
UC Berkeley
UC Berkeley Previously Published Works

Title
Incorporating Electronic Information into Machine Learning Potential Energy Surfaces via 
Approaching the Ground-State Electronic Energy as a Function of Atom-Based Electronic 
Populations.

Permalink
https://escholarship.org/uc/item/6ht4s9m6

Journal
Journal of Chemical Theory and Computation, 16(7)

ISSN
1549-9618

Authors
Xie, Xiaowei
Persson, Kristin A
Small, David W

Publication Date
2020-07-14

DOI
10.1021/acs.jctc.0c00217
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ht4s9m6
https://escholarship.org
http://www.cdlib.org/


Incorporating Electronic Information into Machine Learning

Potential Energy Surfaces via Approaching the Ground-State

Electronic Energy as a Function of Atom-Based Electronic

Populations

Xiaowei Xie,1, 2 Kristin A. Persson,3, 2 and David W. Small1, 4

1Department of Chemistry, University of California,

Berkeley, California 94720, United States

2Energy Technologies Area, Lawrence Berkeley National Laboratory,

Berkeley, California 94720, United States

3Department of Materials Science and Engineering,

University of California, Berkeley, California 94720, United States

4Molecular Graphics and Computation Facility,

College of Chemistry, University of California,

Berkeley 94720, California United States∗

(Dated: May 27, 2020)

1



Abstract

Machine Learning (ML) approximations to Density Functional Theory (DFT) potential energy

surfaces (PESs) are showing great promise for reducing the computational cost of accurate molecu-

lar simulations, but at present they are not applicable to varying electronic states, and in particular,

they are not well suited for molecular systems in which the local electronic structure is sensitive to

the medium to long-range electronic environment. With this issue as the focal point, we present a

new Machine Learning approach called “BpopNN” for obtaining efficient approximations to DFT

PESs. Conceptually, the methodology is based on approaching the true DFT energy as a function

of electron populations on atoms; in practice, this is realized with available density functionals

and constrained DFT (CDFT). The new approach creates approximations to this function with

neural networks. These approximations thereby incorporate electronic information naturally into

a ML approach, and optimizing the model energy with respect to populations allows the electronic

terms to self-consistently adapt to the environment, as in DFT. We confirm the effectiveness of

this approach with a variety of calculations on LinHn clusters.
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I. INTRODUCTION

DFT computations continue to be the predominant approach to first-principles mod-

eling of chemical systems,1–3 while empirical force-field based approximations continue to

dominate large scale simulations.4,5 Forming one of the categories of approaches intent on

bridging this divide, ML-based methods for approximating first-principles PESs are draw-

ing much attention. These methods largely reduce the computational cost while remaining

remarkably near to the accuracy of quantum chemistry calculations, and practical appli-

cations in chemistry, physics and materials science have been demonstrated6–9. So far,

predictions of the electronic energy for neutral, closed-shell molecules (equilibrium or off-

equilibrium) have been successfully demonstrated. A ubiquitous theme in such method-

ologies is the development of translationally, rotationally, and permutationally invariant

descriptors based on nuclear positions. Prominent examples include the atom-centered sym-

metry functions10,11 of Behler and Parrinello and the smooth overlap of atomic positions

(SOAP)12 by Bartók et al. Some specific ML models that fit the general positions-to-energy

characterization are RuNNer,13 Tensormol,14–18 SchNet,19,20 ANI-1,21–23 AMP,24 DeepMD,25

LASP,26 QML models,27,28 PhysNet,29 GAP,30 models based on atom-density representa-

tions by Ceriotti and coworkers,31–35 the spectral neighbor analysis potential (SNAP),36

graph kernel methods,37,38 graph neural networks,39,40 methods based upon eigenvalues of

the Coulomb matrix,41,42 Bag-of-Bonds,43 permutation invariant polynomials,44 and oth-

ers. Impressive examples of large-scale applications of these methods include simulating

proteins,14 amorphous carbon,45–47 constructing phase diagrams of amorphous LixSi,48 etc.

However, descriptors based on atom positions alone exhibit some important limitations.

For example, they cannot be applied to more than one overall charge or spin state. Further-

more, far-away changes in the chemical environment may induce changes in the local charge

or spin state of a region of a molecule even if the local geometry is not changed appreciably.

We illustrate this with an example in section III B 3 below. This general problem applies

to many molecules and materials. Examples relating to conjugation, like the emergence of

polyradicality with increasing length in acenes,49–51 armchair versus zigzag edge effects in

graphene nanoribbons,52–54 and the gradual ascencion to the effective conjugation length in

a variety of oligomers,55–57 come to mind. Even more marked are examples involving explicit

ionization and charge transfer (CT). These include outer-sphere electron transfer processes
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such as those occuring in Ferredoxin protein cores and other proteins58,59 and large-scale

organic donor-acceptor complexes with appealing electronic properties.60–62

We stress the need for advanced ML-based methods to describe complicated heteroge-

neous systems such as found in electrode surfaces like the solid electrolyte interface (SEI)

in lithium-ion batteries (LIB).63–67 As a small glance into the complexities involved here,

consider that the ground state of neutral lithium ethylene carbonate (LiEC), a key inter-

mediate in the reductive decomposition process to form the LIB SEI, varies in character

between neutral and CT, i.e. unpaired electron on Li or on the rest of the molecule. This

variation is subtly dependent on where the Li atom locates around the ethylene carbonate

(EC) molecule;68 the transition between the two characters can be fairly rapid, and so for

position-based descriptors, whose terms don’t change rapidly in such transitions, this situ-

ation is clearly a practical difficulty. This is just one part of the SEI’s multiplex of charged

and uncharged species and the reactions between them, underscoring significant challenges

for ML descriptors.

In principle, these general effects can be captured by a position based descriptor along

with the total charge and spin multiplicity of the molecule, as after all these are the only

inputs needed for a ground-state calculation. However, size extensibility, the crucial property

that a ML model may be uniformly and consistently applied to systems of different sizes,

favors the use of local, typically atom-centered, descriptors, which are difficult to reconcile

with global parameters like total charge and spin. And, stretching these to include the

(possibly very) long range information required for these cases is challenging in practice in

terms of computational efficiency and numerical stability.

The above issues stem from a lack of explicit electronic information in the descriptors,

which suggests a general remedial approach. To successfully incorporate electronic infor-

mation, the basic scheme of the parent DFT model should be followed such that electronic

terms can adapt according to changes in neighboring electronic information, preferably in a

self-consistent or equilibrated way.

In this context, we would like to briefly reassess some of the models mentioned above.

The SOAP based descriptors make use of smeared-atom proxy densities, and together these

bear a rough resemblance to electron density. A recent variant33 uses the electrostatic

potential (ESP) associated with such proxy densities as the basis for the SOAP expansion.

This approach provides enhanced long-range information, and we will comment more on
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this important development at the end of this paper. Nevertheless, these proxy densities are

fixed and do not adapt to the electronic environment.

Several of the above ML approaches include a separate long-range, pairwise electro-

static contribution to the energy. This inclusion has been shown to be very useful for

describing large ZnnOn clusters,69, water clusters,14,70–72 proteins,14 and other examples73,74.

Popelier and coworkers first proposed to employ NNs to construct environment dependent

multipoles.75 Artrith et. al.,69 and later on Yao et. al.14 adopted a scheme where they pretrain

a neural network to predict atomic point charges, using the same descriptors (i.e. symmetry

functions) as they used to train energies. These charges were subsequently used to compute

the electrostatic term through Ewald summation76 for periodic systems, or Coulomb’s law for

molecules. Another approach fits molecular dipoles to infer partial charges.77 We note that

there are also independent ML models specialized for predicting partial charges,78,79 mul-

tipole moments,32,80,81 and even the full electron density.31,82. The latter method has been

used e.g. to guide the inverse design of chemical materials based on electron density infor-

mation, to serve as an initial guess for SCF convergence, and more. The above-mentioned

methods all predict the electronic terms directly from local position-based descriptors, and

thus are not properly adaptable to the electronic environment.

In another direction, the various charge equilibration schemes, such as EEM83 and QEq84

and several newer examples,85–91 compute atomic charges self-consistently. These models

therefore exhibit some basic flexibility in the context of the above issues. However, they

also employ very simple forms; this is advantageous for application to very large molecular

systems, but it limits the accuracy as compared to the above ML-based models. Ghasemi, et

al92 developed a charge equilibration scheme where the intra-atomic energy function comes

from a NN that is parametrized by DFT data, and they used this to predict the energies for

both neutral and ionized NaCl clusters. To our knowledge, this important development is the

only extant positions-to-energy model that employs a high-level ML approximation and that

is also able to accommodate varying electronic structure. However, the model is exclusively

trained on self-consistent DFT energies and its charges do not enter the descriptor. Hence

the charges are effectively auxiliary parameters as opposed to being more directly associated

with the electron density. This precludes, for example, obtaining more than one SCF solution

at a given geometry.

An open question remains as to how much electronic information should be incorporated.
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At one extreme, it is possible to utilize the full electron density and create ML models

that map this directly to the energy. Some of these efforts are concerned with finding

new DFT approaches with unprecedented accuracy.93–96 Others pertain more to the fact

that commonly used functionals do not provide a direct non-iterative link between density

and energy, so a ML approximation for this, as with other orbital-free approaches, can

greatly reduce the associated burden.20,96–101 Effective self-consistency is then obtained by

optimizing the energy with respect to the density. This level of electronic information is

ideal in terms of accuracy, and it easily addresses the above issues, but it entails a significant

increase in computational requirements compared to the above models.

In the present paper, we attempt to identify the simplest amount of electronic information

that is sufficient to solve the above issues, and how to incorporate it effectively. In a sense, we

are seeking a good balance between the above position-only approaches and the full-density

based approach. We focus on approximating regular DFT functionals, and we explore the

incorporation of atomic electron populations and associated electrostatic interaction terms

into the descriptor. Effectively, this divides the global charge and spin parameters into local

terms that may be naturally incorporated into local descriptors. In the following sections, we

exploit CDFT to realize a natural map from intrinsic populations (self-consistently optimal

ones or otherwise) to energies, which may be approximated with neural networks, leading

to a simple self-consistent approach that is qualitatively true to the parent DFT functional.

II. THEORY

A. Target Energy Function

1. Formal viewpoint

In the Levy constrained search approach in DFT,102 each density ρ maps to the lowest

possible energy E[ρ] obtainable from a many-electron wave function associated with that

density. Thinking of the density as being a reduction of the many-electron density matrix,

the constrained-search idea may be generalized to any collection of reduced variables {vi}

(which may be functions, etc.):
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E[{vi}] = min
Ψ→{vi}

〈Ψ|H|Ψ〉, (1)

where H is the many-electron Hamiltonian. Note that both E and H are dependent on the

types of nuclei and their positions, which, for simplicity, have been omitted in this equation.

Of course, in practice, the search over wave functions and the energy expectation value on

the right hand side of eqn. (1) will be replaced by a search over orbitals and an approximate

functional, respectively.

For {vi} in this paper, we are primarily concerned with reducing the density to atom

populations, in particular Becke populations.103 For these, the density is multiplied by a

weight function and integrated to produce a population value. For atom i and spin σ we

have

pi,σ =

∫
wi(r)ρσ(r). (2)

The weight functions wi are localized to their respective atoms, they take on values between

0 and 1, maximizing on the pertinent atom, and they sum over all atoms to 1.

Our target function for machine learning is essentially E[p], where we have placed the

populations into a vector p. Technically, this function is defined only for population values

that are non-negative and sum to appropriate values for the numbers of electrons of each spin,

or equivalently, the total charge and spin multiplicity. We can extend this function to the

larger domain of non-negative population vectors with no sum conditions by first applying

PNα,Nβ , which “projects” the population vector to a vector obeying the sum conditions:

[PNα,Nβ(p)]i,σ = pi,σ +
Nσ −

∑
j pj,σ

Natom

, (3)

where Nα and Nβ are the numbers of α and β electrons, respectively, and Natom is the

number of atoms. Hence, our formal target function is E[PNα,Nβ(p)].

The target function may be optimized with respect to the population values, with the

latter considered as input variables. This is much the same as optimizing DFT energies with

respect to the density or orbitals. Optimizing with respect to the populations thus defines

an SCF procedure. As to the issue of representability here, we only need to ensure that the

populations (after projection) are non-negative.
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At this point, we need a way to obtain practical approximations to this target function,

which is the subject of the next subsection.

2. The target function in practice: CDFT

The above ideas may be applied to any of the functionals used in common practice, e.g.

B3LYP as we use below. That is, they each may be formally reduced to a functional of

populations (and nuclear positions and types, as noted above).

Training data for the target function must be obtained with non-standard DFT calcu-

lations. Fully self-consistent DFT solutions provide data for certain population choices,

however, by itself this would constitute a very limited training set. Energies for other

population choices may be obtained by using constrained DFT (CDFT),104–106 which uses

Lagrange multipliers to optimize the DFT energy under various constraints. The use of

constraints on Becke-weight based populations has been implemented in Q-Chem,107 and

allows us to, in principle, obtain the energy for any given set of populations. Much as how

there are generally numerous wave functions (and thereby energies) associated with a given

density, there will overall be many energies associated with a specific population vector. In

fact, the energy spread is much wider for populations than for the density, because there will

generally be many densities associated with a given population vector. As with standard

DFT calculations, care must be exercised to attempt to obtain the lowest energy CDFT

solution.

The accuracy of ML models of the DFT energy is significantly enhanced by incorporating

energy derivatives into the loss function, i.e. it is desirable to train the model towards both

the direct value of the target function and its first derivatives. The xyz position derivatives

for CDFT have been previously derived.108 For this present paper, we also need a way to

compute the derivatives of the CDFT energy with respect to populations. This is described

in the Appendix.

B. Model Energy Function

We adopted a widely accepted scheme in the ML PES field, where the total energy is

decomposed into atom-centered contributions to ensure transferability across systems with
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different sizes and compositions. A neural network (NN) framework was used to map an

atomistic descriptor Di[Z,p, r] to the atomic energy. The model energy function can be

written as

EML =
∑
µ

∑
i∈Aµ

εµ[Di[Z,p, r]] + Eintra[Z,p, r] + Eel[Z,p, r], (4)

where εµ represents the output from the atomic neural network for the element µ, and this

function is applied to the descriptor for atom i; Aµ is the set of atom indices corresponding

to element µ; Z and r contain the atomic numbers and coordinates, respectively, for the

entire molecule. Eintra and Eel are simple intra-atomic and pairwise electrostatic terms,

respectively, and will be described below. An overview of our model, which we will call

“BpopNN” for “Becke Population Neural Network”, is shown in Figure 1. More details are

given in the following subsections.

1. Atomistic Descriptor

The descriptor we use in this paper is essentially a variant of SOAP,12 modified to describe

the electronic as well as nuclear environments. The regular SOAP descriptor is based on

an atomic power spectrum of a proxy density that represents the nuclei: for each atom,

the latter is expanded in a set of radial basis functions (RBF) and spherical harmonics

that are symmetric about that atom, and the coefficients of this expansion directly produce

the spectrum. In our case, we want to adapt the proxy function to represent the varying

electrostatic environment.

The basic idea is to use the ESPs of the nuclei, and the ESPs of the α populations treated

as point charges, and likewise for the β populations. In fact, as in SOAP, we partition the

proxy function into separate contributions for each element type, since this makes for a more

refined descriptor. In our lithium hydride applications below, we simplified the descriptor

to be based only on the nuclear charges and the total electron population on each atom. In

the present subsection, we will continue the development using spin populations. This is

more general, and reducing this descriptor to the total-population one is straightforward.

To simplify the computation of the descriptor elements, we approximate the 1/r term in

the ESPs with a single Gaussian function. This amounts to making a local approximation

to a function with a significant long-range component. Incorporation of the latter into the

descriptor is expected to be of significant benefit,33 and we intend to explore this in future
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work (see Conclusions below). Our proxy functions take the form

ρµ,t(r) =
∑
i∈Aµ

ηtiB exp (−γ |r− ri|2), (5)

where t is either ν (for nuclear), α, or β corresponding to the type of point population, and

thus ηνi = Zi, η
α
i = pi,α, and ηβi = pi,β. Here we used B = 1.128 and γ = 0.171, and r is in

the unit Bohr radius. Note that because these coefficients are chosen to approximate 1/r,

this Gaussian function is not normalized.

To build the descriptor for any atom in the molecule, we set the origin to that position

and project the radial slices of ρµ,t(r) onto the pertinent set of spherical harmonics Ylm(r̂):

ρµ,t(r) =
∑
i∈Aµ

∑
lm

ctilm(r)Ylm(r̂), (6)

where r̂ denotes the unit vector corresponding to r. This is done separately for each proxy

function, i.e. for each element type µ, so that the given atom’s descriptor contains separate

projection coefficients for each µ. Note that the i sum includes the central atom (if it is of

the element type µ). In practice, the l sum must be limited to a range. In the applications

below, we use a maximum l value of 6. Since ηti does not depend directly on positions, the

analytical form of the radial terms can be derived following previous works12,109 as

ctilm(r) ≡ 4πηtiB exp [−γ(r2 + r2
i )]ιl(2γrri)Y

∗
lm(r̂i), (7)

where ∗ denotes complex conjugation and ιl are the modified spherical Bessel functions of

the first kind. Summing over pertinent atoms gives

cµ,tlm(r) =
∑
i∈Aµ

ctilm(r), (8)

and projecting these onto RBFs gives a sequence of expansion coefficients cµ,tnlm with an

extra index n. The projections are based on evaluation of the integrals 〈gnYlm|ρ〉, with gn

denoting an RBF. In general, this can be done by either analytical or numerical integration

(e.g. Gauss-Legendre quadrature), but in our case, we bypass these complications by simply

evaluating cµ,tlm(r) on a grid of r values. So for us, cµ,tnlm = cµ,tlm(rn), with {rn} being the

set of grid points. The resulting coefficients are smooth with respect to nuclear positions,

and technically, one could choose RBFs whose projection coefficients match the evaluated

grid values. Hence the grid spacings can in principle be selected to produce a result that is
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as satisfactory as the explicit RBF/integration approach. A simple evenly-spaced 32-point

grid between 0.5 and 13.2 Å was used in this work; further refinement of the grid will be

addressed in the future.

At this point, one can construct the power spectrum by contracting over m,

pµ,tnl =
l∑

m=−l

|cµ,tnlm|
2 (9)

It is easy to prove the rotational invariance of pµ,tnl , as 3D rotations correspond to trans-

formations of blocks of the cµ,tnlm by Wigner matrices, which are unitary. Note that the m

contractions entail some loss of angular information, particularly for larger l values. There

exist various approaches for dealing with this problem, such as using the bispectrum,12 and

we intend to consider such enhancements in future work.

For each atom in the molecule, we employ a separate power spectrum for each element-

type in the molecule, i.e. the power spectrum is split into different element channels.

There is active research aimed at reducing the cost associated with adding more atomic

species,18,28,35,110 which is also of future interest for us. For now, the above treatment is

sufficient to prove the principle.

A radial cutoff of 13.2 Å was used below in computing the descriptor, i.e. when the proxy

function is expanded relative to a given atom, the summation found in (this instance of)

eqn. (5) excludes atoms beyond this cutoff. The motivation for choosing this relatively long

cutoff is that, as described below, in addition to the NN energies, we include a simple long-

range pairwise electrostatic term, as has been shown to be very useful in previous papers.14,69

The influence of the switch in dominance between short-range NN and explicit electrostatic

terms is a general issue, but because this question is separate from the main theme of this

work, we chose the long cutoff to minimize this influence.

As shown in the Supporting Information (SI), the use of shorter cutoff lengths, both for

the one associated with eqn. (5) and the one defining the last radial grid point, appears to

lead to overall worse performance for the test data described below. This might be connected

to a subtle interplay between the various model parameters employed, such as the cutoffs

and the maximum l value, and aspects of the training set such as its small size (see below).

We would also like to note that it may have more physical origins, such as being connected

to the observation of a longer intrinsic correlation length in LinHn clusters than for some

other ionic systems.111
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2. Neural Network Architecture

We employ separate neural networks for different element types, and for the applications

below, each element network contains two hidden layers with 30 neurons in each layer. This

size of neural network, which is fairly shallow, was used to best accommodate the number

of training data and prevent overfitting. Nonlinearities were introduced using a modified

softplus activation function ln (1 + exp (100x))/100. This form resembles the RELU acti-

vation function, which itself is highly popular because it overcomes the vanishing gradient

problem,112 yet this softplus variant has the advantage of being twice continuously differen-

tiable. Although the vanishing gradient problem is expected to be more significant for high

NN depth and sigmoid (in the general sense) activation functions, we found that the latter

produced higher errors for our data than the softplus variant.

In previous works, the ML model is usually trained towards the DFT atomization energy,

as opposed to total energy. This has been shown to accelerate and balance training.14 The

definition of atomization energy is ambiguous in the case of charged molecules, hence we

select a quadratic function of atomic charge that best fits the DFT energies for the pertinent

charge states of the isolated atom. Eintra[Z,p, r] is then the sum of these energies for each

atom. For lithium and hydrogen atoms found in the molecular applications below, we used

the following quadratic functions as baseline for atomic energies

Eintra,Li,i = 0.0901q2
i + 0.1088qi − 7.4787 (10)

Eintra,H,i = 0.2471q2
i + 0.2403qi − 0.4805, (11)

where qi is the atomic partial charge for atom i, i.e. qi = Zi− pi,α− pi,β. This resembles the

intra-atomic term in charge equilibration models.92 The quadratic form of these intra-atomic

terms contrasts with the fact that the true energy has a piecewise linear dependence on the

number of electrons. This is expected to lead to issues related to charge-transfer error, such

as non-integer populations at atom dissociation in certain cases, which is also typical for

common density functionals. But this is intentional: the density functional used below in

our target energy function, B3LYP, generally exhibits significant charge transfer error, so

we accept that our model in this case will also exhibit this problem. As density functionals

with reduced charge-transfer error continue to be developed, the form of the intra-atomic

energy function will need to be modified accordingly.
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We also used a simple pairwise Coulomb term to incorporate long-range electrostatics,

as shown in the following equation.

Eel[Z,p, r] =
∑
j>i

tanh(κrij)
qiqj
rij

(12)

Parameters κ (one each for different element pair types) were trained together with other

parameters in the neural network.

The loss function for the training is

L =
∑
M

(ECDFT
M − EML

M )2

Natom,M

+ γ1

∑
M

‖FCDFT
M − FML

M ‖2

Natom,M

+ γ2

∑
M

‖fCDFT
M − fML

M ‖2

Natom,M

. (13)

We use the Euclidean norm here, and for the model presented below, both γ1 and γ2 were

set to 1.5. The above sums go over the training molecules, and F is the position gradient,

f is the population gradient, and Natom,M represents the number of atoms in molecule M .

Adaptive moment solver (Adam)113 was used to update the NN weights during training.

Our implementation is built up from the open-source package TensorMol,14 which takes

advantage of the automatic differentiation scheme of Tensorflow.114

III. RESULTS AND DISCUSSION

We here test the performance of our method on LinHn clusters of varying size and geome-

try, and overall charges of +1, 0, and -1. We chose this for the simplicity of having only two

element types. Lithium hydride clusters have been studied in several theoretical115–120 and

experimental121,122 works, and have implications in various applications including hydrogen

storage.123–127

In the calculations below, we employ the descriptor described above, but, as mentioned

above, we modified it so that the total electron population on each atom, rather than the 2

spin populations, is used for the electronic terms.

A. Training-data generation and model training

In the training dataset, the cluster sizes vary from from n = 1 to 24, with increments

of 3 or 4. We use two basic types of structures from which we obtain more samples: (1)

collections of relatively widely separated LiH molecules (2-5 Å between molecules), and (2)
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denser LinHn systems with roughly cubic structures with alternating Li and H. We denote

the first dataset as “sparse”, and the second as “non-sparse” from here on.

For the sparse data, structures from DFT geometry-optimization trajectories were used in

the training dataset. For the non-sparse data, structures both from geometry-optimization

trajectories and Ab Initio Molecular Dynamics (AIMD)128 trajectories were used. The AIMD

simulations used a temperature of 500 K and a time step of 20 a.u. (≈ 0.5 fs).

All structures were generated using overall charge 0, and calculations for the ionized

molecules used the same geometries. During the geometry optimizations, the LiH units in

the sparse structures cluster together in various ways and become less sparse, although they

remain less dense than the non-sparse data. All of these geometries exhibit alternating Li

and H atoms, i.e. no structures with Li clusters nor H2 molecules were obtained. This is

because Li clusters often entail spin polarization, and therefore we reserve the generation

of such structures for future work in which spin populations are used. More details of the

geometries used in the training dataset are included in the SI.

All DFT computations were conducted using the QChem107 program. The geometry-

optimization trajectories for the sparse data used the B3LYP129,130 functional with D3(BJ)

dispersion131, the AIMD trajectories for the non-sparse data used the ωB97X-D132 functional,

and the geometry-optimization trajectories for the non-sparse data used B3LYP (without

dispersion). The reason for the overall use of different functionals is that we began with

ωB97X-D, then switched to using B3LYP-D3(BJ) for computational efficiency, and then

encountered some implementational problems with D3(BJ) for Li-Li interactions, so we

finally switched to using B3LYP alone. These variations only occurred for the generation

of structures; for all geometries used in the training and test sets (the latter is described

below), we (re-)computed the DFT energy using B3LYP. All DFT calculations in this paper

used the def2-SVPD basis set.133

For the final training set, we selected one per every several geometries from each tra-

jectory, with an interval of 2 to 7 depending on the trajectory’s length. On each of these

geometries, we computed unconstrained B3LYP solutions for the considered overall charges

(+1,0,-1), and for each of these three, we performed 10 separate CDFT calculations. For

each of these, we added a random (uniform distribution from -0.05 to 0.05) charge fluctua-

tion to each atom’s charge value from the pertinent unconstrained SCF solution, and then

computed the associated CDFT energy and its derivatives with respect to atomic positions
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and atomic charges (see Appendix for the latter).

The training data (∼ 37000 points) were randomly separated into training (95%) and

validation subsets (5%). This was influenced by the general strategy of using the validation

set primarily for tuning hyperparameters and for determining when to stop the training;

sometimes this includes additional training phases that incorporate the validation subset

back into the training set. Because we did not systematically explore hyperparameter tuning,

we sought to increase the portion of data in the training set at the outset, hence our choice

of a 95/5 split, in contrast to the more typical 80/20.

For the random data partitioning, all data points were approached equally, so because

there were 30 calculations per geometry (10 charge perturbations on 3 charge states), it is

more than likely that each geometry is found in the training subset. Additional testing on

geometries not found in the training set is presented in the next subsection.

The validation error provides an estimate on how well the model is trained. Typically the

model reaches its best performance on test sets after ∼ 500 epochs of training. The mean

absolute error (MAE) on the independent validation set of the energy is 1.523 kcal/mol per

molecule.

B. Testing the model

1. Li29H29 and Li32H32 clusters

We generated two test sets with larger molecules to test the transferability of our model:

non-sparse Li32H32 (+1,0,-1 charge) from an AIMD trajectory and sparse Li29H29 (+1,0,-1

charge) from a geometry-optimization trajectory. For those test sets, CDFT calculations

for off-equilibrium charges were not conducted as we focus on comparing the self-consistent

solutions from DFT and the BpopNN model.

As discussed earlier, one advantage of our model is that the populations (i.e. partial

charges at present) can be optimized self-consistently. In other words, the ML-model energies

are optimized with respect to the partial charges. This process is reminiscent of the SCF

procedure in DFT calculations, and we denote this charge optimization procedure as “SCF-

q” in the remaining text. We found the conjugate gradient (CG) method to be effective in

optimizing the BpopNN energy, and this was used in all examples below. This procedure
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requires computation of the BpopNN gradient with respect to the charges at each iteration,

and repeatedly updates the charges until the gradient is sufficiently close to 0.

In general, both DFT SCF and SCF-q can produce more than one stationary point, i.e.

solution. Since our objective is to find counterpart solutions between DFT and ML and

then compare them, we used the actual DFT partial charges as initial guesses for SCF-q

calculations for each geometry in the Li29H29 and Li32H32 test sets. Other initial guesses can

be used but this increases the odds of obtaining an SCF-q solution that does not correspond

to the SCF one even when a pair of corresponding solutions exists. Of course, general and

effective initial guess schemes will eventually need to be developed for the partial charges.

The Li partial charges in our systems usually exhibit values between 0.5 and 0.8 (although

the actual range covered throughout the whole dataset is −0.31 to 0.99). It turned out

that we obtained the same SCF-q solutions when starting with uniform guesses of 0.4 for Li

charges and -0.4 for H charges as when starting from DFT partial charges, demonstrating

the model’s capability of dealing with general reasonable initial guesses for partial charges.

Subtleties regarding the model SCF procedure, such as the possibility for multiple solutions,

or the possibility of structures with no solution, will be important to consider in future work.

We suggest here that the intra-atomic energy component should help to secure the existence

of solutions generally, and we note that for all structures considered below, the CG method

was able to produce a SCF-q solution.

In Figure 2, we plot a comparison between the SCF-q BpopNN energies (converged to

threshold 10−7 Hartree/e) and the DFT energies for neutral and ionized molecules. The

statistics for energy and charge errors are shown in Table I. For the sparse Li29H29 test set

(Figure 2 (a)), the BpopNN energies are showing close agreement with the DFT reference

energies, with a charge MAE of ∼ 0.014 per atom, and an energy MAE of ∼ 0.20 kcal/mol

per atom. Non-sparse Li32H32 (Figure 2 (b)) provides a harder test set - there are more

neighbors around each center atom and the Li-H bonds are actively forming and breaking in

the AIMD trajectory, which makes it more challenging for the descriptor. We still observe

a charge MAE of ∼ 0.011 and energy MAE of ∼ 0.27 kcal/mol per atom for those cases.

There is no obvious deterioration in performance on ionized molecules compared with neutral

molecules.

Figure 3a compares the partial charges obtained from DFT and the BpopNN SCF-

q procedure for a random test neutral Li32H32 structure; Figure 3b depicts the absolute
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partial charge error for the same molecule. There is a good agreement between the two

methods.

In addition to the SCF-q procedure, geometries and partial charges can be optimized

simultaneously to a tight convergence (10−7 Hartree/Å for position gradients and 10−7

Hartree/e for population gradients) using a CG algorithm for both neutral and ionized

molecules. We adopted the geometry-optimization procedure that DFT uses, i.e. converg-

ing SCF-q at each geometry cycle. In theory there is no need to follow this order, but this

method turned out to be more stable and efficient in practice. The cubic Li32H32 structures

were optimized using BpopNN separately for cation, neutral, anion, and compared with the

DFT optimized geometries. Figure 4 shows the superposition of BpopNN and DFT op-

timized neutral Li32H32 structures. The equilibrium geometries were successfully predicted

with an root mean square displacement (RMSD) of 0.0522 Å, 0.0958 Å, 0.0516 Å for neutral,

cation, and anion, respectively, compared to the true DFT geometries. The superpositions

and RMSD values were obtained with Maestro.134 The final absolute DFT and BpopNN

energies are compared in Table II, along with the DFT and BpopNN predicted adiabatic

ionization potential (IP) and electron affinity (EA) values. The predicted IP and EA are

showing qualitative agreement with DFT (0.167 eV and 0.278 eV error for IP and EA respec-

tively), although they are not highly accurate. These errors are fairly reasonable considering

the size of the trial molecule (64 atoms) we are testing on, and the modest dataset size and

NN depth associated with our trained model.

To make a preliminary comparison to existing ML methods, we used our training set

and the QUIP software package135 to obtain a few variations of Gaussian Approximation

Potential (GAP) models,30 differing e.g. in the cutoffs and auxiliary potentials employed (see

the SI). It is necessary to train separate GAP models for cation, anion, and neutral. For

this, only our training data for equilibrium (i.e. regular SCF) energies are applicable, which

amounts to ∼ 1100 data points (for each overall charge). For neutral and anion, the GAP

energy errors for the sparse (Li29H29) and non-sparse (Li32H32) geometries are comparable

to those of our model, while for cation, the GAP energy errors are significantly larger. As

to the latter result, we note that the cation-neutral energy gaps (from DFT or ML) are

generally significantly larger than the corresponding neutral-anion gaps, and as shown in

Fig. S2 in the SI, the distribution of DFT cation energies in the training set is noticeably

less uniform than in the other cases. The GAP optimized geometries for the 3 charge states
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of Li32H32 are less accurate than those of BpopNN in both energy and structure. Details for

the above results are given in the SI.

2. Reaction Pathways

As another practical application of our model, we sketched the energy landscape of var-

ious structural transformations for neutral and anionic Li12H12. Diverse stationary-point

structures were found for this system, ranging from cuboid structures to hexagonal struc-

tures to structures with fused 6-4-6 membered rings, etc. Although some motifs can be

seen in a couple of optimized geometries in the training, these structures are overall distinct

from the structures found in the training set. This provides an assessment of how well the

model can perform in mapping out energetics for realistic reaction pathways. The resulting

energy profile for neutral Li12H12 structures is shown in Figure 5 and for anion Li12H12

in Figure 6. All structures shown were individually optimized, e.g. the DFT neutral and

anionic structures are distinct.

The energies of Struct 1 from DFT and BpopNN were separately used as baselines, so

that only the energy difference between structures is shown. The difference in energy between

baseline structures for neutral relative to anion is 9.17 kcal/mol and 10.20 kcal/mol, respec-

tively for DFT and BpopNN. All the minimum structures and the transition states (TSs)

connecting them were obtained independently for DFT and BpopNN. Newton’s method was

used in the BpopNN to converge the TSs (to geometry gradient threshold 10−7 Hartree/Å

and charge gradient threshold 10−7 Hartree/e) and the presence of one imaginary frequency

was confirmed for all cases. The pathways from TSs to minimum structures in BpopNN were

confirmed by a steepest descent algorithm with a small step size. All the DFT TSs were

confirmed with one imaginary mode as well and pathways confirmed by Intrinsic Reaction

Coordinate (IRC) calculations. In general, the BpopNN geometries show close agreement

with DFT geometries (RMSD values are shown in the table inside each figure). Energies for

equilibrium structures are qualitatively good, although some deviations (2 to 3 kcal/mol)

can be seen for Struct 7 and anion Struct 3. Reaction barriers are showing qualitative

agreement as well, although there are cases with noticable quantitative error (neutral Struct

3 ↔ TS 3 ↔ Struct 4, neutral Struct 3 ↔ TS 6 ↔ Struct 7, anion Struct 2 ↔ TS

2 ↔ Struct 3). Some caution needs to be exercised if one were to predict the lowest en-
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ergy structure from ML models, especially when the energy range is extremely small (See

anion Struct 1 vs Struct 7). At the very least, however, it is helpful to take advantage of

the computational speed of the NN and map out the whole transformation picture prior to

refinement with full electronic structure calculations.

3. Long-range environmental effects

Finally, we would like to demonstrate the importance of optimizing the electronic com-

ponents self-consistently. Namely, we consider a model system that exhibits significant

long-range charge effects. Consider a neutral Li15H15 cluster, which is the side-by-side in-

teraction of two sheets, one Li8H7 (“A”) and one Li7H8 (“B”) as shown in Figure 7. The

two sheets are separated by 6.52 Å (“AB(6.5)”) or 14.02 Å (“AB(14)”). The first distance

is beyond the cutoff used by other common local position-only descriptors and the second

one is even beyond the long cutoff distance used in this work. For B3LYP, both inter-sheet

distances exhibit nearly full charge separation: the left sheet (A) bearing +1 charge and the

right sheet (B) bearing -1 charge. We note that a ML model based merely on local position-

only descriptors will not succeed for this system. In that case, for AB(14), monomer A

doesn’t “see” monomer B, so its predicted energy would mirror that for an isolated neutral

A monomer, and likewise for B. The predicted atom charges and the intra-monomer ener-

gies would be incorrect, and the inter-monomer energy, which is largely electrostatic, would

nearly be missed entirely.

As shown in Table III, this problem can be solved qualitatively by incorporating self-

consistent electronic information: our model can predict the charge separation and qualita-

tively correct binding energies, although there were no direct scenarios of this kind in our

training data.

At extremely large A-B separation, AB(1000), both DFT and BpopNN exhibit a partially

ionized state. For DFT, this stems from the well-known “self interaction” error (also called

“delocalization error”), and this kind of result is also expected of BpopNN. For AB(6.5) and

AB(14), BpopNN shows increased A-B charge separation relative to infinite separation. The

principal driving force for this, and the only one for AB(14), is the electrostatic attraction

between A+ and B−. In other words, the long-range environment is the sole reason for

increased charge separation in BpopNN in this case, which explicitly establishes that the
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model is adaptable to the environment.

The sum of BpopNN energies for A+ and B− is -121.4718 a.u., which actually is slightly

above the sum of BpopNN energies for A and B, -121.4785 a.u. The situation is opposite for

DFT, which may partially explain the increased A-B charge separation for DFT for AB(6.5)

and AB(14).

IV. CONCLUSIONS

In this paper, we have highlighted the importance of incorporating adaptable electronic

information into ML models of PESs. For this, we presented a new general approach for

building ML models whose target function is a DFT populations-to-energy map, afforded

in practice by CDFT. Such models are functions of atom positions and atom-based electron

populations; optimization with respect to the latter variables allows for self-consistent ad-

justment to the electronic environment, akin to optimizing the density in DFT. This leads

to features analogous to regular orbital or density based SCF: solutions for different overall

charge states; solutions with different character (e.g. CT and non CT); spin polarized ver-

sus not, etc. As a byproduct, this model can be used as a high-quality charge equilibration

scheme, i.e. partial charges of this model can also be used by themselves to infer molecular

properties, e.g. determining nucleophilic and electrophilic sites.

As a proof of concept for this approach, we trained a BpopNN model for LinHn systems.

For this, we simplified the target-energy map to use only total electron populations on each

atom, as opposed to the two spin populations. Subsequent testing on a variety of LinHn

examples confirmed that the model exhibits qualitative accuracy for the energy of different

overall charge states, a flexible reduced electronic structure whose populations are generally

close to those of the parent DFT functional and that can adapt to the (particularly medium

to long-range) environment, and transferabilty to clusters of different sizes. We conclude

that BpopNN is a positive first step towards addressing some outstanding challenges for ML

models, namely the handling of systems with electronic structure that is sensitive to the

surrounding environment.

This first application was designed for qualitative testing and it has several aspects that

can explain various inaccuracies and that are ready for refinement in future work. Although

partial charges are in principle adequate as a basis for the BpopNN approach, spin popu-
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lations will need to be incorporated in practice to effectively model the intricacies of the

CDFT map. In this context, it should then be noted that the reduction of the density to

atom-based populations is the furthest one can reasonably go; clearly less drastic reductions

should also be explored, and perhaps a useful hierarchy for this can be established.

Improvements in the descriptor can be made. One idea would be to incorporate radial

scaling functions into the above proxy functions.28,35 We could alternatively modify the

descriptor to be explicitly non-local. Our current descriptor is based conceptually on the

ESP generated by the model’s populations as point charges, and it uses simple Gaussian

functions to approximate the ESP for each point. ESPs are inherently non-local, while

Gaussians are not. It would therefore be worthwhile to better approximate these ESPs

or incorporate them exactly. It would be particularly interesting to combine the ideas of

this paper with those of LODE:33 instead of using point charges to generate the ESP, proxy

densities, now integrating to the current populations on each atom, could be used to generate

ESPs.

The fact that BpopNN models approximate the partial charges of the target density

functional is advantageous for the incorporation of long-range electrostatic interactions. The

simple approach used here, based on attenuated pairwise point-charge Coulomb interactions,

would clearly benefit from refinements to more reasonably approximate the local morphology

of the interacting density pieces.

Experimenting with the choice of ML architecture would be worthwhile, and especially

experimenting with the NN depth. Of course, this would require a larger training dataset.

The dataset used here is on the smaller side, so enlarging this is a focal point for future work.

There is also the plausibility that our dataset is insufficiently balanced. More specifically,

it only contains alternating Li-H clusters and cannot be reasonably applied to clusters with

distinguishable Lin and (H2)n substructures, its geometries were obtained from trajectories

using only the neutral charge state, and generally our sampling method of particular AIMD

and optimization trajectories might not be varied enough. In the future we will explore

more efficient and balanced sampling methods, such as normal mode sampling.

In the future, we are primarily interested in moving beyond the LiH-cluster scope to

more general Li-organic systems. This significant increase in complexity should entail many

adjustments to the general approach presented above, and will serve as a firm test of its

efficacy.
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FIG. 1: General concept for the ML potential
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FIG. 2: Performance on sparse Li29H29 and non-sparse Li32H32 test sets. All energies are in

a.u.

TABLE I: Energy and charge errors for Li29H29 sparse and Li32H32 non-sparse test sets

MAE charge

(e/atom)

MAE energy

(kcal/mol/atom)

MAE charge

(e/atom)

MAE energy

(kcal/mol/atom)

Li29H29 neutral 0.012 0.260 Li32H32 neutral 0.008 0.293

Li29H29 cation 0.014 0.169 Li32H32 cation 0.011 0.317

Li29H29 anion 0.016 0.151 Li32H32 anion 0.014 0.189
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(a) DFT and BpopNN partial charges for a neutral Li32H32

(b) Charge error for a neutral Li32H32

FIG. 3: Charge optimization result for a neutral Li32H32
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FIG. 4: Geometry optimization on a cubic Li32H32 structure

TABLE II: Energy statistics for a cubic Li32H32 after geometry optimization

DFT energy

(Hartree)

BpopNN energy

(Hartree)

Energy Error

(kcal/mol/atom)

Neutral -260.956 -260.967 0.106

Cation -206.711 -260.716 0.046

Anion -260.962 -260.983 0.206

DFT (eV) BpopNN (eV)

IP 6.656 6.823

EA 0.172 0.450
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FIG. 5: Energy profile for various structural transformations for neutral Li12H12. Superpo-

sitions and RMSD values were obtained with Maestro.134
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FIG. 6: Energy profile for various structural transformations for anion Li12H12. Superposi-

tions and RMSD values were obtained with Maestro.134

FIG. 7: A charge separation example for neutral Li15H15
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TABLE III: A charge separation example for neutral Li15H15

DFT energy

(Hartree)

BpopNN energy

(Hartree)

Absolute error

(kcal/mol)

AB(6.5) -121.524a -121.534 6.232

AB(14) -121.506a -121.525 11.801

AB(1000) -121.489a -121.515 16.286

A -64.213 -64.224 7.213

B -57.241 -57.254 8.403

A+ -64.110 -64.112 1.210

B− -57.372 -57.360 7.584

DFT (kcal/mol) BpopNN (kcal/mol)

AB(6.5) BEb -44.143 -34.760

AB(14) BE -33.168 -29.345

DFT (e) BpopNN (e)

q(A)cin AB(6.5) 0.993 0.729

q(A) in AB(14) 0.979 0.681

q(A) in AB(1000) 0.683 0.609

a For CT solutions. There exist DFT “neutral-neutral” solutions, with

energies of -121.4542 and -121.4536 respectively for AB(6.5) and

AB(14). This is very close to the sum of the energies of A and B.

b Binding Energy.

c sum of partial charges on A atoms.

VI. SUPPORTING INFORMATION

Geometries used for all training and test datasets; all training-set data, including CDFT

energies, charges, population gradients, and nuclear-position forces; test-set results for the

other BpopNN variants; details for training the GAP models with QUIP; test-set results for
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the GAP model variants.
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Appendix A: Population gradient of CDFT energy

In the present context, the CDFT Lagrangian takes the following form:

LCDFT = E[γ] +
∑
σ

Natom−1∑
i=1

λi,σ(pi,σ(ρ)− ci,σ), (A1)

where γ is the density matrix, the λi,σ are Lagrange multipliers, the pi,σ(ρ) are the functions

defined in eqn. (2), and the ci,σ are the target values of the constraints. For each spin,

the sum excludes one atom because the value of this last variable is implied by the usual

condition that the density integrates to the total number of electrons of that spin. An

equivalent result is obtained if a different atom is the one excluded from the sum, although

of course the λi and ci will adjust accordingly. This Lagrangian also formally applies to

cases in which fewer population constraints are used. In that case, we simply set the ci for

any technically unconstrained population to its relaxed value, and the associated λi is 0.

Optimizing LCDFT with respect to the orbitals (i.e. γ) and the Lagrange multipliers

gives the CDFT energy, ECDFT[{ci,σ}]. At a stationary point of LCDFT, we may apply the

“envelope” theorem to obtain

∂ECDFT

∂ci,σ
=
∂LCDFT

∂ci,σ
= −λi,σ. (A2)

The target energy function Et[p] is essentially the same as ECDFT[{ci,σ}] except that it

is a function of all 2Natom population variables. So we have to do a transformation between

variables. Again excluding the last atom, we can fix all ci,σ but one, cj,σ, and then vary

cj,σ. Upon (re-)optimizing LCDFT for this new set of constraints, pj,σ changes identically

as cj,σ does, and pNatom,σ changes by the opposite amount, while all other populations are

unchanged. Denoting the direction corresponding to this overall change in populations by

ej,σ, we thus have

∇Et[p] · ei,σ =
∂ECDFT

∂ci,σ
= −λi,σ. (A3)

The vectors ei,σ are (most of) the columns of a block diagonal matrix W with two Natom
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by Natom blocks, one for each spin type. That is, W = Ws ⊕Ws with

Ws =



1 0 . . . 0 1

0 1 . . . 0 1
...

... . . .
...

...

0 0 . . . 1 1

−1 −1 . . . −1 1


. (A4)

The last column in Ws corresponds to the fully symmetric direction of changing all

populations (of one spin type) by the same amount. Because the total numbers of each spin

are constant, the component of ∇Et along this direction is 0. We thus have

∇Et ·W = ν, (A5)

where the latter vector contains the −λi along with two 0’s for the symmetric directions:

νi =



−λi,α if i < Natom

0 if i = Natom

−λi−Natom,β if Natom < i < 2Natom

0 if i = 2Natom

. (A6)

By inverting W we readily obtain ∇Et[p] (in the regular population basis).
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