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INCLUSION OF INTERFERENCE TERMS IN THE
ABFST MULTIPERIPHERAL MODEL*

‘Dale R. Snide.rT and Don M. Tow

Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

August 19, 1970

ABSTRACT

An important crla"ss' of interference terms is included in the ABFST multiperipheral model by
adding an extra term to the inhomogeneous term and to the kernel of the integral equation. This
additional term corresponds to the contribution to the 2-to-4 cross section from interchanging one
or two pairs of particles from two different vertices. It is found that these interference terms
change only slightly the position of the output vacuum pole, although they give a nonnegligible con-

tribution to the four-particle production cross section.

L INTRODUCTION

One of the popular approximations of multiperipheral models is to neglect interference terms
arising from the overlap of amplitudes with different particle orderings along the multiperipheral
chain.. Supporting, but not proving, this assumption is the fact that the multiperipheral amplitude
is largest when the longitudinal momenta are ordered according to the particles' position along the
chain. .

Recent calcu.lat:ionsi_3 with the ABFST multiperipheral model, 4’1:he only multiperipheral
model without arbitrary normalization of the kernel, have found the kernel to be too weak by a
factor of 2 to 5 to explain the intercepts of Regge trajectories. These calculations neglected all
interference except that inherent in a 2-to-2 process. '

Because of the basic assumption of the multiperipheral model we expect interference terms

to be inversely ordered in importance according to their complexity. In this paper we study the

" effect of including in the model the ''next order" interference. This is incorporated in the model

by adding the interference terms from the 2-to-4 cross section to the kernel of the integral equa--
tion. _

We find that including this interference has only a small effect on the position of the output
vacuum pole; this, however, does not mean that for high multiplicity production cross sections
interference effects are negligible.

Since interference terms in the ABFST rﬁultiperipheral n’iodé_l have their origin in Bose sta-

tistics of the final-state pions, we begin in Sec. II by studying»thé effects of symmetry on produc-

.tion amplitudes (ignoring isospin until Sec. III); we then derive the modified integral equation and

a formula to measure the effect on the position of output Regge poles when a certain class of inter-

ference terms is included. Isospin is then properly taken into account in Sec. III. Section IV dis-
cusses the 2-to-2 w-w amplitudes that we usé as input. We discuss the results in Sec. V. In the

Appendix, we discuss four-particle phase space and the kinematic variables used in our calculation.



II. MODIFIED INTEGRAL EQUATION FOR ABSORPTIVE PART )
In this section we consider pions to be isospinless. The basic assumption of the ABFST
multiperipheral model is that the amplitude for two pions to go to n pions (n must be even be-

cause of G parity) is given by

v 1
2_2- 2 2 2 . 2
(ay-r7) (g5 -1 R P A L

Tn(pi, Pys "t Ppi Py pb) =

XTz(p1’ pz; Pa’ q1> T2(p3’p4; "qii qz) e Tz(pn_1! pny 'q(n/Z)_1,Pb) . (II'i)

where q, = ? P.-p_ s 1 is the pion mass, and T_(p,.p,; 9., q.) is the off-shell 2-to-2 w-m
i i=1 j Ta P S M U
scattering amplitude. A diagram illusi:rating the va.ria'bles and repre sventing Eq. (II.1) is shown in
Fig. 1. ’ ' : -

If we neglect all interference terms due to different orderings of the final-state particles,

then the amplitude in (II.1) rhay be successfully squared and integrated to get the 2-to-n cross sec-

tion. However, since pions obey Bose statistics, (II.1) is not a proper amplitude. A properly

symmetrized amplitude is

n! .
M PPy - o P Py Py) = iz;“i- T, (P].(pjvs-); Py Py): | : (I1.2)
where [Pi(pj's) is the ith permutation of the set of n momenta (pi, P, L. s pn)' The 2-to-n
cross section is T v
o(s) = ' X = 4d
- 2 2 3n-4. nt n
2)\'(5: may mb) (ZTI')
' n! - ) o . ER n! . o . - ) ) .
< 1g). ’ [P
X L;q_ Tn ([pi(pjv s); Py Pb) ] l:kgj_ vfrn (Pk(pj s); P, pb) , (IL.3)

where s is the c.m. energy squared and SPn is the n-particle phase space and is given by
n . n .
~ 4 .+ 2 2 4 :
®_ - in:1 [/d p;8” (p{ - my )]x 8% (p_+py - i; p,)- (IL.4)

The factor % in (Ii.3) comes from normalizing the final state-vector, or equivalently from inte-
grating only once over the distinguishable region of phase space. Since the pj's arc variables of

integration, (I.3) may be rewritten in the unsymmetric form

2—>n ’
_ 1 * .
o) = 2h(s,m%, m?) (2m)>P~4 j 4%, Tn(PyrPpr v sPpi P, Py)
,ma,mb
né : '
i ! . . ) ‘
% k§1 Th (Pk(pj s); Py PR |- o (t-5)

The usual assumption of the ABFST model is that only those 2 n/2 permutations corresponding

to interchanging pions from the same vertex are kept in (IL5). > With this assumption, the 2-to-n



cross section becomes

2->n 1 '
o(s) = ' de
. C 2mliiml) @ )3"‘4] n

x T} (p1 1Py Py q1)[T (Py+Pys Pyrqy) + Ty(py s P s qi)]( )
a’ T
1

3 . 1 -
X Tg (Pyr Pyi=y0 B)|To(Pss Py ~dyr dp) + Tz‘P4'P3"“q1’qz)]( > ""'2_)‘2"
B | , (-
1 2
)
(q(n/Z) q T

X[ Tt P = G- Pb”T Por Po_t3 ~Yn/2)-1" Pb)] - B (11.6)

% .
2X To Ppyr Py “Yn/2)-1’ Pp)

This leads to the usual integral equation4 for the forward absorptive part of the elastic amplitide

" with the kernel being proportional to the 2-to-2 cross section. This 2-to-2 cross section is sche-
matically represented in Fig. 2. For n = 2, (IL.5) is identical to (IL.6). But for n = 4, (IL.5) hz.s. .
additional terms ndt contained in (1I.6). It is these adcﬁtional interfer'encg tex_‘rﬁs_to the 2-to-4
cross section with which we are primarily concerned. For each production cross section a gen-
eral class of interference terms will be included in.the model when we add these 2-to-4 inter-

- ference terms to the previous kernel. )

For n = 4, there are 24 permutations in (II.5). This set of 24 permutations may be separated v

into three convenient classes by defining the set of permutation operators D = {I, 812, 534, 512 534} ,
where 1 is the identity operator, and S _is the operator which interchanges the i and j indices.
Then {IPk} = DY+ C + X, where C ==D SZ3D and X = DS13524. The sets D, C, and X con-
tain 4, 16, and 4 permutations respectively. Notice that applying any of the operators in D does

not change the expression for 9 = pytp, -p, = Pp~P3-Pys this is why this particular decom- .

position of {IPk}" -iszxfthl here. : _
The terms in ¢ from the permutations of D are exactly those included in the ABFST

model under the "' standard assumption. " These four terms are shown in Fig. 3. One of the 16

terms in C is shown in Fig. 4a; the other 15 terms are obtained by interchanging two fihal-state

particles from one of the four vertices. Wé represent the sum of all these 16 terms of C by

Fig. 4b. The sum of all four terms from the class X is represented by Fig. 5. These interference

terms from classes C and X are the terms not included under the " standard assumption. "

If we define

. ap = pi+p2 T Py

= 3

. qCE p1+p3 -pa, » o . o .(11.7)
.1\4_;/ . qX = p3+p4 - pa,

and use the abbreviated notation T12’_ ab = TZ(pi’pZ; pa’qD)’ etc., then we may write

2—+4 2-+4 24 2—>4
o =op  t+O0g tox .

A

where



2—+4 1 1
o.(s) = - g{dd} ——
D 2 . 2-,, .8 4 2 22
Zk(s,»lna,vmb). f&rr) (qD-;.L )
X £ ' sk : .
T12,aD T12,aD * T24,a0) T34, -Db T34, -pb * Ta3, -0b) (IL.82)
2~ ) i
"c(s"§ = R §d¢4 7
2)\(s,ma, nlb) (217) (qD"P' ) (qc'p )
X (T +Th Tr +T: T T T + T, ) (IL8b
T12,ap* T21,aD) (T34, Db * Ta3, _Db) T43,ac * T31,ac) T2a,-cb™ Tyap, _cp)w  (L8b)
24 S :
1 1
o, (s) = - S' do
X : - -2 2 8 -4 2 2 2 2
XTY T,, T N S R IL8
12,aD (T12, -xb * T21, .xb) T34, -Db (T34, ax * T43,ax) - (IL. 8c)
From these equations, we easily see that the ahtisymmefric"part of the 2-to-2 amplitude gives
zero éon_tribution. Therefore, we can express (II.8) in terms of the symmetric 2-to-2 amplitudes,
MZ’ defined by Eq. (II.2). At this point it is also. convenient to switch from momentum variables
to kinematics invariants. Since each 2-to-2 amplitude has one particle off-shell, it is a function
of three invariants.  As in the Appendix, we define '
o 5 . :
84; = (pi+pj) ,
= (= 12 _
ia (Pi-pa) r
ty = (p,-p,)° (1L 9)
ib ~ 'Pp7Py) )
- 2
T, =q_, forv=D, C, X,
v v _
We may rewrite (II.8) as
2~ 4 - lM(S t v'rzM(s t'“r)2
_ 1 IMp(sip0 ty, Tp| [Mpls3yr tyy
on(s) = do (11.10a)
D 2\, m2, m%) (2m)® 4 4 - n2)?
*TTa’ b D
24 "
1 1
g~(s) = gd@
C 2 2 8 ) 4 2 2
2M(s,m%, my) (2m) (rpb®) (147 ;
X My | M t M t M £ (I1.10b)
Mals4a b0 Tp) Malsayrty, Tp) Mpls 3ty o 7o) Mpls, gty 7)), . v
24
1 1
O (s) = Sdcp
X 2 2 8 4 2 2
ZX(Srma‘xn}b) (ZTT) 4(7D"|‘L ) (TX 0 )
% . * :
X MZ(Siz’t1a'TD) M2(834’t4b’ 'rD) M2(512’t2b"'x) MZ(S34’t3a’ 'rx). (IL.10c)
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In the Appendix, eight invariants are cheeen as indepehdent, and exPressions for all the others
are derived in terms of these eight. The foxir'—pa.rticle phese epace is elso expressed in terms of
these independent varlables ‘ ‘ )

‘Having found the correctlons to the 2-to-4 cross section, we proceed to 1nvest1gate the cor-
rection to the total cross section due to 1nc1ud1ng these effects in the integral equation. The inte-
gral equation for the forward absorptive part of the elastic amplitude under the " standard assump-
tion'' is SChematlcally repre sented in Fig, 6. We modify this integral equation by adding the in-
terference terms C' and X to the kernel and to the inhomogeneous term. This modified integral
equation is schematically represented in Fig. 7. At this point it should beomer;tioned that this new
kernel cannot generate diegrams of the form shown in Fig. 8a. However, becai.se these diagrams

involveinterchanging lines from nonneighboring vertices, they are expected to pive a smaller con-

tribution than the d1agrams of Fig. 8b, which can be ‘generated by this kernel. Our kernel-also

cannot generate diagrams of the form shown in Fig. 9a. This diagram may giv: a comparable
contribution to the diagram of Fig. 9b, sinc.e both diagrams involve crossing four lines into their
heighbbring vertices. Diagrams of the form of.Fig. 9a can be“included by adding further terms
to the kernel. If we want to include all interference terms, then the kernel is actually an infinite '
series. It is hoped that the magnitude of th1s first modification gives an’ indication of the rate of
convergence of this series. ’ ’

To study the effect on the pos1t10n of the output poles from changing the kernel of the integral

equation we examine the diagonalized integral equation, which can be written as2

_ 0

Fro7') = F) (ri7v) # S ar" B, ) K e, 1), S (IL.11)
- 00 H .
where
; o . 8 A, 2,2 U+Uﬁw,nvﬂd“)“
K" (1,7') = 5 X - g o ) L, , (11.12)
167~ (T-p7) 2 J .
i .
with
1
coshn(s, 7,71)= 5-T-T R
S 2em/2

Na,b,c) = (a2+b2+c2 - 2ab - 2ac - Zbc)i/z,

and o(s) is the m-7 cross section to be ineluded in the kernel. For our case, we have (see Fig. 1)
22  2+4 24 : S
o(s) = g (s) +0C(s) +0'X(s) . o ) . ‘ o - (11.13)

Because we are concerned with the relative effect of including a correction we will avoid all
intricacies of solving the integral equation. For the Fredholm determinant, D{J), whose vanishing

determines the pole position, we use the trace approximuation, i.e., °

p@ =~ 1-faren. o S (1L14)
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By making certain appquimations, Chew, Rogers, and Snider? found a ‘particularly simple ex-

pression for the trace for J near one. It gives

2R . . . X . -

D(J)=1 - m (11.15)
where : ' » ' : W
. . , ,
R =—1 S‘ ds o (s) . | |  (1L.16)
16 2 : _
4p

The approximations are (a) the trace approximation, (b) neglectiﬁg the high-energy tail of

(s) {in our carlculat.ion we set o° (s} =0for s> 3 GeVZ), and (c) neglecting the pion mass
in doing the "T—integration Besides these approximations, there was also the choice of off-shell
prescription. As in Ref. 2, we let the off-shell cont1nuat1on be completely contained in 6, the
c. m. scattering angle, i.e.,

M, (s, 6) = M, (s, 0(s,t,7,7' ) ). _ 7 - | - (IL.17)

off-shell ~

- This precription leads to a simple relation betwe.en the two-particle contribution to the kernel and
. the w-w elastic cross section. Other equally plausible prescriptions lead to less manageable re- .
latioﬁs. For the'four-particle contribution to the kernel, we calculated its mégnitude when the
external lines are on-shell. v ‘ '

Finally, from Eqgs. (II.16) and (1I.13) we .see that a measure of th_e effect on fhe position of

the output pole by including interference terms is

4 2—+4
Sds[oc(s) + 0' (s)] ‘
el = 22 : '
R S‘ ds o (s) a
III. INCLUDING ISOSPIN '

We now consider the problem of isospin alone. Later we will see how to take into account

(IL.18)

both isospin and statistics. The kinematic invariants for all three diagrams are shown in Fig, 10.
We work out the procedure in some detail for the uncrossed diagram; the procedure is the same
for the crossed diagrams. The isospin indices.for the uncrossed diagram are shown in Fig. 11.
Following the notation of Chew and Mandelstam, 7 and defining T to be the 2-to-2 amplitude
at the ith vertex, and for each i defining . A B i and C to be three independent amplitudes at
the ith vertex, we have - B ' _ ' i

\ . .
1a,"D) T Aap Ser F Br O St Cr b,y bepr _ \

TI(s12 t

Trr{s34 typr Tp) = App Oppp Sy + By 8y 8y + Cpy 8y 8es

(IIL.1)
Trilo340 tap "D = AmPen®g; * Brar Seg ¥y + Crr e gn ?

=A 6,86 +B... 6. 6 _ +C...6, 6 J

Trv(®12: 12 ™D) = Arv®an Peic + Brv Ode Phk * Crv dax Sen’
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where Ai's, Bi's, and Ci's have the same arguments as Ti's. The individual vertex amplitude of

a definite isospin in.the t channel is given by

(Tig = 3By + A+ Gy,
(T, = Ay - C; ' I _ (1L 2)
(T, = A, +C;

where the subscript outside the parenthesis refers to the t-channel 1sosp1n at the ith vertex,

The 2-to-4 amplitude squared is given by

2 - Z ) Tg T Try
5 ,
- 2
(TD - )
where the sum is over all nonexternal isospin indices. The expression IT[‘2 has 81 terms and
can be written as- ' o
|2=;_"—; AS§ & +B6& .6 +.Cd 6 (IIL. 3)
2 2 ab cd. ad bc ac bd ¢’ . ’
(TD - )
where A has 30 terms, B has 20 terms and C has 31 terms. As we are mainly interested in the
change in the p051t10n of the output vacuum pole, we con51der only the case in which the isospin

in the t channel is zero, This gives

. - 1 : | '
), = ——s %3B+A+C}. | (1L 4)
t 2 :
(TD-P‘)

From isospin conservation we also know that
2 _ 1
1Tl <0 = ——=
t 2
(rp ~ &)

(T )

0

)
0
v,

o (K
a(T,) (T.)" (T..)
Uy, o ur'y U

—
L —

o (T (Tp) Tm)2 (Try

BTy (Typ) (TIII) (T

(T (T..) (T

+c (TI) 0

I I ) ) (1L, 5)

Av
H

-

-

+c (T_I)

~
- 3% O # O ¥ N ¥ O ¥

=
5

*

+d (T

% O # -~ %N ¥ O %

-
~

(Ty) (T (Try)
ur, IV,

»*"‘

sk
+e (T,) (Ty)  (Tpq)
r, ', v,



+e(TI) (T (T (T

) ) )
II ur, v,

¥ O~ ¥

(T

(Typy) )
mr, “iv,

[ N

+ f (TI) (T

)
, I

Since (IIL. 4) and (IIL. 5) must be true for all Ai's, Bi's, and Ci's, we can equate the two expressions

and thereby determine the unknown coefficients in (IIL. 5). We find®
a=1/9,b=5/9 c=1/3 d=1, e =5/3, f=25/9 . : : (1L 6)

Similarly, we can derive analogous equations for the two crossed diagrams., The single -

cross diagram is given by

1

2 1 * *. .
T|I_, = AT (Tr) ATyp) (T )
l |1t-0 (rp - P-Z)('TC i H.z) D | 0 'y nr, v’
o 5 * *
tg (T7) (T (T, (T..)
9 ry o, or, TUIvl,
5 "k *
+5 (T} (T (T, (T..) .
9 r, ', 11_10 R A AN
1 * *
-x (Ty) (T.) (T, (T..,)
3 Ii Iy trary 1v1._
1 * * . .
-3 (T)) (T.) (T, (T..) (IIL. 7)
3T, Ir, ur, tUv’,
s r* oy (o)
2 r, I, ‘Tm ' v,
5 * *
7Ty (T.) (Ty) (Toy,)
[3 r, ', ur’, ',
5 * * . e
+> Ty (T) (T, (T..,)
6 1 4 ', ur’, ', ,
5 X L% :
t= (T (T.) (T (T.o)
8 *°r, Ir, ur’, v, ()
where
: S
Ty = Tylsyp e Tp) s
Tu = Tulesg ty 7p) v o |
' . ' ? " (IIL. 8)
T ® T (soe tap 7Q) -
Trv = Trv(sysr 4y, 70) - -

The double-cross diagram is given by
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+
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Nl Wl

II)
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1151' (T

5 % 3
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(III. 9)‘

+
Ne 15,1
=

0
(T III)

+
olwn
=

111

5 3 2
s (T[) (T ) (T'IVY)

2 2
w (T (Try)

where the superscript outside the parenthesis refers to the s-channel isospin at the ith vertex and

T = Tp (s, tiga‘, ™)
Ty = Ty (s34 tyy Tp)
, (I1L. 10)
Tur = T84ty ™x)
rIV = TIV(S34’ t3a.’ 'rx) .

‘ Combining the results of this section é.nd the previous section, we see that to include both
isospin and statistics just means that we should replace the numerators of Eqgs. (IL. 10a), (II. 10b),
and (II. 10c) by the terms in the brackets in Eqgs. (IIL 5), (III. 7), and (IIL.9), respectively. Of
course, the t-channel isospin will now appear as an index in Eqgs. (1L 11) - (IL. 16) and Eq. (II. 18).

IV. w-w AMPLITUDES

From Eq. (1L 10) and the discussion in Sec. III, we see tHat we need as input the 2-to-2
m-m amplitude for all three isospins wifh one of the pions off-sheli_ As was discussed in Refs.
1-3, the low-energy contribution must be the dominant contribution in generating the output poles.
Therefore, in this paper we inputonly S waves (both I = 0and I = 2), P wave, and D wave (I=0
only), and leave out the Pomeranchuk tail by setting the amplitudes equal to zero for s > 3 GeVZ.
For the P wave and D wave, we use Breit-Wigners with widths equal to 140 MeV and with
m_ = 765 MeV‘ and mg = 1260 MeV as their resonance masses, respectively. Since these two

20 +1

partial-wave amplitudes must behave near threshold as k , where k is the magnitude of the’

center-of-mass momentum, we multiply the Breit-Wigner by
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2 4 s : :
k™(s) 2 - 7R 2
<—s‘—> ——z> ' » . | (v. 1)

SR - 4p

where Sg - m 2 and ¢ = 1 for the P wave, and SR © mfZ and g = 2 for the D wave. The factor
(IV. 1) is chosen such that it is normalized to unity at the resonance mass and has constant
asymptotic behavlor ) o )

For the S waves w.e use the phase shifts shown in Figs. 12 and 13. 9 Becaﬁse of the uncer-
tainty in the I = 0 S-wave phase shift, we have used two different forms, The form (60)1 cor-
responds to a broad.resonance at the mass of the p. The form (89 )II does not correspond to a
resonance, but rather it asymptotmally approaches 90 deg.

_All these S-wave amplitudes have scattering lengths near the current algebra values.
Since there is some iridica.tion“ 12 that the S-wave off- shell scattermg lengths may be larger '
than the on-shell values, .we also tried S-wave partla.l -wave amphtudes with scattering lengths
increased by a factor of 3. We f1nd that although for small s the 2-to-4 cross sections become

larger, all essential features of our results remain unchanged

V. RESULTS

Using Monte Carlo integration, we calculated the 2-to-4 cross sections for [,=0 from the
classes D, C, and X. The results for classes C and X are shown in Figs.- 14a and 14b, respec--
tively. As is expected, class C in general gives a smaller contribution than class X, since the
former splits up the resonances. The result for class D and the sum of the results for classes
C'and X are shown in Fig,. 15. We see that for low energy, the contribution of the interference
terms is not negligible. But as the energy increases, the crossed terms drop off faster with s
than the uncrossed term, because at high s the momenta of the final- particles can be very dif-
ferent, and so 1nterchang1ng two such'momenta can greatly increase the momentum transfers,
We also find that the two different forms of 5° do not g1ve rise to dlfferent results until s gets
large, when (6 ) glves a small amplitude, whereas (6 )II gives a large amplitude.

To calculate the effect on the position of the output vacuum pole, we calculated AR /R

defined in Eq. (II. 18), where the subscript specifies the t-channel isospin. We find

AR, 0.06 , if (63 )I is used, .
reL - . ' _ _ : - (V..
o F 0 . .
0.08, if (6O )II is used.

Using the numerical calculations of Ref, 17 we find13 that corre sponding to this 6%to 8% increase

in the kernel strength, the output vacuum pole changes only from

@zg = 030 to oy = 0.33 . | (V.2)

The smallness of this correction to the kernel indicates that the infinite series of the kernel

(as discussed in Sec. II) most probably converges rapidly.

\.'/
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Our relative magmtude of the mterference terms to the nonmterference term in the 2-to-4

14 who found

cross section is probably consistent with the recent result of Jurew1cz et al.
that the contrlbutlon to the cross section from the set of all 1nterference terms for the reaction

™ p - p 31r 2w at 8 GeV/c 1s about 80% of the contribution from  the nonmterference

term. We expect thelr effect to be much larger than ours because there are more interference

terms for n = 6 than for n = 4, and because they include all interference terms, whereas we
include only a subset {although the important subset).
That mterference terms are important in calculating n-particle production cross sections

but not important in éé.lculating the position of the output vacuum pole is understandable because

JTotal ) ch-(-s) w ot , o C(v.3)
n ' A

which shows that a small change in o can give rise to a large change in dn(s for large s.
g g g g g

In conclusion, although the incluinan of interference terms can greatly increase n-particle
production cross sections for large n, it does not alter appreciably the positions of the output
Regge poles. T'h'eréfore, another mechanism must be sought to sltrebngthen'the kernel of the
ABFST multiperipheral integral equation. One possible rnechanism is the inclusion of K-meson

exchange,
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APPENDD(. PHASE SPACE AND KINEMATIC VARIABLES

w
Although n-body phase space has previously been worked out by others,. for é’ompleteness we
include a discussion of four -body phase space in this Appendix (most of the material in this o
Appendlx was worked out by one of the authors (D, R.S.) in collaboratlon with Terence Rogers).
We def1ne n-body phase space as
n ,
gl 4 o+ 2 .2 4 , S .
. o 1=1 _ :
Two-body phase space may be written as
A(s, m )
2 2 2 2. A S
QZ(S,mra, mb,rn1 mZ).-' s S.dQ
. (A.2)
_ 1
- - — g dtde ,
4N (s, ma, mb)
2 2,22 , 2 . "
where s = (pa + pb) ", AMa)b,c) = (a“+b +¢c” - 2ab - 2ac - 2bc) , d Q2 =dcos e dd¢, and 9 and ¢
are the scattering angles in the c. m. system.
We want to consider four-particle phase space as a nested set of two -particle phase ‘spaces.
The kinematic variables are shown in Fig. 16. For this purpose we define
i '
- 2
i=1 ' : :
and : o {A.3)
- _ 2 -
q1‘Pi_pa’ b T 9
We will now show that the four-body phase space can be written as
2,(P,tpP, > Pyt Py &, (p, +a; ~ by TP, (p, ta, ~p, ¥ pz).,
with extra integrals over v, and Va- We start at the Py, end and lump the other three final-state
particles together by using - '
) ‘ u
4 ’ : 4 4 4 :
: - - = 6 - - -
6 (PytpP, +P; +Py-P, - P) S\d Py O (Pytp,-p, -p)8 (1c>1+vp‘2 tpy - P,)
. . Y
' v

and also

4_ 4 +,.2
_Sld P3 —S'dv3 ‘S‘d.P3_6 (P3 -v3).

Inserting these into Eq. (A. 1) for ® 4, Wwe obtain



&
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_ 4 4.2 4 .+, 2 2 .4 ' .
®y 7 S‘d"a[\g‘d P3- 0Py - "3)§d-?4 o Py ~my) 8Py +py - p, *_pb)J
4 _+, . 2004 4 2 2
X 6 (P1 +p2 +p3 'Ci3 -pa) .

i

S‘d"s 22 Pyt P, =Py + Py Sslp a3 =Pyt P, Py
Now for fixed P3.(and hence q3) we repeat this step for z§3. That is, we use

4, 4 - o+, 2 4 4

. . - - = : - ) - - -
8 (py +Py ¥ P3P - ) fdvzfd Py & (P V) 8P, 5 - P, - 93) 87(py +p, - P))
to get
3Py *d3 = Pyt P, g =§ v, 5Py *d3 = P, ¥ p3) @y(p, +q, = Py tp,)
This gives for @, (When the &'s are expressed in terms of ihvariants)

L2 2 2 2 2

Balsimy, myp;mp, m;, my, m))

] e g, 2
= gdvzgdva ®, (sim, my; vy, my) &,(vsimy, t5v,, mj)

22 2
X e, (vz, m_, t,; my, mz)'

We evaluate each 2, in the c. m. of the system it describes to get

Ms, v ,m) Mv,v,m) )
2, = (av, 2 7% (g (ay, __3~2_~3ng2_

2
)\(v, rni, m) in
8v2 '

(A. 4)
X

Here o, is the angle between P and P, in the ¢. m. of q, +1and P, and b, is the az1muthal angle
between P and p i+2 in the same system; ¢3 is an 1rrelevant angle For each dQ the range of
mtegratlon is 4m, and for the v's the range is where all the A's are positive.

We could have used the other form of two-body phase space, Eq. (A. 2), to get

_ vy dty de, » dv, dt, do, ' dtg do, o -
2y = z 2 7 (A.5)
4\ (s, ‘ma, mb) 4\ (v3, t3, m7) 4\ (v tZ, ma) :

but now the range over the t's are more complicated. . To calculate the range in t for flxed Viet

Vi a.nd t.,, we use the equation

i+1
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: 2 2 2 2
(v,, +2t, -m?" -t —v.—mi+1)+(ma-ti+1)(vi—mi+1)

v
- 141 " i+4 i a it1 i
cos 0, = o mf ) )\( v ™ ) , {A.6)
i+’ ™ar i +1’ it :
- J Y
and set cos 6 =1 and -1,
We need to be able to express any kinematic varxables in terms of those chosen here. In s

particular we want to find expressions for the various Mandelstam invariants in terms of the set
of v's, t's, and ¢' s. The first step in this is to express the two-particle ''subenergies" 53 and
S34 of Fig. 16 in terms of this set.

Consider the diagram in Fig. 17. Now, ¢ e is the az1rnuthal angle for the two-body reaction
(h + pgb - p + P e
Pi = Py + q 0 and where p is along the +z direction, as shown in Fig. 18. From an exami-

That is, it is the azunutha.l angle between P 1 a.ndp i1 in the frame where

nation of thls we see that the two- partlcle '"'subenergy" s1 i+ = (pi + pi_M)Z- is a function of 4, - To

find this function we wrlte

2

_ 2 ] o . |
Siiiea = (P TP)" = (Pyyy - Py 7 - (AT
= v A+v- -ZP.O-PO + 218 Il l(cost.p‘cosﬁl + siny sin 6 cos 8, ,)
i if itd i-1 i-14 i-4""

it1 i-1 i+4
where we have introduced the angle ¢ shown in Fig. 18. To find ¢ we use

2 = 2 _ : 2 0.0 - -
ey T 95y (9 p+1) T my P 24Pyt 2 (6] Ryl cos . (4.8)
For these two equations we need a number of energies and three-vector magnitubdes in this frame

of reference. In general if

=+ =
k1 k2 k3,
k3 =0
and k.’ = x fori=14, 2, 3 ,
then .
B = 1] - 20w e %)

1 2 S x 172

\Yl

0 _ ¥y t*;3 0%,
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In our case we have

i+1 " Piyq T Py
P, + q; = Pi )
and }3’i = 0

Since we know all the momentum squares, we have the needed energies and three-momenta to find
' . 15

cos Yy, and therefore si’ 44

B - Det (A) + 2 '(G(Gi_i) G(‘ll))i/z cos ¢; , !
Siit1 - Vier T Vi *

in terms of ¢i_1. After some algebra, from Eq. (A.7) we find

2 2
N (Vi’ ma’~ti)

where

_ S 2
Oy = Qv g my, b, vy mi)

= ' 2 2
and G(B) = Glvy, t omy, t, v . mid
with G being the Kibble function, given'by -
Qs.t,a,b.c,d) = vs‘t(— s -t+a+b+c +d)

-s(a -c)(b-d) -ta-=-b)(c-ad)

—(ad-—bc)(a+d-b-c).
The matrix A in Eq. (A.9) is

2 v, ) v.+m2‘-t. v. +

1 i a i i vi+1 - mi+1
A = v. +tm_ -t mZ V., +tm_ -t
i a i+1 i+1
v. + v, —rn2 V. + rn2 -t . 0
i i-1 1 i-1 a .-

i-1

Next we would like to express all other two-body invariants in terms of our basic set, now
ta.ken‘to be Vyr Va, t'1, tz, t3,_ 530 S3g0 and of course s, ‘Once we have found the 3-1>.a1jtic;1e- ;
invariant 5,34 = (py + Py + p4)2, which is like v, but on the opposite side, the remaining two-
particle invariants come simply. To find S,34 We compress p, and Py together. Figure 19 shows
this and 5,34 in relation to the known variables. From this figure we see that the calculation of

534 is completely analogous to the calculation of s.

iit1- We immediately write the answer:



and

-16.

- Det A' +’2(G1‘GZ)1/2 cos ¢, ' '
. D . (A. 10)

2
a

2
s + +

2
A (VZ, m_, tz)

. 2 . .
. —t _
2v2 v2+ma 2 V., +s 534
2 2 2
- . s + -
v2+m tZ ma T m mb
2 2
vz‘.~!»rAr11-1'1'12 m1+m —t:1 0

The other two-body invariants can now be easily shown to be

— . 2 2 2
= v3—v2—_sz3+m1+m2+m3 ,

- : 2. 2. 2
T.S334 T 833 " S3qtmy; tmytm,

_ . _ 2, 2
Tty Tt T Sp3g TSzt my tmy

~ : . 2 2
= t3~t2-5123+v2+m3+ma ,

\«
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cos O

cosy
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FIGURE CAPTIONS

Fig. 1. A schematic representation of Eq. (II.1) for the 2-to-n ar_npiitﬁde, showing factorization

and momentum assignment. Each blob is an off-shell 2-to-2 ‘amplitude.

F1g 2.. A diagram representing the 2-to-2 cross section.

Fig. 3. The terrﬁs in 0'2_’4 from the permutat:.ons of D. We call this sum the uncrossed diagram.

Fig. 4. Dlagrams representmg

Fig. 9

Fig.

Fig.
Fig.

Fig.

Fig.

(a) one of the terms from the class C; the other 15 terms are represented by interchanging
two intermediate lines from one of the four vertices;

(b) The sum of all 16 terms of C. We call this the single-cross diagram.

5. Diagram representing the sum of all four terms in X. We call this the double-cross
diagram.

6. Schematlc representation of the integral equation for the forward absorptive part of the

elastic amplitude under the ''standard assumption. "

. 7. Schematic representation of modified integral equation when interference terms from

classes C and X are included.

(2) Diagrarris not generated by the kernel of this paper.

(b) Diagrams generated by the kernel, which give a larger contribution than the diagrams
in (a). '

(a) Diagram not generated by the kernel of this paper.

(b) Diagram generated by the kernel, which may give a contribution comparable to that
in (a).
10. Diagram showing various kinematic invariants.
14. Diagram showing the isospin indices for the uncrossed diagram.
12. (6g)I and '(Sg)n as a function of 51/2.
13. 55 as a function of s
14. 0' ?s) and o ?s) for I = 0. Solid curve uses (63)I as input, ‘and dotted curve uses
(8 o1 o
(a) ZC‘?s)

~(5).

(b) 0%

. 2~ 2> A _ . 0 . .
15. O'D(45) and ouc ?{s) + Ox ?s) for It = 0. . Sol1d. curves use (60)I as input, and dotted
curves use (60 )II:

16. Description of assignment of momenta and kinematic invariants.

17. General kinematics.

18. Definition of variables in frame where —ﬁi = 0.

19. Diagram for calculating 8534






&

/\_J‘

S l21-

XBL708-37t9

Fig. 10




" XBL708- 3716

11
|80 r T T T I ‘l' L3 T T I T T T T I T T T T
150 —
120} —
°
Q
T 90 ]
oo '
[£+]
60— —
30— b
0 1
o} 0.5 1.O 1.5 2.0
' /s (GeV)
- . - - oo . X8LTOS3TIS
" Fig. 12
. or——
i)
§ 3
~o "30
< i J
-.nu.l‘|A||.A.L||1‘.
o) 0.5 1.0 1.5 2.0
. /5 (GeV)
T — XBL708-3714
Fig. 13

~22-

1.0 —
£ ! N (89) i
baad Use . J
E, - \\(/ o'nt
bU . N -

0.5 N ‘ -

L NG Use (82)1 B
~,
q ]
. \\
S~ ]

0 P B SR B e e =
_ 0. 5 10 15 20

B - s (Gev®) T

- . o XBL708-37(7 -

',5 LANNNLEN B I B S S R BN T LENLEND B S T T

1.0 AN .

. \ ]
= \ .
€ ' Use (83) 1
E \ T
< Y/ 1
] \ N
'S N

0.5 \ ]

N Use (83); .
< ~
~

- g
\\\ . -
0 P SR Bt =S
o] 5 10 15 20
s (Gev?)
'» . XBIT708-37I2_
Fig. 14a,b

10 %0
s(Ge\(z)
— _ xauoa-s?ﬂ_

i, .



%

XBL708-3710

 XBL708-3709

'/./J

XBL708-3708

‘Fig. 18

223

- Fig.

19

XB8L708-3707 .



A

LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
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behalf of the Commission: : '
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B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report. ' ‘

As used in the above, "person acting on behalf of the Commission”

includes any employee or contractor of the Commission, or employee of

such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor. -
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