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Maternal Low-Protein Diet or Hypercholesterolemia
Reduces Circulating Essential Amino Acids and Leads to
Intrauterine Growth Restriction
Kum Kum S. Bhasin,

1
Atila van Nas,

2
Lisa J. Martin,

2
Richard C. Davis,

1
Sherin U. Devaskar,

3
and

Aldons J. Lusis
1,2,4

OBJECTIVE—We have examined maternal mechanisms for adult-
onset glucose intolerance, increased adiposity, and atherosclerosis
using two mouse models for intrauterine growth restriction (IUGR):
maternal protein restriction and hypercholesterolemia.

RESEARCH DESIGN AND METHODS—For these studies, we
measured the amino acid levels in dams from two mouse models
for IUGR: 1) feeding C57BL/6J dams a protein-restricted diet and
2) feeding C57BL/6J LDL receptor–null (LDLR�/�) dams a high-
fat (Western) diet.

RESULTS—Both protein-restricted and hypercholesterolemic
dams exhibited significantly decreased concentrations of the
essential amino acid phenylalanine and the essential branched
chain amino acids leucine, isoleucine, and valine. The protein-
restricted diet for pregnant dams resulted in litters with signifi-
cant IUGR. Protein-restricted male offspring exhibited catch-up
growth by 8 weeks of age and developed increased adiposity and
glucose intolerance by 32 weeks of age. LDLR�/� pregnant dams
on a Western diet also had litters with significant IUGR. Male and
female LDLR�/� Western-diet offspring developed significantly
larger atherosclerotic lesions by 90 days compared with chow-
diet offspring.

CONCLUSIONS—In two mouse models of IUGR, we found
reduced concentrations of essential amino acids in the experimen-
tal dams. This indicated that shared mechanisms may underlie the
phenotypic effects of maternal hypercholesterolemia and maternal
protein restriction on the offspring. Diabetes 58:559–566, 2009

I
n humans, malnutrition during pregnancy results in
babies with lower birth weight and an increased risk
of neonatal mortality and morbidity (1). Low birth
weight is also associated with an increased risk for

certain chronic diseases, including type 2 diabetes, cardio-
vascular disease, and hypertension (2–4). One proposed

explanation linking low birth weight to chronic diseases is
the Barker “thrifty phenotype” hypothesis, which postu-
lates that the lack of adequate nutrients in the intrauterine
environment “programs” the offspring for survival in a
nutrient-poor world. It follows that if the actual postnatal
environment is not nutrient poor but instead nutrient rich,
metabolic pathways will have been “malprogrammed,”
leading to adult-onset metabolic syndrome diseases, in-
cluding atherosclerosis and diabetes (5). A great deal of
evidence now supports the Barker hypothesis (6); there-
fore, current research in humans and in animal models is
focused on specific mechanisms for in utero programming
(4).

Many types of maternal stresses in different animal
models have been used to produce intrauterine growth
restriction (IUGR) (7). In the current study, we used two
mouse models of IUGR, one using maternal protein re-
striction to examine increased adiposity and glucose intol-
erance end points, and one using a high-cholesterol
maternal environment in LDLR�/� mice to examine car-
diovascular end points. Previous work using the rat model
has shown that maternal protein restriction results in
offspring with IUGR (4), low muscle mass (8), adult-onset
glucose intolerance (9), hypertension (10,11), and early
aging (12,13). Maternal effects of a low-protein diet in-
cluded a significant decrease in the placental protein 11
�-hydroxysteroid dehydrogenase, an enzyme that protects
the fetus from maternal glucocorticoids (14). A concomi-
tant increase in glucocorticoid-inducible enzymes was
found in the fetuses of dams on a low-protein diet (15).
Studies examining maternal programming for atheroscle-
rosis have found a significant association between mater-
nal hypercholesterolemia and increased atherosclerotic
lesions in the offspring in newborn and adult rabbits
(16,17), in adult mice (18), and in human fetuses (19) and
children (20). Existing evidence for in utero programming
from hypercholesterolemia (21) includes increased mater-
nal oxidative stress (22) and an altered adaptive immune
response to oxidized LDL (23). Although IUGR itself is
associated with an increased risk for atherosclerosis in
humans (24), high maternal cholesterol in humans has not
been established as causative for IUGR. Using a rabbit
model, however, it was shown that a moderate 0.2%
cholesterol, low-fat chow gestational diet resulted in lit-
ters with IUGR (25). The decreased birth weight was
associated with an excessive accumulation of lipids in the
placenta, suggesting possible interference with nutrient
transport to the fetus (25).

Because maternal protein restriction and hypercholes-
terolemia both create an abnormal maternal metabolic
environment, we hypothesized that there may be a com-
mon disruption of metabolic pathways affecting the off-
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spring. To test the hypothesis, we used two mouse models
for in utero conditions leading to IUGR, one of protein
restriction and one of hypercholesterolemia. We then
looked for commonalities in the experimental dams to
identify possible pathways for the developmental origins
of metabolic syndrome diseases. In both models, the dams
had decreased levels of certain essential amino acids.

RESEARCH DESIGN AND METHODS

Animal husbandry. This study was approved by the UCLA Animal Research
Committee and was performed in accordance with the National Institutes of
Health guidelines for the use of experimental animals. FVB/J, C57BL/6J (B6),
and LDLR�/� mice on a B6 background were purchased from the Jackson
Laboratories (Bar Harbor, ME).
Diets. The low-protein diet (D02041002; Research Diets) contained 9% protein
by weight, was isocaloric, and was formulated to match low-protein diets
published previously (26). In the low-protein diet, fat content was 4.4% and
carbohydrates were 77% by weight. The control protein diet (standard chow
diet TD 7013; Harlan Teklad) was used to feed control protein dams, foster
mothers, LDLR�/� chow dams, and weaned offspring from both experiments.
The control protein diet contained 19% protein, 6.2% fat, and 75% carbohy-
drates by weight and contributed 18% kcal from fat. The Western diet (TD
88137; Harlan Teklad) contained 42% kcal calories from fat and by weight as
follows: 21% fat, 17% protein, 49% carbohydrates, and 0.2% cholesterol.
Protein restriction studies. B6 females between 2 and 4.5 months of age
were allowed to mate during the last 2 h of the dark cycle with males between
2 and 6 months of age. On detection of a vaginal plug at the end of this 2-h
period, designated as day 0 of gestation, females were placed on either a 9%
protein-restricted diet (low protein) or a control diet containing 19% protein.
Pregnant females underwent cesarean section on gestational day 19. Females
were deeply anesthetized with 2% isoflurane, and after cervical dislocation,
cesarean section was performed under a heat lamp with aseptic technique.
Pups were weighed and cross-fostered to a postpartum FVB/J mother to
equalize the postpartum environment of both groups. The pups were delivered
by cesarean section because our previous attempts to generate IUGR in mice
via protein restriction were unsuccessful secondary to cannibalization of the
pups by the mother. The range in age of the dams was from 2 to 4.5 months
because the females were old enough to breed at 2 months but not so old that
confounders, such as reduced litter size, may have occurred. Because the
dams cannibalized many first litters, necessitating the change to cesarean
section births and fostering, some of the offspring were from second litters.
There were no statistical differences between the birth weights, litter sizes, or
adult phenotypes between first and second litters; therefore, we combined the
litters with the same in utero exposure. For low-protein birth weight compar-
isons, seven low-protein and seven control litters were evaluated. At 1 week
of age, pups were weighed again, and the litter culled to six. Fostered pups
were weaned at 4 weeks of age into cages of four animals, separated by sex
and maternal environment (low-protein vs. control). The protein-restricted
litters were not measured for atherosclerotic lesion size in adulthood because
wild-type C57BL/6 mice do not develop lesions on a chow low-cholesterol diet
(27).
Hypercholesterolemia studies. LDLR�/� females were placed on chow diet
or high-fat, moderate-cholesterol diet (Western diet) for 6 weeks and subse-
quently bred with LDLR�/� males maintained on chow. LDLR�/� mice had
plasma cholesterol concentrations of �250 mg/dl on a standard chow diet,
which represented the control cholesterol environment. On a Western diet,
the LDLR�/� mice had cholesterol concentrations up to 1,000 mg/dl, which
represented the experimental high-cholesterol environment. The progeny of
LDLR�/� females on a chow diet or Western diet constituted the LDLR�/�

control or Western offspring, respectively. Fasting plasma cholesterol concen-
trations were determined for both sets of LDLR�/� females before breeding,
and the LDLR�/� offspring delivered vaginally were fostered at birth. Four
hypercholesterolemia litters and two control litters were evaluated. The pups
were weaned and separated by sex and maternal diet at 4 weeks of age. The
offspring of both LDLR�/� control and Western-diet litters were fed a chow
diet on weaning. Initially the LDLR�/� Western offspring exhibited a very low
survival rate (�1 pup in an 8-pup litter survived) compared with LDLR�/�

control offspring (6–7 pups survived per 8-pup litter). However, fostering the
pups at birth equalized the survival rates for both groups. An important study
by Napoli et al. (18) demonstrated a maternal-diet effect on lesion size at 90
days in LDLR�/� mice offspring. This time point was therefore chosen for the
current study. After an overnight fast, LDLR�/� adult offspring were deeply
anesthetized with 2% isoflurane and weighed, blood was collected by retro-
orbital sinus puncture, tissues were harvested after cervical dislocation, and
gonadal fat pads were dissected and weighed.

Maternal plasma amino acid analysis. Maternal plasma amino acid analysis
was performed by high-performance liquid chromatography at Baylor Univer-
sity Medical Center Institute of Metabolic Diseases (http://www.baylorhealth.
edu/imd/) (28). This experiment was repeated to detect possible variation in
the amino acid analysis. In the first study, dams were allowed to deliver their
pups and were then given anesthesia with 2% isoflurane before retro-orbital
exsanguinations within 4 h of delivery. This postpregnancy time was chosen
to minimize any adverse effect of exsanguinations on the fetus and to
maximize the effect of various diets on mothers. In the second study, blood
samples were taken from females 1–2 weeks postpartum, while maintaining
the same diet they were on during pregnancy. We observed similar trends in
both experiments and therefore combined our data from the two studies.
Glucose tolerance tests. Glucose tolerance tests were performed as previ-
ously described (29) on the low-protein and control offspring at 126 days (4
months) and 210 days (7 months) of age. The mice were weighed, shaved on
the hind limbs, and fasted overnight. The following morning, fasting glucose
was measured in blood collected from saphenous vein puncture, after which
2 mg/g glucose load was administered intraperitoneally. Serial blood glucose
measurements were performed at 0.5-h intervals over the next 2 h from
saphenous venipunctures. The One Touch Ultra glucometer (Lifescan) was
used to measure whole-blood glucose concentrations (30).
Body composition. This was performed in a rodent nuclear magnetic
resonance scanner (Bruker Biospin, Billerica, MA) that was standardized to an
internal control provided by the manufacturer. The mice were individually
weighed on a scale and then placed in the scanner for measurement of body
composition, analyzed as percent fat mass (also referred to as adiposity),
percent muscle mass, and percent liquid mass. Total body fat was calculated
using the scale weight of each mouse on that day.
Plasma lipid analysis. Mice were fasted overnight, and retro-orbital blood
was collected under isoflurane anesthesia. Plasma total cholesterol, HDL
cholesterol, unesterified cholesterol, triglyceride, and free fatty acid concen-
trations were determined as previously described (31).
Lesion analysis. Mice were killed at 90 days, and the heart and proximal
aorta were removed, embedded in OCT compound (Miles Laboratories), and
stored at �70°C. Serial 10-�m-thick cryosections from the middle portion of
the left ventricle and the aortic arch were collected and mounted on
poly-D-lysine–coated plates. Sections were stained with the lipid stain oil red
O and hematoxylin. The lipid-stained areas were viewed under the light
microscope and manually counted by a blinded observer. Scores were
determined as previously described (32).
Data analysis. All values are expressed as means � SE. A mean litter weight
was used to compare birth weights in the protein restriction IUGR model. This
was done to avoid a type 1 error, because the actual number of newborn
pups was very large and to minimize the effect of within-litter differences. The
two-way ANOVA model was used to simultaneously compare independent
variables in two groups to assess the effect of sex and maternal environment
on the offspring. In LDLR�/� litters, the litter sizes and within-litter weights
did not vary significantly (6–7 pups per litter), and thus, individual pup
weights were averaged instead. The P values for all group comparisons were
assigned using the post hoc Fisher’s protected least significant difference
correction. One-way ANOVA was used when single-sex comparisons were
performed. Statview version 5.0 software was used for analysis.

RESULTS

Protein-restricted mouse model for IUGR. In utero
growth restriction has been associated with malnourish-
ment during pregnancy leading to adult-onset metabolic
disorders. To develop a mouse model of IUGR, we fed
C57BL/6J females a low-protein diet beginning on day 0 of
gestation. We then delivered pups from control and pro-
tein-restricted dams by cesarean section on gestational
day 19 and cross-fostered to FVB/J foster dams on a chow
diet. Mean litter birth weights of protein-restricted litters
were significantly lower than controls (P � 0.003) (Fig.
1A). Low-protein and control male weights were not
significantly different beginning at 8 weeks of age (Fig.
1B), and at 32 weeks, low-protein male offspring weights
were significantly higher than controls (P � 0.05) (Fig.
1B). In contrast, low-protein female offspring showed
significant growth restriction compared with controls until
they were killed at 32 weeks of age (Fig. 1C).
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Low-protein male offspring exhibited increased
weight, adiposity, and glucose intolerance. Low-pro-
tein male offspring had significantly higher adiposity (P �
0.025) at 32 weeks of age compared with controls (Fig.
1D). Adiposity in low-protein female offspring at 32 weeks
of age did not differ significantly from controls (data not
shown). At 32 weeks (but not at 18 weeks; data not
shown), low-protein male offspring demonstrated signifi-
cantly higher blood glucose concentrations after a glucose
challenge (Fig. 1E) and a significantly higher (P � 0.0001)
area under the glucose concentration curve (Fig. 1F)
compared with controls. Baseline glucose concentrations
and response to a glucose load were not significantly
different between low-protein and control female offspring
at 32 weeks of age (data not shown). In both male and
female offspring, there were no significant differences
between low-protein and control for total cholesterol,
unesterified cholesterol, triglycerides, free fatty acids, or
HDL cholesterol in the plasma (data not shown).
Effect of hypercholesterolemic fetal environment on
adult offspring. To study the effect of IUGR and maternal
hypercholesterolemia, pregnant LDLR�/� dams were fed

either a Western diet (high fat with moderate cholesterol)
or a control (chow) diet. Plasma total cholesterol concen-
trations in LDLR�/� dams on a Western diet were signifi-
cantly higher (P � 0.0001) than those on a chow diet (Fig.
2A). Other plasma lipids, including unesterified choles-
terol, triglycerides, free fatty acids, and HDL cholesterol
were not significantly different (data not shown). Off-
spring of the LDLR�/� dams on a Western diet exhibited
significant IUGR at birth compared with control (P �
0.02) (Fig. 2B).

At 90 days of age, Western-diet progeny had signifi-
cantly decreased weight (P � 0.05) and length (P �
0.0004) compared with controls (Fig. 2C and D). West-
ern diet progeny had significantly lower (P � 0.04)
gonadal fat pad–to– body weight ratios than controls,
and males had significantly higher ratios than females
(P � 0.0001) (Fig. 2E). Western-diet LDLR�/� progeny
had significantly larger atherosclerotic lesions than con-
trols (P � 0.002) (Fig. 2F). A representative section of
the aorta with the lesions [1) entire section and 2) one
lesion] observed at 90 days of age is shown in Fig. 2G.
Males and females showed no significant difference in

B

E

C
40

30

20

10

0

W
ei

gh
t (

g)

4
Age (weeks)

8 12 18 32

control protein diet
low protein diet

control protein diet
low protein diet

50

40

20

10

0

Age (weeks)
4 8 12 18 32

*

*

* *

*

*

control protein diet
low protein diet

30

W
ei

gh
t (

g)

0

.2

.4

.6

.8

1

1.2

1.4

M
ea

n 
lit

te
r w

t. 
(g

)

P=0.003
A

D F

Low Protein
Offspring

Control
Offspring

P=0.025

5

15

25

35

A
di

po
si

ty
 (%

)

3

2

1

2.5

1.5

0.5

0B
lo

od
  G

lu
co

se
 (m

m
ol

/L
) h

ou
rs

P<0.0001

Control
Offspring

n=11

Low Protein
Offspring

n=14

Control
Offspring

n=7
litters litters

Low Protein
Offspring

n=7

600

500

200

100

0

B
lo

od
 G

lu
co

se
 (m

g/
dl

)

0
Time (hours)

1 1.5 2

400

0.5

300

FIG. 1. Characterization of offspring from control and protein-restricted litters. A: Mean litter birth weights of 9% low-protein diet litters
compared with 19% control protein litters, P � 0.003. B: Growth curve of male offspring from 4 to 32 weeks of age. *Weights were significantly
different at the P < 0.05 level at 4 and 32 weeks. C: Persistent growth restriction in female protein-restricted offspring, from 4 to 32 weeks of
age. *Values significantly different at the P < 0.05 level. D: Increased adiposity in low-protein male offspring at 32 weeks of age, P � 0.025. E:
Glucose intolerance in low-protein male offspring. Blood glucose concentrations of male protein-restricted offspring after administration of a
standard intraperitoneal challenge of 2 mg/g body weight (wt) glucose. n � 12, 9, 9, 9, and 8 for control offspring; and n � 14, 13, 13, 10, and 9
for the protein-restricted offspring at time 0, 0.5, 1, 1.5, and 2 h, respectively. F: Area under the curve (AUC) for protein-restricted male offspring
after administration of a standard intraperitoneal glucose load.

K.K.S. BHASIN AND ASSOCIATES

DIABETES, VOL. 58, MARCH 2009 561



lesion size. The morphology and cellular composition of
lesions (macrophages vs. smooth muscle cells) was not
different between groups (data not shown). No signifi-
cant differences were found in offspring plasma lipids
including free fatty acids, triglycerides, total choles-
terol, unesterified cholesterol, and HDL cholesterol
(data not shown).
Decreased maternal plasma amino acid levels in both
low-protein and hypercholesterolemic dams. As previ-
ously observed in other species (33–35), the levels of
several essential nonbranched and branched chain amino
acids and urea in plasma were reduced in low-protein
dams compared with control dams (Fig. 3A). A represen-
tative chromatogram is shown in Fig. 3B. Additional

representative chromatograms are provided in supplemen-
tal material (available in an online appendix at http://dx.
doi.org/10.2337/db07-1530). Amino acid concentrations
may vary at different time points, and thus, we repeated
these studies in a separate experiment. We observed
similar trends in both experiments, and therefore com-
bined our data from the two studies. Particularly notewor-
thy in the low-protein versus control dams were reduced
concentrations of phenylalanine (P � 0.01) and the
branched chain amino acids leucine (P � 0.03), isoleucine,
and valine (P � 0.015). Lysine, which is also essential, was
higher in the low-protein dams than in the control dams
(P � 0.05). The LDLR�/� dams on a Western diet exhibited
significantly reduced concentrations of phenylalanine
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(P � 0.00015) and lysine (P � 0.028), in addition to the
branched chain amino acids valine (P � 0.0005), isoleu-
cine (P � 0.0085), and leucine (P � 0.01) when compared

with control. No other amino acids, either essential (thre-
onine, tryptophan, and histidine) or nonessential, were
significantly different between experimental and control
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dams (data not shown). Urea was significantly reduced in
both Western and low-protein–diet dams.

DISCUSSION

To test the hypothesis that common in utero mechanisms
may participate in the development of IUGR and associ-
ated metabolic syndrome traits in adulthood, we devel-
oped and characterized two mouse models for IUGR: one
of protein restriction and one of high cholesterol. Our
low-protein model mimicked the well-established rat low-
protein IUGR model (36) and complemented a previously
described protein-restricted IUGR mouse model charac-
terized for lifespan and adiposity (37). In our study, the
IUGR male offspring of protein-restricted dams became
glucose intolerant with increased adiposity compared with
controls. IUGR low-protein females did not differ signifi-
cantly from controls in glucose tolerance and maintained a
lower growth curve throughout. In the second arm of the
experiment, we used genetically altered LDLR�/� mice
that are susceptible to atherosclerosis to induce features
caused by IUGR that may contribute to atherosclerosis.
The offspring of LDLR�/� dams fed a Western diet in our
study had lower birth weights and more severe atheroscle-
rotic lesions than controls at 90 days of age. Of particular
significance, both protein-restricted and hypercholester-
olemic dams had decreased plasma concentrations of
several essential amino acids.

The IUGR models in our study differed in a few key
areas. First, a sex difference in weight gain and glucose
intolerance was seen in the low-protein model. Males, but
not females, caught up in weight to the control offspring by
the eighth week of age and developed glucose intolerance
by 32 weeks of age. This sex difference has been found in
other mouse models, including a recent investigation of
heterozygous GLUT3-null mice (30). Also, in a transgenic
mouse model of the hypothalamic-expressed regulator for
food intake, neuropeptide Y receptor 1, a sex effect was
seen. NPYR1 transgenic males, but not females, gained
excess weight on a high-fat diet and lost weight with the
administration of leptin (38). Thus, the sex difference that
we saw in weight gain, adiposity, and glucose tolerance in
the low-protein group is consistent with other findings and
indicates the likely participation of the endocrine system
in the etiology of these traits.

Contrasting with the outcomes for low-protein offspring,
LDLR�/� Western-diet progeny in our study did not catch
up with controls in weight or in adiposity by the 90-day
time point that was chosen for evaluation of atheroscle-
rotic lesions. Several explanations for this might be con-
sidered, including 1) that these IUGR mice require �3
months to catch up with controls, or 2) that a combination
of a high-fat diet and hypercholesterolemia programmed
the offspring differently for metabolism and weight gain in
adulthood. A high-fat maternal diet in rats was recently
shown to prevent excess weight gain in adulthood (39).
Based on tracking of food intake, this study provided
evidence that the high-fat in utero diet likely programmed
the offspring to metabolize or use energy less efficiently,
preventing them from gaining excess weight in adulthood
(39). Therefore, the absence of excess adiposity and
weight gain in the hypercholesterolemia IUGR offspring in
the current study could be due to hypothalamic program-
ming via the high-fat maternal diet. Although the LDLR�/�

Western diet IUGR litters may have eventually led to
excess weight gain and glucose intolerance at an advanced

age, other experiments have shown that the chow diet
does not produce these end points in B6 LDLR�/� mice by
90 days of age. Instead, a high-fat diet was necessary to
bring about these metabolic syndrome traits in LDLR�/�

mice at this time point (40). We purposely used a chow
diet in the current study to establish that increased ath-
erosclerosis in the offspring was due to in utero program-
ming. The effect of programming on offspring may extend
into the second generation: A recent high-fat diet program-
ming study using mice showed that a high-fat diet leading
to obesity during gestation produced glucose intolerance
in both the first and second generations of offspring (41).

Hypoaminoacidemia in our hypercholesterolemic model
could possibly have resulted from reduced protein absorp-
tion, reduced amino acid availability via altered metabo-
lism in the dams, or reduced protein consumption due to
the high caloric content of the Western diet. The Western
and control diets used in our study were 17.3 and 18.6% by
weight protein, a difference that would be unlikely to
produce the significant reduction of certain amino acids in
the LDLR�/� Western-diet dams. Reduced food intake
because of the higher percentage of calories supplied by
fat in the Western (42%) versus chow (18%) diets could
have led to an overall reduction of protein intake. How-
ever, if that were the case, all essential amino acids would
probably have been reduced on the Western diet, which
they were not. Furthermore, the essential amino acid
lysine was lower in LDLR�/� dams on the Western diet
than controls but was higher in the protein-restricted dams
compared with controls. Thus, the Western and low-
protein diets do not necessarily lead to a reduction of all
essential amino acids, indicating other factors besides
dietary intake of protein as causative for the hypoamino-
acidemia in the dams. The lower urea content in the
plasma of low-protein dams was expected because less
protein consumption would result in less urea generated
as a byproduct of protein catabolism (42). The lower urea
content in the plasma of hypercholesterolemic dams was
another indication of less protein accretion in these
animals.

Previous studies have observed a correlation between
high maternal cholesterol concentrations and enhanced
lesions of atherosclerosis in the offspring in rabbits (17,43)
and in LDLR�/� mice (18). Maternal oxidative stress in a
high cholesterol environment may adversely affect the
placenta and may directly or indirectly enhance athero-
sclerotic lesions in the offspring (44). Experiments in
hypercholesterolemic rabbits have shown that administra-
tion of the antioxidant vitamin E during pregnancy re-
sulted in reduced atherosclerotic lesions in the offspring
(16,17), indicating that maternal oxidative stress likely
plays a role in maternal programming for atherosclerosis.
However, given the complexity of metabolic syndrome
traits, it is also likely that more than one physiological
pathway is involved. The placentas of women who gave
birth to IUGR babies were found to have decreased
placental leucine transport and decreased placental mam-
malian target of rapamycin (mTOR) activity (45). Simi-
larly, the IUGR litters in our study were associated with
reductions in essential maternal amino acids, including
leucine; therefore, hypoaminoacidemia in the dams may
have resulted in reduced levels of fetal amino acids,
resulting in metabolic malprogramming of the fetal hypo-
thalamus. mTOR, a kinase that is upregulated by leucine,
regulates cell-cycle progression and growth throughout
the body by sensing changes in energy status. Downstream
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from the leptin receptor, mTOR is also involved in energy
homeostasis and metabolism (46). Because leucine via
mTOR regulation has been shown to participate in muscle
formation in fetal sheep (47) and pancreatic �-cell func-
tion in a cell culture system (48), downregulation of mTOR
by a decrease in leucine, both in hypercholesterolemic and
protein-restricted in utero environments, could play a role
in IUGR and in malprogramming of the fetal hypothala-
mus, leading to the previously described “thrifty pheno-
type.”

It is becoming increasingly apparent that embryonic and
fetal cells have a complex system integrating nutritional
signals from their environment to maximize the potential
for survival. The association of maternal malnutrition and
IUGR leading to adult-onset metabolic disorders, such as
obesity, type 2 diabetes, and atherosclerosis, has been
demonstrated in several epidemiological studies (2,49–
51). Our results mimicked population studies in humans
where maternal malnutrition and the resultant low birth
weight were identified as the common risk factors for
adult-onset diseases. In addition, our studies demon-
strated that maternal protein restriction and hypercholes-
terolemia were both associated with maternal
hypoaminoacidemia. Therefore, maternal hypoaminoaci-
demia may be an important antecedent in both models of
IUGR and may be an important link in the mechanisms
that contribute to adult-onset glucose intolerance, obesity,
and atherosclerosis.
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