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Abstract 

Learning hierarchical concepts is a central problem in 
cognitive science.  This paper explores the Nearest-Merge 
algorithm for creating hierarchical clusters that can handle 
both feature-based and relational information, building on the 
SAGE model of analogical generalization.  We describe its 
results on three data sets, showing that it provides reasonable 
fits with human data and comparable results to Bayesian 
models.  

Keywords: Analogy, concept learning, computational 
modeling, hierarchical clustering 

Introduction 

How concepts are formed and organized is a central 

question in cognitive science. It has been argued that people 

group examples into categories to maximize within-category 

similarity and minimize between-category similarity 

(Mervis & Rosch, 1981). One important feature of 

categories is that they are not isolated from each other. 

Instead, people tend to organize the categories into a 

hierarchy or taxonomy (Collins & Quillian, 1969; Murphy 

& Lassaline, 1997).  

Most models of hierarchical category learning focus on 

feature-based representations (e.g. Medin & Schaffer, 1978; 

Fischer 1987).  Feature-based representations cannot capture 

relational thinking, involved in explanation, causal 

reasoning, and planning, which is central to human 

cognition (Gentner & Kurtz, 2005).  Bayesian models 

(Kemp et al. 2006; Kemp & Tenenbaum 2008) can create a 

variety of structures, including hierarchical structures, 

although to our knowledge they have not been tested on 

representations involving higher-order relations.  Analogical 

generalization (Kuehne et al. 2000) can handle relational 

representations with higher-order relations as well as feature 

representations, but currently it does not create hierarchical 

conceptual structures.  This paper explores how analogical 

generalization might be extended to model the formation of 

hierarchical conceptual structure.  The basic insight is that 

the numerical similarity score computed via structure-

mapping can serve the same roles as vector-based 

operations used in feature-based models of similarity, and 

hence many of the same ideas and insights of those models 

can be extended to handle relational (including higher-order 

relational) representations. 

We begin by summarizing relevant aspects of structure-

mapping and the models that we are building upon.  Then 

we describe the Nearest-Merge algorithms for constructing 

hierarchical concepts.  Next we describe three experiments, 

providing evidence that it can produce results that are 

compatible with human judgments, and with a prior 

Bayesian simulation on a data set for which no human data 

is available.  We close with related and future work. 

Background 

We assume Gentner’s (1983) structure-mapping theory.   

Our model is built upon the Sequential Analogical 

Generalization Engine (SAGE; McLure et al. 2010), which 

in turn uses the Structure-Mapping Engine (Falkenhainer et 

al 1989) for analogical comparison and MAC/FAC (Forbus 

et al 1995) for analogical retrieval.  Thus we start with 

SME, since it is the most fundamental.  SME takes as input 

two structured representations, a base and target, and 

produces one or more mappings.  Each mapping provides a 

set of correspondences (i.e. what goes with what), a 

structural evaluation score which provides an overall 

estimate of match quality, and candidate inferences.  We 

refer to the similarity score of a mapping as 

NSIM(base,target), which is normalized to [0,1] by dividing 

the raw score by the mean of the self-scores of the base and 

target 1 .  Forward candidate inferences go from base to 

target, reverse candidate inferences go from target to base.  

MAC/FAC takes as input a case library, which is a set of 

structured descriptions, and a probe, which is a structured 

description.  It returns one or more approximations to the 

most similar case in the case library, using a two-stage 

process that enables it to scale to large case libraries.  The 

first stage uses a flattened version of the relational structure 

of cases, called content vectors, whose dimensions are 

proportional to the weighted number of occurrences of each 

predicate in a description.  The dot product of two content 

vectors is an estimate of SME’s structural evaluation score 

for the structured representations, making it a useful coarse 

filter.  Both SME and MAC/FAC have been used to model a 

variety of psychological phenomena. 

SAGE maintains, for each concept, a generalization 

context.  A generalization context has a trigger, which is 

used to test whether or not an incoming example should be 

added to it.  (An incoming example might satisfy multiple 

triggers, and hence be processed by several generalization 

contexts.)  Each generalization context maintains a set of 

generalizations and a set of unassimilated examples.  

                                                           
1The mapped representations are subsets of both base and target, 

so its score is lower than either of their self-scores. 
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(Either of these sets might be empty, and both are initially.)  

Generalizations are also structured representations, but 

associated with their statements are probabilities, based on 

the number of times facts that align with them are found in 

examples that are part of that generalization.  

Every time a new example is added, SAGE uses 

MAC/FAC to retrieve up to three examples or 

generalizations, based on whatever is the most similar to the 

new example.  If nothing is retrieved, or the similarity to the 

returned item is less than an assimilation threshold, the new 

example is stored as is.  Otherwise, if the returned item is a 

generalization, the new example is assimilated into it. If the 

returned item is a previously unassimilated example, then 

the two are combined into a new generalization.   

The assimilation process increments frequency counts 

associated with each statement, based on whether or not 

something in the example aligned with it.  For a new 

generalization, such facts are always either 1.0 (in both) or 

0.5.  If, for example, 1 black cat and two grey cats had been 

seen, then P[(primaryObjectColor <GenEnt> Black)] = 1/3. 

Facts whose probabilities drop too low are pruned, for 

efficiency.  Importantly, these generalizations do not have 

logical variables: When non-identical entities are aligned, as 

in the cats example, a new arbitrary individual (called 

<GenEnt> above) is constructed to stand for the aligned 

individuals, with its characteristics being determined by the 

set of statements in the generalization that constrain it. 

Extension to Hierarchical Concepts 

Our goal is to explore how to extend SAGE to automatically 

construct psychologically plausible hierarchical concepts.  

The basic approach is agglomerative hierarchical clustering 

(Manning et al. 2008) in which the hierarchy is built 

bottom-up, by merging pairs of existing clusters. The most 

commonly used hierarchical clustering algorithm is average-

linkage clustering, which constructs a dendrogram by 

merging two most similar members each time, using the 

mean distance between elements of each cluster as the 

distance between them. This method is similar to exemplar 

models, in that similarity is measured by the mean of its 

members, although computational exemplar models (Medin 

& Schaffer, 1978; Nosofsky, 1992) use more elaborate 

combination mechanisms than arithmetic average. 

Our approach, starting with SAGE, is more prototype-

based. Each SAGE generalization can be thought of as a 

prototype for the concept represented by that generalization 

context.   

Nearest-Merge Algorithm 

Nearest-Merge algorithm uses the same process as 

average-linkage, but the similarity of two clusters is 

computed with the generalizations representing each cluster. 

Each cluster has a cohesiveness score which measures the 

dispersion of exemplars to the generalization. Dispersion 

denotes how stretched or squeezed a distribution is, 

calculated here as the average similarity of each exemplar of 

a generalization to the generalization. The result of merging 

two clusters depends on their cohesiveness scores relative to 

the similarity score between the two. 

Consider two concepts C1 and C2 with cohesiveness 

scores c1 and c2, with NSIM(C1,C2) = s. If s is smaller than 

c1 and c2, e.g., when we are trying to merge the concepts 

“blue whale” and “humpback whale”, we would construct a 

superordinate “whale” above them; if s is only larger than 

one of them, e.g., when we are merging “feline animal” and 

“cat”, the more cohesive category “cat” would break into 

the other one and becomes a subordinate of it. The situation 

where s is larger than or equal to c1 and c2 is rare in 

simultaneous clustering, because usually the more similar 

pairs would be merged first. But this might be helpful if we 

have identical examples, for example e1, e2, e3 and e4, they 

would be merged into one concept (e1, e2, e3, e4) 

containing all four of them instead of creating a two layer 

hierarchy of them like ((e1, e2) (e3, e4)). The algorithm is 

shown in Table 1. 

 

 

 

 

procedure nearestMerge (E, a set of one or more examples) 

      if numberOf(E) = 1 then: 

         return E //a set containing only the root of the 

hierarchy, representing the most general concept 

set maxScore = 0, maxPair = nil 

for each example e ∈ E: 

mapping m = macfacBest(e, E - e) 

if NSIM(m) ≥ maxScore then:  

    set maxScore = NSIM(m) 

    set maxPair = (m.base,m.target) 

       set newConcept =  

             conceptMerge(maxPair.base, 

                                     maxPair.target) 

     addSubordinate(maxPair.base, newConcept)  

     addSubordinate(maxPair.target, newConcept) 

     return  

          nearestMerge(E – maxPair + newConcept) 

 

procedure conceptMerge (concept1, concept2) 

     set c1 = cohesivenessOf(concept1) 

          c2 = cohesivenessOf(concep2) 

          ch1= subordinatesOf(concept1) 

          ch2= subordinatesOf(concept2) 

         score = NSIM( concept1,concept2) 

     if score < c1, c2 then: 

         newConcept =  

              createConcept(concept1 ∪ concept2) 

     elseif score ≥ c1, c2 then: 

         newConcept = createConcept(ch1 ∪ ch2) 

     elseif c1 > score > c2 then: 

         newConcept = createConcept(concept1 ∪ ch2) 

     elseif c2 > score > c1 then: 

         newConcept = createConcept(ch1 ∪ concept2) 

    return newConcept 

 

Table 1: Nearest-Merge algorithm 
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It is useful to be able to flatten a hierarchy into natural 

clusters, to compare against human clustering results.  Note 

that the cohesiveness score, which estimates the within-

category similarity, increases monotonically as we descend 

to lower level, since lower level concepts are more cohesive. 

For a given category, let c be its own cohesiveness score, 

��̅�� be the average cohesiveness score of its subordinates, 

and let c�����be the cohesiveness score of its superordinate.  

We cut the hierarchy at the first category along each branch 

that satisfies��̅�� � c �  c � c�����. Intuitively, these natural 

categories are where the increase of cohesiveness score 

slows down, which has also been proposed as a criterion for 

finding the basic level categories (Mervis & Crisafi, 1982) 2. 

This algorithm is shown in Table 2. Human categorization is 

influenced by knowledge and expertise (Murphy, 2004). 

Experts usually prefer more specific categories, which have 

higher cohesiveness scores. In contrast, novices usually 

prefer less specific categories with lower cohesiveness 

scores. In order to have the flexibility to model both novices 

and experts, we added an upper-bound (0.6 when modelling 

novices as in Experiment 1 below) and a lower-bound (0.8 

when modelling experts as in Experiments 3 below), which 

                                                           
2The natural categories we found share some similarity with 

basic level categories, like being preferred in clustering tasks, but 

the comparison is not clear because in experiment 1, the input 

examples are categories instead of individual examples, while in 

experiment 2 and 3, the basic level categories are not easy to 

define. 

 

work as constraints on the cohesiveness score of natural 

categories (no bounds are used in Experiment 2 below). 

 

Experiments 

We test this clustering algorithm on three datasets.  We use 

average-linkage, with the distance vector computed from 

structural similarity and content vector dot products (cosine 

similarity), as baselines for comparison.  

Experiment 1: Animal data set 

We use the data set of 50 mammals collected by Osherson et 

al. (1991). Each animal is rated along 85 features, such as 

having hooves, a long neck, being a quadruped, and so on. 

These features are converted to binary values using the 

global mean as the criterion (Kemp et al, 2006). We asked 5 

raters to distribute them into natural categories. Although 

the conditions are different, our result corresponds well with 

Osherson’s. The average number of clusters raters created 

was 11.4 (SD=3.5), with a minimum of 6 and a maximum of 

17, while the average number of clusters in Osherson’s data 

on 30 subjects is 11.5 (SD=3.49) with a minimum of 5 and a 

maximum of 20.  

We used our algorithms to compute clusters for this data 

set, and then calculated the average ARI (adjusted Rand 

index) between each algorithm’s result and the human-

generated clusters. ARI is a commonly used measure of the 

similarity between two data clusters.  It ranges from [-1.0, 

1.0], with 1.0 for perfect match, close to 0.0 for random 

clustering and negative values for bad clusters. We use ARI 

as a proxy for estimating the psychological plausibility of 

clusters. We also compare them to the average inter-rater 

ARI, to provide a benchmark.  Table 3 describes the results. 

 

procedure flattenHierarchy(H, a hierarchy) 

       return flatten(getRoot(H)) 
 

procedure flatten(ct, a concept) 

        if leaves?(ct) = true  

           or cohesivenessOf(ct) ≥≥≥≥ upperBound  

        then: 

           return ct 

        else 

           set ��̅�� = 

                  averageCohesiveness(getSubordinate(ct)) 

                 c����� =  

                    cohesivenessOf(getSuperordinate(ct)) 

                 c  = cohesivenessOf(ct) 

            if (��̅�� � c �  c � c�����) 

                and cohesivenessOf(ct) ≥≥≥≥ lowerBound 

             then: 

                 return ct 

             else 

                flatCategories = nil 

                for each s ∈ getSubordinate(ct) 

                     set flatCategories =  

                             flatCategories ∪ flatten(s) 

                 return flatCategories 

 

Table 2: Flattening algorithm 

 

 
Figure 1: An example of a hierarchy constructed for ten 

animals, with the cohesiveness scores for the generalizations. 

The corresponding flat categories are colored in gray. 
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The Nearest-Merge algorithm generates 11 clusters, close 

to the mean of human results (11.4), and average ARI 

(0.4014) which also corresponds well with inter-rater ARI 

(0.3939). The average-linkage baseline algorithm requires 

manual entry of the desired number of clusters, giving it an 

advantage. The ARI differs little from content vector to 

SME-based average-linkage (0.4011) and Nearest-Merge, 

which is to be expected given that the dataset are purely 

feature-based. 

Experiment 2: Political data set 

This experiment moves one step into relational structure, 

using a dataset containing first-order relations.  The political 

dataset, including 14 countries during the cold war, was 

used by Kemp et al (2006).  It included various properties 

for countries as well as relationships between countries (e.g. 

that China provides Egypt with economic aid).   

 

Bayesian model Nearest-merge 

(Brazil Netherlands) 

(UK USA) 

(Burma Indonesia Jordan) 

(India Israel Egypt) 

(Cuba Poland USSR China) 

(Brazil Netherlands) 

(UK USA) 

(Burma Indonesia) (Jordan) 

(India Israel) (Egypt)  

(Cuba Poland USSR) (China) 

 

Table 4: Comparison of clusters generated by Bayesian 

model and Nearest-Merge algorithm 

Since no human categorization results are available, we 

compare our result with the result from Bayesian model 

(Kemp et al, 2006). The clusters found by the Nearest-

Merge algorithm are similar to those found by the Bayesian 

approach (ARI =  0.6286).  Table 4 shows the 

corresponding clusters. Nearest-Merge tends to treat 

exceptions like China and Egypt as separate clusters, 

resulting in finer-grained clusters. The more inclusive 

clustering by Kemp et al. (2006) might result from their 

algorithm using a Chinese Restaurant Process, which prefers 

smaller numbers of clusters.  

Experiment 3: Student hand-drawn sketches 

Finally, we move to more fully structured data, containing 

higher-order relations (Table 5). This dataset consists of 

fault identification worksheets collected by (Chang & 

Forbus, 2013) with CogSketch (Forbus et al. 2011), an 

open-domain sketch understanding system. The sketches 

were created by students taking an undergraduate 

geoscience course at Northwestern University. There are 28 

sketches, drawn from three different exercises. The ground 

truth clusters were provided by one of the authors of these 

geoscience exercises (Figure 2 illustrates). 

Students are asked to identify and label the fault, hanging 

wall, foot wall, marker beds, and movement along the fault 

in the picture by sketching. For example, the sketch in the 

top left corner of Figure 2 is nearly correct by the exercise’s 

standards. The marker beds are marked by four black 

rectangles. The two big blue triangle denotes the foot wall 

(left) and hanging wall (right), and the black arrows show 

the moving direction of the marker beds.  

The sketches are compared with the standard solution 

provided by the instructor, and turned into relational 

statements automatically by CogSketch. Table 5 shows 

some of the statements generated from the bottom left 

sketch in Figure 2. The statements on the top says that 

Object-811 is a marker bed and it is moving down. The 

bottom one says that Object-809, the fault identified by the 

student, exceeds the left and right bound of Object-446, the 

corresponding fault in instructor’s solution, which implies 

that Object-809 is too wide compared with Object-446. 

 

  

 
 
Figure 2: Four sketches from the student sketch dataset. The 

top two are in the same cluster, while the bottom two each 

are in their own clusters. 

 Inter-rater Nearest- 

Merge 

Average ARI 0.3939 0.4014 

 Average- 

Linkage(SME) 

Average- 

Linkage(CV) 

Average ARI 0.4011 0.4011  

 

Table 3: Results of the animal dataset  

(isa Object-811 GeologicalMarkerBed)  

(transMotion Object-811 Down) 

 

(implies 

 (and (exceedsQuantInkLeftBound 

                     Object-809 Object-446) 

      (exceedsQuantInkRightBound 

                     Object-809 Object-446)) 

 (quantInk-tooWide Object-809 Object-446)) 

 

Table 5: Examples of higher-order relational statements 
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As Table 6 indicates, the Nearest-Merge algorithm provides 

the best correspondence with the expert clusters on all three 

exercises. Notice that there is great variability in how well 

the SME-only and content-vector scores perform.  The 

difference may depend on whether or not the important 

properties are as simple as the existence of an entity of a 

particular type, versus whether or not an important 

relationship is violated.  A content-vector match suffices for 

detecting whether or not a marker bed is present in a 

description (leaving out that geological structure turns out to 

be a common student mistake in the exercises).  But 

detecting that the spatial relationships between two marker 

beds is incorrect requires a structural match. 

 

General Discussion 

To summarize, the Nearest-Merge algorithm results 

correspond best with human raters, and it produces results 

comparable with a prior Bayesian model on the dataset for 

which human data is not available. The performance of 

average-linkage with content vector and SME score varies 

on different datasets depending on how much structure 

information exists and how important this structure is.  

Related Work 

AI research on conceptual clustering has explored three 

approaches.  The first, and most widely used, approach is to 

define a distance metric and then search for clusters by 

optimizing a function of intra-cluster distance and inter-

cluster distance (Manning et al. 2008). This approach has 

been limited mainly to feature vectors, using vector-based 

distance metric.  Our technique can be seen as building on 

this insight, but by using SME as our model of similarity, 

we can handle relations and higher-order relations as well as 

attributes.  A second approach is to use Bayesian techniques 

to produce clusters that maximize predictability and/or 

utility (Fisher, 1987; Kemp et al 2008).  The probability 

information automatically constructed by SAGE could be 

used as a source of priors for such algorithms.  A third 

approach is statistical relational learning (Getoor & Taskar, 

2007), for example inductive logic programming 

(Muggleton, 1992) and Markov logic networks (Richardson 

& Domingos, 2006), which constructs rules via doing 

statistical reasoning over first-order representations.  SAGE 

generalizations can be used to draw new conclusions via 

analogical inference, and the probability information it 

constructs can be used in statistical reasoning to determine 

when generating rules would be productive (Friedman et al 

2009), although that capability is not used here. 

Conclusions & Future work 

This paper explores how analogical generalization can be 

extended to model hierarchical concept formation.  We 

show that the Nearest-Merge algorithm can provide 

psychologically plausible results.  Specifically, as the 

animal data set results indicate, it can produce human-like 

clusters and hierarchies with the attribute-only 

representations assumed by research based on feature 

vectors.  As the political data set results indicate, it can 

create conceptual structures that are compatible with a prior 

Bayesian simulation, using the same data. As the student 

sketches data set results indicate, it can produce clusters 

similar to those generated by an expert, using higher-order 

relational information.  Thus we think this is a promising 

approach for modeling how people construct hierarchical 

conceptual structures. 

There are several kinds of future work ahead. First, rarely 

in real life do people have all of the concepts to be 

organized all at once. Human learning is incremental, and 

we are experimenting with an incremental version of 

Nearest-Merge.  Robust incremental learning requires 

overcoming well-known issues with order bias (Eilo & 

Anderson 1984; Wattenmaker 1993; Kuehne et al 2000).  

Second, we are exploring better ways to quantitatively 

measure the similarities and differences in the hierarchies 

created by people and our models. Classic statistical 

methods for comparing two hierarchical results (Fowlkes & 

Mallows, 1983) need the value of average similarity 

between members for each cluster, which are hard to elicit 

from human raters, and edit distance metrics are difficult to 

calculate and score properly for unordered trees.  Third, we 

plan on exploring how these internal, similarity-based 

criteria interact with linguistic labels, especially when the 

linguistic labels occur at multiple levels of abstraction and 

cut hierarchical boundaries (dogs and cats are mammals, 

and goldfish and sharks are fish, but dogs, cats and goldfish 

are all pets).   

 

 Average-Linkage 

(CV) 

AL 

(SME) 

Nearest- 

Merge 

Mean ARI, 

Exercise 1 

0.0769 0.4000 0.6842 

 

 AL (CV) AL 

(SME) 

Nearest- 

Merge 

Mean ARI, 

Exercise 2 

0.4954 0.3836 0.5946 

 

 AL (CV) AL 

(SME) 

Nearest- 

Merge 

Mean ARI,  

Exercise 3 

0.7037 0.3939 0.7500 

 

Table 6: Sketch dataset results  
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