
UC Irvine
ICS Technical Reports

Title
Essential issues in codesign

Permalink
https://escholarship.org/uc/item/6hr2k51x

Authors
Gajski, Daniel D.
Zhu, Jianwen
Domer, Rainer

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6hr2k51x
https://escholarship.org
http://www.cdlib.org/

Notice; This Materic.,
may be protected
by Copyright Law
(Title 17 U.S.G.)

Essential Issues in Codesign

Daniel D. Gajski

Jianwen Zhu

Hainer Domer

Technical Report ICS-97-26

June, 1997

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA

(714) 824-8059

gajski@ics.uci.edu

jzhu@ics.uci.edu

doemer@ics.uci.edu

e.AR

Abstract

In this report we discuss the main models of computation, the basic types of architectures, and

language features needed to specify systems. We also give an overview of a generic methodology for

designing systems, that include software and hardware parts, from executable specifications.

Contents

1 Models 1

1.1 Model and axchitecture definition 1

1.2 Model taxonomy 3
1.3 Finite-state machine 4

1.4 Finite-state machine with datapath 5
1.5 Petri net 6

1.6 Hierarchical concurrent finite-state machine 8

1.7 Programming languages 8
1.8 Program-state machine 9

2 Architectures 10

2.1 Controller architecture 10

2.2 Custom Datapath architecture 11
2.3 FSMD architecture 13

2.4 CISC architecture 13

2.5 RISC architecture 14

2.6 VLIW architecture 15

2.7 Parallel architecture 16

3 Languages 17
3.1 Introduction ; 17

3.2 Characteristics of system models 18
3.3 Concurrency 18
3.4 State transitions 20

3.5 Hierarchy 21
3.6 Programming constructs 23
3.7 Behavioral completion 23
3.8 Exception handling 24
3.9 Timing 24
3.10 Communication 25

3.11 Process synchronization 26
3.12 SpecC4- Language description 28

4 Generic codesign methodology 33
4.1 System specification 33
4.2 Allocation 35

4.3 Partitioning and the model after partitioning 35
4.4 Scheduling and the scheduled model 36
4.5 Communication synthesis and the communication model 37
4.6 Analysis and validation flow 39
4.7 Backend

5 Conclusion and Future Work

6 Index

List of Figures

2 Implementation architectures 2
1 Conceptual views of an elevator controller 3
3 FSM model for the elevator controller, (f) 4
4 State-based FSM model for the elevator controller, (f) 5
5 FSMD model for the elevator controller, (f) 6
6 A Petri net example, (f) 7
7 Petri net representations 7
8 Statecharts: hierarchical concurrent states, (f) 8
9 An example of program-state machine, (f) 9
10 A generic controller design 10
11 An example of a custom datapath. (J) 11
12 Simple datapath with one accumulator 12
13 Two different datapaths for FIR filter 12
14 Design model 13
15 CISC with microprogrammed control, (f) 14
16 RISC with hardwired control, (f) 15
17 An example of VLIW datapath, (f) 15
19 Some typical configurations 17
18 A heterogeneous multiprocessor 18
20 Data-driven concurrency 19
21 Pipelined concurrency 20
22 Control-driven concurrency 20
23 State transitions between arbitrarily complex behaviors, (f) 21
24 Structural hierarchy, (f) 21
25 Sequential behavioral decomposition 22
26 Behavioral decomposition types 22
27 Code segment for sorting 23
28 Behavioral completion 23
29 Exception types 24
30 Timing diagram 25
31 Communication model 25
33 Integer channel 26
34 A simple synchronous bus protocol 26
32 Examples of communication 27
35 Protocol description of the synchronous bus protocol 27
36 Control synchronization 28
37 Data-dependent synchronization in Statecharts 28
38 A graphical SpecC-l- specification example 28
39 A textual SpecC-l- specification example 29
40 Component wrapper specification 30
41 Source code of the component wrapper specification 31
42 Common configurations before and after channel inlining 32
43 Timing specification of the SRAM read protocol 32
44 Timing implementation of the SRAM read protocol 32
46 Conceptual model of specification 33
45 Generic methodology. 34
47 Conceptual model cifter partitioning 35
48 Conceptual model after scheduling 36
49 Conceptual model after communication synthesis 38

Essential Issues in Codesign

Daniel D. Gajski, Jianwen Zhu, Ralner Domer

Department of Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA

Abstract

In this report we discuss the main models of compu
tation, the basic types of architectures, and language
features needed to specify systems. We also give an
overview of a generic methodology for designing sys
tems, that include software and hardware parts, from
executable specifications.

1 Models

In the last ten years, VLSI design technology, and the
CAD industry in particular, have been very successful,
enjoying an exceptional growth that has been paral
leled only by the advances in IC fabrication. Since
the design problems at the lower levels of abstrac
tion became humanly intractable earlier than those at
higher abstraction levels, researchers and the industry
alike were forced to devote their attention first to lower

level problems such as circuit simulation, placement,
routing and floorplanning. As these problems became
more manageable, CAD tools for logic simulation and
synthesis were developed successfully and introduced
into the design process. As design complexities have
grown and time-to-market requirements have shrunk
drastically, both industry and academia have begun to
focus on system levels of design since they reduce the
number of objects that a designer needs to consider
by an order of magnitude and thus allow the design
£Lnd manufacturing of complex application specific in
tegrated circuits (ASICs) in short periods of time.

The first step in designing a system is specifying
its functionality. To help us understand and organize
this functionality in a systematic manner, we can use
a variety of conceptual models. In this chapter, we
will survey the key conceptual models that are most
commonly used for hardware cind for software systems,
while in the next section we exeunine the various archi

tectures that mre used in implementing those models,
while in the third section we survey language features

needed for specifying systems. In the fourth section
we present a generic codesign methodology.

1.1 Model and architecture definition

System design is the process of implementing a de
sired ftinctionality using a set of physical components.
Clearly, then, the wholeprocess of system design must
begin with specifying the desired functionality. This
is not, however, an easy task. For example, consider
the task of specifying an elevator controller. How do
we describe its functionality in sufficient detail that we
could predict with absolute precision what the eleva
tor's position would be after any sequence of pressed
buttons? The problem with natural-language specifi
cations is that they are often ambiguous and incom
plete, lacking the capacity for detail that is required
by such a task. Therefore, we need a more precise
approach to specify functionality.

The most common way to achieve the level of pre
cision we need is to think of the system as a collection
of simpler subsystems, or pieces, and the method or
the rules for composing these pieces to create system
functionality. We call such a method a model.

To be useful, a model should possess certain quali
ties. First, it should be formal so that it contains no
ambiguity. It should also be complete, so that it can
describe the entire system. In addition, it should be
comprehensible to the designers who need to use it,
as well as being easy to modify, since it is inevitable
that, at some point, they will wish to change the sys
tem's functionality. Finally, a model should be natural
enough to aid, rather than impede, the designer's un
derstanding of the system.

It is important to note that a model is a formal sys
tem consisting of objects zind composition rules, and
is used for describing a system's characteristics. Typ
ically, we would use a particular model to decompose
a system into pieces, and then generate a specification
by describing these pieces in a particular language. A

language can capture many different models, and a
model can be captured in many different languages.

The purpose of a conceptual model is to provide
an abstracted view of a system. Figure 1, for exam
ple, shows two different models of an elevator con
troller, whose English description is in Figure 1(a).
The difference between these two models is that Fig
ure 1(b) represents the controller as a set of program
ming statements, whereas Figure 1(c) represents the
controller as a finite state machine in which the states

indicate the direction of the elevator movement.

As you can see, each of these models represents a
set of objects and the interactions among them. The
state-machine model, for example, consists of a set of
states and transitions between these states; the pro
gramming model, in contrast, consists of a set of state
ments that are executed under a control sequence that
uses branching and looping. The advantage to having
these different models at our disposal is that they al
low designers to represent different views of a system,
thereby exposing its different characteristics. For ex
ample, the state-machine model is best suited to rep
resent a system's temporal behavior, as it allows a
designer to explicitly express the modes and mode-
transitions caused by external or internal events. The
algorithmic model, on the other hand, has no explicit
states. However, since it can specify a system's input-
output relation in terms of a sequence of statements,
it is well-suited to representing the procedural view of
the system.

Designers choose different models in different
phases of the design process, in order to emphasize
those aspects of the system that <ire of interest to them
at that pgurticular time. For example, in the specifi
cation phase, the designer knows nothing beyond the
functionality of the system, so he will tend to use a
model that does not reflect any implementation infor
mation. In the implementation phase, however, when
information about the system's components is avail
able, the designer will switch to a model that can cap
ture the system's structure.

Different models are also required for different ap
plication domains. For example, designers would
model real-time systems and database systems differ
ently, since the former focus on temporal behavior,
while the latter focus on data organization.

Once the designer has found an appropriate model
to specify the functionality of a system, he can de
scribe in detail exactly how that system will work. At
that point, however, the design process is not com
plete, since such a model has still not described ex
actly how that system is to be manufactured. The

rfloor cfloor

State
Register

rfloor cfloor

Memory

Figure 2: Architecture used in: (a) a register-level im
plementation, (b) a system-level implementation. (J)

'II the elevator is stationary and the floor
requested is equal to the current floor,
then the elevator remains idle.

If the elevator is stationary and the floor
requested is less than the current floor,
then lower the elevator to the requested floor.

If the elevator is stationary ar>d the floor
requested is greater than the current floor,
then raise the elevator to the requested floor.*

loop
if {rfloor = cfloor) then

d :s idle;
elsif (rfloor < cfloor) then

d := down;
elsif (rfloor > cfloor) flien

d :s up;
end if;

er>d loop;

(rfloor < cfloor)
/ d := down

(rfloor = cfloor)
/ didle

(rfloor > cfloor)
/ d := up

(rfloor < cfloor)

(rfloor = cfloor)
/ d :s idle

(rfloor > cfloor)

(rfloor = cfloor)
/ d :s idle

(rfloor< cfloor) / d := up

rfloor < cfloor) / ddown

Figure 1: Conceptual views of an elevator controller: (a) desired functionality in English, (b) programming model,
(c) state-machine model, (t)

next step, then, is to transform the model into an
architecture, which serves to define the model's im
plementation by specifying the number and types of
components as well as the connections between them.
In Figure 2, for example, we see two different architec
tures, either of which could be used to implement the
state-machine model of the elevator controller in Fig
ure 1(c). The architecture in Figure 2(a) is a register-
level implementation, which uses a state register to
hold the current state and the combinational logic to
implement state trajisitions and values of output sig
nals. In Figure 2(b), we see a processor-level imple
mentation that maps the same state-machine model
into software, using a variable in a program to repre
sent the current state and statements in the progreun
to calculate state transitions and values of output sig
nals. In this architecture, the program is stored in the
memory and executed by the processor.

Models and architectures are conceptual and imple
mentation views on the highest level of abstraction.
Models describe how a system works, while architec
tures describe how it will be manufactured. The de

sign process or methodology is the set of design
tasks that treuisform a model into an architecture.

At the beginning of this process, only the system's
functionality is known. The designer's job, then, is
to describe this functionality in some language which
is based on the most appropriate models. As the de

sign process proceeds, an architecture will begin to
emerge, with more detail being added at each step in
the process. Generally, designers will find that certain
architectures axe more efficient in implementing cer
tain models. In addition, design and manufacturing
technology will have a great influence on the choice of
an architecture. Therefore, d^igners have to consider
many different implementation alternatives before the
design process is complete.

1.2 Model taxonomy

System designers use many different models in their
various hardware or software design methodologies.
In general, though, these models fall into five dis
tinct categories: (1) state-oriented; (2) activity-orien
ted; (3) structure-oriented; (4) data-oriented; and (5)
heterogeneous. A state-oriented model, such as a
finite-state machine, is one that represents the sys
tem as a set of states and a set of transitions between

them, which are triggered by external events. State-
oriented models are most suitable for control systems,
such as real-time reactive systems, where the system's
temporal behavior is the most important aspect of
the design. An activity-oriented model, such as a
dataflow graph, is one that describes a system as a set
of activities related by data or execution dependencies.
This model is most applicable to transformational sys-

terns, such as digitaJ signal processing systems, where
data passes through a set of transformations at a fixed
rate. Using a structure-oriented model, such as a
block diagram, we would describe a system's physical
modules and interconnections between them. Unlike

state-oriented and activity-oriented models which pri
marily reflect a system's functionalities, the structure-
oriented models focus mainly on the system's physical
composition. Alternatively, we can use a data-orien
ted model, such as an entity-relationship diagram,
when we need to represent the system as a collection
of data related by their attributes, class membership
and interactions. This model is most suitable for infor

mation systems, such as databases, where the function
of the system is less important than the data organi
zation of the system. Finally, a designer could use a
heterogeneous model - one that integrates many of
the characteristics of the previous four models - when
ever he needs to represent a variety of different views
in a complex system.

In the rest of this section we will describe some

frequently used models.

1.3 Finite-state machine

A finite-state machine (FSM) is an example of a
state-oriented model. It is the most popular model
for describing control systems, since the temporal be
havior of such systems is most naturally represented
in the form of states and transitions between states.

Basically, the FSM model consists of a set of states,
a set of transitions between states, and a set of ac
tions associated with these states or transitions.

The finite state machine can be defined abstractly
as the quintuple

< S, /, 0,f,h>

where S, /, and O represent a set of states, set of inputs
and a set of outputs, respectively, and / and h rep
resent the next-state and the output functions. The
next state function / is defined abstractly as a map
ping 5 X / -> 5. In other words, / assigns to every
pair of state and input symbols another state sym
bol. The FSM model assumes that transitions from

one state to another occur only when input symbols
change. Therefore, the next-state function / defines
what the state of the FSM will be after the input sym
bols change.

The output function h determines the output val
ues in the present state. There are two different types
of finite state machine which correspond to two differ
ent definitions of the output function h. One type is a

state-based or Moore-type, for which h is defined
as a mapping S O. In other words, an output sym
bol is assigned to each state of the FSM and outputed
during the time the FSM is in that particular state.
The other type is an input-based or Mealy-type
FSM, for whichh is definedas the mapping S x / -> O.
In this case, an output symbol in each state is defined
by a pair of state and input symbols and it is outputed
while the state and the corresponding input symbols
persist.

According to our definition, each set 5,7, and O
may have any number of symbols. However, in real
ity we deal only with binary variables, operators and
memory elements. Therefore, S,7, and O must be
implemented as a cross-product of binary signals or
memory elements, whereas functions / and h are de
fined by Boolean expressions that will be implemented
with logic gates.

Figure 3: FSM model for the elevator controller, (f)

In Figure 3, we see an input-based FSM that models
the elevator controller in a building with three floors,
as described in Section 1.1. In this model, the set of
inputs I = {rl,r2,r3} represents the floor requested.
For example, r2 means that floor 2 is requested. The
set of outputs O = {d2,dl,n,u\,u2} represents the
direction and number of floors the elevator should go.
For example, d2 means that the elevator should go
down 2 floors, u2 means that the elevator should go
up 2 floors, and n means that the elevator should stay
idle. The set of states represents the floors. In Fig
ure 3, we can see that if the current floor is 2 (i.e., the
current state is ^2), and floor 1 is requested, then the
output will be d\.

In Figure 4 we see the state-based model for the
same elevator controller, in which the value of the out
put is indicated in each state. Each state has been
split into three states representing each of the output
signals that the state machine in Figure 3 will output
when entering that particular state.

Figure 4: State-based FSM model for the elevator con
troller. (t)

In practical terms, the primziry difference between
these two models is that the state-based FSM may
require quite a few more states than the input-based
model. This is because in a input-based model, there
may be multiple arcs pointing to a single state, each
arc having a different output value; in the state-based
model, however, each different output value would re
quire its own state, as is the case in Figure 4.

1.4 Finite-state machine with datap
ath

In cases when a FSM must represent integer or
floating-point numbers, we could encounter a state-
explosion problem, since, if each possible value for a
number requires its own state, then the FSM could
require an enormous number of states. For exam

ple, a l$-bit integer can represent 2^® or 65536 dif
ferent states. There is a fairly simple way to eliminate
the state-explosion problem, however, as it is possi
ble to extend a FSM with integer and floating-point
variables, so that each variable replaces thousands of
states. The introduction of a 16-bit variable, for ex
ample, would reduce the number of states in the FSM
model by 65536.

In order to formally define a FSMD[Gaj97), we
must extend the definition of a FSM introduced in

the previous section by introducing sets of datapath
variables, inputs and outputs that will complement
the sets of FSM states, inputs and outputs.

As we mentioned in the previous section an FSM is
a quintuple

< S,I,Oyf,h >

Each state, input and output symbols are defined by
a cross-product of Boolean variables. More precisely,

I=Ai X i42 X ... Ajb

S=Qi XQ2X ,..Q^

o=r, xr2x...r„

where Aj, 1 < i < A;, is an input signal, Qi,l <i <m
is the flip-flop output and 1^,1 < i < n is an output
signal.

In order to include a datapath, we must extend the
above FSM definition by adding the set of datapath
variables, inputs and outputs. More formally, we de
fine a variables set

V = VixV2X...V^

which defines the state of the datapath by defining the
values of all variables in each state.

In the same fashion, we can sepsirate the set of
FSMD inputs into a set of FSM inputs Ic and a set
of datapath inputs Id- Thus,

I = lex Id

where Ic = Ai x A2 x ... A* as before and Id —
Bi XB2 X . ..Bp.

Similarly, the output set consists of FSM outputs
Oc and datapath outputs Od- In other words,

O = Oc X Od

where Oc = Yi x ¥2--.Yn as before and Od =
Zi X Z2 X ...Zr. However, note that Ai,Qj and
Yk represent Boolean variables while Bi, and Zi
are Boolean vectors which in turn represent integers,
floating-point numbers and characters. For example,
in a 16-bit datapath, Bi,Vi and Zi would be 16 bits
wide and if they were positive integers, they would be
able to assume values from 0 to 2^®"^.

Except for very trivial cases, the size of the data
path variables, and ports makes specification of func
tions / and /i in a tabular form very difficult. In or
der to be able to specify variable values in an efficient
and understandable way in the definition of an FSMD,
we will specify variable values with arithmetic expres
sions.

We define the set of all possible expressions, Expr,
over the set of variables V, to be the set of all con
stants K of the same type as variables in V, the set
of variables V itself and all the expressions obtained
by combining two expressions with arithmetic, logic,
or rearrangement operators.

More formally,

Ex'pr{y)—KU VU {(ciDej) [

€ Expr, • is an acceptable operator}

Using Expr{V) we can define the values of the
status signals as well as transformations in the dat
apath. Let STAT = {statk = eiAe^ | ei,ej,^
Expr{V),A e {<,<,=, 7^, >, >}} be the set of all
status signals which are described as relations be
tween variables or expressions of variables. Examples
of status signals are Data ^ 0, (a —6) > (x + y) and
{counter = 0)AND{x > 10). The relations defining
status signals are either true, in which case the status
signal has value 1 or false in which case it has value 0.

With formal definition of expressions and relations
over a set of variables we can simplify function / :
(S X F) X/ -4 5 X y by sepsirating it into two parts:
fc and Jd- The function fc defines the next state of
the control unit

fc-.SxIcx STAT 5

while the function fo defines the values of datapath
variables in the next state

fr,:SxV xId^V

In other words, for each state 6 5 we compute
a new value for each variable Vj ^ V in the datap
ath by evaluating an expression Cj GExpr{V). Thus,
the function fo is represented by a set of simpler func
tions, in which each function in the set defines variable
values for the state Si

Id :={fDi -.VxId^V:
{Vj = ej\Vj € V,ej e Expr{V x /£,)}}

In other words, function fn is decomposed into a set of
functions f^i, where each fni assigns one expression
Cfc to each variable Vj in the datapath in state Sj.
Therefore, new values for all variables in the datapath
are computed by evaluating expressions Cj, for all j
such that 1 < j < q.

Similarly, we can decompose the output function
h: SxVxI-^0 into two different functions, he
and Hd where he defines the external control outputs
Oe as in the definition of an FSM and ho defines
external datapath outputs.

Therefore,

he : S X le X STAT —¥ Oe

ho ' S xV X Id ^ Od

Note, again that variables in Oe are Boolean variable
and that variables in Od are Boolean vectors.

Using this kind of FSMD, we could model the el
evator controller example in Figure 3 with only one
state, as shown in Figure 5. This reduction in the
number of states is possible because we have desig
nated a variable cfloor to store the state value of the
FSM in Figure 3 and rfloor to store the values of rl,
r2 2Lnd r3.

(cfloor Is rtoot) / dloorsrfloor; output := rfloor - cfloor

(cfloor = rfloor) / output := 0

Figure 5: FSMD model for the elevator controller, (f)

In general, the FSM is suitable for modeling con
trol-dominated systems, while the FSMD can be suit
able for both control- and computation-dominated
systems. However, it should be pointed out that nei
ther the FSM nor the FSMD model is suitable for
complex systems, since neither one explicitly supports
concurrency and hierarchy. Without explicit support
for concurrency, a complex system will precipitate an
explosion in the number of states. Consider, for exfim-
ple, a system consisting of two concurrent subsystems,
each with 100 possible states. If we try to represent
this system as a single FSM or FSMD, we must rep
resent all possible states of the system, of which there
are 100 x 100 = 10,000. At the same time, the lack
of hierarchy would cause an increase in the number of
arcs. For example, if there are 100 states, each requir
ing its own arc to transition to a specific state for a
particular input value, we would need 100arcs, as op
posed to the single arc required by a model that can
hierarchically group those 100 states into one state.
The problem with such models, of course, is that once
they reachseveral hundred states or arcs, they become
incomprehensible to humans.

1.5 Petri net

The Petri net model [PetSl, Rei92] is another type
of state-oriented model, specifically defined to model
systems that comprise interacting concurrent tasks.
The Petri net model consists of a set of places, a set
of transitions, and a set of tokens. Tokens reside in
places, and circulate through the Petri net by being
consumed and produced whenever a transition fires.

More formally, a Petri net is a quintuple

<p,r,/,o,u> (1)

where P = {pi,p2) •••»Pm} is a set of places, T =
{f1><2 >•••1fn} is a set of transitions, 2uid F and T are
disjoint. Further, the input function, I : T -¥ P"*",
defines all the places providing input to a transition,
while the output function, O :T P"*", defines all the
output plaices for each transition. In other words, the
input and output functions specify the connectivity of
places and transitions. Finally, the marking function
u : P N defines the number of tokens in each place,
where N is the set of non-negative integers.

Net = (P. T. I, O. u)
P = {p1.p2. p3. p4, p5}
T={t1.t2. t3. t4)

I: l(t1U(p1}
1(12) = |p2.p3.p5}
I 13 = {p3}
1(14) = {p4)

O: 0(t1) = {p5)
O 12 = p3,p5}
O 13 = p4}
0(l4) = {p2,p3}

u: u{p1 = 1
u(p2; s 1
U(p31 = 2
U(p4 sQ
u(p5) = 1

Figure 6: A Petri net example, (f)

In Figure 6, we see a graphic and a textual repre
sentation of a Petri net. Note that there are five places
(graphically represented as circles) and four transi
tions (graphically represented as solid bars) in this
Petri net. In this instance, the places p2, p3, and p5
provide inputs to transition <2, and p3 and p5 are the
output places of t2. The marking function u assigns
one token to pi, p2 and p5 £ind two tokens to p3, as
denoted by u(pl,p2,p3,p4,p5) = (1,1,2,0,1).

As mentioned above, a Petri net executes by means
of firing transitions. A transition can fire only if it is
enabled - that is, if each of its input places has at least
one token. A transition is said to have fired when it

has removed all of its enabling tokens from its input
plcices, and then deposited one token into each output
place. In Figure 6, for example, after transition
fires, the marking u will change to (1,0,2,0,1).

Petri nets axe useful because they can effectively
model a variety of system characteristics. Figure 7(a),
for example, shows the modeling of sequencing, in

which transition tl fires after transition t2. In Fig
ure 7(b), we see the modeling of non-deterministic
branching, in which two transitions are enabled but
only one of them can fire. In Figure 7(c), we see
the modeling of synchronization, in which a transi
tion can fire only after both input places have tokens.
Figure 7(d) shows how one would model resource con
tention, in which two transitions compete for the same
token which resides in the place in the center. In Fig
ure 7(e), we see how we could model concurrency, in
which two transitions, t2 and tS, can fire simultane
ously. More precisely, Figure 7(e) models two concur
rent processes, a producer and a consumer; the token
located in the place at the center is produced by t2
and consumed by t3.

Petri net models can be used to check and validate

certain useful system properties such as safeness and
liveness. Safeness, for example, is the property of
Petri nets that guarantees that the number of tokens
in the net will not grow indefinitely. In fact, we cannot
construct a Petri net in which the number of tokens

is unbounded. Liveness, on the other hand, is the
property of Petri nets that guarantees a dead-lock free
operation, by ensuring that there is always at least one
transition that can fire.

Figure 7: Petri net representing: (a) sequencing, (b)
branching, (c) synchronization, (d) contention, (e)
concurrency, (f)

Although a Petri net does have many advantages
in modeling and analyzing concurrent systems, it also
has limitations that are similar to those of an FSM:

it can quickly become incomprehensible with any in
crease in system complexity.

1.6 Hierarchical

finite-state machine

concurrent

The hierarchical concurrent finite-state ma

chine (HCFSM) is essentially an extension of the FSM
model, which adds support for hierarchy and con
currency, thus eliminating the potential for state and
arc explosion that occurred when describing hierarchi
cal and concurrent systems with FSM models.

Like the FSM, the HCFSM model consists of a set
of states and a set of transitions. Unlike the FSM,
however, in the HCFSM each state can be further
decomposed into a set of substates, thus modeling
hierarchy. Furthermore, each state can also be de
composed into concurrent substates, which execute
in parallel and communicate through global variables.
The transitions in this model can be either structured

or unstructured, with structured transitions allowed
only between two states on the same level of hierarchy,
while unstructured transitions may occur between any
two states regardless of their hierarchical relationship.

One language that is particularly well-adapted to
the HCFSM model is Statecharts [Har87], since it can
easily support the notions of hierarchy, concurrency
and communication between concurrent states. Stat

echarts uses unstructured transitions and a broadcast

communication mechanism, in which events emitted
by any given state can be detected by all other states.

The Statecharts language is a graphic language.
Specifically, we use rounded rectangles to denote
states at any level, and encapsulation to express a hi
erarchical relation between these states. Dashed lines

between states represent concurrency, and arrows de
note the transitions between states, each arrow being
labeled with an event and, optionally, with a paren
thesized condition and/or action.

Figure 8 shows an example of a system represented
by means of Statecharts. In this figure, we can see that
state Y is decomposed into two concurrent states, A
and D] the former consisting of two further substates,
B and C, while the latter comprises substates E, F,
and G. The bold dots in the figure indicate the start
ing points of states. According to the Statecharts lan
guage, when event b occurs while in state C, A will
transfer to state B. If, on the other hand, event a
occurs while in state B, A will transfer to state C,
but only if condition P holds at the instant of occur
rence. During the transfer from B to C, the action c
associated with the transition will be performed.

Figure 8: Statecharts: hierarchical concurrent states.

Because of its hierarchy and concurrency con
structs, the HCFSM model is well-suited to represent
ing complex control systems. The problem with this
model, however, is that, like any other state-oriented
model, it concentrates exclusively on modeling con
trol, which means that it can only associate very sim
ple actions, such as assignments, with its transitions
or states. As a result, the HCFSM is not suitable for
modeling certain characteristics of complex systems,
which may require complex data structures or may
perform in each state an arbitrarily complex activity.
For such systems, this model alone would probably
not suffice.

1.7 Programming languages

Programming languages provide a heterogeneous
model that can support data, activity and control
modeling. Unlike the structure chart, programming
languages are presented in a textual, rather than a
graphic, form.

There are two major types of programming lan
guages: imperative and decliurative. The imperative
class includes languages like C smd Pascal, which use
a control-driven model of execution, in which state
ments are executed in the order written in the pro
gram. LISP and PROLOG, by contrast, are exam
ples of declarative languages, since they model exe
cution through demand-driven or pattern-driven com
putation. The key difference here is that declarative
languages specify no explicit order of execution, focus
ing instead on defining the target of the computation
through a set of functions or logic rules.

In the aspect of data modeling, imperative pro
gramming languages provide a variety of data struc
tures. These data structures include, for example, ba
sic data types, such as integers and reals, as well as

composite types, like arrays and records. A pro
gramming language would model small activities by
means of statements, and large activities by meeins
of functions or procedures, which can also serve as
a mechanism for supporting hierarchy within the sys
tem. These programming languages can zdso model
control flow, by using control constructs that spec
ify the order in which activities axe to be performed.
These control constructs can include sequential com
position (often denoted by a semicolon), branching
{if and case statements), looping {while, for, and
repeat), as well as subroutine calls.

The advantage to using an imperative programming
language is that this paradigm is well-suited to model
ing computation-dominated behavior, in which some
problem is solved by means of an algorithm, as, for ex
ample, in a case when we need to sort a set of numbers
stored in an array.

The main problem with programming languages is
that, although they are well-suited for modeling the
data, activity, and control mechanism of a system,
they do not explicitly model the system's states, which
is a disadvantage in modeling embedded systems.

1.8 Program-state machine

A program-state machine (PSM) [GVN94] is an
instance of a heterogeneous model that integrates
an HCFSM with a programming language paradigm.
This model beisically consists of a hierarchy of
program-states, in which each program-state rep
resents a distinct mode of computation. At any given
time, only a subset of program-states will be active,
i.e., cictively carrying out their computations.

Within its hierarchy, the model would consist of
both composite and leaf program-states. A compos
ite program-state is one that can be further decom
posed into either concurrent or sequential program-
substates. If they are concurrent, all the program-
substates will be active whenever the program-state is
active, whereas if they are sequential, the program-
substates are only active one at a time when the
program-state is active. A sequentially decomposed
program-state will contain a set of transition arcs,
which represent the sequencing between the prograra-
substates. There are two types of transition arcs. The
first, a transition-on-completion arc (TOO), will
be traversed only when the source program-substate
has completed its computation and the associated arc
condition evaluates to true. The second, a transi-
tion-immediately arc (TI), will be traversed im
mediately whenever the arc condition becomes true,
regardless of whether the source program-substate has

completed its computation. Finally, at the bottom
of the hierarchy, we have the leaf program-states
whose computations are described through program
ming language statements.

When we are using the program-state machine as
our model, the system as an entity can be graphically
represented by a rectangular box, while the program-
states within the entity will be represented by boxes
with curved corners. A concurrent relation between

program-substates is denoted by the dotted line be
tween them. Transitions are represented with directed
arrows. The starting state is indicated by a triangle,
and the completion of individucd program-states is in
dicated by a transition arc that points to the com
pletion point, represented as a small square within the
state. TOC arcs are those that originate from a square
inside the source substate, while Tl arcs originate from
the perimeter of the source substate.

variable A: arrayll ..20] of integer

variable 1.max; Integer;

max = 0;
for i = 1 to 20 do

If (A[i] > max) ttwn
max = A[i]:

end if;
erxf for

Figure 9: An example of program-state machine, (f)

Figure 9 shows an example of a program-state ma
chine, consisting of a root state Y, which itself com
prises two concurrent substates, A and D. State A,
in turn, contains two sequential substates, B and C.
Note that states B, C, and D are leaf states, though
the figure shows the program only for state D. Ac
cording to the graphic symbols given above, we can
see that the arcs labeled el and e3 are TOC arcs,
while the arc labeled e2 is a TI arc. The configura
tion of arcs would mean that when state B finishes

and condition el is true, control will trajisfer to state
C. If, however, condition €2 is true while in state C,
control will transfer to state B regardless of whether

C finishes or not.

Since PSMs can represent a system's states, data,
and activities in a single model, they are more suit
able than HCFSMs for modeling systems which have
complex data and activities associated with each state.
A PSM can also overcome the primary limitation of
programming languages, since it can model states ex
plicitly. It allows a modeler to specify a system us
ing hierarchical state-decomposition until he/she feels
comfortable using program constructs. The program
ming language model and HCFSM model are just two
extremes of the PSM model. A program can be viewed
as a PSM with only one leaf state containing language
constructs. A HCFSM can be viewed as a PSM with

all its leaf states containing no language constructs.
In this section we presented the main models to

capture systems. Obviously, there are more models
used in codesign, mostly targeted at specific applica
tions. For example, the codesign finite state machine
(CFSM) model [CGH"*'93], which is based on commu
nicating FSMs using event broadcasting, is targeted
at small, reactive real-time systems and can be used
to formally define and verify a system's properties.

2 Architectures

To this point, we have demonstrated how various
models can be used to describe a system's function
ality, data, control and structure. An architecture
is intended to supplement these descriptive models
by specifying how the system will actually be imple
mented. The goal of an architecture, then, is to de
scribe the number of components, the type of each
component, and the type of each connection among
these various components in a system.

Architectures can range from simple controllers to
parallel heterogeneous processors. Despite this va
riety, however, architectures nonetheless fall into a
few distinct classes, namely, (1) application-specific
architectures, such as DSP systems, (2) general-
purpose processors, such as RJSCs, and (3) par
allel processors, such as VLIW, SIMD and MIMD
machines.

2.1 Controller architecture

The simplest of the application-specific architectures
is the controller variety, which is a straight-forward
implementation of the finite-state machine model pre
sented in Section 1.3 and defined by the quintuple
< 5,/, O,/, >. A controller consists of a register
and two combinational blocks, as shown in Figure 10.

The register, usually called the State register, is de
signed to store the states in 5, while the two combi
national blocks, referred to as the Next-state logiceind
the Output logic, implement functions / and h. In
puts and Outputs are representations of Boolean sig
nals that are defined by sets I and O.

Inputs

A. A, A.

Inputs
A A, A

> Outputs

State signals

Figure 10: A generic controller design: (a) state-
based, (b) input-based. (|)

As mentioned in Section 1.3, there are two dis
tinct types of controllers, those that are input-based
and those that are state-based. These types of con
trollers differ in how they define the output function,
h. For input-based controllers, h is defined as a map
ping S y. I O, which means that the Output logic
is dependent on two parameters, namely. State reg
ister and Inputs. For state-based controllers, on the
other hand, h is defined as the mapping 5-^0, which
means the Output logic depends on only one parame-

ter, the State register. Since the inputs and outputs
are Boolean signals, in either case, this architecture
is well-suited to implementing controllers that do not
require complex data manipulation.

The controller synthesis consists of state minimiza
tion amd encoding. Boolean minimization and technol
ogy mapping for the Next-state and Output logic.

2.2 Custom Datapath architecture

In a custom datapath we compute arbitrary expres
sions. In a datapath we use a different number of
counters, registers, register-files and memories with a
varied number of ports that are connected with several
buses. Note that these same buses Ccin be used to sup
ply operands to functional units as well as to supply
results back to storage units. It is also possible for the
functional units to obtain operands from several buses,
though this would require the use of a selector in front
of each input. It is also possible for each unit to have
input and output latches which are used to temporar
ily store the input operands or results. Such latching
can significantly shorten the amount of time that the
buses will be used for operemd and result transfer, and
thus can increase the traffic over these buses.

On the other hand, input and output latching re
quires a more complicated control unit since each op
eration requires more than one clock cycle. Namely, at
least one clock cycle is required to fetch operands from
registers, register files or memories and store them into
input latches, at least one clock cycle to perform the
operation and store a result into an output latch, and
at least one clock cycle to store the result from an
output latch back to a register or memory.

An example of such a custom datapath is shown in
Figure 11. Note that it has a counter, a register, a
3-port register-file and a 2-port memory. It also has
four buses and three functional units: two ALUs and

a multiplier. As you can see, ALUl does not have any
latches, while ALU2 has latches at both the inputs
and the outputs and the single multiplier has only the
inputs latched. With this arrangement, ALUl can
receive its left operand from buses 2 and 4, while the
multiplier can receive its right operand from buses 1
and 4. Similarly, the storage units can also receive
data from several buses. Such custom datapaths are
frequently used in application specific design to obtain
the best performance-cost ratio.

Datapaths are also used in all standard processor
implementations to perform numerical computation or
data manipulations. A processor datapath consists
of some temporary storage, in addition to arithmetic,
logic and shift units. Lets consider, for example, how

Selector Selector

Coimter I I RegMer

Latch I Latch

Latch Latch

Figure 11: An example of a custom datapath. ({)

we might perform the summation of a hundred num
bers by declaring the sum to be a temporary variable,
initially set to zero, and executing the following loop
statement:

sum = 0

loop:
for t = 1 to 100

sum = sum 4-

end loop

The above loop body could be executed on a datap
ath consisting of one register called an Accumulator
and an ALU. The variable sum would be stored in
the Accumulator, and in each clock cycle, the new Xi
would be added to the sum in the ALU so that the
new value of sum could again be stored in the Accu
mulator.

Generally speaking, the majority of digital designs
work in the same manner. The variable values and

constant axe stored in registers or memories, they are
fetched from storage components after the rising edge
of the clock signal, they are transformed in combina
torial components during the time between two rising
edges of the clock and the results are stored back into
the storage components at the next rising edge of the
clock signal.

In Figure 12, we have shown a simple datapath that
could perform the above summation. This datapath
contains a selector, which selects either 0 or some out
side data as the left operand for the ALU. The right

operand will always be the content of the Accumulator,
which could also be output through a trl-state driver.
The Accumulatoris a shift register with a parallel load.
This datapath's schematic is shown in Figure 12(a),
and in Figure 12(b), we have shown the 9-bit control
word that specifies the values of the control signals
for the Selector, the ALU, the Accumulator and the
output drivers.

1 0
s Selector

f, 'l
0 Accumulator

Accumulator Out
controls enable

Figure 12: Simple datapath with one accumulator: (a)
datapath schematic, (b) control word, (f)

On each clock cycle, a specific control word would
define the operation of the datapath. In order to com
pute the sum of 100 numbers, we would need 102 clock
cycles. In this case, the control words would be the
same for all the clock cycles, except the first and the
last. In the first clock cycle, we would have to clear
the Accumulator, in the next 100 clock cycles we would
add the new data to the accumulated sum, finally, in
the last clock cycle, we would output the accumulated
sum.

Datapaths are also used in many applications where
a fixed computation must be performed repeatedly on
different sets of data, as is the case in the digital sig
nal processing (DSP) systems used for digital filtering,

image processing, and multimedia. A datapath archi
tecture often consists of high-speed arithmetic units,
connected in parallel, and heavily pipelined in order
to achieve a high throughput.

x(i) b(0) x(i-1) b(1) x{i-2) b(2) x(i-3) b(3)

x(i) b(0) x{l-1) b(1) x{l-2) b(2) x{l-3} b(3)

• « • •

^Pipeline stages*^

Pipeline stages

Figure 13: Two different datapaths for FIR filter:
(a) with three pipeline stages, (b) with four pipeline
stages, (t)

In Figure 13, we can see two different datapaths,
both of which are designed to implement a fiuite-
irapulse-response (FIR) filter, which is defined by the
expression

N-l

ik=0

where N is 4. Note that the datapath in Figure 13(a)
performs all its multiplications concurrently, and adds
the products in parallel by means of a summation tree.
The datapath in Figure 13(b) also performs its multi
plications concurrently, but it will then add the prod
ucts serially. Further, note that the datapath in Fig
ure 13(a) has three pipeline stages, each indicated by
a dashed line, whereas the datapath in Figure 13(b)
has four similarly indicated pipeline stages. Although
both datapaths use four multipliers and three adders,
the datapath in Figure 13(b) is regular and easier to
implement in ASIC technologies.

In this kind of architecture, as long as each opera-

tion in an algorithm is implemented by its own unit, as
in Figure 13, we do not need a control for the system,
since data simply flows from one unit to the next, and
the clock is used to load pipeline registers. Sometimes,
however, it may be necessary to use fewer units to save
silicon area, in which case we would need a simple
controller to steer the data among the units and reg
isters, and to select the appropriate arithmetic func
tion for those units that can perform different func
tions at different times. Another situation would be

to implement more than one algorithm with the same
datapath, with each algorithm executing at a differ
ent time. In this case, since esich algorithm requires a
unique flow of data through the datapath, we would
need a controller to regulate the flow. Such controllers
are usually simple and without conditional branches.

2.3 FSMD architecture

A FSMD architecture implements the FSMD model by
combining a controller with a datapath. As shown in
Figure 14(a), the datapath has two types of I/O ports.
One type of I/O ports are data ports which are used
by the outside environment to send and receive data to
and from the ASIC. The data could be of type integer,
floating-point, or characters and it is usually packed
into one or more words. The data ports are usually 8,
16, 32 or 64 bits wide. The other type of I/O ports
are control ports which are used by the control unit
to control the operations performed by the datapath
and receive information about the status of selected

registers in the datapath.
As shown in Figure 14(b), the datapath takes the

operands from storage units, performs the computa
tion in the combinatorial units and returns the results

to storage units during each state, which is usually
equal to one clock cycle.

As mentioned in the previous section the selec
tion of operands, operations and the destination for
the result is controlled by the control unit by setting
proper values of datapath control signals. The datap
ath also indicates through status signals when a par
ticular value is stored in a particular storage unit or
when a particular relation between two data values
stored in the datapath is satisfied.

Similar to the datapath, a control unit has a set
of input and a set of output signals. Each signal is
a Boolean variable that can take a value of 0 or 1.

There axe two types of input signals: external sig
nals and status signals. External signals represent the
conditions in the external environment on which the

FSMD architecture must respond. On the other hand,
the status signals represent the state of the datapath.

Figure 14: Design model: (a) high-level block dia
gram, (b) register-transfer-level block diagram, (f)

Their value is obtained by comparing values of selected
variables stored in the datapath. There are also two
types of output signals: external signals and datapath
control signals. External signals identify to the envi
ronment that a FSMD architecture has reached cer

tain state or finished a particular computation. The
datapath controls, as mentioned before, select the op
eration for each component in the datapath.

FSMD architectures are used for various ASIC de

signs. Each ASIC design consists of one or more
FSMD architectures, although two implementations
may differ in the number of control units and data
paths, the number of components and connections in
the datapath, the number of states in the control unit
and the number of I/O ports. The FSM controller and
DSP datapath mentioned above are two special cases
of this kind of architecture. In addition, the FSMD is
also the basic architecture for general-purpose proces
sors, since each processor includes both a control unit
and a datapath.

2.4 CISC architecture

The primary motivation for developing an architecture
of complex-instruction'-set computers (CISC)

was to reduce the number of instructions in com

piled code, which would in turn minimize the num
ber of memory accesses required for fetching instruc
tions. The motivation was valid in the past, since
memories were expensive and much slower than pro
cessors. The secondary motivation for CISC develop
ment was to simplify compiler construction, by includ
ing in the processor instruction set complex instruc
tions that mimic programming language constructs.
These complex instructions would reduce the seman
tic gap between programming and machine languages
and simplify compiler construction.

Control
-

unrt
Micr^rograin S

memory

1 MicroPC [

f .
Address *—'

' ^ +1 ♦ selection ^
logic

k
T

Insltuclion rey.

Datapath

Figure 15: CISC with microprogrammed control, (f)

In order to support a complex instruction set, a
CISC usually has a complex datapath, as well as a con
troller that is microprogrammed, shown in Figure 15,
which consists of a Microprogram memory, a Micro
program counter (MicroPC), and the Address selec
tion logic. Each word in the microprogram memory
represents one control word, such as the one shown
in Figure 12, that contains the values of all the dat
apath control signals for one clock cycle. This means
that each bit in the control word represents the value
of one datapath control line, used for loading a regis
ter or selecting an operation in the ALU, for example.
Furthermore, each processor instruction consists of a
sequence of control words. When such an instruction
is fetched from the Memory, it is stored first in the
Instruction register, and then used by the Address se
lection logic to determine the starting address of the
corresponding control-word sequence in the Micropro
gram memory. After this starting address has been
loaded into the MicroPC, the corresponding control
word will be fetched from the Microprogram memory,
and used to transfer the data in the datapath from

one register to another. Since the MicroPC is concur
rently incremented to point to the next control word,
this procedure will be repeated for each control word
in the sequence. Finally, when the last control word is
being executed, a new instruction will be fetched from
the Memory, and the entire process will be repeated.

From this description, we can see that the number
of control words, find thus the number of clock cycles
can vary for each instruction. As a result, instruc
tion pipelining can be difficult to implement in CISCs.
In addition, relatively slow microprogram memory re
quires a clock cycle to be longer than necessary. Since
instruction pipelines and short clock cycles are neces
sary for fast program execution, CISC architectures
may not be well-suited for high-performance proces
sors.

Although a variety of complex instructions could be
executed by a CISC architectures, program-execution
statistics have shown that the instructions used most

frequently tend to be simple, with only a few address
ing modes and data types. Statistics have also shown
that the most complex instructions were seldom or
never used. This low usage of complex instructions
can be attributed to the slight semantic differences be
tween programming language constructs and available
complex instructions, as well as the difficulty in map
ping language constructs into such complex instruc
tions. Because of this difficulty, complex instructions
are seldom used in optimizing compilers for CISC pro
cessors, thus reducing the usefulness of CISC architec
tures.

The steadily declining prices of memories and their
increasing speeds have made compactly-coded pro
grams and complex instruction sets unnecessary for
high-performance computing. In addition, complex
instruction sets have made construction of optimizing
compilers for CISC architecture too costly. For these
two reasons, the CISC architecture was displaced in
favor of the RISC architecture.

2.5 RISC architecture

In contrast to the CISC architecture, the architecture
of a reduced-instruction-set computer (RISC) is
optimized to achieve short clock cycles, small num
bers of cycles per instruction, and efficient pipelining
of instruction streams. As shown in Figure 16, the
datapath of an RISC processor generally consists of
a large register file and an ALU. A large register file
is necessary since it contains all the operands and the
results for program computation. The data is brought
to the register file by load instructions and returned to
the memory by store instructions. The larger the reg-

ister file is, the smaller the number of load and store
instructions in the code. When the RISC executes an

instruction, the instruction pipe begins by fetching an
instruction into the Instruction register. In the sec
ond pipeline stage the instruction is then decoded and
the appropriate operands are fetched from the Regis
ter file. In the third stage, one of two things occurs:
the RISC either executes the required operation in the
ALU, or, alternatively, computes the address for the
Data cache. In the fourth stage the data is stored
in either the Data cache or in the Register file. Note
that the execution of each instruction taJces only four
clock cycles, approximately, which means that the in
struction pipeline is short and efficient, losing very few
cycles in the case of data or branch dependencies.

Control unit

Decode logic

Instruction reg.

Instruction cache

Datapath

Register
file

Main memory

Figure 16: RISC with hardwired control, (f)

We should also note that, since all the operands are
contained in the register file, and only simple address
ing modes are used, we can simplify the design of the
datapath as well. In addition, since each operation
can be executed in one clock cycle and each instruc
tion in four, the control unit remains simple and can be
implemented with random logic, instead of micropro
grammed control. Overall, this simplification of the
control and datapath in the RISC results in a short
clock cycle, and, ultimately, higher performance.

It should also be pointed out, however, that the
greater simplicity of RISC architectures require a more
sophisticated compiler. For example, a RISC design
does not stop the instruction pipeline whenever in
struction dependencies occur, which means that the
compiler is responsible for generating a dependency-
free code, either by delaying the issue of instructions
or by reordering instructions. Furthermore, due to the
fact that the number of instructions is reduced, the

RISC compiler will need to use a sequence of RISC in
structions in order to implement complex operations.
At the szune time, of course, although these features
require more sophistication in the compiler, they also
give the compiler a great deal of flexibility in perform
ing aggressive optimization.

Finally, we should note that RISC programs tend to
require 20% to 30% more program memory, due to the
lack of complex instructions. However, since simpler
instruction sets can malce compiler design and running
time much shorter, the efficiency of the compiled code
is ultimately much higher. In axldition, because of
these simpler instruction sets, RISC processors tend
to require less silicon area and a shorter design cycle
than their CISC counterparts.

2.6 VLIW architecture

A very-long-instruction-word computer (VLIW)
exploits parallelism by using multiple functional units
in its datapath, all of which execute in a lock step
manner under one centralized control. A VLIW in

struction cont2uns one field for each functional unit,
and each field of a VLIW instruction specifies the ad
dresses of the source and destination operands, as well
as the operation to be performed by the functional
unit. As a result, a VLIW instruction is usually very
wide, since it must contain approximately one stan
dard instruction for each functional unit.

Memory

Register file

Figure 17: An example of VLIW datapath, (f)

In Figure 17, we see an example of a VLIW data
path, consisting of four functional units: namely, two
ALUs and two multipliers, a register file and a mem
ory. In order to utilize all the four functional units, the
register file in this example has 16 ports: eight output
ports, which supply operands to the functional units,
four input ports, which store the results obtained
from functional units, and four input/output ports,
designed to allow communication with the memory.

What is interesting to note here is that, ideally, the
VLIW in Figure 17 would provide four times the per
formance we could get from a processor with a sin
gle functional unit, under the assumption that the
code executing on the VLIW had four-way parallelism,
which enables the VLIW to execute four independent
instructions in each clock cycle. In reality, however,
most code has a large amount of parallelism inter
leaved with code that is fundamentally serial. As a
result, a VLIW with a large number of functional units
might not be fully utiUzed. The ideal conditions would
also require us to assume that all the operands were
in the register file, with 8 operands being fetched and
four results stored back on every clock cycle, in ad
dition to four new operands being brought from the
memory to be available for use in the next clock cy
cle. It must be noted, however, that this computation
profile is not easy to achieve, since some results must
be stored back to memory and some results may not
be needed in the next clock cycle. Under these con
ditions, the efficiency of a VLIW datapath might be
less than ideal.

Finally, we should point out that there are two tech
nological limitation that can affect the implementation
of a VLIW architecture. First, while register files with
8-16 ports can be built, the efficiency and performance
of such register files tend to degrade quickly when we
go beyond that number. Second, since VLIW pro
gram and data memories require a high communica
tion bandwidth, these systems tend to require expen
sive high-pin packaging technology as well. Overall,
these are the reasons why VLIW architectures are not
as popular as RISC architectures.

2.7 Parallel architecture

In the design of parallel processors, we can take ad
vantage of spatial parallelism by using multiple pro
cessing elements (PEs) that work concurrently. In this
type of architecture, each PE may contain its own dat
apath with registers and a local memory. Two typi
cal types of parallel processors are the SIMD (single
instruction multiple data) and the MIMD (multiple
instruction multiple data) processors.

In SIMD processors, usually called array proces
sors, all of the PEs execute the same instruction in a
lock step manner. To broadcast the instructions to all
the PEs and to control their execution, we generally
use a single global controller. Usually, an array pro
cessor is attached to a host processor, which means
that it can be thought of as a kind of hardware accel
erator for tasks that are computationally intensive. In
such cases, the host processor would load the data into

each PE, and then collect the results after the compu
tations are finished. When it is necessary, PEs can also
communicate directly with their nearest neighbors.

The primary advantage of array processors is that
they are very convenient for computations that can be
naturally mapped on a rectangular grid, as in the case
of image processing, where an image is decomposed
into pixels on a rectangular grid, or in the case of
weather forecasting, where the surface of the globe is
decomposed into n-by-n-mile squares. Programming
one grid point in the rectangular array processor is
quite easy, since all the PEs execute the same instruc
tion stream. However, programming any data routing
through the array is very difficult, since the program
mer would have to be aware of all the positions of each
data for every clock cycle. For this reason, problems,
like matrix triangulations or inversions, are difficult to
program on an array processor.

Array processors, then, are easy to build and easy
to program, but only when the natural structure of the
problem matches the topology of the array processor.
As a result, they can not be considered generzd pur
pose machines, because users have difficulty writing
programs for general classes of problems.

An MIMD processor, usually called a multipro
cessor system, differs from an SIMD in that each
PE executes its own instruction stream. In this kind

of architecture, the program can be loaded by a host
processor, or each processor can load its own program
from a shared memory. Each processor can commu
nicate with every other processor within the multi
processor system, using one of the two communica
tion mechanisms. In a shared-memory multipro
cessor, all the processors are connected to a shared
memory through an interconnection network, which
means that each processor can access any data in the
shared memory. In a message-passing multiproces
sor, on the other hand, each processor tends to have
a large local memory, and sends data to other pro
cessors in the form of messages through an intercon
nection network. The interconnection network for a

shared memory must be fast, since it is very frequently
used to communicate small amounts of data, like a
single word. In contrast, the interconnection network
used for message passing tends to be much slower,
since it is used less frequently £ind communicates long
messages, including many words of data. Finally, it
should be noted that multiprocessors are much eas
ier to program, since they are task-oriented instead
of instruction-oriented. Each task runs independently
and can be synchronized after completion, if necessary.
Thus, multiprocessors make program and data par-

titioning, code parallelization and compilation much
simpler than airay processors.

Such a multiprocessor, in which the interconnec
tion network consists of several buses, is shown in Fig
ure 18. Each processing element (PE) consists of a
processor or ASIC and a local memory connected by
the local bus. The shared or global memory may be ei
ther single port, dual port, or special purpose memory
such as FIFO. The PEs and global memories are con
nected by one or more system buses via correspond
ing interfaces. The system bus is associated with a
well-defined protocol to which the components on the
bus have to respect. The protocol may be standard,
such as VME, or custom. An interface bridges the
gap between a local bus of a PE/memory and system
buses.

The heterogeneous architecture is a superset of
all previous architectures and it can be customized
for a particular application to achieve the best cost-
performance trade-off. Figure 19 shows some typical
configurations.

Figure 19(a) shows a simple embedded processor
system with an 10 device. The 10 device directly
communicate with the processor on the processor bus
via an interface. Figure 19(b) shows a shared mem
ory system where two PEs are connected to a global
memory via a system bus. The PEs can be either
processor system or ASIC system, each of which may
contain its own local bus and memory subsystem. Fig
ure 19(c) and (d) show two types of message passing
system where two PEs communicate via a channel.
The former can perform asynchronous communication
given the dedicated devices such as a FIFO. The latter
can perform synchronous communication if the proper
handshaking between the two PEs are performed via
the system bus.

3 Languages

3.1 Introduction

A system can be described at any one of several dis
tinct levels of abstraction, each of which serves a par
ticular purpose. By describing a system at the logic
level, for example, designers can verify detailed timing
as well as functionality. Alternatively, at the archi
tectural level, the complex interaction among system
components such as processors, memories, and ASICs
can be verified. Finally, at the conceptual level, it is
possible to describe the system's functionality without
any notion of its components. Descriptions at such
level can serve as the specification of the system for

! Proc LM

! Device

Proc1 LM1 I I Proc2 LM2 < GM

Proc2 LM2

Figure 19: Some typical configurations: (a) stjuidard
processor, (b) shared memory, (c) non-blocking mes
sage passing, (c) blocking message passing.

GM1 1 ASIC1 LM2

1

Figure 18: A heterogeneous multiprocessor

designers to work on. Increasingly, designers need to
conceptualize the system using an executable spec
ification language, which is capable of capturing the
functionality of the system in a machine-readable and
simulatable form.

Such an approach has several advantages. First,
simulating an executable specification allows the de
signer to verify the correctness of the system's in
tended functionality. In the traditional approach,
which started with a natural-language specification,
such verification would not be possible until enough
of the design had been completed to obtain a simulat
able system description (usually gate-level schemat
ics). The second advantage of this approach is that the
specification can serve as an input to codesign tools,
which, in turn, can be used to obtain an implementa
tion of the system, ultimately reducing design times
by a significant amount. Third, such a specification
can serve as comprehensive documentation, providing
an unambiguous description of the system's intended
functionality. Finally, it also serves as a good medium
for the exchange of design information among various
users and tools. As a result, some of the problems
associated with system integration can be minimized,
since this approach would emphasize well-defined sys
tem components that could be designed independently
by different designers.

The increasing design complexity associated with
systems-on-a-chip also makes an executable mod
eling language extremely desirable where an inter
mediate implementation can be represented and val
idated before proceeding to the next s5Tithesis step.
For the same reason, we need such a modeling lan
guage to be able to d^cribe design artifacts from pre
vious designs and intellectual properties (IP) provided
by other sources.

Since different conceptual models possess different
characteristics, any given specification language can
be well or poorly suited for that model, depending on
whether it supports all or just a few of the model's
characteristics. To find the language that can capture
a given conceptual model directly, we would need to
establish a one-to-one correlation between the charac

teristics of the model and the constructs in the lan

guage.

3.2 Characteristics of system models

In this section, we will present some of the character
istics most commonly found in modeling systems. In
presenting these characteristics, part of our goal will
be to assess how useful each characteristic is in cap
turing one or more types of system behavior.

3.3 Concurrency

Any system can be decomposed into chunks of func
tionality called behaviors, each of which can be de
scribed in several ways, using the concepts of pro
cesses, procedures or state machines. In many cases,
the functionality of a system is most easily conceptu
alized as a set of concurrent behaviors, simply because
representing such systems using only sequential con
structs would result in complex descriptions that can
be difficult to comprehend. If we can find a way to
capture concurrency, however, we can usually obtain
a more natural representation of such systems. For
example, consider a system with only two concurrent
behaviors that can be individually represented by the
finite-state machines Fi and F2. A standard represen
tation of the system would be a cross product of the
two finite-state machines, Fi x F2, potentially result
ing in a large number of states. A more elegant solu-

tion, then, would be to use a conceptual model that
has two or more concurrent finite-state machines, as
do the Statecharts [Har87] and many other concurrent
languages.

Concurrency representations can be classified into
two groups, data-driven or control-driven, depending
on how explicitly the concurrency is indicated. Fur
thermore, a special class of data-driven concurrency
called pipelined concurrency is of particular impor
tance to signal processing applications.

Data-driven concurrency: Some behaviors can be
clearly described as sets of operations or statements
without specifying any explicit ordering for their ex
ecution. In a case like this, the order of execution
would be determined only by data dependencies be
tween them. In other words, each operation will per
form a computation on input data, and then output
new data, which will, in turn, be input to other op
erations. Operation executions in such dataflow de
scriptions depend only upon the availability of data,
rather than upon the physical location of the opera
tion or statement in the specification. Dataflow repre
sentations can be easily described from programming
languages using the single assignment rule, which
means that each variable can appear exactly once on
the left hand side of an assignment statement.

1: q s a 4 b
2: ysp + x
3: p 3 (c - d)' q

Figure 20: Data-driven concurrency: (a) dataflow
statements, (b) dataflow graph generated from (a), (f)

Consider, for example, the single assignment state
ments in Figure 20(a). As in any other data-driven ex
ecution, it is of little consequence that the assignment
to p follows the statement that uses the value of p to
compute the vjdue of y. Regardless of the sequence of
the statements, the operations will be executed solely
as determined by availability of data, as shown in the
dataflow graph of Figure 20(b). Following this princi
ple, we can see that, since a, b, c and d are primary

inputs, the add and subtract operations in statements
1 and 3 will be carried out first. The results of these

two computations will provide the data required for
the multiplication in statement 3. Finally, the addi
tion in statement 2 will be performed to compute y.

Pipelined concurrency: Dataflow description in
the previous section C2m be viewed as a set of op
erations which consume data from their inputs and
produce data on their outputs. Since the execution
of each operation is determined by the availability of
its input data, the degree of concurrency that can be
exploited is limited by data dependencies. However,
when the same dataflow operations are applied to a
stream of data samples, we can use pipelined con
currency to improve the throughput, that is, the rate
at which the system is able to process the data stream.
Such throughput improvement is achieved by dividing
operations into groups, called pipeline stages, which
operate on different data sets in the stre£mi. By op
erating on different data sets, pipeline stages can run
concurrently. Note that esich stage will take the same
amount of time, called a cycle, to compute its results.

For example, Figure 21(a) shows a dataflow graph
operating on the data set a(n),6(n),c(n),d(n) and
x(n), while producing the data set q{n),p{n) 2uid y{n),
where the index n indicates the nth data in the stream,
called data sample n. Figure 21(a) can be converted
into a pipeline by peirtitioning the graph into three
stages, as shown in Figure 21(b).

In order for the pipehne stages to execute con
currently, storage elements such as registers or FIFO
queues have to be inserted between the stages (indi
cated by thick lines in Figure 21(b)). In this way,
while the second stage is processing the results pro
duced by the first stage at the previous cycle, the
first stage can simultaneously process the next data
sample in the stream. Figure 21(c) illustrates the
pipelined execution of Figure 21(b), where each row
represents a stage, eanh column represents a cycle. In
the third column, for example, while the first stage
is adding o(n -I- 2) and 6(n -I- 2), and subtracting
c(n -i- 2) and d{n -f 2), the second stage is multiplying
(o(n + 1) + b{n + 1)) and c(n + 1) - d{n + 1), and
the third stage is finishing the computation of the nth
sample by adding ((a(n) -I- &(n)) * (c(n) - d(n)) to a:(n).

Control-driven concurrency: The key concept
in control-driven concurrency is the control thread,
which can be defined as a set of operations in the sys
tem that must be executed sequentially. As mentioned
above, in data-driven concurrency, it is the dependen-

a(nj b(n] c(n] d(n) i((n) a(n} b(n) c(n) d(n) *(n)

Stage 1

nth (n+1)th {n+2)th (n+3}th
_l __c^cje__ I c^e I I cyde

,iY?i??i¥?i -
Stages

d(n) P<n) y(n) q(n) p(n) W")

Stages VJ.....
¥ l¥

Figure 21: Pipelined concurrency: (a) original dataflow, (b) pipelined dataflow, (c) pipelined execution.

cies between operations that determine the execution
order. In control-driven concurrency, by contrast, it is
the control thread or threads that determine the order

of execution. In other words, control-driven concur
rency is characterized by the use of explicit constructs
that specify multiple threads of control, all of which
execute in paxjJlel.

sequential behavior X
begin

Q():
fork A{); B(): CO; join;
R():

end behavnor X;

A) (B) fc

concurrent behavior X
begin

process A();
process B(h
process CO;

end behavior X;

A)(8) (C

Figure 22: Control-driven concurrency: (a) fork-join
statement, (b) process statement, (c) control threads
for fork-join statements, (d) control threads for pro
cess statement, (f)

Control-driven concurrency can be specified at the
task level, where constructs such as fork-joins and pro
cesses can be used to specify concurrent execution of
operations. Specifically, a fork statement creates a
set of concurrent control threads, while a join state-

ment waits for the previously forked control threads
to terminate. The fork statement in Figure 22(a), for
example, spawns three control threads A, B and C,
all of which execute concurrently. The correspond
ing join statement must wait until all three threads
have terminated, after which the statements in R can
be executed. In Figure 22(b), we can see how pro
cess statements are used to specify concurrency. Note
that, while a fork-join statement starts from a sin
gle control thread and splits it into several concurrent
threads as shown in Figure 22(c), a process statement
represents the behavior as a set of concurrent threads,
as shown in Figure 22(d). For example, the process
statements of Figure 22(b) create three processes A,
B and C, each representing a different control thread.
Both fork-join and process statements may be nested,
and both approaches are equivalent to each other in
the sense that a fork-join can be implemented using
nested processes and vice versa.

3.4 State transitions

Systems are often best conceptualized as having var
ious modes, or states, of behavior, as in the case of
controllers and telecommunication systems. For ex
ample, a traffic-light controller [DH89] might incorpo
rate different modes for day and night operation, for
manual and automatic functioning, and for the status
of the traffic light itself.

In systems with various modes, the transitions be
tween these modes sometimes occur in an unstruc
tured manner, as opposed to a linear sequencing
through the modes. Such arbitrary transitions are
akin to the use of goto statements in programming
languages. For example. Figure 23 depicts a system
that transitions between modes P, Q, R, S and T, the

sequencing determined solely by certain conditions.
Given a state machine with N states, there can be
N X N possible transitions among them.

T
Figure 23: State transitions between arbitrarily com
plex behaviors, (f)

In systems like this, transitions between modes can
be triggered by the detection of certain events or cer
tain conditions. For example, in Figure 23, the tran
sition from state P to state Q will occur whenever
event u happens while in P. In some systems, actions
can be associated with each transition, and a paxtic-
ulaj mode or state can have an arbitrarily complex
behavior or computation associated with it. In the
case of the traffic-light controller, for example, in one
state it may simply be sequencing between the red,
yellow and green lights, while in another state it may
be executing an algorithm to determine which lane of
traffic has a higher priority based on the time of the
day and the traffic density. In simple {Section 1.3) and
hierarchical (Section 1.6) finite-state machine models,
simple assignment statements, such as x = y + I, can
be associated with a state. In the PSM model (Sec
tion 1.8), any arbitrary program with iteration and
branching constructs can be associated with a state.

3.5 Hiereirchy

One of the problems we encounter with large systems
is that they can be too complex to be considered in
their entirety. In such cases, we can see the advantage
of hierarchical models. First, since hierarchical models
allow a system to be conceptualized as a set of smaller
subsystems, the system modeler is able to focus on one
subsystem at a time. This kind of modular decompo
sition of the system greatly simplifies the development
of a conceptual view of the system. Furthermore, once
we arrive at an adequate conceptual view, the hier
archical model greatly facilitates our comprehension
of the system's functionality. Finally, a hierarchical
model provides a mechanism for scoping objects, such

as declaration types, variables and subprogram names.
Since a lack of hierarchy would make all such objects
global, it would be difficult to relate them to their par
ticular use in the model, and could hinder our efforts
to reuse these names in different portions of the same
model.

There are two distinct types of hierarchy - struc
tural hierarchy and behavioral hierarchy - both of
which are commonly found in conceptual views of sys
tems.

Structural hierarchy: A structural hierstrchy is
one in which a system specification is represented as
a set of interconnected components. Each of these
components, in turn, can have its own internal struc
ture, which is specified with a set of lower-level inter
connected components, and so on. Each instance of
an interconnection between components represents a
set of communication channels connecting the compo
nents. The advantage of a model that can represent a
structural hierarchy is that it can help the designer to
conceptualize new components from a set of existing
components.

Control Logic I Datapatti

Mwnory

Figure 24: Structural hierarchy, (f)

This kind of structural hierarchy in systems can be
specified at several different levels of abstraction. For
example, a system can be decomposed into a set of
processors and ASICs communicating over buses in a
parcdlel architecture. Each of these chips may consist
of severed blocks, each representing a FSMD archi
tecture. Finally, each RT component in the FSMD
architecture can be further decomposed into a set of
gates while each gate can be decomposed into a set
of transistors. In addition, we should note that differ
ent portions of the system can be conceptualized at
different levels of abstraction, as in Figure 24, where
the processor has been structurally decomposed into a
datapath represented as a set of RT components, and

into its corresponding control logic represented as a
set of gates.

Behavioral hierarchy: The specification of a be
havioral hierarchy is defined as the process of
decomposing a behavior into distinct subbehaviors,
which can be either sequential or concurrent.

The sequential decomposition of a behavior
may be represented as either a set of procedures or
a state machine. In the first case, a procedural se
quential decomposition of a behavior is defined as
the process of representing the behavior as a sequence
of procedure calls. Even in the case of a behavior that
consists of a single set of sequential statements, we can
still think of that behavior as comprising a procedure
which encapsulates those statements. A procedural
sequential decomposition of behavior P is shown in
Figure 25(a), where behavior P consists of a sequen
tial execution of the subbehaviors represented by pro
cedures Q and R. Behavioral hierarchy would be rep
resented here by nested procedure calls. Recursion in
procedures allows us to specify a dynamic behavioral
hierarchy, which means that the depth of the hierarchy
will be determined only at run time.

behavior P
variable x, y;

begin

Figure 25: Sequential behavioral decomposition: (a)
procedures, (b) state-machines, (f)

Figure 25(b) shows a state-machine sequential
decomposition of behavior P. In this diagram, P is
decomposed into two sequential subbehaviors Q and
R, each of which is represented as a state in a state-
machine. This state-machine representation conveys
hierarchy by allowing a subbehavior to be represented
as another state-machine itself. Thus, Q and R are
state-machines, so they are decomposed further into
sequential subbehaviors. The behaviors at the bottom
level of the hierarchy, including Ql, ... R2, are called
leaf behaviors.

In a sequentially decomposed behavior, the subbe
haviors can be related through several types of tran
sitions: simple transitions, group transitions and hier

archical transitions. A simple transition is similar
to that which connects states in an FSM model in that
it causes control to be transferred between two states

that both occupy the same level of the behavioral hi
erarchy. In Figure 25(b), for example, the transition
triggered by event el transfers control from behavior
Ql to Q2. Group transitions are those which can
be specified for a group of states, as is the case when
event e5 causes a transition from any of the subbe
haviors of Q to the behavior R. Hierarchical tran
sitions are those (simple or group) transitions which
span several levels of the behavioral hierarchy. For ex
ample, the transition labeled e6 transfers control from
behavior Q3 to behavior Rl, which means that it must
span two hierarchical levels. Similarly, the transition
labeled c7 transfers control from Qto state R2, which
is at a lower hierarchical level.

For a sequentially decomposed behavior, we must
explicitly specify the initial subbehavior that will be
activated whenever the behavior is activated. In Fig
ure 25(b), for example, R is the first subbehavior that
is active whenever its parent behavior P is activated,
since a solid triangle points to this first subbehavior.
Similarly, Ql and Rl would be the initial subbehaviors
of behaviors Q and R, respectively.

The concurrent decomposition of behaviors al
lows subbehaviors to run in parallel or in pipelined
fashion.

Sequential Pipelined

Figure 26: Behavioral decomposition types: (a) se
quential, (b) parallel, (c) pipelined.

Figure 26 shows a behavior X consisting of three
subbehaviors A, B and C. In Figure 26(a) the sub
behaviors are running sequentially, one at a time, in
the order indicated by the arrows. In Figure 26(b),

A,B and C nm in paraJIel, which means that they
will start when X starts, and when all of them fin
ish, X will finish, just like the fork-join construct dis
cussed in Section 3.3. In Figure 26(c), A, B and C run
in pipelined mode, which means that they represent
pipeline stages which run concurrently where A sup
plies data to B and B to C as discussed in Section 3.3.

3.6 Programming constructs

Many behaviors can best be described as sequential al
gorithms. Consider, for example, the case of a system
intended to sort a set of numbers stored in an array,
or one designed to generate a set of random numbers.
In such cases, if the system designer manages to de
compose the behavior hierarchically into smaller and
smaller subbehaviors, he will eventually reach a stage
where the functionality of a subbehavior can be most
directly specified by means of an algorithm.

The advantage of using such programming con
structs to specify a behavior is that they allow the sys
tem modeler to specify an explicit sequencing for the
computations in the system. Several notations exist
for describing algorithms, but programming language
constructs are most commonly used. These constructs
include assignment statements, branching statements,
iteration statements and procedures. In addition, data
types such as records, arrays and linked lists are usu
ally helpful in modeling complex data structures.

1 int buf[10]. i,j;
2
3 for(I = 0; I < 10; i++)
4 for(j = 0;]<i;j++)
5 if(buf[i] > buf[j])
6 swap(&buf[i], &buf|j]);

Figure 27: Code segment for sorting.

Figure 27 shows how we would use programming
constructs to specify a behavior that sorts a set of ten
integers into descending order. Note that the proce
dure swap exchanges the values of its two parameters.

3.7 Behavioral completion

Behavioral completion refers to a behavior's ability
to indicate that it has completed, as well as to the
ability of other behaviors to detect this completion.
A behavior is said to have completed when <dl the
computations in the behavior have been performed,
and all the variables that have to be updated have
had their new values written into them.

In the finite-state machine model, weusually desig
nate an explicitly defined set of states as final states.
This means that, for a state machine, completion will
have occurred when control flows to one of these final

states, as shown in Figure 28(a).
In cases where we use programming language con

structs, a behavior will be considered complete when
the last statement in the program has been executed.
For example, whenever control flows to a return state
ment, or when the last statement in the procedure is
executed, a procedure is said to be complete.

OutputUst

Figure 28: Behavioral completion: (a) finite-state ma
chine, (b) program-state machine, (c) a single level
view of the program-state X, (d) decomposition into
sequential subbehaviors. (t)

The PSM model denotes completion using a special
predefined completion point. When control flows to
this completion point, the program-state enclosing it is
said to have completed, at which point the transition-
on-completion (TOG) arc, which can be traversed only
when the source program-state has completed, could
now be traversed.

For example, consider the program-state machine
in Figure 28(b). In this diagram, the behavior of
leaf program-states such as XI have been described
with programming constructs, which mezins that their
completion will be defined in terms of their execution
of the last statement. The completion point of the
program-state machine for X has been represented as
a bold square. When control flows to it from program-
state X2 (i.e., when the etrc labeled by event e2 is
traversed), the program-state X will be said to have
completed. Only then can event e5 cause a TOG tran-

sition to program-state V. Similarly, program-state B
will be said to have completed whenever control flows
along the TOC arc labeled e4 from program-state Y
to the completion point for B.

The specification of behavioral completion has two
advantages. First, in hierarchical specifications, com
pletion helps designers to conceptualize each hierar
chical level, and to view it as an independent mod
ule, free from interference from inter-level transitions.
Figmre 28(c), for example, shows how the program-
state X in Figure 28(b) would look by itself in isola
tion from the larger system. Having decomposed the
functionality of X into the program-substates XI, X2
and X3, the system modeler does not have to be con
cerned with the effects of the completion transition
labeled by event e5. FVom this perspective, the de
signer can develop the program-state machine for X
independently, with its own completion point (transi
tion labeled e2 from X2). The second advantage of
specifying behavioral completion is that the concept
allows the natural decomposition of a behavior into
subbehaviors which are then sequenced by the "com
pletion" transition arcs. For example, Figure 28(d)
shows how we can split an application which sorts a
list of numbers into three distinct, yet meaningful sub-
behaviors: ReadList, SortList and OutputList. Since
TOC arcs sequence these behaviors, the system re
quires no additional events to trigger the transitions
between them.

3.8 Exception handling

Often, the occurrence of a certain event can require
that a behavior or mode be interrupted immediately,
thus prohibiting the behavior from updating values
further. Since the computations associated with any
behavior can be complex, taking an indefinite amount
of time, it is crucial that the occurrence of the event,
or exception, should terminate the current behavior
immediately rather than having to wait for the com
putation to complete. When such exceptions arise, the
next behavior to which control will be transferred is

indicated explicitly.
Depending on the direction of transferred control

the exceptions can be further divided into two groups:
(a) abortion, when the behavior is terminated, and
(b) interrupt, where control is temporarily trans
ferred to other behaviors. An example of an abor
tion is shown in Figure 29(a) where behavior X is
terminated after the occurence of events el or e2. An

example of interrupt is shown in Figure 29(b) where
control from behavior X is transferred to Y or Z after

the occurrence of el or e2 and is returned after their

I Y I I z I

Figure 29: Exception types: (a) abortion, (b) inter
rupt.

completion.
Examples of such exceptions include resets and in

terrupts in many computer systems.

3.9 Timing

On many occasions in system specifications, there may
be need to specify detailed timing relations, when a
component receives or generates events in specific time
ranges, which are measured in real time units such as
nanoseconds.

In general, a timing relation can be described by
a 4-tuple T = (el, e2, mm, max), where event el pro
ceeds e2 by at least mm time units and at most max
time units. When such a timing relation is used with
real components it is called timing delay, when it is
used with component specifications it is called timing
constraint.

Such timing information is especially important for
describing parts of the system which interact exten
sively with the environment according to a predefined
protocol. The protocol defines the set of timing rela
tions between signals, which both communicating par
ties have to respect.

A protocol is usually visualized by a timing dia
gram, such as the one shown in Figure 30 for the read
cycle of a static RAM. Each row of the timing diagram
shows a waveform of a signEil, such as Address, Read,
Write and Data in Figure 30. Each dashed vertical
line designates an occurrence of an event, such as tl,
t2 through t7. There may be timing delays or timing
constraints associated with pairs of events, indicated
by an arrow annotated by x/y, where x stands for the
min time, y stands for the max time. For example,
the arrow between tl and tS designates a timing de
lay, which says that Data will be valid at least 10, but
no more than 20 nanoseconds after Address is valid.

The timing information is very important for the
subset of embedded systems known as real time sys-

0/ I 10/20

t1 t2 t3 14 tS 16

Figure 30: Timing diagram

tems, whose performance is measured in terms of
how well the implementation respects the timing con
straints. A favorite example of such systems would be
an aircraft controller, where failure to respond to an
abnormal event in a predefined timing limit will lead
to disaster.

3.10 Communication

In general, systems consist of several interacting be
haviors which need to communicate with each other to

be cooperative. Thus a general communication model
is necessary for system specification.

In traditional programming languages standard
forms of communication between functions are shared

variable access and parameter passing in procedure
calls. These mechanisms provide communication in
an abstract form. The way the communication is per
formed is predefined and hidden to the programmer.
For example, functions communicate through global
variables, which share a common memory space, or
via parameter passing. In case of local procedure
calls, parameter passing is implemented by exchanging
information on the stack or through processor regis
ters. In the case of remote procedure calls, parame
ters are passed via the complex protocol of marshal-
ing/unmajshaling and sending/receiving data through
a network.

While these mechanisms are sufficient for stan

dard programming languages, they poorly address the
needs for systems-on-a-chlp descriptions, where the
way the communication is performed is often custom
and impossible to predefine. For example, in telecom
munication applications the major task of modeling

the system is actually describing custom communica
tion procedures. Hence, it is very important for a
system description language to provide the ability to
redefine or extend the standard form of communica

tion.

As an analogy, the need for a general mechanism to
specify communication is the same as the need in com
putation to generalize operators like + and * into func
tions, which provide a general mechanism to define
custom computation. In the absence of such a mech
anism designers tend to mix the behavior responsible
for communication with the behavior for computation,
which results in the loss of modularity and reusability.

It follows that we need

(a) a mechanism to separate the specification of com
putation and communication;

(b) a mechanism to declare abstract communication
functions in order to describe what they are and
how they can be used;

(c) a mechanism to define a custom communication
implementation which describes how the commu
nication is actually performed.

In order to find a gener£d communication model
the structure of a system must be defined. A sys
tem's structure consists of a set of blocks which are

interconnected through a set of communication chan
nels. While the behavior in the blocks specifies how
the computation is performed and when the commu
nication is started, the channels encapsulate the com
munication implementation. In this way blocks and
channels effectively separate the specification of co-
munication and computation.

Each block in a system contains a behavior and a
set of ports through which the behavior can commu
nicate. Each channel contains a set of communication

functions and a set of interfaces. An interface de

clares a subset of the functions of the channel, which
can be used by the connected behaviors. So while the
declaration of the communication functions is given in
the interfaces, the implementation of these functions
is specified in the channel.

Figure 31: Communication model.

For example, the system shown in Figure 31 con
tains two blocks B\ and B2, and a channel C. Block
B\ communicates with the left interface /I of channel

C via its port PI. Similarly block B2 accesses the
right interface 12 of channel C through its port P2.
Note that blocks B1 and B2 can be easily replaced by
other blocks as long as the port types stay the same.
Similarly channel C can be exchanged with any other
channel that provides compatible interfaces.

More specifically, a channel serves as an encapsula-
tor of a set of communication media in the form of

variables, and a set of methods in the form of func
tions that operate on these variables. The methods
specify how data is transferred over the channel. All
accesses to the channel are restricted to these meth

ods.

For example, Figure 32 shows three communication
examples. Figure 32{a) shows two behaviors commu
nicating via a shared variable M. Figure 32(b) shows
a similar situation using the channel model. In fact,
communication through shared memory is just a spe
cial case of the general channel model. The channel C
from Figure 32(b) can be implemented as a shared
memory channel as shown in Figure 33. Here the
methods receive and send provide the restricted ac
cesses to the variables M and valid.

1 channel C {
2 boo! valid;
3 Int M;
4
5 Int recelve(void) {
6 while(valid — 0);
7 retum M;
8 }
9 void send(Int a) {
10 M = a;
11 valid = 1;
12)

Figure 33: Integer channel.

A channel can also be hierachical, as shown in Fig
ure 32(c). In the example channel C1 implements
a high level communication protocol which breaks a
stream of data packets into a byte stream at the sender
side, or assembles the byte stream into a packet stream
at the receiver side. C\ in turn uses a lower level chan

nel C2, for example a synchronous bus which transfers
the byte stream produced by C*l.

The adoption of mechanisms discussed above
achieves information hiding, since the media and the
way the communication is implemented are hidden.
Also the modeling complexity is reduced, since the
user only needs to make function calls to the meth

ods. This model also encourages the separation of
computation and commimication, since the function
ality responsible for communication can be confined in
the channel specification and will not be mixed with
the description used for computation.

1 . S . 9 . 4 , S . 1.3.3.4.$

Figure 34: A simple synchronous bus protocol: (a)
read cycle, (b) write cycle.

Note that the ability to describe timing is very im
portant for channel specification. Consider, for exam
ple, the synchronous bus specification shown in Fig
ure 34. A component using this bus can initiate a com
munication by asserting the start and rw signals in the
first cycle, supplying the address in the second cycle,
and then supplying data in the following cycles. The
communication will terminate when the start signal is
deasserted. The description of the protocol is shown in
Figure 35. The description encapsulates the commu
nication media, in this case the signals elk, start, rw
and AD, and a set of methods, in this case read.cycle
and write.cycle, which implement the communication
protocol for reading and writing the data as described
in the diagram. The call clk.wait() sychronizes the
signal assignments with the bus clock elk.

3.11 Process synchronization

In a system that is conceptualized as several concur
rent processes, the processes are rarely completely in
dependent of each other. Each process may gener
ate data and events that need to be recognized by
other processes. In cases like these, when the pro
cesses exchange data or when certain actions must be
performed by different processes at the same time, we
need to synchronize the processes in such a way that
one process is suspended until the other reaches a cer
tain point in its execution. Common synchronization
methods fall into two classifications, namely control-
dependent and data-dependent schemes.

Control-dependent synchronization: In con
trol-dependent synchronization techniques, it is the

C.send(x);

C
void send(int d)

int receive(void)
{-}

B2

Inty:

y^.receiveO:

Figure 32: Examples of communication: (a) shared memory, (b) channel, (c) hierarchical channel.

1 channel bus() {
2 clock elk;
3 clocked bit start;
4 clocked bit rw;
5 clocked bit AD;
0

7 word read_cycle(word addr) {
8 word d;
9 start s 1, rw = 1, clk.wart();
10 AD = addr, clk.wait();
11 dsAD, cik.waitO;
12 start = 0, rw = 0, clk.waitO;
13 retum d;
14 }
15 void write_cycle(word a, word d) f
16 start = 1, rw = 0, clk.waltO;
17 AD = addr, clk.waitO;
18 ADsd, clk.wait();
19 start = 0, clk.wait();
20)
21)

Figure 35: Protocol description of the synchronous
bus protocol.

control structure of the behavior that is responsible for
synchronizing two processes in the system. For exam
ple, the fork-join statement introduced in Section 3.5
is an instance of such a control construct. Figure 36(a)
shows a behavior X which forks into three concurrent

subprocesses, A, B and C. In Figure 36(b) we see how
these distinct execution streams for the behavior X are

synchronized by a join statement, which ensures that
the three processes spawned by the fork statement are
all complete before R is executed. Another example
of control-dependent synchronization is the technique
of initialization, in which processes are synchronized

to their initial states either the first time the system
is initialized, as is the case with most HDLs, or dur
ing the execution of the processes. In the Statecharts
[DH89] of Figure 36(c), we cam see howthe event e, as
sociated with a transition airc that reenters the boimd-

ary of ABC, is designed to synchronize all the orthog
onal states A, B amd C into their default substates.
Similarly, in Figure 36(d), event e causes B to initial
ize to its default substate B1 (since AB is exited and
then reentered), at the saunetime transitioning A from
Af to A2.

Data-dependent synchronization: In addition to
these techniques of control-dependent synchroniza
tion, processes may also be synchronized by means of
one of the methods for interprocess communication:
shared memory or message passing as mentioned in
Section 3.10.

Shared-memory based synchronization works
by making one of the processes suspend until the other
process has updated the shared memory with am ap
propriate value. In such cases, the variable in the
shared memory might represent an event, a data value
or the status of another process in the system, as is il
lustrated in Figure 37 using the Statecharts language.

Synchronization by common event requires
one process to wait for the occurrence of a specific
event, which can be generated externally or by an
other process. In Figure 37(a), we can see how event e
is used for synchronizing states A and B into substates
A2 and B2, respectively. Another method is that of
synchronization by common variable, which re
quires one of the processes to update the variable with
a suitable value. In Figure 37(b), B is synchronized

behavior X
begin

Q():
fork AO: BQ; CO: loin:
RO;

end behavior X:

A) (B) (C

«>TKftnMzition
point

Figure 36: Control synchronization: (a) behavior
X with a fork-join, (b) synchronization of execution
streams by join statement, (c) and (d) synchroniza
tion by initijilization in Statecharts. (f)

into state B2 when we assign the value "1" to variable
X in state A2.

Still another method is synchronization by sta
tus detection, in which a process checks the status of
other processes before resuming execution. In a case
like this, the transition from Al to A2 precipitated by
event e, would cause B to transition from B1 to B2,
as shown in Figure 37(c).

3.12 SpecC+ Language description

In this section, we will present an example of a specifi
cation language called SpecC+, which was specifically
developed to capture directly a conceptual model pos
sessing all the above discussed characteristics.

The SpecC+ view of the world is a hiercirchical net
work of actors. Each actor possesses

(a) a set of ports through which the actor communi
cates with the environment;

(b) a set of state variables;

(c) a set of communication channels;

(d) a behavior which defines how the actor will
change its state and perform communication
through its ports when it is invoked.

Figure 37: Data-dependent synchronization in Stat
echarts: (a) synchronization by common event, (b)
synchronization by common data, (c) synchronization
by status detection, (f)

Figure 39 shows the textual representation of the
example in Figure 38, where an actor is represented
by a rectangular box with curved corners.

Int max. j;
TOataanay;

array • c.raad();
trtax-O:

H(arrayf)) > max)
max • anayl)

m • max;

Figure 38: A graphical SpecC+ specification example.

There is an actor construct which capture all the
information for an actor. An ocfor construct looks
like a class which exports an main method. The
ports are declared in the parameter list. The state
variable, channels and child actor instances are de
clared as typed variables, and the behavior is specified
by the methods, or functions start from main. Actor
construct can be used as a type to instantiate actor
instances.

SpecC-l- supports both behavioral hierarchy and

1 typedefint TData[16];
2
3 interface IData(void) {
4 TData readfvoid);
5 void write(TData d);
6 }:
7

8 channel CData(void) implements (Data {
9 bool valid;
10 event s;
11 TData storage;
12
13 TData read(void){
14 if(valid) s.waKO;
15 retum storage;
16 }
17 void write(TData d) (
18 storage=d; valid »1; s.notifyO;
19)

22 actor XI(in TData i,out TData o) {...};
23 actor X2(in TData i, IData o) {
24 void main(void) {
25
26 o.write(...);

30 actor X(In Int a, IData c) {
TData s;

x1(a, s

main(void) {
x1 : f Tl.condl, x2);
x2 : (TOO, cond2, complete);

41 actor Y (IData c, out int m) {
42 void main(void) {
43 int max, j;
44 TData array;
45
46 array = c.readO:
47 max = 0;
48 for(j = 0:j<16;j++)
49 if{ array[j) > max)
50 max = array[j];
51 m = max;

55 actor B(in TTData p, out int q) {
56 CData ch;
57 X x(p. ch);
58 Y y(ch. q);
59
60 csp main(void) (
61 par {x.mainO; y.mainO;}
62 }

Figure 39: A textual SpecC+ specification example.

structural hierarchy in the sense that it captures a
system as a hierarchy of actors. Each actor is either a
composite actor or a leaf actor.

Composite actors are decomposed hierarchically
into a set of child actors. For structural hierarchy, the
child actors are interconnected via the communication

channels by child actor instantiation statements, sim
ilar to component instantiation in VHDL. For exam
ple, actor X is instzmtiated in line 57 of Figure 39 by
mapping its port a and c to the ports (p) and commu
nication channels {ch) defined in its parent actor B.
For behavioral hierarchy, the child actors can either
be concurrent, in which case all child actors zire active
whenever the parent actor is active, or can be sequen
tial, in which case the child actors are only active one
at a time. In Figure 38, actors B auid X are composite
actors. Note that while B consists of concurrent child
actors X and K, X consists of sequential child actors
XI and X2.

Leaf actors are those that exist at the bottom

of the hierarchy whose functionality is specified with
imperative programming constructs. In Figure 38, for
example, K is a leaf actor.

SpecC-l- also supports state transitions, in the
sense that we can represent the sequencing between
child actors by means of a set of tremsition arcs.
In this language, an arc is represented as a 3-tuple
<T, C, N >, where T represents the type of transi
tion, C represents the condition triggering the transi
tion, and N represents the next actor to which control
is transferred by the transition. If no condition is as
sociated with the transition, it is assumed to be "true"
by default.

SpecC-l- supports two types of transition arcs. A
trausition-on-completion arc (TOC) is traversed
whenever the source actor has completed its compu
tation and the associated condition evaluates as true.
A leaf actor is said to have completed when its last
statement has been executed. A sequentially decom
posed actor is said to be complete only when it makes
a transition to a special predefined completion point,
indicated by the name complete in the next-actor field
of a transition arc. In Figure 38, for exeunple, we
can see that actor X completes only when child actor
X2 completes and control Sows from X2 to the com
plete point when cond2 is true (as specified by the arc
< TOC, cond2, complete > in line 36 of Figure 39).
Finally, a concurrently decomposed actor is said to be
completed when all of its child actors have completed.
In Figure 38, for example, actor B completes when all
the concurrent child actors X and Y have completed.

Unlike the TOC arc, a transition-immediate-

ly arc (TI) is traversed instantaneously whenever
the assQciated condition becomes true, regardless of
whether the source actor has or has not completed
its computation. For example, in Figure 38, the arc
<TI, condl, x2 > terminates XI whenever condl is
true and transfers control to actor X2. In other words,
a TI arc effectively terminates all lower level child ac
tors of the source actor.

IVansitions are represented in Figure 38 with
directed arrows. In the case of a sequentially-
decomposed actor, an inverted bold triangle points to
the first child actor. An example of such an initial
child actor is XI of actor X. The completion of se
quentially decomposed actors is indicated by a transi
tion arc pointing to the completion point, represented
as a bold square within the actor. Such a completion
point is found in actor X (transition from X2 labeled
e2). TOC arcs originate from a bold square inside the
source child actor, as does the arc labeled e2. TI arcs,
in contrast, originate from the perimeter of the source
child actor, as does the arc labeled el.

SpecC-l- supports both data-dependent syn
chronization and control-dependent synchro
nization. In the first method, actors can synchronize
using common event. For example, in Figure 38, ac
tor Y is the consumer of the data produced by actor
X via channel c, which is of type CData Figure 39. In
the implementation of CData at line 8 of Figure 39,
an event s is used to make sure Y csin get valid data
from X: the wait function over s will suspend Y if the
data is not ready. In the second method, we could use
a TI eirc from actor B back to itself in order to syn
chronize all the concurrent child actors of B to their
initial states. Furthermore, the fact that X and Y are
concurrent actors enclosed in B automatically imple
ments a barrier, since by semantics, B finishes when
both the execution of X and Y are finished.

Communication in SpecC-f is achieved through
the use of communication channels. Channels can be
primitive channels such as variables and signals (like
variable s of actor X in Figure 38), or complex channels
suchas object channels (like variable chin Figure 38),
which directly supports the hierarchical communica
tion model discussed in Section 3.10.

The specification of an object channel is separated
in the interfacedeclaration and the cAonnef definition,
each of which can be used as data types for channel
variables. The interface defines a set of function pro
totype declarations without the actual function body.
For example, the interface IData in Figure 38 defines
the function prototypes read and write. The channel
encapsulates the communication media and provides

a set of function implementations. For example, the
channel CData encapsulates media s and storage and
an implementation of methods read and write. The
interface and the channel are related by the imple
ments keyword. A channel related to an interface in
this way is said to implement this interface, meaning
the channel is obligated to implement the set of func
tions prescribed by the interface. For example, CData
has to implement read and write since they appear in
IData. It is possible that several channels can imple
ment the same interface, which implies that they can
provide different implementations of the same set of
functions.

Interfaces are usually used as port data types in
port declarations of an actor (as port c of actor Y at
line 41 of Figure 39). A port of one interface type will
be bound to a particular channel which implements
such an interface during actor instantiation. For ex
ample, port c of actor Y is mapped to channel c of
actor B, when actor Y is instantiated.

The fact that a port of interface type can be bound
to a real channel until actor instantiation is called late
binding. Such a late binding mechanism helps to
improve the reusability of an actor description, since
it is possible to plug in any channel as long as they
implement the same interface.

word r«9[8);

read^word(0x1, &r«g(0]);

write_word<Qx2. ra(|(4]);

CSramWtapptr

COramWrapper

Figure 40: Component wrapper specification.

Consider, the example in Figure 40 as specified in
Figure 41.

The system described in this example contains an
ASIC (actor AAsic) talking to a memory. The in
terface IRam specifies the possible transactions to ac
cess memories: read a word via read-word and write
a word via write-word. The description of AAsic can

1 interface IRam(void) (
2 void read_word(word a, word *d);
3 void write_word(word a. word d);

6 actor AAsic(IRam ram) {

main{ void) {

ram.read_word(0x0001, ®[0]);

ram.write_word(0x0002, reg[4j);

17 actor ASram(in slgnal<word> addr,
18 Inout signal<word> data,
19 In signal<bit> rd, in signal<bit> wr)

23 actor ADram(in signal<word> addr,
24 inout signal<word> data,
25 insignal<bit> cs, in$ignal<bit> we,
26 out signal<bit> ras, out signal<bit> cas) {

30 channel CSramWrapper(void) implements IRAM {
31 signal<word> addr, data; //address, data
32 signal<bit> rd, wr; // read/write select
33 ASram sram(addr, data, rd, wr);
34
35 void read_word(word a, word *d){...}
36 void write_word(word a, word d) {...)

40 channel CDramWrapper(void) implements IRam {
41 signal<word> addr, data; //address, data
42 signal<blt> cs, we; //chip select, write enable
43 si^al<bit> ras,cas;// row, col address strobe
44 ADram sram(addr, data, cs, we, ras, cas);
45
46 void read_word(word a, word *d) {...)
47 void write_word(word a, word d) {...}

51 actor ASystem(void) {
52 CSramWrapper ram;
53 // CDramWrapper ram;
54 AAsic asic(ram);
55
56 void main(void){...}

// can be replaced by
// this declaration

Figure 41: Source code of the component wrapper
specification.

use IRam as its port so that its behavior can make
function calls to methods read.word and writc-word
without knowing how these methods are exactly im
plemented. There are two types of memories avail
able in the library, represented by actors i45ram and
ADram respectively, the descriptions of which provide
their behavioral models. Obviously, the static RAM
A5rom and dynamic RAM ADram have different pins
and timing protocols to access them, which can be
encapsulated with the component actors themselves
in channels called wrappers, as CSramWrapper and
CDramWrapper in Figure 40. When the actor AAsic
is instantiated in actor ASystem (lines 52 and 53 in
Figure 41), the port IRam will be resolved to either
CSram Wrapper or CDram Wrapper.

The improvement of reusability of this style of spec
ification is two fold: first, the encapsulation of commu
nication protocols into the channel specification make
these channels highly reusable since they can be stored
in the library and instantiated at will. If these chan
nel descriptions are provided by component vendors,
the error-prone effort spent on understanding the data
sheets and interfacing the components can be greatly
relieved. Secondly, actor descriptions such as AAstc
can be stored in the library and easily reused without
any ch2inge subject to the change of other components
with which it interfaces.

It should be noted that while methods in an actor
represent the behavior of itself, the methods of a chan
nel represent the behavior of their callers. In other
words, when the described system is implemented, the
methods of the channels will be inlined into the con
nected actors. When a channel is inlined, the encapsu
lated media get exposed and its methods are moved to
the ceJler. In the case of a wrapper, the encapsulated
actors also get exposed.

Figure 42 shows some typical configurations. In
Figure 42(a), two synthesizable components A and B
(eg. actors to be implemented on an ASIC) are inter
connected via a channel C, for example, a standard
bus. Figure 42(b) shows the situation after inlining.
The methods of the channel C are inserted into the

actors and the bus wires are exposed. In Figure 42(c)
a synthesizable component A communicates with a
fixed component B (eg. an off-the-shelf component)
through a wrapper W. When W is inlined, as shown
in Figure 42(d), the fixed component B and the sig
nals get exposed. In Figure 42(e) again a synthesizable
component A communicates with a fixed component
B using a predefined protocol, that is encapsulated
in the channel C. However, B has its own built-in
protocol, which is encapsulated in the wrapper W. A

Logsnd: synmeslzabia
I componant

Inlined
cvnponent

I fixed \/ proioco
I component II transdu

Figure 42: Common configurations before and after
channel inlining: (a)/(b) two synthesizable actors con
nected by a channel, (c)/(d) synthesizable actor con
nected to a fixed component, (e)/(f) protocol trans
ducer.

protocol transducer T has to be inserted between the
channel C and the wrapper W in order to translate all
transactions between the two protocols. Figure 42(f)
shows the final situation, when both channels C and
W are inlined.

SpecC+ supports the specification of timing ex
plicitly and distinguishes two types of timing specifi
cations, namely timing constraints and timing de>
lays, as discussed in Section 3.9. At the specification
level timing constrmnts are used to specify time limits
that have to be satisfied. At the implementation level
computational delays have to be noted.

Consider, for example, the timing diagram of the
read protocol for a SRAM, as shown earlier in Fig
ure 30. The protocol visualized by the timing dia
gram can be used to define the readjword method of
the SRAM channel above (line 35 in Figure 41). The
code segment in Figure 43 shows the specification of
the read access to the SRAM.

The do~timing statement effectively describes all in
formation contained in the timing diagram. The first

1 void read_word(word a, word'd) {
2 do {
3 t1: {addr = a;)
4 t2:{rd=l;)
5 t3:{ }
6 t4: {*d = data:}
7 t5: { addr.disconnectO;}
8 t6:{rd = 0;}
9 t7:{ break};}

timing {
range(t1; t2; 0;);
range{t1;t3; 10; 20):
range(t2; t3; 10; 20);
range(t3; t4; 0;);
range(t4; tS; 0;);
range tS; t7:10; 20);
rangei 16; t7; 5; 10);

Figure 43: Timing specification of the SRAM read
protocol.

part lists all the events of the diagram. Events are
specified as a label and its associated piece of code,
which describes the change on signal values. The sec
ond part is a list of range statements, which specify the
timing constr^nts or timing delays using the 4-tuples
as described in Section 3.9.

This style of timing description is used at the spec
ification level. In order to get an executable model
of the protocol, scheduling has to be performed for
each do-timing statement. Figure 44 shows the imple
mentation of the read.word method which follows an

ASAP scheduling, where all timing constraints are re
placed by delays, which are specified using the waitfor
function.

1 void read_word(word a, word *d) {
2 addr - a;
3 rd = 1;
4 waitfor(IO);
5 *d = data;
6 addr.disconnectO;
7 rd = 0;
6 waitfor(IO);

Figure 44: Timing implementation of the SRAM read
protocol.

In this section we presented the characteristics most
commonly found in modeling systems and discussed
their usefulness in capturing system behavior. Also,
we presented SpecC-l-, an example of a specification
language, which was specifically developed to cap
ture directly these characteristics. The next section
presents a generic codesign methodology based on the

SpecC+ language.

4 Generic codesign methodol

ogy

As shown in Figure 45, codesign usually starts from
a formal specification which specifies the functionality
as well as the performance, power, cost, and other con
straints of the intended design. During the codesign
process, the designer will go through a series of well-
defined design steps which will eventually map the
functionality of the specification to the target architec
ture. These design steps include allocation, partition
ing, scheduling and communication synthesis, which
form the synthesis flow of the methodology.

The result of the synthesis flow will then be fed into
the backend tools, shown in the lower part of Fig
ure 45. Here, a compiler is used to implement the
functionality mapped to processors, a high level syn
thesizer is used to map the functionality mapped to
ASICs, and a interface synthesizer is used to imple
ment the functionality of interfaces.

During each design step, the design model will be
statically analyzed to estimate certain quality met
rics and how they satisfy the constraints. This design
model will also be used to generate a simulation model,
which is used to validate the functional correctness of

the design. In case the validation fails, a debugger
can be used to locate and fix the errors. Simulation

is also used to collect profiling information which in
turn will improve the accuracy of the quality metrics
estimation. This set of tasks forms the analysis and
validation flow of the methodology (see Figure 45).

The following sections describe the tasks of the
generic methodology in more detail.

4.1 System specification

We have described the characteristics needed for spec
ifying systems in Section 3.1. The system speciflcation
should describe the functionality of the system with
out premature engagement in the implementation. It
should be made logically as close as possible to the
conceptual model of the system so that it is easy to
be maintained and modified. It should also be exe

cutable so that the specified functionality is verifiable.
The behavior model in Section 3.12 makes it a good

candidate since it is a simple model which meets these
requirements.

In the example shown in Figure 46, the system it
self is specified as the top behavior BO, which contains

BO

W) 1
stmt; i

13(7 r'BTT)—
i {
I stmt;

rBe(T
|{
! Int local;

I { j
Int local; I Int local; I

i walt(sync); I
shared = local +1; ! local = shared -1 ;1
signal(sync); | j

Figure 46: Conceptual model of specification: (a)
control-fiow view, (b) atomic behaviors.

Synthesis Flow

Allocation.
Partitioning

Partitioning
model

Scheduling

Scheduling
model

Communication
Synthesis

Communication
model

Analysis & Validation Flow

Analysis &
Valictetlon

Analysis &
Validation

Analysts t
Valication

Analysis &
Validation

Compi,a«o„ aS' =s

Analvsis &

Manufacturing

Figure 45: Generic methodology.

an integer variable shared and a boolean variable sync.
There are three child behaviors, Bl, B2, B3, with se
quential ordering, in behavior BO. While Bl and B3
are atomic behaviors specified by a sequence of im
perative statements, B2 is a composite behavior con
sisting of two concurrent behaviors B4 and B5. B5 in
turn consists of B6 and B7 in sequential order. While
most of the cictual behavior of an atomic behavior is

omitted in the figure for space reasons, we do show a
producer-consumer example relevant for later discus
sion: B6 computes a value for variable shared, and B4
consumes this value by reading shared. Since B6 and
B4 are executed in parallel, they synchronize with the
variable sync using signal/wait primitives to make sure
that B4 accesses s/iaredonly after B6 has produced the
value for it.

4.2 Allocation

Given a library of system components such as proces
sors, memories and custom IP modules, the task of
allocation is defined as the selection of the type and
number of these components, as well as the determi
nation of their interconnection, in such a way that the
functionality of the system can be implemented, the
constraints satisfied, and the objective cost function
minimized. The result of the allocation task can be a

customization of the generic architecture discussed in
Section 2.2. Allocation is usually carried out manually
by designers and is the starting point of the design
exploration process.

4.3 Partitioning and the model after
partitioning

The task of partitioning defines the mapping between
the set of behaviors in the specification and the set
of allocated components in the selected architecture.
The quality of such a mapping is determined by how
well the result can meet the design constraints and
minimize the design cost.

The system model after partitioning must reflect
the partitioning decision and must be complete in or
der for us to perform validation. More specifically,
the partitioned model refines the specification in the
following way:

(a) An additional level of hierarchy is inserted which
describes the selected architecture. Figure 47
shows the partitioned model of the example in
Figure 46. Here, the added level of hierarchy in
cludes two concurrent behaviors, PEG and PEl.

I Bl()
I {

wait(B1_start}:

I sign8l(B1_done)

B1_ctrj{)
{

slgnal(B1_start);
wait(B1_done);

rTir-i

i B3() I
I {
i stmti

B7() I

i B4() " I ~1 — 1
i' int local; "-««<> If®"

I locals shared-1: . waiU B4_done), | shared =local +1
i ' jj signal(sync);

1 signal(B4_done);| | 11}

Figure 47: Conceptual model after partitioning: (a)
partitioning decision, (b) conceptual model, (c) atomic
behaviors.

(b) In general, controlling behaviors are needed and
must be added for child behaviors assigned to dif
ferent PEs than their parents. For example, in
Figure 47, behavior Bl_ctrl and B4-ctrl are in
serted in order to control the execution of B1 and

B4, respectively.

(c) In order to maintain the functional equivalence
between the partitioned model and the original
specification, synchronization between PEs is in
serted. In Figure 47 synchronization variables ,
Bl.start, Bl.done, B^start, B4-done are added
so that the execution of B1 and B4, which are as
signed to PEl, can be controlled by their control
ling behaviors Bl.ctrl and B4.ctrl through inter-
PE synchronization.

However, the model after partitioning is still far
from implementation for two reasons:

(a) There are concurrent behaviors in each PE that
have to be serialized;

(b) Different PEs communicate through global vari
ables which have to be localized.

These issues will be addressed in the following two
sections.

4.4 Scheduling and the scheduled
model

Given a set of behaviors and possibly a set of perfor
mance constraints, the scheduling task determines a
total order in invocation time of the behaviors running
on the same PE, while respecting the partial order im
posed by dependencies in the functionality as well as
minimizing the synchronization overhead between the
PEs and context switching overhead within the PEs.

Depending upon how much information on the par
tial order of the behaviors is available at compile time,
there are different strategies for scheduling.

In one extreme, where ordering information is un
known until runtime, the system implementation often
relies on the dynamic scheduler of an underlying run
time system. In this case, the model after scheduling
is not much different from the model after partition
ing, except that a runtime system is added to carry
out the scheduling. This strategy suffers from context
switching overhead when a running task is blocked and
a new task is scheduled.

On the other extreme, if the partial order is com
pletely known at compile time, a static scheduling
strategy can be taken, provided a good estimation on

PEO: B6 B7 B3

PE1:B1 B4

Top

signal(B6_stat1); |

||b7()
wa[t(B3_8tart); i| «

M()

int local;
wait(sync);

|B6()

I int local;
wait(sync); | = walt(B6_start); i
locals shared-1;| ... I

signal(B3_start);
shared s local + 1j
signal(sync);

Figure 48: Conceptual model after scheduling: (a)
scheduling decision, (b) conceptual model, (c) atomic
behaviors.

the execution time of each behavior can be obtained.

This strategy eliminates the context switching over
head completely, but may suffer from inter-PE syn
chronization especially in the case of inaccurate per
formance estimation. On the other hand, the strategy
based on dynamic scheduling does not have this prob
lem because whenever a behavior is blocked for inter-

PE synchronization, the scheduler will select another
to execute. Therefore the selection of the scheduling
strategy should be based on the trade-off between con
text switching overhead and CPU utilization.

The model generated after static scheduling will
remove the concurrency among behaviors inside the
same PE. As shown in Figure 48, all child behaviors
in PEO are now sequentially ordered. In order to main
tain the partial order across the PEs, synchronization
between them must be inserted. For example, B6 is
synchronized by BS.start, which will be asserted by
B1 when it finishes.

Note that Bl.ctrl and B4.ctrl in the model after

partitioning are eliminated by the optimization car
ried out by static scheduling. It should also be men
tioned that in this section we define the tasks, rather
than the algorithms of codesign. Good algorithms are
free to combine several tasks together. For example,
an algorithm can perform the partitioning and static
scheduling at the same time, in which case intermedi
ate results, such as Bl.ctrl and B4_ctrl, are not gen
erated at all.

4.5 Communication synthesis and the
communication model

Up to this stage, the communication and synchroniza
tion between concurrent behaviors are accomplished
through shared variable accesses. The task of this
stage is to resolve the shared variable accesses into an
appropriate inter-PE communication scheme at imple
mentation level. Several communication schemes ex

ist:

(a) The designer can choose to assign a shared vari
able to a shared memory. In this case, the com
munication synthesizer will determine the loca
tion of the variables assigned to the shared mem
ory. Given the location of the shared variables,
the synthesizer then has to change all accesses to
the shared variables in the model into statements

that read or write to the corresponding addresses.
The synthesizer also has to insert interfaces for
the PEs and shared memories to adapt to differ
ent protocols on the buses.

(b) The designer may also choose to assign a shared
variable to the local memory of one particular
PE. In this case, accesses to this shared variable
in models of other PEs have to be changed into
function calls to message passing primitives such
as send and receive. Again, interfaces have to be
inserted to make the message-passing possible.

(c) Another option is to maintain a copy of the shared
variable in all the PEs that access it. In this

case, all the statements that perform a write on
this variable have to be modified to implement a
broadcasting scheme so that all the copies of the
shared variable remain consistent. Necessary in
terfaces also need to be inserted to implement the
broadcasting scheme.

The generated model after communication synthe
sis, as shown in Figure 49, is different from previous
models in the following way:

(a) New behaviors for interfaces, shared memories
and arbiters are inserted at the highest level of
the hierarchy. In Figure 49 the added behaviors
are IFO, IFl, IF2, Shared.mem, Arbiter.

(b) The shared variables from the previous model are
all resolved. They either exist in sh£ired memory
or in local memory of one or more PEs. The com
munication channels of different PEs now become

the local buses and system buses. In Figure 49,
we have chosen to put all the global variables in
Shared.mem, and hence all the global declarations
in the top behavior are moved to the behavior
Shared-mem. New global variables in the top be
havior are the buses IhusO, Ihusl, lbus2, sbus.

(c) If necessary, a communication layer is inserted
into the runtime system of each PE. The com
munication layer is composed of a set of inter-PE
communication primitives in the form of driver
routines or interrupt service routines, each of
which contain a stream of I/O instructions, which
in turn talk to the corresponding interfaces. The
accesses to the shared variables in the previous
model are transformed into function calls to these

communication primitives. For the simple case of
Figure 49, the communication synthesizer will de
termine the addresses for all global variables, for
example, shared.addr for variable shared, and all
accesses to the variables are appropriately trans
formed. The accesses to the variables are ex

changed with reading and writing to the corre
sponding addresses. For example, shared = local
+ 1 becomes *shared.addr = local-hl.

wait(*B1_start_addr);

signaJ(*B1_done_addr);

Bl_ctrl()

^gnal(* B1_start_addr);
walt(• B1_done_addr);

B4_ctri()
int local;
waitf •B4_start_addr);
wait(*sync_addr); \ \
local = {*shared_addr)-1J V

slgnal(*B4_done_addr); 1

signaK *B4_start_addr);
wait(*B4_done_addr);

int local;

*shared_addr = local -f 1;
$ignal(*sync_addr);

Shared_mem()

int shared;
bool sync;
bool B1_start, B1_done
bool B4_start, B4_done

Arbiter!)

Figure 49: Conceptualmodelafter communication synthesis: (a) communication synthesisdecision, (b) conceptual
model, (c) atomic behaviors.

4.6 Analysis and validation flow

Before each design step, which teikes an input design
model and generates a more detailed design model, the
input design model has to be functionally verified. It
also needs to be analyzed, either statically, or dynam
ically with the help of the simulator or estimator, in
order to obtain an estimation of the quality metrics,
which will be evaluated by the synthesizer to make
good design decisions. This motivates the set of tools
to be used in the analysis and validation flow of the
methodology. An example of such a tool set consists
of

(a) a static analyzer,

(b) a simulator,

(c) a debugger,

(d) a profiler, and

(e) a visualizer.

The static analyzer associates each behavior with
quality metrics such as program size and program per
formance in case it is to be implemented as software, or
metrics of hardware area and hardware performance if
it is to be implemented as an ASIC. To achieve a fast
estimation with satisfactory accuracy, the analyzer re
lies on probabilistic techniques and the knowledge of
backend tools such as compiler and high level synthe
sizer.

The simulator serves the dual purpose of func
tional validation and dynamic analysis. Simulation
is achieved by generating an executable simulation
model from the design model. The simulation model
runs on a simulation engine, which in the form of run
time library, provides an implementation for the simu
lation tasks such as simulation time advance and syn
chronization among concurrent behaviors.

Simulation can be performed at different accuracy
levels. Common accuracy models are functional, cycle
based, and discrete event simulation. A functionally
accurate simulation compiles and executes the design
model directly on a host machine without paying spe
cial attention to simulation time. A clock cycle accu
rate simulation executes the design model in a clock
by clock fashion. A discrete event simulation incorpo
rates a even more sophisticated timing model of the
components, such as gate delay. Obviously there is a
trade-off between simulation accuracy and simulator
execution time.

It should be noted that, while most design method
ologies adopt a fixed accuracy simulation at each de
sign stage, applying a mixed accuracy model is also

possible. For example, consider a behavior represent
ing a piece of software that performs some compu
tation zind then sends the result to an ASIC. While

the part of the software which communicates with the
ASIC needs to be simulated at cycle level so that tricky
timing problems become visible, it is not necessary to
simulate the computation part with the same accu
racy.

The debugger renders the simulation with break
point and single step ability. This makes it possible
to examine the state of a behavior dynamically. A
visualizer can graphically display the hierarchy tree
of the design model as well as make dynamic data
visible in different views and keep them synchronized
at all times. All these efforts are invaluable in quickly
locating and fixing the design errors.

The profiler is a good complement of a static
cUiaJyzer for obtaining dynamic information such as
branching probability. Traditionally, it is achieved by
instrumenting the design description, for example, by
inserting a counter at every conditional branch to keep
track of the number of branch executions.

4.7 Backend

At the stage of the backend, as shown in the lower
part of Figure 45, the leaf behaviors of the design
model will be fed into different tools in order to obtain

their implementations. If the behavior is assigned to
a standard processor, it will be fed into a compiler for
this processor. If the behavior is to be mapped on an
ASIC, it will be synthesized by a high level synthesis
tool. If the behavior is an interface, it will be fed into
an interface synthesis tool.

A compiler translates the design description into
machine code for the target processor. A crucial com
ponent of a compiler is its code generator, which emits
machine code from the intermediate representation
generated by the parser part of the compiler. A re-
targetable compiler is a compiler whose code gen
erator can emit code for a variety of target proces
sors. An optimizing compiler is a compiler whose
code generator fully exploits the architecture of the
tetrget processor, in addition to the standard optimiza
tion techniques such as constant propagation. Modern
RISC processors, DSP processors, and VLIW proces
sors depend heavily on optimizing compilers to take
advantage of their specific architectures.

The high level synthesizer translates the design
model into a netlist of register transfer level (RTL)
components, as defined in Section 2.3 as a FSMD ar
chitecture. The tasks involved in high level synthesis
include allocation, scheduling and binding. Allocation

selects the number and type of the RTL components
from the library. Scheduling assigns time steps to
the operations in the behavioral description. Binding
maps variables in the description to storage elements,
operators to functional units, and data transfers to
interconnect units. All these tasks try to optimize ap
propriate quaJity metrics subject to design constraints.

We define an interface as a special type of ASIC
which links the PE that it is associated (via its native
bus) with other components of the system (via the
system bus). Such a interface implements the behav
ior of a communication task, which is generated by a
communication synthesis tool to implement the shared
variable accesses. Note that a transducer, which trans
lates a transaction on one bus into one or a series of

transactions on another bus, is just a special case of
the above interface definition. An example of such a
transducer translates a read cycle on a processor bus
into a read cycle on the system bus. The communi
cation tasks between different PEs are implemented
jointly by the driver routines and interrupt service
routines implemented in software and the interface
circuitry implemented in hardware. While the par
titioning of the communication task into software and
hardware, and model generation for the two parts is
the job of communication synthesis, the task of gen
erating an RTL design from the interface model is the
job of interface synthesis. Thus interface synthesis
is a special case of high level synthesis. The charac
teristics that distinguish an interface circuitry from a
normal ASIC is that its ports have to conform to some
predefined protocols. These protocols are often spec
ified in the form of timing diagrams in vendors' data
sheets. This poses new challenges to the interface syn
thesizer for two reasons:

(a) the protocols impose a set of timing constraints
on the minimum and maximum skews between

events that the interface produces and other pos
sibly external events, which the interface has to
satisfy;

(b) the protocols provide a set of timing delays on the
minimum and maximum skews between external

events and other events, of which the interface
may talce advantage.

of design tasks for refining the design and the models
representing the refinements.

In this chapter we presented essential issues in code-
sign. System codesign starts by specifying the system
in one of the specification languages based on some
conceptual model. Conceptual models were defined in
Section 1, implementation architectures in Section 2,
while the features needed in executable specifications
were given in Section 3. After a specification is ob
tained the designer must select an architecture, allo
cate components, and perform partitioning, schedul
ing and communication synthesis to generate the ar
chitectural behavioral description. After each of the
above tasks the designer may validate her decisions by
generating appropriate simulation models and validat
ing the quality metrics as explained in Section 4.

Presently, very little research has been done in the
codesign field. The current CAD tools are mostly sim
ulator backplanes. Future work must include defini
tion of specification languages, automatic refinement
of different system descriptions and models, and de
velopment of tools for architectural exploration, algo
rithms for partitioning, scheduling, and synthesis, zmd
backend tools for custom software and hardware syn
thesis, including IP creation and reuse.

Acknowledgements

We would like to acknowledge the support provided
by UCI grant #TC20881 from Toshiba Inc. and grant
#95-D5-146 and from Semiconductor Re
search Corporation.

We would also like to acknowledge Prentice-Hall
Inc., Upper Saddle River, NJ 07458, for the permission
to reprint figures from [GVNG94] (annotated by f),
figures from [Gaj97] (annotated by J), and the partial
use of text appearing in Chapter 2 and Chapter 3 in
[GVNG94] and Chapter 6 and Chapter 8 in [Gaj97].

We would also like to thank Jie Gong, Sanjiv
Narayan and Frank Vahid for valuable insights and
early discussions about models and languages. Fur
thermore, we want to acknowledge Jon Kleinsmith,
En-shou Chang, Tatsuya Umezaki for contributions
in language requirements and model development.

Conclusion and Future Work References

Codesign represents the methodology for specification
and design of systems that include hardware and soft
ware components. A codesign methodology consists

[Ag90] G. Agha. "The Structure and Se
mantics of Actor Languages". Lecture
Notes in Computer Science, Foundation

[AG96]

(BCJ+97]

[COB95]

[CGH+93]

[DH89]

[EHB93]

[FLL095]

[FH92]

[Gaj97]

of Object-Oriented Languages. Springer-
Verlag, 1990.

K. Arnold, J. Gosling. The Java Program
ming Language. Addison-Wesley, 1996.

F. Balaxin, M. Chiodo, A. Jurecska,
H. Hsieh, A. Lavagno, C. Passerone,
A. Sangiovajini-Vincentelli, E. Sentovich,
K. Suzuki, B. Tabbara Hardware-Software
Co-Deaign of Embedded Systems: A Po-
lis Approach. Kluwer Academic Publish
ers, 1997.

P. Chou, R. Ortega, G. Boriello. "Inter
face Co-synthesis Techniques for Embed
ded Systems". In Proceedings of the Inter
national Conference on Computer-Aided
Design^ 1995.

M. Chiodo, P. Giusto, H. Hsieh, A. Ju
recska, L. Lavagno, A. S£Lngiovanni-Vin-
centelli. "A formal specification model for
hardware/software codesign". Technical
Report UCB/ERL M93/48, U.C. Berke
ley, June 1993.

D. Drusinsky, D. Harel. "Using State-
charts for hardware description and syn
thesis". In IEEE Transactions on Coi •

puter Aided Design, 1989.

R. Ernst, J. Henkel,
T. Benner. "Hardware-software cosynthe-
sis for microcontrollers". In IEEE Design
and Test, Vol. 12, 1993.

R. French, M. Lam, J. Levitt, K. Oluko-
tun. "A General Method for Compiling
Event-Driven Simulation". In Proceedings
of 32th Design Automation Conference, 6,
1995.

C. W. Eraser, D. R. Hanson, T. A. Proeb-
sting. "Engineering a Simple, Efficient
Code Generator Generator". In ACM Let

ters on Programming Languages and Sys
tems, 1, 3 (Sept. 1992).

D. D. Gajski. Principles of Digital Design,
Prentice Hall, 1997.

[GCM92] R. K. Gupta, C. N. Coelho Jr.,
G. De Micheli. "Synthesis and simulation
of digital systems containing interacting
hardware and software components". In

Proceedings of the 29th ACM, IEEE De
sign Automation Conference, 1992.

[GDWL91] D. D. Gajski, N. D. Dutt, C. H. Wu,
Y. L. Lin. High-Level Synthesis: In
troduction to Chip and System Design.
Kluwer Academic Publishers, Boston,
Massachusetts, 1991.

[GVN94] D. D. Gajski, F. Vahid, S. Narayan. "A
system-design methodology: Executable-
specification refinement". In Proceedings
of the European Conference on Design
Automation, 1994.

[GVNG94] D. Gajski, F. Vahid, S. Narayan, J. Gong.
Specification and Design of Embedded Sys
tems. New Jersey, Prentice Hall, 1994.

[Har87] D. Harel. "Statecharts: A visual for
malism for complex systems". Science of
Computer Programming 8, 1987.

[HHE94]

[Hoa85]

[HP96]

[KL95]

(Lie97]

[LM87]

D. Henkel, J. Herrmann, R. Ernst. "An
approach to the adaption of estimated
cost parameters in the cosyma system".
Third International Workshop on Hard
ware/Software Codesign, Grenoble, 1994.

C. A. R. Hoare. Communicating Sequen
tial Processes. Prentice-Hall International,
Englewood Cliffs, New Jersey, 1985.

J. L. Hennessy, D. A. Patterson. Com
puter Architecture - A Quantitative Ap
proach, 2nd edition, Morgan-Kaufinann,
1996.

A. Kalavade, E. A. Lee. "The extended
partitioning problem: Hardware/software
mapping and implementation-bin selec
tion". In Proceedings of the 6th Interna
tional Workshop on Rapid Systems Pro
totyping, 1995.

C. Liem. Retargetable Compilers for Em
bedded Core Processors: Methods and

Experiences in Industrial Applications.
Kluwer Academic Publishers, 1997.

E. A. Lee, D. G. Messerschmidt. "Static
Scheduling of Synchronous Data Flow
Graphs for Digital Signal Processors". In
IEEE Transactions on Computer-Aided
Design, 87, pp.24-35.

B. Landwehr,
P. Marwedel, R. Domer. "OSCAR: Op
timum Simultaneous Scheduling, Alloca
tion and Resource Binding Based on Inte
ger Programming". In Proceedings of the
European Design Automation Conference,
1994.

E. A. Lee, A. Sangiovanni-Vincentelli.
"Comparing Models of Computation". In
Proceedings of the International Confer
ence on Computer Design, San Jose, CA,
Nov. 10-14, 1996.

P. Msurwedel, G. Goosens. Code Gener
ation for Embedded Processors. Kluwer
Academic Publishers, 1995.

R. Niemann, P. Marwedel. "An Algo
rithm for Hardware/Software Partition
ing Using Mixed Integer Linear Program
ming". In Design Automation for Embed
ded Systems, 2, Kluwer Academic Pub
lishers, 1997.

J. L. Peterson. Petri Net Theory and the
Modeling of Systems. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1981.

Z. Peng, K. Kuchcinskl. "An Algorithm
for partitioning of application specific sys
tems". In Proceedings of the European
Conference on Design Automation, 1993.

W. Reisig. A Primer in Petri Net Design.
Springer-Verlag, New York, 1992.

J. Staunstrup. A Formal Approach to
Hardware Design. Kluwer Academic Pub
lishers, 1994.

B. Strous-

trup. The C-h-h Programming Language.
Addison-Wesley, Reading, 1987.

D. E. Thomas, P. R. Moorby. The Verilog
Hardware Description Language. Kluwer
Academic Publishers, 1991.

T. Y. Yen, W. Wolf. Hardware-soft
ware Co-synthesis of Distributed Embed
ded Systems. Kluwer Academic Publish
ers, 1997.

Index

Accumulator, 11
Action, 4
Actor, 28

composite, 29
leaf, 29

Application-Specific Architecture, 10
Architecture, 3
Array Processor, 16

Behavior, 18
Leaf, 22

Behavioral Hierarchy, 22
Block, 25

Channel, 25
CISC, 13
Communication, 30
Communication Medium, 26
Compiler, 39

optimizing, 39
retargetable, 39

Completion Point, 23
Complex-Instruction-Set Computer, 13
Concurrency, 8

pipelined, 19
Concurrent Decomposition, 22
Control construct, 9

branching, 9
looping, 9
sequential composition, 9
subroutine call, 9

Controller, 10
Cycle, 19

Data Sample, 19
Data Type

basic, 8
composite, 9

Dataflow, 19
Debugger, 39
Design Exploration, 35
Design Process, 3

Exception, 24
Executable Modeling, 18
Executable Specification, 18

Final State, 23
Finite-State Machine, 4

hierarchical concurrent, 8
Fire, 7

FSM, 4
input-based, 4
Mealy-type, 4
Moore-type, 4
state-based, 4

FSMD, 5
Function, 9

General-Purpose Processor, 10

HCFSM, 8
Hierarchy, 8

behavioral, 28
structural, 29

High Level Synthesizer, 39

Inlining, 31
Interface, 17, 25
Interface Synthesis, 40

Language
Executable Modeling, 18
Executable Specification, 18

Late Binding, 30
Liveness, 7

Method, 26
Methodology, 3
MIMD, 10, 16
Mode, 20
Model, 1

activity-oriented, 3
data-oriented, 4
heterogeneous, 4
state-oriented, 3
structure-oriented, 4

Multiprocessor, 16
message-passing, 16
shared-memory, 16

Multiprocessor System, 16

Parallel Processor, 10, 16
PE, 17
Petri net, 6
Pipeline Stage, 19
Place, 6
Port, 25

Procedure, 9
Process, 20
Processing Element, 17
Profiler, 39

Program-State, 9
composite, 9
concurrent, 9
Leaf, 9
sequential, 9

Program-State Machine, 9
Programming Language, 8

declarative, 8
imperative, 8

Protocol, 17, 24
PSM, 9

Reduced-Instruction-Set Computer, 14
RISC, 10, 14

Saveness, 7
Sequential Decomposition, 22

procedural, 22
state-machine, 22

SIMD, 10, 16
Simulator, 39
Single Assignment Rule, 19
State, 4, 8
State Transition, 29
Statement, 9
Static Analyzer, 39
Structure, 25
Subbehavior

initial, 22
Substate, 8

concurrent, 8
Synchronization

by common event, 27
by common variable, 27
by status detection, 28
control-dependent, 30
data-dependent, 30
initialization, 27
shared-memory based, 27

System Bus, 17

TI, 9, 30
Timing, 32
Timing Constraint, 24, 32
Timing Delay, 24, 32
Timing Diagram, 24
TOG, 9, 29
Token,6
TVansition, 4, 6, 8

group, 22
hierarchical, 22
simple, 22

TVansition Immediately, 9, 30

TVansition on Completion, 9, 29

Very-Long-Instruction-Word Computer, 15
Visualizer, 39
VLIW, 10, 15

