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a b s t r a c t

To better understand the dynamics of HIV-specific neutralizing antibody (NAb), we examined associa-
tions between viral genetic diversity and the NAb response against a multi-subtype panel of hetero-
logous viruses in a well-characterized, therapy-naïve primary infection cohort. Using next generation
sequencing (NGS), we computed sequence-based measures of diversity within HIV-1 env, gag and pol,
and compared them to NAb breadth and potency as calculated by a neutralization score. Contempora-
neous env diversity and the neutralization score were positively correlated (p¼0.0033), as were the
neutralization score and estimated duration of infection (EDI) (p¼0.0038), and env diversity and EDI
(p¼0.0005). Neither early env diversity nor baseline viral load correlated with future NAb breadth and
potency (p40.05). Taken together, it is unlikely that neutralizing capability in our cohort was
conditioned on viral diversity, but rather that env evolution was driven by the level of NAb selective
pressure.

& 2014 Elsevier Inc. All rights reserved.

Introduction

Following primary HIV infection, the immune system exerts con-
siderable selection pressure on viral populations (Bailey et al., 2004;
Albert et al., 1990; Phillips et al., 1991). Neutralizing antibodies (NAb)
against autologous virus arise early in the course of infection (Moore
et al., 1994; Richman et al., 2003), leading to the rapid development of
viral escape mutants (Albert et al., 1990; Richman et al., 2003; Wei
et al., 2003). A small subset of HIV-infected individuals (10–30%) go on
to develop antibodies capable of potently neutralizing a broad array of
heterologous HIV isolates (Mascola and Haynes 2013). Although the
benefit of a broad and potent NAb response on disease course remains
uncertain (Geffin et al., 2003; Carotenuto et al., 1998; Piantadosi et al.,
2009a; Doria-Rose et al., 2010), animal studies of passive immunity
(Klein et al., 2012; Barouch et al., 2013) and the isolation of highly
broad and potent monoclonal NAb (Walker et al., 2012) have renewed
interest in the design of an effective NAb-based HIV vaccine and
underscores the need for a better understanding of the natural
development of NAb breadth and potency.

The presence and magnitude of the HIV-directed NAb response
varies between individuals, and the determinants of this variation
remain elusive (Richman et al., 2003; Frost et al., 2005). Some
studies have suggested that higher viral load may promote a
broader NAb response due to greater antigen exposure (Piantadosi
et al., 2009a; Doria-Rose et al., 2010; Deeks et al., 2006). Similarly,
another study demonstrated a modest correlation between dura-
tion of infection and NAb breadth (Sather et al., 2009). Yet another
interesting possibility is that greater viral diversity within the host
could drive the development of NAb breadth. Using single-copy
sequencing to characterize intrasample viral diversity, Piantadosi
et al. demonstrated a positive correlation between early-infection
env diversity and late-infection NAb breadth (Piantadosi et al.,
2009a), but not between contemporaneous env diversity and NAb
breadth (Piantadosi et al., 2009c). Conversely, peak NAb breadth has
also been positively correlated with contemporaneous gp160 clonal
diversity (Euler et al., 2012). A positive correlation has also been
reported between HIV-1 dual infection (which greatly increases env
population diversity) and the development of NAb breadth (Cortez
et al., 2012). In the present study, we leveraged the greater
resolution of next generation sequencing (NGS) to examine the
associations between viral genetic diversity and NAb breadth and
potency in a well-characterized, antiretroviral therapy (ART)-naive
cohort of individuals followed after primary infection.
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Methods

Study participants and measurement of clinical parameters

This study included participants from the San Diego Primary
Infection Cohort between January 1998 and January 2007 who
were ART naïve. At all timepoints, CD4 T-cell cell counts (LabCorp)
and blood plasma HIV-1 RNA levels (Amplicor HIV-1 Monitor Test;
Roche Molecular Systems, Inc.) were quantified. The estimated
duration of infection (EDI) was calculated at baseline for each
participant, per established protocols (Le et al., 2013).

RNA extraction and viral sequencing

Viral RNA was isolated from cryopreserved plasma, and cDNA
was generated as previously described (Gianella et al., 2011; Pacold
et al., 2012). HIV-1 env C2-V3 (HXB coordinates 6928-7344), gag
p24 (HXB coordinates 1366-1618), and pol reverse transcriptase
(RT) (HXB coordinates 2709-3242) were PCR amplified with region-
specific primers (Gianella et al., 2011; Pacold et al., 2010, 2012). NGS
was performed in batches of 16 on a single 454 GS FLX Titanium
picoliter plate (454 Life Sciences, Roche, Branford, Connecticut,
USA), and each sample was physically separated by rubber gaskets
(Pacold et al., 2012; Wagner et al., 2013, 2014). Reads were checked
for intersample and lab strain contamination by performing homol-
ogy searches against each other and against the online public Los
Alamos HIV sequence database (http://www.hiv.lanl.gov/content/
sequence/BASIC_BLAST/basic_blast.html), as previously described
(Butler et al., 2010). The cDNA template input into the sequencing
reaction was quantified and validated as previously described
(Gianella et al., 2011).

Sequence analysis and bioinformatics

Raw NGS reads were filtered and processed using an updated
version of the bioinformatics pipeline described previously (Pacold
et al., 2012). Briefly, homology mapping and homopolymer correc-
tion was carried out using a codon-aware extension of the Smith–
Waterman pairwise alignment algorithm. To distinguish biological
variation from sequencing artifacts, we fitted a multinomial mixture
model, which allowed us to infer a sample-specific background
error rate, and call biological variant as those whose posterior
probability of observing a particular configuration of A, C, G and T
counts at a site using under the error model was less than 0.001.
Having thus filtered instrument errors out, we performed a sliding
window phylogenetic analysis (width 210 nt; stride 30 nt), consid-
ering only reads which spanned at least 95% of the window (i.e. no
haplotype phasing). The MG94xREV codon model was fitted to a
neighbor-joining tree inferred for each sliding window, and the
mean pairwise synonymous (S) and non-synonymous (NS) diversity
(measured as expected substitutions per codon) was measured
along this tree (Noviello et al., 2007), in the HyPhy package (Pond
et al., 2005). For each NGS sample, we computed the maximum
value of S and NS over all sliding windows with median per-
position coverage of 500 or greater, and defined the corresponding
maximal diversity measures. Assessment of intrasubtype HIV-1
dual infection was performed by NGS using divergence and phylo-
genetic analysis as previously described (Pacold et al., 2010; Simek
et al., 2009), and was detected in 2 subjects.

Neutralizing antibody assays

NAb activity assays were performed by Monogram Biosciences
(San Francisco, CA, USA) using a previously-reported in vitro viral
neutralization assay (Richman et al., 2003; Deeks et al., 2006;
Walker et al., 2009). Briefly, a firefly luciferase env-null HIV-1 was

pseudotyped with each of 6 clinical isolate-derived HIV-1 envelopes
representing the major circulating global subtypes (94UG103 [C],
92BR020 [B], JRCSF [B], 93IN905 [A], MGRM-C-026 [C], and 92TH021
[CRF_01 AE]). This cross-clade heterologous panel has been shown
to be highly predictive of neutralization breadth on a larger panel
(Simek et al., 2009). The same virus was also pseudotyped with the
neutralization susceptible lab strain NL4-3 as a positive control and
the irrelevant amphotropic Murine Leukemia Virus (aMLV) strain as
a negative control. For the neutralization component of the assay,
cryopreserved participant serum samples were subjected to serial
dilution and incubated with each virus in the panel, as previously
described(Walker et al., 2009). Viral infectivity was measured by
luciferase activity, and titers were calculated as the reciprocal of the
plasma dilution conferring 50% inhibition (IC50). Neutralization
scores were derived for each plasma sample as the mean of log-
transformed IC50 titers, a measure of both breadth and potency
against heterologous viruses (Simek et al., 2009).

Statistical analysis

For single variable comparisons, p-values were calculated using
2-sided Student's t-test. Graphs are displayed with one standard
deviation error bars. To examine associations between two vari-
ables, we performed a two-sided non-parametric Kendall rank
correlation tests. This test was selected over other statistical tests
(such as Spearman's rho) due to its more reliable confidence
intervals (Kendall, 1990). Parallel analysis using two-sided Spear-
man's test yielded identical statistical conclusions with correlation
coefficients that were equivalent or higher than those obtained
with Kendall's rank correlation test (data not shown).

Results

This study included a total of 35 ART-naive subjects, with a
median EDI at the time of sampling of 495 days (IQR: 337�932
days). The median CD4 T-cell count at time of sampling was
435 cells/ml (IQR: 314�630 cells/ml), and the median HIV-1 RNA
viral load was 4.84log10 copies/ml (IQR: 4.43�5.44 log10 copies/ml).
The median calculated cDNA input in the first-round nested PCR was
3.51log10 copies/10 μl (IQR: 3.10�4.10log10 copies), and the median
coverage of NGS windows yielding the highest divergence estimate
with a median nucleotide coverage for gag p24 of 6848 (IQR 578–
11,274), pol RT 1881 (IQR 589-3825), and env C2-V3 4170 (IQR 2803-
6736). All participants were infected with HIV-1 subtype B virus.

Viral population maximal diversity was significantly higher
within env than within gag or pol (Fig. 1A). Mean env non-
synonymous (NS) diversity was significantly greater than env
synonymous (S) diversity, and was also greater than gag or pol-rt
NS diversity (Fig. 1B). Nucleotide coverage was variable between
subjects, but there was no association between median per-position
coverage and either max (S) or max (NS) (data not shown, p40.05
for env C2-V3, gag p24 and pol RT). To assess the validity of the
computational diversity metric, we generated neighbor-joining
phylogenetic trees from a representative high calculated diversity
subject (Fig. 1C) and low calculated diversity subject (Fig. 1D). This
analysis revealed phylogenetic tree morphology congruent with the
calculated diversity.

To assess the relationship between viral genetic diversity and
NAb breadth and potency, we first quantified the neutralization
capacity of patient sera against a multi-subtype panel of hetero-
logous HIV primary isolates by computing the neutralization score,
which mathematically incorporates the number of viruses neu-
tralized (breadth) and the IC50 titer level against each heterologous
virus (potency) (Simek et al., 2009). We then compared the viral
diversity within env, gag, and pol to the neutralization score
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measured from the same study timepoint, or a timepoint in
the course of infection no more than 2 months apart (N¼32,
median 0 days, IQR: 0�36.5 days). Comparisons included maximal
diversity, mean synonymous diversity (S) and mean non-
synonymous diversity (NS). A significant positive correlation was
observed between env maximal diversity and neutralization score
(Fig. 2A, τ correlation coefficient¼0.36, p¼0.0081). NS env diver-
sity was also positively correlated with neutralization score
(Figs. 2B, τ¼0.38, p¼0.0033), as was S env diversity, albeit to a
lesser degree (Figs. 2B, τ¼0.28, p¼0.029). No significant associa-
tion was observed between maximal diversity, NS diversity or S
diversity in gag or pol-rt and NAb breadth and potency (Fig. 2C–F).
To determine whether HIV-1 dual infection confounded the
positive associations, we repeated the analysis excluding the two
dually infected subjects, and found no major change in the
correlations between NS env diversity and neutralization score
(τ¼0.36, p¼0.007); or S env diversity and neutralization score
(τ¼0.30, p¼0.025).

To assess whether higher diversity within env earlier in infec-
tion would correlate with the development of a broader and more
potent NAb response later in the course of infection, env maximal
diversity early in infection (mean EDI 1.7 months, IQR: 1.5�2.8
months) was compared to the 6-virus panel neutralization score
later in infection (median EDI 26.2 months, IQR: 21.5–35.6
months) in a subset of the analyzed cohort (n¼10). This analysis
revealed no correlation between future NAb breadth and potency
and the baseline env maximal diversity (Fig. 3A, τ¼�0.066,
p¼0.86). Since the subset of subjects analyzed was small, we also
analyzed the relationship between env diversity and the

contemporaneous neutralization score within the same subset,
which mirrored the correlation demonstrated in Fig. 2 (Figs. 3B,
τ¼0.78, p¼0.0027). Comparing the baseline NS and S env diver-
sity to subsequent NAb breadth and potency revealed no signifi-
cant associations (Fig. 3C, NS correlate τ¼0.29, p¼0.28, S correlate
τ¼0.37, p¼0.37); furthermore, NAb activity was positively corre-
lated with contemporaneous and the NS env diversity (Fig. 3D, NS
correlate τ¼0.60, p¼0.023), but not with S diversity (Fig. 3D, S
correlate τ¼0.36, p¼0.17). One subject included in this analysis
was confirmed as having HIV dual infection, however exclusion of
this subject did not alter the results noted above (baseline env
diversity-neutralization score correlate τ¼0.087, p¼0.83, contem-
poraneous env diversity-neutralization score correlate τ¼0.73,
p¼0.011).

We next sought to determine whether other clinical variables
correlated with the development of NAb breadth and potency as well
as the development of env diversity. Comparison of EDI and neutra-
lization score revealed amodest positive correlation (Figs. 4A, τ¼0.28,
p¼0.038), however exclusion of dual-infected subjects reduced the
strength and statistical significance of this correlation (τ¼0.24,
p¼0.097, data not shown). Similar analyses comparing CD4þ T-cell
count and NAb breadth and potency revealed no association (Fig. 4B).
We also analyzed the relationship between contemporaneous viral
load and neutralization score and found no correlation (Fig. 4C). To
assess whether baseline viral load was predictive of subsequent
development of NAb breadth and potency, we compared baseline
viral load to neutralization score later in infection (median EDI 27.3
months, IQR 15.5–45.7), and found no correlation (Figs. 4D, τ¼0.023,
p¼0.88). We performed similar analysis including only subjects with

Fig. 1. HIV diversity as assessed by next generation sequencing. (A) Maximal sequence diversity across three HIV-1 coding regions. Error bars represent one standard
deviation. p-values are reported for 2-sided Student's t test, with solid lines connecting the compared data items. (B) Mean synonymous (S) and non-synonymous (NS)
diversity within three HIV-1 coding regions, with statistics performed as in (A). (C,D) Representative neighbor-joining phylogenetic trees constructed from unique haplotypes
within the maximum diversity sliding window for (B) high max (NS) (0.08) and (C) low max (NS) (0.009) within env. The trees are scaled on expected substitutions per
nucleotide site. The total proportions of reads represented by a particular haplotype are shown as leaf labels, and also as the area of the node symbol.
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EDI 424 months (n¼18, median EDI 37.6 months IQR 27.3–59.7),
and again saw no significant association (τ¼0.21, p¼0.25, data not
shown). Analysis comparing EDI to the levels of env diversity revealed
a significant positive association between maximal diversity and EDI
(Figs. 4E, τ¼0.46, p¼0.00052). Similarly, EDI was positively correlated
with NS env diversity (figs. 4F, τ¼0.31, p¼0.019), but not with S env
diversity (τ¼0.20, p¼0.13).

Discussion

This study utilized NGS to characterize the viral genetic
diversity in high resolution from a cohort of individuals followed
longitudinally from primary infection. The strongest correlate of
the development of HIV-1-specific NAb breadth and potency was

contemporaneous non-synonymous viral env sequence diversity,
implicating diversifying positive selection of env. As might be
expected (Piantadosi et al., 2009a, 2009b), there was no evidence
of similar selective pressures on gag and pol. Interestingly, we also
found that the diversity of env early in the course of infection did
not predict subsequent NAb breadth and potency. Although the
number of subjects for whom longitudinal analysis could be
performed was small, the persistence of a strong association
between contemporaneous env diversity and the neutralization
score within this subgroup makes lack of sampling power an
unlikely explanation for the lack of an association between early
env diversity and later NAb breadth and potency.

The data presented here are most consistent with the rapid
evolution of env in response to the development of the NAb
response (Richman et al., 2003; Frost et al., 2005), rather than

Fig. 2. Comparison of NAb breadth and potency and contemporaneous gene diversity within three HIV-1 coding regions. (A,C,E) Comparison of 6-virus panel neutralization
score versus maximal diversity within env (A), gag (C), and pol (E). (B,D,F) Comparison of neutralization score versus mean pairwise non-synonymous diversity (NS, closed
circles) and mean pairwise synonymous diversity (S, open circles) within env (B), gag (D), and pol (F). Correlation coefficients and p-values are derived from a two-sided
Kendall rank correlation test. NAb: neutralizing antibody.
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the development of NAb breadth in response to env diversity.
Two participants in this study acquired HIV dual infection which
may contribute to viral genetic diversity; however parallel
analysis with these subjects excluded did not alter the main
observations (except for a decrease in the association between
duration of infection and neutralization score). Another poten-
tial confounder is selective pressure from the cytotoxic T
lymphocyte (CTL) response, but the higher diversity in env
compared to gag and pol in this study in combination with the
positive association between NAb breadth and potency and env
diversity alone suggest a unique selective pressure exerted by
the NAb response on env.

Our findings differ from previously reported studies which
proposed that NAb development is conditioned upon early env
diversity (Piantadosi et al., 2009a), however there are key
differences between these studies. Firstly, the follow-up for our
cohort fell mostly within the first 3 years post-infection before
censoring due to ART initiation, while the ART-naive Kenyan
cohort (Piantadosi et al., 2009a) underwent sampling five years
after seroconversion. This could suggest that participants of the
present study did not have adequate time for NAb breadth to
develop; however this duration of follow-up falls within the
timeframe needed for broad NAb development in most individuals
(Mikell et al., 2011). Furthermore, seven (24%) participants dis-
played broad and potent NAb activity (neutralization score 41.0;
neutralization of 5–6 out of 6 viruses) at the timepoints studied,
similar to the frequency of broadly cross-reactive NAb develop-
ment reported in other cohorts at later timepoints (Doria-Rose
et al., 2010; Sather et al., 2009; Mikell et al., 2011). A second major
difference is the env region characterized in the studies. Our study
used NGS with a shorter region of analysis (C2-V3 region, 416 bp)
compared to the �1.2-kb sequences generated with single-copy

sequencing in the Kenya study. The region we chose to analyze
encompasses key epitopes recognized by highly broad and potent
monoclonal NAbs such as 10-1074, VRC24 and the PGT121-like
series (Walker et al., 2010; Klein et al., 2013). Using a limited
region of env allowed for a far more detailed assessment of
diversity owing to the greater depth of coverage in the present
study (median of 4170 sequences per sample versus 7 sequences in
the previous study). One significant limitation in this approach is
the exclusion of other major env epitopes targeted by highly broad
and potent monoclonal NAbs, including the V1/V2 region and the
gp41 membrane proximal external region (MPER). NGS methods
capable of accurate sequencing of longer viral genome regions will
be needed to better define the relative roles of these regions in
NAb breadth development.

Another unexpected finding in this cohort was the absence of
an association between the level of HIV RNA or CD4 count and NAb
breadth and potency. The literature is inconclusive with regards to
the relationship between NAb breadth and CD4 counts, with some
studies showing a relationship (Carotenuto et al., 1998), and others
not (Piantadosi et al., 2009a; Doria-Rose et al., 2010). The absence
of an association between early viral load and later NAb breadth
was unexpected, as several studies have documented such a
relationship (Piantadosi et al., 2009a; Doria-Rose et al., 2010;
Sather et al., 2009). Interestingly, one study demonstrated the
emergence of broad NAb in patients on ART with suppressed
viremia, suggesting that high antigenic stimulus may not be
the only driving force behind NAb breadth development
(Medina-Ramirez et al., 2011). Our findings suggest that while it
is certainly possible that high antigenic exposure can contribute to
the development of NAb breadth in some individuals, NAb
selective pressure is likewise a potent modulator of viral genetic
diversity.

Fig. 3. Comparison of NAb breadth and potency to baseline sequence diversity within env. (A) Comparison of early envmaximal diversity and the 6-virus panel neutralization
score at a median of 26 months. (B) Comparison of contemporaneous env maximal diversity to the 6-virus neutralization score in the same subjects depicted in (A).
(C) Comparison between baseline env mean non-synonymous diversity (NS, closed circles) and baseline mean synonymous diversity (S, open circles) to the neutralization
score at a median of 26 months. (D) Comparison of contemporaneous env mean non-synonymous diversity (NS, closed circles) and baseline mean synonymous diversity
(S, open circles) to the neutralization score within the same subjects depicted in (C). Tau correlation coefficients and p-values are derived from a two-sided Kendall rank
correlation test. NAb: neutralizing antibody.

C.C. Carter et al. / Virology 474 (2015) 34–4038



Acknowledgments

This work was supported by the U.S. Department of Veterans Affairs
and grants from the National Institutes of Health: AI090970, AI100665,
MH097520, DA034978, AI036214, AI007384, AI047745, AI106039; the
International AIDS Vaccine Initiative (IAVI (Grant no. AI090970)); the
National Science Foundation DMS0714991; the James B. Pendleton
Charitable Trust.

The funders had no role in the study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

We are grateful to all the participants in the San Diego Primary
Infection Research Consortium, to Elise Landais and Pascal Poignard
for their collaborative insights, to Caroline Ignacio for technical
support, and to Demetrius Dela Cruz for his administrative assistance.

References

Albert, J., Abrahamsson, B., Nagy, K., Aurelius, E., Gaines, H., Nystrom, G.,
Fenyo, E.M., 1990. Rapid development of isolate-specific neutralizing antibodies
after primary HIV-1 infection and consequent emergence of virus variants
which resist neutralization by autologous sera. AIDS 4, 107–112.

Bailey, J., Blankson, J.N., Wind-Rotolo, M., Siliciano, R.F., 2004. Mechanisms of HIV-1
escape from immune responses and antiretroviral drugs. Curr. Opin. Immunol.
16, 470–476.

Barouch, D.H., Whitney, J.B., Moldt, B., Klein, F., Oliveira, T.Y., Liu, J., Stephenson, K.E.,
Chang, H.-W., Shekhar, K., Gupta, S., Nkolola, J.P., Seaman, M.S., Smith, K.M.,
Borducchi, E.N., Cabral, C., Smith, J.Y., Blackmore, S., Sanisetty, S., Perry, J.R.,
Beck, M., Lewis, M.G., Rinaldi, W., Chakraborty, A.K., Poignard, P., Nussenzweig,
M.C., Burton, D.R., 2013. Therapeutic efficacy of potent neutralizing HIV-1-
specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503
(7475), 224–228.

Butler, D.M., Delport, W., Kosakovsky Pond, S.L., Lakdawala, M.K., Cheng, P.M., Little,
S.J., Richman, D.D., Smith, D.M., 2010. The origins of sexually transmitted HIV
among men who have sex with men. Sci. Transl. Med. 2, 18re11.

Carotenuto, P., Looij, D., Keldermans, L., de Wolf, F., Goudsmit, J., 1998. Neutralizing
antibodies are positively associated with CD4þ T-cell counts and T-cell
function in long-term AIDS-free infection. AIDS 12, 1591–1600.

Cortez, V., Odem-Davis, K., McClelland, R.S., Jaoko, W., Overbaugh, J., 2012. HIV-1
superinfection in women broadens and strengthens the neutralizing antibody
response. PLoS Pathog. 8, e1002611.

Deeks, S.G., Schweighardt, B., Wrin, T., Galovich, J., Hoh, R., Sinclair, E., Hunt, P.,
McCune, J.M., Martin, J.N., Petropoulos, C.J., Hecht, F.M., 2006. Neutralizing
antibody responses against autologous and heterologous viruses in acute
versus chronic human immunodeficiency virus (HIV) infection: evidence for a
constraint on the ability of HIV to completely evade neutralizing antibody
responses. J. Virol. 80, 6155–6164.

Doria-Rose, N.A., Klein, R.M., Daniels, M.G., O'Dell, S., Nason, M., Lapedes, A.,
Bhattacharya, T., Migueles, S.A., Wyatt, R.T., Korber, B.T., Mascola, J.R., Connors,
M., 2010. Breadth of human immunodeficiency virus-specific neutralizing
activity in sera: clustering analysis and association with clinical variables.
J. Virol. 84, 1631–1636.

Euler, Z., van den Kerkhof, T.L., van Gils, M.J., Burger, J.A., Edo-Matas, D., Phung, P.,
Wrin, T., Schuitemaker, H., 2012. Longitudinal analysis of early HIV-1-specific
neutralizing activity in an elite neutralizer and in five patients who developed
cross-reactive neutralizing activity. J. Virol. 86, 2045–2055.

Fig. 4. Comparison of NAb breadth and potency and env diversity to clinical variables. (A-D) Comparison of 6-virus panel neutralization score to estimated duration of
infection (A), CD4 T-cell count (B), contemporaneous viral load (C), and baseline viral load (D). (E) Comparison of env maximal diversity to estimated duration of infection.
(F) Comparison of env mean non-synonymous diversity (NS, closed circles) and mean synonymous diversity (S, open circles) to estimated duration of infection. Tau
correlation coefficients and p-values are derived from a two-sided Kendall rank correlation test. NAb: neutralizing antibody, EDI: estimated duration of infection.

C.C. Carter et al. / Virology 474 (2015) 34–40 39

http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref1
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref1
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref1
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref1
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref2
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref2
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref2
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref4
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref4
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref4
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref4
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref4
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref4
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref4
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref5
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref5
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref5
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref6
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref6
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref6
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref6
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref6
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref6
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref8
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref8
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref8
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref9
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref9
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref9
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref9
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref9
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref9
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref10
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref10
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref10
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref10
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref10
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref11
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref11
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref11
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref11


Frost, S.D., Wrin, T., Smith, D.M., Pond, S.L.K., Liu, Y., Paxinos, E., Chappey, C.,
Galovich, J., Beauchaine, J., Petropoulos, C.J., 2005. Neutralizing antibody
responses drive the evolution of human immunodeficiency virus type 1 envel-
ope during recent HIV infection. Proc. Natl. Acad. Sci. USA 102, 18514–18519.

Geffin, R., Hutto, C., Andrew, C., Scott, G.B., 2003. A longitudinal assessment of
autologous neutralizing antibodies in children perinatally infected with human
immunodeficiency virus type 1. Virology 310, 207–215.

Gianella, S., Delport, W., Pacold, M.E., Young, J.A., Choi, J.Y., Little, S.J., Richman, D.D.,
Kosakovsky Pond, S.L., Smith, D.M., 2011. Detection of minority resistance
during early HIV-1 infection: natural variation and spurious detection rather
than transmission and evolution of multiple viral variants. J. Virol. 85,
8359–8367.

Kendall, M.G., 1990. Rank Correlation Methods, N.Y., 5th ed. Oxford University
Press.

Klein, F., Halper-Stromberg, A., Horwitz, J.A., Gruell, H., Scheid, J.F., Bournazos, S.,
Mouquet, H., Spatz, L.A., Diskin, R., Abadir, A., Zang, T., Dorner, M., Billerbeck, E.,
Labitt, R.N., Gaebler, C., Marcovecchio, P.M., Incesu, R.B., Eisenreich, T.R.,
Bieniasz, P.D., Seaman, M.S., Bjorkman, P.J., Ravetch, J.V., Ploss, A., Nussenzweig,
M.C., 2012. HIV therapy by a combination of broadly neutralizing antibodies in
humanized mice. Nature 492, 118–122.

Klein, F., Mouquet, H., Dosenovic, P., Scheid, J.F., Scharf, L., Nussenzweig, M.C., 2013.
Antibodies in HIV-1 vaccine development and therapy. Science 341, 1199–1204.

Le, T., Wright, E.J., Smith, D.M., He, W., Catano, G., Okulicz, J.F., Young, J.A., Clark, R.
A., Richman, D.D., Little, S.J., Ahuja, S.K., 2013. Enhanced CD4þ T-cell recovery
with earlier HIV-1 antiretroviral therapy. N. Engl. J. Med. 368 (3), 218–230.

Mascola, J.R., Haynes, B.F., 2013. HIV-1 neutralizing antibodies: understanding
nature's pathways. Immunol. Rev. 254, 225–244.

Medina-Ramirez, M., Sanchez-Merino, V., Sanchez-Palomino, S., Merino-Mansilla,
A., Ferreira, C.B., Perez, I., Gonzalez, N., Alvarez, A., Alcocer-Gonzalez, J.M.,
Garcia, F., Gatell, J.M., Alcami, J., Yuste, E., 2011. Broadly cross-neutralizing
antibodies in HIV-1 patients with undetectable viremia. J. Virol. 85, 5804–5813.

Mikell, I., Sather, D.N., Kalams, S.A., Altfeld, M., Alter, G., Stamatatos, L., 2011.
Characteristics of the earliest cross-neutralizing antibody response to HIV-1.
PLoS Pathog. 7.

Moore, J.P., Cao, Y., Ho, D.D., Koup, R.A., 1994. Development of the anti-gp120
antibody response during seroconversion to human immunodeficiency virus
type 1. J. Virol. 68, 5142–5155.

Noviello, C.M., Pond, S.L., Lewis, M.J., Richman, D.D., Pillai, S.K., Yang, O.O., Little, S.J.,
Smith, D.M., Guatelli, J.C., 2007. Maintenance of Nef-mediated modulation of
major histocompatibility complex class I and CD4 after sexual transmission of
human immunodeficiency virus type 1. J. Virol. 81, 4776–4786.

Pacold, M., Smith, D., Little, S., Cheng, P.M., Jordan, P., Ignacio, C., Richman, D., Pond,
S.K., 2010. Comparison of methods to detect HIV dual infection. AIDS Res. Hum.
Retroviruses 26, 1291–1298.

Pacold, M.E., Pond, S.L., Wagner, G.A., Delport, W., Bourque, D.L., Richman, D.D.,
Little, S.J., Smith, D.M., 2012. Clinical, virologic, and immunologic correlates of
HIV-1 intraclade B dual infection among men who have sex with men. AIDS 26,
157–165.

Phillips, R.E., Rowland-Jones, S., Nixon, D.F., Gotch, F.M., Edwards, J.P., Ogunlesi, A.O.,
Elvin, J.G., Rothbard, J.A., Bangham, C.R., Rizza, C.R., et al., 1991. Human
immunodeficiency virus genetic variation that can escape cytotoxic T cell
recognition. Nature 354, 453–459.

Piantadosi, A., Panteleeff, D., Blish, C.A., Baeten, J.M., Jaoko, W., McClelland, R.S.,
Overbaugh, J., 2009a. Breadth of neutralizing antibody response to human

immunodeficiency virus Type 1 is affected by factors early in infection but does
not influence disease progression. J. Virol. 83, 10269–10274.

Piantadosi, A., Chohan, B., Panteleeff, D., Baeten, J.M., Mandaliya, K., Ndinya-Achola,
J.O., Overbaugh, J., 2009b. HIV-1 evolution in gag and env is highly correlated
but exhibits different relationships with viral load and the immune response.
AIDS 23.

Piantadosi, A., Chohan, B., Panteleeff, D., Baeten, J.M., Mandaliya, K., Ndinya-Achola,
J.O., Overbaugh, J., 2009c. HIV-1 evolution in gag and env is highly correlated
but exhibits different relationships with viral load and the immune response.
AIDS 23, 579–587.

Pond, S.L., Frost, S.D., Muse, S.V., 2005. HyPhy: hypothesis testing using phyloge-
nies. Bioinformatics 21, 676–679.

Richman, D.D., Wrin, T., Little, S.J., Petropoulos, C.J., 2003. Rapid evolution of the
neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci.
USA 100, 4144–4149.

Sather, D.N., Armann, J., Ching, L.K., Mavrantoni, A., Sellhorn, G., Caldwell, Z., Yu, X.,
Wood, B., Self, S., Kalams, S., Stamatatos, L., 2009. Factors associated with the
development of cross-reactive neutralizing antibodies during human immuno-
deficiency virus type 1 infection. J. Virol. 83, 757–769.

Simek, M.D., Rida, W., Priddy, F.H., Pung, P., Carrow, E., Laufer, D.S., Lehrman, J.K.,
Boaz, M., Tarragona-Fiol, T., Miiro, G., Birungi, J., Pozniak, A., McPhee, D.A.,
Manigart, O., Karita, E., Inwoley, A., Jaoko, W., Dehovitz, J., Bekker, L.G.,
Pitisuttithum, P., Paris, R., Walker, L.M., Poignard, P., Wrin, T., Fast, P.E., Burton,
D.R., Koff, W.C., 2009. Human immunodeficiency virus type 1 elite neutralizers:
individuals with broad and potent neutralizing activity identified by using a
high-throughput neutralization assay together with an analytical selection
algorithm. J. Virol. 83, 7337–7348.

Wagner, G.A., Pacold, M.E., Vigil, E., Caballero, G., Morris, S.R., Kosakovsky Pond, S.L.,
Little, S.J., Richman, D.D., Gianella, S., Smith, D.M., 2013. Using ultradeep
pyrosequencing to study HIV-1 coreceptor usage in primary and dual infection.
J. Infect. Dis. 208, 271–274.

Wagner, G.A., Pacold, M.E., Kosakovsky Pond, S.L., Caballero, G., Chaillon, A.,
Rudolph, A.E., Morris, S.R., Little, S.J., Richman, D.D., Smith, D.M., 2014.
Incidence and prevalence of intrasubtype HIV-1 dual infection in at-risk men
in the United States. J. Infect. Dis. 209, 1032–1038.

Walker, L.M., Phogat, S.K., Chan-Hui, P.Y., Wagner, D., Phung, P., Goss, J.L., Wrin, T.,
Simek, M.D., Fling, S., Mitcham, J.L., Lehrman, J.K., Priddy, F.H., Olsen, O.A., Frey,
S.M., Hammond, P.W., PGP Investigators, Kaminsky, S., Zamb, T., Moyle, M., Koff,
W.C., Poignard, P., Burton, D.R., 2009. Broad and potent neutralizing antibodies
from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289.

Walker, L.M., Simek, M.D., Priddy, F., Gach, J.S., Wagner, D., Zwick, M.B., Phogat, S.K.,
Poignard, P., Burton, D.R., 2010. A limited number of antibody specificities
mediate broad and potent serum neutralization in selected HIV-1 infected
individuals. PLoS Pathog. 6, e1001028.

Walker, L.M., Huber, M., Doores, K.J., Falkowska, E., Pejchal, R., Julien, J.-P., Wang, S.-K.,
Ramos, A., Chan-Hui, P.-Y., Moyle, M., Mitcham, J.L., Hammond, P.W., Olsen, O.A.,
Phung, P., Fling, S., Wong, C.-H., Phogat, S., Wrin, T., Simek, M.D., Investigators, P.
G.P., Koff, W.C., Wilson, I.A., Burton, D.R., Poignard, P., 2012. Broad neutralization
coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470.

Wei, X., Decker, J.M., Wang, S., Hui, H., Kappes, J.C., Wu, X., Salazar-Gonzalez, J.F.,
Salazar, M.G., Kilby, J.M., Saag, M.S., Komarova, N.L., Nowak, M.A., Hahn, B.H.,
Kwong, P.D., Shaw, G.M., 2003. Antibody neutralization and escape by HIV-1.
Nature 422, 307–312.

C.C. Carter et al. / Virology 474 (2015) 34–4040

http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref12
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref12
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref12
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref12
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref13
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref13
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref13
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref14
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref14
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref14
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref14
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref14
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref15
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref15
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref16
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref16
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref16
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref16
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref16
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref16
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref17
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref17
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref109
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref109
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref109
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref109
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref109
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref109
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref18
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref18
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref19
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref19
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref19
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref19
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref20
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref20
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref20
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref21
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref21
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref21
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref22
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref22
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref22
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref22
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref23
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref23
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref23
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref24
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref24
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref24
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref24
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref25
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref25
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref25
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref25
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref26
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref26
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref26
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref26
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref27
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref27
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref27
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref27
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref28
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref28
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref28
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref28
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref29
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref29
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref30
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref30
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref30
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref31
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref31
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref31
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref31
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref32
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref32
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref32
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref32
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref32
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref32
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref32
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref32
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref33
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref33
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref33
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref33
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref34
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref34
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref34
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref34
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref35
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref35
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref35
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref35
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref35
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref36
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref36
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref36
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref36
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref37
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref37
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref37
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref37
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref37
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref38
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref38
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref38
http://refhub.elsevier.com/S0042-6822(14)00476-0/sbref38

	HIV-1 neutralizing antibody response and viral genetic diversity characterized with next generation sequencing
	Introduction
	Methods
	Study participants and measurement of clinical parameters
	RNA extraction and viral sequencing
	Sequence analysis and bioinformatics
	Neutralizing antibody assays
	Statistical analysis

	Results
	Discussion
	Acknowledgments
	References




