fig. 2.1, where the noise-free signal for user m given by rm ≜ hmx lies within

a certain distance of the desired symbol sm, where hm is the channel of user m, x is the

transmitted symbol after precoding, and sm is drawn from a D-PSK constellation with

unit magnitude, i.e., sm ∈ {s|s = exp(jπ(2d + 1))/D, d ∈ {0, · · · , D − 1}}. The idea of CI

precoding can in principle be applied to any constellation design [79], e.g., QAM or otherwise,

but is most easily formulated for the case of PSK signals. The shaded area inside the circle

is referred to as the symbol region (SR), a downscaled version of the decision region for sm.
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For PSK constellations, it is not necessary that rm be close to sm in order to be decoded

correctly, as long as it lies in the correct decision region with a given target SER. Thus, it

is not necessary that all of the inter-user interference be eliminated, since some interference

components could add constructively and push the received symbol further into the decision

region, making it more robust to noise and interference external to the system. We can thus

redefine the SR as, for example, in Fig. 2.2, where the SR becomes the sector of a circle

sector with infinite radius and an angular extent of 2θ, where θ = π/D. For CI-based SLP,

we refer to this region as the constructive interference region. For user m, the distance from

the CIR boundary to the decision boundary is defined as the safety margin and denoted as

δm [82].

In order to mathematically interpret the CIR and SM in a unified way, we rotate the original

coordinate system by the phase of the desired constellation symbol, i.e., ∡sm, to obtain the

modified coordinate system in Fig. 2.3. After rotation, sm is placed at 1 on the real axis,

and rm is relocated to

zm = rms
∗
m . (2.1)

Then we can easily calculate the SM of the noise-free symbol at user m as

δm = R{zm} sin θ − |I{zm}| cos θ. (2.2)

The SM should be maximized to reduce the probability that noise or other impairments will

push the noise-free signal outside the desired detection region; the larger the SM, the smaller

the SER. A typical CI-based SLP optimization problem involves maximizing the worst case

safety margin over all the users, under the given transmit signal constraints:

δ = argmax
x∈X

min
m∈M

δm (2.3)
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where M = {1, · · · ,M} indexes the users and X denotes the set of allowable transmit

signal vectors. For example, the instantaneous power constraint mentioned above results in

X = {x|∥x∥2 ≤ P} for some value P .
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Chapter 3

SLP in CR Systems

3.1 Introduction

As the number of wireless devices and their applications grow exponentially, the availability

of unoccupied radio spectrum is becoming increasingly scarce and occupied bands are in-

creasingly congested. Over the past two decades, CR technology has been extensively studied

as a means to alleviate this problem through more efficient, flexible and comprehensive use

of the spectrum [18,20,90].

This chapter focuses on the use of SLP in the downlink of a MIMO CR network, where a

PBS serving PUs and a CBS serving CUs share the same frequency band. The proposed

precoding scheme is based on the symbol-wise MSM criterion that exploits the constructive

multiuser interference present in such a network. We adapt the non-linear MSM precoder to

both underlay and overlay CR scenarios, depending on whether or not the primary system

shares its information with the cognitive system. We also take into account the fact that the

CSI shared by the PBS may be imprecise. Simulation results show that the proposed MSM

precoding method offers significant improvements in the CUs’ QoS compared to conventional
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Figure 3.1: Cognitive Radio System Model

methods, and simultaneously provides constructive interference that improves the QoS of the

PUs. We show that the constructive interference gain at the PUs can offset much of the loss

due to imprecise channel state information.

3.2 System Model

We consider a downlink CR network with an Mc-antenna CBS serving Nc single-antenna

CUs. The CR network is granted access to share the primary system spectrum in which

an Mp-antenna PBS is communicating with Np single-antenna PUs. The system model is

depicted in Fig. 3.1. The direct primary and cognitive channels are respectively denoted by

Hpp =

[
hT
pp,1 · · · hT

pp,Np

]T
∈ CNp×Mp (3.1)

Hcc =

[
hT
cc,1 · · · hT

cc,Np

]T
∈ CNc×Mc (3.2)
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The corresponding interference channels are defined as

Hpc =

[
hT
pc,1 · · · hT

pc,Np

]T
∈ CNc×Mp (3.3)

Hcp =

[
hT
cp,1 · · · hT

cp,Np

]T
∈ CNp×Mc (3.4)

from the PBS to CUs and the CBS to PUs, respectively. We assume that all channels

experience frequency flat fading, but we do not assume any particular channel distribution.

The vectors sp(t) = [sp,1(t), sp,2(t), · · · , sp,Np(t)]
T and sc(t) = [sc,1(t), sc,2(t), · · · , sc,Nc(t)]

T

contain the modulated signals to be transmitted to the individual PUs and CUs.

In this work we assume for simplicity that all transmitted symbols are uncorrelated and

drawn from a D-PSK constellation with unit magnitude, i.e., sl,m(t) ∈ {s|s = exp(jπ(2d +

1))/D, d ∈ {0, · · · , D − 1}} where l ∈ {p, c} denotes the primary or cognitive system, and

m denotes the user index in the corresponding system. The sets K = {1, · · · , Np} and

J = {1, · · · , Nc} enumerate the PUs and CUs, respectively. The idea of CI precoding can

in principle be applied to any constellation design [79], e.g., QAM or otherwise, but is most

easily formulated for the case of PSK signals.

At time slot t, the received signals at the PUs and CUs can be respectively written as

yp(t) = Hppxp(t) +Hcpxc(t) + np(t) (3.5)

yc(t) = Hccxc(t) +Hpcxp(t) + nc(t) (3.6)

where xp(t) ∈ CMp×1 and xc(t) ∈ CMc×1 are the transmitted signals at the PBS and CBS

after precoding and power loading, and np(t) ∼ CN (0, σ2
p) and nc(t) ∼ CN (0, σ2

c ) are additive

white Gaussian noise (AWGN) vectors. In order to simplify the notation, in what follows

we drop the time index t.
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Conventional methods for CR networks assume an average power constraint at the CBS ex-

pressed as E{∥xc∥2} ≤ Pc. When block-level linear precoding is employed, the transmitted

symbol can be expressed as xc = Wcsc, where Wc =

[
wc,1 · · · wc,Nc

]
is the linear precod-

ing matrix, and the power constraint can be rewritten as E{∥xc∥2} = E{Tr{Wcscs
H
c W

H
c }} =

Tr
{
WcE

{
scs

H
c

}
WH

c

}
= Tr

{
WcW

H
c

}
≤ Pc, where E

{
scs

H
c

}
= I due to the assumption

of unit-power uncorrelated symbols. On the other hand, non-linear symbol-level precod-

ing can naturally enforce instantaneous constraints on the transmitted signal, most com-

monly in terms of instantaneous power ∥xc∥2 ≤ Pc [17], although instantaneous amplitude

or quantization-related constraints can be formulated as well [12, 80,82,84].

3.3 Underlay Cognitive Networks

In an underlay CR network, the CBS exploits knowledge of the channel Hcp to limit inter-

ference at the PUs while achieving some precoding objective for the CUs. In this section, we

present three methods: a standard block-precoding approach based on zero-forcing, the SLP

method of [31] that also uses zero-forcing for the PUs but employs constellation rotation-

based precoding for the CUs to exploit CI, and our proposed approach which maximizes

the SM subject to PU interference constraints. We will assume that the PBS employs ZF

precoding to cancel the co-channel interference in the primary network, i.e.,

Wp = HH
pp(HppH

H
pp)

−1 , (3.7)

although this assumption is not critical for our proposed methods.
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3.3.1 Underlay CR Zero Forcing (UCZF)

If the CBS has a sufficient number of antennas, then it can perform zero-forcing to eliminate

all MUI for both the PUs and CUs. This Underlay CR Zero Forcing (UCZF) method will be

a baseline approach for comparison with the CI-based precoders, and can be implemented by

forcing the CBS precoder to lie in the nullspace of the cross-channel Hcp [91,92]. Assuming

that Lcp = rank(Hcp) < Mc, we define the singular value decomposition (SVD) of the cross

channel as

Hcp = UcpΣcp

[
V

(1)
cp V

(0)
cp

]H
(3.8)

where V
(1)
cp holds the first Lcp and V

(0)
cp the last (Mc − Lcp) right singular vectors. The

effective channel from the CBS to the CUs can then be expressed as

Ĥcc ≜ HccV
(0)
cp . (3.9)

As long as the effective channel is full rank and Lcp + Nc < Mc, the CBS can employ ZF

precoding to cancel the interference among the CUs:

Wc = V(0)
cp · ĤH

cc · (ĤccĤ
H
cc)

−1. (3.10)

The transmitted signal is thus

xc = fcWcsc = fcV
(0)
cp · ĤH

cc · (ĤccĤ
H
cc)

−1sc (3.11)

where fc is chosen to meet the instantaneous power constraint:

fc =

√
Pc

Tr{WcscsHc W
H
c }
. (3.12)
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3.3.2 Underlay Constructive Interference SINR Balancing (UCISB)

In [30] and [31], the authors proposed an SLP scheme using CI among the CUs in order to

minimize the CBS transmission power. In contrast, our objective is to optimize the QoS of

the CUs with fixed transmission power and also not impair the QoS of the PUs. A block-

level SINR balancing (SB) approach to solving this problem is to maximize the minimum

achievable SINR over all the CUs under an average power constraint without violating the

interference temperature constraints imposed by the primary system, as follows [93]:

max
wc,j

β (3.13)

subject to SINRc,j ≥ β ∀j ∈ J (3.14)

Nc∑
j=1

|hcp,kwc,j|2 ≤ ηk ∀k ∈ K (3.15)

E

{
Nc∑
j=1

∥wc,j∥2
}

≤ Pc (3.16)

where ηk is the interference constraint at PU k and SINRc,j is the SINR of the j-th CU,

expressed as

SINRc,j =
∥hcc,jwc,j∥2∑Nc

m=1,m ̸=j ∥hcc,mwc,m∥2 + ∥hpc,kxp∥2 + σ2
c

(3.17)

assuming E{scsHc } = I. This SB problem is non-convex and generally difficult to solve.

To apply CI-based SLP to the SB problem, we use a non-linear precoder that directly

optimizes the precoded signal vector xc to guarantee that the received noiseless signal, rc,j =

hcc,jxc, lies in the CIR. Using the method in [31] to construct the CIR, the problem can be
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formulated as

max
xc

γ (P1)

subject to ∡sc,j − θ ≤ ∡rc,j ≤ ∡sc,j + θ ∀j ∈ J (C1-1)

∥hcc,jxc∥2 ≥ γ ∀j ∈ J (C1-2)

∥hcp,kxc∥2 ≤ ηk ∀k ∈ K (C1-3)

∥xc∥2 ≤ Pc (C1-4)

where Pc is the instantaneous power budget. The second constraint C1-2 is used to ensure

that the desired CU SINR is high enough given the background noise and the interference

from the PBS. For PSK constellations, the region defined by constraints C1-1 and C1-2

consists of points with magnitude greater than γ in the 2θ-angular sector centered at the

origin with infinite radius, as shown by the non-convex pink shaded region in Fig. 3.2. To

achieve a convex region, we propose an alternative constraint which yields the 2θ-angular

sector centered at γsc,j with infinite radius shown with blue shading in Fig. 3.2 and denoted

as Dj. The boundaries of Dj are parallel to the decision boundaries of the constellation point

sc,j.

To express Dj in a concise mathematical form, we adopt the method in [89]. We define the

two neighboring constellation points of sc,j as xl,j = sc,j exp{j2θ} and xr,j = sc,j exp{−j2θ},

and we denote each constellation point by an equivalent real-valued vector:

sc,j =

[
R{sc,j} I{sc,j}

]T
, (3.18)

xl,j =

[
R{xl,j} I{xl,j}

]T
, (3.19)

xr,j =

[
R{xr,j} I{xr,j}

]T
. (3.20)
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Figure 3.2: Symbol Region for UCISB precoding

Thus, we have

Dj = {x | (aT
l,jx ≥ bl,j) ∩ (aT

r,jx ≥ br,j), x ∈ R2}, (3.21)

where al,j ∈ R2 and ar,j ∈ R2 represent normal vectors of the boundaries and point inwards

to the symbol region, and bl,j and br,j determine the offset of the corresponding hyperplane

from the origin. The normal vector al,j is orthogonal to the decision boundary shared by sc,j

and xl,j, and thus can be expressed as al,j = sc,j − xl,j. The boundary of the symbol region

(orange dashed line in Fig. 3.2) crosses the point γsc,j which is the vertex of the symbol

region, so bl,j = γaT
l,jsc,j. The method to obtain ar,j and br,j is similar. The compact form

of Eq. (3.21) then becomes

Dj = {x | Ajx ≥ bj}, (3.22)

where Aj =

[
al,j ar,j

]T
and bj = γ

[
al,j ar,j

]T
sc,j.
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Finally, problem (P1) can be rewritten as:

max
xc

γ (P2)

subject to

aT
l,j

aT
r,j


R{hcc,jxc}

I{hcc,jxc}

 ≥ γ

aT
l,j

aT
r,j

 sc,j , ∀j ∈ J (C2-1)

∥hcp,kxc∥2 ≤ ηk , ∀k ∈ K (C2-2)

∥xc∥2 ≤ Pc (C2-3)

which is a convex optimization problem and can be solved by standard algorithms. This

algorithm will be referred to as Underlay Constructive Interference SINR Balancing (UCISB).

3.3.3 Underlay Cognitive Maximum Safety Margin (UCMSM)

In this section, we introduce an optimal CI-based precoding method for the underlay case

that maximizes the worst-case SM of the cognitive users without violating interference tem-

perature constraints at the PUs. These constraints guarantee that the power of the interfer-

ence from the CR at each PU is less than the given value ηk:

∥hcp,kxc∥2 ≤ ηk ∀k ∈ K. (3.23)

Since the CBS does not have information about Hpc and sp, it will simply treat the interfer-

ence from the PBS as noise.

The vector of noiseless signals at the CUs is given by

rc = Hccxc. (3.24)
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After modifying the coordinate system as in Fig. 2.3, we have

zc = H̃ccxc (3.25)

where Sc = diag(sc) and H̃cc = SH
c Hcc. As in Eq. (2.2), the safety margin for each CU is

given by

δc,j = R{zc,j} sin θ − |I{zc,j}| cos θ. (3.26)

The guarantee that zc,j lies in the CIR defined by δc can be expressed mathematically as

R{zc} ≥ δc1Nc , (3.27)

for BPSK signals, and more generally for DPSK (D > 2) as

−R{zc} tan θ +
δc

cos θ
1Nc ≤ I{zc} ≤ R{zc} tan θ −

δc
cos θ

1Nc . (3.28)

To formulate the desired MSM optimization problem, we write the constraints using real-

valued notation by defining

u =

R{xc}

I{xc}

 , (3.29)
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so that

R{zc} = R{H̃ccxc} (3.30)

=

[
R{H̃cc} −I{H̃cc}

]R{xc}

I{xc}

 (3.31)

= Cu (3.32)

I{zc} = I{H̃ccxc} (3.33)

=

[
I{H̃cc} R{H̃cc}

]R{xc}

I{xc}

 (3.34)

= Du . (3.35)

Then, the CIR constraints in Eqs. (3.27) and (3.28) can be rewritten as

[
−C 1Nc

]u
δc

 ≤ 0Nc (BPSK) (3.36)

−C tan θ +D 1
cos θ

1Nc

−C tan θ −D 1
cos θ

1Nc


u
δc

 ≤ 02Nc (DPSK, D > 2) (3.37)

With an instantaneous power budget Pc at the CBS, the precoded symbols should satisfy

∥xc∥2 = uHu ≤ Pc. (3.38)
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Thus, we can formulate the optimal MSM problem for the underlay CR scenario for D-PSK

(D > 2) signaling as

max
u,δc

[
0T
2Mc

1

]u
δc

 (P3)

subject to ∥hcp,kxc∥2 ≤ ηk ∀k ∈ K (C3-1)−C tan θ +D 1
cos θ

1Nc

−C tan θ −D 1
cos θ

1Nc


u
δc

 ≤ 02Nc (C3-2)

uHu ≤ Pc , (C3-3)

where the first constraint guarantees the desired PU interference temperature, the second

constraint defines the CIR for δc, and the third constraint addresses the instantaneous power

constraint. For BPSK signaling, the constraint in (C3-2) is replaced by (3.36). The resulting

optimization problem is convex, and can be easily solved. This approach is referred to as

Underlay Cognitive Maximum Safety Margin (UCMSM).

In Section 3.5, we will see that this method provides the same performance as UCISB since

the CIRs are the same and the objective variable γ in UCISB is linear in the safety margin δc

when information about the PBS signal is not available at the CBS. However, in the overlay

CR scenarios developed in the next section, the advantage of the MSM criterion compared

with SB will be revealed.

3.4 Overlay Cognitive Radios

In an overlay CR network, the PBS cooperates with the CBS and provides information that

enables the cognitive and primary networks to better co-exist. In this section, we assume the

PBS shares with the CBS its CSI for both the PUs and CUs as well as the data it transmits
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to the PUs. This leads to several important benefits. First, the CBS can employ SLP to

counteract the effect of the PBS interference at the CUs, and ensure that the combination

of the MUI and the primary network interference is constructive for the CUs. Second, the

CBS can simultaneously tune its SLP to not only avoid interference at the PUs, but in fact

to potentially improve the safety margin of the PUs and hence their QoS as well. This

provides performance well beyond what is achievable with prior underlay CR approaches. In

the following sections, we present two linear precoders derived from [29] as baselines and two

new proposed nonlinear precoders for the CBS. As before, we assume the PBS still employs

conventional ZF precoding to remove the multiuser interference among the PUs.

3.4.1 Overlay CR Zero Forcing (OCZF)

In [29], a ZF linear precoder is proposed for the overlay CR scenario in which the CBS

uses knowledge of the primary data and CSI of all links. Moreover, to compensate for the

potential loss in PU QoS due to the concurrent CBS transmissions, the CBS is also tasked

with relaying the PUs’ signals in addition to its own messages. The method in [29] used

an equal power scaling for both the PU and CU symbols, and as a result the presence of

the cognitive system can degrade the PU performance in certain scenarios. The approach

we present in this subsection, Overlay CR Zero Forcing (OCZF), generalizes the algorithm

of [29] by allowing separate primary and cognitive power scaling factors, and consequently

can guarantee no impact on the QoS of the PUs.

For OCZF, the precoded symbol vectors transmitted by the PBS and CBS are respectively

given by

xp = fpWpsp, xc = fcWcs (3.39)

fp =

√
Pp

Tr{WpWH
p }

, fc =

√
Pc

Tr{WcWH
c }

(3.40)
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where fp and fc are the average transmitted power scaling factors, Wp and Wc denote

precoding matrices at the PBS and CBS, and s =

[
sTp sTc

]T
denotes the symbol vector

transmitted by the CBS, which includes both the CU and PU data. Excluding the power

scaling factor, the precoder at the CBS using the ZF criterion can be expressed as

Wc = HH(HHH)−1(I−Vp) (3.41)

where

H =

Hcp

Hcc

 , Vp =

HppWp 0Np×Nc

HpcWp 0Nc×Nc

 . (3.42)

Therefore, the received signals at the PUs and CUs are

yp = fpsp + np (3.43)

yc = (fp − fc)HpcWpsp + fcsc + nc. (3.44)

Forcing fp = fc as in [29] to eliminate PBS interference at the CUs can result in a significant

loss of SNR for the PUs compared to the case without the cognitive system. Thus, the price

paid for maintaining the QoS of the PUs with different power normalizations is increased

interference at the CUs, particularly at high SNRs.

3.4.2 Overlay Phase Alignment Linear Precoding (OPALP)

An alternative linear precoder proposed in [29] for the overlay case is based on the use of CI

that rotates the phase of the MUI such that is aligned with the signal of interest and thus

constructive. As before, we generalize the approach in [29] to allow differsent power scaling

factors, so that the PU performance is not impacted and some PBS interference is leaked to
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the CUs. The generalized MSE criterion is thus

ϵ = E{∥Vps+HWcs− (A+BQϕ)s∥2} (3.45)

where A = diag{[1, · · · , 1, 0, · · · , 0]} is a diagonal matrix whose first Np diagonal elements

equal 1, B = diag{[0, · · · , 0, 1, · · · , 1]} is a diagonal matrix whose last Nc elements equal 1,

and Qϕ = diag(s) · |HHH | · diag(s)H contains the phase-corrected correlation elements. The

precoding matrix at the CBS in this case is given by

Wc = HH(HHH)−1(A+BQϕ −Vp), (3.46)

and the received signals at the PUs and CUs are

yp = fpsp + np (3.47)

yc = (fp − fc)HpcWpsp + fcQ
ϕ
c sc + nc (3.48)

where

Qϕ
c = diag

{[
Np+Nc∑
j=1

|ρ(Np+1)j|, · · · ,
Np+Nc∑
j=1

|ρ(Np+Nc)j|

]}
(3.49)

and ρij is the (i, j)th element in the cross correlation matrix Q = HHH . This algorithm,

referred to as Overlay Phase Alignment Linear Precoding (OPALP), allows the CUs to

benefit from the inter-user constructive interference in the cognitive system, but in general

will not entirely eliminate interference from the PBS.
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3.4.3 Overlay Constructive Interference SINR Balancing (OCISB)

To overcome the need of for the CBS to spare power for relaying the PU messages as in the

above approaches, in this section we present a new algorithm, Overlay Constructive Interfer-

ence SINR Balancing (OCISB), that applies the SB idea of UCISB to the overlay scenario,

where knowledge of the data and CSI from the primary system is exploited. In this ap-

proach, the CBS transmission is designed such that all interference terms make constructive

contributions to the signal power, and each CU’s SINR can be expressed as:

SINRc,j =
∥hcc,jxc + hpc,jxp∥2

σ2
c

. (3.50)

To achieve this goal, the noiseless received signal at each CU, i.e., rc,j = hcc,jxc + hpc,jxp,

should be located inside the target decision region. Therefore, the SINR balancing approach

for exploiting CI in the overlay scanario can be written as the following convex optimization

problem:

max
xc

γ (P4)

subject to

aT
l,j

aT
r,j


R{hcc,jxc + hpc,jxp}

I{hcc,jxc + hpc,jxp}

 ≥ γ

aT
l,j

aT
r,j

 sc,j , ∀j ∈ J (C4-1)

∥hcp,kxc∥2 ≤ ηk , ∀k ∈ K (C4-2)

∥xc∥2 ≤ Pc (C4-3)

where al,j and ar,j are defined as in Section 3.3.2.
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3.4.4 Overlay Cognitive Maximum Safety Margin (OCMSM)

Our second proposed CI-based nonlinear precoder for overlay systems is designed using

the MSM criterion. Rather than using an interference temperature constraint or simply

eliminating all CBS interference to the primary system, in this approach we maximize the

SM of the CUs while ensuring that the SM of the PUs is no smaller than what it would be in

the primary-only scenario. Most importantly, even though the CBS does not directly use part

of its power for relaying the primary transmission, the PUs can still achieve an improvement

in their QoS due to the energy harvested from the CI produced by the cognitive transmission.

3.4.4.1 Primary System

In the primary-only scenario, the noiseless received signal for user k is given by

r0p,k = hpp,kxp , (3.51)

which in the modified coordinate system is

z0p,k = s∗p,kr
0
p,k = s∗p,khpp,kxp. (3.52)

The vector form of this equation for all users is

z0p = SH
p Hppxp (3.53)

where Sp = diag(sp). Then the original SM for each PU can be expressed as

δ0p,k = R{z0p,k} sin θ − |I{z0p,k}| cos θ. (3.54)
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The worst-case SM in this case is

δ0p = min
k∈K

δ0p,k , (3.55)

and we design the CBS transmission such that this value is not reduced by the existence of

the CR network.

When the secondary system is active, the noiseless signal in the modified coordinate system

at kth PU becomes

zp,k = s∗p,krp,k = s∗p,k(hpp,kxp + hcp,kxc) . (3.56)

To keep the secondary transmission from reducing the worst-case SM, the following constraint

must be satisfied:

δp,k = R{zp,k} sin θ − |I{zp,k}| cos θ ≥ δ0p , ∀k ∈ K. (3.57)

Stacking the Np constraints in matrix form, for BPSK we have

R{zp} ≥ δ0p1Np (3.58)

and for DPSK (D > 2):

−R{zp} tan θ +
δ0p

cos θ
1Np ≤ I{zp} ≤ R{zp} tan θ −

δ0p
cos θ

1Np (3.59)

where

zp = SH
p (Hppxp +Hcpxc) = z0p + SH

p Hcpxc . (3.60)
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If we define H̃cp = SH
p Hcp, the real and imaginary parts of zp can be written as

R{zp} = R{z0p}+R{H̃cpxc} (3.61)

=

[
R{z0p} R{H̃cp} −I{H̃cp}

]
1

R{xc}

I{xc}

 (3.62)

= Ev (3.63)

I{zp} = I{z0p}+ I{H̃cpxc} (3.64)

=

[
I{z0p} I{H̃cp} R{H̃cp}

]
1

R{xc}

I{xc}

 (3.65)

= Fv. (3.66)

Then, the constraint in (3.59) can be rewritten as

[
−E 1Np

]v
δ0p

 ≤ 0Np (BPSK) (3.67)

−E tan θ + F 1
cos θ

1Np

−E tan θ − F 1
cos θ

1Np


v
δ0p

 ≤ 02Np (DPSK, D > 2) (3.68)
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3.4.4.2 Cognitive System

For the jth CU, the noiseless received symbol in the modified coordinate system is

zc,j = s∗c,jrc,j = s∗c,j(hcc,jxc + hpc,jxp) (3.69)

which in vector form for all CUs becomes

zc = SH
c Hccxc + SH

c Hpcxp = H̃ccxc + g (3.70)

where g = SH
c Hpcxp is known due to the data shared by the PBS. The safety margin for

each CU is

δc,j = R{zc,j} sin θ − |I{zc,j}| cos θ. (3.71)

Denote the worst SM of all CUs as

δc = min
j∈J

δc,j, (3.72)

so that

R{zc,j} sin θ − |I{zc,j}| cos θ ≥ δc ∀j ∈ J (3.73)

The CBS designs the transmit signal vector xc to maximize δc. Similar to Eq. (3.28), the

constraint can be formulated in matrix form as follows, for BPSK:

R{zc} ≥ δc1Nc (3.74)
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and for DPSK (D > 2):

−R{zc} tan θ +
δc

cos θ
1Nc ≤ I{zc} ≤ R{zc} tan θ −

δc
cos θ

1Nc (3.75)

Using the real-valued matrix representation,

R{zc} = R{g}+R{H̃ccxc} (3.76)

=

[
R{g} R{H̃cc} −I{H̃cc}

]
1

R{xc}

I{xc}

 (3.77)

= Gv (3.78)

I{zc} = I{g}+ I{H̃ccxc} (3.79)

=

[
I{g} I{H̃cc} R{H̃cc}

]
1

R{xc}

I{xc}

 (3.80)

= Qv, (3.81)

the constraints in (3.74) and (3.75) can be rewritten as

[
−G 1Nc

]v
δc

 ≤ 0Nc (BPSK) (3.82)

−G tan θ +Q 1
cos θ

1Nc

−G tan θ −Q 1
cos θ

1Nc


v
δc

 ≤ 02Nc (DPSK, D > 2). (3.83)
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In the overlay CR system, the objective is to maximize the worst case SM of the CUs without

degrading the worst-case SM of the PUs. For the case of DPSK with D > 2, the resulting

SLP optimization problem is obtained by combining Eq. (2.3), (3.68) and (3.83), as follows:

maximize
u,δc

δc (P5)

subject to



−E tan θ + F 1
cos θ

1Np 0Np

−E tan θ − F 1
cos θ

1Np 0Np

−G tan θ +Q 0Nc

1
cos θ

1Nc

−G tan θ −Q 0Nc

1
cos θ

1Nc





1

u

δ0p

δc


≤ 02(Nc+Np) (C5-1)

∥u∥2 ≤ Pc, (C5-2)

where the last constraint is to limit the instantaneous transmit power. For BPSK signaling,

we substitute the constraint in (C5-1) with Eq. (3.67) and (3.82):

−E 1Np 0Np

−G 0Nc 1Nc




1

u

δ0p

δc


≤ 0Nc+Np . (C5-1’)

The precoded transmit vector xc is then found using (3.29). This optimization problem is

convex, and is referred to as Overlay Cognitive Maximum Safety Margin (OCMSM).

3.5 Numerical Results

Table 3.1 provides a summary of the precoding algorithms presented in this chapter, together

with the CR problem they address and the extent of their use of constructive interference.

“Among CUs” indicates that CI is exploited among the MUI in the CU symbols, while
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P → C and C → P respectively indicate that CI from the PBS benefits the CUs and CI

from the CBS benefits the PUs. In this section, we assess the performance of our proposed

MSM-based precoding approaches and compare them with the other techniques developed in

Sections 3.3 and 3.4. Monte-Carlo simulations are conducted over 1000 independent channel

realizations with a block of T = 100 symbols in both underlay and overlay CR scenarios.

The channels Hpp, Hcp, Hpc and Hcc are composed of i.i.d. Gaussian random variables with

zero mean and unit variance. The complex Gaussian noise is assumed to have the same

power (= 1) for all PUs and CUs. The PBS transmission power is set at Pp = 10 dBW.

Both the PBS and CBS are assumed to have 10 antennas, and unless stated otherwise, the

number of PUs and CUs are both set at 4.

Table 3.1: Construcitve Interference Algorithm Summary

CR type
Precoder

CI
Among CUs P→C C→P

Underlay
UCZF - - -
UCISB ✓ - -
UCMSM ✓ - -

Overlay

OCZF - - -
OPALP ✓ - -
OCISB ✓ ✓ -
OCMSM ✓ ✓ ✓

Since for SLP we work with finite alphabet constellations, we will analyze the block trans-

mission performance of the system using the throughput τ as calculated in [94]:

τ = (1− PB)× c× T ×N, (3.84)

where PB is the block error rate (BLER), c = log2D is the number of bits per modulation

symbol, T is the block length and N is the number of receivers. In each block for each

user, there are C = c× T data message bits transmitted from the BS. For PSK modulation,

assuming a binomial distribution of errors in each block, the probability of more than q
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Figure 3.3: CBS Transmit Power vs. CU BER in the underlay scenario where Pp =
10 dBW, Mp =Mc = 8, Np = Nc = 4, and σ2

c = σ2
p = 1.

errors occurring in one block of C bits is expressed as

Pe(q, C) = 1−
q∑

i=0

(
C

i

)
P i
b (1− Pb)

C−i (3.85)

where Pb is BER. If the receiver detects errors without correction, a block is received correctly

only if all C bits in the block are received correctly, and thus the BLER is PB = Pe(0, C).

On the other hand, if the receiver is capable of correcting up to Q errors in each block, then

the BLER is given by PB = Pe(Q,C) [95].

3.5.1 Underlay CR Scenarios

A comparison among UCZF, UCISB and UCMSM is illustrated in Fig. 3.3, which shows

the BER of the CUs with respect to the CBS transmit power. For UCISB, we assume

the interference temperature imposed by each PU is 0, i.e., ηk = 0 ∀k ∈ K in Eq. (3.23).

In Fig. 3.3, we see that in the underlay case, UCISB and UCMSM are equivalent because
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they employ the same CIR and linear optimization objective. Both precoders outperform

the traditional ZF scheme, particularly when the symbols are generated with lower order

modulation. For example, in the BPSK case, UCISB and UCMSM have more than a 10dBW

power gain compared to UCZF. With higher transmit power, the SLP feasible region can

be further enlarged and made more resistant to the impact of noise, and thus UCISB and

UCMSM perform much better as the SNR increases.

3.5.2 Overlay CR Scenarios

We focus more attention on the more interesting overlay case discussed in Section 3.4. In

order to protect the PUs from the CR transmission, for OCISB we assume an allowable

interference temperature of zero, while for OCMSM the smallest SM of the PUs is set as the

threshold δ0p in the optimization problem (P5). In the following figures, the performance of

OCISB and OCMSM is only plotted for the cases where the optimizations are feasible. We

include plots showing the percentage of the trials that were feasible for each algorithm.

3.5.2.1 BER and Throughput

Fig. 3.4a and 3.4b show the BER performance of the CUs versus the CBS transmit power for

different precoding schemes. Both OCISB and OCMSM, the two CI-based SLP approaches,

significantly outperform the OCZF and OPALP precoders since they take advantage of CI

not only from the CU MUI but also what is available (although not optimized) from the

primary system. Similar to the result in the underlay CR scenarios, the lower the modulation

order, the better the CI precoders perform. The superiority of OCMSM over OCISB results

from the MSM criterion which maintains the BER lower bound of the PUs’ by ensuring that

the worst-case SM is not deteriorated by the CBS interference. For the OCZF precoder, when

the CBS transmit power is high, the scaling factor fc will be large, and the PBS interference
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Figure 3.4: CBS Transmit Power vs. CU BER in the Overlay scenario where Pp =
10 dBW, Mp =Mc = 8, Np = Nc = 4, σ2

c = σ2
p = 1, and η1 = · · · = ηNc = 0.

term in Eq. (3.44) will have a significant affect, deteriorating the CU performance. On the

other hand, the alternative setting where fp = fc leads to an unacceptable degradation to

the PU performance.
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Figure 3.6: CBS Transmit Power vs. Percentage of Feasible Solutions in the overlay scenario
where Pp = 10 dBW, Mp =Mc = 8, Np = Nc = 4, σ2
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p = 1 and OCMSM precoding.

We present the throughput at the CUs versus the CBS transmission power in Fig. 3.5 for

different PSK modulations. We assume that the receivers have the capability of correcting

up to Q = 6 errors in one block. It can be observed that the throughput saturates to 400,
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800, 1200 bits per channel use (per block) for BPSK, QPSK and 8PSK respectively, which

is the maximum achievable for the given modulations. When feasible, OCMSM provides

the highest throughput, and allows for switching to higher-order modulations at lower SNR

when adaptive modulation is employed [96]. In Fig. 3.6, we compare OCMSM with OCISB

precoding with respect to the percentage of feasible solutions. With the same modulation

and transmission power, it is more likely that a feasible solution can be found with OCMSM

than OCISB.

We show the PU throughput in Fig. 3.7 as the CBS power increases. Note that since the

PBS is operating in a relatively low SNR regime with a transmit power of 10dBW, the lower

order modulation QPSK actually outperforms 8PSK in terms of throughput. When the

CBS employs OCISB, OPALP, or OCZF, the performance of the PUs will remain constant

since the secondary system eliminates all CBS interference at the PUs. Note however that

when OCMSM is feasible, the PU throughput actually improves significantly for both the

QPSK and 8PSK cases, due to the exploitation of CI from the secondary network which

is not available using the other methods. While the algorithm ensures that the worst-case
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Figure 3.8: Number of CUs vs. CU Throughput in the overlay scenario where Pp =
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p = 1 and OCMSM precod-

ing.

SM is not deteriorated, we see that in fact significant extra CI is available from the CBS

transmissions. OCMSM is thus a relatively conservative approach; better CU performance

could in principle be achieved by using a different constraint that maintained the nominal

PU QoS.

3.5.2.2 Number of CUs

For the block-level precoding methods, UCZF and OCZF, the number of CUs served by the

CBS and the number of PUs protected from the CBS interference cannot be greater than

the number of CBS antennas. However, this restriction does not hold for CI-based symbol

level precoding, due to the exploitation of CI and the extra DoFs generated at the symbol

level, the transmitter can often serve more users than there are antennas [78]. Fig. 3.8 shows

the throughput of the secondary network with OCMSM precoding when the number CBS

antennas is 8, the number of PUs is 4, and the number of CUs increases from 4 to 12. For
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Figure 3.10: Number of CUs vs. PU Throughput in the overlay scenario where Pp =
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BPSK modulation with error correction (Q = 6), the CU throughput is able to maintain the

maximum achievable value as the number of CUs increases, with only a slight degradation

beginning with Nc = 12. Even without error correction, for BPSK the total CU throughput
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increases up to Nc = 6 before beginning to decrease. QPSK also achieves an increase in total

throughput with error correction when Nc = 6, but at this level of CBS transmit power no

improvement is achieved for 8-PSK. This suggests that SLP is useful for low-rate applications

where massive connectivity is required, such as in IoT networks.

The percentage of feasibile solutions for OCMSM is plotted in Fig. 3.9 when Np +Nc ≥Mc.

While feasible solutions are less likely for larger numbers of CUs and higher-order modulation,

the degradation is gradual, unlike the block-level algorithms. In Fig. 3.10 we show the PU

throughput versus the number of CUs with the primary-only cases as benchmarks. The trend

of the curves is similar to that in Fig. 3.7. Regardless of the modulation order, OCMSM is

always able to improve the PU throughput. With the aid of CI, the QoS of both the CUs

and PUs can be increased without investing more transmission power or directly relaying

the primary signals.

3.5.2.3 Robustness to Imperfect CSI

Here we compare the robustness of the overlay algorithms presented above when the CSI is

not estimated perfectly. In order to reflect the CSI imperfections, we use a simple model in

which the channel estimates Ĥ are related to the true channels as follows:

Ĥ =
√
1− α2H+ αϵ (3.86)

where the scalar α ∈ [0, 1] specifies the level of CSI inaccuracy, and ϵ is composed of circular

CN (0, 1) random variables representing the CSI error with each element following a circularly

symmetric normal distribution [97]. A value of α = 0 indicates that the channel is estimated

perfectly while α = 1 corresponds to no CSI. Fig. 3.11a and Fig. 3.11b respectively show

the BER performance of the PUs and CUs when α = .03 for both Hcp and Hcc. The BER

results for perfect CSI are repeated for comparison. Clearly, the introduction of CSI errors
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Figure 3.11: CBS Transmit Power vs. CU BER in the overlay scenario with imperfect CSI
where Pp = 10 dBW, Mp =Mc = 8, Np = Nc = 4, σ2

c = σ2
p = 1, α = 3% and QPSK.

degrades the BER regardless of what precoder is used, especially for higher CBS power

levels, but the order of performance among the algorithms remains unchanged. The impact

on the PUs is clearly much greater than for the CUs, and effectively places a limit on the

allowable transmit power at the CBS. However, note that the gain in BER provided by CI
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in OCMSM provides some additional robustness to CSI errors. The performane of OCMSM

with imperfect CSI is as good as or better than the performance of the other algorithms

with perfect CSI for CBS transmit powers up to 27dBW.

3.6 Conclusion

In this chapter, we have proposed a number of different SLP algorithms for underlay and

overlay CR networks that take advantage of constructive interference via symbol level pre-

coding. For the underlay case, we reformulated the SINR balancing problem to optimize the

CU performance subject to an interference temperature constraint for the PUs, and we also

showed how the concept of maximum safety margin can be employed to reformulate the SLP

problem. For the overlay case, we have generalized two previous approaches to the problem

based on zero-forcing and interference balancing, and we have shown how to extend the

SINR balancing and maximum safety margin algorithms to take advantage of the channel

and data information shared by the PBS. When feasible, our proposed algorithms achieve

significantly improved performance compared with prior overlay solutions since they do not

require the CBS to directly relay the PU symbols, but instead allow the benefit of CI to be

naturally exploited. While all algorithms are designed to have no negative impact on the

performance of the primary network, the interference constraint imposed by the OCMSM

algorithm was shown to actually enhance the QoS of the PUs. The SLP-based methods

were further shown to allow transitions to higher-order modulation at lower transmit powers

in adaptive modulation systems, and allow many more cognitive users than antennas to be

served for low-order modulations. Further work is needed to make the algorithms robust to

errors in the CSI estimation.
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Chapter 4

Robust SLP in Overlay CR Systems

For the case of imperfect CSI from the PBS, we propose robust SLP schemes. First, with a

norm-bounded CSI error model to approximate the uncertain channels, we adopt a max-min

philosophy to conservatively achieve robust SLP constraints. Second, we use the additive

quantization noise model (AQNM) to describe the quantized PBS CSI and employ a stochas-

tic constraint to formulate the problem. Both robust approaches also result in a quadratic

objective with linear inequality constraints. Simulation results show that, rather than simply

trying to eliminate the network’s cross-interference, the proposed robust SLP schemes enable

the primary and secondary networks to aid each other in meeting their quality of service

constraints.

4.1 System Model and Problem Formulation

We consider a downlink CR network with anMc-antenna CBS servingNc single-antenna CUs.

The CR network is granted access to share the primary system spectrum in which an Mp-

antenna PBS is communicating with Np single-antenna PUs. The system model is depicted
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Figure 4.1: Cognitive Radio System Model

in Fig. 4.1. The direct primary and cognitive channels are assumed to be respectively denoted

by the following flat-fading model:

Hpp =

[
hT
pp,1 · · · hT

pp,Np

]T
∈ CNp×Mp , (4.1)

Hcc =

[
hT
cc,1 · · · hT

cc,Np

]T
∈ CNc×Mc . (4.2)

The corresponding interference channels are defined as

Hpc =

[
hT
pc,1 · · · hT

pc,Np

]T
∈ CNc×Mp , (4.3)

Hcp =

[
hT
cp,1 · · · hT

cp,Np

]T
∈ CNp×Mc (4.4)

from the PBS to CUs and the CBS to PUs, respectively. We will leave further specification

of the channel models until later.
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The vectors sp(t) = [sp,1(t), sp,2(t), · · · , sp,Np(t)]
T and sc(t) = [sc,1(t), sc,2(t), · · · , sc,Nc(t)]

T

will be used to represent the symbols to be transmitted to the individual PUs and CUs,

respectively, at time t. In this work we assume for simplicity that all transmitted symbols

are uncorrelated and drawn from a D-PSK constellation with unit magnitude, i.e., sl,m(t) ∈

{s|s = exp(jπ(2d + 1)/D), d ∈ {0, · · · , D − 1}} where l ∈ {p, c} denotes the primary

or cognitive system, and m denotes the user index in the corresponding system. The sets

K = {1, · · · , Np} and J = {1, · · · , Nc} enumerate the PUs and CUs, respectively. The idea

of CI precoding can in principle be applied to any constellation design [79], e.g., QAM [84]

otherwise, but is most easily formulated for the case of PSK signals. The algorithm for other

constellations such as QAM is slightly more complicated since the definition of safety margin

becomes dependent on whether an inner, edge, or corner constellation point is transmitted,

but the basic principle of the algorithm is the same.

At time slot t, the received signals at the PUs and CUs can be respectively written as

yp(t) = Hppxp(t) +Hcpxc(t) + np(t) , (4.5)

yc(t) = Hccxc(t) +Hpcxp(t) + nc(t) , (4.6)

where xp(t) ∈ CMp×1 and xc(t) ∈ CMc×1 are the transmitted signals at the PBS and CBS

after precoding and power loading, and np(t) ∼ CN (0, σ2
p) and nc(t) ∼ CN (0, σ2

c ) are additive

white Gaussian noise (AWGN) vectors. In order to simplify the notation, in what follows

we drop the time index t.

4.1.1 Phase Alignment Linear Precoding (PALP)

Conventional precoding methods such as MMSE, ZF and maximum-SINR beamforming are

designed with the objective of minimizing the inter-user interference so that the received

symbols lie as close as possible to the nominal constellation points (or scaled versions thereof

56



in the case of PSK). This is effectively equivalent to ensuring that for each user m, the noise-

free received signal rm = hmx lies within a circle centered at its corresponding constellation

point sm [44], as depicted in Fig. 2.1. The shaded area inside the circle is referred to as the

symbol region (SR), a down-scaled version of the decision region for sm.

The method described in [29] is based on the MMSE criterion and the early Phase Alignment

Linear Precoding (PALP) technique for SLP [14]; it is the prior approach most closely

related to the algorithms we present in this chapter for cognitive radio scenarios. However,

a modification to the PALP approach in [29] is necessary for a fair comparison, and to allow

the algorithm to protect the PUs from the CR interference. In particular, we tailor [29]

(hereafter referred to as CR-PALP) by allowing different instantaneous power scaling factors

at the PBS and CBS:

fp =

√
Pp

Tr{WpspsHp W
H
p }

, fc =

√
Pc

Tr{WcscsHc W
H
c }

where Pp and Pc respectively denote the total transmit power of the PBS and CBS, fp and

fc are the respective instantaneous scaling factors, and Wp and Wc are the linear precoders

for the primary and cognitive systems, respectively. The generalized MSE criterion for CR-

PALP is given by

ϵ = E{∥Vps+HWcs− (A+BQϕ)s∥2} , (4.7)

where according to [29],

Vp =

HppWp 0Np×Nc

HpcWp 0Nc×Nc

 , s =

sp
sc

 , H =

Hcp

Hcc

 ,

A = diag{[1, · · · , 1, 0, · · · , 0]} is a diagonal matrix whose first Np diagonal elements equal 1,

B = diag{[0, · · · , 0, 1, · · · , 1]} is a diagonal matrix whose last Nc elements equal 1, and
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Qϕ = diag(s) · |HHH | · diag(s)H contains the phase-corrected correlation elements. The

precoding matrix at the CBS derived from the MMSE criterion is given by

Wc = HH(HHH)−1(A+BQϕ −Vp) , (4.8)

and the received signals at the PUs and CUs are

yp = fpsp + np , (4.9)

yc = (fp − fc)HpcWpsp + fcQ
ϕ
c sc + nc . (4.10)

The performance of the PUs in our CR scenario will not be impaired using this modified

CR-PALP approach, unlike using the method of [29] directly.

4.1.2 SM-constrained SLP

For PSK constellations, it is not necessary that rm be close to sm in order to be decoded

correctly, as long as it lies in the correct decision region with a given level of certainty. Thus,

it is not necessary that all of the inter-user interference be eliminated, since some interference

components could add constructively and push the received symbol further into the decision

region, making it more robust to noise and interference external to the system. We can thus

redefine the SR as, for example, in Fig. 2.2, where the SR becomes a displaced version of

the circular sector of angular extent 2π/D centered at the origin and corresponding to sm.

This displaced sector has an infinite radius, and all points within it are at least a certain

distance δm from the decision boundaries for sm. This region is referred to as a constructive

interference region with safety margin δm [82]. The larger δm, the more robust the received

signal will be to noise, interference, modeling errors, or other impairments.
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In order to mathematically interpret the CIR and SM in a unified way, we rotate the original

coordinate system by the negative phase of the desired constellation symbol, i.e., ∡s∗m, to

obtain the modified coordinate system in Fig. 2.3. After rotation, sm is placed at 1 on the

real axis, and rm is relocated to

zm = s∗mrm . (4.11)

Then we can easily calculate the SM of the noise-free symbol at user m as [82,84]

δm = R{zm} sin θ − |I{zm}| cos θ. (4.12)

Ideally, the SM should be large enough to sufficiently reduce the probability that noise or

other impairments will push the noise-free signal outside the desired detection region; the

larger the SM, the smaller the SER. To design the precoder, one can constrain the SM to be

above a certain threshold to ensure a given target SER. The fact that the CIR in Fig. 2.3 is

much larger than the SR in Fig. 2.2 means that increased flexibility is available to achieve

the given performance objective. In this chapter, we will consider the following type of SLP

optimization, which minimizes the transmit power to achieve a certain desired SM:

min
x

∥x∥2 (4.13)

subject to δm ≥ δm,0 , ∀m ∈ M (4.14)

where δm,0 is the desired minimum SM for user m and M = {1, · · · ,M} indexes the users.
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4.2 Power Minimization SLP in CR

Before considering the robust SLP design, we first examine the simpler case where the PBS

shares its data and perfect CSI with the CBS. The SM for each PU and CU is assumed to

be constrained to be δ0p,k for k ∈ K and δ0c,j for j ∈ J , corresponding for example to possibly

different target SERs for each PU and SU. Here we focus on SLP designs that minimize the

transmit power at the CBS and achieve the SM QoS constraints at both the PUs and CUs.

4.2.1 Primary System

The rotated symbols received at the PUs can be expressed as

zp,k = s∗p,krp,k = s∗p,k(hpp,kxp + hcp,kxc), (4.15)

for k ∈ K. Defining

h̃pp,k ≜ s∗p,khpp,k, h̃cp,k ≜ s∗p,khcp,k , (4.16)

we have

zp,k = h̃pp,kxp + h̃cp,kxc. (4.17)

The constraints ensuring the QoS of the PUs can be expressed as

δp,k = R{zp,k} sin θ − |I{zp,k}| cos θ ≥ δ0p,k ,∀k ∈ K (4.18)
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which is equivalent to


R{h̃pp,kxp} sin θ − I{h̃pp,kxp} cos θ +R{h̃cp,kxc} sin θ − I{h̃cp,kxc} cos θ ≥ δ0p,k ,

R{h̃pp,kxp} sin θ + I{h̃pp,kxp} cos θ +R{h̃cp,kxc} sin θ + I{h̃cp,kxc} cos θ ≥ δ0p,k .

For any given complex vector x, we define the operator

℧(x) ≜

R{x} sin θ − I{x} cos θ −R{x} cos θ − I{x} sin θ

R{x} sin θ + I{x} cos θ R{x} cos θ − I{x} sin θ

 (4.19)

and denote

H̃℧
pp,k = ℧(h̃pp,k), H̃℧

cp,k = ℧(h̃cp,k). (4.20)

Using the following real-valued notation,

x̌p =

R{xp}

I{xp}

 , x̌c =

R{xc}

I{xc}

 , (4.21)

the constraints in Eq. (4.18) can be simplified as

H̃℧
pp,kx̌p + H̃℧

cp,kx̌c ≥ δ0p,k12 , ∀k ∈ K . (4.22)

4.2.2 Cognitive System

Similarly, the rotated symbols at the CUs can be written as

zc,j = s∗c,jrc,j = s∗c,j(hcc,jxc + hpc,jxp) = h̃cc,jxc + h̃pc,jxp , (4.23)
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where

h̃cc,j ≜ s∗c,jhcc,j , h̃pc,j ≜ s∗c,jhpc,j . (4.24)

The SM constraints at the CUs can be expressed as


R{h̃cc,jxc} sin θ − I{h̃cc,jxc} cos θ +R{h̃pc,jxp} sin θ − I{h̃pc,jxp} cos θ ≥ δ0c,j ,

R{h̃cc,jxc} sin θ + I{h̃cc,jxc} cos θR{h̃pc,jxp} sin θ + I{h̃pc,jxp} cos θ ≥ δ0c,j ,

for j ∈ J , which can again be written more compactly using the operator in Eq. (4.19):

H̃℧
cc,jx̌c + H̃℧

pc,jx̌p ≥ δ0c,j12 , ∀j ∈ J . (4.25)

Combining all of the above notation together, we can express the general power minimization

SLP problem with perfect CSI as follows:

min
x̌c

∥x̌c∥2 (4.26)

subject to

−H̃℧
cp

−H̃℧
cc

 x̌c ≤

H̃℧
pp

H̃℧
pc

 x̌p −

δ0
p ⊗ 12

δ0
c ⊗ 12

 (4.27)

where the inequalities are to be interpreted element-wise, δ0
p =

[
δ0p,1 · · · δ0p,Np

]T
, δ0

c =[
δ0c,1 · · · δ0c,Nc

]T
, and H̃℧

ab ≜ ℧(diag(s∗b)Hab), with a, b ∈ {c, p}. The result is a quadratic

programming problem with linear inequality constraints which can be efficiently solved using

a variety of numerical methods.
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4.3 Robust SLP for Norm-Bounded CSI Errors

In practice, the CSI shared by the PBS with the CBS will be imperfect due for example to

quantization, or somewhat outdated due to delays required for processing and transmission.

As a result, robust precoding designs are critical for overlay systems. We address such a

design in this section for the case where the imperfect CSI can be described in terms of a

norm-bounded error. We model the CSI shared by the PBS with the CBS as follows:

hpp,k = ĥpp,k + ep,k , (4.28)

hpc,j = ĥpc,j + ec,j , (4.29)

where the ·̂ indicates the shared CSI and ep,k, ec,j are norm-bounded CSI error vectors, i.e.,

∥ep,k∥2 ≤ ϵp,k and ∥ec,j∥2 ≤ ϵc,j. No other assumption regarding the channels is required.

Using Eq. (4.19), it is easy to show that

H̃℧
pp,k = ℧(h̃pp,k) = ℧(s∗p,k(ĥpp,k + ep,k)) = H̄℧

pp,k + Ẽ℧
p,k , (4.30)

H̃℧
pc,j = ℧(h̃pc,j) = ℧(s∗c,j(ĥpc,j + ec,j)) = H̄℧

pc,j + Ẽ℧
c,j, (4.31)

where h̄pp,k ≜ s∗p,kĥpp,k, H̄℧
pp,k ≜ ℧(h̄pp,k), Ẽ℧

p,k ≜ ℧(s∗p,kep,k), h̄pc,j ≜ s∗c,jĥpc,j, H̄℧
pc,j ≜

℧(h̄pc,j), and Ẽ℧
c,j ≜ ℧(s∗c,jec,j). Due to the uncertainty in hpp,k, the transmitted signal at

the PBS, i.e., xp, which necessarily depends on hpp,k, is not precisely known. Assuming that

the precoding method used at the PBS is known to the CBS, we will assume that an estimate

of the transmitted signal, denoted by x̌e
p, can be computed by the CBS using the quantized

CSI ĥpp,k. With this notation, the constraints in 4.26 can be reformulated as

(H̄℧
pp,k + Ẽ℧

p,k)x̌
e
p + H̃℧

cp,kx̌c ≥ δ0p,k12, ∀k ∈ K , (4.32)

H̃℧
cc,jx̌c + (H̄℧

pc,j + Ẽ℧
c,j)x̌

e
p ≥ δ0c,j12, ∀j ∈ J . (4.33)
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For a robust bounded-CSI-error design, we desire that the above constraints hold for every

possible error realization and every user:

− Ẽ℧
p,kx̌

e
p ≤ H̄℧

pp,kx̌
e
p + H̃℧

cp,kx̌c − δ0p,k12 , ∀∥ep,k∥2 ≤ ϵp,k, ∀k ∈ K , (4.34)

− Ẽ℧
c,jx̌

e
p ≤ H̃℧

cc,jx̌c + H̄℧
pc,jx̌

e
p − δ0c,j12 , ∀∥ec,j∥2 ≤ ϵc,j, ∀j ∈ J . (4.35)

We separate the operator ℧(x) into two parts, as follows:

℧(x) ≜

℧1(x)

℧2(x)

 ≜

x℧1

x℧2

 , (4.36)

where

℧1(x) = x℧1 =

 R{xT} sin θ − I{xT} cos θ

−R{xT} cos θ − I{xT} sin θ


T

, (4.37)

℧2(x) = x℧2 =

R{xT} sin θ + I{xT} cos θ

R{xT} cos θ − I{xT} sin θ


T

, (4.38)

so that constraint (4.34) can be rewritten in two parts as

−ẽ℧1
p,kx̌

e
p ≤h̄℧1

pp,kx̌
e
p + h̃℧1

cp,kx̌c − δ0p,k , ∀∥ep,k∥2 ≤ ϵp,k, ∀k ∈ K , (4.39a)

−ẽ℧2
p,kx̌

e
p ≤h̄℧2

pp,kx̌
e
p + h̃℧2

cp,kx̌c − δ0p,k , ∀∥ec,j∥2 ≤ ϵc,j, ∀j ∈ J . (4.39b)
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Note that

∥ − ẽ℧1
p,kx̌

e
p∥2

≤∥ − ẽ℧1
p,k∥2∥x̌

e
p∥2

=

∥∥∥∥∥∥∥
[
R{eTp,k} I{eTp,k}

] sin θ − cos θ

− cos θ − sin θ


∥∥∥∥∥∥∥
F

∥∥x̌e
p

∥∥
2

≤
∥∥∥∥[R{eTp,k} I{eTp,k}

]∥∥∥∥
F

∥∥∥∥∥∥∥
 sin θ − cos θ

− cos θ − sin θ


∥∥∥∥∥∥∥
F

∥∥x̌e
p

∥∥
2

≤
√
2ϵp,k∥x̌e

p∥2

and similarly, we can show ∥ − ẽ℧2
p,kx̌

e
p∥2 ≤

√
2ϵp,k∥x̌e

p∥2 . Thus, if we can guarantee that the

following constraints are satisfied, namely

H̄℧
pp,kx̌

e
p + H̃℧

cp,kx̌c ≥ (
√
2ϵp,k∥x̌e

p∥2 + δ0p,k)12, ∀k ∈ K ,

H̄℧
pc,jx̌

e
p + H̃℧

cc,jx̌c ≥ (
√
2ϵc,j∥x̌e

p∥2 + δ0c,j)12, ∀j ∈ J ,

then the constraints in (4.34) and (4.35) will be satisfied as well.

Using the above results, we obtain the robust precoder by solving the following optimization

problem:

min
x̌c

∥x̌c∥2 (4.40)

subject to H̄℧
pp,kx̌

e
p + H̃℧

cp,kx̌c ≥ (
√
2ϵp,k∥x̌e

p∥2 + δ0p,k)12 , ∀k ∈ K , (4.41)

H̄℧
pc,jx̌

e
p + H̃℧

cc,jx̌c ≥ (
√
2ϵc,j∥x̌e

p∥2 + δ0c,j)12 , ∀j ∈ J . (4.42)

As in the case with perfect CSI, the robust SLP design can be found via a quadratic program

with linear inequality constraints.
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4.4 Robust SLP for Stochastic CSI Errors

The bounded error model above is a very conservative approach, given its goal of ensuring

that the SM constraints are met for all possible CSI error realizations. A less conservative

approach that allows constraint violations with some acceptably small probability is to as-

sume a statistical CSI error model. As an example, in this section we consider the case

where such a model for the PBS CSI error is available due to knowledge of how the channel

is quantized. In particular, we assume that the channels hQ
pp,k and hQ

pc,j shared by the PBS

are element-wise quantized, and we use the approximate additive quantization noise model

(AQNM) [49, 50] to describe their resulting statistics. Other models are possible based on

the specific quantization method employed.

We assume that the channels are Gaussian with zero mean and covariance given by

Rhpp,k
≜ E{hH

pp,khpp,k} = βpIMp , (4.43)

Rhpc,j
≜ E{hH

pc,jhpc,j} = βcIMp . (4.44)

Using AQNM, the quantized CSI from the PBS after rotation is expressed as

h̃Q
pp,k = Q(h̃pp,k) ≈ αph̃pp,k + ñQ

pp,k , (4.45)

h̃Q
pc,j = Q(h̃pc,j) ≈ αch̃pc,j + ñQ

pc,j , (4.46)

where Q(·) is a scalar quantization function applied element-wise and separately to the

real and imaginary parts of the input. The vectors ñQ
pp,k ≜ s∗p,kn

Q
pp,k ∈ C1×Mp and ñQ

pc,j ≜

s∗c,jn
Q
pc,j ∈ C1×Mp denote the zero-mean Gaussian-distributed quantization noise vectors, and

both are assumed to be uncorrelated with h̃pp,k and h̃pc,j. The gains αk = 1−ρk for k ∈ {p, c}
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Table 4.1: Distortion Factors for Different Quantization Bit Resolutions

b 1 2 3 4 5
ρ 0.3634 0.1175 0.03454 0.009497 0.002499

are functions of the following distortion factors [51]:

ρp =
E{∥hpp,k − hQ

pp,k∥2}
E{∥hpp,k∥2}

, ρc =
E{∥hpc,j − hQ

pc,j∥2}
E{∥hpc,j∥2}

.

The value of ρ is given in Table 4.1 for different bit resolutions b assuming an optimal non-

uniform Lloyd-Max quantizer [54]. The phase rotation does not alter the covariance matrices

of the quantization noise, which are given by [49]

RñQ
pp,k

= αpρpdiag{Rhpp,k
} = αpρpβpIMp ,

RñQ
pc,j

= αcρcdiag{Rhpc,j
} = αcρcβcIMp .

Based on Eq. (4.45) and Eq. (4.46), we can derive

h̃pp,k =
h̃Q
pp,k − ñQ

pp,k

αp

= ᾱph̃
Q
pp,k − ᾱpñ

Q
pp,k ,

h̃pc,j =
h̃Q
pc,j − ñQ

pc,j

αc

= ᾱch̃
Q
pc,j − ᾱcñ

Q
pc,j ,

where ᾱp =
1
αp

and ᾱc =
1
αc
. Therefore,

H̃℧
pp,k = ℧(ᾱph̃

Q
pp,k − ᾱpñ

Q
pp,k) = ᾱp(H̃

Q,℧
pp,k − ÑQ,℧

pp,k) , (4.47)

H̃℧
pc,j = ℧(ᾱch̃

Q
pc,j − ᾱcñ

Q
pc,j) = ᾱc(H̃

Q,℧
pc,j − ÑQ,℧

pc,j ), (4.48)
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where H̃Q,℧
pp,k ≜ ℧(h̃Q

pp,k), Ñ
Q,℧
pp,k ≜ ℧(ñQ

pp,k), H̃
Q,℧
pc,j ≜ ℧(h̃Q

pc,j), and ÑQ,℧
pc,j ≜ ℧(ñQ

pc,j). Substitut-

ing Eq. (4.47) and Eq. (4.48) in (4.27), we have

ᾱp(H̃
Q,℧
pp,k − ÑQ,℧

pp,k)x̌p + H̃℧
cp,kx̌c ≥ δ0p,k12, ∀k ∈ K, (4.49)

H̃℧
cc,jx̌c + ᾱc(H̃

Q,℧
pc,j − ÑQ,℧

pc,j )x̌p ≥ δ0c,j12,∀j ∈ J . (4.50)

4.4.1 Primary System

As a special case to fix the details, we assume that the PBS employs ZF precoding to cancel

the interference among the PUs. Thus, the transmit symbol at the PBS can be expressed as

xp = fpH
H
pp(HppH

H
pp)

−1sp , (4.51)

where

fp =

√
Pp

Tr{(HppHH
pp)

−1}

is the scaling factor to satisfy the PBS power budget. Then we will have

(H̃Q,℧
pp,k − ÑQ,℧

pp,k)x̌p

=αpH̃
℧
pp,kx̌p

=αp

R{h̃pp,kxp} sin θ − I{h̃pp,kxp} cos θ

R{h̃pp,kxp} sin θ + I{h̃pp,kxp} cos θ


=αpfp sin θ12

due to h̃pp,kxp = s∗p,kfpsp,k = fp, which is not surprising, since even with imperfect CSI, the

CBS can assume the ZF precoding at the PBS is successful in delivering the desired symbols
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to the users. The exact value of the scaling factor fp depends on the true channel Hpp, but

the CBS can employ an estimate based on its quantized approximation:

fQ
p =

√
Pp

Tr{(HQ
pp(H

Q
pp)H)−1}

,

where HQ
pp =

[
(hQ

pp,1)
T · · · (hQ

pp,Np
)T
]T

, and Pp is assumed to be known. Using a similar

argument, we can obtain the following deterministic form of the constraint in Eq. (4.49) as

follows:

H̃℧
cp,kx̌c ≥ (δ0p,k − fQ

p sin θ)12 . (4.52)

4.4.2 Cognitive System

For the cognitive system, the constraint (4.50) above is expressed in terms of the unknown

random quantization noise, and thus cannot be directly enforced. Instead, we choose to pose

the problem such that the constraint is achieved with a certain probability. In particular,

considering that x̌p relies on Hpp,k and thus is also uncertain, we rewrite (4.50) as follows:

P{αc(H̃
℧
cc,jx̌c − δ0c,j12) ≥ (ÑQ,℧

pc,j − H̃Q,℧
pc,j )x̌p} ≥ vc , (4.53)

where P{A} denotes the probability of event A, and vc ∈ (0.5, 1] represent the probability

threshold. In the following, we find expressions for the probabilities in (4.53).
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First, we get

E{ÑQ,℧
pc,j} = 02×2Mp ,

E{ÑQ,℧
pc,j (Ñ

Q,℧
pc,j )

H} =Mpαcρcβc

 1 − cos 2θ

− cos 2θ 1

 ,

E{H̃Q,℧
pc,j (H̃

Q,℧
pc,j )

H} =Mpαcβc

 1 − cos 2θ

− cos 2θ 1

 ,

and we define

qc,j ≜ (ÑQ,℧
pc,j − H̃Q,℧

pc,j )x̌p ≜

q1c,j
q2c,j

 . (4.54)

We can show that qc,j is a bivariate correlated Gaussian random variable with mean

E{qc,j} = 02×1 (4.55)

and covariance

Rqc,j
= E{(ÑQ,℧

pc,j − H̃Q,℧
pc,j )x̌px̌

H
p (Ñ

Q,℧
pc,j − H̃Q,℧

pc,j )
H} (4.56)

=
Pp

2Mp

{
E{ÑQ,℧

pc,j (Ñ
Q,℧
pc,j )

H}+ E{H̃Q,℧
pc,j (H̃

Q,℧
pc,j )

H}
}

(4.57)

=
Ppβcαc(2− αc)

2

 1 − cos 2θ

− cos 2θ 1

 . (4.58)

Furthermore, we define

wc,j(x̌c) ≜ αcH̃
℧
cc,jx̌c − αcδ

0
c,j12 ≜

w1
c,j

w2
c,j

 (4.59)
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which is affine in x̌c. Using the new notation, the chance constraint (4.53) can be rewritten

as

P{wc,j(x̌c) ≥ qc,j} ≥ vc . (4.60)

For ease of notation, we define w̄c,j(x̌c) ≜ R− 1
2

qc,jwc,j(x̌c) and q̄c,j ≜ R− 1
2

qc,jqc,j, and we obtain

the following lemma.

Lemma 4.1. P{w̄c,j(x̌c) ≥ q̄c,j} ≥ vc can be approximated by the inequality

H̃℧
cc,jx̌c ≥ ᾱcηcR

1
2
qc,j12 + δ0c,j12, (4.61)

where ηc =
√
2 erf−1

(
2
√
vc − 1

)
is a preset constant.

Proof. See Appendix.

With this lemma, knowledge of the precise value for xp is not necessary in the design of the

precoder at the CBS, which is important under the assumption of a finite capacity channel

for information sharing.

4.4.3 Optimization Problem for Stochastic CSI Error Model

We can now formulate the robust SLP design with probabilistic constraints by replacing

(4.49) and (4.50) with (4.52) and (4.61), as follows:

min
x̌c

∥x̌c∥2 (4.62)

subject to H̃℧
cp,kx̌c ≥ (δ0p,k − fQ

p sin θ)12, ∀k ∈ K, (4.63)

H̃℧
cc,jx̌c ≥ ᾱcηcR

1
2
qc,j12 + δ0c,j12, ∀j ∈ J . (4.64)
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As with the previous problem studied above, the result is a quadratic program with linear

inequality constraints which is robust to imperfect CSI shared from the PBS.

4.5 Numerical Results

In this section, we assess the performance of our proposed power-minimizing SLP (PMSLP)

approaches. Monte-Carlo simulations are conducted over 1000 independent channel realiza-

tions, each employing a block of T = 100 symbols. The channels Hpp, Hcp, Hpc and Hcc are

composed of i.i.d. Gaussian random variables with zero mean and unit variance. The com-

plex Gaussian noise is assumed to have the same power (σp = σc = 1) for all PUs and CUs.

The PBS transmission power is set at Pp = 10. We employ the same threshold for all users

within a given network, i.e., δ0p,1 = · · · = δ0p,Np
= δ0p for the PUs and δ0c,1 = · · · = δ0c,Nc

= δ0c

for the CUs, ensuring the same worst-case SER for the users in each network.

Since for SLP we work with finite alphabet constellations, we will analyze the block trans-

mission performance of the system using the throughput τ as calculated in [94]:

τ = (1− PB)× c× T ×N, (4.65)

where PB is the block error rate (BLER), c = log2D is the number of bits per modulation

symbol, T is the block length and N is the number of receivers. In each block for each

user, there are C = c× T data message bits transmitted from the BS. For PSK modulation,

assuming a binomial distribution of errors in each block, the probability of more than q

errors occurring in one block of C bits is expressed as

Pe(q, C) = 1−
q∑

i=0

(
C

i

)
P i
b (1− Pb)

C−i , (4.66)
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Figure 4.2: BER of CU (left) or PU (right) vs. CBS transmit power where Pp = 10, QPSK.

where Pb is the BER. If the receiver detects errors without correction, a block is received

correctly only if all C bits in the block are received correctly, and thus the BLER is PB =

Pe(0, C). On the other hand, if the receiver is capable of correcting up to Q errors in each

block, then the BLER is given by PB = Pe(Q,C) [95].

We begin in Fig. 4.2 assuming perfect CSI, plotting the average BER of the users versus

the CBS transmission power, and comparing PMSLP assuming a minimum safety margin

δ0p = 1.9 with the performance of the CR-PALP algorithm described in Section 4.1.1. Both

the PBS and CBS are assumed to have Mp = Mc = 8 antennas and the number of PUs

and CUs are both set at Np = Nc = 4. With these settings, even when the CBS increases

its transmit power to better serve the CUs, it can still avoid any negative impact on the

PUs such that the BER of PUs is not greater than that in the primary-only case as shown

in Fig. 4.2. Moreover, the BER of the PUs remains nearly unchanged for both types of

precoders, although the PUs actually enjoy some benefit with PMSLP since it exploits CI

from the CBS signals which can further improve the SM for the PUs. Meanwhile, PMSLP

provides a much lower BER for the CUs; the CBS can save more than 15dB of power to

achieve an uncoded BER of 10−2, compared to the CR-PALP method which allows only
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Figure 4.3: Throughput of PU vs. error norm bound where Pp = 10, δ0p = δ0c = 1.5, QPSK.

the CUs to benefit from the inter-user CI in the cognitive system, but in general will not

entirely eliminate the destructive interference from the PBS. On the contrary, our proposed

PMSLP precoder can take advantage of CI not only from the CU MUI but also what is

available (although not optimized) from the primary system. Moreover, the PUs can also

benefit from the CI produced by the cognitive system. CR-PALP requires that the CBS act

as a relay transmitting not only the CUs’ but also the PUs’ signals, which is unnecessary in

our PMSLP design.

Next we consider the norm-bounded CSI error model discussed in Section 4.3. With the SM

threshold for the PUs and CUs set to 1.5, we plot the throughput of the PUs and CUs as

the norm of one error (ϵp,k or ϵc,j) changes as log10 ϵ while the norm of the other is fixed

to 0.3 [44]. For simplicity, we assume that the CSI error bounds are the same for all users:

ϵp,k = ϵp and ϵc,j = ϵc. Fig. 4.3 and Fig. 4.4 respectively show the throughput for the PUs and

CUs as a function of the error bound, and demonstrate that the proposed robust precoder

can mitigate the CSI uncertainty and provide a much higher throughput compared to the

non-robust precoder. With the robustness introduced, the throughput of the PUs and CUs
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actually increases as the norm of the corresponding error increases. This can be explained by

examining (4.41) and (4.42), where we see that a larger error bound creates a larger effective

SM in the constraint, which provides the robustness necessary to account for the imperfect

channel and also imperfect knowledge of xp and fp. There is however a price to be paid for

this robustness, as clearly seen in Fig. 4.5, which shows that the robust schemes require the
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CBS to operate with significantly more power, especially as the error bound increases. It is

clear from these results that the worst-case approach based on the norm-bounded CSI error

leads to a conservative design.

In order to quantify the power-performance trade-off between the robust and non-robust

designs, in Fig. 4.6 we plot the energy efficiency (EE) of the approaches, defined as the ratio

between the throughput calculated from Eq. (4.65) and the transmit power per channel:

EE =
τ

T × ∥x̌c∥2
. (4.67)

We see that despite the increase in transmit power, the proposed robust SLP algorithm

achieves a significantly higher energy efficiency. When the uncertainty ϵc in Hpc is fixed, the

energy efficiency at the CBS decreases with greater uncertainty in Hpp since the CBS needs

to consume more power to meet the SM constraint at the PUs.

The remaining examples use the probabilistic SM constraints discussed in Section 4.4 based

on the AQNM approximation, although the actual quantized CSI is generated using a non-
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uniform Lloyd Max quantizer [54, 55]. In this case, the PBS and CBS are assumed to have

Mp =Mc = 16 antennas and the number of PUs and CUs are both set at Np = Nc = 8. The

receiver is capable of correcting Q = 1 bit error in each block [94]. The probability v was set
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Figure 4.9: Energy efficiency at CBS vs. preset SM at the CUs where Pp = 10, δ0p = 1.5,
Q = 1, QPSK.

with the value used in [45]. Fig. 4.7 shows the throughput of the CUs as a function of the

preset SM threshold at the CUs, assuming either b = 2 or b = 3 quantization bits per channel

coefficient and different probability constraints. We see that the CUs reap benefits from the

robust SLP design, achieving significantly higher throughput. Again illustrating the trade-

off of robustness with increased power, we see in Fig. 4.8 that as the preset δ0c increases, the

CBS in the robust SLP approach requires more power to meet the SM constraint than the

non-robust SLP. In order to fairly compare different SLP methods, we plot the EE at the

CBS in Fig. 4.9. It is clear that the greater the preset SM, or the higher the quantization

resolution, the higher the EE. For the case of b = 2, the EE of the non-robust SLP is nearly

0, but the robust SLP approach performs particularly well even with very low-resolution

CSI.

In the final example, we study the allocation of the quantization bits on the system perfor-

mance [56]. In particular, in Fig. 4.10 we plot the energy efficiency at the CBS when the

direct hpp,k and interference channels hpc,j are quantized with different resolutions. For the

non-robust SLP schemes (blue curves), the CBS achieves higher EE in cases where bp > bc,
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indicating that for a fixed number of quantization bits, it is more energy efficient for the

cognitive system to receive a more accurate representation of the direct channel than the

interference channel. However, the robust-SLP schemes are less sensitive to the allocation of

the quantization bits, and show roughly the same performance regardless of which channel

is more accurately represented.

4.6 Conclusion

In this chapter, we have designed non-robust and robust SLP schemes for overlay CR sys-

tems with the goal of minimizing the transmission power and simultaneously ensuring the

QoS of all users. Unlike traditional CR precoding techniques, we set the SM threshold in

the interference constraints instead of using SINR or BER metrics in order to fully exploit

constructive interference as much as possible. First, under the assumption of perfect CSI,

we propose an SLP algorithm that performs significantly better than a prior CR-based SLP
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approach modified to address our overlay problem. In the proposed algorithm, not only the

CUs but also the PUs benefit from the constructive interference. Then, using two different

CSI error models, we derive two robust SLP methods, one based on a max-min optimization

of the worst-case CSI error and the other on a probability-constrained problem using AQNM

to approximate the impact of the CSI quantization. All of the proposed optimization prob-

lems result in a quadratic objective function with linear inequality constraints that can be

efficiently solved. Our numerical results demonstrate that our robust SLP schemes can deal

with various types of CSI error and still maintain a high energy efficiency. A key observation

from our results is that, by enabling the PUs to exploit constructive interference as well

as the CUs, the presence of the cognitive network can actually improve the PU network

performance rather than degrade it.
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Chapter 5

SLP designs for Systems with IGI

To the best of our knowledge, there is no work on designing SLP approaches in additive

improper noise systems, which requires comprehensive investigation. In this chapter, we

firstly studied the effect of improper noise on the MSM approach. The original MSM ap-

proach in [84] ignored the correlation structure of noise, which can lead to biased estimates

of the jammer’s effect. To deal with non-circular noise, we use a whitening transformation to

decorrelate the noise, which is a common method to map the correlated noise to uncorrelated

one [98]. We then propose a novel SLP approach with knowing covariance matrix of the jam-

mer’s signals, which is designed to minimize the transmit power and meanwhile satisfy our

defined upper and lower SM separately. We firstly employed confidence ellipse to describe

the disturbance and then utilize bounding box to calculate the upper/lower SM [76, 77].

Secondly, in scenarios where covariance of the non-circular noise is not achievable at the

BS, we introduced a robust SLP design and simplified the search strategy for the optimum

solution. In order to comprehensively evaluate our proposed methods in comparison with

traditional BLP approaches, we apply the MMSE criterion to obtain different BLP designs

both with and without the availability of the non-circularity in noise. The numerical results

reveal the superior performance of our proposed SLP in terms of SER and energy efficiency
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(EE), especially in the robust design where SLP exhibits significant advantages over BLP

designs.

5.1 System Model

We consider the MIMO downlink system depicted in Fig. 5.1, with an M -antenna BS, K

single-antenna users, and a single-antenna jammer. the received signal at user k can be

expressed as

yk = hkx+ hj,kz + nk ≜ hkx+ ck , (5.1)

where hk and hj,k respectively denote the channel from the BS and the jammer to the kth

user, x represents the precoded signal transmitted by the BS, z is a Gaussian interference

signal transmitted by the jammer, and nk is circular zero-mean Gaussian background noise.

We combine together the noise and jamming interence as ck = hj,kz+nk, and refer to this as
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the effective noise in the sequel. For a given row vector a ∈ C1×q, we introduce the operators

ā =

R{a}

I{a}

 ∈ R2×q , Ā =

R{a} −I{a}

I{a} R{a}

 ∈ R2×2q ,

and rewrite Eq. (5.1) with real-valued quantities

R{yk}

I{yk}

 =

R{hk} −I{hk}

I{hk} R{hk}


R{x}

I{x}


+

R{hj,k} −I{hj,k}

I{hj,k} R{hj,k}


R{z}

I{z}


+

R{nk}

I{nk}

 ,

which we equivalently denote by

ȳk = H̄kx̄+ H̄j,kz̄+ n̄k . (5.2)

We assume that in general the real and imaginary parts of the jammer signal z are correlated;

i.e., the jammer signal is noncircular or improper [60], and we describe it as follows:

z̄ = ρT

vR
vI

 = ρTv̄ , (5.3)

where ρ2 is the jammer transmit power, v̄ ∼ N (0, I2N), and the matrix T is normalized such

thatQ = TTT satisfies Tr{Q} = 1. The additive noise nk is distributed as n̄k ∼ N (0, 1
2
σ2
kI2).

The matrix Q = QT ⪰ 0 defines the degree to which the jammer signal z̄ is non-circular. If

Q = 1
2
I2, the jammer signal is circular, while unequal diagonal terms or non-zero off-diagonal
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entries indicate an improper signal. With c̄k = H̄j,kz̄ + n̄k, we can write the covariance of

c̄k as

E(c̄kc̄Tk ) = H̄j,kE(z̄z̄T )H̄T
j,k + E(n̄kn̄

T
k ) (5.4)

= ρ2H̄j,kQH̄T
j,k +

1

2
σ2
kI2 (5.5)

≜ Gk . (5.6)

Due to the non-circularity of z̄, Gk will in general not be diagonal, and hence conventional

precoding techniques that assume circular noise should be reconsidered.

In this downlink scenario, the BS desires to send a symbol sk to user k for k = 1, · · · , K.

In BLP with circular noise, the transmitted signal would be expressed as a linear function

of the complex symbols: x = Pcs, where s = [s1 · · · sK ]T and Pc is the M ×K precoder.

In the non-circular case, we separate the real and imaginary parts and write the linear BLP

transmit signal as x̄ = Ps̄. In general, P ̸= P̄c, hence the need to modify the precoder for

non-circular noise. For the case of SLP, the transmit signal x or more generally x̄ is a non-

linear function of s or s̄, respectively. For simplicity, we will assume that the elements of s are

PSK symbols, although the methods can be generalized to other (e.g., QAM) constellations.

5.2 Pre-Whitening Methods

If each user k has knowledge of its own interference-plus-noise covarianceGk, then a straight-

forward way of dealing with improper interference is through a pre-whitening step that decor-

relates and normalizes the real and imaginary parts of the interference. This prewhitening

also impacts the BS-user channels, so the BS will also need to know Gk for each user, pre-

sumably through a feedback channel from the users. In this section we describe how to
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implement BLP and SLP with non-circular interference pre-whitening at each user. The

results derived here will be useful in later sections of the chapter.

5.2.1 Block Level Precoding

There is limited research on precoding methods that address improper noise. In this section,

we use the MMSE criterion to develop a benchmark BLP approach. According to Eqs. (5.2)-

(5.6), the non-circular disturbance c̄k can be pre-whitened as follows:

G
− 1

2
k ȳk = G

− 1
2

k H̄kx̄+G
− 1

2
k c̄k . (5.7)

Using the following definitions for all users:

y1E,k

y2E,k

 = G
− 1

2
k ȳk ,

h1
E,k

h2
E,k

 = G
− 1

2
k H̄k ,

c1E,k

c2E,k

 = G
− 1

2
k c̄k ,

the received symbols can be expressed as

yE = HEPs̄+ cE , (5.8)

where

yE =

[
y1E,1 · · · y1E,K y2E,1 · · · y2E,K

]T
, (5.9)

HE =

[
h1
E,1

T · · · h1
E,K

T
h2
E,1

T · · · h2
E,K

T

]T
, (5.10)

cE =

[
c1E,1 · · · c1E,K c2E,1 · · · c2E,K

]T
.
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For a givenHE, we consider minimizing mean square error (MMSE) as the criterion to design

the BLP [72–74], which is formulated as

min
P,β

E{∥β−1yE − s̄∥2} (5.11)

subject to E{∥Ps̄∥2} ≤ Pt , (5.12)

where β is a scaling factor, and Pt is the transmit power budget. The corresponding La-

grangian function is

L(P, β, λ) = E{∥β−1yE − s̄∥2}+ λ(E{∥Ps̄∥2} − Pt)

= K − 1

2
β−1Tr{HEP+PTHT

E}

+
1

2
β−2Tr{HEPPTHT

E}+ 2Kβ−2

+
1

2
λTr{PPT} − λPt ,

where λ ≥ 0 denotes the Lagrange multiplier, and E{s̄s̄T} = 1
2
I2K , E{cEcTE} = I2K .

The solution to (5.11) should satisfy the matrix equations

dL(P, β, λ)
dP

= −β−1HT
E + β−2HT

EHEP+ λP = 02M×2K (5.13)

dL(P, β, λ)
dβ

= β−2Tr{HEP} − β−3Tr{HEPPTHT
E} − 4Kβ−3 = 0 , (5.14)

which ultimately yields

P = β∆HT
E (5.15)

β =

√
2Pt

Tr{∆HT
EHE∆}

, (5.16)
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where ∆ = (HT
EHE + aI2M)−1 and a = 2K

Pt
. Since this BLP method takes into account the

non-circularity of the interference, we refer to it as “pre-whitened BLP” or PW-BLP.

5.2.2 Symbol Level Precoding

As discussed in [84], the MSM SLP approach is designed such that the noise-free received

signal for user k will be located within the CIR of the transmitted symbol with a safety

margin of δk. For the case of circular noise, the choice of δk is made based on a certain

desired level of reliability given the variance of the noise seen at the receiver, which we

denote as σ2
k. The value of δk can, for example, be chosen to minimize an upper bound on

the symbol error probability (SEP) [84]. To maintain consistency with the definition of δk

in the case of non-circular interference, we pre-whiten user k’s signal as follows:

γkG
− 1

2
k ȳk = γkG

− 1
2

k H̄kx̄+ γkG
− 1

2
k (H̄j,kz̄+ n̄k) , (5.17)

where γk is a scaling factor chosen to ensure that the total power of the jammer plus noise

remains the same as in the noise-only case, i.e.,

E
{
Tr
{
γ2kG

− 1
2

k c̄kc̄
T
k (G

− 1
2

k )T
}}

= σ2
k . (5.18)

Thus, the scaling should be chosen as γk =
σk√
2
.

If we define

γkG
− 1

2
k H̄k ≜

he1,k

he2,k

 , (5.19)
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and the effective complex channel after whitening is denoted as he,k, then the received noise-

less symbol in Eq. (5.17) can be rewritten in real-valued form as

γkG
− 1

2
k H̄kx̄ =

he1,kx̄

he2,kx̄

 =

R{he,kx}

I{he,kx}

 . (5.20)

As an example, for unit-magnitude D-PSK signals sk ∈ {s|s = exp(jπ(2d + 1)/D), d ∈

{0, · · · , D − 1}}, the safety margin can be calculated as [84]

δk = R{s∗khe,kx} sin θ − |I{s∗khe,kx}| cos θ . (5.21)

Furthermore, to express the SM more clearly, we derive

R{s∗khe,kx} = R{s∗k}R{he,kx} − I{s∗k}I{he,kx}

= R{s∗k}he1,kx̄− I{s∗k}he2,kx̄ ,

= h̃−
e,kx̄ ,

I{s∗khe,kx} = I{s∗k}R{he,kx}+R{s∗k}I{he,kx}

= I{s∗k}he1,kx̄+R{s∗k}he2,kx̄ ,

= h̃+
e,kx̄ ,

where h̃−
e,kx̄ = R{s∗k}he1,k − I{s∗k}he2,k, and h̃+

e,kx̄ = I{s∗k}he1,k + R{s∗k}he2,k. Then, one

possible SLP optimization problem is to maximize the smallest safety margin over all K
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users for a given transmit power budget, as follows:

max
x̄

δ

subject to (h̃−
e,k sin θ − h̃+

e,k cos θ)x̄ ≥ δ, ∀k

(h̃−
e,k sin θ + h̃+

e,k cos θ)x̄ ≥ δ, ∀k

∥x̄∥2 ≤ Pt .

This approach is essentially equivalent to the conventional MSM method in [84], with the

only difference being the pre-whitening transformation of the channel to account for the

non-circularity of the effective noise. An alternative formulation is to minimize the transmit

power subject to given safety margin constraints δ01, · · · , δ0K for each user:

min
x̄

∥x̄∥2

subject to (h̃−
e,k sin θ − h̃+

e,k cos θ)x̄ ≥ δ0, ∀k

(h̃−
e,k sin θ + h̃+

e,k cos θ)x̄ ≥ δ0, ∀k .

We will refer to the above algorithms as pre-whitened SLP, or simply PW-SLP, and our

numerical results will illustrate the performance gain achieved by adjusting the conventional

SLP approach in scenarios with IGI.

5.3 SLP with Transmit-Only Processing

The SLP design of the previous section requires not only the precoding but also receiver

processing for pre-whitening the received signal, which prompts the question of whether we

can implement an IGI-aware SLP design solely at the transmitter by directly optimizing

the SM and CIR. In this section we show that if the covariance matrix Gk of the jammer
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Figure 5.2: Confidence ellipse with correlated 2D data samples.

signal at each user is known, the definition of SM in [84,85] can be adjusted to appropriately

account for the IGI. Intuitively, IGI will produce an elliptical rather than a circular cloud

around the noiseless received signal, and for the case of PSK this will require the definition

of two safety margins in order to guarantee the user QoS, defined as the likelihood that the

received signal lies in the CIR. We will employ confidence ellipses [76, 77] to formulate the

SM and CIR.

5.3.1 Confidence Ellipse

Given normally distributed two-dimensional (2D) data {YR, YI}, when the two variables are

correlated with covariance matrix G, we can draw a confidence ellipse to define a region that

contains data samples (yR, yI) with a preset confidence value. For example, in Fig. 5.2, the

center of the ellipse is (y0R, y
0
I ), where y

0
R = E{YR} and y0I = E{YI} are the mean values of

the two variables. The orientation of the ellipse is denoted by the angle α (0 ≤ α < 180◦)

between the major axis of the ellipse and the YR-axis. When G is diagonal, we have α = 0.

The eigenvectors of G correspond to the directions of the major and minor axes of the ellipse
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Figure 5.3: Confidence ellipse after rotation to decorrelate the 2D data samples.

-5 0 5
-5

0

5

p=0.8

-5 0 5
-5

0

5

p=0.95

Figure 5.4: The preset p decides the size of confidence ellipses.

as depicted by the red and blue arrows in Fig. 5.2, while the square root of the eigenvalues

λ1, λ2 of G correspond to the spread of data in the two directions. It is easy to show that

α = arctan
v2
v1

(5.22)

where v = [v1 v2]
T is the principle eigenvector of G corresponding to the largest eigenvalue

[76,77].

The size of the ellipse depends on the chosen confidence level 0 ≤ p ≤ 1, which represents the

asymptotic fraction of the data samples located inside the ellipse, as illustrated in Fig. (5.4).

To mathematically express the relationship governing p, we first decorrelate YR and YI by
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rotating the data samples with respect to the ellipse center by the angle −α:

R =

 cosα sinα

− sinα cosα

 . (5.23)

The rotated data samples in Fig. 5.3 are defined by

y⋆R
y⋆I

 = R

yR
yI

 , (5.24)

and the covariance matrix for {Y ⋆
R, Y

⋆
I },

G⋆ = RGRH , (5.25)

is diagonal, with eigenvalues equal to λ1, λ2 due to the orthogonality of R. Since Y ⋆
R and

Y ⋆
I are independent normally distributed random variables, according to the χ2 distribution

we can express the confidence ellipse as

P
{
(y⋆R − y0R)

2

λ1
+

(y⋆I − y0I )
2

λ2
≤ ω

}
= p , (5.26)

where ω = −2 ln(1− p).

5.3.2 Constructive Interference Region for IGI

To describe the CIR in a unified way, we rotate the original coordinate system for PSK

symbols by the negative phase of the desired constellation symbol, i.e., ∡s∗k, to obtain the

modified coordinate system in Fig. 5.5. We can see that with IGI, the safety margin must be

determined separately for the two symbol decision boundaries; in particular, we define the

minimum distance from the confidence ellipses to the two decision boundaries as the upper
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Figure 5.5: CIR with IGI added to noise-free received signals.

safety margin (δ0u) and lower safety margin (δ0l ), where δ
0
u ̸= δ0l . In Fig. 5.6, we plot one

of the ellipses, with the center at the kth user’s noiseless received signal (H̄1
kx̄, H̄

2
kx̄) in the

modified coordinate system, where

H̄1
k =

[
R{s∗khk} −I{s∗khk}

]
(5.27)

H̄2
k =

[
I{s∗khk} R{s∗khk}

]
. (5.28)

The closest point on the ellipse to each decision boundary, yI = ±(tan θ)yR, is where the

tangent line of the ellipse is parallel to the corresponding boundary, as illustrated in Fig. 5.6,

where θ = π
D

for D-PSK. In the discussion below, we show how to obtain expressions for the

SMs δ0u,k and δ0l,k in the presence of IGI, so that the SLP approach can be implemented.

5.3.3 SLP for Non-Circular Interference

We will develop the SLP precoding problem to minimize the BS transmit power while achiev-

ing the users’ various SM constraints. In the modified coordinate system, we obtain the real
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yI = (tan θ)yR

yI = −(tan θ)yR

(H̄1

k
x̌, H̄

2
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δ
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u,k

δ
0

l,k

θ

δu,k

δl,k

δ
0

u,k cos θ

δ
0

l,k cos θ

Figure 5.6: Distance from confidence ellipse to decision boundaries.

and imaginary parts of the interference signal as

R{s∗kck}

I{s∗kck}

 = S̄T
k c̄k , (5.29)

where S̄k =

R{sk} −I{sk}

I{sk} R{sk}

, and its covariance matrix is given by

E
(
S̄T
k c̄k

(
S̄T
k c̄k
)T)

= S̄T
kGkS̄k ≜ Ǧk . (5.30)

We obtain the orientation angle of the confidence ellipse using Eq. (5.22):

α̌k = arctan
v̌k,2
v̌k,1

, (5.31)

where v̌k = [v̌k,1 v̌k,1]
T is the eigenvector of Ǧk corresponding to the largest eigenvalue. To

decorrelate the real and imaginary parts of the received signals, we rotate them by −α̌k so
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the IGI can be written in a real-valued form as

ŘkS̄
T
k c̄k = Řk

yRk − H̄1
kx̄

yIk − H̄2
kx̄

 =

 (yRk − H̄1
kx̄) cos α̌k + (yIk − H̄2

kx̄) sin α̌k

−(yRk − H̄1
kx̄) sin α̌k + (yIk − H̄2

kx̄) cos α̌k

 ,

where Řk is the rotation matrix in Eq. (5.23) with angle α̌k, and y
R
k (yIk) is the real (imagi-

nary) part of user k’s received signal. As in Eq. (5.25), after rotation the covariance of the

effective noise for user k is

Ǧ⋆
k = ŘkǦkŘ

H
k , (5.32)

which is diagonal.

The eigenvalues of Ǧ⋆
k are equal to those of Gk and are denoted by λ1,k, λ2,k, due to the

orthogonality of S̄k and Řk. The confidence ellipse corresponding to the effective IGI can be

expressed as

(
(yRk − H̄1

kx̄) cos α̌k + (yIk − H̄2
kx̄) sin α̌k

)2
λ1,k

+

(
−(yRk − H̄1

kx̄) sin α̌k + (yIk − H̄2
kx̄) cos α̌k

)2
λ2,k

= ωk , (5.33)

which can be rewritten as

f(yRk , y
I
k) = λ2,k(y

R
k cos α̌k + yIk sin α̌k + ak)

2 + λ1,k(−yRk sin α̌k + yIk cos α̌k + bk)
2

= ωkλ1,kλ2,k , (5.34)

where ak = H̄1
kx̄ cos α̌k + H̄2

kx̄ sin α̌k and bk = H̄1
kx̄ sin α̌k − H̄2

kx̄ cos α̌k. Considering y
I
k as a

function of yRk , we set the following derivative to zero,

df(yRk , y
I
k)

dyRk
= 2Ak

(
cos α̌k + sin α̌k

dyIk
dyRk

)
+ 2Bk

(
− sin α̌k + cos α̌k

dyIk
dyRk

)
= 0 , (5.35)
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where Ak = λ2,k(y
R
k cos α̌k + yIk sin α̌k + ak) and Bk = λ1,k(−yRk sin α̌k + yIk cos α̌k + bk). It is

easy to show that

dyIk
dyRk

= −Ak cos α̌k −Bk sin α̌k

Ak sin α̌k +Bk cos α̌k

, (5.36)

which is equal to the slope of the tangent line to the ellipse at the point (yRk , y
I
k).

To ensure the confidence ellipse is inside the decision region, we use two lines to constrain

its location to satisfy

yRk sin θ − yIk cos θ ≥ 0 , (5.37)

yRk sin θ + yIk cos θ ≥ 0 , (5.38)

and we set constraints for the four points on the ellipse where the slope of the tangent

line is either tan θ or − tan θ. These points include the two closest points to the decision

boundaries, as illustrated in Fig. 5.6. The four lines defined by these points form a bounding

box that contains the ellipse. The two points on the ellipse where the slope of the tangent

line is tan θ can be obtained by simultaneously solving


tan θ = −Ak cos α̌k −Bk sin α̌k

Ak sin α̌k +Bk cos α̌k

,

B2
k

λ1,k
+

A2
k

λ2,k
= ωk .

(5.39)

(5.40)

From Eq. (5.39) we can get Ak = κkBk where

κk =
sin α̌k − cos α̌k tan θ

cos α̌k + sin α̌k tan θ
= tan(α̌k − θ) . (5.41)
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Substituting this into Eq. (5.40) yields Bk = ±
√

ωk

dk
where

dk =
1

λ1,k
+

κ2k
λ2,k

. (5.42)

Then yRk , y
I
k can be found by solving the following equations

− yRk sin α̌k + yIk cos α̌k = ±ek − bk

fky
R
k + gky

I
k = akλ2,k + bkckλ1,k ,

(5.43)

(5.44)

where ek =
√

λ2,kωk

λ1,kdk
, fk = λ2,k cos α̌k +λ1,kκk sin α̌k, and gk = λ2,k sin α̌k −λ1,kκk cos α̌k. It is

easy to show that

fk cos α̌k + gk sin α̌k = λ2,k

fk sin α̌k − gk cos α̌k = κkλ1,k .

(5.45)

(5.46)

The two orange points in Fig. 5.6 are then given by

yRk = H̄1
kx̄− uk , y

I
k = H̄2

kx̄+ vk (5.47)

yRk = H̄1
kx̄+ uk , y

I
k = H̄2

kx̄− vk , (5.48)

where uk =
gkek
λ2,k

and vk =
fkek
λ2,k

.

Defining the upper SM as δ0u,k, the SM constraint corresponding to each of these points is

given by

yRk sin θ − yIk cos θ ≥ δ0u,k cos θ . (5.49)
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Substituting Eqs. (5.47) and (5.48) into Eq. (5.49) leads to

(H̄1
k sin θ − H̄2

k cos θ)x̄ ≥ δu,k + δ0u,k cos θ (5.50)

(H̄1
k sin θ − H̄2

k cos θ)x̄ ≥ −δu,k + δ0u,k cos θ , (5.51)

where

δu,k = uk sin θ + vk cos θ (5.52)

=
√
ωk

√
λ1,k sin

2(α̌k − θ) + λ2,k cos2(α̌k − θ) (5.53)

represents the distance from the noise-free received signal to the tangent line of the bounding

box that intersects the orange points in Fig. 5.6. This is a critical dimension, since it

represents how much the interference can perturb the received signal and still remain in the

confidence ellipse defined by p. In general, the larger this distance, the more power that will

be required to satisfy the given safety margin.

Similarly, for the green points on the ellipse in Fig. 5.6 where the slope of the tangent line

is − tan θ, we obtain

(H̄1
k sin θ + H̄2

k cos θ)x̄ ≥ δl,k + δ0l,k cos θ (5.54)

(H̄1
k sin θ + H̄2

k cos θ)x̄ ≥ −δl,k + δ0l,k cos θ (5.55)

where δ0l,k denotes the preset lower SM,

δl,k = u′k sin θ − v′k cos θ (5.56)

=
√
ωk

√
λ1,k sin

2(α̌k + θ) + λ2,k cos2(α̌k + θ) , (5.57)
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Algorithm 1 Non-Circular Symbol Level Precoding

1: Input: hk, hj,k, sk, δ
0
u,k, δ

0
l,k, σk, ωk, ∀k, ρ, Q, and θ.

2: Output: x̄nc.
3: for k ∈ {1, · · · ,K} do
4: Calculate A−

k in (5.58) , and A+
k in (5.61).

5: Calculate Gk using (5.6), and its eigenvalues λ1,k, λ2,k.
6: Calculate Ǧk using (5.30, and α̌k using (5.31).
7: Calculate δu,k using (5.53) and δl,k using (5.57).
8: end for
9: Solve the optimization problem (5.62) to obtain the optimal precoded vector x̄nc.

and u′k, v
′
k can be found using κ′k = tan(α̌k + θ) and steps similar to those above. The

value of δl,k represents the distance from the noise-free received signal to the tangent lines

intersecting the green points, and like δu,k, a larger δl,k generally means a higher required

transmit power.

If we denote

A−
k = H̄1

k sin θ − H̄2
k cos θ , (5.58)

Eq. (5.50) and (5.51) can be combined as

A−
k x̄− δ0u,k cos θ ≥ |δu,k| . (5.59)

Similarly, Eq. (5.54) and (5.55) can be combined to yield

A+
k x̄− δ0l,k cos θ ≥ |δl,k| , (5.60)

where

A+
k = H̄1

k sin θ + H̄2
k cos θ . (5.61)
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One possible SLP optimization problem that results from the derivations above is to design

the signal x̄ that minimizes the transmit power at the BS and satisfies preset upper/lower

safety margins at each user:

min
x̄

x̄H x̄ (5.62)

subject to A−
k x̄− δ0u,k cos θ ≥ |δu,k| ,∀k , (5.63)

A+
k x̄− δ0l,k cos θ ≥ |δl,k| ,∀k . (5.64)

This is a quadratic programming problem with linear inequality constraints that can be effi-

ciently solved using standard numerical methods. An alternative formulation of the problem

is possible in which the upper and lower SMs are maximized for a given maximum transmit

power. In either case, we refer to this approach as “non-circular SLP,” or simply NC-SLP.

The steps required to implement the algorithm are listed in Algorithm. 1.

In contrast, when the BS ignores the non-circularity of the interference and implements the

conventional SLP approach assuming circular interference, we will refer to this approach

as “naive SLP.” For a fair comparison, in implementing the naive SLP approach we will

assume that the safety margin is set assuming the same total power as in the case of IGI,

i.e., σ2
k = Tr{Gk}.

5.4 Robust Non-Circular Precoding

The methods discussed above assume that the covariance matrix Gk of the effective noise at

user k is known, at both the users and the BS. In this section, we relax this assumption, and

only assume that the jammer CSI H̄k for all k is available, while the “shape” of the non-

circularity Q is not. For example, the jammer may choose to change Q from time to time to

confuse the legitimate receivers. Our goal is to design precoders that are robust to knowledge
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of the jammer non-circularity. In Section 5.4.1 we address robustness to knowledge of Q for

the case of BLP, and in Section 5.4.2 we do the same for SLP.

5.4.1 Robust BLP

To make the MMSE BLP approach described in Section 5.2.1 robust to knowledge of the

jammer circularity Q, we minimize the worst-case MSE over all possible choices of Q. The

optimization problem can be formulated as

min
P,β

{
max
Q∈S

E{∥β−1yE − s̄∥2}
}

(5.65)

subject to E{∥Ps̄∥2} ≤ Pt ,

where S = {Q|Tr{Q} = 1, Q ⪰ 0}. As a first step, in the lemma below we prove that for

MMSE BLP, the worst-case Q actually corresponds to circular jamming.

Lemma 5.1. The maximum MSE

max
Q∈S

E{∥β−1yE − s̄∥2} (5.66)

is achieved with Q = 1
2
I2.

Proof. See Appendix.

Interestingly, the robust BLP design assumes that the effective noise is uncorrelated in the

real and imaginary part. Then we will have Gk =
1
2
(ρ2|hj,k|2+σ2

k)I2. After plugging Gk into

Eq. (5.15) and (5.16), we will have the solution of “robust BLP”.
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5.4.2 Robust SLP

Here we study the robustness of SLP to the jammer’s choice of Q. Due to the higher

complexity of finding the SLP solution, this is a challenging problem. Fortunately, we will

show below that only the extreme cases where the degree of non-circularity is maximum

need be considered to find the worst-case scenario. Thus, only rank-deficient Q need be

considered, and we show how the worst-case Q can be found via a one-dimensional search.

As with the robust MMSE BLP approach, we will design the SLP algorithm to minimize

the worst-case transmit power with respect to all possible Q. This can be achieved by

reformulating the non-circular SLP problem in (5.62) as follows:

min
x̄

x̄T x̄ (5.67)

subject to A−
k x̄− δ0u,k cos θ ≥ max

Q∈S
|δu,k| , ∀k ,

A+
k x̄− δ0l,k cos θ ≥ max

Q∈S
|δl,k| ,∀k .

In other words, for each k, we find the the worst-case Q that maximizes the size of the

confidence ellipse and pushes it closer to the decision boundaries. The closer any of these

points is to the decision boundary, the larger the transmit power required to satisfy the

desired safety margin. Unlike (5.62), this is a challenging problem; as it stands, 5.67 requires

solving a convex SLP problem for every possible Q to find the one that requires the most

transmit power.

Fortunately, the complexity of the problem can be significantly reduced based on the follow-

ing lemma.

Lemma 5.2. The Q corresponding to the worst-case (maximum) transmit power in (5.67)

will be rank-deficient.
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Proof. As mentioned above, the transmit power x̄H x̄ required to satisfy the constraints

in (5.67) will increase when the worst case SM thresholds |δu,k| and |δl,k| increase. Hence, to

find the maximum transmit power, we first find the Q that maximizes the SM thresholds.

Based on Gk in Eq. (5.5), if λQ1 and λQ1 are eigenvalues of Q, we will obtain

λ1,k = ρ2|hj,k|2λQ1 +
1

2
σ2
k , (5.68)

λ2,k = ρ2|hj,k|2λQ2 +
1

2
σ2
k , (5.69)

where λQ1 + λQ2 = 1. Then the term under the square root of Eq. (5.53) can be written as

pk ≜λ1,k sin
2(α̌k − θ) + λ2,k cos

2(α̌k − θ)

=ρ2|hj,k|2
(
λQ1 sin2(α̌k − θ) + λQ2 cos2(α̌k − θ)

)
+

1

2
σ2
k

=ρ2|hj,k|2λQ1
(
sin2(α̌k − θ)− cos2(α̌k − θ)

)
+ ρ2|hj,k|2 cos2(α̌k − θ) +

1

2
σ2
k . (5.70)

When α̌k is fixed, pk is a linear function of λQ1 . Since 0 ≤ λQ1 ≤ 1, we can find the maximum

value of pk as follows:

• When sin2(α̌k − θ) ≥ cos2(α̌k − θ), we have

pu1k ≜ max pk = ρ2|hj,k|2 sin2(α̌k − θ) +
1

2
σ2
k , (5.71)

with λQ1 = 1, λQ2 = 0;

• When sin2(α̌k − θ) ≤ cos2(α̌k − θ), we have

pu2k ≜ max pk = ρ2|hj,k|2 cos2(α̌k − θ) +
1

2
σ2
k , (5.72)

with λQ1 = 0, λQ2 = 1.
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Algorithm 2 Robust Symbol Level Precoding

1: Input: hk, hj,k, sk, δ
0
u,k, δ

0
l,k, σk, ωk, ∀k, ρ, θ, and Ndiv.

2: Output: x̄robust.
3: for n ∈ {1, · · · , Ndiv} do
4: Calculate ϕn using (5.78).
5: Calculate vn, the principle eigenvector of Q by (5.75).
6: for k ∈ {1, · · · ,K} do
7: Calculate A−

k in (5.58) , and A+
k in (5.61).

8: Calculate v̌n
k using (5.76).

9: Calculate α̌n
k using (5.77).

10: Calculate pu1k (n), pu2k (n), pl1k (n), p
l2
k (n) using (5.71)-(5.74).

11: end for
12: Solve the optimization problem (5.79) to obtain the optimal precoded vector x̄n⋆, as well as

the transmit power |x̄n⋆|2.
13: end for
14: Return x̄robust = x̄n, where n = argmaxn⋆ |x̄n⋆|2.

Similarly, for the lower SM constraints in Eq. (5.57), if qk ≜ λ1,k sin
2(α̌k+θ)+λ2,k cos

2(α̌k+θ),

we can obtain the maxima

pl1k ≜ max qk = ρ2|hj,k|2 sin2(α̌k + θ) +
1

2
σ2
k (5.73)

or

pl2k ≜ max qk = ρ2|hj,k|2 cos2(α̌k + θ) +
1

2
σ2
k . (5.74)

Thus, to achieve the maximum value of |δu,k| in (5.53) or the maximum value of |δl,k| in

(5.57), either λQ1 or λQ2 should be zero, which means the matrix Q will be rank deficient.

Lemma 5.2 stands in contrast to Lemma 5.1; while a circular interference signal generates

the worst-case MMSE for BLP, for SLP it is a maximally non-circular jammer signal with a

rank deficient Q that leads to the worst performance. To solve 5.67, we must evaluate the

worst case |δu,k| and δl,k for the orientations α̌ that result from rank-deficient Q. To do this,
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we express the principle eigenvector of Q with direction ϕ as

v =

cosϕ
sinϕ

 , (5.75)

from which we can use Eq. (5.6),(5.25), and (5.30), to get the principle eigenvector of Ǧk as

v̌k =

cos α̌k

sin α̌k

 ∝ S̄T
k H̄j,k

|hj,k|
v , (5.76)

and hence

α̌k = arctan
v̌k(2)

v̌k(1)
= ϕ+ ∡hj,k − ∡sk . (5.77)

We see that the orientation of the ellipse at user k depends on the channel from the jammer

to user k, user k’s symbol from the BS, and the rotation angle due to Q which is shared by

all users. For the results presented in the next section, we discretize ϕ in (0, π]:

ϕn =
nπ

Ndiv

, n ∈ {1, · · · , Ndiv} . (5.78)

For each direction ϕn, we find α̌n
k for each user and substitute this value into (5.71)-(5.74)

to find the worst case bounds for the SLP optimization:

x̄n⋆ = argmin
x̄n

(x̄n)T x̄n (5.79)

subject to A−
k x̄

n − δ0u,k cos θ ≥
√
ωk

√
pu1k (n) ,∀k ,

A−
k x̄

n − δ0u,k cos θ ≥
√
ωk

√
pu2k (n) ,∀k ,

A+
k x̄

n − δ0l,k cos θ ≥
√
ωk

√
pl1k (n) ,∀k ,

A+
k x̄

n − δ0l,k cos θ ≥
√
ωk

√
pl2k (n) ,∀k .
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The solution is then the x̄n⋆ for n = 1, · · · , Ndiv with largest norm. Algorithm 2 above

outlines the detailed steps to implement this “robust SLP” approach.

5.5 Numerical Results

In this section we use Monte Carlo simulations over 1000 independent channel realizations

to assess the performance of the proposed BLP and SLP approaches. For each channel

realization, a block of 200 symbols is transmitted. The channels hk and hj,k are composed

of i.i.d. Gaussian random variables with zero mean and unit variance. The power of the

additive white Gaussian noise (AWGN) nk is assumed to be same (σ = 1 if not specified)

for all users, and the probability pk = p defining the confidence ellipses is identical for all

users. We also employ the same safety margin (δ) for all users with respect to a given SNR

threshold (ψ), where the relation between δ and ψ can be expressed as [80]

ψ =
δ2

(sin θ)2(ρ2 + σ2)
.

In some cases we will use the energy efficiency (EE) to quantify the power-performance

trade-off of different designs, which is defined as the ratio between the throughput τ and the

transmit power per channel:

EE =
τ

T × ∥x̄c∥2
,

where τ is defined in [85,94] as:

τ = (1− PB)× c× T ×K,
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Figure 5.7: BER of the worst user v.s. power of AWGN, with M = K = 8, Pt = 30dB,
QPSK.

where PB is the block error rate (BLER), c = log2D is the number of bits per modulation

symbol, T is the block length and K is the number of receivers.

Table 5.1: Summary of Precoding Approaches

Name Q Criterion
PW-MSM Available MSM
PW-SLP Available Minimum Power
Naive BLP Overlook MMSE
Naive SLP Overlook Minimum Power
PW-BLP Available MMSE
NC-SLP Available Minimum Power

Robust BLP 1
2
I2 MMSE

Robust SLP Rank-deficient Minimum Power

5.5.1 The impact of improper noise

First, we explore the impact of improper noise on the MSM algorithm [82,84]. We compare

it with the PW-MSM approach in Section. 5.2.2, which considers the IGI and employs a

pre-whitening transformation to decorrelate the interference. Fig. 5.7 shows that PW-MSM

achieves a lower BER, especially at lower SNR where the impact of the interference is greater.
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Figure 5.8: SER of the worst user v.s. different SNR (ψ) threshold, with ρ2 = 10dB,
M = K = 8, p = 80%, QPSK.

Moreover, as power of the jammer gets stronger from 5dB to 10 dB, the gap between the

two approaches becomes wider. As the AWGN power σ increases, the circular AWGN noise

becomes more dominant in distorting the desired signals, while the impact of the non-circular

jammer’s signal diminishes. Consequently, the effective noise (resulting from the combination

of jammer and AWGN) exhibits circular characteristics. Therefore, with high AWGN power,

the PW-MSM approach convergences towards the traditional MSM approach, which aligns

with our expectation.

Fig .(5.8) illustrates the SER of the worst user when the BLP/SLP approaches are designed

with or without taking the IGI into account. Generally, SLP techniques achieve significantly

lower SER for the worst user compared to BLP designs. Its advantage is particularly pro-

nounced in the high SNR region, where the propsed SLP design can provide more than

10dB improvement compared to BLP designs. Our proposed PW-SLP which requires the

pre-whitened process at the receiver performs superior, can achieve up to 6dB better than

the naive SLP, and hence it is significant to redesign the SLP approaches for systems with

IGI. If it is not possible to design the receiver, we can employ the proposed transmission-only

SLP designs: NC-SLP, which also exhibits great capability to deal with IGI. In Fig. 5.9, we
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Figure 5.9: Energy efficiency v.s. different transmit power, with ρ2 = 10dB, M = K = 8,
p = 80%, QPSK.

plot the energy efficiency versus the transmit power for each designs. The SLP designs are

more energy efficient compared to BLP designs, and their EE can be further improved if the

IGI is taken into account.

5.5.2 The impact of probability constraints p
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Figure 5.10: The effect of probability constraints on SER pf the worst user when using NC-
SLP, with ρ2 = 10dB, M = K = 8, QPSK.
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Figure 5.11: The effect of probability constraints on energy efficiency when using NC-SLP,
with ρ2 = 10dB, M = K = 8, QPSK.

From Section. 5.3, it is evident that the probability constraint also plays an important role

in SLP design. Fig. 5.10 illustrates that the higher probability constraint leads to a lower

SER. Fig. 5.11 shows the EE of the NC-SLP approach under different probability settings.

In the low SNR region, the larger probability constraint improves EE of NC-SLP, however,

in the high SNR region, it is better to preset a lower probability. Interestingly, as p increases

from 0.5 to 0.9, the transition point where EE starts to deteriorate shifts towards a lower

SNR region. This insight is valuable for power budgeting. For instance, when p = 0.8,

the optimal SNR constraint to achieve the best EE would be around 6dB, beyond which

additional power does not yield EE growth.

5.5.3 A deep dive into robust designs

One of the main contribution of this work is the proposal of robust BLP/SLP designs for

systems affected by improper interference. In the following, we will discuss them compre-

hensively.

110



5.5.3.1 Robust BLP
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-0.5 0 0.5

q
12

0

0.2

0.4

0.6

0.8

1
q

1
1

0.188

0.19

0.192

0.194

0.196

-10 10

-10

-5

5

10

(b) max MSE=0.2

-10 10

-15

-10

-5

5

(c) min MSE=0.19

-10 10

-10

-5

5

10

(d) center MSE=0.2

Figure 5.12: PW-BLP designs based on MMSE, with Pt = 20dB, ρ2 = 10dB, M = K = 3,
QPSK. (a) Color map of MSE with various q11 and q12; (b) constellations of the desired
symbol (sk), received noiseless symbols (hkx), received symbols plus improper noise (yk)
when MSE is the maximum; (c) when MSE is the minimum; (d) when MSE is calculated
with Q = 1

2
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Figure 5.13: MSE v.s. difference of the two eigenvalues of Q.

Fig. 5.12 depicts the result of an exhaustive search forQmatrices in the set S = {Q|Tr{Q} =

1, Q ⪰ 0}, using 15 steps for each element q11 and q12, where q11(1 − q11) − q212 ≤ 0, for

0 ≤ q11 ≤ 1 and −0.5 ≤ q12 ≤ 0.5. In Fig. 5.12(a) color map, the coordinates of each

grid are determined by Q, and the color represents the MSE averaged over 106 symbols
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using Eq. (B.1) for the corresponding Q. Notably, the largest MSE consistently appears at

the center, where Q is 1
2
I2. Fig. 5.13 illustrates the MSE in the color map plotted against

the difference of these two eigenvalues. A smaller difference between the two eigenvalues

corresponds to a larger MSE. When λQ1 = λQ1 = 1
2
, we will get the maximum MSE, which

should be minimized in (5.65) to design a robust BLP approach. This result is consistent

with our proof in Section. 5.4.1.

5.5.3.2 Robust SLP

(a) TX Power
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Figure 5.14: NC-SLP designs to minimize power, with p = 0.95, ρ2 = 10dB, M = K = 3,
QPSK. (a) Color map of the transmit power with various q11 and q12; (b) constellations of
the desired symbol (sk), received noiseless symbols (hkx), received symbols plus improper
noise (yk) when TX power is the maximum; (c) when TX power is the minimum; (d) when
TX power is calculated with q11 = 0.5, q12 = 0.

Similarly, for given constellation symbols of 3 users, Fig. 5.14(a) shows a color map of the

transmit power obtained by solving (5.62) with various Q in the SLP designs, where q11 and

q12 are each explored in 21 steps. The maximum transmit power (in the brightest color)

consistently appears on the boundary of the feasible region S, where Q is rank deficient

with a determinant equal to 0. This implies that the disturbance on the noiseless symbol

will degenerate from an ellipse shape to a straight line, pushing the desired symbol in only
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Figure 5.15: Transmit power v.s. difference of the two eigenvalues of Q.

one direction instead of two dimensions. In Fig. (5.15), we plot the transmit power versus

λQ1 − λQ1 , revealing a different pattern compared to the BLP case. The maximum and

minimum transmit power are both achieved when λQ1 − λQ1 = 1. Given that λQ1 + λQ1 = 1, Q

has to be rank deficient. This insight aligns with our proof of Lemma. 5.2 in Section. 5.4.2.

5.5.3.3 The robustness with different ranks of Q

From the above discussion, we find that the BLP and SLP designs favor different ranks of

Q. To investigate how the robust designs perform when Q is with various ranks, we plotted

SER of the worst user in Fig. 5.16 and EE in Fig. 5.17 for rank-1 Q, Q = 0.5I2 and random

Q cases. Notably, the robust SLP design is more sensitive to the rank of Q compared to the

BLP designs. This observation supports our lemmas that the robust designs for the SLP

and BLP should differ due to the non-circularity in the systems with IGI.
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5.5.3.4 Convergence of the fast search method for the robust SLP

To investigate the convergence speed of the fast search method described by Algorithm. 2, we

tested different numbers of angle sections Ndiv. In Fig. 5.18, we plotted the cumulative dis-

tribution function (CDF) of the transmit power x̄H x̄. The results shows that with more than

two angle sections, the algorithm will converge effectively. It is intuitive from Fig. 5.14(a)
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that the power is symmetrically distributed on the edge and the maximum/minimum power

concentrates within almost a quarter of the perimeter.

5.6 conclusion

Our work focuses on enhancing BLP and SLP designs in wireless communication systems,

particularly in the context of the jammer creating improper/non-circular interference to the

desired signals. We firstly investigate the impact of improper noise on the MSM approach,

which is essential for SLP strategies but often overlooks the correlation structure of noise,

leading to biased estimates of the jammer’s effect. To mitigate the effects of non-circular

noise, we employ a pre-whitening transformation firstly to map correlated noise to uncorre-

lated forms. However, these pre-whitening methods require receiver processing. When only

the transmission processing is feasible, we introduce a novel SLP approach that leverages

knowledge of the jammer’s signal covariance matrix. Unlike traditional SLP designs that

assume circular noise, we employ confidence ellipse to model the distribution of improper
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noise. Moreover, we address scenarios in which the non-circularity is not known at the BS. In

response, we introduce robust BLP and SLP designs, where they select totally different co-

variance matrices as the worst case in the optimization to achieve robustness. The numerical

results show the superiority of our proposed approaches.
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Chapter 6

User Selection and Closed-form SLP

In this chapter, we explore the user selection approaches with SLP designs. There are limited

study about this topic.

6.1 System Model and Power Constraint

In a downlink MU-MISO system, the BS is equipped with N antennas serving K single-

antenna users. The channels are assumed to be i.i.d Rayleigh fading channels. H ∈ CK×N

is the channel matrix and hk is the k-th user’s channel. W is the precoding matrix. s =

[s1, s2, · · · , sK ] is the PSK-modulated signal vector for K users. n is the noise vector and the

noise at k-th user is the AWGN where nk ∼ CN (0, σ2
k). The received signal can be written

as,

y = fHWs+ n (6.1)
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where f is the transmit power scaling factor. The transmitted symbol at the BS antennas

can be expressed as

x = f ·W · s = f ·
K∑
k=1

wksk . (6.2)

When the average power at the transmitter is E
{
∥x∥2

}
= P , we will have

E
{
Tr{f 2 ·W · s · sH ·WH}

}
= P , (6.3)

⇒ f 2 · Tr{W · E
{
s · sH

}
·WH} = P , (6.4)

⇒ f =

√
P

Tr{WWH}
. (6.5)

Take the traditional block-level ZF as an example. We have xZF = fZF ·HH · (HHH)−1 · s,

where fZF = P√
Tr{(HHH)−1}

.

If the transmitter has an instantaneous power constraint as ∥x∥2 = P , we will get

Tr{f 2 ·W · s · sH ·WH} = P , (6.6)

⇒ f 2 · Tr{W · s · sH ·WH} = P , (6.7)

⇒ f =

√
P

Tr{W · s · sH ·WH}
, (6.8)

which takes the instantaneous symbol information into consideration.

For instance, CIZF Precoding takes instantaneous power into account in [14]:

WCR = ·HH · (HHH)−1 ·Rϕ (6.9)

where fCR is the scaling factor which ensures the power normalization. Rϕ is the correlation

rotation matrix which aims at making the transmitted signals be constructively received at
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each user without destructive interference. The instantaneous power at antennas is

f 2
CR(WCRs)

HWCRs = f 2
CR · sH ·Rϕ

H · (HHH)−1 ·H ·HH · (HHH)−1 ·Rϕ · s (6.10)

= f 2
CR · sH ·Rϕ

H · (HHH)−1 ·Rϕ · s (6.11)

= P , (6.12)

⇒ fCR =
P√

sHRH
ϕ

(
HHH

)−1
Rϕs

(6.13)

where the correlation rotation matrix is Rϕ = R ◦Φ. and

Φm,n = exp{j(∡sm − ∡(sn · ρmn))}

= exp{j∡sm} · exp{−j(∡sn + ∡ρmn)}

= sm · exp{−j∡sn} · exp{−j∡ρmn}

= sm · s∗n ·
ρ∗mn

|ρmn|
.

(6.14)

Furthermore, we can derive the elements in the correlation rotation matrix as

(Rϕ)m,n = Rm,nΦm,n = ρmn · sm · s∗n ·
ρ∗mn

|ρmn|
= sm · s∗n · |ρmn| . (6.15)

If we denote Υm,n = |ρmn|, then the correlation rotation matrix can be rewritten as

Rϕ = diag(s) ·Υ · diag(sH) = SΥSH (6.16)

where S = diag(s).
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Substituting the Rϕ in (6.16) into (6.13), we can find

fCR =
1√

sHdiag(s)ΥHdiag(sH)(HHH)−1diag(s)Υdiag(sH)s

=
1√

1H
K×1 ·ΥH ·V ·Υ · 1K×1

(6.17)

where V = diag(sH)(HHH)−1diag(s). And 1K×1 = diag(sH)s is a vector of all ones with

length of K.

As by constructive interferece precoding the resulting interferece contributes to the useful

signal power, the received instantaneous SNR at user k using CI precoding technique can be

written as

γk =
|hkWb|2

σ2
k

(6.18)

By substituting (6.9) and (6.16) into (6.18), the SNRk can be expressed as

γk =

∣∣fCR · hk ·HH · (HHH)−1 · diag(s) ·Υ · diag(sH) · s
∣∣2

σ2
k

=

∣∣fCR · ek ·H ·HH · (HHH)−1 · diag(s) ·Υ · 1
∣∣2

σ2
k

=
|fCR · ek · diag(s) ·Υ · 1|2

σ2
k

=
|fCR · ek ·Υ · 1 · bk|2

σ2
k

=
1

1 ·ΥH ·V ·Υ · 1
· |ek ·Υ · 1|2

σ2
k

(6.19)

where ek is a K × 1 vector all the elements of this vector are zeros except the k-th element

is one.
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Figure 6.1: Impact of different channels on SLP designs.

6.2 The Impact of User Selection on SLP

According to [14], the received symbol at each user k can be written as

rk = fCR · (
K∑
j=1

|ρij|) · sk + nk = λk · sk + nk , (6.20)

where

λk = fCR · (
K∑
j=1

|ρij|) =
∑K

j=1 |ρij|√
Tr{ΥSH(HHH)−1SΥ}

=
eTk ·Υ · 1K×1√

Tr{ΥSH(HHH)−1SΥ}

(6.21)

and ρij =
∑K

k=1 hi,kh
∗
k,j is the element (i, j) of the channel correlation matrix HHH . From

Eq. (6.20), it is easy to find that the power of the received symbol rk highly depends on λk

which is decided by channels. In order to verify this, we test the performance of different

SLP designs when the channel is well conditioned and poor conditioned in Fig. (6.1). The
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Figure 6.2: Compare different precoding approaches with and without user selection strategy.

number of BS antennas is N = 10, the number of users is K = 10, and the modulation

is QPSK. Well conditioned channels are independent with Gaussian complex distribution,

whereas the poor conditioned channels are high correlated among users whose correlation

matrix can be generated using the Toeplitz matrix. It is illustrated that the SLP designs

highly depends on the condition of the channel. When the channel is well structured, SLP

approaches will show more advantage than the ones with poor conditioned channels.

To guarantee QoS of the system, we take the user selection problem into account. Fig. (6.2)

illustrate the impact of user selection on different precoding techniques. We employ the

well-known user selection method “SUS” in [99] to select different number of users from the

total 100 users. The number of antennas at the transmitter will change with the number

of selected users, and N = K. In Fig. (6.2), “Gaussian” means that Gaussian complex

symbols are transmitted without modulation, “US” means with user selection, and “limit”

is the upper bound of the throughput calculated by BLER discussed in former chapters. We

can conclude that the user selection will improve the performance of precoding approaches,

especially for the CIZF which gains more benefit from the user selection.
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Algorithm 3 CIZF-based User Selection-Greedy Algorithm

1: Step (1) Initialization:
2: T0 = {1, . . . , N}.
3: S0 = ∅ (empty set).
4: π(1) = argmaxk ∥hk∥, given that k ∈ T0.
5: S = S0 + {π (1)}, set of selected users.
6: T = T0 − {π (1)}, set of unselected users.
7: Step (2) Selection:
8: for i = 2, · · · , K do
9: Q = |T |.
10: for m = 1, · · · , Q do
11: Stemp = S + T (m).
12: for t = 1, · · · , N do
13: Calculate α(m, t) =

∑
s λ(s, t) using (6.21), given that s ∈ Stemp, b(Stemp),

and H(Stemp).
14: end for
15: σ(m) =

∑
t α(m, t).

16: end for
17: π(i) = argmaxσ (m), given that m ∈ T .
18: S = S + {π (i)}, which is set of selected users.
19: T = T − {π (i)}, which is the set of other users.
20: end for

After taking the SLP technique into consideration, we try to better design the user selection

which is different from SUS. The method depends on both CSI and symbol information.

Based on Eq. (6.20), our user selection algorithm tries to find the optimal group of users

who generates the largest sum of λk in order to get the maximum SINR. The steps of selecting

K out of N users are outlined in Algorithm. 3.

Fig. 6.3 shows the comparison between our proposed greedy algorithm (with CIZF precoding)

with the SUS (with ZF precoding). The number of BS antennas is N = 32 and the number

of total users is M = 32 as well. We need to select K users out of M = 32. QPSK

is employed. From Fig. 6.3, we find that our proposed greedy algorithm performs better

than the block-level user selection and precoding approach, especially when the number of

served users is close to the number of BS antennas, the performance gap between the two

approached increases.
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Figure 6.3: Comparison of user selection between our proposed greedy algorithm with SUS.

6.3 Closed-form SLP

Traditional SLP approaches require symbol-level broadcasting of the rescaling factor to users

for accurate demodulation, which complicates practical implementation. In order to decrease

the complexity of SLP and make it practical, some researchers have started to work on the

closed-form SLP [80] or propose a block-level rescaling [100] recently. In this sections, we

will show our work on the closed-form SLP and hope it will be helpful for future work.

For the jth user, the noiseless received symbol in the modified coordinate system is zj =

s∗jrj = s∗jhjx, which in vector form for all users becomes z = SHHx = H̃x, where H̃ ≜ SHH.

The safety margin for each CU is

δj = R{zj} sin θ − |I{zj}| cos θ. (6.22)

If the preset SM of all users is δ0, the constraint ensuring the QoS can be expressed as

R{zj} sin θ − |I{zj}| cos θ ≥ δ0c ∀j ∈ J (6.23)
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The BS designs the transmit signal vector x to maximize δ., where the constraint can be

formulated in matrix form as follows, for BPSK:

R{z} ≥ δ01N (6.24)

and for DPSK (D > 2):

−R{z} tan θ + δ0

cos θ
1N ≤ I{z} ≤ R{z} tan θ − δ0

cos θ
1N (6.25)

Using the real-valued matrix representation,

R{z} = R{H̃x} (6.26)

=

[
R{H̃} −I{H̃}

]R{x}

I{x}

 (6.27)

≜ Gx̌ (6.28)

I{z} = I{H̃x} (6.29)

=

[
I{H̃} R{H̃}

]R{x}

I{x}

 (6.30)

≜ Qx̌ , (6.31)

the constraints in (6.24) and (6.25) can be rewritten as

−Gx̌+ δ01N ≤ 0N (BPSK) (6.32)
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−G tan θ +Q

−G tan θ −Q

 x̌+
δ0

cos θ
12N ≤ 02N (DPSK, D > 2). (6.33)

If we define

B =

−G tan θ +Q

−G tan θ −Q

 (6.34)

d =
1

cos θ
12N , (6.35)

the problem with modulation order higher than 2 can be reformulated as

minimize
x̌

∥x̌∥2 (6.36)

subject to Bx̌+ dδ0 ≤ 02N , (6.37)

We analyze this problem with Lagrangian and KKT conditions. The Lagrangian is expressed

as [101]:

L(x̌,µ) = x̌T x̌+ µT (Bx̌+ δ0d), (6.38)

where µ =

[
µ1 · · · µ2N

]T
contains the dual variables and µi ≥ 0,∀ 1 ≤ i ≤ 2N . It is

obvious that the primal problem is convex and the optimal solution satisfies the following

KKT conditions such as

∂L
∂x̌

= 2x̌+BTµ = 0 (6.39)

Bx̌+ δ0d ≤ 02N (6.40)

µi ≥ 0, ∀1 ≤ i ≤ 2N (6.41)

µi(Bix̌+ δ0di) = 0, ∀1 ≤ i ≤ 2N (6.42)
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From Eq. (6.39), we can get the optimal transmit symbol should satisfy

x̌ = −1

2
BTµ. (6.43)

Therefore, the dual function is

g(µ) = −1

4
µTBBTµ+ (δ0d)Tµ. (6.44)

The primal problem is convex, and the Slater’s condition qualifies here, therefore the strong

duality holds here which means we can get the primal optimal solution by maximizing the

dual function. The Lagrange dual problem is

maximize
µ

− 1

4
µTBBTµ+ (δ0d)Tµ (6.45)

subject to µ ≥ 0, (6.46)

which is a non-negative least square (NNLS) problem with many sophisticated algorithms to

solve it such as an active-set method published by Lawson and Hanson [102]. Here we can

see that the size of the dual variable µ is 1× 2N whereas the size of the primal variable x̌ is

1 × 2M . In practical MIMO system, since M ≫ N , we would efficiently and tremendously

decrease the complexity of designing the SLP. This optimization problem is referred to as

Minimizing Power SLP (MinPowerSLP).

Lemma 6.1. If M ≫ N , the NNLS problem is equivalent to the LS problem which means

the optimal solution µopt of

maximize
µ

−1

4
µTBBTµ+ (δ0d)Tµ, (6.47)

is element-wise positive, i.e., µ ≥ 0.
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Proof. The optimal solution µopt of g(µ) can be derived by

∂g(µ)

∂µ
= −1

2
BBTµ+ dδ0 = 0, (6.48)

therefore

BBTµ = 2δ0d . (6.49)

where

E{BBT} ≜ M =
M

cos θ2

 IN − cos 2θIN

− cos 2θIN IN

 . (6.50)

It is easy to see that the non-diagonal elements of M is non-positive, therefore it is a real

Z-matrix. If we express M as

M =
M

cos θ2
I2N −T , (6.51)

where

T =
M

cos θ2

 0N cos 2θIN

cos 2θIN 0N

 (6.52)

is a matrix with all elements non-negative and with all the eigenvalues

λ =
M

cos θ2
cos 2θ ≤ Mc

cos θ2
, (6.53)

M is obviously a M-matrix. According to the “monotone” property of M-matrix, Mx ≥ 0

implies x ≥ 0, then look back Eq. (6.49), we can easily get µ ≥ 0 due to δ0d ≥ 02N and

BBT is a M-matrix when M ≫ N .
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Based on the lemma, we can get that if the number of transmit antennas is much greater

than the number of users, the original NNLS problem for SLP will change to a standard LS

problem, which is easy to find the optimal closed-form solution. In future, we can find more

applications and probability with this result.
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Chapter 7

Conclusion and Future Work

In this dissertation, we mainly work on the robust SLP designs in CR systems and systems

with IGI. We firstly proposed several SLP algorithms for underlay and overlay CR networks

that exploit constructive interference. The result shows that the PUs can achieve benefits

from the CR transmission with SLP designs. We reformulated the SINR balancing problem

to optimize CUs performance while meeting interference constraints for PUs. We general-

ized previous zero-forcing and interference balancing approaches, extending SINR balancing

and maximum safety margin algorithms to use shared channel and data information from

the PBS. Our algorithms outperform prior solutions by naturally exploiting constructive

interference without relaying PU symbols.

Secondly, using two CSI error models, we derived two robust SLP methods: one based on

max-min optimization of the worst-case CSI error, and the other on a probability-constrained

problem using AQNM to approximate CSI quantization impact. These optimization prob-

lems result in a quadratic objective function with linear inequality constraints that are effi-

ciently solvable. Our numerical results show that our robust SLP schemes handle various CSI

errors while maintaining high energy efficiency, and can improve PU network performance.
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Thirdly, we enhance SLP design in wireless communication systems, focusing on non-circular

interference resulted from the jammer’s signal. We first investigate the impact of improper

noise on the MSM approach, essential for SLP strategies but often overlooking noise corre-

lation, leading to biased jammer effect estimates. To mitigate non-circular noise effects, we

employ a whitening transformation to map correlated noise to uncorrelated forms. Numer-

ical results demonstrate that considering noise non-circularity significantly enhances MSM

precoder performance, highlighting the importance of accurate safety margin formulation

and CIR with respect to noise characteristics. Additionally, we introduce a novel SLP ap-

proach leveraging the jammer’s signal covariance matrix knowledge to minimize transmit

power while satisfying upper and lower safety margin constraints. In response, we propose

robust BLP and SLP designs, selecting different covariance matrices for optimization to

achieve robustness. Numerical results show the superiority of our proposed SLP approaches.

Future work will explore the relationship between SER and probability constraints in the

robust SLP designs. For example, when considering quantized CSI with AQNM in the

Chapter. 4, the preset probability affects the constraint for SM and hence makes difference

in robustness as well as SER. Moreover, in the systems with IGI, when using confidence

ellipse to facilitate the robust SLP designs, we show the numerical result that with different

preset confidence of the ellipse, the energy efficiency will change, which motivates us to think

about the relationship between them in order to efficiently find the optimal solution. Based

on the work in Chapter. 5, we can further study the robust designs in systems with IGI, when

both the CSI from the jammer to user and the non-circularity are unknown. Additionally,

the user selection and closed-form problems in SLP are challenging. We only explore some

basic ideas in Chapter. 6, and there are more potential work on these topics.
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[64] C. Lameiro, I. Santamaŕıa, W. Utschiclk, and P. J. Schreier, “Maximally improper
interference in underlay cognitive radio networks,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process. (ICASSP), pp. 3666–3670, IEEE, 2016.

136



[65] M. M. Alsmadi, N. A. Ali, and S. S. Ikki, “SSK in the presenzce of improper Gaussian
noise: Optimal receiver design and error analysis,” in Proc. IEEE Wireless Commun.
Netw. Conf. (WCNC), pp. 1–6, IEEE, 2018.

[66] S. Sallem, J.-P. Delmas, and P. Chevalier, “Optimal SIMO MLSE receivers for the
detection of linear modulation corrupted by noncircular interference,” in IEEE Statist.
Signal Process. Workshop (SSP), pp. 840–843, 2012.

[67] M. M. Alsmadi, A. E. Canbilen, N. A. Ali, and S. S. Ikki, “Effect of generalized im-
proper Gaussian noise and in-phase/quadrature-phase imbalance on quadrature spatial
modulation,” IEEE Open J. of Signal Process., vol. 2, pp. 295–308, 2021.

[68] Y. Zeng, R. Zhang, E. Gunawan, and Y. L. Guan, “Optimized transmission with
improper Gaussian signaling in the K-user MISO interference channel,” IEEE Trans.
Wireless Commun., vol. 12, no. 12, pp. 6303–6313, 2013.

[69] O. De C., H. Jedda, A. Mezghani, A. L. Swindlehurst, and J. A. Nossek, “Reconsidering
linear transmit signal processing in 1-bit quantized multi-user MISO systems,” IEEE
Trans. Wireless Commun., vol. 18, no. 1, pp. 254–267, 2018.

[70] M. Soleymani, I. Santamaria, and P. J. Schreier, “Improper Gaussian signaling for the
K-user MIMO interference channels with hardware impairments,” IEEE Trans. Veh.
Technol., vol. 69, no. 10, pp. 11632–11645, 2020.

[71] H. D. Nasir, A. A.and Tuan, T. Q. Duong, and H. V. Poor, “Improper Gaussian
signaling for broadcast interference networks,” IEEE Signal Process. Lett., vol. 26,
no. 6, pp. 808–812, 2019.

[72] F. Sterle, “Widely linear MMSE transceivers for MIMO channels,” IEEE Trans. Signal
Process., vol. 55, no. 8, pp. 4258–4270, 2007.

[73] D. Darsena, G. Gelli, and F. Verde, “Widely-linear precoders and decoders for MIMO
channels,” in Proc. Int. Symp. on Wireless Commun. Syst. (ISWCS), pp. 1–5, VDE,
2013.

[74] W. Zhang, R. C. de Lamare, C. Pan, M. Chen, J. Dai, B. Wu, and X. Bao, “Widely
linear precoding for large-scale MIMO with IQI: Algorithms and performance analysis,”
IEEE Trans. Wireless Commun., vol. 16, no. 5, pp. 3298–3312, 2017.

[75] S. Javed, O. Amin, B. Shihada, and M.-S. Alouini, “A journey from improper Gaussian
signaling to asymmetric signaling,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 1539–1591, 2020.

[76] G. Strang, Introduction to Linear Algebra. Society for Ind. and Appl. Math. (SIAM),
2022.

[77] C. D. Meyer and I. Stewart, Matrix Analysis and Applied Linear Algebra. Society for
Ind. and Appl. Math. (SIAM), 2023.

137



[78] A. Li, C. Masouros, X. Liao, Y. Li, and B. V., “Multiplexing more data streams in the
MU-MISO downlink by interference exploitation precoding,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), IEEE, 2020.

[79] A. Haqiqatnejad, F. Kayhan, and B. Ottersten, “Symbol-level precoding design based
on distance preserving constructive interference regions,” IEEE Trans. Signal Process.,
vol. 66, pp. 5817–5832, Oct. 2018.

[80] A. Li and C. Masouros, “Interference exploitation precoding made practical: Optimal
closed-form solutions for PSK modulations,” IEEE Trans. Wireless Commun., vol. 17,
pp. 7661–7676, Sept. 2018.

[81] R. Liu, Z. Bo, M. Li, and Q. Liu, “End-to-end learning for symbol-level precoding and
detection with adaptive modulation,” IEEE Wireless Commun. Lett., vol. 12, no. 1,
pp. 50–54, 2022.

[82] H. Jedda, A. Mezghani, J. A. Nossek, and A. Swindlehurst, “Massive MIMO down-
link 1-bit precoding with linear programming for PSK signaling,” in Proc. IEEE Int.
Workshop on Signal Process. Adv. in Wireless Commun. (SPAWC), July 2017.

[83] A. Li, C. Masouros, B. Vucetic, Y. Li, and A. Swindlehurst, “Interference exploitation
precoding for multi-level modulations: Closed-form solutions,” IEEE Trans. Commun.,
vol. 69, pp. 291–308, Oct. 2021.

[84] H. Jedda, A. Mezghani, A. Swindlehurst, and J. A. Nossek, “Quantized constant en-
velope precoding with PSK and QAM signaling,” IEEE Trans. Wireless Commun.,
vol. 17, pp. 8022–8034, Oct. 2018.

[85] L. Liu, C. Masouros, and A. Swindlehurst, “Robust symbol level precoding for overlay
cognitive radio networks,” IEEE Trans. Wireless Commun., vol. 23, no. 2, pp. 1403–
1415, 2024.

[86] A. Kalantari, M. Soltanalian, S. Maleki, S. Chatzinotas, and B. Ottersten, “Directional
modulation via symbol-level precoding: A way to enhance security,” IEEE J. Sel.
Topics Signal Process., vol. 10, pp. 1478–1493, Aug. 2016.

[87] A. Swindlehurst, A. Saxena, A. Mezghani, and I. Fijalkow, “Minimum probability-of-
error perturbation precoding for the one-bit massive MIMO downlink,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 6483–6487, June 2017.

[88] A. Swindlehurst, H. Jedda, and I. Fijalkow, “Reduced dimension minimum BER PSK
precoding for constrained transmit signals in massive MIMO,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process. (ICASSP), pp. 3584–3588, Apr. 2018.

[89] A. Haqiqatnejad, F. Kayhan, and B. Ottersten, “Constructive interference for generic
constellations,” IEEE Signal Process. Lett., vol. 25, pp. 586–590, Feb. 2018.

138



[90] W. S. H. M. W. Ahmad, N. A. M. Radzi, F. S. Samidi, A. Ismail, F. Abdullah, M. Z.
Jamaludin, and M. N. Zakaria, “5G technology: Towards dynamic spectrum sharing
using cognitive radio networks,” IEEE Access, vol. 8, pp. 14460–14488, 2020.

[91] K.-J. Lee, H. Sung, and I. Lee, “Linear precoder designs for cognitive radio multiuser
MIMO downlink systems,” in Proc. IEEE Int. Conf. Commun. (ICC), IEEE, 2011.

[92] K. Hamdi, M. O. Hasna, A. Ghrayeb, and K. B. Letaief, “Priority-based zero-forcing in
spectrum sharing cognitive systems,” IEEE Commun. Lett., vol. 17, no. 2, pp. 313–316,
2013.

[93] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem
with individual SINR constraints,” IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 18–
28, 2004.

[94] A. Salem and C. Masouros, “Error probability analysis and power allocation for inter-
ference exploitation over Rayleigh fading channels,” IEEE Trans. Wireless Commun.,
Apr. 2021.

[95] R. Eaves and A. Levesque, “Probability of block error for very slow Rayleigh fading in
Gaussian noise,” IEEE Trans. Commun., vol. 25, pp. 368–374, Mar. 1977.

[96] S. Catreux, V. Erceg, D. Gesbert, and R. W. Heath, “Adaptive modulation and MIMO
coding for broadband wireless data networks,” IEEE Commun. Mag., vol. 40, no. 6,
pp. 108–115, 2002.

[97] A. Mayouche, W. A. Martins, S. Chatzinotas, and B. Ottersten, “Data-driven precoded
MIMO detection robust to channel estimation errors,” IEEE Open J. Commun. Soc.,
vol. 2, pp. 1144–1157, 2021.

[98] H. L. Van T., Detection, Estimation, and Modulation Theory, Part I: Detection, Esti-
mation, and Linear Modulation Theory. John Wiley and Sons, 2004.

[99] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling
using zero-forcing beamforming,” IEEE J. Sel. Areas Commun., vol. 24, no. 3, pp. 528–
541, 2006.

[100] A. Li, F. Liu, X. Liao, Y. Shen, and C. Masouros, “Symbol-level precoding made
practical for multi-level modulations via block-level rescaling,” in Proc. IEEE Int.
Workshop on Signal Process. Adv. in Wireless Commun. (SPAWC), pp. 71–75, IEEE,
2021.

[101] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.

[102] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems. Society for Ind. and
Appl. Math. (SIAM), 1995.

[103] A. Kessy, A. Lewin, and K. Strimmer, “Optimal whitening and decorrelation,” The
American Statist., vol. 72, pp. 309–314, Oct. 2018.

139



Appendix A

Proof of Lemma 4.1

From [45] we note that eliminating the (possible) correlation between the entries of qc,j by

applying a whitening transform can ease the difficulty of finding the desired approximation.

In particular, we will apply the whitening matrix from [103] which is optimal in terms of

mean-squared error, i.e.,

R− 1
2

qc,j =

√
2√

Ppβcαc(2− αc)

 1 − cos 2θ

− cos 2θ 1


− 1

2

. (A.1)

The determinant of

 1 − cos 2θ

− cos 2θ 1

 is 1 − cos2 2θ = sin2 2θ, and thus is always non-

negative, and non-zero for θ ̸= 90◦. Thus Rqc,j
is non-singular, positive definite and invertible.
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As a result, the probability expression in (4.60) can be equivalently written as

P{wc,j(x̌c) ≥ qc,j} = P{wc,j(x̌c) ≥ R
1
2
qc,jR

− 1
2

qc,jqc,j}

= P{R− 1
2

qc,jwc,j(x̌c) ≥ R− 1
2

qc,jqc,j}

= P{w̄c,j(x̌c) ≥ q̄c,j} (A.2)

where w̄c,j(x̌c) ≜ R− 1
2

qc,jwc,j(x̌c) and q̄c,j ≜ R− 1
2

qc,jqc,j. Consequently, the chance constraint

(4.60) is equivalent to

P{w̄c,j(x̌c) ≥ q̄c,j} ≥ vc (A.3)

with q̄c,j ∼ N (0, I).

To obtain an efficiently computable constraint, we apply the Safe Approximation I method

in [45]. The two entries of q̄c,j are uncorrelated and independent. Defining

q̄c,j ≜

q̄1c,j
q̄2c,j

 , w̄c,j(x̌c) ≜

w̄1
c,j

w̄2
c,j

 , (A.4)

the Gaussian cumulative distribution function can be used to calculate the joint probability

in (A.2) as follows:

P{w̄c,j(x̌c) ≥ q̄c,j} = P{w̄1
c,j ≥ q̄1c,j}P{w̄2

c,j ≥ q̄2c,j} =
1 + erf(

w̄1
c,j√
2
)

2
×

1 + erf(
w̄2

c,j√
2
)

2
,

where the error function is given by

erf(x) =
2√
π

∫ x

0

exp(−t2) dt .
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Due to the monotonicity of erf(x), the desired probability is bounded below by

P{w̄c,j(x̌c) ≥ q̄c,j} ≥

1 + erf(
min{w̄1

c,j ,w̄
2
c,j}√

2
)

2

2

. (A.5)

In order to satisfy the chance constraint (A.3), it is sufficient to consider the deterministic

constraint

1 + erf
(

min{w̄1
c,j ,w̄

2
c,j}√

2

)
2

2

≥ vc . (A.6)

Since w̄c,j(x̌c) ≜ R− 1
2

qc,jwc,j(x̌c), the constraint can be rewritten as

R− 1
2

qc,jwc,j(x̌c) ≥
√
2 erf−1 (2

√
vc − 1)12 , (A.7)

where erf−1(·) denotes the inverse error function. We thus finally arrive at the following

linear inequality constraint:

H̃℧
cc,jx̌c ≥ ᾱcηcR

1
2
qc,j12 + δ0c,j12 , (A.8)

where ηc ≜
√
2 erf−1

(
2
√
vc − 1

)
.
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Appendix B

Proof of Lemma 5.1

According to (5.14), the optimal precoding Popt should satisfy

Tr{HEP} − β−1Tr{HEPPTHT
E} = −4Kβ−1 .

Then the mean square error (MSE) in (5.66) can be rewritten as

E{∥β−1yE − s̄∥2} = K −M +
1

2
Tr


(
I+

1

a

∑
k

H̄T
kG

−1
k H̄k

)−1
 . (B.1)

Define

D = I2M +
1

a

∑
k

H̄T
kG

−1
k H̄k (B.2)

= I2M +
1

a
FTG−1F , (B.3)
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where

FT =
[
H̄T

1 · · · H̄T
K

]
(B.4)

G = blockdiag {G1, · · · ,GK} , (B.5)

so that maximizing the MSE is equivalent to maximizing Tr{D−1}.

Next, note that

Gk = ρ2H̄jkQH̄T
jk +

σ2
k

2
I2 (B.6)

= H̄jk

(
ρ2Q+

σ2
k

2∥hjk∥2
I2

)
H̄T

jk (B.7)

= ρ2H̄jk

(
Q+

σ2
k

2ρ2∥hjk∥2
I2

)
H̄T

jk (B.8)

= ρ2H̄jk (Q+ bkI2) H̄
T
jk , (B.9)

where bk = σ2
k/(2ρ

2∥hjk∥2) and we have used the fact that

HjkH
T
jk = ∥hjk∥2I2 . (B.10)

Thus, we can write

G = ρ2H̃j (IK ⊗Q+B⊗ I2) H̃
T
j (B.11)

G−1 =
1

ρ2

(
H̃T

j

)−1

(IK ⊗Q+B⊗ I2)
−1
(
H̃j

)−1

, (B.12)

where H̃j = blockdiag {H̄j1, · · · , H̄jK} and B = diag {b1, · · · , bK}. Thus,

D = I2M +
1

aρ2
FT
(
H̃T

j

)−1

(IK ⊗Q+B⊗ I2)
−1
(
H̃j

)−1

F (B.13)

= I2M +
1

aρ2
CT (IK ⊗Q+B⊗ I2)

−1C . (B.14)
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Also note that we can write the eigendecomposition of Q as Q = UΛUT , where UUT = I2

and

Λ =

 λ 0

0 1− λ

 . (B.15)

Now let’s take the derivative of Tr{D−1} with respect to λ:

d

dλ
Tr{D−1} (B.16)

= −Tr

{
D−1

(
d

dλ
D

)
D−1

}
(B.17)

= − 1

aρ2
Tr

{
D−1CT

(
d

dλ
(IK ⊗Q+B⊗ I2)

−1

)
CD−1

}
(B.18)

=
1

aρ2
Tr

{
A

(
d

dλ
(IK ⊗Q)

)
AT

}
(B.19)

=
1

aρ2
Tr


IK ⊗

U

 1 0

0 −1

UT


ATA


where A = D−1CT (IK ⊗Q+B⊗ I2)

−1. We can write

U

 1 0

0 −1

UT = Ũ

 −1 0

0 1

 ŨT , (B.20)

where U is unitary, symmetric and improper, while Ũ is unitary, not symmetric but proper.

Thus

d

dλ
Tr{D−1} (B.21)

=
1

aρ2
Tr


IK ⊗

 −1 0

0 1


 (IK ⊗ ŨT )ATA(IK ⊗ Ũ)

 (B.22)
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Note that Γ ≜ (IK ⊗ ŨT )ATA(IK ⊗ Ũ) is a proper matrix when Q = 1
2
I2, which means it

can be written such that it is composed of 2× 2 blocks Γi,j each of which is proper:

Γ =



Γ1,1 Γ1,2 · · · Γ1,K

Γ2,1 Γ2,2 · · · Γ2,K

...

ΓK,1 ΓK,2 · · · ΓK,K


. (B.23)

Since each block term on the diagonal satisfies

Γk,k =

 R(γk) −I(γk)

I(γk) R(γk)

 , (B.24)

it is clear that

d

dλ
Tr{D−1} (B.25)

=
1

aρ2
Tr


IK ⊗

 −1 0

0 1


 (IK ⊗ ŨT )ATA(IK ⊗ Ũ)

 (B.26)

= 0 ,

when evaluated at Q = 1
2
I2, which is thus a stationary point for Tr{D−1} where it is

maximized.
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