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The Walras Core of an Economy and Its Limit

Theorem�

Cheng-Zhong Qiny Lloyd S Shapleyz Ken-Ichi Shimomurax

This Version: September 30, 2004; First Version: June 3, 2002

Abstract

The Walras core of an economy is the set of allocations that are attainable for

the consumers when their trades are constrained to be based on some agreed set of

prices, and such that no alternative price system exists for any sub-coalition that

allows all members to trade to something better. As compared with the Edgeworth

core, both coalitional improvements and being a candidate allocation for the Walras

core become harder. The Walras core may even contain allocations that violate the

usual Pareto eÆciency. Nevertheless, the competitive allocations are the same under

the two theories, and the equal-treatment Walras core allocations converge under
general conditions to the competitive allocations in the process of replication.

KEYWORDS: Competitive allocation, coalition, Edgeworth core, Walras core.

(JEL C71, D5)

1 Introduction

Fundamental to the Walrasian model of exchange is the requirement that transactions be
governed by a uniform price system. If commodities pass between consumers i and j in a
certain ratio, then they cannot pass between consumers k and l in a di�erent ratio. That is,
the law of one price is imposed in the Walrasian model. However, prices in the Walrasian
model are given ex machina and are not responsive to the consumers' buying and selling
decisions. Consumers are passive with respect to prices at which they trade. A theory is

�We thank an anonymous referee for helpful comments that prompted us to consider the limit properties
of the Walras core under replication with general conditions and for general economies. Cheng-Zhong Qin
and Ken-Ichi Shimomura are respectively grateful to the Academic Senate at UCSB and the COE research
fund 09CE2002 (Kyoto University) of the Japan MEXT for �nancial support.

yDepartment of Economics, University of California, Santa Barbara, CA 93106.
zDepartment of Economics, University of California, Los Angeles, CA 90095.
xRIEB, Kobe University, 2-1 Rokkodai, Nada, Kobe 657-8501, Japan.
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therefore needed to give an account of the circumstances in which passive behavior with
respect to prices (price-taking behavior) will be expected.

Edgeworth (1881) modeled market competition as consisting of people getting together
in coalitions and working out deals cooperatively to their mutual advantage. The Edge-
worth core of an economy { the core usually studied { is the set of allocations which cannot
be improved upon by any coalition of consumers through recontracting. Market compe-
tition presented by the Edgeworth core provides a foundation of competitive equilibrium
analysis, because the Edgeworth core is de�ned without reference to quoted prices, it is
plausible for both small and large economies, and the Edgeworth core allocations converge
to the competitive allocations in the process of replication. There is now a huge literature
on Edgeworth core convergence initiated by Shubik (1959), followed by Debreu and Scarf
(1963), among others.1

In this paper we contribute to the literature on core convergence, hence on founda-
tions of competitive equilibrium analysis, by requiring that transactions within any given
coalition resemble the Walrasian model of market exchange. More speci�cally, as with the
Edgeworth recontracting, we allow the possibility for the consumers in an economy to trade
cooperatively by organizing themselves into coalitions. However, we do not allow price dis-
crimination nor do we assume the existence of a clearing house, so that the consumers
transacting in a given coalition have to coordinate their decisions by agreeing on a suitable
uniform price system to balance their trades. As such, we would get a di�erent cooperative
game { the Walras market game { from the unrestricted-barter or the Edgeworth market

game. Correspondingly, we would also get a di�erent core { the Walras core { from the
Edgeworth core.

Consideration of an economy as a coalitional game that resembles the Walrasian model
of exchange was suggested in Shapley (1976, p. 169):

It might surprise some people to learn that the core of the cooperative game that most
closely resembles the Walrasian model of exchange (the game in which the players negotiate
a marketwide price system to govern all transactions) is di�erent from the core usually studied.
We do not know of any treatment of this core in the literature.

1Aumann (1964) formulated a model of a continuum of agents, in which he showed that the Edgeworth
core coincides with the set of competitive allocations. This de�nition of perfect competition required the
introduction of measure theory { notably Lyapunov's Theorem { into economics. The Edgeworth core
convergence in more general forms has been pursued by economists since (Vind 1964 and Hildenbrand
1968, 1974).
In the mid 1970s, the Edgeworth core convergence was joined in the study of the rate of convergence

of the Edgeworth core to the set of competitive allocations. Shapley (1975) showed that the convergence
could be arbitrarily slow and concluded with the conjecture that for any �xed concave utility functions only
a set of initial allocations of measure zero will yield cores that converge more slowly than the inverse of the
number of agents. Debreu (1975) proved that such is indeed the case provided that the utility functions
are C2 and the indi�erence surfaces have positive Gaussian curvature. Grodal (1975) and Cheng (1981)
subsequently extended this result to more general sequences of economies. Aumann (1979) showed that
the arbitrarily slow convergence can occur even if the utility functions are in�nitely di�erentiable. See also
Cheng (1982).

2



Further remarks were also made in Shapley and Shubik (1977, p. 944):

It is not generally realized that there is a distinctive \Walras" cooperative game, with a more
restrictive characteristic function than the Edgeworth game. Despite the possible failure of
superadditivity, and hence of balancedness, the existence of the core in the Walras market
game is not threatened, since the competitive equilibrium must still have the core property.
But the Walras core and Walras-Pareto set will in general be di�erent from the Edgeworth
core and Edgeworth-Pareto set.

In this paper we show that the restriction that trades within a given coalition be subject
to the law of one price in the Walras market game is signi�cant. When a pure exchange
economy has three or fewer consumers, an allocation in the Walras core of the economy
is either in the Edgeworth core or Pareto dominated by some allocation in the Edgeworth
core. We give an example of a three-person pure exchange economy to illustrate that an
allocation in the Walras core may sometimes be strictly Pareto dominated by an allocation
in the Edgeworth core. In contrast with the �rst welfare theorem, the welfare loss at an
allocation in the Walras core is resulted from the fact that the bundles in the allocation
do not necessarily maximize consumers' preferences subject to budget constraint. We also
provide an example of a four-person pure exchange economy to illustrate that an allocation
in the Walras core may sometimes be neither in the Edgeworth core nor Pareto dominated
by any allocation in the Edgeworth core. It follows that in general the Walras core of an
economy is not included in or Pareto dominated by the Edgeworth core of the economy.

The intersection of the Edgeworth core and the Walras core contains all competitive
allocations. However, we provide an example of a three-person pure exchange economy to
illustrate that the intersection may sometimes contain allocations di�erent from competitive
allocations.

We consider a limit property under replication of the equal-treatment allocations in
the Walras core for economies with household production, as in Hurwicz (1960), Rader
(1964), Shapley (1973), Billera (1974), among others. The economies considered in Debreu
and Scarf (1963) can be viewed as economies with household production. In addition,
each Arrow-Debreu economy can be naturally converted into an economy with household
production having same competitive allocations. We show that the equal-treatment Wal-
ras core allocations converge to competitive allocations in the process of replication for
economies with general closed convex consumption and household production possibility
sets and with preferences satisfying local nonsatiation, continuity, and a weaker notion of
monotonicity than the usual weak monotonicity.2

The rest of the paper is organized as follows. Section 2 introduces the competitive, the
Edgeworth core, and the Walras core allocations. Section 3 discusses di�erences between
the Edgeworth core and the Walras core of an economy. Section 4 proves the convergence

2Florenzano (1990) establishes, among other results, convergence of the equal-treatment fuzzy core and
hence the equal-treatment Edgeworth core allocations to competitive allocations for economies with general
convex consumption and production possibility sets and with locally nonsatiated preferences.
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of the equal-treatment Walras core allocations to competitive allocations in the process of
replication, and section 5 concludes the paper.

2 The Competitive, Edgeworth Core, andWalras Core

Allocations

Given any positive integer 0 < k < 1, we adopt the following notation: <k denotes the
k-dimensional Euclidean space; a; b 2 <k, a � b and a � b mean ah � bh and ah > bh
for h = 1; 2; � � � ; k, respectively; <k

+ = fa 2 <k j a � 0g, <k
++ = fx 2 <k j a � 0g, and

�k = fa 2 <k
+ j
Pk

h=1 ah = 1g.
An economy with l goods, n consumers, and with household production is an array

E = f(X i;�i; wi; Y i)gi2N , where N = f1; � � � ; ng is the consumer set, X i � <l is the
consumption set of consumer i, �i is i's preference relation, wi is his endowment bundle,
and Y i � <l is his household production possibility set.3 An element yi in Y i represents a
production plan that i can carry out. As usual, inputs into production appear as negative
components of yi and outputs as positive components.

Let P i denote the strict preference correspondence generated from preference relation
�i. That is, for xi 2 X i, P i(xi) is the set of bundles x0i 2 X i such that x0i �i xi. The
preference relation �i is re
exive if xi �i xi for all xi 2 X i; �i is transitive if for any
three bundles xi; x

0i; x
00i 2 X i, xi �i x

0i and x
0i �i x

00i imply xi �i x
00i; and �i is locally

non-satiated if for each xi 2 X i, xi is in the closure clP i(xi) of P i(xi) relative to X i.
The following assumptions will be made throughout the paper: For any i 2 N ,

A1: X i is closed and convex;

A2: �i is re
exive and locally non-satiated, P i is open-valued (i.e., for each xi 2 X i,
P i(xi) is an open set relative to X i), and for any xi 2 X i and x0i 2 P i(xi), there
exists a bundle ei 2 <l

++ such that x0i + �ei 2 P i(xi) for � � 0;

A3: Y i is closed and convex;

A4: For any xi 2 X i, P i(xi)� Y i + <l
+ � P i(xi)� Y i.

Assumptions A1, A2, and A3 are implied by the standard assumptions. In particular, the
third condition in A2 is implied by the usual weak monotonicity of �i.4 Note also that A4
is satis�ed if either �i is weakly monotonic or Y i �<l

+ � Y i. This assumption guarantees
that competitive equilibrium prices are all nonnegative.

3As mentioned in the introduction, this model of an economy was considered in Hurwicz (1960), Rader
(1964), Shapley (1973), Billera (1974), among others. See Qin (1993) for an application of this model to
the study of competitive outcomes in the Edgeworth cores of NTU market games.

4We say that preference relation �i is weakly monotonic if for each xi 2 X i, P i(xi) +<l+ � P i(xi).
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We assume that for each coalition S � N , its production possibility set is simply
Y S =

P
i2S Y

i. If Y i is a convex cone Y with vertex at the origin for all i 2 N , then
Y S = Y . Consequently, economies in Debreu and Scarf (1963) can be viewed as economies
with household production. When Y i = f0g for all i 2 N , we call E a pure exchange

economy, which we denote by E = f(X i;�i; wi)gi2N .

2.1 Competitive Allocations

With household production, a production plan changes a consumer's initial endowment
before trading with the others on the market. Hence, selection of a production plan by an
individual is guided by preference maximization instead of pro�t maximization. However,
under the Walrasian model of market exchange, preference maximization implies pro�t
maximization.

De�nition 1: A competitive equilibrium for economy E = f(X i;�i; wi; Y i)gi2N is a point
((x�i; y�i)i2N ; p

�) 2 (Xi2N(X
i � Y i))��l such that

(i) For i 2 N , p� � x�i = p� � wi + p� � y�i and xi 2 P i(x�i) implies p� � xi > p� � wi + p� � yi
for all yi 2 Y i;

(ii)
P

i2N x�i =
P

i2N wi +
P

i2N y�i.

We call x� = (x�i)i2N a competitive allocation (of consumption bundles).
In the Arrow-Debreu model of an economy with l <1 goods, there are a set of n <1

consumers with each consumer i characterized by the triplet (X i;�i; wi) and a set of J
producers with producer j characterized by a production possibility set Y j. In addition,
each consumer i is also endowed with a relative share �ij of �rm j's pro�t for j = 1; 2; � � � ; J
(see Arrow and Debreu 1954, Debreu 1959). With a slight abuse of notation, we let J
also denote the set of the J �rms. Symbolically, an Arrow-Debreu economy is an array
E = ff(X i;�i; wi)gi2N ; fY jgj2J ; f�ijgi2N;j2Jg.

The relative shares �ij may be interpreted as representing private proprietorships of the
production possibilities and facilities. With this interpretation, we can think of consumer
i as owning the technology set �ijYj at his disposal in �rm j. Consequently, we may
think of consumer i as owning the following production possibility set in the Arrow-Debreu
economy:

~Y i =
X
j2J

�ijYj: (1)

We denote elements in ~Y i by ~yi =
P

j2J �ijy
ij for some yij 2 Y j, j 2 J . The reader is

referred to Rader (1964, pp. 160{163) and Nikaido (1968, p. 285) for a justi�cation of this
understanding of the consumers' ownership shares. With equation (1), the Arrow-Debreu
economy E is converted into economy ~E = f(X i;�i; wi; ~Y i)gi2N .
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De�nition 2 (Arrow and Debreu 1954, Debreu 1959): A competitive equilibrium for an
Arrow-Debreu economy E = ff(X i;�i; wi)gi2N ; fY jgj2J ; f�ijgi2N;j2Jg is a point

((x�i)i2N ; (y
�j)j2J ; p

�) 2 (Xi2NX
i)� (Xj2JY

j)��l

such that

(i0a) For i 2 N , p� � x�i = p� � wi +
P

j2J �ijp
� � y�j and xi 2 P i(x�i) implies p� � xi >

p� � wi +
P

j2J �ijp
� � y�j;

(i0b) For j 2 J , p� � y�j � p� � yj for yj 2 Y j;

(ii0)
P

i2N x�i =
P

i2N wi +
P

j2J y
�j.

Rader showed that an Arrow-Debreu economy E with convex production possibility
sets is equivalent to economy ~E , in the sense that the competitive allocations are the same
across the two economies (see Rader 1964, pp. 160{163).

Theorem 1 Let E = ff(X i;�i; wi)gi2N ; fY jgj2J ; f�ijgi2N;j2Jg be an Arrow-Debreu econ-

omy and let ~E = f(X i;�i; wi; ~Y i)gi2N . If ((x�i)i2N ; (y�j)j2J ; p�) is a competitive equilibrium

for E, then there are production plans ~y�i 2 ~Y i, i 2 N , such that ((x�i; ~y�i)i2N ; p
�) is a com-

petitive equilibrium for ~E. Conversely, if ((x�i; ~y�i)i2N ; p�) is a competitive equilibrium for ~E,
then there are production plans y�j, j 2 J, such that ((x�i)i2N ; (y

�j)j2J ; p
�) is a competitive

equilibrium for E .

It is also worth mentioning at this point yet another equivalent model of an economy.
This is the model considered by McKenzie (1959), in which production is aggregated with
the aggregate production set generated by a set of linear activities instead of a set of
�rms as in Arrow-Debreu model. However, by considering consumers' ownership shares
of a �rm as their shares of an entrepreneurial factor which is private to the �rm and not
marketed, so that pro�ts above the �rm's payments to hired inputs can be imputed to
the entrepreneurial factor, an Arrow-Debreu economy can be converted into a McKenzie
economy with the same competitive allocations (see McKenzie 1959, pp. 66-67).

On the other hand, since technology in a McKenzie economy exhibits constant returns
to scale, the maximum pro�t with respect to the aggregate production set is necessarily
zero in competitive equilibrium. Thus, a McKenzie economy can also be converted into
an Arrow-Debreu economy with the same competitive allocations, in which the aggregate
production set is assigned to one �rm whose ownership structure can be arbitrarily speci�ed.
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2.2 The Edgeworth Core and the Walras Core

Given a coalition S � N , an S-allocation of consumption bundles in economy E = f(X i;�i

; wi; Y i)gi2N is an S-tuple xS = (xi)i2S of consumption bundles xi 2 X i, for i 2 S. We
refer an N -allocation xN as an allocation for the economy and we denote it simply as x.

De�nition 3: An S-allocation of consumption bundles xS is Edgeworth-feasible if there
exist production plans yi 2 Y i for i 2 S such that

P
i2S x

i =
P

i2S w
i +

P
i2S y

i; xS is
Walras-feasible if there exist production plans yi 2 Y i for i 2 S and a price system p 2 �l

such that
P

i2S x
i =

P
i2S w

i +
P

i2S y
i and p � xi = p � wi + p � yi for i 2 S.

Let E(S) and W (S) denote respectively the set of Edgeworth- and Walras-feasible
allocations of consumption bundles for coalition S � N .

De�nition 4: Coalition S can improve upon an allocation x with Edgeworth-feasible
allocations if there is an S-allocation x0S 2 E(S) such that x0i 2 P i(xi) for all i 2 S;
coalition S can improve upon allocation x with Walras-feasible allocations if there is an
S-allocation x0S 2 W (S) such that x0i 2 P i(xi) for all i 2 S.

Note that De�nition 3 implies W (S) � E(S) for any coalition S � N . Consequently,
when a coalition cannot improve upon an allocation with Edgeworth-feasible allocations,
neither can it improve upon the allocation with Walras-feasible allocations.

De�nition 5: The Edgeworth core of an economy E is the set of allocations x 2 E(N)
such that no coalition can improve upon with Edgeworth-feasible allocations; The Walras

core of an economy E is the set of allocations x 2 W (N) such that no coalition can improve
upon with Walras-feasible allocations.

Let ((x�i; y�i)i2N ; p
�) be a competitive equilibrium for E = f(X i;�i; wi; Y i)gi2N . By

De�nitions 3 and 4, if coalition S can improve upon (x�i)i2N with Edgeworth-feasible
allocations, then there are pairs (xi; yi) 2 X i � Y i, i 2 S, such that

P
i2S x

i =
P

i2S w
i +P

i2S y
i and xi 2 P i(x�i) for all i 2 S. By condition (i) in De�nition 1, p� �xi > p� �wi+p� �yi

for i 2 S. This implies p��Pi2S x
i > p��Pi2S w

i+p��Pi2S y
i, which contradicts the condition

of
P

i2S x
i =

P
i2S w

i+
P

i2S y
i. It follows that no coalition can improve upon a competitive

allocation with Edgeworth-feasible allocations. Competitive allocations are thus Edgeworth
core allocations. By De�nitions 1 and 3, competitive allocations are Walras-feasible for
coalition N . Hence, competitive allocations are also Walras core allocations. This shows
that the intersection of the Edgeworth core and the Walras core contains all competitive
allocations. It will be shown in the next section that the intersection may also contain
allocations di�erent from competitive allocations.
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2.3 Edgeworth and Walras Market Games with Utility Representations

Suppose that for i 2 N , the preference relation �i is represented by utility function ui. This
means that for every two bundles xi; x0i 2 X i, xi �i x0i if and only if ui(xi) � ui(x0i). Let
<N denote the n-dimensional Euclidean space with coordinates indexed by i 2 N , and let
Ve(S) and Vw(S) denote the utility possibility sets that consumers of coalition S can obtain
from their Edgeworth- and Walras-feasible allocations, respectively. Then Ve(S) is the set
of utility vectors u = (ui)i2N 2 <N such that ui = 0 for i =2 S and for some S-allocation
xS 2 E(S), ui � ui(xi) for i 2 S, and Vw(S) is the set of utility vectors u = (ui)i2N 2 <N

such that ui = 0 for i =2 S and for some S-allocation xS 2 W (S), ui � ui(xi) for i 2 S.
The pairs (N; Ve) and (N; Vw) are games in coalitional form.

The pair (N; Ve) is customarily called the Edgeworth market game. In comparison, we
call the coalitional game (N; Vw) the Walras market game. De�nitions 3{5 imply that
allocation x is in the Edgeworth core (resp. in the Walras core) if and only if the utility
vector (ui(xi))i2N is in the core of the Edgeworth market game (N; Ve) (resp. in the core
of the Walras market game).

3 The Edgeworth Core versus the Walras Core

As noticed before, the intersection of the Edgeworth core and the Walras core contains all
competitive allocations. The intersection of the Edgeworth core with the Walras core in the
following example of a three{person pure exchange economy contains allocations di�erent
from competitive allocations. It follows that in general the intersection of the Edgeworth
core with the Walras core does not coincide with the set of competitive allocations.

Example 1 (Scarf 1960): Consider a three{person exchange economy E = f(X i;�i

; wi)gi2N , where N = f1; 2; 3g, X i = <3
+ for i 2 N , w1 = (1; 0; 0), w2 = (0; 1; 0),

w3 = (0; 0; 1), and �1, �2, and �3 are respectively represented by utility functions:

u1(x) = minfx1; x2g; u2(x) = minfx2; x3g; u3(x) = minfx1; x3g:

The unique competitive allocation assigns bundles x̂1 = (1=2; 1=2; 0) to consumer 1,
x̂2 = (0; 1=2; 1=2) to consumer 2, and x̂3 = (1=2; 0; 1=2) to consumer 3 (see Scarf 1960).
Now consider an alternative allocation from which consumer 1 receives �x1 = (1=3; 1=3; 0),
2 receives �x2 = (0; 2=3; 2=3), and 3 receives �x3 = (2=3; 0; 1=3). Then, �p � �x1 = �p � w1,
�p � �x2 = �p �w2, and �p � �x3 = �p �w3, where �p = (1=4; 1=2; 1=4). Thus, �x = (�x1; �x2; �x3) is Walras-
feasible. From the consumers' endowments and utility functions it follows easily that neither
one{player nor two{player coalitions can improve upon the allocation �x = (�x1; �x2; �x3) with
Edgeworth-feasible allocations.

To show that �x is in both the Edgeworth and the Walras cores, it suÆces to show that the
grand coalition cannot improve upon �x with Edgeworth-feasible allocations. Suppose on the
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contrary that there exists an allocation ~x = (~x1; ~x2; ~x3) 2 E(N) such that ui(~xi) > ui(�xi),
for i = 1; 2; 3. Then, minf~x11; ~x12g > 1=3 and minf~x22; ~x23g > 2=3. This shows ~x12 + ~x22 > 1.
Hence ~x is not Edgeworth-feasible for the grand coalition N , which is a contradiction.

When the number of consumers in a pure exchange economy is less than or equal to
three, a welfare comparison between the Edgeworth core and the Walras core is possible.
We now have:

Theorem 2 Let E = f(X i;�i; wi)gi2N be a pure exchange economy. Assume that E has

three or fewer consumers. Assume further that for each i 2 N , the preference relation �i

is transitive and weakly monotonic. Then, for any allocation x̂ in the Walras core, there is

an allocation �x in the Edgeworth core such that �xi �i x̂i for i 2 N .

Proof. If allocation x̂ is in the Edgeworth core, then we choose �x to be x̂, and the
proof would be completed. Now suppose that coalition S can improve upon x̂ with
Edgeworth-feasible allocations. Denote by s the number of consumers in S. By De�ni-
tion 3, Edgeworth-feasible allocations are the same as Walras-feasible allocations for each
one{consumer coalition. It follows that no one{consumer coalition can improve upon x̂
with Edgeworth-feasible allocations. This shows s > 1. Suppose s = 2 and S = fi; jg.
Then, by De�nition 4, there exists an S-allocation (~xi; ~xj) such that ~xi 2 X i, ~xj 2 Xj, and

~xi + ~xj = wi + wj; ~xi 2 P i(x̂i); ~xj 2 P j(x̂j): (2)

Since x̂ is in the Walras core, wi =2 P i(X̂ i). Thus (2) together with the transitivity of �i

implies ~xi 2 P i(wi) and hence, by the weak monotonicity of �i, H i
+ = fh j ~xih > wi

hg 6= ;.
On the other hand, (2) together with the transitivity of �j also implies ~xj 2 P j(wj) and
hence, by the weak monotonicity of �j, H i

�
= fh j ~xih < wi

hg 6= ;. This implies that there
exists p 2 �l such that p � ~xi = p � wi and p � ~xj = p � wj. Consequently, (~xi; ~xj) is also
Walras-feasible for S. We conclude that coalition S = fi; jg can also improve upon x̂ in
the Walras market game, which contradicts the assumption that x̂ is in the Walras core.
Consequently, it must be s > 2. Since E has no more than three consumers, it must be
that the grand coalition of all three consumers can improve upon x̂ with Edgeworth-feasible
allocations. Choose a Pareto eÆcient allocation �x 2 E(N) such that �xi 2 P i(x̂i) for all
i 2 N . Then, the Pareto eÆciency of �x and the result that no coalition with two or fewer
consumers can improve upon �x with Edgeworth-feasible allocations imply that �x is in the
Edgeworth core.

The Pareto dominance of an Edgeworth core allocation over a Walras core allocation
can sometimes be strict. This is illustrated in the following example.

Example 2: Let E be a three{person pure exchange economy in which X1 = X2 = X3 =
<2
+, w

1 = w2 = (9; 1), w3 = (17; 3), and consumers' preference relations are respectively
represented by utility functions u1(x) = u2(x) =

p
x1x2, and u3(x) = x1 + x2.

9



Consider an allocation x̂ with x̂1 = (6; 2), x̂2 = (3; 3), and x̂3 = (26; 0). This allocation
is supported by price system p̂ = (1=4; 3=4). Since

P
i2N x̂i =

P
i2N wi, the allocation is

Walras-feasible for the grand coalition N . Denote by û = (û1; û2; û3) the utility vector
associated with allocation x̂. Then û1 =

p
12, û2 = 3, and û3 = 26, and thus ûi � ui(wi),

i 2 N: Notice that for i = 1; 2, since the utility possibility set Ve(fi; 3g) is bounded above
by the plane 2ui+u3 = 30, coalition fi; 3g cannot improve upon x̂ in the Edgeworth market
game. Because consumers 1 and 2 are identical, it is easily checked that coalition f1; 2g
cannot improve upon x̂ either. Note also that both x̂1 and x̂2 are interior bundles, but the
marginal rate of substitution of consumer 1 at x̂1 is not the same as that of consumer 2 at
x̂2. Thus, x̂ is not Pareto eÆcient in the Edgeworth market game.5 Since coalitions with
two or fewer consumers cannot improve upon x̂ with Edgeworth-feasible allocations and
since x̂ is not a Pareto eÆcient allocation in E(N), we conclude that there is an Edgeworth
core allocation �x that strictly Pareto dominates x̂.

We now show that x̂ is in fact a Walras core allocation. To this end, notice �rst that the
analysis in the previous paragraph implies that it suÆces to show the the grand coalition
cannot improve upon x̂ in the Walras market game. Suppose on the contrary that the grand
coalition can improve upon x̂ in the Walras market game. Then, there exist an allocation
~x = (~x1; ~x2; ~x3) and a strictly positive price system,6 p = (1; �) with � > 0, such that

q
~x11~x

1
2 >

p
12;

q
~x21~x

2
2 > 3; ~x31 + ~x32 > 26; (3)

~x11 = 9 + �� �~x22; ~x21 = 9 + �� �~x22; ~x31 = 17 + 3�� �~x32; (4)

and
~x11 + ~x21 + ~x31 = 35; ~x12 + ~x22 + ~x32 = 5: (5)

Conditions (3) and (4) are respectively consumers' utility and budget constraints. By
consumer 3's utility and budget constraints, � 6= 1, and

17 + 3� + (1� �)~x32 > 26: (6)

If � < 1, then (6) implies (1 � �)(~x32 � 9) > 6�; hence ~x32 > 9. Since ~x12 � 0 and ~x22 � 0,
~x32 > 9 contradicts (5). Now suppose � > 1. Then (6) implies 17 + 3� > 26; hence � > 3.
By consumer 1's utility and budget constraints in (3) and (4), �(x2)

2� (9 + �)x2 +12 < 0.
It follows from the discriminant of this inequality that (9+�)2�48� = (27��)(3��) > 0.
Since � > 3, we must have � > 27. With � > 27, consumers 1 and 2's budget constraints
in (4) and the positivity of ~x11 and ~x21 imply ~x12 < 4=3 and ~x22 < 4=3. Thus by 1 and 2's
utility constraints in (3), ~x11 > 9 and ~x21 > 6:75, which by (5) implies both ~x31 < 19:25 and

5For example, as compared to allocation x̂, allocation �x = (�x1; �x2; �x3) with �x1 = (9� 9p
5
; 5�p5); �x2 =

( 9p
5
;
p
5); �x3 = (26; 0) makes both consumers 1 and 2 better o� and keeps consumer 3 indi�erent.

6Since there are only two commodities, for i 2 N and for commodity h = 1; 2, ~xi
h
6= wi

h
in order for the

grand coalition to improve upon allocation x̂. Thus the supporting price system must be in <2
++.
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~x32 � 5. These last two inequalities contradict consumer 3's utility constraint in (3). Hence
the allocation x̂ is in the Walras core.

Although consumers can be better o� cooperating than if they behave individually,
consumers in the Walras market game cannot independently choose arbitrary bundles sat-
isfying budget constraint determined by the price system they agreed to. Thus the bundle
a consumer receives from a Walras core allocation does not necessarily maximize the con-
sumer's utility subject to his budget constraint. This implies that the Pareto eÆciency of
Walras core allocations are not implied by the �rst welfare theorem.

Example 3 below is constructed to show that in general there can be Walras core al-
locations that are neither Edgeworth core allocations nor Pareto dominated by any Edge-
worth core allocation. Thus, the welfare comparison of theorem 1 may not be extended to
economies with a general number of consumers.

Example 3: Consider a four{person pure exchange economy, where for i = 1; 2; 3, the
triplet (X i;�i; wi) is the same as in Example 2, X4 = <2

+, w
4 = (0; 1), and �4 is repre-

sentable by u4(x) = x1 + (1=a)x2 with

(i) 2 < a <
27

13
; (ii)

s
(27� 9a)(11a� 9)

a
> (13� 3a);

(iii)
10a� 18

4a
+
27(3� a)

(9 + a)
> 2; (iv)

9 + a

2
p
a
+

s
(27� 9a)(11a� 9)

4a
>
q
3(18� a):

Conditions (i){(iv) are consistent because, for example, they are all satis�ed when a =
2:01. Now consider the allocation x(a) = (x1(a); x2(a); x3(a); x4(a)) and the price system
p(a) 2 �l, where

x1(a) = (
9 + a

2
;
9 + a

2a
); x2(a) = (

27� 9a

2
;
11a� 9

2a
);

x3(a) = (17 + 3a; 0); x4(a) = (a; 0); p(a) = (
1

1 + a
;

a

1 + a
):

The allocation x(a) is supported by the price system p(a). Furthermore,
P

i2N xi(a) =P
i2N wi. The allocation is therefore Walras-feasible for the grand coalition.

Step 1: No coalition with two or fewer consumers can improve upon x(a) in the Edgeworth

market game and hence in the Walras market game.

Note that ui(xi(a)) � ui(wi) for i 2 N . This shows that no one{consumer coalition can
improve upon x(a). Note also that consumers' endowments imply that neither coalition
f1; 2g nor coalition f3; 4g can improve upon x̂(a) in the Edgeworth market game. Further-

more, for i = 1; 2 and for (ui; u4) 2 Ve(fi; 4g), u4 � a implies ui �
q
2(9� a). On the other

11



hand, u4(x4(a)) = a and by condition (i) on a, u2(x2(a)) >
q
2(9� a). This shows that

coalition f2; 4g cannot improve upon x(a) in the Edgeworth market game. Since consumers
1 and 2 are identical and since u1(x1(a)) > u2(x2(a)), coalition f1; 4g cannot improve upon
x(a) in the Edgeworth market game. Since the utility possibility set Ve(fi; 3g), i = 1; 2, is
bounded above by the plane 2ui + u3 = 30, ui; u3 � 0 as noticed in Example 2, to prove
that neither of the coalitions f1; 3g and f2; 3g can improve upon x(a) in the Edgeworth
market game, it suÆces to show 2u2(x2(a)) + u3(x3(a)) � 30. This inequality holds if and

only if
q
(27� 9a)(11a� 9)=a � 13� 3a. This last inequality is satis�ed under condition

(ii) on a.

Step 2: No three{consumer coalitions can improve upon x(a) in the Walras market game.

Observe that u1(x1) � 3 and u3(x3) � 26 imply x11 + x12 � 6 and x31 + x32 � 26.
Since coalition f1; 3; 4g has total endowment (26; 5), it cannot improve upon x(a) in
the Edgeworth market game. By analogy, neither can coalition f2; 3; 4g improve upon
x(a). Next, with condition (iii) on a, the analysis in Example 2 can be applied to show
that coalition f1; 2; 3g cannot improve upon x(a) in the Walras market game. Next,

(u1; u2; u4) 2 Ve(f1; 2; 4g) and u4 � a imply u1 + u2 �
q
3(18� a). However, by con-

dition (iv), u1(x1(a)) + u2(x2(a)) >
q
3(18� a). This shows that coalition f1; 2; 4g cannot

improve upon x(a) in the Edgeworth market game.

Step 3: The grand coalition cannot improve upon x(a) in the Walras market game.

For any bundle x4 2 X4, u4(x4) > u4(x4(a)) and p �x4 = p �w4 imply (p2=p1) > a. With
this restriction on the supporting price ratio, a similar analysis as in Example 2 shows that
the grand coalition cannot improve upon x(a) in the Walras market game. This concludes
that x(a) is a Walras core allocation.

Step 4: Allocation x(a) is neither an Edgeworth core allocation nor Pareto dominated by

any Edgeworth core allocation.

It suÆces to show that Edgeworth core allocations all fail to satisfy

ui(xi) � ui(xi(a)); i 2 N: (7)

Suppose on the contrary that there is an Edgeworth core allocation x satis�es (7). Then,
by the utility functions of consumers 1 and 2, x1 and x2 in allocation x must be interior
bundles. Hence, if consumer 4's bundle x4 in the allocation is also an interior bundle, then
the Pareto eÆciency of allocation x would imply that the marginal rates of substitution of
consumers 1, 2, and 4 must be the same. In that case, x12 = ax11, x

2
2 = ax21, and so by (7),

x12 �
p
au1(x1(a)); x22 �

p
au2(x2(a)): (8)

12



Since u1(x1(a))+u2(x2(a)) > 6, (8) together with condition (i) on a implies x12+x22 > 6.
This is impossible because the total endowment of commodity 2 is 6. It follows that x4

cannot be an interior bundle, implying either x41 = 0 or x42 = 0. By (7), x41 + (1=a)x42 � a.
Consequently, x41 = 0 implies x42 � a2 > 4. However, with x42 > 4, we have either x12 < 1
or x22 < 1. In either case, (7) implies x11 + x12 + x21 + x22 > 15,7 which in turn implies that
consumer 3's bundle x3 in allocation x satis�es x31 + x32 < 22. This violates (7) for i = 3
because u3(x3(a)) = 17 + 3a > 23: Consequently, x41 � a and x42 = 0. Similarly, consumer
3's bundle x3 must satisfy x31 � 17 + a and x32 = 0. Set ui = ui(xi), i 2 N . By the Pareto
eÆcient of x, u3 = 35� (u1 + u2)

2=6� u4. Since u4 � a,

u3 � 35� a� (u1 + u2)
2

6
: (9)

Since u3 > 17 + 3a and a > 2, (9) implies (u1 + u2)
2 < 60. On the other hand,

with consumer 1 having a utility level of u1 > 0 and consumer 2 having a utility level of
u2 > 0 such that (u1 + u2)

2 < 175, there exists a utility level u03 for player 3 such that
(u1; u2; u

0

3) 2 Ve(f1; 2; 3g) and 8

u03 � 35� (u1 + u2)
2

5
;

which together with (9) implies

u03 � u3 � a� (u1 + u2)
2

30
: (10)

Since (u1+u2)
2 < 30a, it follows from (10) that u03 > u3, which means that the utility vector

(u1; u2; u3) is below the Pareto frontier of Ve(f1; 2; 3g). Consequently, coalition f1; 2; 3g
can improve upon the allocation x in the Edgeworth market game. This contradicts the
assumption that allocation x is in the Edgeworth core.

In the Walras market game (N; Vw), a coalition may not achieve those allocations that
are achievable when the coalition is divided into two or more disjoint sub-coalitions. That
is, the Walras market game sometimes may not be superadditive.9 Superadditivity can be
restored to the Walras market game by the device of taking the superadditive cover.10 The

7For example, x12 < 1 implies x11 > 9 for
p
x11x

1
2 � 3 to hold. On the other hand, x21 + x22 � 2

p
x21x

2
2.

Thus by (7), x21 + x22 � 6. This shows x11 + x12 + x21 + x22 > 15.
8To see why the following inequality holds, consider bundles x1 = (u1(u1+u2)5 ; 5u1

u1+u2
), x2 =

(u2(u1+u2)5 ; 5u2
u1+u2

), and x3 = (35 � (u1+u2)
2

5 ; 0). Then, the tuple (x1; x2; x3) is Edgeworth-feasible for

coalition S = f1; 2; 3g and u1(x1) = u1, u
2(x2) = u2, and u

3(x3) = 35� (u1+u2)
2

5 .
9We say that a coalitional game (N; V ) is superadditive if V (S) + V (T ) � V (S [ T ) for all S; T � N

with S \ T = ;:
10Let (N; V ) be a coalitional game. For S � N , set �V (S) =

P
P2P(S)(

P
T2P V (T )), where P(S) denotes

the set of partitions of S. The pair (N; �V ) is the superadditive cover of the coalitional game (N; V ) (see
Shapley and Shubik 1969).
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core of (N; Vw) is contained in the core of its superadditive cover (N; �Vw).
11 Thus Example

3 also shows that the superadditive cover of the Walras market game is still di�erent from
the Edgeworth market game. This result con�rms the point on superadditivity of the
Walras market game raised in Shapley and Shubik (1977).

4 A Limit Theorem on the Walras Core

In this section, we establish convergence of the equal-treatment Walras core allocations of an
economy E = f(X i;�i; wi; Y i)gi2N to competitive allocations in the process of replication.
To consider the process of replication, we now reinterpret N as the set of types with type i
characterized by the quadruple (X i;�i; wi; Y i). For each positive integer r, Er denotes the
economy obtained from replicating economy E for r times, so that there are r consumers
of each type in Er. For i 2 N and for 1 � m � r, the m-th consumer of type i in Er is
denoted by im. An allocation for Er is denoted by x(xim)r;nm=1;i=1.

For r = 1; 2; � � � ;1, we say that an allocation (xim)r;nm=1;r=1 is an equal-treatment alloca-

tion for Er if xim = xim
0

, for all i = 1; 2; � � � ; n and for all m;m0 = 1; � � � ; r. Equal treatment
property is interesting not only for the equal treatment it asserts, but also because it simpli-
�es the description of the allocations in replicated economies. Equal-treatment allocations
for Er can all be conveniently represented by allocations for E that are composed of repre-
sentative bundles for the various types instead of bundles for the various consumers. Thus,
equal-treatment allocations for Er can be viewed as allocations in the allocation space for E ,
the dimensions of which remains �xed as the economy is replicated. Conversely, allocations
in the allocation space for E can also be viewed as equal-treatment allocations for Er for all
r by letting the consumers of each type all have the representative bundle for that type. In
the literature the Edgeworth core convergence is established typically for equal treatment
Edgeworth core allocations.

We show that if an allocation for E is in the Walras core of Er for r = 1; 2; � � � ;1,
then it must be a competitive allocation for E under assumptions A1-A4 and the following
assumption A5.

A5: For i 2 N , wi 2 int(X i � Y i) (the interior of X i � Y i).

11Let u� = (u�
i
)i2N be any utility vector in the Walras core. Suppose u� is not in the core of (N; �Vw),

the superadditive cover of (N; Vw). Then for some coalition S, there exists a utility vector u 2 �Vw(S) such
that ui > u�

i
for all i 2 S. By de�nition of superadditive cover, there exists a partition P 2 P(S) such that

u 2 P
T2P Vw(T ). Let u

T 2 Vw(T ) for T 2 P such that u =
P

T2P u
T . Then for T 2 P and for i 2 T ,

ui = uTi . This shows that every coalition in P can improve upon u� in the Walras market game (N; Vw),
which contradicts the assumption that u� is in the core of (N; Vw). This shows that u� is in the core of
(N; �Vw).
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Given an allocation x for E , let Zi(x) = P i(xi)� fwig � Y i for i 2 N and

Z(x) =

((
KX
k=1

�kz
k

����� � 2 �K; zk 2 Zik(x); ik 2 N

) ����� 1 � K <1
)
: (11)

Then, Z(x) is a convex subset of <l.

Lemma 1 Let E = f(X i;�i; wi; Y i)gi2N be an economy satisfying A1-A5 and let x̂ = (x̂i)
be an allocation for E such that for some ŷi 2 Y i, i 2 N ,

P
i2N x̂i =

P
i2N wi +

P
i2N ŷi. If

0 =2 Z(x̂), then x̂ is a competitive allocation for E .
Proof. Since 0 =2 Z(x̂), the Separating Hyperplane Theorem implies that there is a vector
p̂ 2 <l such that p̂ 6= 0 and

p̂ � z � 0; for z 2 Z(x̂): (12)

Since Zi(x̂) � Z(x̂) for i 2 N , it follows from (12) that p̂ � zi � 0 for zi 2 Zi(x̂) or
equivalently

p̂ � xi � p̂ � wi + p̂ � yi for (xi; yi) 2 P i(x̂i)� Y i: (13)

By A4, P i(x̂i)�Y i+<l
+ � P i(x̂i)�Y i, which together with (13) implies p̂ 2 <l

+. We may
thus assume p̂ 2 �l. Next, by A2, x̂i 2 clP i(x̂i) and hence by (13), p̂ � x̂i � p̂ � wi + p̂ � ŷi.
Since

P
i2N x̂i =

P
i2N wi +

P
i2N ŷi, we have p̂ � x̂i = p̂ �wi + p̂ � ŷi for i 2 N . Thus to show

that ((x̂i; ŷi); p̂) is a competitive equilibrium for E , by De�nition 1 it only remains to check
that for i 2 N and for (xi; yi) 2 P i(x̂i)� Y i, p̂ � xi > p̂ � wi + p̂ � yi.

Fix i 2 N and (xi; yi) 2 P i(x̂i) � Y i. By A5, wi 2 int(X i � Y i) which implies that
there exists a pair (x0i; y0i) 2 X i � Y i such that p̂ � x0i < p̂ � wi + p̂ � y0i. By A1 and A3,
(1� t)(x0i; y0i)+ t(xi; yi) 2 X i�Y i for t 2 [0; 1]. Since xi 2 P i(x̂i) and since P i(x̂i) is open
relative to X i by A2, we have t(x0i; y0i) + (1 � t)(xi; yi) 2 P i(x̂i) � Y i for small t 2 (0; 1).
Thus, it follows from (13) that tp̂ � (x0i � wi � y0i) + (1� t)p̂ � (xi � wi � yi) � 0 for small
t 2 (0; 1). Since p̂ � (x0i �wi � y0i) < 0 by construction, it must be p̂ � (xi � wi� yi) > 0.

We are now ready to state and prove a limit property for the Walras core in the equal-
treatment allocation space. We establish the property by applying Lemma 1 and a claim
which we prove in an appendix.

Theorem 3 Let E = f(X i;�i; wi; Y i)gi2N be an economy satisfying A1-A5 and let x̂ = (x̂i)
be an allocation for E . If x̂ is in the Walras core of Er, for all r = 1; 2; � � � ;1, then it must

be a competitive allocation for E.
Proof. Since x̂ is in the Walras core of E , it follows from De�nitions 3 and 5 that there
exists a production plan ŷi 2 Y i for for each i 2 N such that

P
i2N x̂i =

P
i2N wi+

P
i2N ŷi.

By Lemma 1, it suÆces to show that Z(x̂) does not contain the origion 0 2 <l.
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Suppose on the contrary 0 2 Z(x̂). Then, by (11), there exist an integer �K � 1, an
element �� 2 �

�K , a sequence f�ikg �K
k=1 of elements �ik 2 N , and a sequence f(�xk; �yk)g �K

k=1 of
pairs (�xk; �yk) 2 P

�ik(x̂
�ik)� Y

�ik such that 12

�KX
k=1

��k(�x
k � w

�ik � �yk) = 0: (14)

By A5, we can choose a pair (~x
�ik ; ~y

�ik) 2 X
�ik � Y

�ik such that

w
�ik = ~x

�ik � ~y
�ik for 1 � k � �K; i 2 N: (15)

For 1 � k � �K, choose a compact cube B
�ik in <l containing production plans �yk and ~y

�ik

as its interior points. Then the closedness and convexity of Y i imply that �Y i = Y i \Bi is
compact convex.

Since �xk 2 P
�ik(x̂

�ik), A2 implies that there is an element �ek 2 <l
++ such that �xk +��ek 2

P
�ik(x̂

�ik) for � � 0. By the compactness of �Y
�ik , we can choose a scalar 0 < ��k < 1 such

that
�xk + ��k�ek � w

�ik + y
�ik ; y

�ik 2 �Y
�ik : (16)

Set
x0k = �xk + ��k�ek; for 1 � k � �K: (17)

Next, for 1 � k � �K, choose a compact cube C
�ik � <l containing bundles ~x

�ik , �xk, and x0k

as its interior points. Then the closedness and convexity ofX
�ik implies that �X

�ik = X
�ik\C�ik

is compact convex. Since w
�ik = ~x

�ik � ~y
�ik by (15) and since ~x

�ik and ~y
�ik are respectively in

the interior of �X
�ik and �Y

�ik by construction, w
�ik 2 int( �X

�ik� �Y
�ik) (the interior of �X

�ik� �Y
�ik).

In addition, since x0k = �xk + ��k�ek by (17) and since �xk + ��k�ek � w
�ik + y

�ik, for y
�ik 2 �Y

�ik

by (16), we have

p � x0k > p � �xk and p � x0k > p � w�ik + �
�ik(p) for p 2 �l: (18)

Claim: There exists ((x�k)
�K
k=1; (y

�k)
�K
k=1; p

�; ��) 2 (X
�K
k=1

�X
�ik) � (X

�K
k=1

�Y
�ik) � �l � �

�K such

that

x�k 2 P
�ik(x̂

�ik) \ �X
�ik ; p� � x�k = p� � w�ik + p� � y�k when ��k > 0 (19)

and X
k:��

k
>0

��k(x
�k � w

�ik � y�k) � 0: (20)

Proof of Claim is in the Appendix to this paper.

12Notice that it is possible that �ik = ik0 for two integers k 6= k0 and 1 � k; k0 � �K.
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Let z� =
P

k:��

k
>0 �

�

k(x
�k � w

�ik � y�k). Then,

X
k:��

k
>0

�k(x
�k � w

�ik � y�k � z�) = 0: (21)

Furthermore, by (19) and (20),

z� � 0 and p� � z� = 0: (22)

Since x�k � y�k � z� 2 P
�ik(x̂

�ik)� Y
�ik +<l

+ and since P
�ik(x̂

�ik)� Y
�ik +<l

+ � P
�ik(x̂

�ik)� Y
�ik

by A4, there is a pair (x̂�k; ŷ�k) 2 P
�ik(x̂

�ik)�Y
�ik such that x�k�y�k� z� = x̂�k� ŷ�k. Thus,

by (19), (21), and (22),

p� � x̂�k = p� � w�ik + p� � ŷ�k when ��k > 0 (23)

and X
k:��

k
>0

��k(x̂
�k � w

�ik � ŷ�k) = 0: (24)

Fix 1 � k � �K with ��k > 0. For each positive integer t, let �k(t) be the smallest integer
greater than or equal to t��k. Then, 0 � t��k=�k(t) � 1 and t��k=�k(t) ! 1 as t! 1. Let
(xk(t); yk(t)) = [t��k=ak(t)](x̂

�k; ŷ�k) + [1 � (t��k=ak(t))](~x
�ik ; ~y

�ik) for t = 1; � � � ;1. Then,
(xk(t); yk(t)) 2 X

�ik � Y
�ik by A1 and A3. By (15) and (23),

p� � xk(t) = p� � w�ik + p� � yk(t): (25)

On the other hand,
P

k:��

k
>0 �k(t)[x

k(t)�w�ik�yk(t)] = Pk:��

k
>0 �k(t)f[t��k=�k(t)][x̂�k�w�ik�

ŷ�k] + [1� (t��k=�k(t))][~x
�ik � w

�ik � ~y
�ik ]g. Consequently, by (15) and (24),

X
k:��

k
>0

�k(t)[x
k(t)� w

�ik � yk(t)] = t
X

k:��

k
>0

��k[x̂
�k � w

�ik � ŷ�k] = 0: (26)

Note that xk(t) ! x̂�k as t ! 1 because t��k=�k(t) ! 1 as t ! 1. Thus, since x̂�k 2
P i(x̂

�ik) by construction, A2 implies xk(t) 2 P
�ik(x̂

�ik) for large enough t.
Take t so large that xk(t) 2 P

�ik(x̂
�ik) for 1 � k � �K with ��k > 0. For i 2 N , let

ri =
P

k:�ik=i
�k(t) and let r = maxfri j i 2 Ng. Now consider coalition Sr consisting of

ri consumers of type i for i 2 N . Then, by (25) and (26), the allocation, which assigns
bundle xk(t) to �k(t) consumers of type i with �ik = i for 1 � k � �K, is Walras-feasible for
Sr in economy Er. This together with the inclusions of xk(t) 2 P

�ik(x̂
�ik) for 1 � k � �K

with �k > 0 implies that coalition Sr can improve upon allocation x̂ with Walras-feasible
allocations in economy Er. We have therefore established the needed contradiction.

Assumptions A1{A5 are weaker than the standard assumptions on the elements of an
economy in general equilibrium theory. These assumptions do not guarantee that the
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Walras core allocations all satisfy the equal-treatment property. They would if in addition
consumers' preferences are strictly convex, and the strong coalitional improvements in the
de�nition of the Walras core are replaced with weak coalitional improvements, as follows:
coalition S weakly improves upon an allocation x in the Walras market game if there is an
S-allocation xS 2 W (S) such that xi =2 P i(x0i) for all i 2 S and x0i 2 P i(xi) for at least one
consumer i 2 S. With strict convexity imposed on preferences in addition to assumptions
A1-A5, it is known that the Edgeworth core with weak coalitional improvements allocations
also have equal-treatment property.

5 Conclusion

In this paper we considered a model of market exchange { The Walras market game { in
which consumers can trade cooperatively by organizing themselves into coalitions. However,
unlike the unrestricted barter, trades within each coalition are subject to the law of one
price in our model. The law of one price was shown to be a signi�cant restriction, in that it
makes the resulting Walras-Pareto set { and hence the Walras core { substantially di�erent
from their counterparts of the Edgeworth unrestricted barter.

Allocations in the Walras core are supported by price systems. However, bundles in a
Walras core allocation do not necessarily maximize consumers' utilities subject to budget
constraint. Consequently, the �rst welfare theorem does not necessarily apply to Walras
core allocations.

We have shown by example that the Walras core may contain allocations that violate
the usual Pareto eÆciency. Nevertheless, the intersection of the Edgeworth and the Walras
cores is nonempty, and contains all competitive allocations. Moreover, the equal-treatment
Walras core allocations converge in the process of replication to the competitive allocations
under fairly general conditions on the elements of an economy. This convergence result
reinforces the price-taking behavior and hence the law of one price for large economies.

One of the issues that is left undiscussed in this paper is the rate of convergence of
the Walras core. As mentioned before, the generic rate of convergence of the Edgeworth
core of a suÆciently smooth economy has the same order as the reciprocal of the number
of agents (footnote 2). It remains to be explored at what rate the Walras core converges
under replication to the set of competitive allocations.

Appendix: Proof of Claim

Let �K � 1, �� 2 �
�K, f�ikg �K

k=1 with �ik 2 N , and f(�xk; �yk)g �K
k=1 with (�xk; �yk) 2 P

�ik(x̂
�ik)�

Y
�ik be as in the proof of Theorem 2. We begin by constructing several mappings that

enable us to apply the Kakutani Fixed-Point Theorem.
First, for 1 � k � �K, de�ne mappings �

�ik : �l ! < and �
�ik : �l ! �Y

�ik by �
�ik(p) =

maxfp � y�ik j y�ik 2 �Y
�ikg and

�
�ik(p) = fy�ik 2 �Y

�ik j p � y�ik = �
�ik(p)g: (27)
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By the Maximum Theorem in Berge (1963), �
�ik is continuous and �

�ik is upper semicon-
tinuous (henceforth shortened to u.s.c.). Furthermore, �

�ik is compact- and convex-valued
(i.e., �

�ik(p) is a compact convex subset of �Y
�ik for p 2 �l).

Next, de�ne mappings �k : �l ! < and dk : �l ! �X i by

�k(p) =
p � w�ik + �

�ik(p)� p � �xk
��kp � �ek ; (28)

and

dk(p) =

(
�xk if p � �xk > p � w�ik + �

�ik(p);

(1� �k(p))�xk + �k(p)x0k if p � �xk � p � w�ik + �
�ik(p):

(29)

By (18) and by the continuity of �i(p), �i and di are well-de�ned and continuous.
De�ne correspondences Q : (X

�K
k=1

�X
�ik)� (X

�K
k=1

�Y
�ik)��

�K ! �l and A : �l ! �
�K by 13

Q(x; y; �) = fp 2 �l j p �
�KX

k=1

�k(x
k �w

�ik � yk) � p0 �
�KX

k=1

�k(x
k �w

�ik � yk); p0 2 �lg; (30)

and

A(p) = f� 2 �
�K j p �

�KX
k=1

�k(�x
k � wk � �yk) � p �

�KX
k=1

�0k(�x
k � w

�ik � �yk); �0 2 �
�Kg: (31)

Clearly, both Q and A are compact- and convex-valued and by the Maximum Theorem,
they are also u.s.c.

Finally, de�ne correspondence � from (X
�K
k=1

�X
�ik)� (X

�K
k=1

�Y
�ik)��l ��

�K to itself by

�(x; y; p; �) = (X
�K
k=1fdk(p)g)� (X

�K
k=1�

�ik(p))�Q(x; y; �)� A(p)

for (x; y; p; �) 2 (X
�K
k=1

�X
�ik)� (X

�K
k=1

�Y
�ik)��l��

�K. Then, � is u.s.c. nonempty-, compact-,
and convex-valued. Since the domain of � is nonempty, compact, and convex, the Kakutani
Fixed-Point Theorem implies that there is a point (x�; y�; p�; ��) 2 (X

�K
k=1

�X
�ik)�(X�K

k=1
�Y
�ik)�

�l ��
�K such that (x�; y�; p�; ��) 2 �(x�; y�; p�; ��).

By construction, x�k = dk(p�) and y�k 2 �
�ik(p�) for 1 � k � �K, p� 2 Q(x�; y�; ��), and

�� 2 A(p�). From (31), �� 2 A(p�) implies p� �P �K
k=1 �

�

k(�x
k �w

�ik � �yk) � p� �P �K
k=1 ��k(�x

k �
w
�ik� �yk). Since

P �K
k=1 ��k(�x

k�w�ik� �yk) = 0 by (14), we have p� �P �K
k=1 �

�

k(�x
k�w�ik� �yk) � 0:

This shows p� �(�xk�wk� �yk) � 0 for at least one 1 � k � �K with ��k > 0. Consequently, by
the construction of the correspondence, A, we have p� � (�xk � w

�ik � �yk) � 0 for 1 � k � �K
with ��k > 0. Since �yk 2 �Y

�ik , p� � �xk � p� � w�ik + p� � �yk � p� � w�ik + �
�ik(p�). Hence, by (17)

and (29), x�k = dk(p�) = (1��k(p�))�xk+�k(p�)x0k = �xk+��k�k(p�)�ek. This, together with
(28), implies p� � x�k = p� � w�ik + �

�ik(p�). Furthermore, by the choice of �ek, x�k 2 P
�ik(x̂

�ik)

13Elements in X
�K
k=1

�X
�ik are denoted by x = (xk)

�K
k=1 and those in X

�K
k=1

�Y
�ik by y = (yk)

�K
k=1.
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and by (27), y�k 2 �
�ik(p�) implies p� � y�k = �

�ik(p�). This establishes (19) from which it
follows that

p� � X
k:��

k
>0

��k(x
�k � w

�ik � y�k) = 0:

Finally, by (30) and the above equality, p� 2 Q(x�; y�; ��) implies p0 �Pk:��

k
>0 �

�

k(x
�k�w�ik�

y�k) � 0 for p0 2 �l, which in turn implies (20).
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