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ABSTRACT OF THE DISSERTATION

Explaining Slow Earthquake Phenomena with a Frictional-Viscous Faulting Model

by

Baoning Wu

Doctor of Philosophy, Graduate Program in Geological Sciences
University of California, Riverside, December 2021

Dr. David D. Oglesby, Chairperson

It is well-known that the first-order kinematic characteristics of typical earth-

quakes, such as slip rate, rupture propagation speed, and moment duration scaling, can be

well-explained by a model where the fault experiences a sudden frictional strength drop. In

recent decades, a new type of earthquake has been discovered, which has a slower slip rate

than a typical earthquake. These earthquakes are now often referred to as slow earthquakes,

and those typical earthquakes are referred to as fast earthquakes. The aforementioned sud-

den strength drop model derived from fast earthquake observations cannot explain the

first-order characteristics of slow earthquakes.

In this dissertation, I consider a frictional-viscous fault zone model to explain the

puzzling slow earthquake phenomena, with a particular focus on slow slip events (SSEs),

which is a type of slow earthquake that is well characterized. The frictional-viscous model

is inspired by the recent geological observations that imply the occurrence of SSEs in fault

zones with a finite thickness of ∼100s of meters. The bulk matrix of the fault zone de-

forms viscously, while pervasive frictional surfaces are distributed in the viscous matrix.

x



To simultaneously consider both the 10s-kilometer-scale rupture propagation and the 100s-

meter-scale fault zone features in the same model, I treat a fault zone as a zero-thickness

“surface” embedded in an elastic medium. The “frictional-viscous” characteristics are pa-

rameterized into a constitutive relation where fault strength is partitioned into a frictional

and a viscous component in parallel. Two key parameters in the frictional-viscous model

are the viscous coefficient ηv and the event stress drop. The present frictional-viscous model

can simultaneously explain various kinematic source parameters for SSEs when the viscous

coefficient ηv is about 104 − 105 µ/(2β), and the average stress drop in a slip transient is

about 10 kPa. Qualitatively, this frictional-viscous model can also explain the shorter inter-

event interval and lower average stress drop observed in subduction zone SSEs, compared

to what is observed in the fast earthquakes at seismogenic depth. These results imply

that the frictional-viscous model is a promising representation of the actual SSE source

processes. The present model provides many hypotheses, which can be further tested with

future geophysical, geological, and experimental data.
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5.1 Schematics showing the setup of Model A simulations that test the effect
of the viscous coefficient ηv on rupture dynamics. (a) The geometry and
discretization of the fault in Model A. The fault is set to be a planar rectangle,
with a length of 20 km and a width of 5 km. The fault is discretized with
small squares whose side ∆x = 0.1 km. The fault is treated as a displacement
discontinuity embedded in an elastic whole (full) space. The fault is viewed
from an angle from the top. (b) The generic setup of “friction” and initial
stress setting. The yielding shear strength fy and residual shear strength f1

are set to be homogeneous on the fault: fy = 0.01 MPa and f1 = 0 MPa. The
initial shear stress T0 is prescribed in the along-width direction. It is set to
be T0 = 0.5fy everywhere on fault (light brown area), except for within the
nucleation zone, which is a 2 km narrow band across the whole fault width
whose center is 5 km away from one short side the rectangle fault (dark brown
area). Within the nucleation zone, initial stress T0nuc = 1.001fy, which is
just above the yielding strength. The aforementioned settings are kept the
same for all simulations of Model A. The viscous coefficient ηv is set to be
homogeneous on fault for a given simulation, and its value varies among
different models. The dashed line PP’ is a profile along the x-axis that will
be used in the later analysis, and it is at the central location along the width
of the fault. Red stars show two points A and B on faults that will be used
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middle is Model A2 with ηv = 3.1 µ/(2β), and the right is Model A5 with ηv =
21.7 µ/(2β). Each row corresponds to a time step, and the time increases
from top to bottom. For each snapshot, the x-axis is the long-side direction
of the rectangle fault and y-axis is the short side direction of the rectangle
fault. Slip rate is color-coded, with white equaling zero and dark green
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maximum slip rate and the rupture propagation speed decrease. . . . . . . . 134
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shown by the dashed line in Figure 5.1b. The slip rate evolution for ηv equals
1.0, 3.1, and 21.7 µ/(2β) cases are shown in (a), (b), and (c), respectively.
The maximum value of the colormap is the maximum slip rate value in the
corresponding simulation, and the minimum value is zero. The shear stress
evolution for ηv equals 1.0, 3.1, and 21.7 µ/(2β) cases are shown in (d), (e),
and (f), respectively. For each space-time plot, x-axis is the along profile
distance, with zero at point P, and y-axis denotes time. The maximum value
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5.9 Schematics showing the setup of Model B simulations that test the effect of
viscous coefficient L and ηv on rupture dynamics. (a) The geometry and
discretization of the fault in Model B. The fault is set to be a planar square,
with a side length of 10 km. The fault is discretized with small squares
whose side ∆x = 0.1 km. The fault is treated as a displacement discontinuity
embedded in an elastic whole (full) space. The fault is viewed from an angle
from the top. (b) The generic setup of “friction” and initial stress setting. A
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area), except for the very top row of the elements (dark brown area). That
row of elements is used as a “nucleation zone” where the initial shear stress
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patch (blue area), fy, f1, and T0 are all set to be zero. The viscous coefficient
ηv is set to be homogeneous on the fault for a given simulation, and its value
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Moment-ηv relation when patch side length L is fixed at 5 km. (d) Moment-L
relation when rate strengthening coefficient ηv is fixed at 25000 MPa/(km/s). 153

5.12 Moment-duration (M-T) scaling relation of the numerical simulations in
Model B (in log-log). Each point in the plot represents one test result, and
the different shapes and colors represent different ηv setting. Data points are
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5.13 Schematics showing the setup of Model C simulations that test the diffusive
rupture behaviors in the “frictional-viscous-mixing” “friction” framework.
(a) The geometry and discretization of the fault in Model C. It is the same
as in Model A (section 5.2). The fault is set to be a planar rectangle, with a
length of 20 km and a width of 5 km. The fault is discretize with small squares
whose side ∆x = 0.1 km. The fault is treated as a displacement discontinuity
embedded in an elastic whole (full) space. The fault is viewed from an angle
from the top. (b) The generic setup of “friction” and initial stress setting.
The initial shear stress T0 is prescribed in the along-width direction. Similar
to Model A, there is a rectangle nucleation zone (2 km×5 km) whose center is
5 km away from a short side of the rectangular fault (dark brown area). The
yielding shear strength fy and residual shear strength f1 within the nucleation
zone are set to be 0.01 MPa and 0 MPa, respectively. Within the nucleation
zone, initial stress T0nuc = 0.001001 MPa, which is just above the yielding
strength. Outside the nucleation zone, the yielding shear strength fy and
residual shear strength f1 are set to be 0.001 MPa and 0.001, which results
in a ten-times smaller dynamic stress drop fy − f1 compared to within the
nucleation zone (gray area). The initial shear stress T0 outside the nucleation
zone is set to be 0 MPa. The viscous coefficient ηv is set to be homogeneous on
the fault for a given simulation, and its value varies among different models.
The dashed line PP’ is a profile along x-axis that would be used in the later
analysis, and it is at the central location along the width of the fault. . . . 158

5.14 Slip rate and shear stress snapshots of the two models (Models C1 and C2)
with different viscous coefficients ηv. Each column corresponds to an output
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the long-side direction of the rectangle fault and the y-axis is the short side
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colormaps are saturated when the output is within the nucleation zone, in
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5.15 The space-time evolution of slip rate and shear stress along the PP’ profile
shown by the dashed line in Figure 5.13b. The slip rate evolution for ηv =
17.5 and 34.1 µ/(2β) cases are shown in (a) and (b), respectively. The shear
stress evolution for ηv = 17.5 and 34.1 µ/(2β) cases are shown in (c) and (d),
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Chapter 1

Introduction

In this dissertation, I will investigate the physical mechanism of slow earthquakes.

An earthquake, in general, is referred to as the sudden shaking of the Earth’s sur-

face caused by a sudden release of energy in or on the Earth’s solid body, caused either by

humans or by nature, that creates seismic waves. Interchangeably, the source of the seismic

energy is often referred to as the earthquake as well. The most common and destructive

earthquakes are those shallow ones within the very top layer of the Earth. It is now generally

believed that these shallow earthquakes are caused by sudden shear dislocation movement

across fractures in the Earth’s lithosphere. These fractures and the associated shear dislo-

cation movement are now commonly referred to as faults and fault slip, respectively. These

shallow earthquakes that are caused by transient fault slip are the focus of this dissertation.

Therefore, in the following text, I will simply use the term “earthquake” to denote a shallow

earthquake, whenever it is more convenient.

The seismic energy released in an earthquake is now generally thought to come

1



from the elastic strain energy stored in Earth’s lithosphere, which is divided into a series

of plates. Tectonic processes drive these plates to move relative to each other, and elastic

strain accumulates when plates move not in accordance with each other. Faults develop

and slip occurs to release the excess strain energy, and the slip often happens in an episodic

manner. This process is now famously known as elastic rebound (Reid, 1910): during the

long period when no earthquake happens, elastic strain slowly accumulates near the fault

and the shear stress on fault builds up, while not exceeding the shear strength on fault.

At one point, the loading shear stress on fault is so large that the shear strength on fault

cannot hold the fault any longer. The shear strength would then suddenly drop from the

high value to a lower value. To accommodate the shear strength drop on fault, transient

slip would occur on fault as well, which excites seismic waves that propagate outward and

release the accumulated elastic strain energy near the fault.

Although exceptions and puzzles exist, the above elastic rebound model is cur-

rently the best first-order model to explain various shallow earthquakes observations in

gross. Many metrics have been designed based on the vision of this model, including the

most widely used metric, moment magnitude, that measures earthquake energy radiation.

However, the emerging observations of a new type of transient slip events since early 2000

challenge our existing understandings. These transient slip events are now commonly re-

ferred to as slow earthquakes (e.g., Dragert, Wang, & James, 2001; Obara, 2002; Rogers &

Dragert, 2003). They are still referred to as “earthquakes” because they are found to be

transient slip motions on faults that are caused by shear stress drop. However, they do not

generate as much seismic energy as would be predicted by the classic elastic rebound theory
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and the related sudden stress drop model. Explaining these discrepancies has become one

of the main goals not only for the earthquake science, but also for the Earth sciences as

a whole. In a latest study report, A Vision for NSF Earth Sciences 2020-2030: Earth in

Time by the National Academies of Sciences, Engineering, and Medicine (United States),

12 science priority questions are proposed as “central to the advancement of Earth sciences

over the coming decade and could help to transform our scientific understanding of the

Earth”. The fourth question is stated as “What is an earthquake”, stressing the impor-

tance of understanding the puzzling slow earthquake phenomenon (National Academies of

Sciences & Medicine, 2020).

This dissertation will be devoted to addressing and bridging the discrepancies

between slow earthquake observations and the classic elastic rebound theory, and the as-

sociated sudden stress drop model. Before I start the detailed analysis from Chapter 2, I

will briefly cover the background information in the remainder of this chapter. I will first

review the historical development of the classic “elastic rebound theory” and the sudden

stress drop model. Then, I will review the discovery of slow earthquakes and introduce

several concepts and terminologies that will be constantly used in this dissertation. Lastly,

I will briefly lay out the structure of this dissertation.

1.1 The classic “elastic rebound theory” and the sudden

stress drop model

The vision that shallow earthquakes are fault slip caused by sudden fault strength

drop was proposed as early as in the late 19th and early 20th century (Gilbert, 1884; Reid,
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1910), and was mainly inspired by geological and geodetic observations. However, this idea

was not fully accepted at the beginning. The “explosion” theory was still thought to be

possible, which states that earthquakes come from underground explosions caused by the

“fire” of volcanic processes (e.g., Michell, 1760; Mallet, 1862). The fault slip earthquake

mechanism became more and more favored in the following century, with accumulating

seismic data (e.g., Nakamura, 1922; Byerly, 1926; Honda, 1932; Hodgson, 1957; Honda,

1962), geodetic observations (e.g., Whitten, 1948; Chinnery, 1961), and associated theoret-

ical models that predicted the ground motion of force or force couple(s) (e.g., Lamb, 1904;

Love, 1911; Nakano, 1923; Honda & Miura, 1935) and of fault dislocation (e.g., Volterra &

Delphenich, 1907; Steketee, 1958; Knopoff & Gilbert, 1960).

Entering the 1960s, the argument that an earthquake is a sudden fault slip mech-

anism became widely accepted for two main reasons. First, better seismic data implied

that earthquake sources are effective double-couple sources (e.g., Aki, 1960), and theoreti-

cal studies proved that a fault dislocation can be equivalent to a sudden double-couple force

applied in the elastic body in terms of causing elastic deformation (e.g., Maruyama, 1963;

Burridge & Knopoff, 1964). This equivalence relation provided the theoretical foundation

for using seismically-determined earthquake focal mechanisms to infer fault slip motion.

The second reason is the development of plate tectonic theory in the mid-60s. Reviewing

the glorious story of plate tectonic discovery is beyond the scope of this discussion, for

which I refer readers to the classic textbook Geodynamics (Turcotte & Schubert, 2002).

One important piece of evidence that supports the plate tectonic theory and is related

to earthquakes is the agreement between earthquake focal mechanisms and the predicted
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slip direction at mid-ocean transform fault (e.g., Sykes, 1967). In reverse, this agreement

could also support the argument that earthquakes correspond fault slip. Perhaps more

importantly, as the plate tectonic theory became more and more established, it provided

the driving mechanism for the “elastic rebound theory”, explaining why elastic strain may

slowly build up around faults—it is because of the movement of plates.

The equivalence relation between fault slip and double couple force not only ended

the long discussion about the earthquake mechanism; in addition, it provided tools for the

community to characterize earthquake processes with seismograms and geodetic measure-

ments, along with the rapid accumulating high-quality data. Quickly, the community found

that the “sudden stress drop” argument in the original elastic rebound theory should also

be correct for earthquakes, at least in a general sense. The “sudden” here means that the

fault strength quickly drops to a low level (dynamic friction) as fault slip starts, and the

fault slides at that dynamic friction for most of the slip. This sudden stress model has

been shown to be able to reproduce the first-order features of fault slip rate, rupture prop-

agation speed, and earthquake moment-duration scaling. Perhaps most importantly, the

sudden fault strength drop model gave rise to the metric of moment magnitude Mw that

measures the size and energy release of an earthquake (e.g., Kanamori & Anderson, 1975;

Kanamori, 1977; Hanks & Kanamori, 1979; Kanamori, 1983), which has become one of the

most important metrics in earthquake science. The basic idea is that, if the fault strength

drop is sudden, the amount of seismic energy release E can be grossly approximated via

earthquake moment M0,
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E =
∆σ

µ
·M0 (1.1)

where ∆σ is the static stress drop and µ is the shear modulus. Since ∆σ is observed

to be grossly a constant for earthquakes with different natures (size, slip types, depth),

the scaling relation between earthquake moment and the total seismic energy should be

grossly the same for all earthquakes. In 1956, Gutenberg and his colleague obtained an

empirical relation between earthquake surface wave magnitude Ms and total seismic energy

(Gutenberg, 1956; Gutenberg & Richter, 1956),

logE = 1.5Ms + 11.8 (1.2)

Therefore, one may construct a magnitude metric based on earthquake moment

to measure the total radiation energy of an earthquake, and still make it consistent with

the existing surface wave magnitude. This is the moment magnitude Mw,

Mw =
2

3
(logM0 − 9.05) (1.3)

where M0 is in N ·m.

The metric moment magnitude has been shown to be very successful in character-

izing earthquakes to first order. In reverse, the success of moment magnitude endorses the

assumption that earthquakes slip happens due to a sudden fault strength drop.

It is pretty much safe to say that, by the end of the 20th century, the vision

that shallow earthquakes are transient fault slip events caused by sudden fault strength

drops, has been widely accepted. Under the umbrella of this gross vision, the major effort
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in earthquake science communities has become addressing the variability among different

earthquakes. Why are earthquakes different from each other? How do earthquakes slip and

rupture start, and how do they stop?

1.2 Discovery of slow earthquakes

Even though the sudden fault strength drop vision can explain most earthquakes,

it was recognized at the very early stage that some fault slip transients can be slow and

deviate from what is predicted by the sudden fault strength drop model (e.g., Kanamori &

Stewart, 1979). However, it was not until the early 21st century that we realized that slip

transients are more ubiquitous than we thought.

These slow slip transients are now commonly referred to as slow earthquakes. For

convenience, I will denote the most commonly known earthquakes that generate significant

ground shaking as “fast earthquakes” in contrast to “slow earthquakes”. Different categories

of slow earthquakes can be observed in ground motion records at different frequencies,

based on which they were given different names. Slow earthquakes are often observed to

generate very slow ground movements and thus can only be detected directly using geodetic

data. These signals are referred to as “slow slip events”, or in abbreviation as SSEs (e.g.,

Dragert et al., 2001). Other slow earthquakes are also observed to generate seismic signals.

The events that generate seismic signals in a range of ∼ 2 − 8 Hz are commonly referred

to as tectonic tremors, non-volcanic tremors, or tremors (e.g., Obara, 2002). Initially,

tremors were detected as a burst of seismic energy while not having clear phase arrivals.

As tremors became better characterized, people found that tremors consist of numerous
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smaller individual events, which are commonly referred to as low frequency earthquakes, or

in abbreviation as LFEs (e.g., Shelly, Beroza, & Ide, 2007). In the literature, people often

use tremors and LFEs interchangeably. Some slow slip transients are found to generate

seismic energy at a frequency band of ∼ 0.01− 0.1 Hz. These events are commonly referred

to as very low frequency earthquakes, or in abbreviation as VLFEs (e.g., Ito & Obara, 2006;

Ghosh et al., 2015). Although the different events are observed in different frequency bands,

they are often observed to occur concurrently. In particular, tremors are now thought to be

capable of representing SSE rupture fronts (e.g. Obara & Kato, 2016; Bürgmann, 2018).

Since the naming is purely based on the types of signals, these different “events” might still

correspond to the same fault slip process, while just manifesting at different portions of the

ground motion spectrum.

Obviously, these slow earthquakes are different from fast earthquakes. Many slip

characteristics of a slow earthquake (probably except for individual LFE) are different from

fast earthquakes, including low inferred slip rate, low rupture propagation speed, and a

low ratio of seismic radiation to earthquake moment. These differences are significant

enough that they may not be attributed to the internal variability of fast earthquakes. As

slow earthquakes have become better characterized in the past 20 years, these first-order

differences have been better quantified (see reviews in Obara & Kato, 2016; Bürgmann,

2018; Obara, 2020; Behr & Bürgmann, 2021, and the references therein). At this point, it

is clear that the sudden fault strength drop model alone may not explain slow earthquake

characteristics well. Modifications and development are needed in order to extend our

understanding of fast earthquakes to slow earthquakes. This will be the main topic of this
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dissertation.

1.3 Structure of this dissertation

My dissertation will demonstrate a theoretical model to explain the first-order

geophysical observations of slow earthquakes. In Chapter 2, I demonstrate how fast earth-

quakes may be explained with a sudden fault strength drop model, and how slow earth-

quakes deviate from the model predictions. In Chapter 3, I review existing theoretical

models to explain slow earthquakes. In Chapter 4, I show with analytical analysis that a

“frictional-viscous mixing” model can simultaneously explain a variety of slow earthquake

observations. In Chapter 5, I use numerical dynamic rupture simulations to validate the

analytical analysis in Chapter 4. Chapter 6 is the Discussion section, in which I discuss the

tectonic implications of my model, provide model predictions, and compare my model with

existing models.

a
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Chapter 2

Difference in source parameters

between fast earthquakes and slow

earthquakes

For a long time in human history, the cause of earthquakes was not understood.

The idea that earthquakes represent a sudden release of accumulated stress was not docu-

mented until the early 20th century during the research on the 1906 San Francisco earth-

quakes led by Harry Fielding Reid (Reid, 1910). His results led to the elastic rebound

theory, in which stress and strain accumulate gradually over a long period and are then re-

leased during an earthquake by sudden slip along the fault. This pioneering theory, though

derived from limited observations, has been extensively validated in the following century,

and has now been widely accepted as the primary cause of earthquakes in the crust. In

particular, the first-order kinematic features of fast earthquake co-seismic ruptures, such
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as rupture speed, slip rate, and rupture duration, can be quantitatively explained with a

sudden stress drop mechanism.

However, as we will show in the later sections, slow earthquakes have kinematic

features that are largely different from fast earthquakes. It means that only considering

a sudden stress drop cannot explain the slow earthquake characteristics. In the following

texts, I am going to list some first-order differences between slow earthquakes and fast

earthquakes. Due to the scope of this chapter, I will focus on the characteristics of slow slip

events, and only mention other types of seismic slow earthquakes whenever it is necessary.

Also, I would only discuss the single event characteristics. The stress accumulation process

in the inter-seismic period is not explicitly considered here (pre-stress conditions before

the rupture is not a variable in the model). The inter-event process will be qualitatively

discussed in Chapter 6.1.

2.1 Static shear stress drop

Although it is still challenging to resolve the detailed spatial-temporal evolution

of stress on the fault, estimating the bulk static stress drop in first-order is now common

practice for earthquakes. Usually, the static stress drop ∆τs is estimated using the following

equation,

∆τs = Cµ
D

L
(2.1)

in which µ is shear modulus, D is the characteristic slip on fault, L is the characteristic

length of the slipping area. C is a constant that depends on the shape of the slipping area,
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the free surface boundary condition, and how L and D are defined in the specific case (for

example, whether D is the maximum slip or the average slip).

Static stress drop can be estimated by measuring the parameters on the right-

hand side. C can be theoretically derived. It is found to have a value of around 1 in

most cases and its variation almost never exceeds an order of magnitude. Shear modulus

µ can be measured from lab experiments by deforming rock samples. It is a pressure- and

temperature- dependent quantity; yet, for the depth range we care, it is of the order of

1010 Pa, and a characteristic value of 3 × 1010 Pa is commonly used. Fault characteristic

slip D and length L can be measured in different ways. The most direct way is to use the

near-field geodetic data, which can constrain both D and L independently.

If good near-field geodetic data is not available, one may take a somewhat indirect

approach using only seismic records. This approach utilizes the fact that seismic moment

M0 has a relation with the spatial average fault slip D as,

M0 = µDA (2.2)

in which A is the fault area and should be proportional to L2 for most earthquakes except for

those large earthquakes that saturate the seismogenic depth. This exception is important

on its own but should not affect our first-order analysis here. If we assume A = L2 and

substitute equation (2.2) to (2.1), we have,

∆τs = C
M0

L3
(2.3)

Using equation (2.3), the parameters that need to be measured change from D and
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L to M0 and L. With only seismic records, the seismic moment M0 of an earthquake can be

measured from the long period seismogram within the framework of representation theory

(e.g., Aki, 1966, 1967; Aki & Richards, 2002). L can be measured with many different

approaches. One common approach is to use the aftershock distribution and assume that it

represents the rupture area (e.g., Kanamori & Anderson, 1975). Another common approach

is to use the time information in co-seismic seismograms. Theoretical models have suggested

that L can be related to the event duration T or body wave phase corner frequency fc (e.g.

Brune, 1970; Shearer, 2019). Both these two seismological estimations of ∆τs can have large

uncertainty in terms of the actual value, since ∆τs’s dependence on L is cubical and the

estimation of L can be quite uncertain due to the difficulty in defining the aftershock zone

or measuring the time information in a seismogram. Nevertheless, a first-order estimation

(i.e., estimation in logarithm scale) should still be reasonably accurate.

In general, static stress drop is now found to be a “constant” for fast earthquakes in

a wide range of magnitude, although a large variation of 3 orders of magnitude exists (e.g.,

Kanamori & Anderson, 1975; Allmann & Shearer, 2009; Shearer, 2019). Though being

large, this stress drop variation doesn’t appear to systematically depend on any specific

parameters (e.g., Allmann & Shearer, 2009). Most earthquakes have comparable static

stress drop of 100 ∼ 101 MPa. Slow earthquakes, however, are found to have static stress

drop significantly lower than the value that is typical for fast earthquakes (e.g., Obara &

Kato, 2016; Bürgmann, 2018, and the reference therein). The most direct evidence comes

from the geodetic measurement of slow slip events. They usually have centimeter-order

of slip over several tens of kilometers, yielding a typical SSE shear strain relief of about
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10−7 ∼ 10−6 and static stress drop of about 103 ∼ 104 Pa (1 ∼ 10 kPa). Other types of slow

earthquakes that are detected with seismological methods (e.g., low frequency earthquakes,

very low frequency earthquakes) could have low static stress drop as well, although such an

estimation could be tricky. All the seismological categorized slow earthquakes are detected

in a narrow frequency range. Besides, as we mentioned earlier, estimating static stress drop

from seismograms requires many assumptions. Whether these assumptions are valid for

slow earthquakes as well has not been thoroughly tested to the best of my knowledge.

I note that, even not considering slow earthquakes, understanding why a fast

earthquake would have a MPa level of shear static stress drop is problematic enough, because

a typical lithostatic stress level could well be above 100 MPa at a representative earthquake

depth of ∼ 10km. Many potential mechanisms have been proposed to explain the apparent

low shear static stress drop, including an extremely low friction coefficient, non-optimized

fault orientation compared to stress tensor, high pore fluid pressure, fault roughness, and

so on. What mechanism leads to such an apparent “weak fault” is still an open question.

Nevertheless, since slow earthquakes have static stress drop that is even significantly lower

than fast earthquakes by about two orders of magnitude, there should probably be an

additional mechanism that accounts for the extra low static stress drop in slow earthquakes.

2.2 Slip rate during slip transients

2.2.1 Explaining the ∼ m/s co-seismic slip rate in fast earthquakes

Estimating slip rate during a fast earthquake rupture requires good seismic records.

Such investigations became possible in the late 20th century as the increasing number of
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seismic stations that captured earthquakes in good quality. Although great uncertainty

still exists, it is now commonly observed that fast earthquakes rupture have a characteristic

slip rate of 100 m/s. This characteristic value can be explained with a simple “sudden

stress drop” model as illustrated in Figure 2.1. Figure 2.1a shows a fault that is about

to rupture. Right near the fault, the elastic loading shear stress τelastic equals the fault

strength (resistance) f . Right before the rupture, τelastic = τ0 and f = f0.

Rupture starts when there is a sudden drop of fault strength. There are already

many quantitative relations that are applied in co-seismic earthquake models to describe the

sudden strength drop process, such slip- or time-weakening, rate-and-state friction, strong-

rate weakening caused by flash heating, thermo-pressurization, and so on (Scholz, 2019,

and the reference therein). Determining which “friction laws” or weakening mechanisms

account for the strength drop process has important implications for understanding not only

earthquake rupture dynamics but also earthquake cycle mechanisms. However, in the first-

order analysis here, I treat the strength drop as almost “immediate” for fast earthquakes

because the fault weakening process is usually considerably shorter than the slip duration.

Let’s say that fault strength “immediately” drops from f0 to f1. The fault starts

to slip and the slip rate is V . Even if the strength drop f0 − f1 happens immediately (or

during a very short time), slip cannot speed up without limit due to the immediate damping

response from the surrounding block, and V would be confined within a certain bound. Let

say during the incremental time ∆t right after the rupture, the fault has an incremental

slip ∆D = V∆t. Due to the limited wave speed, the information of this shear movement

only propagates out within a range ∆L = β∆t, where β is the shear wave speed (Figure
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τelastic = τ0

f = f0

τelastic = fa b

Fault

Upper block

Lower block

Boundary Condition:

τelastic ! 

τ0 - (μ/2β)*V

f = f1

ΔL = βΔt

ΔD/2 = VΔt/2

τelastic = f V ! 2β*(f0-f1)/μ

ΔD/ΔL = V/(2β)

Slip rate V 

Figure 2.1: 2D schematics that illustrate how to estimate the co-seismic slip rate to first-
order by considering the radiation damping effect. (a) A fault that is about to rupture.
The red dash line shows the strain accumulation near the fault. The tectonic loading stress
τelastic right near the fault should equal the resistance stress from fault f . We denote
that τelastic = τ0 and f = f0 right before the slip starts. (b) That fault in (a) suddenly
starts to slip because the fault strength (resistance) suddenly drop from f0 to f1. The
reduction of shear strain in an incremental time ∆t is shown with the blue dashed line. The
incremental slip on fault ∆D = V∆t. Due to the limited wave speed, the shear movement
only propagates within a range ∆L = β∆t, with β as the shear wave speed. Therefore,
there is a sudden decrease of elastic loading stress −(µ/2β)V on the fault due to a sudden
reduction of shear strain ∆D/∆L = V/(2β). The effect of this sudden decrease of elastic
loading stress is commonly referred to as “radiation damping” or “shear impedance”, which
captures the first-order elastic response from the medium. Considering that τelastic = f
on fault, the slip rate in response to a sudden fault strength drop can be estimated as
V ≈ 2β · (f0 − f1)/µ.
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2.1b). Therefore, the elastic loading strain near fault will experience a drop of ∆D/∆L,

which leads to a decrease of stress on fault,

∆τ = −µ ∆D

2∆L

= − µ

2β
V

(2.4)

This slip rate dependent elastic stress response is commonly referred to as the

radiation damping effect (e.g., Rice, 1993; Zheng & Rice, 1998), or instantaneous traction

response in some dynamic rupture modeling research that use Boundary Integral Equation

Method (e.g., Cochard & Madariaga, 1994; Tada, 2005). The elasto-dynamic system re-

quires a boundary condition that τelastic = f , so the instance change of elastic loading shear

stress ∆τ should equal the change of fault strength,

− µ

2β
V = f1 − f0

which yields the slip rate,

V = 2β · f0 − f1

µ
(2.5)

We may use equation 2.5 to estimate fault slip rate. We assume the dynamic

stress drop f0 − f1 has a similar order of magnitude as the static drop σs and is about

106 to 107 Pa, µ is about 1010 Pa, and β is about 103 m/s. Substituting them into equation

2.5, we can estimate that fault slip rate,
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V ∼ 2× 103 × 106 to 107

1010
m/s

∼ 10−1 to 100 m/s

(2.6)

Equations 2.5 and 2.6 indicates that, if stress drop is “magnitude-invariant” for

all earthquakes, we may expect the characteristic slip rate V to be “magnitude-invariant”

as well, and a typical value should be 10−1 to 100 m/s if the stress drop is 106 to 107 Pa

(1 to 10 MPa). This theoretical result, though simple, can successfully explain the slip rate

observations by modeling seismograms, and thus is thought to have captured the first-order

slip rate features of fast earthquake ruptures.

2.2.2 Abnormally low slip rate in slow slip events

However, the above analysis with sudden stress drop cannot satisfactorily explain

the low slip rate in slow earthquakes. Let’s use slow slip event as an example. Observations

suggest that slow slip events have a character stress drop of 103∼4 Pa. If slow slip events

share a similar “sudden strength drop” mechanism as fast earthquakes, using equation 2.5,

we would estimate the slip rate for slow slip events to be,

V ∼ 2× 103 × 103 to 104

1010
m/s

∼ 10−4 to 10−3 m/s

This value is significantly higher than the characteristic slip rate of slow slip events,

which is 10−8 to 10−7 m/s. Because the sudden stress drop model is thought to be the classic

model for earthquakes, this discrepancy suggests that the characteristic slip rate of slow slip
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events is abnormally low. Some additional “slow-down” mechanism is needed in order to

explain the characteristic slip rate for slow slip events.

2.3 Rupture propagation speed

2.3.1 Explaining the ∼ km/s rupture propagation speed in fast earth-

quakes

During an earthquake, the slip area does not reach its full size immediately; in-

stead, the slip area gradually grows from small to big as the rupture propagates. How fast

the rupture propagates plays an important role in many contexts of earthquake physics. In

fast earthquakes, the rupture propagation speed is commonly observed to be about a few

km/s, which is comparable to the seismic wave speed. This typical propagation speed value

is now well explained with theoretical earthquake models. Earthquake rupture propagates

because the slipped portion of the fault causes stress perturbations on the un-slipped potion.

The rupture propagation speed is then mainly controlled by how fast the stress transfers in

space. Elasto-dynamic theories indicate that there are two types of stress transfer that can

be caused by fault slip. One is dynamic stress transfer that is carried by elastic waves, and

the other is static stress transfer that is permanent but only significant near the slip. The

amplitude of dynamic stress is mainly determined by fault slip rate, while the amplitude of

static stress is mainly determined by fault slip.

Both the dynamic and static stress transfer mechanisms should affect rupture

propagation speed. However, in fast earthquakes, these two stress transfer mechanisms

might both have a characteristic transfer speed similar to seismic wave speed, which explains
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why the typical rupture propagation speed for fast earthquakes is a few km/s. Figure 2.2

qualitatively demonstrates how a characteristic transfer speed can be estimated for the

dynamic and static stress transfer mechanisms (Figure 2.2(a) and 2.2(b), respectively).

Figure 2.2a shows a rupture pulse that propagates on a fault plane front left to right. The

level of grayness on the fault indicates fault slip rate.

In the dynamic stress transfer mechanism, the slipping region behind the rupture

front sends out elastic waves ahead of the rupture front. The dynamic stress carried by the

waves triggers the un-ruptured fault, and causes “chain-reaction”. If the rupture propaga-

tion is mainly controlled by dynamic stress transfer, a characteristic rupture propagation

speed Vrd would be similar to a seismic wave speed,

Vrd ≈ β (2.7)

which is typically a few km/s.

In the static stress transfer mechanism, the transfer speed should mainly depend

on fault slip rate and stress drop near the rupture front. In the following, I will show a brief

derivation for this argument by considering the static stressing rate ahead of the rupture

front. A kinematic version of such derivation can be found in Rubin (2011), which, though

different in approach, yields very similar results. Let’s look at a 1D profile AA’ near the

rupture front (dashed line in Figure 2.2a). Figure 2.2b qualitatively plots the slip rate and

stress rate along the profile AA’. Let’s say the high slip rate zone behind the rupture front

has a characteristic length of Lp, the high stressing rate zone ahead of the rupture front

(near point B’) has a characteristic length of Ls. From an energy conservation point of

20



Fault plane

High slip rate zone

(rupture pulse)

high slip zone

 length Lp

Propagating 

direction

A A’

Transfer mechanism #1:

dynamic stress wave

Lp

Ls = C*Lp

(a)

B’B
Rupture front

A A’

slip rate stressing rate

Transfer

mechanism #2:

static stress 

cascade

B’

Propagating 

direction

(b)

B distance

Figure 2.2: Schematics that illustrate two triggering mechanism that affect rupture prop-
agation speed. (a) A fault that. (b) That fault in (a) suddenly starts to slip because the
fault strength (resistance) suddenly drops from f0 to f1.

view, Ls should be comparable to Lp (Ls = CLp, and C ∼ 1), in order for the rupture to

propagate stably. Let’s next denote Vrs as the rupture speed when only the static stress

field is driving the rupture propagation. If the loading stress un-ruptured fault ahead of the

rupture front takes a time Ts to rise from an initial value τ0 to the yielding strength f0, the

static stress transfer speed Vrs can be approximated as,

Vrs ≈
Ls
Ts

(2.8)

The stressing time Ts could be estimated by

Ts ≈
f0 − τ0

τ̇
(2.9)

where τ̇ is the characteristic stressing rate ahead of the rupture front. We estimate the

stress perturbation ahead of the rupture front as shear modulus µ multiplying the strain

across the high slip rate zone D/Lp,
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τ ≈ µ D
Lp

where D is fault slip. Therefore, the stressing rate τ̇ should be proportional to fault slip

rate V as,

τ̇ ≈ µ V
Lp

(2.10)

Substituting equation (2.10) into (2.9), and then substituting the result into equa-

tion (2.8), we obtain,

Vrs ≈
Ls
Lp
· µ

f0 − τ0
· V (2.11)

Let’s now use equation (2.11) to estimate the Vrs for fast earthquakes. Equation

(2.11) yields that the static stress transfer speed should be proportional to slip rate near

the rupture front, but to quantitatively estimate Vrs, we need to first estimate the strength

excess f0 − τ0 on the unruptured fault. This can be done more conveniently if we compare

it with the static stress drop ∆τs. Let’s denote that f0− τ0 = S∆τs. The coefficient S here

is often referred to as the relative fault strength (e.g., Andrews, 1976). Substituting it into

equation (2.11), we have,

Vrs ≈
Ls
Lp
· µ

S∆τs
· V (2.12)

In the last section we have shown that, for a slip instability caused by sudden

strength drop, the slip rate should be approximately proportional to the dynamic stress
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drop. For convenience, let’s denote the dynamic stress drop as ∆σd = f0 − τ0 in this

section, and rewrite equation (2.5) as,

V = 2β · ∆σd
µ

Substitute it into equation (2.12), and consider that ∆σd = (1 + S)∆τs, we have,

Vrs ≈
Ls
Lp
·
(

1 +
1

S

)
· 2β

≈
(

1 +
1

S

)
· β

(2.13)

There are two pieces of information we can directly read from equation (2.13).

First, if S is comparable to or significantly larger than 1, Vrs would be similar to the elastic

wave speed. Second, if S is significantly smaller than 1, Vrs would be considerably larger

than the elastic wave speed. However, these situations are not all realistic. First of all, S

cannot be significantly higher than 1 otherwise the stress perturbation would not be able to

provide a high-enough stress increase ahead of the rupture front. Secondly, the static stress

transfer speed has an upper bound as elastic wave speed, which means that Vrs cannot

be considerably larger than β even if S is low. Therefore, even though equation (2.13)

explicitly implies a dependency between Vrs and S, S should be mostly comparable to or

lower than 1, and Vrs should always be around the order of β.

To summarize, our analysis above shows that, in a “sudden stress drop” type

earthquake model, both the dynamic-stress and the static-stress transfer travel in a speed

that is comparable to the elastic wave speed. It explains the prevailing observations that

fast earthquake ruptures propagate at a speed around a few km/s.
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2.3.2 Abnormally low rupture propagation speed in slow slip events

Although it is still challenging to observe the rupture propagation speed for small

seismic slow earthquakes like LFEs or VLFEs, observing the rupture propagation speed for

those large slow slip events is possible in many situations. If we assume that the rupture

front of an SSE is spatiotemporally colocated with tremors and LFEs, the SSE rupture

propagation can then be tracked by locating the seismic slow earthquakes and imaging

their migration patterns. It is now found that a typical SSE rupture propagation speed is

∼ 10 km/day, or ∼ 10−1 m/s. Sometimes a main SSE rupture front would trigger secondary

rupture fronts that propagate faster in a speed of several to tens of km/h or ∼ 100 m/s,

which are often referred to as rapid tremor forwards (RTFs), rapid tremor reversals (RTRs),

or secondary slip fronts (SSFs).

These rupture propagation speeds are significantly lower than a typical km/s prop-

agation speed in fast earthquakes. Obviously, both the dynamic and static stress transfer-

ring speeds shown in equation (2.7) and (2.13) cannot explain this abnormally low rupture

speed. It again suggests that a sudden stress drop earthquake model cannot explain SSEs.

However, the stress transferring analysis actually still works well even for SSEs. A charac-

teristic SSE slip rate is 10−8 − 10−7 m/s. Since dynamic stress amplitude depends on slip

rate while static stress transfer amplitude depends on slip, at such a low slip rate, static

stress transfer should be the dominant mechanism that controls the rupture speed. For the

derivation from equation (2.12) to (2.13), If we take the abnormally low SSE slip rate as a

given condition instead of using equation (2.5), we can estimate the static stress transfer

speed Vrs as,
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Vrs ≈
Ls
Lp
· µ

S∆τs
· V

≈ 1× 1010 Pa

1× 103∼4 Pa
×
(

10−8 ∼ 10−7

)
m/s

≈ 10−2 ∼ 100 m/s

(2.14)

which is consistent with the observed characteristic SSE rupture propagation speed (e.g.,

Obara & Kato, 2016; Bürgmann, 2018, and the reference therein).

Equation (2.14) implies a very interesting feature of the static stress transfer rup-

ture propagation mechanism: Since there is a coupling relationship between slip rate and

rupture speed, if one can explain the abnormally low slip rate for SSE, the abnormally low

rupture propagation speed can be “automatically” explained using the static stress transfer

mechanism. This is probably a rationale behind many theoretical models which only focus

on explaining the low slip rate feature of SSEs while not going into the details of discussing

rupture propagation speed.

I notice that there are some studies that directly use a characteristic speed in a

hydraulic framework, such as fluid or pore pressure migration speed, to explain the abnor-

mally low rupture propagation speed in SSEs. This mechanism is possible considering that

SSEs slipping zone is often found to be colocated with high pore-pressure zone. Analyzing

such a mechanism requires a framework that is very different from the one I set up here,

and it will not be discussed in my dissertation.
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2.4 Duration T , moment M0, and their scaling relation

2.4.1 Explaining the M0 ∝ T 3 scaling relation in fast earthquakes

Since earthquake duration T can be directly measured from seismograms, this

quantity is relatively easy to observe for both small and large earthquakes. Observations

show that, to first order, a fast earthquake’s duration T increases with its seismic moment

M0, and the scaling relationship is M0 ∝ T 3 before the rupture area saturates the seismo-

genic depth range. A typical Mw6 earthquake would have a duration T of a few seconds.

A classic “sudden stress drop” earthquake model can explain this scaling relationship rea-

sonably well. In Chapter 2.1, we have shown that M0 scales with L3 if static stress drop is

magnitude-invariant. To demonstrate that more clearly, we may re-organize equation (2.3)

as

M0 =
1

C
∆τsL

3 (2.15)

noting that the special situation where rupture saturates the seismogenic depth is not

considered here. An earthquake stops when its slip rate goes back to zero and its rupture

stops propagating. Therefore, to first order, earthquake duration T can be estimated as the

larger quantity between rupture duration and slip duration,

T ≈ max

(
L

Vr
,
D

V

)
(2.16)

where D is final slip, V is slip rate, and Vr is rupture propagation speed. All variables

above are characteristic value in first order. For fast earthquakes, we can replace D and V
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with expressions of L and β using equation (2.1) and (2.5),

D

V
≈ ∆τs · L

C · µ
· µ

2β ·∆σd

≈ ∆τs
∆σd

· L
2β

≈ L

β

(2.17)

where we use ∆σd instead of f0 − f1 to represent dynamic stress drop. Since the rupture

propagation speed Vr in fast earthquakes is comparable to elastic shear wave speed β, D
V is

comparable to L
Vr

, and equation (2.16) can be written as follows for fast earthquakes,

T ≈ L

β
(2.18)

Equation (2.18) can explain current earthquake duration observation reasonably

well to first order. Besides, by substituting this equation into (2.15), we obtain,

M0 ≈
1

C
∆τsβ

3T 3 (2.19)

which supports the observed M0 ∝ T 3 scaling relation in fast earthquakes.

2.4.2 Abnormally long duration and puzzling moment-duration scaling

relation in slow earthquakes

Most slow earthquakes can be categorized into three main types based on the M0

and T characteristics of their geophysical signals: SSEs that are ∼ Mw6 with a duration of

days to months, VLFEs that are ∼ Mw3 with a duration of tens of seconds, and LFEs that
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Figure 2.3: Schematic log-log plot that shows the slow earthquake duration T observations
versus the corresponding seismic moment M0. Gray shaded area bounded by two M0 ∝ T 3

lines denotes the parameter space of fast earthquakes. The two bounded lines are calculated
using equation (2.19) assuming C = 1, β = 3 km/s. ∆τs is set to be 0.1 MPa for the upper
bound (blue line) and 100 MPa for the lower bound (orange line). Ellipse shaded area
denotes the approximate location of M0 and T observations for SSEs and ETSs (green),
VLFEs (orange), and LFEs (red).
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are∼ Mw1 with a duration of around 1 s. Figure 2.3 shows the approximate location of these

three types of slow earthquakes in the moment-duration parameter space. The three types

are separated into three different clusters, and all of these events apparently have longer

durations than those regular earthquakes that have comparable seismic moment. Because

LFEs, VLFEs, and SSEs are often observed in similar locations on faults, some researchers

propose that they are fundamentally the same type of slow earthquake, which follows a

M0 ∝ T scaling relation (e.g., Ide, Beroza, Shelly, & Uchide, 2007b). However, since these

three different categories of slow earthquakes reside as distinct clusters in the “moment-

duration” parameter space, some researchers propose that the generation mechanisms of

these three categories of earthquake signals are intrinsically different, although they might

share the same underlying source process (e.g., Gomberg, Wech, et al., 2016; Luo & Liu,

2021; Behr, Gerya, Cannizzaro, & Blass, 2021). In that case, each category of events should

have its own “moment-duration” scaling relation.

So far, deciphering the “moment-duration” scaling relation of slow earthquakes is

still challenging and remains an open question. One difficulty comes from the low signal-to-

noise ratio of slow earthquake observations. For fast earthquakes, the key source quantities

(e.g., slip, slip rate, rupture length, rupture duration, rupture propagation speed) can often

be estimated independently from each other using different techniques and data types (e.g.,

seismogram in different frequencies, geodetic measurements). Therefore, the classic sudden

stress drop co-seismic earthquake model can be tested against multiple observations, and

has been found to be self-consistent in almost all the cases in first-order (Chapter 2.1,

2.2.1, 2.3.1, and 2.4.1). However, for small seismic slow earthquakes like LFEs and VLFEs,
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many key source quantities can not be measured directly due to the limited bandwidth and

coverage of their corresponding observations, which makes it difficult to probe its rupture

process in detail.

For large slow earthquakes like SSEs, it is possible to constrain different source

quantities independently using different geophysical observations, and their source process is

better categorized. Using small LFEs and tremors as proxies, we find that the rupture prop-

agation speed for SSEs is around 10 km/day (10−2 ∼ 100). Geodetic time-series observation

suggests that SSEs have a characteristic slip of about 10−2 m and slip rate about 10−8 m/s

(∼ mm/day). The characteristic rupture length L is found to be range around 101 km using

either high-frequency seismic observations and geodetic observations. Therefore, scaling re-

lation within SSEs is relatively easy to measure and model. Early observations suggest that

SSEs have a close to M0 ∝ T scaling relation (e.g., Gao et al., 2012; Liu, 2014). However,

some more recent studies argue that SSEs has a M0 ∝ T 3 “moment-duration” similar to

fast earthquakes (e.g., Gomberg, Wech, et al., 2016; Michel et al., 2019; Frank & Brodsky,

2019). I include a Figure 2.4 that shows the moment-duration plot in three of the papers

mentioned above.

2.5 Summary of the differences in co-seismic rupture be-

tween fast earthquakes and SSEs

So far in this section, I have briefly reviewed four characteristics of rupture sources

for both fast earthquakes and SSEs. These four characteristics are:
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Top left (global): 

Gao et al., 2012

Top right (global): 

Gomberg et al., 2016

Bottom left (Cascadia): 

Michel et al., 2019

Bottom right (Mexico): 

Frank and Brodsky, 2019

Figure 2.4: Moment-duration observation compilation reported in Gao et al. (2012),
Gomberg, Wech, et al. (2016), Michel et al. (2019), and Frank and Brodsky (2019)
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1. static stress drop

2. event slip rate

3. rupture propagation speed

4. event duration and moment-duration scaling relation

The quantitative differences of the above four characteristics are summarized in

Table 2.1. For fast earthquakes, if we take the observed ∼ MPa static stress drop as a

given condition and assume that the dynamic stress drop is comparable, a classic sudden

stress drop rupture model can self-consistently explain all four characteristics in first order.

However, for slow earthquakes, a classic sudden stress drop rupture model would overesti-

mate the slip rate or and rupture propagation speed by several orders even if we take into

account that the observed stress drop is ∼ 10 kPa. In addition, the durations of SSEs are

longer than those of fast earthquakes. Whether the moment-duration scaling relation for

SSEs is the same as regular earthquakes is still under investigation. The purpose of my

dissertation is to provide a theoretical model that could address and explain

the difference between fast and slow earthquakes.

I notice that I do mention the small seismic slow earthquakes LFE (tremors) and

VLFE here and there while not going into detail. In this dissertation, I will focus on

modeling SSEs (Chapter 3, 4, and 5). The model will have implications on those seismic

slow earthquakes, which would be discussed in the Discussion chapter (Chapter 6). Also,

I did not mention the inter-event characteristics of SSEs (e.g., recurrent interval). Such

characteristics will be discussed in Chapter 6 as well.
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fast earthquake SSEs

Static stress drop 105 ∼ 107 Pa, M-invariant 103 ∼ 104 Pa, M-invariant?

Slip rate 10−1 ∼ 100 m/s, M-invariant 10−8 ∼ 10−7 m/s, M-invariant?

Rupture propagation speed 103 m/s, M-invariant ∼ 10−1 m/s, M-invariant?

Moment-duration scaling M0 ∝ T 3 M0 ∝ T or T 3?

Table 2.1: Summary of the differences between fast earthquakes and SSE
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Chapter 3

Some proposed ingredients to

explain the slow behavior in SSEs

In this section, I will briefly review some hypotheses that are proposed to explain

the slow behaviors in SSEs and their associated theoretical analysis. Instead of discussing

the details of any specific model, I will focus on demonstrating several popular ingredients

that are often used in models to make “slow” happen. A model that could reproduce “slow”

behaviors may have one or multiple of these ingredients. I aim to use this review to help

better illustrate the starting point and novelty of my model which I will present in Chapter

4 and 5. Therefore, even though I will not use some ingredients in my model, I still present

them here for the purpose of completeness.

34



3.1 Making the stress drop less sudden

3.1.1 Elastic stress release during the strength weakening stage

One of the main puzzles that an SSE model needs to explain is why the fault

slip rate is abnormally low that it cannot be explained with a classic sudden stress drop

model. In Chapter 2.2, we show that if the strength drop is immediate, a radiation damping

stress − µ
2βV would arise in response to the sudden strength drop f0−f1. Such analysis can

explain the “moment-invariant” m/s co-seismic slip rate observations in fast earthquakes. If

the transient strength drop in slow earthquakes were immediate as well, assuming that the

sudden dynamic strength drop is comparable to the static stress drop (to first order) and a

typical static stress drop is ∼ 10 kPa, the slip rate V in slow earthquakes would be estimated

to be ∼ 10−3 m/s, which is significantly faster than the observed value 10−8 ∼ 10−7 m/s.

To achieve a slow slip rate, one way is to make the shear stress drop in a less sudden

manner. Depending on the specific fault boundary condition, or “friction law”, used in the

model, the formulation of the parameters for a less sudden stress drop and slow slip could

vary in different cases. For simplicity, let’s illustrate this ”slow-down” mechanism with a

boundary condition formulation of linear slip weakening friction, in which fault strength

drops from f0 to f1 in a slip weakening distance D0,

∆f = −f0 − f1

D0
D

= −KfD

(3.1)

in which D is fault slip, ∆f is the fault strength change in response to D. For convenience,

I denote
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Kf =
f0 − f1

D0

as the effective stiffness parameter of strength drop.

While fault slip D increases, the elastic loading shear stress also reduces. Mathe-

matically, the change of loading shear stress ∆τD due to fault slip can be estimated using

an almost identical expression as the static stress drop expression (equation (2.1)), except

that the sign is opposite,

∆τD = −CµD
L

= −KτD

(3.2)

where C is a geometric factor that is approximately equal to one. C is not affected by the

slip process and is determined once the initial and boundary condition is set. µ is shear

modulus, and L is the characteristic length of the slip patch. For convenience, I denote

Kτ =
Cµ

L

as the effective stiffness parameter of elastic shear stress drop.

We may now reconsider our analysis in Chapter 2.2.1. Let’s say that there is an

incremental fault slip ∆D right after the fault starts to slip. On the fault, the change of

fault strength ∆f should equal the total change of elastic shear stress ∆τ ,

∆f = ∆τ

= ∆τD + ∆τV

(3.3)
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in which ∆τV is the elastic shear stress change caused by sudden fault slip rate. I have

shown in section 2.2.1 that it can be estimated as − µ
2βV (equation (2.4)). We can then

rewrite equation (3.3) as,

−Kf ·∆D = − µ

2β
V −Kτ ·∆D (3.4)

We can solve for slip rate V using the above equation, and we have,

V =
2β

µ

(
Kf −Kτ

)
·∆D (3.5)

Equation (3.5) yields many interesting features. If Kf < Kτ , slip rate V would

be negative, and the fault would move backward to accumulate loading shear stress. This

solution is obviously unrealistic, as it contradicts our initial assumption that there is a stress

drop. The reason why we have this unrealistic solution is that, by having Kf < Kτ , the

elastic stress release against slip is faster than the fault strength weakening against slip.

Therefore, if the fault strength weakening were to happen, the elastic stress release would

be even more than the strength drop. Considering causality, such a sudden stress drop

cannot happen. Instead, elastic shear stress will not accumulate, as fault will continuously

release the incremental elastic loading stress and be constantly creeping (i.e., undergoing

stable slip, even without rate or slip strengthening).

A sudden stress drop, or slip instability, will occur when Kf > Kτ , and slip rate

V will be positive. Let’s evaluate equation (3.5) at ∆D = D0 when fault strength has just

finished dropping. Fault slip rate V can be expressed as,
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V =

(
1− Kτ

Kf

)
· 2β · f0 − f1

µ
(3.6)

In Chapter 2.2.1, I derive equation (2.5) under the condition that the stress drop

is sudden. The sudden stress drop condition can be expressed as Kf � Kτ in equation

(3.6). In such case, Kτ
Kf

will be close to zero and equation (3.6) will be close to (2.5), which

is shown to explain the slip rate in fast earthquakes reasonably well.

Based on the above analysis, we find that if we want to make a transient slip

event while at the same time requiring the fault slip rate to be significantly slower than

2β · f0−f1µ , one way is to have Kf larger than Kτ but also comparable to it. In that case,

Kτ
Kf

is close to one but still smaller than one, and equation (3.6) would yield a value that

is significantly smaller than 2β · f0−f1µ . This “slow down” mechanism where Kf is close to

Kτ has become a popular ingredient in slow earthquake models. It is sometimes referred to

as the “conditionally stable” condition (e.g. Scholz, 2019). Since Kf and Kτ can depend

on many parameters, there are multiple ways to realize this mechanism in a specific slow

earthquake model. We will briefly demonstrate some common approaches in the rate-and-

state friction framework in the following section.

3.1.2 Making Kf close to Kτ in the rate-and-state friction framework

Many models that address slow earthquake issues use a rate-and-state friction law

to describe fault strength f instead of a linear slip-weakening friction. The rate-and-state

friction law is an empirical relation derived from rock friction experiments (e.g., J. H. Di-

eterich, 1979; Ruina, 1983). Though derived in laboratories, the rate-and-state friction law
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predicts many frictional behaviors that are also commonly observed in natural earthquakes,

such as stick-slip behavior, and “Omori-type” aftershock decay (e.g., J. Dieterich, 2007, and

the references therein). It has now been widely used in earthquake modeling practice. In

a typical rate-and-state friction formulation, fault strength f equals fault normal stress σn

times the friction coefficient (the same as Coulomb friction),

f = σn · µ′

= σn ·
(
µ′0 + a ln

(
V

V0

)
+ b ln

(
θ

θ0

)) (3.7)

here I use µ′ to represent friction coefficient to distinguish it from shear modulus µ. µ′0

is a reference friction coefficient, V0 is a reference slip rate. θ is state variable and θ0

is a reference state variable. a and b are two dimensionless parameters that control the

contributions of the V -related term and the θ-related term, respectively. A typical value of

a and b are about 10−3.

Equation (3.7) is not enough to describe fault strength. State variable θ needs to be

described separately using a state evolution law. What specific form of the state evolution

law should be used is still an open question, and can depend on the specific application.

Here I provide two popular evolution laws that are commonly used: “aging law” and “slip

law”,

dθ

dt
= 1− θV

Dc
, “aging law” (3.8)

dθ

dt
= −θV

Dc
ln

(
θV

Dc

)
, “slip law” (3.9)
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in which Dc is commonly referred to as the critical slip weakening distance. These two laws

are similar in producing ”stick-slip” behaviors to first order, and here I will only focus on

their commonalities.

The term a ln
(
V
V0

)
increases with slip rate. As shown in equation (3.8) and (3.9),

state variable θ has a faster decreasing rate as slip rate increases, so the term b ln
(
θ
θ0

)
decreases with slip rate. Therefore, a ln

(
V
V0

)
and b ln

(
θ
θ0

)
will compete with each other

and the sign of a − b determines whether fault strength decreases or increases as fault

slip speeds up: when a − b < 0, the fault is referred to as “velocity-weakening” or “rate-

weakening”; when a − b > 0, the fault is referred to as “velocity-strengthening” or “rate-

strengthening”. Within the rate-and-state friction framework, a “velocity-strengthening”

fault surface cannot have stick-slip behaviors; while, a “velocity-weakening” fault surface

can have stick-slip behaviors under certain conditions, as we will discuss below.

Although the “conditionally stable” condition in the earlier section was derived

using a linear slip weakening friction, similar model behaviors shall also exist in a rate-

and-state friction model. It has been shown that, if a fault is “velocity-weakening”, the

weakening stiffness Kf of rate-and-state friction should be proportional to b − a and σn,

and inversely proportional to the critical slip weakening distance Dc,

Kf ∼
(b− a)σn

Dc
(3.10)

Considering that the elastic loading stiffness Kτ is proportional to shear modulus

µ and inversely proportional to the characteristic length L of the slip patch,
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Kτ =
Cµ

L

In principle, we may equal Kf and Kτ to find the critical condition of stability.

The two above equations suggest that friction parameter (a− b, Dc), fault effective normal

stress (σn), slip patch characteristic size L, and shear modulus µ are affecting this critical

condition. Therefore, to facilitate slow slip, a model can create a critical condition through

any of the parameters above (though some parameters like Dc and µ are rarely used). On

many occasions, this condition is expressed using the L parameter. One may equate Kf

and Kτ , and solve for L. For slow slip to occur, L needs to be comparable but not much

larger than a critical size Lc,

Lc ∼
CµDc

(b− a)σn
(3.11)

Lc is sometimes represented as h∗ instead in the literature. I note that the above

derivation uses a “spring-slider” approach; therefore, though correct to first-order, equaling

the above two equations may not accurately describe the critical patch size that is needed

to nucleate a transient slip event. A more accurate estimate of the critical size Lc can

be obtained by considering the transient effects in rate-and-state friction (e.g., Rubin &

Ampuero, 2005; Barbot, 2019), and the parameter b−a
b (referred to as Rb in Barbot (2019))

is shown to be important in controlling Lc as well. In that case, Lc need to be written as,

Lc =
CµbDc

(b− a)2σn
, (3.12)
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3.1.3 A brief summary of the “stiffness”-related slow slip mechanism

Many slow earthquake models include the above “stiffness”-related ingredient to

facilitate transient slow slip (e.g., Liu & Rice, 2005, 2007; Liu, 2014; Leeman, Saffer, Scuderi,

& Marone, 2016; Wei, Kaneko, Shi, & Liu, 2018; Im, Saffer, Marone, & Avouac, 2020).

Although similar concepts have been brought up before the emerging observations of slow

earthquakes (e.g., Tse & Rice, 1986; J. H. Dieterich, 1992). In summary, a fault should still

be able to host transient slip and stress drop (Kf > Kτ ). However, the frictional stiffness

Kf should only be slightly larger than Kτ . In a rate-and-state framework, this condition is

often expressed as a requirement that the characteristic slip area length L be comparable

but not much larger than the critical size Lc. Figure 3.1 qualitatively demonstrate how

the characteristic length L depends on the shape of the slip patch. For a round shape slip

patch, L is better approximated by its diameter; while for a long narrow slip patch, L is

better approximated by its width. SSEs are often modeled as long narrow rupture (e.g.,

Liu & Rice, 2005; Dal Zilio, Lapusta, & Avouac, 2020). When SSEs are modeled as the

latter case, the key parameter to tune would be the ratio between slip patch width W and

Lc, which is often denoted as W/h∗ in the literature.

Within a certain parameter space, the above setup can reproduce many slow earth-

quake observations. Though successful in many situations, this mechanism to create tran-

sient slow slip naturally requires the parameter set to reside in a range that is much narrower

than regular both fast earthquakes (Kf � Kτ ) and constant creep (Kf > Kτ ), because Kf

needs to smaller than Kτ while very close to it (Kf ≈ Kτ ). Whether such a narrow range

can be applied to the increasing amount of slow slip observations is still a field of active
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high slip area

Fault plane

 characteristic length L=W

W

Round shape slip patch Long narrow slip patch(a) (b)

Figure 3.1: Schematic showing the characteristic length L for (a). round shape slip patch
and (b) long narrow slip patch. The slip patch area is denoted by the orange shading. L
for a round shape slip patch is better approximated with its diameter, while L for a long
narrow slip patch is better approximated with its width W .

research.

3.2 Interrupting the stress dropping process as slip rate reaches

a certain level

Another commonly used ingredient to quench slip acceleration is interrupting the

stress-dropping process as slip rate reaches a certain level. We will briefly introduce two

ways to realize the quenching: introducing a cut-off factor in state variable and dilatant

strengthening.
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3.2.1 A cut-off factor in the state variable

In a rate-and-state framework, quenching slip acceleration can be realized by in-

troducing a constant C in the state variable terms (e.g., Shibazaki & Iio, 2003; Hawthorne

& Rubin, 2013),

f = σn ·
(
µ′0 + a ln

(
V

V0

)
+ b ln

(
θ

θ0
+ C

))
(3.13)

At slow slip rates, θ
θ0
� C and the above formulation would have the same behavior

as a classic rate-and-state formula. When a−b < 0 and Kf > Kτ , transient slip can happen

on fault, and slip will accelerate. As slip rate reaches a certain level, θ
θ0

would be smaller

than C and b ln
(
θ
θ0

+ C
)

would cease to decrease. After that, fault friction would switch

from “velocity-weakening” to “velocity-strengthening”, and the sliding speed is then limited

at that level.

Such a model setup to cut off the state variable’s influence on stress as slip rate

goes high can reproduce some slow slip behaviors as observed. Yet, up till this point,

it is more like an artificial “design” in the friction law to slow down slip rather than a

physical mechanism. Some evidence about the existence of the constant C in laboratory

experiments has been mentioned (James Dieterich, SCEC 2018 plenary talk and personal

communication), but is not documented in the literature to the best of my knowledge.

3.2.2 Dilatant strengthening

Another mechanism that is often used to quench slip acceleration is the “dilatant

strengthening” mechanism (e.g., Segall, Rubin, Bradley, & Rice, 2010; Liu & Rubin, 2010;
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Liu, 2013). Considering a hydraulic system in a fault zone, the effective normal stress on a

fault would also depend on the pore pressure P ,

f = (σn − P ) ·
(
µ′0 + a ln

(
V

V0

)
+ b ln

(
θ

θ0

))
(3.14)

As slip rate increases, pore space may increase due to a dilatant effect. As a

consequence, pore pressure P would decrease, causing an increase of fault strength f . This

dilatant strengthening effect eventually helps stabilize fault slip, preventing a seismic slip

rate from being reached. Since abundant observations have suggested that the SSE-hosting

fault may contain a considerable amount of fluid (e.g., Bürgmann, 2018, and the references

therein), such a mechanism could well be possible intuitively. Yet, the hydraulic parameters

near-fault are extremely difficult to measure. At present, it is still an open question to what

extent this mechanism should account for slow slip phenomena.

3.3 Imposing stress on a stably sliding fault and fault het-

erogeneity

So far, the “slow-down” ingredients I have introduced have focused on stabilizing

fault slip as fault strength weakens. In other words, fault still needs to be able to host

transient slip and stress drops as in fast earthquakes; however, the transient slip is slow

because the fault strength weakening processes are not fast enough either due to a faster

elastic stress release (Chapter 3.1) or an interruption in the weakening process (Chapter

3.2).

There is another approach that does not require the transient stress drop itself
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to be slow in order to produce slow slip. If there is a mixture of both sudden stress drop

and viscous components on a fault, slow slip behavior can also emerge. This vision is

generally supported by the growing body of geological observations of exhumed faults (e.g.

Kirkpatrick, Fagereng, & Shelly, 2021; Behr & Bürgmann, 2021, and the references therein).

Many theoretical models that were designed with this vision show potential of generating

slow slip behaviors. However, compared to the two “slow-down” ingredients explored above,

the exploration of this ingredient is still in an early stage. Ways to incorporate such a

“heterogeneity” vision are not exclusive. Besides, the quantitative relations between model

parameters and the target geophysical observations are still elusive. In the following section,

I will review the recent investigations on this alternative “slow-down” ingredient that based

on a “heterogeneity” vision. This ingredient is also the major component in the models of

this dissertation.

3.3.1 The general concepts

Slow slip can originate when a stress perturbation is imposed on a “viscous” fault.

For that to happen, “sudden stress drop” and “viscous” components should coexist on the

fault and correspond to separate physical processes. Recently, this hypothesis has been

receiving more attention in the context of slow earthquakes, as there is emerging geological

evidence suggesting that slow slip shear zones contain both brittle (or frictional) and viscous

deformation (e.g., Fagereng & Sibson, 2010; Sibson, 2017; Platt, Xia, & Schmidt, 2018;

Phillips, Motohashi, Ujiie, & Rowe, 2020; Behr & Bürgmann, 2021; Kirkpatrick et al., 2021).

Many mechanisms have been proposed for both type of deformation. Proposals for brittle

deformations include: (1) frictional instabilities on the localized fracture within or at the
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boundary of the strong clasts or grains within the shear zone, (e.g., Fagereng & Sibson, 2010;

Sibson, 2017; Phillips et al., 2020), (2) viscous flow instabilities in the shear zone, (e.g., Platt

et al., 2018) (3) transient pore pressure change (e.g., Shapiro, Campillo, Kaminski, Vilotte,

& Jaupart, 2018). Proposals for viscous deformation include cataclastic flow, pressure

solution creep, and other types of viscous flow (e.g., Bürgmann, 2018; Kirkpatrick et al.,

2021; Behr & Bürgmann, 2021, and the references therein)

To test the above revision against geophysical observations, one needs to incorpo-

rate it into a fault rupture model and calculate the resulting ground deformation. Generally

speaking, such a vision can be realized by setting up a heterogeneous fault with a mixture

of both “sudden stress drop” and “viscous” components (e.g., Ando, Nakata, & Hori, 2010;

Nakata, Ando, Hori, & Ide, 2011; Ando et al., 2012; Skarbek, Rempel, & Schmidt, 2012;

Lavier, Bennett, & Duddu, 2013; Luo & Ampuero, 2018; Goswami & Barbot, 2018; Beall,

Fagereng, & Ellis, 2019; Luo & Liu, 2021; Lavier, Tong, & Biemiller, 2021; Behr et al.,

2021). The “sudden stress drop” component causes a sudden stress perturbation on the

“viscous” component, and the slip rate on “viscous” component temporally increases in or-

der to relax the extra stress. The magnitude of the resulting slip transient and its relaxation

time depend on both the stress perturbation and the viscous property.

3.3.2 Parameterizing the shear zone process as a fault constitutive rela-

tion

Although the concept is simple, implementing both brittle and viscous properties

together in a rupture model can be non-trivial. Before we go into the details of setting up

the heterogeneities in models, it would be convenient that we first go through the rationales

47



of parameterizing a shear zone as a zero-thickness fault “surface” in rupture models.

Ideally, we want to model the large-scale slow slip ruptures that propagate several

tens of kilometers on megathrust as well as the small-scale interaction between the brittle

and viscous components within the few hundred meters wide shear zone. However, such a

complex dynamic system is very difficult to model due to the multiple orders of magnitude

of the length scale and the technical difficulties in incorporating the finite thickness of

the fault zone. Even though some exciting efforts have been made to capture the full

dynamics of the system in the same model (e.g., Lavier et al., 2021; Behr et al., 2021), most

models at the current stage would separate the small-scale process in the shear zone from

the large-scale rupture propagation by parameterizing the bulk shear zone deformation as

fault slip, as shown in Figure 3.2. In this simplification, fault zone width W is considered

to be significantly smaller than both the rupture length and source-instrument distance,

and the detailed strain and stress distribution within the fault zone are thought to have

minor effects on both the rupture dynamics and on the generation of ground deformation.

Therefore, we may simplify the fault zone in Figure 3.2a as a zero thickness fault plane in

a rupture model. The relationship between the tractions at the shear zone boundary and

the bulk shear deformation is then parameterized as the fault constitutive relation on the

hypothetical fault “surface”.

Such a “pseudo-3D” approach is suggested to be reasonable as long as the “friction

law” approximates the bulk strain release behavior and energy budget in fault zones (e.g.,

Andrews, 1976, 2005). Since most geophysical signals of earthquakes are mostly related

to the large-scale rupture process, this “pseudo-3D” approach is very useful in probing the
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localized shear zone
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Elastic medium

few to 

tens of km

GNSS Seismometer

Fault

(a) actual fault zone (b) model simplification

Figure 3.2: Schematics that demonstrate how a fault zone with a finite thickness W is
simplified as a zero-thickness fault surface in theoretical models. (a) Diagram of a fault
shear zone. Green area is the elastic medium, and the black arrows show the moving
direction of the medium. Brown area is the localized shear zone within which rocks deform
inelastically. Tractions on the boundaries of the fault zone are marked with red arrows. The
elastic loading traction should equal the shear resistance at the fault zone boundary, which
may depend on both the bulk slip D and bulk slip rate Ḋ of the fault zone. (b) Diagram of
a simplified zero-thickness fault “surface” in theoretical models. The whole rupture extent
and the distance between source and observation should be considerably greater than the
fault zone width W .

bulk deformation condition in the shear zone. I note that fault constitutive relations are

often also referred to as “friction laws” in the literature, probably because the fault zone in

many models is typically parameterized as a zero thickness fault “surface”. The “friction

law” terminology would be literally correct if the frictional force is the major resistance

in the fault zone. However, the term “fault boundary constitutive relation” has a more

generalized usage, as it can contain not only frictional resistance but also other types of

shear resistance in a fault zone, such as viscous resistance caused by the ductile deformation

in the shear zone matrix. To avoid confusion, in the subsequent text, I refer to the fault

boundary constitutive relation (generalized friction law) as “friction law” with quotation

marks.

Figure 3.3 shows four types of fault constitutive relations that are used in earth-
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quake rupture models. The first one is the “only frictional” relation (Figure 3.3a), where

only frictional forces are considered. Slip-weakening and rate-and-state friction are two

commonly used friction formulations. As we discussed in the previous sections, a sudden

frictional resistance drop can explain the first-order fast earthquake features reasonably

well (Chapter 2). If the frictional strength drop against fault slip is not sudden enough

compared to the unloading of elastic stress, slow slip behavior may emerge (Chapter 3.1).

Figure 3.3b shows another type of fault constitutive relation that only has viscous resis-

tance. In this case, fault effective strength increases as the bulk slip rate increases (being

rate-strengthening), and cannot suddenly drop by itself; yet, the fault can still slip if there

is an either steady or sudden external elastic stress increase. The viscous response could

reflect the distributed viscous flow in the shear zone matrix, which might have micro-scale

deformation mechanisms such as dislocation creep, cataclastic flow, pressure solution creep,

or so on. It is worth noting that the “only viscous” fault constitutive relation can be, and

is often, realized within a rate-and-state friction framework by setting a − b > 0. It can

reflect a vision that the shear zone matrix deformation is achieved by cataclastic flow where

there is “velocity-strengthening” frictional sliding between gouge fragments and fragments

crushing (e.g., Perfettini & Avouac, 2004; Bürgmann, 2018).

In the wide fault zones that are proposed to host slow earthquakes, both the

frictional resistance that can suddenly drop and the viscous resistance that is velocity-

strengthening may co-exist in the shear zone. Therefore, the fault constitutive relation

of the bulk fault zone could contain both frictional and viscous resistance components.

Figure 3.3c and 3.3d show two end-member ways to include both components in the fault
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elastic loadingfrictional

elastic loading

viscous

frictional
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(a) Only frictional resistance

(d) Frictional and viscous resistance in parallel(c)

(b) Only viscous resistance

Frictional and viscous resistance in 

series

elastic loading
viscous

Figure 3.3: Four typical fault constitutive relations used in rupture modeling. (a) “only
frictional” relation, where only frictional force is considered. (b) “only viscous” relation,
where only viscous force is considered. (c) Friction and viscous resistance both exist and
are in series, where the total shear deformation is partitioned into frictional slip and viscous
slip. (d) Friction and viscous resistance both exist and are in parallel, where the resistance
(or traction) is partitioned into frictional resistance and viscous resistance.
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constitutive relation: one is to have the two components in series, where the total shear

deformation is partitioned into frictional slip and viscous slip (Goswami & Barbot, 2018);

the other is to have the two components in parallel, where the resistance (or traction) is

partitioned into frictional resistance and viscous resistance (Ando et al., 2010; Nakata et al.,

2011; Ando et al., 2012; Lavier et al., 2013; Beall et al., 2019). Although which end-member

setup better represents the actual fault deformation is still unclear, both these two setups

are shown to have potential in explaining slow slip behaviors. In my dissertation, I will

explore the second end-member, where the fault resistance is partitioned. More discussion

of this “friction law” will be made in Chapter 4.

3.3.3 Two types of heterogeneity setup

Within the framework of this “pseudo-3D” approach, there are at least two major

ways of parameterization to include the heterogeneity of both “sudden stress drop” and

“viscous deformation” (Figure 3.4). One is to have a fault constitutive relation that contains

both frictional and viscous resistance as we discussed in section 3.3.2 (Figure 3.3c and 3.3d).

In this type of setup, heterogeneities are parameterized in the fault constitutive relation (or

“friction law”). Therefore, the “friction” parameters on the fault “surface” do not need to

be explicitly heterogeneous (Figure 3.4a).

Another way to create heterogeneities is to distribute different “friction” param-

eters on the fault “surface”. It can be normally achieved by separating fault surface as

a mosaic of “sudden-stress-drop-bearing” area and “stable-sliding” areas as shown in Fig-

ure 3.4b. If one uses rate-and-state friction as the “friction law”, the “sudden-stress-drop”

52



“viscous deformation” “sudden-stress-drop-bearing”
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a location on fault can 
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b. heterogeneity setup #2 

a. heterogeneity setup #1 

Figure 3.4: Two possible types of heterogeneity setups to realize a “brittle-viscous” mix-
ture. (a) Each location on fault can be both “sudden-stress-drop-bearing” and “viscous”.
It represents a physical vision that a fault zone has a finite width, and both brittle (or fric-
tional) and viscous deformation exist and are mixed in the shear zone. The right schematic
demonstrates four hypothetical mechanisms that are brought up to explain the brittle de-
formation in the shear zone that host slow slip: 1. frictional instabilities on the localized
fracture within or at the boundary of the strong clasts or grains within the shear zone, 2.
viscous flow instabilities in the shear zone, 3. transient pore pressure change. (b) A mosaic
fault surface of “viscous deformation” (blue) area and “sudden-stress-drop-bearing” area
(blue).
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area can be set as “velocity-weakening” (a− b > 0), while the ‘viscous” area can be set as

“velocity-strengthening” (a − b < 0) (Skarbek et al., 2012; Luo & Ampuero, 2018; Luo &

Liu, 2021). Basically, it is equivalent to having a mosaic pattern of the “only frictional”

resistance (Figure 3.3a) and “only viscous” resistance (Figure 3.3b) across the fault “sur-

face”.

These two types of heterogeneity setup are not exclusive to each other. Intuitively,

it is natural to assume that an implicitly heterogeneous “friction law” and an explicitly het-

erogeneous “friction” parameters distribution might co-exist. Models have tested where

everywhere on a fault has a viscous response to slip rate, while the “sudden-stress-drop-

bearing” area is set to have a positive stress drop and linear slip weakening, and the sur-

rounded “viscous” area is set to have zero stress drop (Ando et al., 2010; Nakata et al., 2011;

Ando et al., 2012). It is equivalent to having a mosaic pattern of the “frictional and viscous

in parallel” resistance (Figure 3.3d) and “only viscous” resistance (Figure 3.3b) across the

fault “surface”.

In summary, many flavors of heterogeneity setups have been proposed in the cur-

rent stage, and they all seem to have potential in generating slow slip behavior. These

different setups needed to be tested against both geological and geophysical observations,

and more theoretical modeling investigations are needed to build up the connections between

the observations and the underlying source process.
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Chapter 4

A “frictional-viscous in parallel”

rupture model and its implication

for slow slip events

4.1 Introduction

In the previous two chapters, I summarized the differences in some rupture pa-

rameters between slow slip events and fast earthquakes (Chapter 2). I then reviewed some

mechanisms that researchers often include in their models to explain the puzzling slow slip

observations (Chapter 3). In particular, our understanding of the frictional-viscous mecha-

nism is still poor, although many studies have shown its potentials for generating slow slip

behaviors (see references in section 3.3).

In this chapter, I present detailed analysis on one flavor of the frictional-viscous
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mixing models—a frictional-viscous in parallel rupture model (Figure 3.3d), where the total

fault strength equals the sum of frictional and viscous strength, and the shear (slip) is the

same for both the frictional and viscous component. This frictional-viscous mixing setup

is different from a frictional-viscous in series rupture model (Figure 3.3c), where the total

fault slip is the sum of frictional and viscous shear, while the strength (stress) is the same

for both frictional and viscous components (e.g., Goswami & Barbot, 2018; Beall, van den

Ende, Ampuero, & Fagereng, 2021). The frictional-viscous in parallel type of model has

been investigated by few existing studies (Ando et al., 2010; Nakata et al., 2011; Ando

et al., 2012; Lavier et al., 2013; Beall et al., 2019). In particular, Ryosuke Ando and his

colleagues explore the farthest in terms of explaining real-world geophysical observations.

They innovatively and extensively investigate a “frictional-viscous” model and its potential

in generating the observed slow slip behaviors in their three papers: Ando et al. (2010),

Nakata et al. (2011), and Ando et al. (2012) (hereafter referred to as “Ando’s model”).

Though the fault in Ando’s model is 2D, it does actually consider the finite-

thickness of the fault zone in the parameterization of the “friction law”. Yet, Ando’s model

is sometimes misunderstood by the community as a pure 2D fault model, with the slow slip

behaviors in their models mainly due to the mosaic pattern of “frictional” and “viscous”

patches on fault (e.g., Yin, Xie, & Meng, 2018; Behr et al., 2021). In my opinion, such

misconceptions are partially due to the presentation of Ando’s model in the three related

papers. The authors did not explain in detail the 3D physical significance (i.e., shear

deformation of a shear zone) behind the 2D “friction law” parameterization in dynamic

rupture models. In addition, the authors attribute much of the success in producing slow
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slip behavior to the mosaic pattern of “frictional” and ”viscous” patches, and overlook (at

least in the text) the intrinsic “frictional-viscous-mixing” in the “friction law” formalization

itself. It makes some of their readers confuse their models with those rate-and-state based

models where there are mosaic patterns of “velocity-weakening” and “velocity-strengthen”

patches, especially those who are not familiar with earthquake rupture modeling.

From the writer’s point of view, the above issue is sort of inevitable when Ando

and his colleague derived their models. First of all, geological observations that show the

thickness of slow earthquake fault zone within which frictional and ductile deformation

coexist were still rare back in the early 2010s. It might be more intuitive for audience

to think that it is the “frictional-viscous” heterogeneity across the fault plane that give

rise to the slow slip behaviors. Besides, Ando’s models are mostly demonstrated with

numerical simulations instead of analytical analysis, with only some analytical results in

explaining the diffusivity of tremor migration (Ando et al., 2012). From the writer’s point

of view, a lack of analytical insight might have led them to overlook the importance of the

intrinsic frictional-viscous in the “friction law”, and thus focus on the discussing the spatial

heterogeneity across the fault plane.

In the following chapter, I will revisit, elaborate, and complement Ando’s model,

extending its implications to incorporate the accumulating new observations after early

2010s. In particular, I will analytically examine the “frictional-vicous mixing” “friction law”

that is proposed in Ando’s model, providing relations that can relate geophysical observables

to the viscous and stress drop properties in the fault zone. I will first demonstrate why we

can treat the “frictional-vicous mixing” “friction law” as a 2D parameterization of the actual
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3D fault zone. Then, I will show that the frictional-vicous mixing “friction law” is the main

reason for generating slow slip behaviors, without necessarily including a mosaic pattern of

“frictional” and ”viscous” patches on the fault. Eventually, I find that the frictional-viscous

model can systematically reconcile the differences between fast earthquake and slow slip

event observations.

I note that I will only model the co-seismic rupture. Event-cycles that contain the

interseismic period are not considered in my models, and will be discussed in section 6.1.

4.2 Model setup

In all the models presented in this dissertation, I treat the 3D fault shear zone with

a finite thickness as a fault “surface” with zero thickness. Such an approach has been widely

used in dynamic rupture models and the rationale behind it is explained in section 3.3.2. A

“frictional-viscous in parallel” constitutive relation is used as the boundary condition of the

hypothetical fault “surface”. In addition, the effective frictional strength drop of the fault

zone is treated as the local frictional strength drop on brittle components times the ratio

between the frictional contact area and the total area. These two setups are not common in

dynamic rupture models for fast earthquakes. In this section, I will describe the setup of my

models and elaborate the vision and rationale behind it. I will also describe the boundary

integral equation framework I use to formularize the problem.
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4.2.1 “Frictional-viscous in parallel” fault constitutive relation

The constitutive relation I consider contains both a weakening component and a

rate-strengthening component. In a most general formulation, it can be written as,

τelastic = f

= ffrictional(D,V, ...) + fviscous(D,V, ...)

(4.1)

in which ffrictional and fviscous are the frictional component and the viscous component of

the total fault resistance, respectively. Both these two components are treated as functions

of different rupture parameters of the bulk shear zone, such as bulk slip D, slip rate V , and

other parameters.

Since I focus on the “co-seismic” process of slow slip events, I use a simple linear

slip-weakening law to represent the frictional resistance: when elastic loading stress τelastic

is less than the fault static strength f0, fault stays still (D = 0) and fault behaves like it

were not there (i.e. elastic wave can pass through as in the intact medium), and the viscous

resistance component equals zero. When τelastic reaches f0, fault strength f quickly drops

from a static value f0 to a residual value f1 plus the viscous term. It has the following

mathematical formulation,

τelastic = f

= f0 − (f0 − f1) · D
D0

+ fviscous(D,V, ...), when D ≤ D0

(4.2)

where D0 is slip weakening distance in the linear slip weakening law. After slip D reach

D0, fault strength will stay at or lower than the the residue level f1,
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τelastic ≤ f

= f1 + fviscous(D,V, ...), when D > D0

(4.3)

The viscous resistance fviscous needs to increase with slip rate V , but can take

various functional forms, such as logarithmic, linear, or a higher-order polynomial. Which

functional form better represents the bulk viscous deformation in the fault zone matrix is

still an open question. More discussion on the choice of viscous formulation will be discussed

in section 6.3, and here we will use a simple linear viscous response for fviscous,

τelastic = f

= f0 − (f0 − f1) · D
D0

+ ηv · V, when D ≤ D0

(4.4)

and,

τelastic = f

= f1 + ηv · V, when D > D0

(4.5)

where ηv is the parameter that controls the strength of the linear rate-strengthening effect.

It has a unit of Pressure · Time · Length−1 (e.g., Pa · s · m−1). ηv is one of the most

important variables in our analysis. For convenience, we will referred to ηv as

viscous coefficient in the subsequent text. It is different from the unit of viscosity η,

which is Pressure · Time (e.g., Pa · s). However, we can relate ηv with η by considering the

fact that slip rate V is the bulk shear deformation of the fault zone. V can be expressed as

average shear strain ε̄ times fault width W , and the linear viscous response can be written

as,
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fviscous = ηv · V

= ηv ·W · ε̄
(4.6)

and we can define the effective bulk viscosity η of the fault zone as,

η = ηv ·W (4.7)

Figure 4.1a shows the physical conceptualization of this constitutive relation. Brit-

tle structures that are able to host localized frictional slip are embedded in the viscous

matrix. Before the slip transient occurs, all stress is loaded in the brittle structures. Once

the local stress on the brittle structure exceed the yielding stress, localized frictional slips

quickly occur within the brittle structures and the bulk fault zone experiences a sudden

drop of shear resistance, inducing a difference between the elastic loading stress and bulk

fault strength. This net difference in stress drives the bulk viscous matrix to shear, which,

as a whole, can be treated as a viscous response of the fault “surface”. Figure 4.1b shows

the mechanical equivalent of the constitutive relation. The fault zone with brittle structures

embedded in a viscous matrix is parameterized as a system where the frictional response

and the viscous response are in parallel. The total fault strength is the sum of the frictional

resistance and the viscous resistance, while the deformation of the frictional and viscous

component are the same and they both equal to the bulk shear deformation of the fault

zone. With this parameterization, the bulk shear deformation in a fault zone with finite

thickness can be modeled as slip on a hypothetical zero-thickness fault “surface” (Figure

4.1c), and the associating rupture behaviors can be evaluated in a typical framework of
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Figure 4.1: Physical conceptualization of the constitutive relation (“friction law”) that
is used in my models. (a) How a fault zone with brittle structures (red) embedded in a
viscous matrix (blue) deform in response to the external elastic loading. (b) The mechanical
equivalent of the constitutive relation, where frictional response and viscous response are in
parallel. The resistance is partitioned into a frictional resistance component and a viscous
resistance component, while the deformation of the frictional and viscous component are
identical and they are both equal to the bulk shear deformation of the fault zone. (c)
Schematic showing the “pseudo-3D” approach in my models. The deformation of the fault
zone with finite thickness is treated as slip on a fault “surface” with zero thickness, and
the associated rupture behaviors can then be modeled in a typical framework of dynamic
rupture model that uses “friction law”.
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dynamic rupture model that uses “friction law”.

4.2.2 Effective frictional strength drop ∆τ and local frictional strength

drop ∆τf

In the constitutive relation of my models, when fault has not slipped, viscous

resistance equals zero because slip rate is zero (equation (4.4)) and frictional resistance

takes up all of the loading stress. Frictional strength quickly drops from f0 to f1 as slip

starts. Since the strength f in the constitutive relation is a parameterization of the bulk

fault zone, the frictional strength drop should be treated as an effective strength drop of

the whole fault zone instead of a local frictional strength drop on the brittle components. I

denote the effective frictional strength drop as ∆τ and the local frictional strength drop as

∆τf . Considering that the resistance force on a greater fault area A is provided with only

the frictional contacts, we have,

∆τ ·A = Camp ·∆τf ·Af ,

where Af is the actual contact area of the brittle component in the fault zone. Camp is a

correction factor for the amplification effect. I include Camp to consider that the frictional

contact could have a complex 3D structure in the fault zone with finite thickness, and these

structure may aid or suppress the stress amplification effect. Here, I assume that this factor

is of the order of 1.

We may rearrange the above equation to single out the effective frictional strength

drop on the left-hand side,
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Figure 4.2: Physical vision of the thick frictional-viscous fault zone that hosts slow earth-
quakes in comparison with the thin “frictional” fault zone that host fast earthquakes. A
subduction megathrust setting is used as an example for demonstration. On the fault that
host fast earthquakes (red), frictional contacts take up almost all the area of fault (

Af
A ≈ 1),

and the effective frictional strength drop ∆τ would be similar to the local frictional strength
drop ∆τf , and both would be of the order of MPa as suggested by seismological observa-
tions. On the fault that hosts slow earthquakes (a mosaic pattern of red and blue in the
zoom-in schematic, purple in the zoom-out schematic), frictional contacts are considerably

sparser (
Af
A � 1), and the effective frictional strength drop ∆τ would be considerably less

than the local frictional strength drop ∆τf .

∆τ = Camp ·
Af
A
·∆τf , (4.8)

This relation is used in my models to explain the low effective stress drop on a slow

earthquake fault. Figure 4.2 shows the physical conceptualization of my model that uses

a subduction zone megathrust setting as an example. Seismological evidence suggests that

the effective frictional strength drop ∆τ (both static and dynamic) for fast earthquakes

is of the order of MPa (section 2.1 and 2.2). If we assume that, on the fault that host

fast earthquakes, the fault zone is thin and the frictional contacts take almost all of the

fault area (
Af
A ∼ 1), then the effective frictional strength drop ∆τ would be similar to the
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local frictional strength drop ∆τf . In this case, both ∆τ and ∆τf would be at a MPa

level. On the fault that hosts slow earthquakes, frictional contacts are considerably sparser

(
Af
A � 1), and the effective frictional strength drop ∆τ would be considerably less than the

local frictional strength drop ∆τf . If one assume the local frictional strength drop ∆τf is

the same for both the fast earthquake fault and slow earthquake fault, being ∼ MPa, the

effective frictional strength drop ∆τ on the slow earthquake fault would be considerably

smaller than MPa. To explain the ∼ 10 kPa stress drop observation in slow slip events, we

can set
Af
A ∼ 1/100, then ∆τ would be about ∆τf/100 = 10 kPa.

Mathematically, the above vision has a similar principle as the relation in lab-

oratory friction experiments between the high stress on local frictional contact (∼ GPa)

and low average stress of the fault surface (∼ MPa) (e.g., J. H. Dieterich & Kilgore, 1994;

Scholz, 2019). However, the physical meaning of these two relations are different. In the

laboratory-scale experiments, the actual frictional contacts area is significantly smaller than

the total area due to the small-scale roughness (∼ 100 microns) on the fault surface as re-

ported in J. H. Dieterich and Kilgore (1994)), while the slip surface is still very thin overall.

In the vision of my model, the local frictional contacts are more like the total slip surface

in the laboratory experiments, instead of the small-scale roughness. The effective frictional

strength drop ∆τ is low on slow earthquake faults because the fault zone is mostly viscous,

and the frictional (brittle) components only take up a small portion.
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4.2.3 A boundary integral equation framework to formularize the rupture

problem

To analytically probe the rupture behaviors under the above fault constitutive law,

it is convenient to consider the problem in a boundary integral equation framework, which

is commonly used in earthquake mechanics problems. The fault is treated as an internal

boundary embedded in the medium, across which shear displacement is discontinuous. The

medium outside of the fault is treated as elastic. Fault resistance f is treated as the external

traction acting within the fault (outside the elastic medium domain). As a requirement of

the continuum system, this external traction needs to equal the internal traction within

the medium at the same location, which is usually referred to as the elastic loading stress

τelastic,

τelastic(ξ, t) = f(ξ, t),

which has already been shown in equation (4.1). ξ is a location on fault. In principle, both

f and τelastic should be vectors in a 3D problem. For simplicity, we require them to be

along the same fixed axis in my models, and thus both these parameters and the related

slip D are scalars in my models.

Both fault resistance f and elastic loading stress τelastic depend on the spatial-

temporal evolution of slip D(ξ, t) and its derivatives. The relation between f and slip

D(ξ, t) is given by the slip-weakening fault constitutive law (equation (4.4)),

f(ξ, t) = f0 − (f0 − f1) · D(ξ, t)

D0
+ ηv · Ḋ(ξ, t) (4.9)
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To solve for slip D(ξ, t), one must know the expression of τelastic. As a side note,

τelastic can be numerically evaluated using the finite element or finite difference method by

numerically solving the partial differential equations of elastodynamics system. However,

in the boundary integral equation framework I use here, the relation between τelastic and

slip D(ξ, t) is evaluated analytically with a Green’s function method, and the expression

can be written as the initial elastic loading stress τ0(x) plus a surface integral that contains

the slip rate function Ḋ(ξ, t),

τelastic(ξ, t) = τ0(ξ)− µ

2β
Ḋ(ξ, t)

+

∫
Γ

dS(ξ′)

∫ t

0
dτK̂(ξ, t− τ ; ξ′, 0)Ḋ(ξ′, τ) (ξ, ξ′ ∈ Γ),

(4.10)

in which Γ is the fault surface. − µ
2β Ḋ(ξ′, τ) is often referred to as the instantaneous traction

response or radiation damping term (e.g., Rice, 1993; Cochard & Madariaga, 1994; Zheng

& Rice, 1998; Tada, 2005), and β is shear wave speed. t = 0 is the time when no slip

has happened and the elastic stress on fault is τ0(ξ). K̂ is the integral kernel which is

a predetermined function once the medium property is set. It includes some differential

operator on slip rate Ḋ(ξ, t). For convenience, I will interchangeably refer to slip rate as

both Ḋ and V , depending on which expression is more suitable for the context.

In theory, one may obtain the spatial-temporal rupture evolution by equating

τelastic(ξ, t) and f(ξ, t) and solving for D(ξ, t). Since it contains an integral of slip, such

equations are commonly referred to as boundary integral equations. Usually, It is difficult to

solve the boundary integral equation for D(ξ, t). One common way is to turn to a numerical

simulation from here on, which is usually referred to as boundary integral equation method
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or boundary element method. However, if the goal is only to probe the first-order rupture

characteristics under a certain initial setup, one may simplify the mathematics with some

reasonable assumptions, and still be able to solve the equation analytically. My analysis

in this dissertation will involve both analytical and numerical approaches of solving the

boundary integral equations. In Chapter 4, I will demonstrate the analytical analysis, while

in Chapter 5, I will demonstrate the numerical analysis.

4.3 Characteristic slip rate V

In the following section, I will explore the peak slip rate V of the “frictional-viscous

in parallel” rupture models. I will first investigate the rupture behaviors analytically with

some assumptions to simplify the mathematics. Then, I discuss the analytical analysis’s

implications for explaining slow slip event observations.

4.3.1 Analytical derivation

Let’s first consider a fault at a location ξ with the frictional-viscous constitutive

law (equation (4.4)). A drop in the elastic stress causes the slip to speed up. Our goal here

is to have an estimate of the peak slip rate V after the stress drop. I refer to this slip rate

as the characteristic slip rate under the frictional-viscous constitutive law. Assume that at

time t = t0, this location ξ is just about to slip and the slip rate V (ξ, t0) = 0. The elastic

loading stress can be expressed as,
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τelastic(ξ, t0) = τ0(ξ)− µ

2β
· 0 +

∫
Γ

dS(ξ′)

∫ t0

0
dτK̂(ξ, t0 − τ ; ξ′, 0)Ḋ(ξ′, τ)

= τ0(ξ) +

∫
Γ

dS(ξ′)

∫ t0

0
dτK̂(ξ, t0 − τ ; ξ′, 0)Ḋ(ξ′, τ).

(4.11)

At this moment, the combined elastic loading stress, which consists of both the

initial stress and the co-seismic stress perturbation due to stress transfer from elsewhere on

the fault, reaches a static yielding strength f0,

τelastic(ξ, t0) = f(ξ, t0) = f0. (4.12)

The fault at this location starts to slip and experience a stress drop. In the linear

slip weakening “friction law” I use, the brittle component of the fault strength would drop

from f0 to f1 linearly as the fault slips a distance D0 (the second term of equation (4.10)).

Let’s assume the stress drop process is very sudden, and the fault slip increases to D0 in

a very short amount of time ∆t. The fault slip rate increases to V (ξ, t0 + ∆t). Our goal

now is to estimate this slip rate. It can be done by equating elastic loading stress with fault

strength. At time t = t0 + ∆t, the elastic loading stress can be written as,

τelastic(ξ, t0 + ∆t) = τ0(ξ)− µ

2β
· V (ξ, t0 + ∆t)

+

∫
Γ

dS(ξ′)

∫ t0+∆t

0
dτK̂(ξ, t0 + ∆t− τ ; ξ′, 0)Ḋ(ξ′, τ)

(4.13)

Without a thorough proof, I assert that when ∆t is considerably short and D0

is considerably smaller than the final slip, the incremental difference between the integral

term in equation (4.11) and (4.13) would be small enough as well,
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∫
Γ

dS(ξ′)

∫ t0+∆t

0
dτK̂(ξ, t0+∆t−τ ; ξ′, 0)Ḋ(ξ′, τ) ≈

∫
Γ

dS(ξ′)

∫ t0

0
dτK̂(ξ, t0−τ ; ξ′, 0)Ḋ(ξ′, τ),

In that case, combining equation (4.11), (4.12) and (4.13), we may write τelastic(ξ, t0+

∆t) as,

τelastic(ξ, t0 + ∆t) ≈ f0 −
µ

2β
· V (ξ, t0 + ∆t) (4.14)

On the other hand, we need to write out the expression for f(ξ, t0 + ∆t). Consid-

ering equation (4.10) and D(ξ, t0 + ∆t) = D0, it can be written as,

f(ξ, t0 + ∆t) = f0 − (f0 − f1) · D0

D0
+ ηv · V (ξ, t0 + ∆t)

= f1 + ηv · V (ξ, t0 + ∆t).

(4.15)

Equating equation (4.14) with (4.15), we can solve for the slip rate V (ξ, t0 + ∆t),

V (ξ, t0 + ∆t) ≈ f0 − f1
µ
2β + ηv

=
∆f

µ
2β + ηv

(4.16)

in which we denote ∆f = f0 − f1 as the sudden strength drop from the yielding fault

resistance f0 to the residue resistance f1 over the slip distance D0. It is often referred to as

the dynamic stress drop in the literature.

To make the physical meaning more clear in the above equation, we can rewrite

the right hand side expression as two non-dimension factors times shear wave speed β,
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V (ξ, t0 + ∆t) ≈
(

1 +
ηv

µ/(2β)

)−1

· 2(f0 − f1)

µ
· β, (4.17)

Since slip rate most likely reaches its peak value immediate after the stress drop

process, V (ξ, t0 + ∆t) can be treated as an estimation of the peak slip rate V under the

“frictional-viscous in parallel” fault constitutive law. In a later section, I will demonstrate

that the peak slip rate is a good representation of the characteristic slip rate for the model

we investigate. Aside from the elastic property µ and β, V also depends on the viscous

coefficient ηv and the dynamic stress drop ∆f between the yielding strength and residue

strength. Since we consider that stress drop happens quickly and over a short distance, the

slip weakening distance does not goes into the expression of V .

4.3.2 Implications: dependency on “friction” parameters

We may now perform some first-order analysis on the slip rate using equation

(4.17). Two “friction” parameters control the characteristic slip rate: the viscous coefficient

ηv and the sudden strength drop ∆f = f0 − f1. Figure 4.3 shows how V depends on ηv

in a log-log plot when sudden fault resistance drop ∆f = f0 − f1 is fixed. Equation (4.17)

suggests that ηv affects V through the ratio ηv
µ/(2β) , and f0 − f1 affects V through the ratio

f0−f1
µ . For a clearer insight into the physical process, I non-dimensionalize ηv, V , and ∆f

using µ/(2β), β, and µ, respectively. The non-dimensional value of ηv and V are shown on

the bottom and left axis (black). To facilitate comparison with observations, I also show ηv

and V in their physical units Pa · s/m and m/s on the top and right axis (red), assuming

µ = 3× 1010 Pa and β = 3.23× 103 m/s.

71



10-2 100 102 104 106 108

v
 in /(2 )

10-14

10-12

10-10

10-8

10-6

10-4

V
 i
n

 

106 108 1010 1012 1014

v
 in Pa s/m

10-10

10-8

10-6

10-4

10-2

100

V
 i
n

 m
/s

log( f/ ) = -6, f~104Pa

log( f/ ) = -4, f~106Pa

V for slow slip 

events

V for fast earthquakes

Figure 4.3: The relation between characteristic slip rate V and viscous coefficient ηv yielded
by equation (4.17). The sudden strength drop ∆f = f0− f1 is fixed. I show two line where
∆f is fixed at 10−6 µ (solid black line) and 10−4 µ (dashed black line). Considering that µ
is normally on the order of 1010 Pa, the former case has a ∆f of about 10 kPa, while the
latter case has a ∆f of about 1 MPa. For a clearer insight on the physical process, I non-
dimensionalize ηv, V , and ∆f using µ/(2β), β, and µ, respectively. The non-dimensional
values of ηv and V are shown on the bottom and left axes (black). To facilitate comparison
with observations, I also show ηv and V in their physical units Pa · s/m and m/s on the top
and right axis (red), assuming µ = 3× 1010 Pa and β = 3.23× 103 m/s. To compare with
observations, I show two sets of horizontal dashed lines with a triangle at the left end to
denote the typical V ranges for fast earthquakes (brown dashed lines, 10−1 − 100 m/s) and
slow slip events (blue dashed lines, 10−8 − 10−7 m/s).
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I show two lines along which ∆f is fixed at 10−6µ (solid black line) and 10−4µ

(dashed black line). Considering that µ is normally on the order of 1010 Pa, the former case

has a ∆f of about 10 kPa, consistent with values inferred for normal fast earthquakes; while

the latter case has a ∆f of about 1 MPa, consistent with inferred values of slow slip events.

V is aways greater for the larger ∆f case when ηv is the same. Both lines are relatively

flat when ηv is smaller than 1 µ/(2β). This is a region in the parameter space where the

radiation damping effect is stronger than the fault viscous effect, and V is mainly controlled

by the radiation damping factor. When ηv is greater than 1 µ/(2β), the fault viscous effect

becomes the dominant factor that affects V , and V start to decrease with ηv in both lines.

To compare with observations, I show two sets of horizontal dash lines with a

triangle at the left end to denote the typical V ranges for fast earthquakes (brown dash

lines, 10−1 − 100 m/s) and slow slip events (blue dash lines, 10−8 − 10−7 m/s). A typical

slip rate for fast earthquakes can be explained with a ∼ MPa level sudden strength drop ∆f

and an insignificant fault viscous effect. This result is consistent with our analysis in section

2.2.1 where no viscous effect is considered. In fact, this is not a surprise because equation

(4.17) approaches equation (2.5) when ηv is small. A typical slow slip event slip rate can be

achieved when ηv is high enough in a corresponding range. For the ∆f ∼ 10 kPa case, the

corresponding ηv range is ∼ 104−105 µ/(2β). For the ∆f ∼ 1 MPa case, the corresponding

ηv range is ∼ 106 − 107 µ/(2β). This result suggests that the frictional-viscous fault zone

setup I use here is capable of generating the slow slip rate of 10−8 − 10−7 m/s as observed

in SSEs.

Another practical interest here is to predict the “friction” parameters ηv and ∆f ,
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if the proposed “friction law” is actually presented in nature. However, It is not possible to

constrain both ηv and ∆f with only slip rate observations. According to equation (4.17),

any ∆f should have a range of ηv that can generate a typical slow slip event slip rate.

Additional observations are needed to constrain the “friction” parameter, which will be

discussed later.

4.4 Characteristic slip D

Our next goal here is to examine the characteristic slip D under the specified fault

constitutive relation. Like the previous section, I will first derive a solution analytically and

then discuss its implication for slow slip events.

4.4.1 Analytical analysis

The characteristic slip D here is defined as a first-order estimation of the final slip

on a fault. Assuming that at t = 0, everywhere on fault has not yet started to slip, and the

elastic loading stress τelastic is at its initial level,

τelastic(ξ, t = 0) = τ0(ξ). (4.18)

fault at ξ position starts to slip at some time, which is denoted as t0 in the previous section.

After a long enough time at t = t∞, all locations on the fault have come back to rest and

all the elastic waves have propagated outside the fault region. At that time, we have,

τelastic(ξ, t = t∞) = τ0(ξ)− µ

2β
· 0 +

∫
Γ

dS(ξ′)

∫ t∞

0
dτK̂(ξ, t∞ − τ ; ξ′, 0)Ḋ(ξ′, τ). (4.19)

74



At the same time, the fault resistance f should be lower than the residual level f1,

f(ξ, t = t∞) ≤ f1 + ηv · 0

= f1

(4.20)

with equality if the elastic loading stress does not go down below f1 (i.e., no dynamic

overshoot). Note that the viscous effect disappears here because slip rate returns to zero in

the end. This result indicates that the viscous effect is not important in affecting the net

slip. I will also elaborate this point in the discussion later.

For simplicity, we omit the dynamic overshoot effect here and take the equality

case of the inequation (4.20), and set it equal to equation (4.19). We have

∫
Γ

dS(ξ′)

∫ t∞

0
dτK̂(ξ, t∞ − τ ; ξ′, 0)Ḋ(ξ′, τ) ≈ −

(
τ0(ξ)− f1

)
≈ −∆τs

(4.21)

in which ∆τs is the static stress drop, which equals τ0(ξ) − f1 when there is no dynamic

overshoot effect.

We now need to carry out the integral on the left hand side. If we specify that all

slip rate on fault returns to and stays at zero after time t = tend (tend < t∞), we can change

the upper limit of the time integral from t∞ to tend,

∫
Γ

dS(ξ′)

∫ t∞

0
dτK̂(ξ, t∞ − τ ; ξ′, 0)Ḋ(ξ′, τ)

≈
∫

Γ
dS(ξ′)

∫ tend

0
dτK̂(ξ, t∞ − τ ; ξ′, 0)Ḋ(ξ′, τ)

(4.22)
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Now, the integral can be simplified if we consider that t∞ is considerably longer

than the slip end time tend. In that case, K̂(ξ, t∞ − τ ; ξ′, 0) would be a constant in time

that equals to the static solution. It can then be moved out of the temporal integral,

∫
Γ

dS(ξ′)

∫ t∞

0
dτK̂(ξ, t∞ − τ ; ξ′, 0)Ḋ(ξ′, τ)

≈
∫

Γ
dS(ξ′)K̂(ξ, t∞; ξ′, 0)

∫ tend

0
dτḊ(ξ′, τ)

=

∫
Γ

dS(ξ′)K̂(ξ, t∞; ξ′, 0)D(ξ′, t∞).

(4.23)

The above expression can be estimated using the static solution of a slip patch,

∫
Γ

dS(ξ′)

∫ t∞

0
dτK̂(ξ, t∞ − τ ; ξ′, 0)Ḋ(ξ′, τ) ≈ −C · µ

L
·D(ξ) (4.24)

in which C is a constant that depends on slip mode, free surface condition, and the shape

of the slip patch. It is of the order of one (and close to one). µ is shear modulus and L is

the characteristic length of the slip patch (rupture area). I note that, since we only care

about the first-order quantitative results, how L is controlled by the shape of the slip patch

should not affect our analysis here, and one may treat L as an order-of-magnitude estimate

of the rupture area dimension. Substitute equation (4.24) to (4.20), we can solve for the

characteristic slip D(ξ),

D(ξ) ≈ 1

C
· L
µ
·
(
τ0(ξ)− f1

)
≈ 1

C
· L
µ
·∆τs

(4.25)

This solution is the same as a typical final slip expression for regular earthquakes.

Slip is proportional to the static stress drop ∆τs and the characteristic length L of slip patch,
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and inversely proportional to the shear modulus µ. It is worth noting that the final slip is

not affected by the viscous coefficient ηv, even though ηv is a major factor in controlling

peak slip rate. This results is understandable, because the viscous effect is more related to

the transient process, while the net slip should be more controlled by the net difference in

stress.

4.4.2 Implications: small static stress drop for slow slip event

In this part, I will discuss the implication of the above analytical results for slow

earthquakes. Figure 4.4 shows the relation between D and L yielded in equation (4.25).

The static stress drop ∆τs is fixed and µ is set to be 3 × 1010 Pa. I show two line where

∆τs is fixed at 104 Pa (solid black line) and 106 Pa (dash black line). To compare with

observations, I show two shaded area denoting the typical rupture parameters D and L for

observed fast earthquakes (brown shaded area) and slow slip events (blue shaded area).

Since equation (4.17) is the same as a classic solution without viscous effect, a

∼ MPa level of stress drop in the above model is able to explain the “D-L” observations for

regular fast earthquakes, which is consistent with the abundant existing static stress drop

studies (e.g., Wells & Coppersmith, 1994; Allmann & Shearer, 2009). For slow slip events,

observations of L are concentrated in a range around ∼ 10 km, and the detailed D − L

scaling is not as well-constrained as in fast earthquakes. However, a first-order D for slow

slip events is around the order of ∼ cm (e.g., Bürgmann, 2018). Therefore, a static stress

drop of ∼ 10 kPa is needed to explain slow slip events.

The above static stress drop results are identical to the results in section 2.1,

where no viscous effect is considered. However, the physical significance is different, because
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viscous effect is included in the analysis here while not in section 2.1. The viscous effect

does not show up in the final results because it does not contribute to the strength of “end”

state (equation (4.20)). In another word, the results of equation (4.25) has an important

yet hidden implication, that is, the final slip D is not controlled by ηv. Since the final slip

D and the rupture dimension L for slow slip events can be measured from geodetic data to

the first order, the static stress drop ∆τs can be directly estimated from data.

In section 4.3, I show that the characteristic slip rate V in my model is controlled

by the dynamic strength drop ∆f and the viscous coefficient ηv. Although the V for slow

slip events can be directly measured from geodetic data, we can not estimate ∆f and V

simultaneously due to the trade-off (equation (4.17) and Figure 4.3). To resolve this trade-

off, one assumption we can make is that the dynamic strength drop ∆f has the same order of

magnitude as the static stress drop ∆τs, similar to what is observed for regular earthquakes

(section 2.1 and 2.2). In that case, both ∆f and ∆τs for slow slip events would be as low

as ∼ 10 kPa, which are significantly smaller than the ∼ MPa level for fast earthquakes. If

our model is indeed a good representation of the actual process, with this constraint, we

can estimated the ηv to be ∼ 104 − 105 µ/(2β) (solid black line in Figure 4.3).

I note that I mentioned two stress drop concepts in section 4.2.2: “effective fric-

tional strength drop ∆τ” and “local frictional strength drop ∆τf”. Both the dynamic

strength drop ∆f and the static stress drop ∆τs I discuss here should belong to the “ef-

fective frictional strength drop ∆τ” category. This is because we were estimating both ∆f

and ∆τs with the geophysical observations that can only capture the holistic picture of slow

slip event ruptures. Therefore, to explain the apparent low stress drop value, it is possible
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Figure 4.4: The relation between characteristic slip rate D and characteristic slip patch
length L yielded in equation (4.25). The static stress drop ∆τs is fixed. I show two lines
where ∆τs is fixed at 104 Pa (solid black line) and 106 Pa (dash black line). µ is set to be
3 × 1010 Pa. To compare with observations, I show two shaded area denoting the typical
rupture parameters D and L for observed fast earthquakes (brown shaded area) and slow
slip events (blue shaded area).

that it is not because the actual frictional strength drop is low (although it can be); instead,

it is because the frictional contacts are considerably sparse, which, I envision, corresponds

to vision that the distribution of brittle deformation in the viscous substrate is relatively

sparse (
Af
A � 1) in the SSE fault zones. In that case, if we assume that

Af
A ≈ 1 for regular

fast earthquakes that has a ∼ MPa level stress drop, we can estimated that
Af
A for slow slip

events is about 1/100. This result can possibly explain why the “LFE” features observed

geologically in fault zone is sparse but they still seems able to connect and rupture together
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in slow slip events. I will discuss more about this point in section 6.1.

4.5 Characteristic slip rate decay time Td

In the following section, I will investigate the characteristic time Td it takes for

slip rate to slow down after the sudden frictional strength drop in the current model. This

quantity is of particular interest here because for slow slip events, Td can be independently

measured using different geophysical observations. Using geodetic data, one can directly

measure the characteristic slip rate decay time Td from the surface displacement time-series

across the study area, and at the same time obtain the slip D and slip rate V of slow

slip events. If we assume that tremor and LFE locations represent the fault area that is

slipping, we can estimate the characteristic slip rate decay time Td using high-frequency

seismic data, without needing to know the slip D or slip rate V of slow slip events. Similar

to previous sections, I will first derive the dependence of Td in our model, and then discuss

its implication for slow slip events.

4.5.1 Analytical derivation

Consider an idealized situation. Assume there is a patch on fault with a character-

istic length L. At some time, the elastic loading stress τelastic reaches the yielding friction

strength f0 everywhere on the patch, and the whole patch starts to slip simultaneously.

Although the stress and slip on patch should in principle be heterogeneous, for the con-

venience of obtaining a characteristic value, we may assume that the evolution of elastic

loading stress τelastic and slip rate V are homogeneous across the patch, and thus can be
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treated as functions that depend solely on time. In addition, we may assume that the slip

weakening distance D0 is considerably smaller than the final slip, and that the frictional

strength drop process can be treated as immediate. Let us denote that at time t = 0, the

frictional strength drops from f0 to f1. At this moment, the slip rate V (t = 0) on the patch

is V0 (i.e., the initial slip rate right after the immediate stress drop is V0).

To obtain the evolution of V (t) and τelastic(t), we may equate τelastic(t) with f(t).

We may write τelastic(t) as,

τelastic(t) = τ0 −
µ

2β
· V (t) +

∫
Γ

dS(ξ′)

∫ t

0
dτK̂(ξ, t− τ ; ξ′, 0)Ḋ(ξ′, τ) (4.26)

To form an ordinary differential equation, we want to rewrite the integral term

into a function that solely depends on slip or slip rate. In section 4.4, we have shown that

when only considering the static contribution, the integral can be written as a function of

slip (equation (4.24)). In the case here, the dynamic component may not be insignificant

in general. However, inspired by the static analysis, we may separate the integral kernel K̂

into a static part and a dynamic part,

K̂(ξ, t− τ ; ξ′, 0)

= K̂(ξ, t∞ − τ ; ξ′, 0)−
(
K̂(ξ, t∞ − τ ; ξ′, 0)− K̂(ξ, t− τ ; ξ′, 0)

) (4.27)

in which t = t∞ is a long enough time after when all location on fault has come back at rest

and all the elastic waves have propagated outside the fault region. Substituting equation

(4.27) into the integral in (4.26), we can separate the integral into two parts, and the first

part can be expressed as a linear function of slip D(t),
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∫
Γ

dS(ξ′)

∫ t

0
dτK̂(ξ, t− τ ; ξ′, 0)Ḋ(ξ′, τ)

=

∫
Γ

dS(ξ′)

∫ t

0
dτK̂(ξ, t∞ − τ ; ξ′, 0)Ḋ(ξ′, τ) + φ(t)

≈ −C · µ
L
·D(t) + ψ(t)

(4.28)

in which,

ψ(t) =

∫
Γ

dS(ξ′)

∫ t

0
dτ

(
K̂(ξ, t∞ − τ ; ξ′, 0)− K̂(ξ, t− τ ; ξ′, 0)

)
Ḋ(ξ′, τ). (4.29)

The term ψ(t) here represents the difference between the static and the dynamic solution

with instantaneous response − µ
2β · V (t) excluded.

To carry on our analysis, we assert that ψ(t) is considerably smaller than −C · µL ·

D(t). Physically, it is equivalent to assuming the temporal change in stress plays a smaller

role than the static stress in terms of affecting the rupture process. This assumption should

be proper when slip rate is small. With this assumption, equation (4.26) can be written as,

τelastic(t) = τ0 −
µ

2β
· V (t)− C · µ

L
·D(t) (4.30)

To form an equation, we also need to write out the fault resistance expression, which can

be achieved using the “friction law”. Considering that the frictional stress on fault has

completely dropped to f1, we have

f(t) = f1 + ηv · V (t). (4.31)

Equating (4.30) with (4.31), we have,
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τ0 −
µ

2β
· V (t)− C · µ

L
·D(t) = f1 + ηv · V (t),

taking differentials on both sides, we obtain an ordinary differential equation,

− µ

2β
· dV (t)− C · µ

L
· V (t) dt = ηv · dV (t), (4.32)

in which we write out D(t) as V (t) dt. This is an ordinary differential equation in which

separation of variables is possible. We can write V (t) and t on two sides of the equation

separately.

dt = − 1

C
· L
µ
·
(
µ

2β
+ ηv

)
· dV (t)

V (t)

= − 1

C
· L
µ
·
(
µ

2β
+ ηv

)
d lnV (t).

(4.33)

Integrating (4.33) from t = 0 to t = t, we have,

t = − 1

C
· L
µ
·
(
µ

2β
+ ηv

)
· ln
(
V (t)

V0

)
.

Solving for V (t), we may obtain the evolution of slip rate,

V (t) = V0 · exp

(
−Cµ
L
·
(
µ

2β
+ ηv

)−1

· t

)

= V0 · exp

(
−C ·

(
1 +

ηv
µ/2β

)−1

· t

L/2β

) (4.34)

Equation (4.34) gives the solution of V (t). It shows that the slip rate will experi-

ence an exponential decay after reaching the peak level V0. From the derivation we know

that the exponential form of decay originates from the choice of linear viscous resistance.
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A different functional form of viscous resistance (e.g., logarithm, polynomial) will lead to

another functional form of decay, which will be discussed in section 6.3. Here, we focus on

the slip rate decay time under linear viscous resistance. Based on (4.34), the characteristic

slip rate decay time Td can be defined as,

Td =
1

C
·
(

1 +
ηv
µ/2β

)
· L

2β
. (4.35)

This result suggests that, aside from the elastic property µ and β and the patch geome-

try factor C, the characteristic slip rate decay time Td is mainly controlled by both the

characteristic slip patch length L and the viscous coefficient ηv. At the same time, stress

conditions, such as static stress drop ∆τs and dynamic frictional strength drop ∆f , or slip

parameters, such as final slip D and initial slip rate V0, do not go into the expression for Td.

Again, I note that how L is controlled by the shape of the slip patch should not affect our

analysis here, and thus one may treat L as an order-of-magnitude estimate of the rupture

area dimension, because we only care about the first-order quantitative results.

Another way to obtain a characteristic decay time Td is to divide the characteristic

slip D (equation (4.26)) by the characteristic slip rate V (equation (4.17)),

Td =
D

V

=
∆τs
∆f
· 1

C
·
(

1 +
ηv
µ/2β

)
· L

2β
,

(4.36)

Equation (4.35) and (4.36) are almost the same except for a factor ∆τs/∆f in (4.36).

However, the physical significance of the similar results is more than a mere agreement.

The expression of (4.35) is obtained from the V (t) solution (4.34), which actually depicts
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how slip rate decays, and Td is the factor with a dimension of time in the exponent. The

expression of (4.36), on the other hand, is obtained simply by dividing final slip D with

the peak slip rate V right after the stress drop process. There is no guarantee that such an

approach would yield an answer similar to (4.35), because the peak slip rate can be different

from the average, or characteristic slip rate. In fact, it is at this point I demonstrate why

the peak slip rate V derived in section 4.3 can be also treated as the characteristic slip rate.

From this point of view, (4.35) is a more rigorous solution.

However, the derivation of (4.35) is not completely rigorous either, because we

ignore the transient stress interaction ψ(t) that is mediated by waves. If the patch is brought

to failure by a transient stress wave (loading stress from τ0 to f0), this wave contribution

may only be present during the slip rate decay process for a short amount of time. When

the wave is gone, the slip rate may experience a drop as well. Not considering such effect

may lead to an overestimate of Td. Such effects are implicitly considered in the derivation

of (4.36), and that’s probably why the factor ∆τs/∆f does not show in (4.35) but in (4.36).

Nevertheless, equation (4.36) would be the same as (4.35) to first-order if the

static stress drop ∆τs is of the same order as the dynamic strength drop ∆f . This is

probably the case for slow slip events because the stress interactions from elastic waves

might not be strong in slow rupture propagation, and the triggering mechanism within a

spontaneous slow slip event rupture might be dominated by static stress transfer. In the

following order-of-magnitude analysis, I will assume ∆τs/∆f ∼ 1 and use equation (4.35) for

convenience. I note that if the frictional failure is almost entirely triggered by a transient

stress (∆τs/∆f � 1; e.g., tele-seismic surface wave, sudden pore pressure change), the
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above assumption might not be correct.

4.5.2 Implications: Td for slow slip event ruptures

We have just obtained some theoretical relations of the characteristic slip rate

decay time Td, the next step is to test whether the above theoretical relation can explain

observations. Measuring the slip rate decay time in slow slip events can be challenging.

With geodetic data, it is more convenient to measure the event duration T , which is how

long the whole event lasts, due to its limited spatial resolution on fault. However, the

event duration T is not only related to the slip rate decay time Td, but also related to how

long in time the rupture front propagates. If the rupture propagation time is longer than

the slip rate decay time, the event duration T would be more closely related to the rupture

propagation time. This complication is more convenient to discuss in a later section (section

4.8), after we derive the relation for the characteristic rupture propagation speed Vr of the

current model. Therefore, in this section I focus on seismic observations.

With seismic data, it is possible to measure Td more accurately than with geodetic

data, if we assume that area with high slip rate (i.e., slipping fault) coincides with tremors

and LFE locations. In that case, we may estimate Td by measuring the duration of tremor

activity at one location, and estimate the slipping area length by measuring the concur-

rent tremor activity length. This length is then treated as the characteristic slipping area

dimension L that is used in equation (4.35). Figure 4.5 shows tremor migration patterns

along strike in three subduction zones: (a) Tremors in the Cascadia subduction zone under

northern Washington during the 2011 episodic tremor and slip event (Ghosh et al., 2015,
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(a) Ghosh et al. 2015, Cascadia

(c) Obara et al. 2012, Nankai beneath Kii Peninsula

(b) Nishikawa et al. 2019, Japan Trench

L~10 km

 Td~1 day

L~40 km

 Td~5 days

L~50 km

 Td~3 days

Figure 4.5: Three example tremor migration patterns reported in different subduction en-
vironments. I estimate the concurrent slipping area length L and slip rate decay time Td
from the three published figures and mark my estimations on the original figure using two
black bars, one vertical and one horizontal. The numbers of my estimation are written on
the side. (a). Tremors in the Cascadia subduction zone under northern Washington during
the 2011 episodic tremor and slip event (Ghosh et al., 2015, Figure 5). (b). Tremors near
the Japan Trench in 2017 (Nishikawa et al., 2019, Figure 1C). (c). Tremors in the Nankai
subduction zone under Kii Peninsula in 2006 (Obara et al., 2012, Figure 1c).
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Figure 5). (b) Tremors near the Japan Trench in 2017 (Nishikawa et al., 2019, Figure 1C).

(c) Tremors in the Nankai subduction zone under Kii Peninsula in 2006 (Obara et al., 2012,

Figure 1c). Since the purpose here is only first-order estimation, I roughly estimate L and

Td for the three published results directly on their figures using the drawing software Adobe

Illustrator. For the Cascadia case, I estimate L ∼ 40 km and Td ∼ 5 days. For the Japan

Trench case, I estimate L ∼ 50 km and Td ∼ 3 days. For the Nankai case, I estimate

L ∼ 10 km and Td ∼ 1 day.

As a side note, my theoretical relation of Td does not explain why L would be

of a certain value; instead, L is thought to be a given condition. L are all about a few

tens of kilometers in the above observations. I suspect that it is related to the along-dip

width of rupture area, which is also about a few tens of kilometers. Theoretically, when

a rupture propagates along the strike of a long-narrow fault, the width of the high slip

rate pulse behind the rupture front is of the same order of magnitude with the narrow

side width (e.g., Dalguer & Day, 2009). The hypothesis of along-dip with controlling L is

also supported by my numerical simulation in Chapter 5. Nevertheless, figuring out what

control L is not the focus here. We can treat the measured value as a given condition and

carry on with our analysis.

The above estimation all estimate Td to be on the order of a few days, which is

about 105 seconds. Such a long slip rate decay time cannot be explained by a traditional

dynamic rupture model with only sudden weakening. In our model with a viscous response,

a significantly longer decay time can be achieved with a high viscous coefficient ηv. Figure

4.6 plots Td against ηv (in log-log space) using the theoretical relation (4.35) with C set to
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Figure 4.6: Td against ηv (in log-log space) using the theoretical relation (4.35) with C set
to be one and L fixed. The black solid line shows the case where L is fixed at 50 km, and the
black dash line shows the case where L is fixed at 10 km. Two blue horizontal dashed lines
are plotted indicating the location of 5 days and 1 day. Similar to Figure 4.3, I show the
non-dimensional value of ηv on the bottom axis (black), and show the value in the physical
units Pa · s/m on the top axis (red).
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be one and L fixed. Since the estimated slip area length is about few tens of km, we show

two cases with L fixed at 50 km (black solid line) and with L fixed at 10 km (black solid

line). Two blue horizontal dashed line are plotted indicating the location of 5 days and 1

day. Figure 4.6 implies that, to generate a slip rate decay time Td as long as a few days, ηv

needs to be about 104 − 105 µ/(2β).

Importantly, the estimation of ηv here using Td is consistent with the estimation

in previous sections. In section 4.3, I derive an expression of the characteristic slip rate

V (equation (4.17)). Since V depends on both ηv and the dynamic stress drop ∆f , we

cannot simultaneously estimate both parameters using only the V observation. In section

4.4, I derive an expression of the characteristic final slip D (equation (4.25)). Using that

expression, we may estimate the bulk static stress drop ∆τs to be ∼ 10 kPa. If we assume

that ∆f is of the same order as ∆τs, we may then substitute the ∼ 10 kPa level into equation

(4.17) to estimate ηv, and the corresponding ηv would be about ∼ 104 − 105 µ/(2β).

Because the estimation of ηv using (4.35) does not involve any stress drop value,

the estimation of ηv in this section should be an independent constraint. All our theoretical

estimations have achieved reasonable agreement with observations so far. It suggests that

the model setup we have here has potential to explain the first-order features of SSEs in a

self-consistent manner.

4.6 Characteristic rupture propagation speed Vr

In this section, I will discuss the rupture propagation speed Vr under our “frictional-

viscous” model setup. We are interested in Vr because it can be estimated using tremor
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migration speed, if we assume that tremors and LFEs coincide with the SSE rupture front.

For the main SSE rupture front, the rupture propagation speed is estimated to be on the

order of ∼ 10 km/day. This value is significantly lower than the typical rupture propagation

speed (∼ km/s) in fast earthquakes, and cannot be explained with a classic “sudden stress

drop” earthquake rupture model. In the following text, I will first derive the theoretical

relation for Vr under the “frictional-viscous” model setup, and then discuss its implications

for SSEs.

4.6.1 Analytical results

In the dynamic rupture model we explore here, there is no migration of an external

forcing (like fluid migration). Rupture propagates due to a slip cascade: the slipping fault

area causes a stress change in the un-slipped fault area, and triggers it to slip. The rupture

speed would then depend on how fast the stress transfers on fault. In section 2.3, we show

that the slipping fault area would cause two types of stress perturbation to the nearby

fault: the dynamic stress perturbation and the static stress perturbation. The dynamic

stress perturbation travels at the speed of seismic waves. As shown in equation (2.7), a

propagating rupture that is mainly triggered by dynamic stress perturbations would have

a propagation speed Vrd that is similar to a seismic wave speed,

Vrd ≈ β,

where β is the shear wave speed. On the other hand, the traveling speed of the propagating

rupture that is mainly triggered by the static stress perturbation depends on the slip rate of
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the slipping area. As shown in equation (2.12), if the rupture is mainly triggered by static

stress perturbation, the propagation speed Vrs can be expressed as,

Vrs ≈
Ls
Lp
· µ

S∆τs
· V,

in which Lp is the characteristic length of the high slip rate zone behind the rupture front,

and Ls is the characteristic length of the high stressing rate zone ahead of the rupture front

(Figure 2.2). Ls should be comparable to Lp (LsLp ≈ 1). S is the ratio between strength excess

f0 − τ0 and static stress drop ∆τs, so S∆τs is the strength excess. V is the characteristic

slip rate at the rupture front.

In section 2.3, we have shown that for an earthquake rupture model that only

considers a sudden stress drop component, both Vrd and Vrs will be similar to seismic wave

speed, which is of the order of km/s. It means that a “sudden stress drop model” will always

have a rupture propagation speed at a km/s level. Since it is consistent with the rupture

speed observations of fast earthquakes, we may conclude that a “sudden stress drop” model

is a decent first-oder description for fast earthquakes.

For the “frictional-viscous” model, the above two triggering mechanisms should

also exist, and therefore we may directly use equations (2.7) and (2.12) to analyze the

rupture propagation speed in the the “frictional-viscous” model. The dynamic-stress-led

rupture speed Vrd would still be ∼ β. For the static-stress-led rupture speed Vrs, we need to

substitute the characteristic slip rate V of the “frictional-viscous” model (equation (4.17))

into equation (2.12), and we will obtain,

92



Vrs ≈
Ls
Lp
· µ

S∆τs
· 2∆f

µ
·
(

1 +
ηv

µ/(2β)

)−1

· β

≈ Ls
Lp
·
(

1 +
1

S

)
·
(

1 +
ηv

µ/(2β)

)−1

· 2β,
(4.37)

in which we makes use the relation that ∆f/∆τs = 1+S. Since Ls
Lp

and 1+ 1
S are both about

the order of 1 and are not likely to have a variation of several orders of magnitude, Vrs is

mostly controlled by the viscous coefficient ηv through the ratio ηv
µ/(2β) . If ηv is high, Vrs

can be quite low, and there will a ηv that corresponds to the observed rupture propagation

speed for SSEs.

4.6.2 Implications for slow slip event

In the “frictional-viscous” model, the dynamic stress transfer speed Vrd would

always be of seismic wave speed, while the static stress transfer speed Vrs can be significantly

lower due to a lower characteristic slip rate V . Can the “frictional-viscous” model explain

the abnormally low rupture propagation speed in SSEs?

It should. If the static stress transfer is the dominant rupture triggering mech-

anism, since Vrs decreases with ηv, we may find a ηv that corresponds to the observed

rupture speed for SSEs. However, one thing we have not considered yet is the relative

amplitude of the two types of stress transfer. The amplitude of the dynamic stress transfer

mainly depends on the slip rate of the slipping area. In general, the greater the slip rate,

the stronger the dynamic stress perturbation. On the other hand, the amplitude of the

static stress transfer is mainly controlled by the slip. In general, the greater the slip, the

stronger the static stress perturbation. In the “frictional-viscous” model, the slip rate de-
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creases significantly as ηv increases, while the final slip is not affected by ηv. Therefore, the

amplitude of dynamic stress transfer should decrease as ηv increases, while the amplitude

of static stress transfer is not affected. As a result, Vrs should outweigh Vrd in representing

the rupture propagation speed Vr when ηv is large, and Vr can be significantly lower than

a typical seismic wave speed.

Figure 4.7 shows how rupture propagation speed Vr changes with ηv in our theo-

retical model. The black dashed line shows the Vr when the dynamic stress transfer is in

control (referred to as Vrd), and the black solid line shows the Vr when the static stress

transfer is in control (referred to as Vrs). Since dynamic stress transfer always travels at

a seismic wave speed, Vrd is not affected by ηv. Vrs stay at the seismic wave level when

ηv is smaller than 1 µ/(2β). As ηv increases, Vrs decreases significantly. When one of the

mechanisms is dominant, the rupture speed Vr curve should be better represented by the

corresponding curve.

When ηv is small, both static and dynamic stress are important, and both Vrd

and Vrs are of the order of km/s. Therefore, Vr should also be of the order of km/s.

To first order, this theoretical result is consistent with the observed rupture speed in fast

earthquakes (roughly bounded by the two brown dashed lines, 2 − 7 km/s). When ηv is

large, Vr should be better represented by Vrs because static stress transfer becomes the

dominant triggering mechanism. To explain the low observed rupture propagation speed

in SSEs (roughly bounded by the two blue dashed lines, 4 − 40 km/day), ηv need to be

∼ 104 − 105 µ/(2β).

This ηv value is consistent with the ηv estimation using other SSE observables in
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Figure 4.7: The relation between rupture propagation speed Vr and viscous coefficient ηv
yielded in equation (2.7) for the dynamic stress transfer speed Vrd (black dashed line) and
in equation (4.37) for the static stress transfer speed (black solid line). For a clearer insight
on the physical process, I non-dimensionalize ηv and Vr using µ/(2β) and β, respectively.
The non-dimensional value of ηv and Vr are shown on the bottom and left axis (black). To
facilitate comparison with observations, I also show ηv and V in their physical units Pa · s/m
and m/s on the top and right axis (red), assuming µ = 3× 1010 Pa and β = 3.23× 103 m/s.
To compare with observations, I show two sets of horizontal dashed lines with a triangle
at the left end to denote the typical Vr ranges for fast earthquakes (brown dash lines,
2− 7 km/s) and slow slip events (blue dashed lines, 4− 40 km/day).
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previous sections. Importantly, since the Vr observations for SSEs are independent from

other observations that we discussed earlier, the agreement between model and observa-

tions here should be independent from the agreement we demonstrate earlier. Our results

here again imply that the “frictional-viscous” model has the potential to be a useful rep-

resentation of the actual SSE process, and thus explain different SSE observations in a

self-consistent way.

4.7 Diffusive behavior of tremor migrations

4.7.1 Observations of diffusive tremors behavior

Tremors are sometimes found to have a diffusive migration pattern: the time t it

takes for tremors to propagate is proportional to the square of the propagation distance x,

t = (Df )−1 · x2 (4.38)

in which I use Df to denote diffusivity instead of D to distinguish it from the final slip.

The diffusive behavior of tremor migrations has been reported in the Nankai sub-

duction zone (Ide, 2010; Ando et al., 2012; Poiata, Vilotte, Shapiro, Supino, & Obara,

2021). Recently, Creager, Ulberg, and Houston (2020) report diffusive behaviors of tremor

in the Cascadia subduction (Creager et al. (2020) is an abstract in AGU Fall Meeting 2020

and their paper haven’t come out by the time I write this manuscript). Figure 4.8 shows

two examples of diffusive tremor migration in the Nankai subduction zone reported by Ide

(2010) (his Figure 3a) and Ando et al. (2012) (their Figure 1a). In both cases, the initial

tremor burst has a length about 10 to 20 km, and propagates outwards for several tens
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(a) Ide 2010, Figure 3a (b) Ando etal 2012, Figure 1a

Figure 4.8: Two examples of diffusive tremor migration in Nankai subduction zone reported
by Ide (2010) (Figure 3a) and Ando et al. (2012) (Figure 1a)

of kilometers in a diffusive manner. The diffusivities reported in these two studies are

104 m2/s and 0.5× 104 m2/s, respectively. Creager et al. (2020) reports that the diffusivity

for the diffusive tremor migration in the Cascadia subduction zone is 2 to 5 × 103 m2/s.

In summary, the few reported diffusivities for diffusive tremor migration are of the order of

103 − 104 m2/s.

4.7.2 Explanation in Ando et al. (2012)

If we assume that tremor activities coincide with the SSE rupture front, the above

observations would suggest that the SSE ruptures are diffusive. Such a diffusive rupture

propagation is seldom reported for fast earthquakes, except for those earthquake swarms

that are thought to be controlled by the migration of external forcing such as fluids. Ando

et al. (2012), which is one of the three papers related to the Ando’s model (see section

4.1 for definition), demonstrates that the diffusive rupture pattern can be reproduced with

the “frictional-viscous” model discussed here. Ando et al. (2012) consider a situation where
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there is a strong patch in the central position of the fault with a high stress drop. The strong

patch is surrounded by a weaker area of fault, and rupture propagates from the strong patch

outward into the un-ruptured, weaker area. In contrast to section 4.6, where we consider

that the rupture propagates due to a cascade of fault slip at the rupture front, Ando et

al. (2012) consider that the slip outside the strong patch is too weak to push itself forward

and cascade; instead, the rupture propagation outside the strong patch is still driven by the

static stress field of the strong patch, and thus would yield diffusive response.

In addition to numerical simulations, Ando et al. (2012) provide an analytical

quasi-static solution of stress evolution in 2D, where a concentrated point source has a stress

drop at the origin, and the shear stress propagates outward to a pure velocity-strengthening

(viscous) fault (Figure 4.9a). They obtain the solution by directly solving the boundary

integral equations. The solution implies a diffusive stress evolution. Using the solution,

Ando et al. (2012) obtain a relation that can associate ηv with the observed diffusivity Df

(equation 4 in Ando et al. (2012)),

Df =
µ∆τLi
2πηvτe

(4.39)

in which I switch the original variable name D with Df . ∆τ is the prescribed stress drop

at the origin. Li is the effective length of the concentrated point source. τe is the difference

between yielding strength and initial stress on the fault except for the origin.
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Figure 4.9: (a) Schematic of the 2D analytical model setup in Ando et al. (2012). (b)
Schematic of the 3D analytical model setup in this research. Rupture that propagates
along the x direction is considered. The strong patch dimension parallel to x is L1, and the
dimension perpendicular to x is L2. (c) Schematic showing the situation when point P is
close to the patch and xP � L2. (d) Schematic showing the situation when point P is far
away from the patch and xP � L1 and L2.
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4.7.3 My analytical solution

In this part, I will illustrate the diffusive behavior of tremor migrations (and thus

SSE rupture propagations) and derive the relation between ηv and Df using a slightly

different approach from Ando et al. (2012). The new derivation may not be as rigorous as

in Ando et al. (2012), but would fit better to the demonstration flow here from a holistic

point of view. As I will show in the end, my derivation here yields the same Df -ηv relation

as in Ando et al. (2012) (equation (4.39)). Instead of considering a 2D model with stress

drop concentrated at the origin, I consider a general 3D model with a strong patch that

has finite area (Figure 4.9b). I consider that the rupture propagates along the x direction.

The strong patch dimension parallel to x is L1, and the dimension perpendicular to x is L2.

Within the strong patch, the initial stress is set to be the same as the yielding stress, and

the whole patch starts to slip simultaneously with a sudden stress drop of ∆f . Outside the

strong patch, the fault needs an incremental stress increase of τe = f0− τ0 in order to start

slip. Similar to Ando et al. (2012), I ignore the stress cascade outside the strong patch, and

consider that the rupture propagation outside the strong patch is entirely controlled by the

stress influence from the strong patch. Everywhere on the fault is “frictional-viscous” with

a viscous coefficient of ηv.

Let’s consider a point P on the x axis outside of the strong patch. Its distance to

the center of the patch is xP . We are interested in the stress perturbation on P received

from the patch. In section 4.6, we demonstrate that the slipping fault would send out two

types of stress to the un-ruptured area: dynamic stress and static stress. Dynamic stress

always travels at seismic wave speeds. So if the fault at P is triggered by a dynamic stress
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perturbation, a diffusive rupture propagation will not be plausible. However, we have shown

that when ηv is large, the slip rate decreases significantly while final slip is not affected.

In this case, the static stress transfer becomes the dominant mechanism, and the stress

perturbation on P might be evaluated by only considering the static stress transfer.

At time t, the strong patch slip is D(t). The stress perturbation at point P at

time t can be evaluated using a static stress transfer solution (e.g., Okada, 1992). By doing

this, I assume that the stress increase due to the patch’s increasing slip is slow enough that

the wave travel time from the patch to point P is negligible. Since we are interested in the

diffusive behavior, what we care about the static solution is how fast the stress decay with

distance. If P is close to patch, the stress perturbation should be close to the stress drop

∆τ(t) on fault, which can be written as,

∆τ(t) = C · µ · D(t)

L
(4.40)

where C is a constant close to 1 that depends on the geometry of the patch. L is the

characteristic length of the patch in terms of stress drop. It tends to be the shortest

dimension of the patch.

Let’s first consider this situation: Point P is close to the patch and xP � L2

(Figure 4.9c). This is most likely when L2 is considerably greater than L1 (the extreme

condition is a 2D model). If we ignore the short travel time of the static stress propagation,

the stress perturbation τ(xP , t) at point P at time t could be roughly estimated as ∆τ(t)

times a decay factor that depends on the distance xP . For case 1 where xP � L2, solutions

in Okada (1992) suggest that the decay is ∼ 1/(xP )2. We will have,

101



τ(xP , t) ≈ ∆τ(t) · (L1)2

(xP )2

= C · µ · D(t)

L
· (L1)2

(xP )2

(4.41)

To obtain τ(xP , t), we need to have the expression of D(t). In section 4.5, we

have obtained the slip rate V (t) evolution of a fault patch in equation (4.34). D(t) can be

obtained simply by integrating V (t) from 0 to t,

D(t) =

∫ t

0
V (τ) dτ

= V0 ·
∫ t

0
exp

(
−C ·

(
1 +

ηv
µ/2β

)−1

· τ

L/2β

)
dτ

= V0 ·
1

C
·
(

1 +
ηv
µ/2β

)
· L

2β
·

[
1− exp

(
−C ·

(
1 +

ηv
µ/2β

)−1

· t

L/2β

)] (4.42)

in which V0 is the initial slip rate of the patch. Since the initial stress on the patch is

the same as the yielding stress, we may estimated V0 using the characteristic slip rate V

(equation (4.17)),

V0 ≈
(

1 +
ηv

µ/(2β)

)−1

· 2∆f

µ
· β.

Substituting into (4.42), we may obtain an expression for D(t),

D(t) ≈ 1

C
· ∆f

µ
· L ·

[
1− exp

(
−C ·

(
1 +

ηv
µ/2β

)−1

· t

L/2β

)]
. (4.43)

Then, substituting equation (4.43) into (4.41) and assuming L ≈ L1, we will obtain,

τ(xP , t) ≈ ∆f · L2

(xP )2
·

[
1− exp

(
−C ·

(
1 +

ηv
µ/2β

)−1

· t

L/2β

)]
(4.44)
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Equation (4.44) implies that the stress perturbation at point P would gradually increase with

time. However, there is an upper limit of the stress perturbation, which is approximately

the stress drop on the strong patch times the decay factor L2/(xP )2.

We have specified that outside the strong patch, the fault needs an incremental

stress increase of τe = f0− τ0 in order to start slip. We may substitute τe into the left hand

side of equation (4.44), and solve for the relation between t and xP . We obtain,

t ≈ 1

C
·
(

1 +
ηv
µ/2β

)
· L

2β
· ln

 1

1− τe
∆f ·

(xP )2

L2

 (4.45)

Since logarithms cannot have negative variable, the ratio τe
∆f ·

(xP )2

L2 cannot be

larger than 1. Physically, it means that the static stress transfer distance cannot be so large

such that even the highest possible stress perturbation ∆f · L2

(xP )2
is still smaller than the

required stress increment τe. Let us assume for now that the strong patch stress drop ∆f

is 10 times larger than the required stress increment τe (∆f = 10τe), the maximum rupture

propagation distance would be,

max xP ≈
√

∆f

τe
· L

≈ 3L.

(4.46)

This equation suggests that the strong patch static stress forcing can only influence the

surrounding fault within a few patch lengths, depending on how much larger the stress

drop on the patch is compared to the ambient stress outside. It is consistent with what is

observed in case of the diffusive tremor migration (Ide, 2010; Ando et al., 2012; Creager et

al., 2020; Poiata et al., 2021).
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Although we have obtained a relation between t and xP , it does not have a strict

form of diffusive behavior as t = (Df )−1 · (xP )2. Instead, the diffusion is in a complicated

logarithmic form. However, the t = (Df )−1 · (xP )2 type of diffusive behavior is actually

contained in the complex expression. There are two ways to see it. One way is to simplify

our derivation all the way back starting from (4.41). Rather than seeking a solution for

D(t), we may take a time-derivative on both sides of the (4.41) and assume L ≈ L1. We

can obtain an expression for the stressing rate,

τ̇(xP , t) ≈ C · µ ·
Ḋ(t)

L
· L2

(xP )2

= C · µ · V (t)

L
· L2

(xP )2

(4.47)

Noted that the denominator is not simplified in order to keep the equation in a clear format

to perform dimension analysis. Next, we may substitute the initial slip rate V0 into (4.47),

and use the resulting stressing rate as a representative value,

τ̇ ≈ C · µ · V0

L
· L2

(xP )2

= C · 2β

L
·∆f ·

(
1 +

ηv
µ/(2β)

)−1

· L2

(xP )2

(4.48)

This assumption is similar to the assumption Ando et al. (2012) make in their derivation

where they only consider the situation at the “initial moment” (text below their equation

3). We may then calculate the time t simply by dividing the required stress incremental τe

with the representative stressing rate,
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t ≈ τe
τ̇

=
1

C
· 1

L · 2β
· τe

∆f
·
(

1 +
ηv

µ/(2β)

)
· (xP )2

(4.49)

The above equation has a form of diffusion relation, t = (Df )−1 · (xP )2. We may get the

diffusivity expression as,

Df = C · ∆f

τe
·
(

1 +
ηv

µ/(2β)

)−1

· L · 2β

=
Cµ∆fL

ηvτe
·
(
µ/(2β)

ηv
+ 1

)−1
(4.50)

This expression is almost identical to that derived by Ando et al. (2012) (equation (4.39)).

A major difference is the factor

(
µ/(2β)
ηv

+ 1

)−1

, which contains a comparison between the

viscous coefficient ηv and the radiation damping factor µ/(2β). I suspect that this difference

exists because Ando et al. (2012) considers a quasi-static model, while I consider a quasi-

dynamic model with the radiation damping term. My solution approaches their solution

when ηv is significantly larger than µ/(2β) and the geometric constant C = 1/(2π) ≈ 0.16.

Another way to extract the t = (Df )−1·(xP )2 type diffusive behavior from equation

(4.45) is to use the a Taylor series expansion of the logarithmic function in (4.45). We may

treat τe
∆f ·

(xP )2

L2 as the variable in the logarithmic function, and the domain of the function

is [0 1). We perform a Taylor series expansion of the function ln
(

1
1−x

)
near zero, and we

obtain,
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ln

 1

1− τe
∆f ·

(xP )2

L2

 = 0 +

τe
∆f ·

(xP )2

L2

1− τe
∆f ·

(xP )2

L2

+ o

(
τe

∆f
· (xP )2

L2

)

≈
τe
∆f ·

(xP )2

L2

1− τe
∆f ·

(xP )2

L2

.

(4.51)

To further simplify the expression, we may assume 1 − τe
∆f ·

(xP )2

L2 ≈ 1 when τe
∆f ·

(xP )2

L2 is

close to zero, and we will have,

ln

 1

1− τe
∆f ·

(xP )2

L2

 ≈ τe
∆f
· (xP )2

L2
. (4.52)

Substituting (4.52) into (4.39), we will obtain a t = (Df )−1 · (xP )2 type equation that is

exactly the same as equation (4.49), and thus leads to the same result as the “constant-

stressing rate” assumption. The benefit of having the “Taylor series expansion” derivation

is that we know xP needs to be close to the strong patch in order for the diffusive behavior to

exist. In practice, when we try to fit a parabolic curve to the tremor migration observation,

we are mainly fitting the early part, because a parabolic curve predicts an infinite rupture

distance, while the observed ruptures always slow down and stop at a certain distance.

The above derivation can also be applied to another situation, where Point P is

far away from the patch, and xP is significantly larger than both L1 and L2 (Figure 4.9d).

This case is most likely to occur when L1 is similar to L2. In that case, the only thing

different is the decay factor, which changes from a squared decay to a cubic decay,

τ(xP , t) ≈ ∆τ(t) · (L1)3

(xP )3

= C · µ · D(t)

L
· L3

(xP )3

(4.53)
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This difference in the decay factor does not affect all the other steps in the previous deriva-

tion. Following similar steps, we may obtain the t − xP relation for the cube decay case

as,

t ≈ 1

C
·
(

1 +
ηv
µ/2β

)
· L

2β
· ln

 1

1− τe
∆f ·

(xP )3

L3

 (4.54)

and similarly, we can write out the approximate diffusion pattern near the strong patch as,

t ≈ 1

C
· 1

L2 · 2β
· τe

∆f
·
(

1 +
ηv

µ/(2β)

)
· (xP )3 (4.55)

I note that the “near strong patch” assumption is seemly contradicted by the

“xP � L1 and L2” assumption. However, these two assumptions do not have to be exclusive.

The “xP � L1 and L2” assumption is satisfied when the static stress drop decay changes

from a squared decay to a cubic decay. This change can happen while the “near strong

patch” assumption is still satisfied.

4.7.4 Discussions and Implications

In the text above, I have discussed how a “frictional-viscous” model is able to

generate diffusive rupture behaviors with a stronger patch surrounded by weaker fault area.

This type of diffusive rupture behavior is controlled by the static stress transfer. Therefore,

it can only be dominant when the slip rate is slow and the dynamic stress transfer is weak.

This is probably why the diffusive rupture behavior is rare for fast earthquakes but often

observed in SSEs.

In the model we discuss, we require that the rupture outside the strong patch can
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only be driven by the static stress field of the patch. This is different from the situation we

discuss in section 4.6, where the rupture front can cascade by itself. These two mechanisms

can be treated as two modes of rupture propagations for SSEs. In reality, both modes may

exist, and switch back-and-forth. As demonstrated in the previous derivation, whether the

propagation is diffusive does not depend on the whether a part of the fault is viscous or fric-

tional. The main factor is the stress distribution condition at the time under consideration.

Since the stress condition evolves with time, the same place can have diffusive or constant

speed rupture at different time (e.g., in different ETS events). This is consistent with the

tremor migration observations in Nankai subduction zone (Ide, 2010). For the same reason,

both modes can exist in the same tremor migration sequence at different stages. As re-

ported by Creager et al. (2020), the episodic tremor and slip (ETS) events in the northern

Cascadia subduction zone often start as diffusive ruptures, and experience a transition to

constant speed ruptures later on.

In the previous sections, I have shown that a viscous coefficient ηv of the order

of ∼ 104 − 105 µ/(2β) can simultaneously explain different independent SSE observations.

A good parameter we may model with the diffusive tremor migration observations is the

diffusivity Df . In the “frictional-viscous” model, the relation between Df and ηv is given

by equation (4.50). In the Nankai and Cascadia subduction zones where diffusive tremor

migration behaviors have been reported, Df is measured to be about 103 − 104 m2/s. We

may then use this observation to estimate ηv.

Figure 4.10 shows how Df changes with ηv in the theoretical relation (4.50). For

each line in the plots, the characteristic strong patch length L, the constant C, and the ratio
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Figure 4.10: How Df changes with ηv in the theoretical relation (equation (4.50)). For each
line in the plots, characteristic strong patch length L, the constant C, and the ratio ∆f/τe
are fixed. Cases with different L and C are shown, while ∆f/τe is kept as 10. Different
values of L are denoted by different line styles: solid lines show the cases where L = 30 km,
while dash lines show the cases where L = 5 km. Different C are denoted by different line
colors: blue lines show the cases where C = 1, while orange lines show the cases where
C = 0.1. The space between the two green horizontal dashed lines denote the range of
observed Df for diffusive tremor migrations.
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∆f/τe are fixed. Cases with different L and C are shown, while ∆f/τe is kept as 10. We

picked 5 km and 30 km as two typical values of L, and pick 1 and 0.1 as two typical value

of C. As shown in the figure, the observed Df ≈ 103 − 104 m2/s corresponds to a ηv in the

range of ∼ 103 − 106 µ/(2β), which is consistent with our previous estimation. I note that

Ando et al. (2012) made an estimation of ηv assuming Df = 104 m2/s, L = 10 km, C = 0.1

(since 1/(2π) ≈ 0.16), ∆f/τe = 10, and µ = 1010 Pa. They obtain that η = 1010 Pa ·m/s,

which is the same as the estimation here. Although it is not a surprise that the two estimates

agree since we are literally using the same relation, the agreement at least assure me that

the calculation I have is correct.

As a quick summary for this rather long section of diffusive tremor migration

behavior, I revisit, complement, and extend the analytical analysis in Ando et al. (2012)

and demonstrate that a “frictional-viscous” model can produce diffusive rupture with a

stronger patch surrounded by weaker fault area. Most importantly, we may estimate the

viscous coefficient ηv that is required to explain the Df observation to be ∼ 103−106 µ/(2β),

which is consistent with the ηv that is required to explain other independent observations.

These consistency, again, strongly imply the potential of the frictional-viscous model as a

realistic representation of the SSE rupture process.

4.8 The scaling relation between moment M0 and event du-

ration T

The scaling relation between moment M0 and event duration T is among the most

debated puzzles for the problem of slow earthquakes. Here, we will focus on the scaling of
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slow slip events (SSEs). Fast earthquakes are known to have a M0 ∝ T 3 scaling to first order

(e.g. Allmann & Shearer, 2009). However, it has been proposed that slow slip events could

have a moment-duration scaling of M0 ∝ T (e.g. Ide, Beroza, Shelly, & Uchide, 2007a; Gao

et al., 2012; Liu, 2014). Recently, some studies reported that slow slip events have M0 ∝ T 3

scaling similar to fast earthquakes, only with the duration being longer (e.g. Gomberg,

Wech, et al., 2016; Michel et al., 2019; Frank & Brodsky, 2019). From an observational

point of view, these seemly contradictory arguments could well be due to sparse and poor

datasets. However, they could also highlight the complexity of the SSE rupture process.

Theoretically, the scaling relation between moment M0 and event duration T has

been discussed in many rate-and-state based models (e.g. Colella, Dieterich, & Richards-

Dinger, 2011; Liu, 2014; Dal Zilio et al., 2020). However, the theoretical scaling-relation of

the frictional-viscous model has not been addressed before in the literature. At this point,

since we have obtained many analytical relations for different observables (or the derived

parameters), the scaling relation of the frictional-viscous model is possible to derive to first

order.

4.8.1 Theoretical moment-duration scaling

A most critical “observable” in the scaling relation discussion is the event duration

T . However, relating it to the quantity of source process is non-trivial. This is because T

may have defferent expressions for different types of source process. Both the duration of

slip and the duration of rupture propagation can contribute to the event duration T , and

T should be the sum of the two contributions. When one is longer than the another, the

longer one of the two is more representative of the event duration. If the slip rate decay
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time is shorter than the rupture propagation time (rupture being pulse like), T can be

approximated as the total rupture length L divided by rupture propagation speed Vr, and

expressed as,

T ≈ L

vr
. (4.56)

For simplicity, we ignore the saturation effect of available fault width here. Substituting

the characteristic Vr (equation (4.37)) into (4.56), we have,

T ≈ Ls
Lp
·
(

1 +
1

S

)
·
(

1 +
ηv

µ/(2β)

)
· L

2β

For the purpose of a first order study, we may approximate Ls
Lp

,
(
1 + 1

S

)
, and the factor 2

as 1,

T ≈
(

1 +
ηv

µ/(2β)

)
· L
β

(4.57)

There could be some cases where the slip rate decay time is longer than the rupture

propagation time. Such cases happen when the rupture is crack like, or some external force

triggers a portion of the fault simultaneously. In these cases, the event duration would

be better approximated with the slip rate decay time Td. In addition, the simultaneously

slipping area length should be of the same order as the total rupture length L. Using

equation (4.35), we may obtain the T in this case as,

T =
1

C
·
(

1 +
ηv
µ/2β

)
· L

2β
.
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Similarly, we may approximate both C and the factor 2 as 1 for the purpose of first order

study. We obtain,

T ≈
(

1 +
ηv
µ/2β

)
· L
β
. (4.58)

Equation (4.57) is the same as (4.58) to first order (ignoring the difference in

constants that is of the order of one). It suggests that the event duration T derived using

different assumptions are of the same order. In another word, whether the rupture is crack-

like or pulse-like, to the first order, does not affect the theoretical event duration expression

in the frictional-viscous model.

Another important quantity of the scaling is the seismic moment M0. It can be

expressed as the product of shear modulus µ, the final slip D, and the slip area A. We may

use our analytical results in section 4.4 to write out the expression for M0 (equation (4.25)),

M0 = µ ·D ·A

≈ µ · 1

C
· L
µ
·∆τs · L2

≈ ∆τs · L3

(4.59)

in which we approximate C = 1 and A = L2 for the purpose of first-order investigation.

We may now solve for L using (4.58) and substitute it into (4.59) to obtain the

theoretical moment-duration relation for the frictional-viscous model,

M0 ≈ ∆τs ·
(

1 +
ηv
µ/2β

)−3

· β3 · T 3 (4.60)
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Figure 4.11: The moment-duration relation for slow and fast earthquakes, after Figure 2.3.
The gray shaded area bounded by two M0 ∝ T 3 lines denotes the parameter space of fast
earthquakes. The two bounded lines are calculated using equation (2.19) assuming C = 1,
β = 3 km/s. It is equivalent to equation (4.60) when ηv = 0. ∆τs is set to be 0.1 MPa for
the upper bound (blue line) and 100 MPa for the lower bound (orange line). Shaded ellipse
areas denote the approximate location of M0 and T observations for VLFEs (orange), and
LFEs (red). The purple dashed lines denote the theoretical moment-duration relation in
the frictional-viscous model, and are calculated using equation (4.60). ηv for the two lines
are ∼ 104 µ/(2β) and 106 µ/(2β) (noted besides the lines). ∆τs is set to be 10 kPa for
both the purple dash lines. In contrast to Figure 2.3, I show some actual moment-duration
observations for SSEs/ETSs instead of using a general shaded ellipse. The yellow triangles
are the SSEs in Cascadia subduction zone reported by Michel et al. (2019). Michel et
al. (2019) provides a minimum and a maximum estimate for each data point, and what I
plot here is the mean of the two values. The blue squares are the SSEs in the Cascadia
subduction zone measured by Gao et al. (2012). The orange diamonds are the SSEs in the
Higurangi subduction zone originally measured by Wallace and Beavan (2010) and Wallace
et al. (2012), and compiled in Liu (2014). Grey circles are other SSEs and ETSs compiled
in Gao et al. (2012) and Liu (2014) that are measured by various authors in Japan (40 in
Gao et al. (2012), 7 in Liu (2014)), Mexico (9 in Gao et al. (2012), 1 in Liu (2014)), Alaska
(1 in Gao et al. (2012), 2 in Liu (2014)), and Costa Rica (1 in Gao et al. (2012), 2 in Liu
(2014)).
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As equation (4.60) suggests, the frictional-viscous model has a M0 ∝ T 3 scaling

similar to fast earthquakes. In fact, the only difference between equation (4.60) and the

moment-duration relation of fast earthquakes (equation (2.19)) is a factor
(

1 + ηv
µ/2β

)−3

that contains a dependency on ηv. For the convenience of comparison, here I demonstrate

equation (2.19) again,

M0 ≈
1

C
∆τsβ

3T 3

We can see that when ηv = 0, equation (4.60) would be identical to equation (2.19).

Figure 4.11 plots the theoretical scaling relation (4.60) in a moment-duration di-

agram similar to Figure 2.3, except that I substitute the green ellipse shaded area that

roughly denotes the SSEs/ETSs location with actual data points (details in the figure cap-

tion). The two purple dashed lines show the two moment-duration relations yielded by

equation (4.60) when ηv is set to be 104 µ/(2β) and 106 µ/(2β), respectively. ∆τs for the

two purple lines is fixed at 10 kPa. As shown in the figure, having a viscous effect in addition

to the “sudden stress drop” would only increase the event duration T , while not changing

the slope of the moment-duration relationship.

The M0 ∝ T 3 prediction in our model agrees with the observed SSE moment-

duration relation in general, although significant scatter exists. The agreement would show

more clearly if we look at two recent investigations in Cascadia and Mexico, both of which

show a clear trend of M0 ∝ T 3 scaling (Michel et al., 2019; Frank & Brodsky, 2019).

In particular, we note that these two studies both use a catalog in which M0 and T are

measured in a consistent manner. This is different from many earlier studies that use a
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compilation of data points from various authors. The consistency in the catalogs definitely

adds weight to their M0 ∝ T 3 estimates.

Figure 4.11 also reveals that when ηv is ∼ 104 − 106 µ/(2β), the frictional-viscous

model can explain the moment-duration observations for SSEs. This estimated ηv range

is consistent with our estimations in the previous section, although it might not be a big

surprise since both the M0 and T observations can both be derived from the observations we

mentioned earlier. Nonetheless, the fact that our estimation earlier matches the observed

moment-duration scaling suggests that our analytical derivations for the scaling relation is

self-consistent with our previous derivations.

4.8.2 Possible complications in measuring L and T caused by the diffusive

tremor migrations

In section 4.7, we discussed diffusive rupture behaviors that are sometimes observed

in tremor migrations using high-frequency seismic data. We showed that the frictional-

viscous model is able to explain the diffusive rupture behavior with a high stress drop

patch surrounded by a low stress drop fault area. If the frictional-viscous model is indeed

a good representation of the SSE source process, our derivation would suggest some com-

plications in measuring L and T , which might eventually result in a different scaling from

fast earthquakes.

Let us assume we have a strong patch that is configured as in section 4.7 with a

length L. When the strong patch ruptures, it drives the surrounding fault to slip and triggers

diffusive tremor migration. The slip outside the strong patch might not be resolvable with

geodetic data. However, if we use tremor as a proxy to measure the length L, we would end
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up with a larger value for L than the actual size of the strong patch. This seismologically

estimated size could be a few times greater than L, depending on the strength of the strong-

weak contrast (equation (4.46)). If we denote the seismologically estimated length in the

diffusive migration case as Ltd, using equation (4.49) and (4.55), we may obtain a theoretical

relation between Ltd and T as,

T ≈ 1

C
· 1

L · 2β
· τe

∆f
·
(

1 +
ηv

µ/(2β)

)
· (Ltd)2 ∝ (Ltd)

2, (4.61)

for the end-member case of a 1/(xP )2 static stress decay, or,

T ≈ 1

C
· 1

L2 · 2β
· τe

∆f
·
(

1 +
ηv

µ/(2β)

)
· (Ltd)3 ∝ (Ltd)

3, (4.62)

for the end-member case of a 1/(xP )3 static stress decay.

The above result suggests that, if we use Ltd as the slip area length instead of

L, the duration-length relation would be T ∼ Ln, with n =2 or 3, which is different from

fast earthquakes. If we went on to use Ltd to estimate M0 using a moment-length scaling

relation,

M0 ∝ (Ltd)
3 (4.63)

we would end up with two different scaling relations as,

M0 ∝ T 1.5 (4.64)

for the end-member case of a 1/(xP )2 static stress decay, or,
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M0 ∝ T (4.65)

for the end-member case of a 1/(xP )3 static stress decay.

Considering that we have made many assumption in deriving the diffusive behavior

relations, the above two scaling relation (4.64) and (4.65) should not be treated as an

explanation of the observation; instead, they may better be interpreted as a warning of

the potential complications in investigating the scaling relation for SSEs. Because of these

complications, measuring M0 accurately with only high-frequency seismic data may be

non-trivial, which could cause scattering of data points in the moment-duration diagram.

An analog to the phenomenon discussed here is the afterslip-aftershock relation in fast

earthquakes. If a large earthquake triggers some afterslip that can induce its own aftershock

clusters, the total aftershocks extent would be larger than the actual co-seismic rupture

area. Nevertheless, this complication of measuring M0 and L may not be as troublesome if

geodetic data that has good quality and good spatial coverage is available.

4.9 Summary of Chapter 4

In Chapter 4, I explore a frictional-viscous model, where a fault zone with finite

thickness and a mixture of viscous and frictional deformation is treated as a fault “sur-

face” with zero thickness in the rupture model. The frictional and viscous behavior are

parameterized into a “friction law”, which is mechanically equivalent to having frictional

resistance and viscous resistance in parallel (Figure 4.1). In this vision, a sudden stress drop

can occur due to the sudden frictional (brittle) deformation in the fault zone. The bulk
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viscous matrix would deform slowly in response to the sudden stress drop, causing “slow

slip” of the bulk fault zone. I explore the rupture behaviors of the frictional-viscous model

to first-order with extensive analytical analysis. I find that the frictional-viscous model can

self-consistently explain and reproduce many of the quantities estimated for slow slip events

based on data, including slip rate (section 4.3), final slip (section 4.4), slip rate decay time

(section 4.5), rupture propagation speed (section 4.6), diffusive tremor migration (section

4.7), and moment-duration scaling (section 4.8). My analytical results show that the slow

slip behaviors can be stably generated in the frictional-viscous model with a wide range

of parameters. To simultaneously explain different observations, the viscous coefficient ηv

needs to be about ∼ 104 − 105 µ/(2β), which can be tested against future observations on

viscous properties in SSE fault zones.

The formalization of the frictional-viscous “friction law” I explore here has been

proposed and analyzed in a few previous studies (Ando et al., 2010; Nakata et al., 2011;

Ando et al., 2012; Lavier et al., 2013; Beall et al., 2019). In particular, Ryosuke Ando

and his colleagues have extensively explored the rupture behavior under this “friction law”

in a three-paper series back in the early 2010s, and use it to explain slow earthquake

observations (Ando et al., 2010; Nakata et al., 2011; Ando et al., 2012). Since Ando’s

models are mostly numerical, the parameter space that can be explored by the authors is

limited. Therefore, the authors were mainly demonstrating a prototype friction setup, in

which it is possible to produce slow slip behaviors. Additionally, because Ando’s models

include spatial heterogeneities of stress and viscous properties on fault asides from the

frictional-viscous “friction law”, it is not clear whether it is the “friction law” or the spatial
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heterogeneity that fundamentally causes slow slip behaviors. In Chapter 4, I derived a

plenty of analytical relations to depict the rupture behavior under the frictional-viscous

“friction law” setup. These analytical results allow us to efficiently explore the parameter

space in a much larger range and, as a result, enable us to quantitatively compare the viscous

and frictional model parameter with SSE observations. With the insight gained from the

comprehensive analytical results, I show that the frictional-viscous “friction law” itself is

the fundamental cause of the slow slip behavior. Various phenomena (e.g., diffusive tremor

migration) would appear when one adds into the models some spatial heterogeneities on the

fault. My analytical results also reveal some rupture behaviors that haven’t been explored

before (e.g., slip rate decay time). Numerical analysis of those previous un-explored rupture

behaviors will be shown in Chapter 5.

At the beginning of Chapter 4, I demonstrate the physical image behind the “fric-

tion law” parameterization where both frictional and viscous resistance are collocated. I

show that the “friction law” could actually represent the behaviors of the bulk fault zone

with finite thickness, instead of merely representing a frictional force dependency in-between

sliding surfaces (section 4.2). Such a vision has gathered more attention recently, as emerg-

ing geological observations have implied that both viscous and frictional deformation may

exist in the slow-earthquake-bearing fault zone, and the fault zone thickness could be large.

Therefore, this frictional-viscous “friction law” is actually beyond the framework of tradi-

tional “surface contact based” friction laws such as rate-and-state friction, which is com-

monly used in models to address slow earthquake problems. In this Chapter, I have shown

that the frictional-viscous model can generate stable slow slip behavior within a wide range
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of parameter space. This is different from a typical rate-and-state model that might re-

quired the friction parameters to reside in a narrow range of parameter space (e.g., Liu &

Rice, 2007; Scholz, 2019).

In summary, we have shown in Chapter 4 that the frictional-viscous model is a

promising representation of the actual SSE source process. The analytical results in this

Chapter 4 will be numerically validated in Chapter 5, and more discussion that is inspired

by the results here will be saved for Chapter 6.
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Chapter 5

Numerical validation of the

analytical results

In Chapter 4, I show with an analytical analysis that a frictional-viscous rup-

ture model can yield slow slip characteristics consistent with those of real-world SSEs.

These characteristics include slip rate, stress drop, slip rate decay time, rupture propa-

gation speed, diffusive behavior, and moment-duration scaling. The analytical results are

useful in demonstrating rupture behaviors in a wide parameter space and revealing the

mechanisms. However, I often make two assumptions to simplify the expressions and to

allow further derivation. One assumption is that the elastic waves generated during the

rupture are insignificant in affecting the rupture, and that the inertial effect can be accomo-

dated by considering only the “radiation damping” term. This assumption is made in most

of the derivation in Chapter 4 except in the stress drop analysis. The other assumption

is that the static shear strain perturbation generated by a slipping area on itself can be
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simplified as the average shear slip divided by the characteristic length of the slipping area.

By doing so, we ignore the spatial distribution of stress perturbations, and the analysis

can be simplified to be pseudo-one-dimensional. This assumption is made in most of the

derivations in Chapter 4 except in the slip rate analysis.

As discussed in Chapter 4, these two assumptions may be proper for the scope

of our analysis. Firstly, as the viscous coefficient ηv becomes several orders of magnitude

greater than the radiation damping factor µ/(2β), slip rate V decreases significantly, and

the elastic wave amplitude should also diminish. Therefore, omitting elastic waves is ap-

propriate. In addition, what we are interested in is the first-order rupture behavior, and

the spatial distribution of slip and stress is not important in affecting the first-order “char-

acteristic” relations derived in Chapter 4.

However, to validate our results, it is desirable to relax these two assumptions.

Due to the complicated nature of the problem, a numerical approach is more suitable for

this task. In this chapter, I conduct a few numerical models to validate the conclusions

in Chapter 4 that are obtained by analytical analysis. A complete inertial effect, includ-

ing elastic wave propagations, and a non-trivial spatial distribution of slip and stress are

considered in the numerical models. By comparing the few “data points” of numerical

models with the “lines” predicted by analytical analysis, we may see how appropriate the

aforementioned assumptions are. In addition, numerical analysis enables us to visualize the

spatio-temporal evolution of rupture, which provides a more intuitive demonstration of the

slow slip behaviors yielded in the analyticalfrictional-viscous model.
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5.1 Numerical method

The numerical method I use for the analysis is the boundary integral equation

method (BIEM), which is often also referred to as the boundary element method (BEM).

This is a semi-analytical-semi-numerical method for linear elasticity problems. The analyti-

cal part of the framework is the same as in our analytical analysis and has been demonstrated

in section 4.2.3. Here I will give a brief introduction of the numerical scheme, and describe

some details of the code I use. The BIEM scheme I use is primarily based on Tada (2009).

More details can be found in that paper.

5.1.1 Discretizing BIEs and “friction law”

Unlike finite element method (FEM) or finite difference method (FDM), BIEM

does not have discretization for the governing equations directly. Instead, BIEM requires

that we first analytically derive the Green’s function of the system. Using the Green’s

function, one may write the traction-displacement relation at the domain boundary in the

form of an integral equation, which is often referred to as boundary integral equation (BIE).

For the earthquake problem in particular, the boundary we care about is the fault, and the

BIE we obtain is a relation between the traction and the slip on fault. For simplicity, here

we consider a simple setup with only a single planar fault, and slip is fixed in one direction,

τelastic(ξ, t) = τ0(ξ) +

∫
Γ

dS(ξ′)

∫ t

0
dτK̂(ξ, t− τ ; ξ′, 0)Ḋ(ξ′, τ) (ξ, ξ′ ∈ Γ), (5.1)

in which τelastic(ξ, t) is the shear traction, or shear stress, on fault. τ0(ξ) is the initial shear

stress. Ḋ(ξ, t) is slip rate. K̂(ξ, t − τ ; ξ′, 0) is a factor that contains the Green’s function
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of the problem, and it can be derived beforehand. I note that, in contrast to the from its

representation in equation (4.10) in section 4.2.3, I put the instantaneous response term

into the integral for now.

To numerically solve the integral equation 5.1, we need to discretize both the fault

surface and integral time range. Assume the fault is discretized into Nx elements, and the

nth element is denoted as Γn. The time range is discretized into NT time steps, and the

end moment of the qth time step is denoted as tq (i.e., the qth time step covers a time range

tq−1 < t < tq). We require that all points in the same element during a certain time step

have the same slip rate. In that case, the slip rate distribution can be written as,

∆Ḋ(ξ, t) =

NX∑
n=1

NT∑
q=1

VnqH(ξ ∈ Γn)[H(t− tq−1)−H(t− tq)] (5.2)

in which Vnq is the discretized slip rate; when ξ is in Γn, H(x ∈ Γn) equals one, otherwise

it equals zero; when tq−1 < t < tq, H(t − tq−1) −H(t − tq) equals one, otherwise it equals

zero.

We may substitute (5.2) into (5.1), and we will obtain a discretized BIE,

τelastic(ξ, t) = τ0(ξ) +

NX∑
n=1

NT∑
q=1

Vnq

∫
Γ
dS(ξ′)

∫ t

0
dτK̂(ξ, t− τ ; ξ′, 0)

H(ξ′ ∈ Γn)[H(τ − tq−1)−H(τ − tq)] (ξ, ξ′ ∈ Γ)

(5.3)

To conduct numerical simulations, for the mth fault element, we need to select

one or more points ξ in the Γm to represent the receiver point(s) of the element. How we

choose the representative points may affect the simulation results in some cases (e.g., for

an element near a fault geometry complexity). Fortunately, for the planar fault problem in
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full space, such an issue shall not be a big problem, and we may simply choose the center

point of the element as the representative point. Let say the representative point for the

mth element is ξm. We may let ξ = ξm, t = tp, and substitute into equation (5.3),

Tmp = T 0
m +

NX∑
n=1

p∑
q=1

VnqKmp/nq (5.4)

in which Tmp = τelastic(ξm, tp), T
0
m = τ0(ξm). Tmp is the stress at fault element m at time

step p, due to the entire slip history over the entire fault. I note that the upper limit of

the time summation is p instead of NT now. This is because we consider the causality

requirement: the slip rate after time step p cannot have influence on the traction at time

step p. Kmp/nq is the discrete integration kernel, which relates fault slip rate distribution

with traction distribution. It has the following expression,

Kmp/nq =

∫
Γ
dS(ξ′)

∫ t

0
dτK̂(ξm, tp − τ ; ξ′, 0)H(ξ′ ∈ Γn)[H(τ − tq−1)−H(τ − tq)] (5.5)

In practice, obtaining the integration kernel K̂(ξ, t − τ ; ξ′, 0) and Kmp/nq can be

non-trivial. Usually, a proper regularization process is needed in the derivation to remove

singularities. For a full space problem, a proper K̂(ξ, t− τ ; ξ′, 0) and Kmp/nq have already

been derived by many authors (e.g., Fukuyama & Madariaga, 1998; Aochi, Fukuyama, &

Matsu’ura, 2000; Tada, 2005, 2006, 2009).

Considering time translation symmetry, Kmp/nq = Km(p−q)/n0, and (5.4) can be

written as,
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Tmp = T 0
m +

NX∑
n=1

p∑
q=1

VnqKm(p−q)/n0 (5.6)

To solve for the slip evolution, one more equation is needed to relate shear traction

and slip. This is given by the fault boundary condition (“friction law”). In my disserta-

tion, the “friction law” is a frictional-viscous relation, which is a combination of a sudden

weakening (brittle) resistance and a linear rate-strengthening (viscous) resistance. In our

numerical simulations, we realize the above “friction law” in the following manner: when

shear traction of an fault element is lower than the yielding level fy, the element stays

un-ruptured and no slip happens; when shear traction of this element exceeds f0, the shear

traction becomes a residual level f1 plus a viscous resistance ηv ·Vmp over the following time

step. The discretized fault boundary condition can be written as,

Tmp = f1 + ηv · Vmp (5.7)

A formulation like this means that shear traction can have a sudden drop, and the

frictional (brittle) part of this “friction law” is equivalent to a one-time-step time-weakening.

I note that such a short weakening time might causes numerical issues in other numerical

method like FEM and FDM. However, it does not cause noticeable numerical issues in

all our BIEM experiments, as I will show later. Previous numerical studies with similar

“sudden stress drop” setting in BIEM also do not seem to have significant numerical issues

(Ando et al., 2010; Nakata et al., 2011; Ando et al., 2012). I suspect that BIEM can handle

such a short weakening time because the intrinsic semi-analytical component in the method,

i.e., the discrete integration kernel Kmp/nq is analytically calculated in a closed form before
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the numerical simulation.

5.1.2 Time-marching scheme of simulations

We may now design a numerical scheme to conduct simulations based on equations

(5.6) and (5.7). I will use a time-marching scheme for my numerical simulations. This is

a commonly used numerical scheme, in which we start from the initial condition, use the

recurrence relation to march advance in time, and eventually obtain the solution. To use

a time-marching scheme, we need to separate the second term in the right hand side of

(5.6) into two parts: one part is only related to the current time step, and the other part is

related to all of the previous slip history,

Tmp = T 0
m +

NX∑
n=1

VnqKm0/n0 +

NX∑
n=1

p−1∑
q=1

VnqKm(p−q)/n0 (5.8)

Combining with (5.7), we may obtain Nx equations that are related to the slip

rate at the pth time step (V1p, V2p,..., VNxp),

−ηv · Vmp +

NX∑
n=1

VnpKm0/n0 = −T 0
m + f1 −

NX∑
n=1

p−1∑
q=1

VnqKm(p−q)/n0

, (m = 1, 2, ..., NX)

(5.9)

In principle, one may start a simulation using (5.9). However, this set of equations

is implicit, because the slip rate in the same time-step but of different elements can affect

each other. Therefore, the simulation with the above equation needs to involve finding

the inverse of a matrix, which greatly increases the complexity of coding. Here I adopt a

different approach to avoid finding the inverse of a matrix. We can formalize (5.9) into an
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explicit equation by setting a small enough time-step size. We need to introduce a CFL

(Courant–Friedrichs–Lewy) parameter, which, in our case, is defined as,

CFL =
c∆t

∆xmin
(5.10)

where c is the maximum elastic wave speed in the medium. For a full-space simulation,

it should be the P wave speed. ∆t is the time-step size. ∆xmin is the minimum distance

among all elements from the representative point to the element edge. For a homogeneous

discretization with squares, ∆xmin should be half of the element side length. If we choose a

CFL parameter smaller than one, no elastic wave can propagate out of any element within

a time-step, and equation (5.9) can be re-written as,

−ηv · Vmp +Km0/m0 · Vmp = −T 0
m + f1 −

NX∑
n=1

p−1∑
q=1

VnqKm(p−q)/n0

, (m = 1, 2, ..., NX)

(5.11)

Km0/m0 is the instantaneous response factor, which equals −µ/(2β) for a full-space

problem. Substituting it into (5.11) and solving for Vmp, we have,

Vmp =

T 0
m − f1 +

NX∑
n=1

p−1∑
q=1

VnqKm(p−q)/n0

 ·(ηv +
µ

2β

)−1

, (m = 1, 2, ..., NX)

(5.12)

Equation (5.12) provides an explicit recurrence relation to conduct the time march-

ing scheme simulation for a specific model setup. At time step zero, slip rate equals zero

everywhere and shear stress equals the initial condition. In a typical dynamic rupture sim-

ulation, to facilitate rupture, the initial shear stress would be greater than the yielding
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strength within an area on the fault, which is commonly referred to as the nucleation zone.

Fault elements within the nucleation zone would start to slip at time step one, and the slip

rate can be calculated using equation (5.12). Step by step, the rest of the rupture evolution

can then be obtained using the explicit recurrence relation.

5.1.3 Other simulation details

For simplicity, in my dissertation, I will consider the most simple case where there

is a single planar fault embedded in an elastic full space. The discretization elements I will

use are squares. The analytical expressions of the discrete integration kernel Kmp/nq I use

are given by (Tada, 2009), which were originally obtained in an earlier paper of the same

author Tada (2005). The code I ran is written in C, and parallelized with openMPI. The

code was originally developed in my undergraduate thesis with Dr Haiming Zhang.

5.2 Model A: spontaneous rupture on an elongated fault

5.2.1 Simulation setup

I will first present a set of simulations that test the effect of viscous coefficient ηv

on rupture dynamics on an elongated fault. This set of simulations is named ’Model A’.

All the settings in these simulations are kept the same, except for the viscous coefficient

ηv. Figure 5.1 shows the schematics that demonstrate the general setup of the Model A

simulations. Figure 5.1a shows the geometry and discretization of the fault in Model A.

The fault is set to be a planar rectangle, with a length of 20 km and a width of 5 km. The

fault is discretized with small squares whose side ∆x = 0.1 km. The fault is treated as a
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length = 20 km

fault surface embeded 

in a whole space

width = 5 km

Δx = 0.1 km L_nuc = 2 km

5 km

T0_nuc = 1.001 fy

T0= 0.5 fy

f1 = 0 MPa

fy = 0.01 MPa

ηv depends on models

slip direction (a) (b)

2 km × 5 km nulceation zone 

yielding strength

residual strength

A

5 km
2.5 km

BP P’

20 km

Figure 5.1: Schematics showing the setup of Model A simulations that test the effect of
the viscous coefficient ηv on rupture dynamics. (a) The geometry and discretization of the
fault in Model A. The fault is set to be a planar rectangle, with a length of 20 km and a
width of 5 km. The fault is discretized with small squares whose side ∆x = 0.1 km. The
fault is treated as a displacement discontinuity embedded in an elastic whole (full) space.
The fault is viewed from an angle from the top. (b) The generic setup of “friction” and
initial stress setting. The yielding shear strength fy and residual shear strength f1 are set
to be homogeneous on the fault: fy = 0.01 MPa and f1 = 0 MPa. The initial shear stress
T0 is prescribed in the along-width direction. It is set to be T0 = 0.5fy everywhere on fault
(light brown area), except for within the nucleation zone, which is a 2 km narrow band
across the whole fault width whose center is 5 km away from one short side the rectangle
fault (dark brown area). Within the nucleation zone, initial stress T0nuc = 1.001fy, which
is just above the yielding strength. The aforementioned settings are kept the same for all
simulations of Model A. The viscous coefficient ηv is set to be homogeneous on fault for
a given simulation, and its value varies among different models. The dashed line PP’ is
a profile along the x-axis that will be used in the later analysis, and it is at the central
location along the width of the fault. Red stars show two points A and B on faults that
will be used in the later analysis.
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Parameter Fixed value

shear modulus µ 3.13× 1010 Pa

P wave speed α 5.6× 103 m/s

S wave speed β 3.23× 103 m/s

medium density ρ 3× 103 kg/m3

fy 104 Pa

f1 0 Pa

T0 outside the nucleation zone 0.5× 104 Pa

T0 within the nucleation zone 1.001× 104 Pa

Table 5.1: Summary of the fixed parameters used in different simulations in Model A.

displacement discontinuity embedded in an elastic whole (full) space. Figure 5.1b shows

the generic setup of “friction” and initial stress setting. The yielding shear strength fy

and residual shear strength f1 are set to be homogeneous on fault: fy = 0.01 MPa and

f1 = 0 MPa. The initial shear stress T0 are prescribed in the along-width direction. It is set

to be T0 = 0.5fy everywhere on fault (light brown area), except for within the nucleation

zone, which is a 2 km narrow band across the whole fault width whose center is 5 km away

from one short side the rectangle fault (dark brown area). Within the nucleation zone,

initial stress T0nuc = 1.001fy, which is just above the yielding strength. A summary of the

general parameters in Model A is shown in Table 5.1.

The aforementioned settings are kept the same for all simulations of Model A.

The viscous coefficient ηv is set to be homogeneous on the fault for a given simulation, and

its value varies between different models. In total I present eight different simulations for

Model A, and their ηv values are shown in Table 5.2. The ηv value I test range from 0

to 165000 MPa · s/km, which corresponds to a range from 0 to 34.0 when normalized by

µ/(2β).
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Model number ηv in MPa · s/km ηv in µ/(2β)

Model A1 0 0

Model A2 15000 3.1

Model A3 35000 7.2

Model A4 65000 13.4

Model A5 105000 21.7

Model A6 165000 34.0

Model A7 5000 1.0

Model A8 10000 2.1

Table 5.2: Summary of ηv used in different simulations in Model A.

I note that this range does not cover the proposed ηv range in Chapter 4 for SSEs,

which is ∼ 104 µ/(2β). This is because the computation capacity available to me at this

time can not allow for such big simulations. For dynamic rupture simulations that include

elastic wave propagations (i.e., full inertial effects), the simulation time step is determined

by the size of the discretization (as discussed in section 5.1.2). However, a simulation with

greater ηv usually needs a longer simulation duration in order to capture the slower rupture.

Therefore, a simulation with greater ηv requires a greater number of simulation time steps.

Currently, the ηv = 34.0 µ/(2β) simulation needs 18000 time steps to capture the whole

rupture (Model A6), and the runtime is about two days when run on the Mingus cluster of

the UCR Geophysics group with 64 cores. A simulation with ηv = 104 µ/(2β) may require

a ∼ 300 times longer runtime. Nevertheless, as I show later, our numerical simulations are

sufficient to support the trend of rupture behavior as proposed in Chapter 4.
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Figure 5.2: Slip rate snapshots of the three models with different viscous coefficient ηv.
Each column corresponds to a model with specific ηv, and the ηv increases from left to
right: the left column is Model A7 with ηv = 1.0 µ/(2β), the middle is Model A2 with
ηv = 3.1 µ/(2β), and the right is Model A5 with ηv = 21.7 µ/(2β). Each row corresponds
to a time step, and the time increases from top to bottom. For each snapshot, the x-axis
is the long-side direction of the rectangle fault and y-axis is the short side direction of the
rectangle fault. Slip rate is color-coded, with white equaling zero and dark green equaling
1× 10−3 m/s. This figure shows that, as ηv increases, both the maximum slip rate and the
rupture propagation speed decrease.
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Figure 5.3: Shear stress snapshots of the three models with different viscous coefficient ηv.
Each column corresponds to a model with specific ηv, and the ηv increases from left to
right: the left column is Model A7 with ηv = 1.0 µ/(2β), the middle is Model A2 with
ηv = 3.1 µ/(2β), and the right is Model A5 with ηv = 21.7 µ/(2β). Each row corresponds
to a time step, and the time increases from top to bottom. For each snapshot, the x-axis
is the long-side direction of the rectangle fault and y-axis is the short side direction of the
rectangle fault. Shear stress is color-coded, with black equals zero and the brightest color
equals 0.01 MPa. This figure shows that, as ηv increases, the rupture propagation speed
decreases and the stress drop process becomes slower.
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5.2.2 Simulation results: rupture propagation speed and maximum slip

rate

To better demonstrate the effect of ηv, I select three out of the eight simulations

to demonstrate in detail: Model A7 (ηv = 1.0 µ/(2β)), Model A2 (ηv = 3.1 µ/(2β)), and

model A5 (ηv = 21.7 µ/(2β)). Figures 5.2 and 5.3 show the slip rate snapshots and stress

snapshots of these three simulations. Each column corresponds to a model with specific ηv,

and the ηv increases from left to right: the left column is Model A7 with ηv = 1.0 µ/(2β), the

middle is Model A2 with ηv = 3.1 µ/(2β), and the right is Model A5 with ηv = 21.7 µ/(2β).

For all three simulations, rupture propagates bilaterally along the x-axis (long-side of the

rectangle) after nucleation. The nucleation zone is located 5 km away from the fault center

to the left, so rupture has a longer distance to propagate on the right hand side. The

rupture fronts are shown in the slip rate snapshots (Figure 5.2) by the high slip rate area

and shown in the shear stress drop (Figure 5.3) by the contrast between high and low stress.

After a rupture finishes, both slip rate and shear stress become zero everywhere on fault.

Figure 5.2 shows that the maximum slip rate of the rupture front decreases as ηv

increases. In addition, both snapshots show that rupture propagation speed is slower when

ηv is higher. For the ηv = 1.0 µ/(2β) case (left column), rupture finishes its propagation

between 4.9 seconds and 7.3 seconds. For the ηv = 3.1 µ/(2β) case (middle column), rupture

finishes its propagation between 12.1 seconds and 14.5 seconds. For the ηv = 21.7 µ/(2β)

case (right column), rupture does not finish its propagation in the time steps I show. Both

the maximum slip rate and rupture propagation speed trends agree with the analytical

analysis we have in Chapter 4.
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Figure 5.4: The space-time evolution of slip rate and shear stress along the PP’ pro-
file shown by the dashed line in Figure 5.1b. The slip rate evolution for ηv equals
1.0, 3.1, and 21.7 µ/(2β) cases are shown in (a), (b), and (c), respectively. The maximum
value of the colormap is the maximum slip rate value in the corresponding simulation, and
the minimum value is zero. The shear stress evolution for ηv equals 1.0, 3.1, and 21.7 µ/(2β)
cases are shown in (d), (e), and (f), respectively. For each space-time plot, x-axis is the
along profile distance, with zero at point P, and y-axis denotes time. The maximum value
of the colormap is 0.01 MPa, and the minimum value is zero.

5.2.3 Simulation results: slip rate and shear stress decay in space and

time

My analytical results in Chapter 4 also give relations on how slip rate and shear

stress decay, so we want to see if those features can be reproduced by the numerical sim-

ulations. Figure 5.4 shows the space-time evolution of slip rate and shear stress along the

PP’ profile shown by the dashed line in Figure 5.1b. This figure also shows the decrease of

rupture propagation speed as ηv becomes larger. In addition, Figure 5.4 shows an increase

of slip rate decay time and stress drop decay time as ηv increases, which is qualitatively

consistent with my analytical result in section 4.5.
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To better illustrate how slip rate decays in space, I pick a given timestep to show

the slip rate distribution along PP’. The corresponding figures are shown in Figure 5.5(a),

(b), and (c), which show the slip rate profile of the ηv equals 1.0, 3.1, and 21.7 µ/(2β)

model, respectively, at the time step when Point A (location shown in Figure 5.1b) just

ruptures. The profiles for the three models are almost the same, suggesting that the slip

rate decay distance behind the rupture front is not affected by the viscous coefficient ηv.

I do a visual measure of the characteristic distance and my measure is 5 km. I did not

have a rigorous analytical derivation for this characteristic distance, and thus document it

in Chapter 4. I suspect that it may be controlled by the width (shorter dimension) of the

fault, as suggested by many previous dynamic rupture modeling studies (e.g., Day, 1982;

Dalguer & Day, 2009). Also, this characteristic distance may be controlled by the initial

nucleation size under the “frictional-viscous-mixing” “friction law” I used here. A better

understanding of the characteristic distance requires more investigations, and will be left

for a future study.

To better illustrate how slip rate decays in time, I also show the time evolution of

point A in Figure 5.5(d), (e), and (f) for the ηv equals 1.0, 3.1, and 21.7 µ/(2β) model,

respectively. Because the rupture propagation speed is different in different models, the

start time of the high slip rate is different. Yet, the initial speed-up process is similar for all

three models. The slip rate decay gradually after reaching the peak value, and the decay

is very similar to the exponential decay that is suggested in section 4.5. Most importantly,

the slip rate decay time increases with ηv, which is consistent with the conclusion in section

4.5.
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Figure 5.5: (a), (b) and (c) show the slip rate distribution along PP’ for the ηv equals
1.0, 3.1, and 21.7 µ/(2β) model, respectively, at the time step when Point A (location
shown in Figure 5.1b) just ruptures. These three plots suggest that the width of slip rate
pulse behind the rupture front is not affected by ηv. (d), (e), and (f) show the slip rate
time evolution of point A for the ηv equals 1.0, 3.1, and 21.7 µ/(2β) model, respectively.
These three plots suggest that slip rate decay time increases with ηv.

For the purpose of completeness, I also show a set of figures similar to Figure 5.5,

but instead for the shear stress evolution (Figure 5.6). The main result is similar to what I

discussed in the previous paragraph.

5.2.4 Simulation results: shear stress-slip relation

How shear stress changes in response to slip can reflect the energy budget of rup-

tures, i.e., how the total elastic strain energy partitions into radiated energy and dissipated

energy on the fault. Using the analytical framework in Chapter 4, in principle, I can derive

the analytical relation between shear stress and slip. I choose not to do that in Chapter 4

because my main goal there is to explain SSE observations. Therefore, I just vaguely assert
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Figure 5.6: (a), (b) and (c) show the shear stress distribution along PP’ for the ηv equals
1.0, 3.1, and 21.7 µ/(2β) model, respectively, at the time step when Point A (location
shown in Figure 5.1b) just ruptures. These three plots suggest that the width of stress
pulse behind the rupture front is not affected by ηv. (d), (e), and (f) show the shear stress
time evolution of point A for the ηv equals 1.0, 3.1, and 21.7 µ/(2β) model, respectively.
These three plots suggest that stress decay time increases with ηv.
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Figure 5.7: Shear stress-slip relation for the ηv equals 1.0, 3.1, and 21.7 µ/(2β) models. (a)
shear stress-slip relation at point A outside the nucleation zone, and (b) shear stress-slip
relation at point B inside the nucleation zone (locations shown in Figure 5.1b). The dashed
box are the range of the zoom-in figures in (c) and (d). (c) and (d): the same as (a) and
(b) but zoom into the beginning portion of the stress drop.

that, since a larger ηv causes smaller slip rate V , the radiated energy should also be smaller

as ηv becomes larger. However, from a theoretical point of view, it is important to discuss

the shear stress-slip relation, in order to better illustrate the physical process behind the

ruptures. Here, since I have already demonstrated the simulations, it would be convenient

that I also demonstrate the numerical shear stress-slip relation. Readers may skip this small

section without losing important information.

Figure 5.7 show the shear stress-slip relation for the three simulations: ηv equals
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1.0, 3.1, and 21.7 µ/(2β). Two representative points are selected for demonstration: point

A outside the nucleation zone and point B inside the nucleation zone. The location of

A and B are shown in Figure 5.1b. Figure 5.7(a) shows the shear stress-slip relation for

point A. For all three models, initial stress at point A is 0.005 MPa. As the rupture front

approaches point A, shear stress builds up and eventually reaches the yielding strength

fy = 0.01 MPa. Shear stress experiences a sudden drop immediately after yielding, and

then gradually decays with slip. The stress decay curves of all three simulations approach

a straight line after a certain amount of slip, and the stress decay follows this line until

it drops to zero. When extrapolating this line, we find that the line intersects the y-axis

roughly at 0.005 MPa, which is the initial shear stress. It suggests that the shear stress

decay along the straight line is almost a quasi-static stress decay.

Figure 5.7(c) shows a zoomed-in version of Figure 5.7(a), focusing on the initial

process. As the figure shows, stress decays more slowly with slip when ηv is larger. It

suggests that more energy is dissipated on the fault when ηv is larger, and less energy is

radiated out.

Figure 5.7(b) shows the stress-slip relation at point B, which is located within

the nucleation zone. Since the initial shear-stress is higher than the yielding strength

within nucleation zone, shear stress immediately starts to drop at the beginning (from

T0 = 0.01001 MPa). All three curves experience a sudden drop after the first time step,

after which the stress decay becomes nearly flat. A larger ηv case has a smaller sudden stress

drop, which leads to a smaller slip rate, as has been shown in section 5.2.2. Some oscillations

in stress appear after a small amount of slip, probably due to the elastic waves radiated
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from the top boundary or nucleation boundaries. A larger ηv case has the oscillations at a

smaller slip, and the oscillation has a smaller amplitude. This is because a larger ηv case

has a slower slip rate, and thus less radiated wave energy. At one point, stress starts to

decay faster with slip until shear stress drops to zero. This last part of the decay curve is

almost straight. When extrapolating the straight line, the line approximately intersects the

y-axis at 0.01 MPa, which is the initial stress level. It suggests that, similar to what we

find for point A, the last part of shear stress decay here is almost a quasi-static decay.

From an energy budget point of view, the stress-slip relation shows that a smaller

amount of energy is released when ηv is larger. It means that more energy is dissipated

in the viscous process on the fault, and the radiated seismic waves would have a smaller

amplitude. Looking at the point A results may reveal a clearer picture of the energy transfer

process. Stress slowly builds up as rupture approaches point A, implying that strain energy

is transferred from other parts of the fault behind the rupture front to near point A. After

point A ruptures, it starts to do work to the other part of the fault in front of the rupture

front and release strain energy. Based on the nearly quasi-static stress decay, we infer that

point A almost does not “release energy” into the system. It implies that, for a case when

ηv is large, point A is mostly acting like a “pipe” that passes energy.

As noted, the discussion here contain much speculation and intuition, and I do

believe more analysis and experimentation are needed. However, it shall not affect the SSE

analysis I have—it is just an issue about how we should understand this model from an

energy point of view.
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Figure 5.8: How (a) maximum slip rate, (b) rupture propagation speed, (c) slip rate decay
time, and (d) final slip depends on the viscous coefficient ηv in my numerical simulations and
analytical relations. The dashed and solid black lines in the figures are analytical relations
obtained in Chapter 4. The red squares are the eight numerical simulations for Model A.
The red squares on the y-axis represent the case when ηv = 0. The numerical shows trends
that are broadly consistent with the analytical relations. Detailed discussion in the main
text.

5.2.5 Comparison between numerical model A and analytical results

We may now quantitatively compare the numerical simulations with the analytical

relations identified in Chapter 4. Figure 5.8 shows how different rupture quantities change

with ηv in both the numerical simulations above and the analytical results from Chapter 4.

The dashed and solid black lines in the figures are analytical relations obtained in Chapter

4. The red squares are the eight numerical simulations in Model A.
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Figure 5.8(a) shows the comparison for maximum slip rate V . The corresponding

analytical analysis is presented in section 4.3 and the analytical relation is also shown in

Figure 4.3. The analytical results suggest that V decreases as ηv increases, and the V -ηv

relation depends on the dynamic stress drop ∆f . The dashed black line plots the analytical

V -ηv relation when ∆f = 106 Pa, and the solid black line plots the analytical V -ηv relation

when ∆f = 104 Pa. In our Model A simulations, ∆f = 104 Pa, which is the same as the solid

line case. The ηv = 0 case is plotted on the y-axis, due to the limitation of a log-log plot.

The trend shown by the numerical data points fits the corresponding analytical relation (the

solid black line) very well, suggesting a good fit between numerical and analytical models.

Figure 5.8(b) shows the comparison for rupture propagation speed Vr. The cor-

responding analytical analysis is presented in section 4.6 and the analytical relation is also

shown in a similar Figure 4.7. The analytical results suggest that, if rupture propagation

is mainly controlled by elastic (dynamic) stress waves, Vr should be close to the elastic

wave speed and should not be affected by ηv. I referred to this “elastic wave” controlled

rupture propagation speed as Vrd, and it is plotted as a horizontal dashed black line in

5.8(b). When slip rate V is slower, the elastic wave amplitude is smaller, and I suggest that

rupture propagation would then be mainly controlled by static stress transfer. I refer to the

rupture propagation speed that is controlled by static stress as Vrs. Since the propagation

speed of static stress transfer depends on slip rate V and V depends on ηv, Vrs depends on

ηv as well. The analytical relation between Vrs and ηv is shown by the solid black line.

The rupture propagation speed Vr in the eight numerical simulations are calculated

by dividing the maximum propagation distance along the PP’ profile (from the edge of the
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nucleation zone to P’, 14.5 km) by the rupture time of P’. Due to the limitation of a log-log

plot, I plot the ηv = 0 case on the y-axis. The rupture propagation speed for the ηv = 0

case is very close to β. For numerical simulations with a larger ηv, the rupture propagation

speed is slower, and the trend is consistent with the analytical relation. I note that there

is a small offset between the numerical and analytical results. Considering the nature of

log-log plots, this discrepancy should be minor.

Figure 5.8(c) shows the comparison for slip rate decay time Td. The corresponding

analytical analysis is presented in section 4.5 and the analytical relation is also shown

in a similar Figure 4.6. The analytical results suggest that Td is controlled by both the

characteristic slipping area length L and the viscous coefficient ηv. For a given L, Td

increases as ηv increases. The solid black line shows the analytical Td-ηv relation when

L = 5 km. I choose 5 km because this is roughly the slip rate decay distance we obtained

in the numerical simulations. Td is measured at point A, and it is defined as the time it

takes for slip rate to drop from its top value to 1/10 of it. As shown in the figure, the trend

shown with the numerical simulations agrees well with the trend of the analytical relation.

Figure 5.8(d) shows the comparison for characteristic slip D. The corresponding

analytical analysis is presented in section 4.4. The analytical results suggest that the char-

acteristic slip D is not affected by ηv. Therefore, I only mention this relation in the text

and do not include a figure similar to Figure 5.8(d) to show it in section 4.4. The slip value

is measured as the final slip at point A. The slip of the analytical model is calculated using

equation (4.25),
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D =
1

C
· L
µ
·∆τs

The parameters I use are C = 1, L = 5 km, µ = 3×1010 Pa, and ∆τs = 0.005 MPa.

All parameters are the same as the numerical models, except µ being slightly different

(µ = 3.13× 1010 Pa in the numerical models). I didn’t notice this minor difference before I

made the figures. Since this slight difference barely makes any difference to the comparison,

I decide not to remake the figure. (Maybe I would if I have time in the end).

As shown in Figure 5.8(d), both analytical and numerical results demonstrate that

the final slip D is not affected by ηv. In adition, the simplified derivation in section 4.4 can

predict the slip in numerical simulations reasonably well.

As a quick summary of the above comparisons, the overall good agreement suggests

that the simplifications and idealizations that allowed the analytical models to be developed

in Chapter 4 are valid, because we are getting consistent results via a numerical model that

does not make nearly so many assumptions.

5.3 Model B: sudden rupture of a square patch

One factor we have not tested in Model A is the effect of characteristic slipping

area length L. Also, Model A does not directly validate the analytical relations of moment-

L and moment-duration scaling. To test them, I run another set of numerical simulations,

which I refer to as Model B. I note that some results of Model B have been presented in my

earlier paper Wu, Oglesby, Ghosh, and Li (2019). In this prior publication, the results were

used to explained VLFEs, while here I reference these results to validate the robustness of

147



my analytical derivations in Chapter 4.

I note that, in this particular section and the following section (section 5.4), I will

use the unit MPa/(km/s) instead of Pa/(m/s) for ηv, although Pa/(m/s) is used in the all

the other portion. I switch unit only because many figures in this section are made in my

prior publication, and those figures use MPa/(km/s) for ηv. As I write the dissertation, I

run out of the time to modify the unit and make thing homogeneous. This difference in

unit makes no difference to my results.

5.3.1 Simulation setup

The generic setting of Model B is shown in Figure 5.9. As shown in Figure 5.9(a),

the fault is set to be a planar square, with a side length of 10 km. The fault is discretized

with small squares whose side ∆x = 0.1 km, the same as in Model A. Figure 5.9(b) shows

the generic setup of “friction” and initial stress setting. A square patch is located near the

top edge of the fault (light and dark brown area). It has a side length of L, which is a fixed

parameter for a given simulation but tunable across simulations. Within the patch, The

yielding shear strength fy and residual shear strength f1 are set to be homogeneous and

kept the same for all Model B simulations: fy = 0.01 MPa and f1 = 0 MPa. The initial

shear stress T0 on the patch is set to be 0.0095 MPa (light brown area), except for the very

top row of the elements (dark brown area). That row of elements are used as a “nucleation

zone” where the initial shear stress is 0.01001 MPa, which is just above the yielding strength.

Outside the square patch (blue area), fy, f1, and T0 are all set to be zero. The viscous

coefficient ηv is set to be homogeneous on the fault for a given simulation, and its value
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Figure 5.9: Schematics showing the setup of Model B simulations that test the effect of
viscous coefficient L and ηv on rupture dynamics. (a) The geometry and discretization of
the fault in Model B. The fault is set to be a planar square, with a side length of 10 km.
The fault is discretized with small squares whose side ∆x = 0.1 km. The fault is treated as
a displacement discontinuity embedded in an elastic whole (full) space. The fault is viewed
from an angle from the top. (b) The generic setup of “friction” and initial stress setting.
A square patch is located near the top edge of the fault (light and dark brown area). It
has side length of L, which is a fixed parameter for a given simulation but tunable across
simulations. Within the patch, The yielding shear strength fy and residual shear strength
f1 are set to be homogeneous and kept the same for all Model B simulations: fy = 0.01 MPa
and f1 = 0 MPa. The initial shear stress T0 is prescribed in the direction (shown by the
arrow). The initial shear stress T0 on the patch is set to be 0.0095 MPa (light brown area),
except for the very top row of the elements (dark brown area). That row of elements is used
as a “nucleation zone” where the initial shear stress is 0.0101 MPa, which is just above the
yielding strength. Outside the square patch (blue area), fy, f1, and T0 are all set to be zero.
The viscous coefficient ηv is set to be homogeneous on the fault for a given simulation, and
its value varies among different models.
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Parameter Fixed value

shear modulus µ 3.13× 1010 Pa

P wave speed α 5.6× 103 m/s

S wave speed β 3.23× 103 m/s

medium density ρ 3× 103 kg/m3

fy within the patch 104 Pa

f1 within the patch 0 Pa

fy outside the patch 0 Pa

f1 outside the patch 0 Pa

T0 within the patch and outside the nucleation zone 0.95× 104 Pa

T0 within the patch and within the nucleation zone 1.001× 104 Pa

T0 outside the patch 0 Pa

Table 5.3: Summary of the fixed parameters used in different simulations in Model B.

varies among different models. These fixed parameters of Model B are summarized in Table

5.3. The patch side length L and the viscous coefficient ηv are two tunable parameters in

Model B. Table 5.4 summarizes all of the parameter combinations I test with Model B. L

ranges from 0.6 km to 9 km, and ηv ranges from 0 to 35000 MPa · s/km.

ηv = 0 ηv = 5000 ηv = 15000 ηv = 25000 ηv = 35000

L=0.6
√ √ √

L=1
√ √

L=2
√ √

L=3
√ √ √

L=4
√ √

L=5
√ √ √ √ √

L=6
√ √

L=7
√ √ √

L=8
√ √

L=9
√ √ √

Table 5.4: The table shows all the parameter combinations of L and ηv I test. A check
mark means this combination is tested, while blank means not tested. The unit of L is km,
and the unit of ηv is MPa · s/km. (µ/2β is about 5000 MPa · s/km)
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5.3.2 Simulation results: general effect of ηv on rupture characteristics

Before discussing the effect of L, I first demonstrate the general effect of ηv on

the rupture characteristics under this specific fault setting. Figure 5.10 shows the rupture

snapshots of two simulations in Model B: 1. L = 5 km and ηv = 0 MPa/(km/s) (1st and

3rd column). 2. L = 5 km and ηv = 25000 MPa/(km/s) (2nd and 4th column). The 1st

and 2nd column are slip rate snapshots, while the 3rd and 4th column are slip snapshots.

In both simulations, the rupture starts propagating from the upper edge of the patch at

close to a seismic wave speed, because the initial shear stress is very close to the yielding

strength. Rupture stops when it reaches the lower edge of the patch, because the fault

outside the patch does not allow a significant stress drop to facilitate further shear slip

rupture. Therefore, high slip and slip rate area are confined within the patch.

As shown in both the slip and slip rate snapshots of the ηv = 0 MPa/(km/s)

simulation, the fault stops slipping (i.e., the slip rate goes back to zero and slip stops

increasing) soon after rupture stops propagating. For the ηv = 25000 MPa/(km/s) simula-

tion, although rupture finishes its propagation at the same time as in the fast earthquake

analog model, it does not stop slipping immediately afterward (shown in snapshots after

0.91 s). The patch still has considerable slip rate at 5.0 s, which is 5 times larger than

the rupture propagation duration. The maximum slips of the ηv = 0 MPa/(km/s) and

ηv = 25000 MPa/(km/s) simulation are ∼ 1.3 mm and ∼ 1 mm, respectively. The two

numbers are of the same order, suggesting that these two models have similar moment re-

lease. However, the ηv = 0 MPa/(km/s) simulation has a maximum slip rate of ∼ 3 mm/s

(color scale saturated) while the ηv = 25000 MPa/(km/s) simulation only has ∼ 0.3 mm/s,
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Figure 5.10: Slip and slip rate snapshots of two of Model B simulations: 1. An L = 5 km
patch ruptures with rate strengthening friction coefficient ηv = 0 MPa/(km/s). (1st and
3rd column) 2. A L = 5 km patch ruptures with rate strengthening friction coefficient
ηv = 25000 MPa/(km/s) (2nd and 4th column).
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Figure 5.11: Results of Model B simulation (a) Moment rate functions of models with
different rate strengthening coefficient ηv while the patch side length is fixed at 5 km. (b)
Moment rate functions of models with different patch side length while the rate strengthen-
ing coefficient ηv is fixed at 25000 MPa/(km/s). The moment rate function when L = 0.6 km
is not clear in the main figure, thus it is also shown in the inset map with an extended scale
for a close look. (c) Moment-ηv relation when patch side length L is fixed at 5 km. (d)
Moment-L relation when rate strengthening coefficient ηv is fixed at 25000 MPa/(km/s).

suggesting a lower amount of seismic radiation. The prolonged slip rate decay time caused

due to increasing ηv is consistent with those we discussed for Model A in the previous

section.

5.3.3 Simulation results: moment rate function

To demonstrate the effect of L and consider the “moment-L” and “moment-

duration” relation, I investigate the moment rate function of the numerical simulations.
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Figure 5.11 shows two sets of moment rate function comparisons where I keep either ηv or

L fixed while varying the other parameter.

Figure 5.11(a) shows the moment rate functions of models with different viscous

coefficient ηv while the patch side length L is fixed at 5 km. The moment at a time step k,

Mk
0 , is defined as,

Mk
0 =

N∑
i

µ ·Dk
i · (∆x)2 (5.13)

and the moment rate at a time step k Ṁk
0 is defined as,

Ṁk
0 =

N∑
i

µ · V k
i · (∆x)2 (5.14)

in which Dk
i and V k

i are the slip and slip rate at the ith element at time step k (a total

number element is N).

A typical moment rate function under a rate strengthening effect will start with a

rapid linear increase, which corresponds to the rupture propagation process. The increase of

moment rate is followed by a slow decay, which corresponds to a long-duration slip rate decay

process. This characteristic can be quantitatively explained by considering the rupture

front propagation at the beginning and an exponential slip rate decay (the exponential

decay property has been discussed in section 4.5). As ηv increases, the maximum moment

rate decreases while the event duration increases. Figure 5.11(b) shows the moment rate

functions of models with different patch side length L while the viscous coefficient ηv is fixed

at 25000 MPa/(km/s). It shows that both maximum moment rate and duration increase

with patch length L.
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Figure 5.12: Moment-duration (M-T) scaling relation of the numerical simulations in Model
B (in log-log). Each point in the plot represents one test result, and the different shapes
and colors represent different ηv setting. Data points are connected with dashed line if
they have the same ηv. All the ηv in this figure and its caption has a unit of MPa/(km/s)
(µ/2β in my models is about 5000 MPa · s/km). Green square represents ηv = 0, red circle
represents ηv = 5000, blue diamond represents ηv = 25000, and magenta triangle represents
ηv = 35000. For reference, I also plot a ”slope=1/3” line (dashed) and a ”slope=1” line
(dot-dashed).
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Figure 5.11(c) shows how the final moment of simulations depends on ηv. The

result shows that final moment does not change with ηv, which is consistent with the results

from Model A that final slip does not change with ηv (Figure 5.8(d)). Figure 5.11(d) shows

how the final moment of simulations depends on L. It shows that final moment increases

with patch length L, and the slope of moment-L relation in a log-log plot is a straight line

with a slope close to three. This scaling relation is the same as the one in a classic fast

earthquake model, and it is consistent with my analytical results in Chapter 4 (discussion

in section 4.8 around equation (4.59)).

Figure 5.12 plots the duration against moment for all the simulations in Model B.

Duration is measured as the time taken for the moment rate function to drop to 1/10 of

its peak value. Each dot represent one simulation. Data points are connected with dashed

line if they have the same ηv. As shown in Figure 5.12, moment scales with the cube of

duration when ηv is fixed at a certain value (0, 5000, and 25000 MPa/(km/s)). However,

as ηv increases, the absolute location of the ”1/3” line changes, moving from short duration

to long duration in the moment-duration diagram. Although the simulations here cannot

reach the parameter space of a typical SSE, they suggest a trend that is consistent with my

analytical analysis in section 4.8, where I derive a M0 ∝ T 3 relation in equation (4.60). It

again implies that my derivation in Chapter 4, though with some assumptions, should be

robust for the problem we study here.
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5.4 Model C: diffusive behavior of rupture

One last rupture behavior I will explore with the numerical models is the diffusive

rupture propagation. As demonstrated in section 4.7, diffusive rupture propagation emerges

in the “frictional-viscous” model framework when there is a patch with large stress drop

surrounded by fault area that has a smaller stress drop. In that case, the rupture front

outside the strong patch is too weak to push itself forward; instead, the rupture propagation

outside the strong patch is still driven by the static stress field of the strong patch, and thus

would yield a diffusive behavior. Ando et al. (2012) has demonstrated this diffusive rupture

behavior with BIEM numerical simulations. However, the setup in Ando et al. (2012)

includes very heterogeneous spatial distribution of stress and ηv. In section 4.7, I propose

that a much simpler setup should also be able to produce diffusive rupture behaviors, where

ηv is homogeneous and stress is almost homogeneous except for the difference between

within and outside the strong patch. In this section, I explore this possibility with my own

numerical simulations. This set of numerical simulations is referred to as Model C.

5.4.1 Model setup

Figure 5.13 shows the schematic of the setup of Model C. The fault geometry and

fault discretization is the same as Model A. The friction and stress setting is almost the

same as Model A, except that in Model C we have a different yielding strength fy and

residual shear stress f1 between within the nucleation zone (dark brown area) and outside

the nucleation zone (gray area). The yielding shear strength fy and residual shear strength

f1 within the nucleation zone are set to be 0.01 MPa and 0 MPa, respectively. the initial
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Figure 5.13: Schematics showing the setup of Model C simulations that test the diffusive
rupture behaviors in the “frictional-viscous-mixing” “friction” framework. (a) The geometry
and discretization of the fault in Model C. It is the same as in Model A (section 5.2). The
fault is set to be a planar rectangle, with a length of 20 km and a width of 5 km. The
fault is discretize with small squares whose side ∆x = 0.1 km. The fault is treated as a
displacement discontinuity embedded in an elastic whole (full) space. The fault is viewed
from an angle from the top. (b) The generic setup of “friction” and initial stress setting.
The initial shear stress T0 is prescribed in the along-width direction. Similar to Model A,
there is a rectangle nucleation zone (2 km× 5 km) whose center is 5 km away from a short
side of the rectangular fault (dark brown area). The yielding shear strength fy and residual
shear strength f1 within the nucleation zone are set to be 0.01 MPa and 0 MPa, respectively.
Within the nucleation zone, initial stress T0nuc = 0.001001 MPa, which is just above the
yielding strength. Outside the nucleation zone, the yielding shear strength fy and residual
shear strength f1 are set to be 0.001 MPa and 0.001, which results in a ten-times smaller
dynamic stress drop fy−f1 compared to within the nucleation zone (gray area). The initial
shear stress T0 outside the nucleation zone is set to be 0 MPa. The viscous coefficient ηv
is set to be homogeneous on the fault for a given simulation, and its value varies among
different models. The dashed line PP’ is a profile along x-axis that would be used in the
later analysis, and it is at the central location along the width of the fault.

stress within the nucleation zone T0nuc = 0.001001 MPa, which is just above the yielding

strength. Outside the nucleation zone, the yielding shear strength fy and residual shear

strength f1 are set to be 0.001 MPa and 0, which results in a ten-times smaller dynamic

stress drop fy − f1 compared to within the nucleation zone. The initial shear stress T0

outside the nucleation zone is set to be 0 MPa. ηv is set to be the same everywhere on the

fault.

The common parameters in Model C simulations are summarized in Table 5.5. By
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Parameter Fixed value

shear modulus µ 3.13× 1010 Pa

P wave speed α 5.6× 103 m/s

S wave speed β 3.23× 103 m/s

medium density ρ 3× 103 kg/m3

fy outside the nucleation zone 103 Pa

fy within the nucleation zone 104 Pa

f1 outside the nucleation zone 0 Pa

f1 within the nucleation zone 0 Pa

T0 outside the nucleation zone 0 Pa

T0 within the nucleation zone 1.001× 104 Pa

Table 5.5: Summary of the fixed parameters used in different simulations in Model C.

Model number ηv in MPa · s/km ηv in µ/(2β)

Model C1 165000 34.1

Model C2 85000 17.5

Table 5.6: Summary of ηv used in different simulations in Model C.

having this setup, the rupture propagation outside the nucleation zone would be mostly

driven by the nucleation zone slip, instead of its own slip. We want to investigate the effect

of ηv on the diffusive rupture behaviors, so I run two simulations of this generic setup with

two different ηv: ηv = 165000 MPa · s/km, and ηv = 85000 MPa · s/km (summarized in

Table 5.6).

5.4.2 Simulation results

Figure 5.14 shows the slip rate and shear stress snapshots of the two Model C

simulations: Model C1 with ηv ≈ 34.1 µ/(2β) and Model C2 with ηv ≈ 17.5 µ/(2β). Each

column corresponds to an output of the model (slip rate or shear stress) with a specific ηv.
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Figure 5.14: Slip rate and shear stress snapshots of the two models (Models C1 and C2)
with different viscous coefficients ηv. Each column corresponds to an output of the model
(slip rate or shear stress) with a specific ηv. The first and second column are the slip rate
snapshots for the ηv ≈ 17.5 µ/(2β) model and the ηv ≈ 34.1 µ/(2β) model, respectively.
The third and forth column are the shear stress snapshots for the ηv ≈ 17.5 µ/(2β) model
and the ηv ≈ 34.1 µ/(2β) model, respectively. Each row corresponds to a time step, and the
time increases from top to bottom. For each snapshot, the x-axis is the long-side direction of
the rectangle fault and the y-axis is the short side direction of the rectangle fault. Slip rate
is color-coded with white equals zero and dark green equals 1 × 10−5 m/s. Shear stress is
color-coded with black equals zero and the brightest color equals 0.001 MPa. Both of these
colormaps are saturated when the output is within the nucleation zone, in order to better
show the diffusive rupture propagation outside the nucleation zone. This figure shows that
the Model C setup can generate diffusive rupture behaviors, and the rupture diffuses more
slowly as ηv increases.
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The first and second columns are the slip rate snapshots for the ηv ≈ 17.5 µ/(2β) model and

the ηv = 34.1 µ/(2β) model, respectively. The third and forth column are the shear stress

snapshots for the ηv ≈ 17.5 µ/(2β) model and the ηv = 34.1 µ/(2β) model, respectively.

As shown in Figure 5.14, rupture propagation in both simulations naturally dies

out when the rupture propagates a certain distance away from the nucleation zone, and this

distance is the same for both simulations. When rupture dies out, slip rate goes back to

zero (first and second column) and a permanent static shear stress increase is left near the

edges of the slipped area (third and forth column). Both simulations show a diffusive-type

rupture behavior in a general sense, where rupture propagates slower when propagating

further. The rupture in the model with ηv ≈ 17.5 µ/(2β) ends between 36.6 s and 48.6 s,

while in the ηv ≈ 34.1 µ/(2β) model, the rupture ends between 72.7 s and 84.8 s. It implies

that a slower diffusive rupture when ηv is higher. In addition, the peak slip rate becomes

smaller as the rupture get away from the nucleation zone.

The diffusive rupture can be seen more clearly in the space-time evolution plot.

Figure 5.15 shows the space-time evolution of slip rate and shear stress along the PP’ profile

(the dashed line in Figure 5.13b). Both the two colormaps for slip rate and shear stress

are saturated when the output is within the nucleation zone, in order to better show the

diffusive rupture propagation outside the nucleation zone. For the slip within the nucleation

zone, the rise time is larger when ηv is higher, which is consistent with the results in section

4.5 and 5.2. Both ruptures end near x = 0 km and x = 10 km, and the rupture propagation

outside the nucleation zone is diffusive-like. The slip rate gradually decreases to zero as

rupture diffuses out. The diffusive speed is slower when ηv is higher.
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Figure 5.15: The space-time evolution of slip rate and shear stress along the PP’ pro-
file shown by the dashed line in Figure 5.13b. The slip rate evolution for ηv =
17.5 and 34.1 µ/(2β) cases are shown in (a) and (b), respectively. The shear stress evolu-
tion for ηv = 17.5 and 34.1 µ/(2β) cases are shown in (c) and (d), respectively. For each
space-time plot, x-axis is the along profile distance, with zero at point P, and y-axis denotes
time. The maximum value of the slip rate colormap is 10−5 m/s, and the minimum value
is zero. The maximum value of the colormap is 0.001 MPa, and the minimum value is zero.
Both these two colormap are saturated when the output is within the nucleation zone, in
order to better show the diffusive rupture propagation outside the nucleation zone.
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5.4.3 Comparison between numerical Model C and analytical results

Before we compare between numerical Model C and analytical results, it would be

helpful we first review the analytical results in section 4.7. In section 4.7, we obtain several

analytical relations to predict and describe the diffusive rupture behavior, and find that it

depends on different ways of simplification and approximation. To obtain the analytical

relation, I need to simplify the complicated static stress decay relation as either ∼ r−2

or ∼ r−3. For both decay assumptions, we may obtain a corresponding relation between

rupture time t and distance xP that is in a logarithmic form. The corresponding equation

for ∼ r−2 and ∼ r−3 are (4.45) and (4.54), respectively. For convenience, I will show them

here again. Equation (4.45) is

t ≈ 1

C
·
(

1 +
ηv
µ/2β

)
· L

2β
· ln

 1

1− τe
∆f ·

(xP )2

L2


and equation (4.54) is

t ≈ 1

C
·
(

1 +
ηv
µ/2β

)
· L

2β
· ln

 1

1− τe
∆f ·

(xP )3

L3


To simplify the expressions, one may utilize a Tyler series expansion near xP = 0

to approximate the logarithmic relation as a polynomial. For the ∼ r−2 assumption case,

the logarithmic relation can be approximated as a t ∼ (xP )2 relation, and it has been shown

in equation (4.49),

t ≈ 1

C
· 1

L · 2β
· τe

∆f
·
(

1 +
ηv

µ/(2β)

)
· (xP )2
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and for the ∼ r−3 assumption case, the logarithmic relation can be approximated as a

t ∼ (xP )3 relation, and it has been shown in equation (4.55),

t ≈ 1

C
· 1

L2 · 2β
· τe

∆f
·
(

1 +
ηv

µ/(2β)

)
· (xP )3

The purpose of making this simplification is to compare my theoretical results

with the t = (Df )−1 · x2 diffusive tremor migration behavior observed in real world. In

particular, this observed empirical relation has a one-to-one correspondence with the the-

oretical relation equation (4.49), based on which one can find a theoretical expression for

Df in equation (4.50),

Df = C · ∆f

τe
·
(

1 +
ηv

µ/(2β)

)−1

· L · 2β

=
Cµ∆τL

ηvτe
·
(
µ/(2β)

ηv
+ 1

)−1

This relation is consistent with the theoretical relation derived in Ando et al.

(2012) when ηv is significantly larger than µ/(2β) and C = 1/(2π). Since the solution in

Ando et al. (2012) is derived for a 2D fault with quasi-static assumption, my solution here

might be more general.

We may now compare between numerical model C and the analytical results. I

choose the slip rate space-time evolution plot Figure 5.14(a) and (b) as the numerical

outputs to compare against. Figure 5.16 shows the comparison between the numerical

results and the analytical relation where a r−2 decay of static stress is assumed. The

analytical relations are shown by lines with different colors and line-styles. For all the
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Figure 5.16: Comparison between the numerical results and the analytical relation derived
in section 4.7 where a r−2 decay of static stress is assumed. The numerical space-time
evolution of slip rate along the PP’ of the ηv = 17.5 µ/(2β) model and the ηv = 34.1 µ/(2β)
model are used for comparison, and they are the same as Figure 5.14(a) and (b). The
analytical relations in section 4.7 are shown by lines with different colors and line-styles.
The logarithmic-form theoretical relations (equation (4.45)) are shown by dashed lines, and
the t ∼ x2 approximations (equation (4.49)) are shown by solid lines. For all lines, the
strong patch length L is set to be 2 km and τe/∆f is set to be 0.1, which are consistent
with the numerical simulations. For the constant C, the lines use two values: when plotting
the blue lines, I assume a most generic value C = 1. When plotting the red lines, I fine-tune
C to make the analytical relations best match the numerical results visually. The best C I
find is 0.16, which is similar to the 2D theoretical value 1/(2π) given in Ando et al. (2012).
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Figure 5.17: Comparison between the numerical results and the analytical relation derived
in section 4.7 where a r−3 decay of static stress is assumed. The numerical space-time
evolution of slip rate along the PP’ of the ηv ≈ 17.5 µ/(2β) model and the ηv ≈ 34.1 µ/(2β)
model are used for comparison, and they are the same as Figure 5.14(a) and (b). The
analytical relations in section 4.7 are shown by lines with different colors and line-styles.
The logarithm-form theoretical relations (equation (4.54)) are shown by dash lines, and the
t ∼ x3 approximation (equation (4.55)) is shown by solid lines. For all lines, the strong
patch length L is set to be 2 km and τe/∆f is set to be 0.1, which are the consistent with
the numerical simulations. For the constant C, The lines use two value: when plotting the
blue lines, I assume a most generic value C = 1. When plotting the red lines, I fine-tune
C to make the analytical relations best match the numerical results visually. The best C I
find is 0.3.
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analytical results, the strong patch length L is set to be 2 km and τe/∆f is set to be 0.1,

which are the consistent with the numerical simulations. For the constant C, I use two

value: a most generic value C = 1 (blue lines) and a fine-tune C to make the analytical

relations best match the numerical results visually (red lines).

As shown in Figure 5.16, the analytical relations also show a slower diffusive rup-

ture as ηv increases, which is consistent with the numerical results. The logarithm relation

(dashed lines) is very similar to the t ∼ x2 approximation (solid lines) when the rupture

distance is short. This is expected because the t ∼ x2 approximation is derived by only

using the first-order term in the Tyler series expansion of the logarithmic relation. However,

the more rigorous logarithmic relation can predict the diffusive propagation boundary, while

the t ∼ x2 approximation cannot. A most generic constant C value of one can produce a

diffusive rupture behavior (blue lines), but the fit is relatively poor. When C = 0.16, the fit

is much improved, especially at the beginning of the diffusive rupture. This C value is very

similar to 1/(2π) that is derived in Ando et al. (2012). Considering that the rupture setup

is close to a 2D situation just outside the nucleation zone, such agreement is as expected.

Figure 5.17 shows the comparison between the numerical results and the analyti-

cal relation where a r−3 decay of static stress is assumed. The logarithmic-form theoretical

relations (equation (4.54)) are shown by dashed lines, and the t ∼ x3 approximation (equa-

tion (4.55)) is shown by solid lines. The results are very similar to in Figure 5.16, where

diffusion becomes slower when ηv increases, and the logarithmic relation converges to the

t ∼ x3 approximation when propagation distance is small. The generic C value of one fits

the diffusion poorly, while the fit is much improved when C = 0.3. In contrast to the r−2 de-
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cay case, the logarithm form r−3 decay relation can better predict the diffusive propagation

boundary. This is as expected since a r−3 decay of static stress is a better approximation

as rupture moves away from the stress source (Okada, 1992).

The comparison above suggests that the analytical relations in section 4.7, no

matter whether they are based on r−2 or r−3 static stress decay, all can explain the diffu-

sive rupture behavior in the numerical simulations to a certain degree. It again suggests

that our analytical derivation in section 4.7 is reasonable to first-order, though with many

assumptions. Different from the numerical results in Ando et al. (2012), I did not include

any smaller-scale spatial heterogeneity of friction or stress parameters. It implies that the

drastic contrast between a strong patch and a weak surrounding fault, together with the

frictional-viscous “friction law”, is the key to produce the diffusive rupture behavior.

For both the r−2- and the r−3- based analytical relations, the logarithmic form

seems to be better than the polynomial (t ∼ x3 or t ∼ x3) approximations in all cases. The

logarithmic form would predict a natural stop of the diffusive rupture, while the polynomial

approximations cannot. This feature has not been pointed out in Ando et al. (2012),

though it is likely buried in their numerical simulations. Nevertheless, I note that the

polynomial approximations should still be very important, especially from an observational

point of view. First of all, a good property of the simple polynomial approximations is that,

they are more convenient to use when measuring and quantifying the diffusive rupture in

observations, compared to the complicated logarithmic form. In fact, all existing reports

on the diffusive tremor migrations assume a t = (Df )−1 · x2 relation and measure the

corresponding diffusivity Df . Therefore, using the simple polynomial approximations shall
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be easier for the practice of comparing between models and observations.

Secondly, although the polynomial approximations depart from the logarithmic

form predictions as x increases, the polynomial approximations actually approach the loga-

rithmic form when x is small. The polynomial approximations also fit the numerical results

reasonably well at the beginning stage of the diffusive rupture. Since the slip rate dies out

as rupture diffuses to a greater distance, the beginning stage of the diffusive rupture should

be most visible in observations, which is exactly what the polynomial approximations are

good at explaining. Figure 5.18 shows rupture time against rupture distance in a log-log

plot for the two simulations we investigate above. The numerical results are plotted in

blue solid curves, and the slope of t ∼ x2 and t ∼ x3 relation are shown in red and brown

dashed lines for reference. The plot shows that both a t ∼ x2 and t ∼ x3 can be reasonable

representations for a considerable portion of the early diffusive rupture.

At the end of the discussion of Model C, I want to note that the model setup here

is very simple with not much spatial heterogeneity of friction and stress parameter. I am

using it to highlight the mechanism of diffusive rupture. Were I to include a high prestress

region at a certain distance away from the nucleation zone, the rupture may switch from

a diffusive rupture to a constant propagation speed rupture, as shown in Model A. Such a

transition has been observed in ETS events in the Cascadia subduction zone, as reported

by Creager et al. (2020). Nevertheless, a detailed modeling of the actual SSE is beyond the

scope of my dissertation, and shall be the subject of future study.
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Figure 5.18: Rupture time against rupture distance for one branch of the rupture along
the PP’ profile (x > 5 km) in (a) Model C2, ηv ≈ 17.5 µ/(2β) and (b) Model C1, ηv ≈
34.1 µ/(2β). X-axis is the along profile distance minus x = 5 km, which is the center
coordinate of the nucleation zone. Y-axis is the time when a certain fault element just
ruptures (rupture time). The plot is shown in a log-log form in order to demonstrate the
first-order dependence. Blue solid lines are numerical model results. Within the nucleation
zone, all rupture time values equal the first time step. Blue lines disappear after a certain
time/distance because rupture dies out. The brown and red dashed lines show the slope of
t ∼ x2 and t ∼ x3 relation for reference purpose. The figure suggests that either t ∼ x2 or
t ∼ x3 could be a reasonably well approximation of the simulation results here.

170



5.5 Summary of Chapter 5

In Chapter 5, I conduct numerical simulations to test the “frictional-viscous” mod-

els that are described and analytically investigated in Chapter 4. In numerical solutions, I

am able to include the full elastodynamic effects with inertia and waves, and as well consider

the spatial distribution of slip and stress on the fault. These two features are simplified in

the analytical derivations. Therefore, with the advantage of numerical solutions, I can test

the robustness of my analytical derivations. The good agreement between the numerical and

analytical results implies that both my analytical derivations and numerical implications

for the targeted “friction law” framework should be robust.

In particular, the set of simulations in Model A (section 5.2) provides numerical

results that can be compared with the analytical results in section 4.3 for maximum slip

rate, in section 4.4 for final slip, in section 4.5 for slip rate decay time, in section 4.6 for

rupture propagation speed, and in section 4.8 for “moment-duration” scaling relation when

rupture propagation duration controls the event duration. Secondly, the set of simulations in

Model B (section 5.3) provides numerical results that can be compared with the analytical

results for the effect of characteristic slipping area length L in section 4.4 for final moment,

and in section 4.8 for “moment-duration” scaling relation when rise time (slip rate decay

time) controls the event duration. Lastly, the set of simulations in Model C (section

5.4) provides numerical results that can be compared with the analytical results of diffusive

rupture propagation in section 4.7. Combining the discussions of Model A, B, and C, all the

analytical relations derived in Chapter 4 have been tested against numerical simulations.

I note that, due to limited computational capacity, I cannot simulate an event
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that matches the observed characteristics of SSEs, as it would require ηv to be at least

104 µ/(2β), and the fault area needs to be larger. Those simulations would requires several

orders of magnitude greater computational capacity. However, these numerical simulations

support the trend predicted by the analytical relations in Chapter 4. The agreement in

trends between numerical and analytical results helps to validate the derivations I have

made in Chapter 4. With the analytical solutions, we may easily extend the model to

examine the parameter space of observed SSEs. As has already been shown in Chapter 4,

we find that a stress drop of ∼ 10 kPa and a viscous coefficient ηv of ∼ 104 − 105 µ/(2β)

can simultaneously explain all the SSE “co-seismic” observations that are discussed above.

As a bonus, the numerical simulations provide many visualizations that are more intuitive

than the analytical equations in Chapter 4, which could help readers better understand the

physical process I discuss in my dissertation.
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Chapter 6

Discussion: implications and

limitations of my analysis

I notice that some potentially important topics have not been fully addressed in

the previous chapters. In Chapter 4 and 5, my main focus is to derive the slip and rupture

behaviors under the frictional-viscous faulting system. I did not expand the discussion on

the physical picture behind the model in terms of the whole tectonic process and deliberate

on the physical meaning of the associated parameters. In addition, I mainly focused on

explaining the kinematic characteristics of slow slip events (SSEs), but, did not extend

discussion to other slow earthquakes, such as low frequency earthquakes (LFEs), tectonic

tremors, very low frequency earthquakes (VLFEs), and rapid tremor migrations. Lastly, I

did not compare my model to other slow earthquake models in detail. For a better flow of

demonstration, these discussions are not expanded in the previous chapters on purpose.

However, these discussions may still be good supplements to the demonstration
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in my dissertation. In the following chapter, I will discuss these topics in greater detail,

and each section will correspond to a distinct topic. I hope these discussions may better

illustrate the implications and limitations of the model in my dissertation.

6.1 Physical image of the frictional-viscous model in terms

of the whole tectonic process

In Chapters 4 and 5, I demonstrate how the fault with frictional-viscous “friction”

can give rise to slow slip events, In these chapters, I focus more on the process that generates

the slow slip event signals, and less on the tectonic consequence of such setup in terms of

the stress accumulating process. A thorough discussion of the latter part requires more

quantitative analysis and is out of the scope of this paper. Still, we may still at least

discuss the associated process conceptually and qualitatively, which will be the content of

this section.

6.1.1 Stress concentration on the frictional contact

As the elastic rebound theory suggests, when two tectonic blocks move against

each other, frictional force on the fault tends to hold the two blocks together. Shear strain

would increase near the fault, and so would the applied shear stress on the fault. No slip

(offset) takes place across the fault until the shear stress on the fault is so large that the

fault can no longer provide an equivalent frictional force to prohibit slip. Then, a sudden

drop of frictional force (or shear strength) happens on the fault, resulting in a release of the

strain energy in the nearby rock, and causing earthquakes.
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This framework should also apply to the frictional-viscous model that I am inves-

tigating here. In my model, stress is partitioned into a frictional part and a viscous part.

When shear stress is applied to such a fault, it would not slip until the shear stress is high

enough to break the frictional contact, which is similar to the classic ”friction-only” model.

However, because the fraction of frictional contact area is small compared to the total fault

area, the actual shear stress τf on these contacts needs to be larger than the average shear

stress τ , in order to hold the fault and prevent the two sides from slipping. We denote

the actual frictional contact area as Af and the total area as A. τf and τ should have the

following relation,

τ = Camp ·
Af
A
· τf (6.1)

in which Camp is a correction factor for the amplification effect. It is included to consider

that the frictional contact could have a complex 3D structure in the fault zone that has

finite thickness, which may modify the stress amplification effect.

This physical picture is demonstrated in the schematics in Figure 6.1. For a fault

zone where frictional contact area is dominant (Figure 6.1(a)), the average stress on the

fault would be similar to the frictional stress on the contact,

τ ≈ τf , when Camp ·
Af
A
≈ 1 (6.2)

For the frictional-viscous model in my dissertation, the frictional contact is as-

sumed to be only a small fraction of the total fault zone volume (Figure 6.1(b)). In that

case the average stress on the fault would be significantly smaller than the frictional stress
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thin fault zone with dominant 

frictional (brittle) shear

thick fault zone with a mixture of 

frictional and bulk viscous shear

aver. stress vs. 

frictional stress

(a) (b)

Figure 6.1: Schematics of fault zone showing two cases: (a) the fault zone is thin and
frictional contacts dominate the shear zone; and (b) the fault zone is wide and frictional
contacts is only a small fraction of the total fault area. (a) is more representative of the
fault zone at seismogenic depths. (b) is the physical vision of the frictional-viscous model
in my dissertation, which I suggest can be representative of the shear zones that host slow
earthquakes.

on the contact,

τ � τf , when Camp ·
Af
A
� 1. (6.3)

This mechanical property would lead to a stress concentration/amplification effect

for the frictional-viscous model: when tectonic shear strain accumulates around the fault due

to plate movement, the actual shear stress on the frictional contact builds up significantly

faster than the average shear stress on fault. This is because the small fraction of area that

is frictionally locked needs to bear the load for a considerably greater area. As a result,

a frictional-viscous fault would have a shorter event interval and a smaller average shear

drop, compared to a fault where the frictional contact area fraction is high.
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Case 1: frictional contact dominant

Case 2: small frictional 

contact fraction

Earth surface

plate convergence

viscousfrictional

Figure 6.2: Schematic of the two conceptual cases that I consider when evaluating the
tectonic consequence of the frictional-viscous model. The figure sketches a cross-section of
a subduction zone. Case 1 represents Figure 6.1(a) and depicts the updip portion of the
subduction interface, where the fault zone is thin and the frictional contact covers most
of the fault area. Case 2 represents Figure 6.1(b) and shows the downdip portion of the
subduction zone, where the fault zone is thick and the frictional contact area fraction is
small. The schematic is just for illustrating concepts and is not to scale.

6.1.2 The tectonic consequence of the stress concentration effect: a smaller

shear stress drop and a shorter event interval

For convenience, I use a subduction zone setting as an example to demonstrate

the tectonic consequence of the stress concentration effect. The same mechanism should

also be applicable to other tectonic environments. Figure 6.2 shows the schematic of the

two conceptual cases that I consider. The figure sketches out a 2D profile of a subduction

zone. Case 1 is shown in the updip portion of the subduction interface, where the fault zone

is thin and the frictional contact covers most of the fault area, representing Figure 6.1(a).
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Case 2 represents Figure 6.1(b) and is shown in the downdip portion of the subduction

zone, where the fault zone is thick and the frictional contact area fraction is small. We may

consider a very simple model where a fault starts to slip when the actual frictional shear

stress τf reaches the yielding frictional strength fy, and assume that fy is the same for the

fault zone in both cases.

Figure 6.3 shows the two conceptual diagrams that demonstrate how the shear

stress on the fault evolves with plate convergence. Figure 6.3(a) and (b) correspond to

Cases 1 and 2 described in the previous paragraph, respectively. In both figures, the purple

solid line represents the average shear stress on fault, while the orange dashed line represents

the actual shear stress on the frictional contact. For simplicity, I assume that both cases

have the same far-field stressing rate. In Case 1, the average stressing rate is similar to the

actual stressing rate on the frictional contact. Therefore, when a sudden stress drop (an

earthquake) happens, the average stress drop is similar to the actual frictional stress drop.

In Case 2, the average stressing rate is set to be the same as in Case 1. However, the actual

stressing rate on the frictional contact is significantly larger due to the stress concentration

effect. Therefore, the frictional contact may reach the yielding strength sooner than in Case

1, and the event interval in Case 2 is much shorter. In addition, the average stress drop in

Case 2 is smaller than in Case 1, which also produce less final slip per event.

The transient stress drop events in Case 1 and Case 2 are considered to corre-

spond to large megathrust earthquakes and large slow slip events, respectively. Therefore,

the results above are qualitatively consistent with the observed differences between large

megathrust earthquakes and large slow slip events. That is, slow slip events tend to have
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plate convergence
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stress on fault

actual stress on contact average stress on fault

(a)

(b)

Case 1: frictional contact dominant

Case 2: small frictional contact fraction

yielding stress level

Figure 6.3: Conceptual diagrams that demonstrate how the stress on the fault evolves with
plate convergence. Figure 6.3(a) and (b) correspond to Cases 1 and 2 described in section
6.1, respectively. X-axis denotes plate convergence and y-axis denotes shear stress on the
fault. In both (a) and (b), purple solid line represents the average shear stress on the fault,
while orange dashed line represents the actual shear stress on the frictional contact. I set the
purple solid lines in both (a) and (b) to have the same slope to indicate the same stressing
rate for both cases. The figures demonstrate how the stress amplification effect may reduce
both the average stress drop and the inter-event interval in the frictional-viscous model.
The schematic is just for illustration purposes and is not to scale. I note that the x-axis
looks tilted but it is not—this is only a visual illusion.
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smaller stress drops as well as shorter inter-event intervals. I note that the above analysis is

about the long term tectonic process. The transient stress drop events, either in Case 1 or

Case 2, are considered to be effectively instantaneous in the long term and can be plotted as

vertical lines. However, their short term features, or “co-seismic” features, should be very

different, depending on whether we consider the existence of the viscous shear resistance

components. As shown in Chapter 4 and 5, since the fault zone in Case 2 also contains a

viscous (rate-strengthening) layer, the transients in Case 2 should have smaller slip rates

and rupture propagation speeds compared to Case 1, making them slow slip events.

6.1.3 A quick summary for section 6.1

In the above discussion, I demonstrate a conceptual model to show that, under

the frictional-viscous framework I use in this dissertation, both the inter-event interval and

the average stress drop would be smaller than those in the regular earthquake model, where

frictional contact area covers most of the fault. These results are consistent with the SSE

observations. Most importantly, the simple analysis above suggests that a smaller average

shear stress drop is a natural tectonic consequence of the frictional-viscous framework. It

does not require the high pore fluid pressure that many theoretical models require to get

low stress drop. In Chapter 4 and 5, I have shown that a low average shear stress drop

is a requirement for the co-seismic frictional-viscous model to fit the SSE observations.

Therefore, the inference in the long term analysis is consistent with the required prescribed

condition in the short term co-seismic analysis. This agreement suggests that the frictional-

viscous framework can, or at least has a great potential to, explain both the long term and

short term SSE observations in a self-consistent manner.
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6.2 A testable hypothesis on the viscous coefficient ηv and

its physical meaning

In my dissertation, a most critical parameter is the viscous coefficient ηv. It is a

parameter that controls how the viscous resistance fviscous of the bulk fault shear zone is

related to the slip rate V ,

fviscous = ηv · V (6.4)

In Chapter 4 and 5, I demonstrate that by considering this viscous resistance

together with frictional/brittle stress drop in a model, a transient slip event can have a

slower slip rate and rupture propagation speed, compared to the typical frictional/brittle-

only models that is commonly used to explain fast earthquakes. Importantly, I find that

a viscous coefficient ηv of ∼ 104 − 105 µ/(2β) can simultaneously explain many first order

characteristics of slow slip events (SSEs), which strongly suggests that the frictional-viscous

model is promising to be a decent representation of the actual SSE source processes.

My analysis provides a quantitative prediction of the viscous coefficient ηv: ∼

104 − 105 µ/(2β). This value is purely derived from the need of explaining geophysical

observations. Based on this, we may naturally come up the following hypothesis for future

observations to test: if the frictional-viscous model is indeed the mechanism behind

the SSE source process, we should find that the micro-scale shear deformation

mechanism of SSEs has a linear slip rate strengthening characteristic, and the

associated viscous coefficient ηv is about ∼ 104 − 105 µ/(2β). This hypothesis, in

principle, can be independently tested with geological observations on SSE hosting faults
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(in-situ or exhumed) and with laboratory experiments.

It is worth noting that, at this point, the viscous process I refer to does not need to

be related to any specific viscous mechanism. In other words, any fault-zone-scale process

could be responsible, as long as a it can provide an average resistance against slip movement

that increases with slip rate (i.e., rate-strengthening). I have to confess that my current

understanding of rock mechanics may not be enough to fully address this issue, but I do

believe more thorough investigations across disciplines are necessary to answer this question.

Nevertheless, It is possible to expand the discussion a bit on the micro-scale viscous process

as follows, based on the results above and my limited knowledge on this topic. This is

mostly for reference purposes, to let the readers (including the future me myself) to know

what I had in mind as I wrote the dissertation.

I am thinking the viscous resistance of a fault zone is provided by distributed

viscous deformation within the fault zone. This distributed viscous deformation can either

correspond to the viscous flow in the volume or rate-strengthening creep on countless dis-

crete slip surfaces. In either case, we may define a effective viscosity ηeff for the viscous

deformation within the fault zone as the viscous coefficient ηv times the width W of the

fault zone,

ηeff = ηv ·W (6.5)

Considering that the viscous coefficient ηv is about ∼ 104 − 105 µ/(2β), µ/(2β) is

about 5× 107 Pa · s/m (based on our model setting, see Table 5.1), and a fault zone width

W is ∼ 100 meters, we may estimate the effective viscosity ηeff to be,
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ηeff = [104 to 105] · [5× 107 Pa · s/m] · 100 m

∼ 1013 to 1015 Pa · s
(6.6)

A typical rock viscosity in the lithosphere is about 1017 to 1022 Pa · s. There-

fore, the predicted effective viscosity for the fault zone is significantly smaller than the

typical viscosity in the ambient rock, even for the hottest part. This order-of-magnitude

result suggests that the viscous deformation within the high-strain-rate fault zone might be

intrinsically different from the viscous flow in the ambient rock.

Based on a review of recent literature on geological observations of potential SSE

sources (e.g., Bürgmann, 2018; Phillips et al., 2020; Kirkpatrick et al., 2021; Behr &

Bürgmann, 2021; Schmidt & Platt, 2022), I suspect some viscous/rate strengthening mech-

anisms within the fault zone may be responsible for this ”low” effective viscosity. Two of

the mechanisms are most impressive to me. One mechanism is a “dissolution-precipitation”

creep, by which grains change shape through dissolution at high stress sites, accompanied

by fluid-assisted diffusive mass transfer towards, and reprecipitation at, low-stress sites

(Kirkpatrick et al., 2021). Another mechanism is “brittle creep” or ”cataclastic flow”, in

which a volume of rock deforms by frictional sliding and grain rolling combined with frac-

ture, causing an overall change in shape (Perfettini & Avouac, 2004; Kirkpatrick et al.,

2021). I could not find a robust estimation of the effective viscosity for the above two mech-

anisms; yet, I do think they can potentially produce an “expected low” effective viscosity

for the model in my dissertation, since these two mechanisms are different from the viscous

flow mechanism in the ambient lithosphere and may be unique for the fault zone. Besides,

these two mechanisms, seem to me to be closely related to the presence of abundant fluid
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in the fault zone, which makes them seem more attractive.

Nevertheless, I will leave these open questions to future investigations. In fact, I

think this “unsolved” question may actually make my dissertation attractive to geologists

and rock physicists.

6.3 A different form of viscous resistance instead of linear,

and why a logarithmic form would allow slow slip only

in a narrow range of parameter space

In this dissertation, I adopt a linear form for the viscous resistance in my models.

Indeed, the initial choice of a linear form is mainly for simplicity. Nevertheless, this linear

form is very successful in explaining SSE observations in first order, as I have shown in

Chapter 4 and 5. These analyses, together with the results in Ando et al. (2010), Nakata et

al. (2011), and Ando et al. (2012), suggest that the linear viscous resistance is an attractive

formulation for SSEs, at least from the point of view of explaining geophysical observations.

However, I notice that other forms of viscous (or rate-strengthening) resistance,

could be, or has been, proposed to explain slow slip events. Perhaps the most popular form

is the logarithmic form. This is the form of the slip rate dependence in the rate-and-state

friction formulation (e.g., J. H. Dieterich, 1979; Ruina, 1983), and it has been proposed

to be the mathematical form of the viscous resistance for brittle creep (cataclastic flow)

mechanism (e.g., Perfettini & Avouac, 2004; Perfettini & Ampuero, 2008). Other forms of

rate-strengthening forces, like a higher order polynomial dependence on slip rate, are also
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possible.

Determine which form serves as the best representation for the SSE source process

is outside the scope of my dissertation. However, from a purely theoretical point of view, I

may still provide some derivations to rudimentarily show the slip and rupture characteristics

under these alternative rate-strengthening formulations. For simplicity, I will only derive

the expressions of initial slip rate and slip rate decay relations using the 1D approximation

in secions 4.3 and 4.5. These derivations are demonstrated as below, and in particular, I

will show that a logarithmic form may always need to occupy a narrow parameter range in

its parameter space to explain the observed slow slip behaviors.

6.3.1 A general form of rate-strengthening

To make a general discussion, we may start from the general form of viscous

resistance, and assume it only depends on slip rate V ,

fviscous = fv(V ) (6.7)

The frictional (brittle) part of the setup is left the same as in Chapter 4. To see

how slip rate evolves under the general form of viscous resistance, we may reproduce the

derivation in section 4.5 before equation (4.31), only except that we change (4.31) to a

general form of rate strengthening,

f(t) = f1 + ηv · fv
(
V (t)

)
. (6.8)

By equating (4.31) and (6.8), we will obtain,
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− µ

2β
· dV (t)− C · µ

L
· V (t) dt = ηv · f ′v

(
V (t)

)
dV (t), (6.9)

where L is the characteristic length of the slipping area.

It is possible to separate the variables V and t in the above ODE, and we can

obtain,

dt = − 1

C
· L
µ
· f
′
v(V ) + µ/(2β)

V
· dV (6.10)

Performing indefinite integration on both sides, we obtain,

t =

∫
− 1

C
· L
µ
· f
′
v(V ) + µ/(2β)

V
· dV + Const.

=

(∫
− 1

C
· L
µ
· f
′
v(V )

V
· dV

)
+

(
− 1

C
· L

2β
lnV

)
+ Const.

(6.11)

In principle, we may use (6.11) to obtain the slip rate decay in any specific form.

In practice, for earthquake modeling, we are most interested in one form: the logarithmic

form, because it appears in the rate-and-state formula and is now most widely used. In the

following part of section 6.3, I will expand the discussion on the logarithmic form of viscous

resistance.

6.3.2 A logarithmic form of viscous resistance: how does slip rate decay?

Let us now investigate a logarithmic form of viscous resistance,

fv(V ) = τref + aσ ln

(
V

Vref

)
(6.12)
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in which τref is the viscous resistance when V is at a reference slip rate Vref . aσ is included

to quantify the strength of the logarithmic form rate-strengthening. It is set to be a product

of a and σ in order to mimic the classic logarithmic form rate strengthening in the rate-

and-state friction law, in which a is the dimensionless coefficient that controls the direct

response term (the a ln( VV0 ) term in equation (3.7)), and σ is the normal stress. I note that

V is not allowed to be zero in this form (meaning that it is not regularized).

Taking derivative on both sides of (6.12), we have,

f ′v(V ) =
aσ

V
(6.13)

Substitute (6.13) into (6.12), we have,

t =

(
−
∫

1

C
· aσL
µ
· 1

V 2
· dV

)
+

(
− 1

C
· L

2β
lnV

)
+ Const.

=
1

C

(
aσL

µV
− L

2β
lnV

)
+ Const.

(6.14)

Assuming at t = 0, V (t = 0) = V0, and substituting them into (6.14), we have,

t =
aσL

Cµ

(
1

V (t)
− 1

V0

)
− 1

C
· L

2β
ln

(
V (t)

V0

)
(6.15)

This is a transcendental equation for V . However, when V (t) is significantly

smaller than aσ
µ · 2β, the first term should be significantly larger than the second term

(which is related to radiation damping). So it is possible to leave out the second term.

Assuming a typical a = 10−3, σ
µ = 10−4, β = 103 m/s, the value of aσ

µ · 2β under the
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rate-and-state is ∼ 10−4 m/s. This is considerably larger than the typical SSE speed, and

suggests that it might be safe to leave out the second term.

Anyway, if we neglect the second term, we will obtain,

V (t) = V0 ·
1

1 + CµV0
aσL · t

(6.16)

this formula is essentially the same as what is derived in Perfettini and Avouac (2004) with

the same setting, although it is not explicitly shown and one needs to take the limit of

stress rate τ̇ → 0 (tr →∞) in their equation (24). Also, they were deriving this formula to

explain afterslip instead of SSEs.

Equation (6.16) shows a 1/t decay of the slip rate, and a characteristic decay time

Tlnd can be extracted from (6.16),

Tlnd =
aσL

CµV0

(6.17)

Since aσ represents the strength of rate-strengthening effect, equation (6.17) sug-

gests that a stronger rate-strengthening effect would lead to a longer slip rate decay time

here, similar to what is found in section 4.5.

6.3.3 A logarithmic form of viscous resistance: characteristic slip rate

We may now investigate the characteristic slip rate under the logarithmic formula-

tion. Based on equation (6.17), the characteristic slip rate should be well represented with

the initial slip rate V0, similar to what we found in Chapter 4. Following the procedure in
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section 4.3, we can estimate the V0 for the logarithmic case, except that we need to change

equation (4.15) to the logarithmic form,

f(ξ, t0 + ∆t) = f1 + τref + aσ ln

(
V (ξ, t0 + ∆t)

Vref

)
. (6.18)

Equating (6.18) with (4.14), we can obtain a equation to solve for V (ξ, t0 + ∆t)

(and thus V0, since we assume V (ξ, t0 + ∆t) = V0),

f0 −
µ

2β
· V0 = f1 + τref + aσ ln

(
V0

Vref

)
(6.19)

Again, this is a transcendental equation for V0 and can not be solved analytically.

However, we know − µ
2β · V0 is the radiation damping factor, so if V0 is considerably small,

− µ
2β · V0 may be ignored. We may than solve for V0 as,

V0 ≈ Vref · exp

(
∆f − τref

aσ

)
(6.20)

in which we denote ∆f = f0 − f1,

Equation (6.20) suggests that the characteristic slip rate depends exponentially on

the sudden frictional (brittle) stress drop, when the viscous resistance is in a logarithmic

form. It implies that if the sudden frictional (brittle) stress drop ∆f has a certain level of

variation, the resulting characteristic slip rate V0 would have a much greater variation. To

be more specific, even if the variation of ∆f is within the same order of magnitude, the

variation of V0 could still be as large as several orders of magnitude. It may still be possible
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to use equation (6.20) to explain SSE observations. However, the range of parameters that

can explain the observations would be narrow in parameter space, and this may be almost

inevitable due to the exponential relation.

As shown in our derivation, the exponential equation essentially originates from

the logarithmic formula of the slip-rate-strengthening dependence. Therefore, although I

did not explore other slip and rupture behaviors, I suspect that a similar “narrow range”

of results may be achieved, as long as a logarithmic formula is used to describe the viscous

(rate-strengthening) response. I note that a “narrow range” of parameter space does not

necessarily mean it is not possible. However, as there is growing evidence suggesting that

SSE is more ubiquitous than we used to think (e.g., Obara & Kato, 2016; Bürgmann, 2018),

I would favor a viscous formulation that is not in a logarithmic form.

6.4 How do LFEs, VLFEs, tremors, and rapid tremor migra-

tion fit in the frictional-viscous model framework?

In the frictional-viscous model framework of this dissertation, I focus on explain-

ing slow slip event (SSE) signal. The model does not explicitly address the signals of other

seismic types of slow earthquakes, that is, those events that can generate detectable seismic

waves and are thought to be associated with slow slip processes. These seismic slow earth-

quakes include tremors, low frequency earthquakes (LFEs), very low frequency earthquakes

(VLFEs or VLFs), and rapid tremor migrations.

Ultimately, my opinion is that a complete slow earthquake model needs to explain

all the phenomena and their associated signals during the slow slip process across different
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scales. This task could be difficult because it is challenging to consider the physical process

across multiple scales all at once. Take my model for example: since I am focusing on SSE

rupture propagation that extends for several kilometers on the fault, I choose to ignore

the detailed distribution of frictional (brittle) heterogeneities, and only treat the parameter

in my “friction law” as an spatial-average property on fault. Therefore, I am not able to

directly generate the signals for these seismogenic events in my dissertation, and compare

them to specific seismic observations. However, I may still qualitatively describe my vision

on how these seismic slow earthquakes may fit in the frictional-viscous model framework.

In particular, I propose some hypotheses to relate the actual physical property to the

parameterization scheme in my “spatial-average” model. These hypotheses can be tested

in a future finer-scale model that can address slow earthquakes across multiple scales.

6.4.1 Tremors and LFEs: recap of observations

Tectonic tremors, or non-volcanic tremors, are usually referred to as tremors in the

context of slow earthquakes research. A good summary of tremors can be found in many

review papers such as Peng and Gomberg (2010) and Obara and Kato (2016). A tremor is

a burst of high amplitude signals observed in a continuous seismogram filtered at 2-8 Hz.

Unlike signals for a single regular earthquake event, tremor signals usually do not have clear

P and S arrivals, and are usually located with techniques like envelope cross-correlation or

signal beam-forming (Obara & Kato, 2016, and the reference therein). Tremors are found

to consist of many small seismic events that can have clear P and S arrivals (usually after

stacking), and these small events are usually referred to as low frequency earthquakes (LFEs)

(e.g., Shelly et al., 2007). Based on this, people often use LFEs and tremors interchangebly.
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Some LFEs are found to appear in clusters, and these clusters are now commonly referred

to as LFE families (e.g., Sweet, Creager, & Houston, 2014).

From the beginning of their study, tremors have often been found to be accompa-

nying aseismic slow slip events (e.g., Rogers & Dragert, 2003). Although counter-examples

exist, the correlation between aseismic SSE and seismic tremors is very commonly observed,

which suggests that their relationship is very close. In recent years, researchers have found

that one may detect more SSEs in noisy geodetic data with the guidance of tremor time

and location (e.g., Frank et al., 2015), which further supports the correlation. It is now

commonly thought that tremor activity could highlight the slipping area in SSE rupture

propagation.

However, the causality relation between SSE and tremors is still an open question.

The higher-frequency radiation spectrum of tremors (compared to SSEs), low local magni-

tude of LFEs, and the delineation of their spatial distribution imply that tremors originate

from sudden frictional (brittle) ruptures within the fault zone . One popular hypothesis is

these sudden frictional ruptures are triggered by the slowly propagating SSE rupture front.

A physical rationale behind it is that the SSE are usually measured to have significantly

greater moment than the associated tremors, and it is reasonable that the smaller events are

triggered by the larger event. In recent years, another hypothesis has emerged, indicating

that SSE and tremor signals belong to the same rupture process, and the different deforma-

tion modes that respectively generate SSE and tremors signal are actually interacting with

each other during the rupture (e.g., Nakata et al., 2011; Ando et al., 2012; Luo & Ampuero,

2018; Luo & Liu, 2021). For example, the small-magnitude tremor sources could actually
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drive the large-magnitude slow slip events as well.

6.4.2 Relations between tremors and SSE in my model: the “chain reac-

tion”

The frictional-viscous model in my dissertation belongs to second hypothesis in

section 6.4.1, that is, SSEs and tremors may correspond to the same rupture process, and

the two types of events aid the occurrence of each other.

I consider that the total resistance provided by the fault zone to act against the

plate movement is the sum of a frictional (brittle) part and a viscous part (equation (4.1)),

τelastic = f

= ffrictional(D,V, ...) + fviscous(D,V, ...),

In my vision, the frictional (brittle) strength part corresponds to the brittle con-

tacts that can generate tremor and LFE signals. As shown in section 6.1, this frictional

strength would hold the two plates adjacent to the fault still and allow tectonic strain to

accumulate in the plates. Eventually, at some point, the frictional (brittle) strength will not

be able to resist the tectonic loading, and will suddenly drop. These sudden strength drop

at the local frictional contact have two consequences: first, they generate high-frequency

signals that are detected as tremors or LFEs; second, they quickly cause a difference in

stress between the average tectonic loading stress and the fault zone resistance stress.

The sudden gap in stress would cause slip motion not only on the local frictional

contact but also on the fault as a whole. If no viscous component exists in the fault zone

(fviscous(D,V, ...) = 0), the slip rate would be mainly limited by the radiation damping
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effect, as I show in section 2.2.1 and Figure 2.1. When there is viscous resistance in the

fault zone, the gap in average stress would also cause the viscous portion to be loaded and

deformed. Due to the existence of viscous deformation, the slip rate of the whole fault zone

would not be as fast as the the local slip rate on frictional contacts. In my vision, these

bulk viscous deformations are SSEs. Because of the slow slip rate, the bulk deformation in

the fault zone does not generate detectable seismic radiation and is aseismic. However, it

can still be detected by geodetic instruments and be categorized as an SSE.

The above mixed modes of shear deformation may start near a certain location on

the fault. At the same time, other locations on the fault should remain still because the

frictional (brittle) strength has not been reached. Then, the initial bulk viscous deformation

would causes an increase in elastic loading stress at the nearby fault. Due to the stress

amplification effect as discussed in section 6.1, this increase in elastic loading stress would

cause an even greater increase in local frictional stress, and eventually lead the nearby fault

to experience a sudden frictional strength drop. As described above, this sudden frictional

strength drop, again, would cause a wider-scale viscous deformation, contributing to a

“chain reaction”. As a result, the rupture propagates out on the fault and manifests itself

as both tremors (local frictional strength drop) and an SSE (bulk viscous deformation).

The above “chain reaction” processes are summarized in the flow chart in Figure

6.4. In my model framework, tremors and LFEs are thought to correspond to the sudden

brittle strength drop on the local frictional contacts, while SSEs are thought to correspond to

the bulk viscous deformation of the fault zone. Both the local frictional failure and the bulk

viscous deformation are a part of the same rupture process, and they should have influence
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At one location, sudden 
frictional (brittle) strength 
drop happens on local 
frictional contacts, generating 
tremors and LFEs.

The brittle strength drop on 
local frictional contacts 
causes a net difference 
between average tectonic 
loading stress and fault 
strength, causing a slow 
bulk viscous deformation 
(SSE).

The slow bulk viscous 
deformation causes an 
increase of average loading 
stress at the nearby faults. 

Due to the stress 
amplification effect, stress 
on local frictional contacts 
increases faster than the 
average loading stress

At the nearby fault, local stress 
on the frictional contact 
exceeds the frictional strength. 
A sudden frictional (brittle) 
strength drop happens, 
generating tremors and 
LFEs.

Figure 6.4: Flow chart that demonstrate the “chain reaction” that controls the rupture
propagation process in the frictional-viscous model. Details in section 6.4.2

on each other. However, the associated tremors and the SSE could manifest themselves

differently in geophysical observations, which could lead to different categorizations.

In addition, this “chain reaction” vision here can explain the puzzling geological

observations that the frictional (brittle) features observed in the potential SSE exhumed

fault zone are usually too small to link up in the plane of the fault (Behr & Bürgmann,

2021). It leads Behr and Bürgmann (2021) to pose the following question,

...what mechanisms (e.g. fluid−pressure diffusion, viscoelastic stress transfer)
allow transient deformation features to communicate within a more distributed
shear zone to form a coherent LFE ‘patch’, and to reliably participate in fre-
quently recurring SST (slow slip and tremor) events that propagate over 10s of
km distances?

This question can be well-explained with the “chain reaction” process described above.

Finally, I want to note that my model here cannot explicitly generate the tremor

signals that can fit seismograms. This is because my model does not explicitly consider the

stress amplification effect in the fault zone. Instead, the average stress is set as a prescribed

parameter in the model, and the stress amplification effect is approximated by prescribing a
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low average stress drop. In this setting, high-frequency radiation is artificially filtered-out.

To generate high-frequency tremor-like seismic radiation (compared to the extreme long-

period SSE signals), one needs to explicitly consider the distribution of brittle deformation

in the 3D fault zone. This not only requires one to have better observational constraints on

the fault zone structures, but also requires a more complex theoretical model that captures

and characterizes the detailed interaction between viscous and brittle deformation in the

3D fault zone.

6.4.3 VLFEs

Very low frequency earthquakes (VLFEs) are another type of seismic slow earth-

quake signal. Unlike tremors and LFEs, they are usually observed in the frequency band

below 0.1 Hz and above 0.01 Hz, and usually have a duration of a few to a few tens of

seconds. The present model does not have a direct explanation for VLFE. However, if one

considers some specific conditions, VLFE signals may be produced within the framework

of my models. Previous research has implied two specific setups that may explain these

phenomena. I will demonstrate both hypotheses here, more thorough research is needed in

future.

The first hypothesis is that VLFEs correspond to the bulk viscous deformation or

clusters of frictional slip, and emerge due to the natural fluctuation of SSE slip rate or tremor

activities. These fluctuations can generate ground deformation signals that have a “white”

spectrum (the spectrum being flat). Because the seismic noise is naturally low between

0.01 to 0.1 Hz, the fluctuation of ground motion is most easily observed in that particular

frequency band. Similar ideas have also been suggested in many other studies (e.g., Ide &
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Yabe, 2014; Gomberg, Agnew, & Schwartz, 2016; Masuda, Ide, Ohta, & Matsuzawa, 2020).

This hypothesis would predict that VLFEs are likely to co-appear with SSEs or tremors. I

do not have a model in my dissertation to show such effects since my model here does not

specify any heterogeneity length scale. Yet, were I to include a ”random” fluctuation in

the spatial distribution of viscous or stress setting, the “white” spectrum of ground motion

might emerge. Such a possibility was suggested by (Nakata et al., 2011) as well.

The second hypothesis is that, VLFEs correspond to the bulk viscous deformation,

but take place within some special fault area where the viscous coefficient ηv is lower than

∼ 104 − 105 µ/(2β). This hypothesis is proposed in my earlier paper (Wu et al., 2019).

I show that when the characteristic slip rate decay time in the frictional-viscous model is

comparable to the filtered period (0.01 to 0.1 Hz), VLFE signals may be detected. However,

this would require the viscous coefficient ηv (denoted as η in (Wu et al., 2019)) to be

∼ 102 µ/(2β), which is significantly lower than the value that is needed to explain SSEs.

Up till this point, it is still hard to determine which one of the above two hypothe-

ses is correct, or either of them is not correct. I think more observations are needed to

characterize the source process of VLFEs.

6.4.4 Rapid tremors migration

The main SSE rupture front, highlighted by tremor migration, usually has a prop-

agation speed of several km/day. This ∼ km/day speed is used as the fitting target in

my main analysis of SSE rupture propagation speed in section 4.6. However, some tremor

migrations are observed to have a speed of around km/h, which is an order of magnitude

faster than the main SSE rupture propagation (e.g., Ghosh et al., 2010). Similar to VLFEs,
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these rapid tremor migration phenomena cannot be explained with the first order features

in the frictional-viscous model. However, they may still be explained with my model if we

consider variations in stress or friction parameters. Based on our analysis in section 4.6, the

rupture propagation speed under the frictional-viscous model framework can be expressed

as (equation (4.37)),

Vrs ≈
Ls
Lp
·
(

1 +
1

S

)
·
(

1 +
ηv

µ/(2β)

)−1

· 2β,

in which Lp is the characteristic length of the high slip rate zone behind the rupture front,

Ls is the characteristic length of the high stressing rate zone ahead of the rupture front

(Figure 2.2). S is the ratio between strength excess f0 − τ0 and static stress drop ∆τs, so

S∆τs is the strength excess.

Variations in the associated parameters in the above equation can cause the rupture

speed to vary by an order of magnitude. In particular, the parameter S is an attractive

option. S represents how close the fault is to frictional (brittle) failure: the smaller the S,

the weaker the fault. Based on the above equation, we may see that if S is one order of

magnitude smaller, Vrs could be one order of magnitude higher. It suggests that, under the

frictional-viscous model framework, if we prescribe some fault area that has an S that is one

order of magnitude smaller than the background, the rupture on this area may propagate

one order of magnitude faster. This design has been shown to be capable of generating

rapid tremors migration in Ando et al. (2012). Physically, the smaller S area on fault may

correspond to the linear fault area that is intrinsically weaker than normal due to its special

structure. For example, the linear weaker fault area may have an S of around 0.1, while the
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background area may have an S of around 0.1. This weaker area may correspond to some

special structure on the subduction interface, such as seamounts.

I note that other parameters are also possible to give a higher rupture propagation

speed, including ηv and Ls
Lp

. However, I prefer not to use the variation in ηv to explain the

variation in rupture speed. For ηv, a change in its value will also affect the prediction of

other observables, unlike S. For Ls
Lp

, I do not have a good physical justification of why this

ratio might vary in space.

6.5 Comparison with other theoretical slow earthquake mod-

els: differences and connections

I have almost finished the demonstration of my theoretical model. As summarized

in Chapter 3, there here have been many theoretical studies addressing the puzzling slow

earthquakes observations. It is useful to look back and compare my model with other

theoretical models, describing their differences and connections. I note that, due to the

limitations of my knowledge, there may be some mistake or inaccuracies in the comparison.

I hope this honest documentation of my opinion can help future readers (including myself)

better understand my thinking process and better position this theoretical work in their

own framework of understanding slow earthquakes.

6.5.1 Comparison with the “less sudden stress drop” models

In section 3.1, I reviewed the models that slow down slip rate by incorporating a less

sudden stress drop. This slow-down mechanism only requires a frictional resistance in the
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“friction law”. The fault needs to be slip weakening, or rate-weakening. In this framework,

the weakening rate with slip is only slightly faster than the elastic stress release rate with

slip. This is a so-called “conditionally stable” or “conditionally unstable” condition, under

which slow slip behaviors would emerge in models.

This general mechanism can have various realizations in different models depending

on the specific setup. A classic setup in a rate-and-state friction framework is to set the

characteristic slip patch length be slightly smaller than the intrinsic critical slip patch

length. Both parameters can depend on many factors. The characteristic slip patch length

depends on fault geometry, the type of slip motion, the shape of initial stress and friction

distribution, the proximity to the Earth’s surface, etc.; while the intrinsic critical slip patch

length can depend on critical slip weakening distance, effective normal stress, frictional

parameters a and b, and so forth. The wide range of tunable parameters allow modelers

to generate slow slip behaviors in many different apparent settings (e.g., Liu & Rice, 2005,

2007; Liu, 2014; Leeman et al., 2016; Wei et al., 2018; Im et al., 2020).

The mechanism utilized in my model to generate slow slip behavior is fundamen-

tally different from this mechanism. Similar to the “less sudden stress drop” models, my

model does have a frictional resistance component that may drop with slip and give rise to

a slip transient. However, the weakening rate with slip would always be significantly faster

than the the elastic stress release rate with slip. In another words, if only considering the

frictional resistance, my model would always generate fast earthquakes. The key component

in my model to generate the slow slip behaviors is the viscous component. Therefore, my

model does not belong to the “less sudden stress drop” models.
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6.5.2 Comparison with the “limiting slip rate” models

In section 3.2, I reviewed the models that slow down slip rate by somehow limiting

the slip acceleration process. This can be done by artificially setting a hard limit to the

slip rate (Colella et al., 2011), incorporating a constant term in the state term of rate-and-

state formulation (e.g., Shibazaki & Iio, 2003; Hawthorne & Rubin, 2013), or considering a

dilitant process in the framework of poroelasticity (e.g., Segall et al., 2010; Liu & Rubin,

2010; Liu, 2013). In these models, it has been shown that once the slip rate is slowed down,

other event characteristics like rupture propagation speed would also start to fit the actual

SSE observations.

The present model is similar to these models in that the slow average slip rate of the

fault zone produces a variety of slow slip behaviors. However, the underlying physical image

is different. In the aforementioned models, the fault zone is still envisioned as frictional-

dominant, and it is due to either the frictional parameter or an external process that the

slip acceleration is limited. However, in the vision of my model, the fault zone consists of

countless small frictional (brittle) contacts embedded in a bulk viscous shear zone. The slip

rate on the local frictional (brittle) contacts can still be fast, generating tremors and LFEs.

Meanwhile the bulk shear deformation is slow because it is mainly viscous. Therefore, the

present model should be intrinsically different from the “limiting slip rate” models, since

no mechanism is adopted to limit the frictional slip rate: the slip rate on local contacts can

still be high, while the bulk slip rate is slow because it is the intrinsic property of a viscous

shear zone.
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6.5.3 Comparison with models that have spatial heterogeneous rate-strengthening

and rate-weakening rate-and-state parameters on the fault

In section 3.3, I reviewed a mechanism to slow down slip rate that is different from

the previous two mechanisms: if we can somehow impose a transient stress perturbation on

a viscous or rate-strengthening fault, the slip on the rate-strengthening fault can exhibit

slow slip characteristics. This idea can be realized in multiple ways, and in this section I

will first discuss the way where the idea is realized within a typical rate-and-state friction

framework.

In a typical rate-and-state formulas, a−b > 0 means the fault is rate-strengthening

while a− b < 0 means the fault is rate-weakening. To realize the above general mechanism,

one may set the a − b parameter to be heterogeneous on the fault, with some part being

rate-strengthening and some part being rate-weakening (e.g., Skarbek et al., 2012; Luo &

Ampuero, 2018; Luo & Liu, 2021). Such a model would give rise to slip instability (slip tran-

sients) because the existence of rate-weakening friction, and transient stress perturbations

are imposed on the rate-strengthening area. The rate-strengthening area would slip slowly

due to its intrinsic stability. Most importantly, the slow slipping rate-strengthening fault

would load the un-ruptured rate-weakening regions, driving them to rupture. The newly

ruptured rate-weakening region would again transfer stress perturbations onto the nearby

rate-strengthening fault. These processes together form a “chain-reaction” that drives the

rupture to propagate. The resulting slip rate and rupture propagation speed is controlled

by how the heterogeneity is set up.

From a mathematical stand point, my model has a very similar general mechanism
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to generate slow slip behavior to the above model. The “chain-reaction” above is very similar

to what is described in section 6.4.2. However, the physical pictures behind the formulations

are quite different. The aforementioned model is still in a framework that considers only

frictional resistance. Therefore, each location on fault can either be rate-strengthening or

rate-weakening. To include both the transient stress drop and viscous component in the

same model, one has to distribute the heterogeneity on the fault surface, setting some part

to have a − b > 0 while some other parts have a − b < 0. In contrast, the framework of

the present model includes both frictional resistance and viscous resistance, and these two

resistances might or might not co-exist at the same location on the fault. This setup may

seem unrealistic if we consider the fault is a frictional surface; yet, it actually seems more

reasonable if we consider that a fault is a shear zone with a finite thickness. In addition, the

present model can consider a different viscous resistance formulation than the logarithmic

form. In summary, my model envision a more general situation than the rate-and-state-

based heterogeneity model, although the general mathematical structure that gives rise to

slow slip may be similar in both.

6.5.4 Comparison with the “frictional-viscous mixing in series” model

In my model, I consider the frictional resistance and viscous resistance acting in

parallel (Figure 3.3(d)), where the bulk slip only has a single value, and the total resistance

(strength or stress) on fault is the sum of frictional resistance and viscous resistance. An

alternative way to realize frictional-viscous is to have the two types of resistance acting in

series (Figure 3.3(c)), where the bulk resistance (strength or stress) on fault only have a

single value, and the total shear strain is the sum of viscous strain and frictional strain
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(slip).

Obviously, this type of models is quite different from the present, and such mod-

els to explain SSE are rare in literature. To the best of my knowledge, only Goswami

and Barbot (2018) examined this setup. Goswami and Barbot (2018) have shown that a

frictional-viscous in series setup can aid the generation of slow slip events. Yet, my im-

pression is that they still require other types of mechanism (such as a “less sudden stress

drop”) to act as a major role to generate slow slip behaviors. My another concern about

this mechanism is its inability to explain the lack of SSE slip during the inter-event period.

For a frictional-viscous in series model, the fault may be alway slipping.

6.5.5 Comparison with other “frictional-viscous mixing in parallel” mod-

els

My model is not the first to adopt the “frictional-viscous mixing in parallel” frame-

work to explain SSE. Before me, many pioneering works have already explored this setups

and accumulated an abundance of valuable understanding (Ando et al., 2010; Nakata et

al., 2011; Ando et al., 2012; Lavier et al., 2013; Beall et al., 2019; Lavier et al., 2021),

upon which the study of this dissertation is built. My dissertation moves this research

area forward by providing plenty of new theoretical analyses and results that show it can

explain a number of SSE phenomena, help the community better appreciate the “frictional-

viscous mixing in parallel” model, and better apply it to explain other observations. In the

following section, I will briefly discuss how the current work builds on prior work in the

”frictional-viscous mixing in parallel” formalism.

I will first start the comparison with Ando’s model (definition of “Ando’s model”
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in section 4.1) (Ando et al., 2010; Nakata et al., 2011; Ando et al., 2012). There is actually

much discussion on this comparison in Chapter 4 and Chapter 5, since my model here has

an identical “friction law” setup to Ando’s model, and thus owes a debt to this prior work.

Therefore, I refer readers to Chapter 4 for more detailed information. Here I will only briefly

summarize the advancement of my theoretical development. First, I have derived a wealth

of analytical relations that can depict the physical image in a deeper manner. With the

analytical relations, we may gain an understanding of parameter space that might not be

currently explorable with numerical simulations. Second, I have shown that the frictional-

viscous “friction law” itself is enough to generate slow slip behaviors; it is not required that

one explicitly place heterogenous stress and “friction” parameter on the fault “surface”, as

is suggested in Ando’s model, either implicitly or explicitly. Finally, Ando’s model obtains

an estimate of ηv to be 104−105 µ/(2β) by explaining diffusive tremor migration. With the

newly derived analytical relation, I can extend the estimation to other observables, and I

find that a viscous coefficient ηv of 104 − 105 µ/(2β) can also simultaneously explain many

other SSE observations, including their slip rates, rupture propagation speeds, slip rate

decay times, and moment duration scaling.

Aside from Ando’s model, there are other studies that also imply that a “frictional-

viscous mixing in parallel” framework can possibly produce SSE behaviors, including Lavier

et al. (2013), Beall et al. (2019), and Lavier et al. (2021). Compared to the setup in my

models and Ando’s model, these three above studies are more focused on exploring the

frictional-viscous interaction within the fault zone, instead of explaining the geophysical

observations. In these three models, the dimension of the model domain is too small to
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thoroughly consider the interaction between the fault zone and the elastic medium, such

as inertia and wave effects. Therefore, it is naturally difficult for them to analyze some of

geophysical observations, such as rupture propagation speed and moment-duration scaling.

It would be ideal if we can have a model that cover multiple scales; yet, as we have suggested

earlier, it is non-trivial to consider both a fault zone scale of ∼ 100 meters and the SSE

rupture scale of ∼ 10 kilometers in the same model. Such theoretical analysis will be a

direction for future studies.

6.5.6 Connections with the Brownian walk model

In addition to mechanical models, some statistically-based models are also brought

up to explain slow earthquakes. One statistical model that is of particular interest here is

the Brownian Walk model developed by Satoshi Ide and others (e.g. Ide, 2008; Ide & Yabe,

2019). This model describes the slow earthquake propagation in a statistical framework.

A key component that makes the Brownian Walk model generate slow earthquake signals

is that, for each location on fault, whether it would slip at a given time step depends on

whether its nearby fault was slipping in the last time step (with some probability) (Ide &

Yabe, 2019).

This assumption is actually consistent with the physical image of the frictional-

viscous model that explored in my dissertation. As demonstrated earlier, elastic wave

amplitude becomes smaller as slip rate decreases. Therefore, when slip rate is low, static

stress transfer would be the dominant mechanism that controls the rupture propagation,

instead of dynamic stress transfer by seismic waves. Since static stress is fundamentally a

force that only affects nearby areas within the slipping fault, the static stress transfer-
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controlled rupture propagation might have a very similar behavior as described in the

Brownian Walk model. More detailed comparisons can be done in the future with the

analytical relations I have obtained in my dissertation. Nevertheless, I believe, though

this potential relation is tantalizing, more careful work is necessary to understand the

relationship between these two models.
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Chapter 7

Summary and Conclusion

In this dissertation, I consider a frictional-viscous fault zone model to explain

puzzling slow earthquake phenomena. Here, “frictional” means that fault strength can

suddenly drop and host transient frictional slip. The strength drop is treated as sudden

when the strength dropping rate with slip is considerably faster than the elastic loading

stress dropping rate with slip. In Chapter 2, I show that many first-order characteristics of

fast earthquakes (e.g., slip rate, rupture propagation speed, moment duration scaling) can

be explained by a frictional-only model, with a stress drop of the order of magnitude of MPa.

Corresponding first-order characteristics of slow slip events (SSEs) cannot be explained by

a frictional-only model with a stress drop of the order of magnitude of 10 kPa, which is a

typical value constrained by geodetic and seismic data.

To explain SSEs, I consider adding a viscous component to the fault boundary

condition, which is one of the potential mechanisms that have been proposed by earlier

studies (Chapter 3). In this frictional-viscous model, the total fault strength equals the sum
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of the frictional and viscous strength components. This model reflects the physical picture

that the 3D fault zone mostly consists of viscous deformation, while frictional (brittle)

deformation sparsely exists in the fault zone as well. In the present model, the viscous

strength increases linearly with slip rate,

fviscous = ηv · V,

Where ηv is the viscous coefficient. Therefore, when the fault has not yet slipped,

the viscous strength is zero, and the applied elastic loading stress is completely taken up

by the frictional strength. Because such a boundary condition is equivalent to a mechanical

system where the frictional and viscous force act in parallel (Figure 3.3d, 4.1b), I also refer

to this model as a “frictional-viscous in parallel” model in this dissertation.

At some point, the frictional strength cannot keep up with the increased elastic

loading stress, and experiences a sudden drop. This strength drop causes a sudden imbalance

between the elastic loading stress and the total fault strength. In response to the imbalance,

the fault slips until the gap is remedied, resulting in a slip transient. In Section 6.1, I show

that such a transient would happen more frequently in the frictional-viscous model than the

frictional-only slip transient. This is because the frictional contacts are sparsely distributed

in the fault zone in the frictional-viscous model. For the same bulk plate loading rate, the

frictional contacts in the frictional-viscous model would experience a higher stressing rate

than in the frictional-only model, and thus would reach the yielding stress faster. As a

result, the average strength drop in the frictional-viscous model during each slip transient

would be smaller than the local strength drop on the frictional contacts. If we assume
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that the local strength drop is the same for both the frictional-viscous and the frictional-

only model, the frictional-viscous model would have a smaller average strength drop than

the frictional-only model. This physical picture is qualitatively consistent with what we

observed for the subduction zone SSEs. To first order, a 100 times smaller average stress

drop in the frictional-viscous model corresponds to a 100 times more frequent slip transient

occurrence.

In Chapters 4 and 5, I explore the first-order “coseismic” characteristics of the

slip transient under the frictional-viscous setting. In Chapter 4, I derive analytical relations

to relate the parameters in the frictional-viscous model (e.g., viscous coefficient ηv, sudden

frictional strength drop ∆f , characteristic length of slipping patch L) with some kinematic

source parameters that can be inferred from the geophysical observations (e.g., slip rate V ,

rupture propagation speed Vr, slip rate decay time Td). I find that the frictional-only is a

degenerate case of the fractional-viscous model when ηv = 0. When the viscous coefficient

ηv becomes larger, the slip rate V and the rupture propagation speed Vr of the slip transient

become slower. The magnitude of the reduction is controlled by the ratio between ηv and

the radiation damping factor µ/(2β). In particular, I find that when the viscous coefficient

ηv and the stress drop are of the order of magnitude of 104 to 105 µ/(2β) and 10 kPa,

respectively, the frictional-viscous model can simultaneously produce the first-order slip rate

V , rupture propagation speed Vr, slip rate decay time Td, and the moment-duration scaling

for SSEs that are inferred from geophysical observations. The moment-duration scaling

relation in the frictional-viscous model is M0 ∝ T 3, which is the same as the frictional-

only model. However, the duration in the frictional-viscous model can be several orders
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of magnitude greater than in the frictional-only model. These results are validated by the

numerical simulations in Chapter 5.

Because the slip rate V becomes slower as ηv increases, the radiated dynamic wave

energy of the slip transient also reduces. Therefore, when ηv is large, the mechanism of fault

interaction and rupture propagation would be static stress transfer, instead of dynamic

stress perturbation. Such a condition would produce a unique type of rupture propagation,

the diffusive rupture migration (Ando et al., 2012), when there is also a spatial contrast in

stress drop on the fault. The diffusive rupture migration is unlikely to emerge in a model

when dynamic stress perturbation dominates the fault interaction. In section 4.7, I derive

analytical relations to relate the viscous coefficient ηv with the apparent diffusivity Df that

can be estimated from geophysical observations. The analytical relation that describes the

diffusive rupture migration is validated by numerical simulations in section 5.4. To explain

the observed Df ∼ 103m2/s, ηv needs to be ∼ 103−106 µ/(2β), which is consistent with the

ηv that is required to explain other independent observations, and agrees with the analysis

in (Ando et al., 2012).

To conclude, the present frictional-viscous model can simultaneously explain vari-

ous observed kinematic source parameters for SSEs, when the viscous coefficient ηv is about

104 − 105 µ/(2β), and the average stress drop in a slip transient is about 10 kPa. Quali-

tatively, this frictional-viscous model can also explain the shorter inter-event interval and

lower average stress drop observed in subduction zone SSEs, compared to what is observed

in the fast earthquakes at seismogenic depth. These results imply that the frictional-viscous

model is a promising representation of the actual SSE source process for two main reasons.
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First, the estimations of the multiple kinematic source parameters for SSEs are mostly in-

dependent of each other. Having a single model setting that can simultaneously explain

different independent estimates usually suggests a good applicability of the model. Second,

the agreements between the present models and SSE observations are first-order agreements.

This is because the relationship between the model parameters and the “observables” are

linear (Chapter 4 and section 6.3). Therefore, a set of model parameters within two orders

of magnitude range can all produce the first-order observables for SSEs. This result suggests

that the frictional-viscous model can generate stable slow slip behavior within a wide range

of parameter space.

The present model focuses on quantitatively explaining SSE observations, and

therefore does not explicitly address other seismic slow earthquake signals, such as tremors,

LFEs, VLFEs, and rapid tremor migrations. However, the physical picture of the present

model may still qualitatively explain the generation of these seismic slow earthquake sig-

nals (section 6.4). Tremors and LFEs are thought to correspond to the sudden frictional

strength drop in the frictional-viscous model. In the physical picture, these individual

sudden frictional strength drops are thought to be sparsely distributed within the viscous

fault zone; although in the model, they are parameterized and “smoothed” into the average

strength drop parameter that represents the bulk slip behaviors of the fault, for simplic-

ity. My results suggest that these sudden frictional strength drops (tremors) are crucial in

driving the propagation of the bulk viscous deformation of the fault zone, which is thought

to correspond to SSEs. In return, the bulk viscous deformation would trigger more sudden

frictional strength drops. These interactions together form a “chain-reaction”, and manifest
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in the geophysical observations as the coexistence of tremors and SSEs. Within the present

model framework, I propose different potential directions to explain the signals of VLFE

and rapid tremor migrations; yet, the questions of whether and how they can be explained

with the present frictional-viscous model are still open.

There are many potential future studies that could be undertaken to test the

hypotheses made in the present dissertation, or to improve the present model. First, the

present work suggests that the viscous response of the SSE fault zone increases linearly

with slip rate, and the viscous coefficient ηv is about 104 − 105 µ/(2β) to explain the

kinematic source parameters for SSEs estimated from the geophysical observations. This

hypothesis, in principle, can be independently tested with geological observations on SSE-

hosting faults (in-situ or exhumed) and with laboratory experiments. Also, the present

models are simplified in a way that does not explicitly address the heterogeneity in the

fault zone. A future fine-scale model that can explicitly include a spatial distribution of

viscous and frictional contacts in 3D and simulate the slow earthquakes across multiple

scales would be able to test whether the parameterization scheme in the present model

is proper or not. Lastly, since this dissertation has suggested that the present frictional-

viscous setup can reproduce the first-order characteristics of SSEs, it is promising that a

future model may utilize this model framework to model the geophysical observations of a

real SSE scenario.
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