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Santa Ana Winds of Southern California: Historical Variability and Future Climate 
Projections. 

 
by 
 

Janin Guzman Morales 
 
 

Doctor of Philosophy in Earth Sciences 
 

University of California San Diego, 2018 
 

Alexander Gershunov, Chair 
 

 Santa Ana Winds of Southern California and Northern Baja California (SoCal) are the 

primary weather drivers of wildfires that frequently and infamously ravage this 

topographically and demographically complex region. As the available wind observations are 

scarce, Santa Ana Winds (SAWs) have not been adequately studied on climate timescales. 

Yet, wildfire behavior has been changing wildly even during my dissertation work. For 

example, the largest wildfire in California’s recorded history occurred in December of 2017, 

well outside the unique fall season for the largest wildfires typical of this region. This 

dissertation presents results of my efforts to understand Santa Ana wind behavior on climate 

timescales and in our changing climate. In Chapter 1, I developed and analyzed the longest 

and most complete record of hourly SAWs heretofore available. These results provide a  



	 xvii 

robust perspective on both high- and low-frequency SAW behavior, uncovering previously 

unknown climate influences on SAW activity, and laying the groundwork for eventual 

studies into seasonal SAW predictability. Notably, the 65-year record of hourly SAWs did 

not manifest clear long-term trends. In Chapter 2, using a dynamically downscaled training 

data set, I developed an approach to statistically downscale coarsely resolved winds from a 

global Reanalysis with spatial resolution typical of global climate models (GCMs). The result 

was an efficient and skillful downscaling of coarse daily surface wind vectors onto a fine grid 

over the SoCal domain spanning 70 years. From these daily wind fields, I derived SAWs and 

validated them against my previously validated SAWs derived in Chapter 1 from our 

dynamical training data set. A capacity to statistically downscale daily winds from reanalyses 

and global climate models was thus developed and applied, in Chapter 3, to a set of eight 

GCMs yielding an ensemble of daily 10X10 km wind data sets covering SoCal and spanning 

a historical and future projected time period from 1950 to 2100. Analyses of these data 

yielded physically meaningful, robust and clear projections of SAW activity gradually 

decreasing and constricting around its traditional seasonal peak centered on December. These 

results provide robustness, nuance and meteorological context to expectations of future 

SoCal wildfire activity.  
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Chapter 1 

Santa Ana Winds of Southern California: Climatology, extremes and 

behavior spanning six and a half decades  

Santa Ana Winds (SAWs) are an integral feature of the regional climate of Southern 

California/Northern Baja California region, but their climate-scale behavior is poorly 

understood. In the present work, we identify SAWs in mesoscale dynamical downscaling of a 

global reanalysis from 1948 to 2012. Model winds are validated with anemometer 

observations.  SAWs exhibit an organized pattern with strongest easterly winds on westward-

facing downwind slopes, and muted magnitudes at sea and over desert lowlands.   We 

construct hourly local and regional SAW indices, and analyse elements of their behavior on 

daily, annual, and multi-decadal timescales. SAWs occurrences peak in winter, but some of 

the strongest winds have occurred in fall. Finally, we observe that SAW intensity is 

influenced by prominent large-scale low-frequency modes of climate variability rooted in the 

tropical and north Pacific ocean-atmosphere system. 

 

1.1 Introduction 

SAWs are episodic pulses of easterly, downslope, off-shore flows over the coastal 

topography of the California Border Region (CBR): Southern California and Northern Baja 

California. SAWs represent a distinct and common regional cool season weather regime, a 

reversal of the typical wintertime on-shore winds, contrasted with northwesterly alongshore 

and on-shore flow characteristic of summer (Conil & Hall, 2006). SAWs are associated with 

very dry air, often with anomalous warming at low elevations, and produce strong gusty 
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downslope winds concentrated in gaps and on the lee slopes of the coastal ranges, e.g. Santa 

Ana, Santa Monica, and Laguna Mountains.  

It is in these rugged hills and canyons, after long dry summers characteristic of this 

Mediterranean climate, that SAWs can drive catastrophic wildfires that CBR is infamous for 

(Boyle, 1995; Westerling et al., 2004; Moritz et al., 2010). SAWs fanned the October 2007 

wildfires that killed nine people, injured 85 others including 61 fire-fighters, and destroyed 

upwards of 1,500 homes, scorching 2,000 km² of land on the U.S. side of the border alone. 

The October 2003 SAW-fanned wildfires were even more extensive. Wind-blown smoke 

inhalation from these 2003 wildfires in Southern California resulted in 69 premature deaths, 

778 hospitalizations, 1431 ER visits and 47K outpatient visits (Delfino et al., 2009). More 

recently, the rare May 2014 events fanned extraordinarily late-season fires following an 

extremely dry winter. Moreover, early and late season SAWs drive coastal heat waves, one 

reason why early fall rather than summer is historically the season for the hottest temperature 

extremes along the coast (Gershunov & Guirguis, 2012). In spite of their tremendous 

episodic impacts on the health, economy and mood of the region, a direct wind-based, long-

term, and high-frequency climatology of SAWs is not available and relationships with larger-

scale climate variability have not been clearly elucidated. This article begins to address these 

knowledge gaps for SAW behavior.  

Indirect or proxy-based climatologies of SAWs have been typically diagnosed from 

synoptic-scale information. Raphael (2003) diagnosed 33 years of daily SAWs from 

observed pressure fields, while Jones et al. (2010) diagnosed 28 years of daily Fire Weather 

Index (FWI, Fosberg, 1978) values, of which dry winds are a component, derived from the 

North American Regional Reanalysis (Mesinger et al., 2006). Abatzoglou et al. (2013) 
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developed the longest empirical daily reconstruction to date, from 1948 to 2012 based on 

pressure fields and temperature advection from global reanalysis. 

Mesoscale modelling (MSM) has also been employed in the study of SAWs, typically 

to investigate the anatomy of SAWs from small samples of individual events (e.g.  Sommers, 

1978; Lu et al., 2012; Moritz et al., 2010) provided a longer perspective using a decade of 

SAWs dynamically downscaled, and demonstrated the ability to predict large observed 

wildfire locations via model-derived FWI. Other studies have also employed MSM data sets 

spanning up to a decade with high spatio-temporal resolution to characterize SAWs among 

Southern California’s regional weather regimes (Conil & Hall, 2006) and to investigate their 

causal mechanisms (Hughes & Hall, 2010). Following on this work, Hughes et al. (2011) 

investigated anthropogenic climate change impacts on SAWs. 

Here, we use mesoscale-modeling-derived wind data exclusively to define and 

quantify a long record of observationally-validated SAWs. In what follows, we use observed 

wind to validate hourly winds in a 65-year dynamical downscaling of a global reanalysis to 

10km. We develop and apply a SAW definition with locally specific wind thresholds and, 

after determining their canonical spatial footprint, we define a SAW Domain, from which is 

constructed a SAW Regional Index. Subsequently, we examine the SAW climatology, 

paying particular attention to extremes, noteworthy events, interannual and longer-term 

variability. We finally discuss results in the context of regional climate variability, 

predictability and change, and in terms of their relevance to wildfire. 

 

1.2 Data and Methods 

1.2.1 CaRD10 Modeled Winds 
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To examine SAW variability in space and time, we use winds from the California 

Reanalysis Downscaling to 10 km, CaRD10 (Kanamitsu & Kanamaru, 2007). CaRD10 is a 

dynamical downscaling of the NCEP/NCAR Reanalysis 1 (R1, Kalnay et al., 1996) that 

employs the Regional Spectral Model, RSM  (Kanamitsu et al., 2005)], a mesoscale 

counterpart of the Global Spectral Model that produced R1. RSM provides instantaneous 

winds at 10 m above the ground in hourly resolution from 1948 through 2012. The CaRD10 

dataset is the longest mesoscale record to date and its downscaling system, validation, and 

comparison with the North America Regional Reanalysis are reported in a two-part paper by 

Kanamitsu & Kanamaru (2007) and Kanamaru & Kanamitsu (2007). Our domain extends 

from (118.115˚W, 35.081˚N) at the NW point to (116.035˚W, 32.053˚N) at the most SE point 

with a total of 756 grid cells (21  36). This domain captures the core of the CBR extending 

65 km across the border into Northern Baja California, Mexico (Figure 1.1).  

 

1.2.2. Sustained Wind and Wind Gust Observations 

Southern California is comparatively rich with anemometer measurements (Horel & 

Dong, 2010) that have been underutilized for SAW research. Arguably, available 

observations are not of sufficient length and/or density to adequately resolve long-term 

variability and topographic effects, but they provide useful local and regional validation of 

modeled winds. Kanamitsu & Kanamaru (2007) demonstrated that CaRD10 winds over the 

coastal North Pacific Ocean were closely related to observed winds at selected ocean buoy 

locations.  Here, focusing on the terrestrial region where SAWs are most prevalent, CaRD10 

model skill is tested against sustained wind (wind speed average) and wind gust (maximum 

“instantaneous” wind speed) observations from 85 Remote Automated Weather Stations 

€ 

×
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(RAWS), and one Automated Surface Observing System station (ASOS) across the domain 

(shown in Figure 1.1). The specific operational definitions of sustained winds and wind gust 

used by ASOS and RAWS can be found at http://www.nws.noaa.gov/asos/aum-toc.pdf, and 

http://raws.fam.nwcg.gov/nfdrs/pms426-3.pdf,  respectively.  

 

 
Figure 1.1. Spatial domain of the CBR with topography. Elevation is shown at 60 arc-second 
(colors), and 10-km spatial resolution (contours). Black dots mark the location of RAWS, 
and yellow dots show ASOS at Ramona Airport labeled “R”. Location of Witch Creek Fire 
(WF) start in late October 2007 is shown as a red dot. 
 

 

1.2.3 Validation 

Stations are matched with the closest grid cell of the CaRD10 domain. For each grid 

cell-station pair, correlation coefficient (r) and normalized root mean squared error 

(NRMSE) are calculated for the overlapping part of the station and CaRD10 records. The 

normalization factor is the difference between the maximum and minimum observations 
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across all stations. To scrutinize model performance during SAWs, we recalculate r and 

NRMSE values only for periods regarded as experiencing local SAW conditions (section 

1.2.4).  

Correlations between CaRD10 winds and observed sustained winds are generally 

positive, but have modest strength, ranging between 0.13 and 0.64. Actually, the CaRD10 

winds correlate more strongly with gusts than sustained winds at 78 (91% of) stations. This 

consistently stronger link with observed gusts is seen on the histograms shown on Figure 

1.2a,b. Errors, measured as NRMSE, against gusts are also consistently smaller than errors 

against sustained winds (Figure 1.3a,b); this is the case at 65 (76% of ) stations. When using 

SAWs only, correlations at some stations improve but deteriorate at others (see flatter 

histograms on Figure 1.2c-d compared to a-b). However, the agreement between modeled 

SAWs and observations still consistently favors observed gust over sustained wind (Figure 

1.2c-d, and 1.2c-d). 

Modeled winds are instantaneous, neither sustained nor gust. Modeled winds 

overestimate sustained near-surface winds. Beyond possible model biases, part of the reason 

for this may be that observed winds are affected by fine scale orography, particularly in 

complex terrain, surface roughness, as well as obstructions around the anemometer, not 

resolved by the model. Gusts are less sensitive to such features as they are more related to the 

flow above the boundary layer via turbulent mixing (Brasseur, 2001). Supporting this notion, 

CaRD10 SAWs appear to validate best with gusts observed at high elevation stations (Figure 

1.2d) where SAWs are strong and gusts are more directly related to the flow above the 

shallow boundary layer, which also drives CaRD10 10m winds via boundary layer 

parameterization. Clearly, whether due to model and/or observational biases, and although 
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the dynamical model does not simulate gusts, modeled winds are a most accurate 

approximation of observed gusts. In other words, on average over our domain, CaRD10 

winds overestimate sustained winds by a factor of about 2.3, which happens to be about 

equal to the average ratio of wind gust to sustained wind speed, i.e, the space-time average 

gust factor. 

 

 
Figure 1.2. Correlations (r) of hourly CaRD10 winds with observations at RAWS (circles) 
and ASOS station at Ramona Airport (square). Top panels show the correlations with 
sustained wind (a) and gust (b). Bottom panels show the correlation of selected SAWs with 
also sustained winds (c) and gust (d).  The histograms depict the number of stations per 
correlation intervals of 0.1. 
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Figure 1.3. Normalized root mean squared errors (NRMSEs) of hourly CaRD10 winds 
against observations at RAWS (circles) and ASOS station at Ramona Airport (square). Top 
panels show the NRMSEs with sustained wind (a) and gust (b). Bottom panels show the 
NRMSEs of selected SAWs with sustained winds (c) and gust (d).  The histograms depict the 
number of stations per NRMSE interval of 10%. 
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winds. Periods with at least 12 hours of continuous selected winds that exceed the local wind 

speed threshold for at least one hour are defined as SAWs. Discontinuities are allowed for 

periods of 12 hrs or less, to allow for breaks in SAW events, e.g. competing afternoon sea 

breeze episodes. The resulting SAW index reflects the full wind speed during periods that 

fulfil the direction-continuity scheme.   

 

 
Figure 1.4. Mean wind direction in degrees as a function of wind speed binned in 0.5 m s-1 
intervals (blue dots) with 95% confidence interval (blue lines) for the 65-year record at 
Ramona. Degrees are counted clockwise from North (90 is Easterly). Average relative 
humidity as a function of wind speed is also shown for the same bins (black dots) on a shared 
y-axis where 100, instead of angular direction, denotes 100% relative humidity.  
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work, we turn to Ramona for local examples. The correlation for the whole period of 

available gust and sustained wind observations (from 2005 to 2010) with Ramona SAW is 

0.7 and 0.6, respectively. Figure 1.5b, shows the excellent agreement between SAW and 

observed gust at Ramona, during early-season SAW events of 2007 and 2010. 

 

 
Figure 1.5. Regional and local indices of early-season SAW events. (a) Hourly SAWRI of 
events in 1957, 2007, and, 2010. SAWRI from observations is available for the 2010 event. 
(b) Hourly SAWs at Ramona for the same events as in (a). Hourly sustained wind and gust 
from Ramona Airport ASOS station are available and shown for 2007 and 2010 events. 
 

1.2.5 Regionalizing Local SAWs  

We examine the spatial and seasonal coherence of locally defined SAWs. In the 

CaRD10 dataset, the strongest SAWs are found on downwind slopes of the main topography, 
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while SAWs relative to other winds reflect an almost identical pattern (Figures 1.6a,b) with 

comparatively lower values at sea, and lowest values over the desert basins. This SAW-speed 

spatial distribution is notably consistent with Hughes & Hall (2010) who determined it to be 

forced by katabatic acceleration of cool air downslope as well as downward momentum 

transfer. 

We calculate the empirical orthogonal functions (EOFs) of hourly SAWs. The leading 

principal component (PC1) explains 50% of the total hourly SAWs variance over the region 

and its time series corresponds to SAW seasonality (Figure 1.7a). Broad regional coherence 

of SAW selection is displayed as correlations of PC1 with SAWs time series (Figure 1.6c). 

We also quantify the regional concurrence of SAWs across the domain with Ramona SAWs 

(Figure 1.6d), noting that SAWs at selected locations are well represented by the regional 

aggregate SAW index (described below).  

Consistent with the above results, we define the SAW Domain as the region 

displaying coherent SAWs in time and magnitude, Thus, the SAW Domain is explicitly 

constrained to grid cells where PC1 explains 50 % of the variance, i.e. where correlations 

between SAWs and PC1 exceed 0.7, and by high wind speed ratios (>1.5). For the sake of 

continuity, we include the low-ratio cluster of grid cells northeast of the Santa Ana 

Mountains and adjacent ocean-grid cells (~40 km off-shore). SAW Domain covers 43% of 

the original domain (Figure 1.6).  

The SAW Regional Index (SAWRI) is then defined as the hourly average of the 

SAWs across all the grid cells within the SAW Domain. Hourly SAWRI is correlated with 

PC1 at r =0.9 and with Ramona SAWs at r = 0.7. We reconstruct two seasons of observed 

SAW Regional Index (SAWRIobs) from the stations wind observations, see Annex 1A for 
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details. The correlation between the hourly SAWRI and SAWRIobs is 0.6. Comparison at 

different temporal resolutions is shown in Figure 1.7.  

SAW events are directly quantified by continuous periods of SAWRI and classified 

into three categories according to their maximum SAWRI – weak (< 5 m s-1), moderate (5 -

10 m s-1), and extreme (10 -15 m s-1) –. Extremes events are above the 90th percentile of all 

events on record. Finally, we integrate SAWRI over time to obtain total seasonal SAW 

activity. 

 

 
Figure 1.6. SAW spatial patterns. (a) Means, (b) Ratios of SAW to all other winds, (c) 
Correlations of local SAW time series with the leading SAW principal component (PC1), and 
(d) Correlations of  SAWRI time series with Ramona  SAW.  Black line marks SAW 
Domain on each map.  All means and correlations are based on hourly data. 
 



	 13 

 
Figure 1.7. Comparison of SAWRI and SAWRIobs at different time scales. PC1 is shown 
(green) on each panel. (a) Monthly means over the CaRD10 record with two years (2009-
2011) of available SAWRIobs (b) Daily means from Sep 2010 to May 2011, and (c) Hourly 
resolution time series for October 2010.   
 

 

1.3 Results  

1.3.1 SAW Climatology 

Regionally, i.e., using SAWRI we detect a total of 2056 events on the 65-year record 

yielding an average of 32 occurrences per year. Typical SAW episodes last 1-2 days and 
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regional detection (also 27% of all events). However, shorter events (between 12 and 24 hrs) 

are the most frequent (Figure 1.8b). This suggests that mild SAW pulses over most active 

SAW locations (red areas in Figure 1.6a) may not be detected regionally, as they dissipate 

before reaching the coast. The mean and maximum SAWRI representing events lasting up to 

5 days appear to increase linearly with duration (Figure 1.8c,e). For events longer than 5 

days, the mean and maximum SAWRI reach limit speeds (~5 and 9 m  s-1, respectively) 

regardless of their duration. The duration-intensity relation for local SAWs is comparable 

(see Figure 1.8d,f) to regional results. 

 

 
Figure 1.8. Events detected regionally (SAWRI) and locally (SAWs at Ramona).  Frequency 
(a, b) of total number of events in record (right axes) and mean number of events per year 
(left axes) separated by duration. Distribution of mean speed (c, d), and maximum speed (e, 
f) of events per duration bin. Bold lines show median values, boxes delimit the first and third 
quartiles, and whiskers mark maximum and minimum values for each group.  
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The SAW season extends from October to April, when SAW events occur at least 

twice per average month (Figure 1.9d). SAWs tend to be most frequent in December, but 

most durable and strong in January. Early and late season SAW episodes occur, on average, 

about once per month in September and May, and typically exhibit moderate duration, and 

moderate regional speeds, i.e., mean and maximum SAWRI (Figure 1.9a-c).   Although not 

on our record, the two events of May 2014 

(http://abcnews.go.com/topics/news/weather/santa-ana-winds.htm) appear to have been 

exceptional. This seasonal cycle of SAWs, although described in more detail here, generally 

agrees with seasonality identified in other studies (Raphael, 2003; Jones et al., 2010).  

 

 
Figure 1.9. Climatology of regional SAW events (SAWRI). Monthly distribution of (a) 
mean SAWRI per event, (b) maximum SAWRI per event, (c) duration and (d) mean monthly 
frequency per season of SAW events detected from 1948 to 2012. In panels (a),  (b) and (c) 
bold lines show median values, boxes delimit the first and third quartiles, and whiskers mark 
maximum and minimum values for each month. Extremes SAWs are shown in dark red in 
panels (b) and (d). 

2
4

6
8

Sp
ee

d 
(m

 s
−1

)

(a) Mean

2
4

6
8

10
12

14
Sp

ee
d 

(m
 s
−1

)

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Max

0
5

10
15

20
Du

ra
tio

n 
(d

ay
s)

Aug Oct Dec Feb Apr Jun

(c) Duration

0
1

2
3

4
5

6
0

1
2

3
4

5
6

Fr
eq

ue
nc

y 
(E

ve
nt

s 
y−

1 )

Aug Oct Dec Feb Apr Jun

(d) Mean Annual Frequency



	 16 

 

In addition to the seasonal cycle, the hourly SAWRI resolves a well-defined diurnal 

cycle (Figure 1.10), reaching their maximum in the morning, and decay to their minimum in 

the late afternoon. Local diurnal cycle of SAWs is line with SAWRI; however, inland and 

coastal locations are slightly different. At the coast, the on-shore sea breeze may to some 

extent counteract SAWs starting in the morning and during some events the winds may 

reverse in the late afternoon.  

 

 
Figure 1.10. Regional (SAWRI), and local (Ramona and Coastal) diurnal cycles of SAWs. 
Wind speed average for each hour across all SAWs detected in record. 
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December, and January, but also occur in the shoulder seasons, with more extremes in fall 

compared to spring (red histogram in Figure 1.9d). Even though the highest frequency of 

extreme events is observed during the coldest months, maximum SAWRI can be just as 

extreme in the fall (Figure 1.9b). For example, 3 out of the top 5 SAW events with maximum 

SAWRI above 15 m s-1 occurred in fall.  

 

1.3.3 Variability and trends 

Our results indicate considerable variability of SAW frequency, duration and total 

intensity (total or by category) on interannual to decadal time scales.  There are no significant 

long-term trends (Figure 1.11a-c), except for a modest upward trend in the intensity of 

extreme SAWs (Figure 1.11d).  For the record the frequency of extreme events account for 

9% of all SAW events, but they contribute 25% to the total seasonal activity. Closer 

examination reveals that this trend results mainly from a step-function-type change that 

roughly corresponds to the North Pacific climate shift in the mid-1970s (Mantua & Hare, 

2002). A similar shift is also evident in the SAW duration and activity (Figure 1.11b, c). The 

shift in these other variables, although not resulting in a significant trend, is much more in 

line with the 1976 PDO shift. 

 

1.3.4 Potential seasonal predictability 

The time series in Figure 1.11 indicate a change in the behavior of seasonal SAW 

intensities coinciding with the shift of the Pacific Decadal Oscillation (PDO) to its positive 

phase in 1977. This suggests that seasonal atmospheric anomalies associated with PDO 

teleconnections (Favre & Gershunov, 2009; Mantua & Hare, 2002) may influence SAW 



	 18 

activity. Because PDO teleconnections influence circulation anomalies via their modulation 

of El Niño-Southern Oscillation (ENSO) teleconnections (Gershunov et al., 1998), we 

examine total seasonal SAW intensity anomalies composited by ENSO and PDO phases. 

Moreover Raphael (2003) suggested a relationship between ENSO and late season (Feb-Mar) 

SAW frequency.  

Intensity anomalies are shown in box-and-whisker plots spanning the composite 

samples and quantified in percent deviation from the 65-year SAWRI climatology (Figure 

1.12). We use bootstrapping as in Gershunov et al. (1998) to test whether composite mean 

deviations from climatology are significant. We find a significant positive signal in El 

Niño/PDO(+) years amounting to ~10% increased intensity  and a negative signal in La 

Niña/PDO(-) years amounting to ~10% decrease in regional SAW intensity.  These are the 

same constructive ENSO/PDO interactions that account for predictable precipitation signals 

(Gershunov et al., 1998)  such that enhanced/decreased SAW activity tends to coincide with 

enhanced/decreased precipitation seasonally. This bodes well for seasonal fire danger, but 

obviously there is a lot of scatter in the composites as is seen on Figure 1.12. The significant 

relationship we find between SAW and ENSO is broadly consistent with the suggestion of 

Raphael (2003) that El Niño is associated with longer SAW events, while contrary to (Berg 

et al., 2013) who suggest the opposite association. It is worth noting that the relationship we 

find between seasonal SAW intensity and ENSO appears to be partly modulated by PDO. 
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Figure 1.11. Seasonal (Aug-Jul) variability of total (a) Frequency, (c) Duration, (c) Activity 
and (d) Activity of extreme events. The linear regression fits are shown only if significant. 
Solid black line marks the change of PDO to its positive phase in 1976. 
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Figure 1.12. ENSO and ENSO-PDO joint composite anomaly of the integrated seasonal total 
SAWRI relative to the 65-year SAWRI climatology in percent. Numbers below each 
category are the number of SAW seasons (sample) that fell into the given composite. Boxes 
show one standard deviation from the mean, dots are outliers, and whisker marks the 
maximum and minimum outliers.  Red boxes outline the 95% confidence region for means of 
bootstrapped (random) sampling distributions so that a sample mean lying outside the red 
zone signifies a statistically significant signal revealed with 95% confidence. 
 
 
 
1.4 Discussion and conclusions 

In this work, we present direct local and regional long-term perspectives on hourly 

Santa Ana winds that address specific voids in current knowledge: (1) constructing a long-

term, high resolution, region-wide climatology against which the evolving SAW mean and 

extreme conditions in magnitude and time can be assessed, and (2) validation using a broad 

network of wind observations to realistically address local and regional variability.  
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The seasonal frequency of SAW clearly reflects mechanisms responsible for peak 

SAW frequency in December and January. These months have the least sunshine and longest 

nights essential for producing cold air masses over the Great Basin – the necessary condition 

for SAW. These months also experience a peak in transient synoptic activity that causes 

strong pressure gradients – the triggers of SAWs. On average longer events shift to higher 

SAWRI means and maxima up to 6 days but with a wide dispersion for each duration bin.  

The weak relationship between duration of SAW events and their maximum speeds agrees 

well with the fact that some events are mostly associated with local temperature gradient, 

while others are synoptically driven. A combination of these forcing mechanisms produces 

strong and long-lasting SAWs (Hughes & Hall, 2010). The cold air pooling over the elevated 

Great Basin also results in diurnal cycles of SAWs, which are strongest in the early morning 

hours when the thermodynamic mechanism is enhanced. 

Under climate change, the Great Basin is projected to warm faster than the coastal 

region, which suggests that SAW occurrence may diminish (Hughes et al., 2011), However, 

the reconstructed historical record of SAWs does not thus far support such expectation. 

Instead, it raises new questions about future SAWs and fire seasons. The only long-term 

trend that we observe is in the extremes of SAWs, which appears to be related to the mid 70s 

North Pacific climate shift. 

We find that seasonal SAW intensity is sensitive to prominent large-scale low-

frequency modes of climate variability rooted in the tropical and North Pacific ocean-

atmosphere system. These same modes are also known to predictably affect the hydroclimate 

of this region (Gershunov & Cayan, 2003). As is the case with regional seasonal precipitation 

anomalies, seasonal SAW intensity is enhanced during El Niño (especially if PDO is 
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positive) and subdued during La Niña (especially if PDO is negative) winters. This SAW 

intensification during El Niño/PDO(+) seasons may be due to the lower sea level pressure 

over the warmer coastal sea surface enhancing the off-shore pressure gradient that drives 

SAW. Our empirical results suggest that seasonal ENSO-related prediction of SAW activity 

and fire risk may be possible, a topic for further investigation. These results taken together 

with the known sensitivity of regional hydroclimate to global climate change(Polade et al., 

2015) [Polade et al., 2014], warrant a fresh look at climate change projections of SAWs, 

precipitation regime and fire risk.  
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APPENDIX 1 

Reconstruction of SAWRI from Sustained Wind Observations 

SAWRIobs is the average of RAWS winds over the SAW Domain (53 stations) during 

SAW periods. The selection of SAWs from the observations was done using the same 

method described in section 1.2.4. Data limitation allowed for two seasons (2009 and 2010) 

of SAWRIobs as observations were required in at least 70% of the stations to assemble 

SAWRIobs, Although, better local skill is consistently achieved with observed gusts, we use 

sustained winds to define SAWRIobs because gusts, physically speaking, have local meaning 

only. The correlation between the hourly SAWRI and SAWRIobs is 0.6, and their consistency 

at different temporal resolutions is shown in Figure 1.7. 
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Chapter 2 

Downscaling of Winds in Southern California 

2.1 Introduction 

In Chapter 1, we have created and assessed the longest available record of Santa Ana 

Wind (SAW) activity spanning 1948 – 2012. This observationally validated dynamical 

record allowed us for the first time to robustly assess SAW variability on climate timescales. 

Although strong interannual and interdecadal modes of climate variability were for the first 

time elucidated for Santa Ana Wind activity, including extreme events, the record did not 

contain clear anthropogenic trends. However, we can expect changes in Santa Ana wind 

activity as the climate continues to warm non-uniformly over continents and oceans (e.g. 

Hughes et al., 2011). Therefore, we aim to assess any potential anthropogenic trends by 

application of our robust SAW detection methodology to highly frequency winds highly 

resolve in space. For this purpose, as well as for many potential other purposes (e.g. wind 

energy applications, public health impacts), we need to develop a capability to downscale 

daily wind fields from Global Circulation Models, which have resolutions roughly similar to 

the NCEP-NCAR Reanalysis 1 (R1), ~200X200 km for 10m winds.  

Also, because wind observations are few and far between, an efficient and skillful 

statistical downscaling scheme would be very useful to update or extend the available 

dynamical records of winds without having to re-run the dynamical model, which is 

computationally expensive and not always possible. The methodology should in principle 

apply to dynamically downscaled winds at any spatial resolution.  

The approach we choose, therefore, is to use our validated dynamical winds from 

CaRD10 (See Chapter 1) to train a statistical model for downscaling R1 winds onto the 
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CaRD10 grid. Such a statistical model, when properly optimized and validated on the 

observational period, could then be used to downscale winds from GCMs for the historical 

period and beyond into the projected future.  

In this Chapter, we start by proposing and justifying a statistical approach to vector 

wind downscaling, apply it to R1 and CaRD10 data, and optimize it with respect to model 

complexity and skill. We then derive SAWs from downscaled daily wind fields and validate 

them with respect to the salient features of SAW climatology as reproduced by CaRD10 and 

assessed in Chapter 1. We authenticate the hybrid dynamical/statistical downscaling 

approach and thus lay the groundwork for its application to CMIP5 GCM simulations in 

Chapter 3.  

 

2.2 Data and methods 

2.2.1 Data Sets 

For the development of the wind downscaling method, we use daily surface coarse 

resolution u- and v-wind fields from NCEP/NCAR Reanalysis 1 (R1, Kalnay et al., 1996) as 

well as daily average of fine resolution u- and v-wind fields from the California Reanalysis 

Downscaling at 10km (CaRD10, Kanamaru & Kanamitsu, 2007; Kanamitsu & Kanamaru, 

2007) over an overlapping period of available data from 1948 to 2012. We employ six R1 

grid cells (1.875˚ x 1.904˚) and 1764 CaRD10 grid cells (10 X 10 km) to cover an equivalent 

domain that extends 121˚W-116˚W in longitude and 36˚N-32˚N in latitude (Figure 2.1). This 

is a north-expanded version of the Cross Border Region (CBR) domain shown in Chapter 1 

that now includes Ventura and Santa Barbara Counties. In what follows, we will refer to this 

Southern California domain as SoCal.  
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2.2.2 Canonical Correlation Analysis 

We apply Canonical Correlation Analysis (CCA, Hotelling, 1935), a multivariate 

statistical technique, to identify spatial patterns in two fields of variables, whose temporal 

correlation is optimally correlated. We may refer to these as canonical correlates, CCs, or, 

alternatively, as paired or coupled patterns. In climate science, CCA has been used to 

diagnose coupled patterns (Roca & Gershunov, 2004) and associations between fields of 

variables (e.g. Guirguis et al., 2014; Schwartz et al., 2014) and in prognostic mode to predict 

meteorological variables or predictands from another set of large-scale climatic variables or 

predictors (Barnett & Preisendorfer, 1987; Gershunov & Cayan, 2003; Alfaro et al., 2006; 

García-Bustamante et al., 2012). In CCA prognostic application, the physical mechanism on 

which the predictive power relies is implicitly or empirically, rather than explicitly or 

theoretically accounted for by the statistical method itself, but the canonical correlates, on 

which the predictive model is based, elucidate the underlying physics of the climate system 

responsible for prediction skill (Gershunov & Cayan, 2003). In our approach, we use CCA to 

extract the statistical association between the finely resolved dynamically downscaled u- and 

v- winds from CaRD10 (predictand) and the coarsely resolved reanalysis u- and v-winds 

from R1 (predictor).  The full description of the hybrid dynamical-statistical downscaling 

method is in section 2.2.3.   

 

In this Chapter, we first assess the paired wind association patterns between R1 and 

CaRD10 by applying CCA in its diagnostic form. Following common practice, we reduced 

CaRD10 and R1 data dimensionality to p principal components (PC) from the Empirical 
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Orthogonal Functions (EOFs) of the u- and v-wind anomaly matrices. Data matrices for 

PCA, of both the coarsely and finely resolved wind fields, were constructed by concatenating 

daily u- and v-wind components corresponding to 65 years of available daily data (1948-

2012).  

We use the leading five PCs (p=5) summarizing 98% and 90% of the variance for the 

R1 and CaRD10 data, respectively. CCA input is not constrained to the same number of 

variables summarizing variability in the two fields; however, in this work we use the same 

number (p) for optimization of the statistical model (see section 2.2.3). CCA, then, computes 

linear combinations of the p PCs each summarizing the coarse and fine resolution wind fields 

to obtain k pairs of new variables called canonical correlates (CC) 

 

𝑪𝑪𝒌,𝒙 = 𝒂𝒌,𝒊𝒙𝒊
𝒑
𝒊01      (2.1) 

 

𝑪𝑪𝒌,𝒚 = 𝒃𝒌,𝒊𝒚𝒊
𝒑
𝒊01      (2.2) 

where xi and yi are the i-th PCs of the u-/v-wind matrix from R1 and CaRD10 data, 

respectively; a and b are the linear combination coefficients; the maximum number of CC 

pairs is equal to the number of PCs fed to CCA (e.i., k = p).  CCk pairs refer to CCk,R1 and 

CCk,CaRD10, from now on, we simply refer to them as CC1, CC2 and so on when referring to 

the pair and add the data set subscript when distinction needs to be made. 

 

2.2.3 Hybrid Dynamical-Statistical Downscaling 

As mentioned previously, the downscaling method here developed is a hybrid 

approach based on the statistical association between dynamically downscaled winds 
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(CaRD10) and reanalysis winds (R1). Using CCA in its prognostic capacity, we relate daily 

coarse resolution winds from R1 with daily averages of fine resolution winds from CaRD10 

(i.e., predictor/predictand) through k CCs derived from p PCs of each data set.  

The statistical parameterization of the hybrid downscaling can utilize different 

combinations of p and k (where k ≤ p). We compute downscaled wind fields using 15 p-k 

different configurations of increasing complexity resulting from allowing all possible k 

values for each p value up to p=5. We call the statistical downscaling or model from a 

particular p-k configuration as SD p-k. 

For each SD p-k, we calculate cross-validated daily u- and v- winds, i.e, we trained 

the model on data from all years except the year to which the day to be predicted belongs. 

Thus, the cross-validation scheme requires to recalculate predictor and predictand PCs and 

associated CC pairs for every year of downscaled daily wind field (for our 1948-2012 record, 

it translates to 65 recalculations). This leave-one-out approach, similar to that used in 

Gershunov & Cayan (2003) provides a cross-validation of the model itself where the day to 

be predicted does not contribute to the statistical association from which is derived.  

The skill of each statistical model is evaluated as the mean of the temporal 

correlations between the time series of R1 statistical downscaled u- and v-winds and 

CaRD10 u- and v-winds from all grid cell in the SoCal Domain.  

  

2.2.4 Detection and Validation of Downscaled Santa Ana Winds 

Definition and detection of R1-downscaled SAWs in the SoCal domain follow the 

method described in Chapter 1. In brief, the scheme for SAW detection is based on local 

direction and wind speed: SAWs are northeasterly filtered to wind speeds above the 75th 
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percentile of all northeasterly winds. This procedure is applied to each grid cell allowing 

spatial variability of SAW speed over the domain. The detection scheme’s advantage in its 

application to statistically downscaled wind fields is that the wind speed error, relative to the 

training CaRD10 data, does not propagate to the selection of R1- or GCM-derived SAWs as 

speed thresholds are adjusted to each data set. In other words, this approach constitutes a 

GCM-specific wind speed bias correction in SAW detection.  

 

2.3 Results  

2.3.1 Coupled patterns of coarse and fine resolution winds fields and their relation 

with wind regimes in Southern California  

 The correlations between each pair of CCs are compiled in Table 2.1, and their time 

series for one season (Aug 2003 – Jul 2004) are illustrated in Figure 1.2. The temporal 

correlations of CCs with their corresponding gridded original data, this is CCk,R1 - R1 and 

CCk,CaRD10  - CaRD10, produce k=5 coupled spatial wind patterns of coarse and fine 

resolution, respectively (Figure 2.2). Thus, the proportion of the variance that each CC 

explains in the original wind data is given by the squared mean of the spatial correlation 

pattern (𝑟5). The mean variability explained in u- and v-winds from both data sets (R1 and 

CaRD10) is summarized for each CC in Table 2.1. 

The spatial patterns associated with the first three pairs of canonical correlates (CC1-

CC3) and the original gridded data are equivalent in R1 and CaRD10, albeit obviously 

providing more spatial detail in the latter (Figure 2.2). For example, the two leading coupled 

modes (CC1 and CC2) together represent the onshore and offshore wind regimes, jointly 

providing control on the wind direction of these two main wintertime surface wind regimes 
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over SoCal, as described, for example, by Conil & Hall (2006). CC1 pair explains 65% of the 

zonal variability alone, whereas CC2 contains 51% of the meridional variability over the 

10X10km grid (Table 2.1). Together, they explain 70% in each of the finely resolved 

(CaRD10) wind components over the SoCal domain. CC3 represents the upwelling-driving 

northerly alongshore wind peaking in the late spring and early summer (e.g. Conil & Hall, 

2006), the wind that drives SoCal’s regional coastal upwelling and low clouds (Clemesha et 

al., 2016; Macias et al., 2012). The CC3 pair is mostly correlated with northwesterly winds in 

its positive phase and accounts for at least 7% and 3% of the u- and v-wind CaRD10 

variability.  

The correlation patterns of CC4 and CC5 with CaRD10 and R1 winds are weak and 

not straightforward; neither are the spatial equivalents between the two data sets. CC4CaRD10 

shows the highest correlations with offshore winds over the southernmost region of the 

domain (San Diego-Tijuana) while CC5CaRD10 correlates with winds along the coast in the 

southern part of the domain as well. We include these patterns (CC4 and CC5) here as they 

marginally improve the general downscaling skill for all winds, as we shall see below.  

We would expect that a reconstruction of the wind field would require a bare 

minimum of the statistical association summarized by CC1-CC3 which accounts for ~75% of 

the total fine resolution wind variability. CC4 and CC5 pairs explain a small portion of the 

wind variance; however, their inclusion in the parametrization of the statistical downscaling 

improves the model correlation by up to 40% over the southwestern part of the SoCal domain 

(see section 2.3.2). 
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Figure 2.1. Canonical Correlates pairs. Rows correspond to the five CC pairs in increasing 
order (i.e., decreasing correlation between each other). Left column shows the time series of 
CCR1 (blue) and CCCaRD10 (black) for 2003-2004 season. Right column displays CCCaRD10 
seasonality where black dots and red dots are the mean and variance values, respectively. 
Seasonality values are from 65 years (1948 to 2012).  
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Table 2.1. Mean explained variability by five canonical correlates in u- and v-winds of R1 
and CaRD10 data sets. 

  R1 CaRD10 

CC r u-wind v-wind u -wind v -wind 

CC1 0.94 87.6% 15.5% 65.0% 19.3% 

CC2 0.91 2.8% 66.7% 4.7% 51.0% 

CC3 0.76 2.8% 10.2% 4.4% 7.1% 

CC4 0.65 4.0% 2.0% 7.6% 3.6% 

CC5 0.48 0.9% 3.5% 3.7% 3.3% 

Total ----- 98.1% 97.9% 85.4% 84.3% 
 
 
 

 
Figure 2.2. Correlation maps between CCs and original u- and v-wind data. Upper panels 
correspond to coarse resolution winds (R1) and lower panels to fine resolution winds 
(CaRD10). For clarity 60% of the data points were omitted in the depiction of CaRD10 
correlation maps. 
 

 

2.3.2 Skill of downscaled winds  

The skill optimization surface (SOS) for u- and v-winds is shown in Figure 2.3. The 

highest skills are for the statistical models that use the maximum number of k for each p 

value, i.e., models with the same number of p PCs and k CCs located on the upper diagonal 
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of the SOS (SD 2-2, SD 3-3, SD 4-4, and SD 5-5). The simplest of those models, SD 2-2, 

yields a skill above 0.7 for both u- and v-winds which is in agreement with the first two CCs 

containing the largest portion of zonal and meridional winds variability. SD 5-5 produces the 

highest skill of about 0.8 also for both u- and v-winds; however, the skill improvement for 

p=k configurations between SD 3-3 and SD 5-5 is very low.  

 

 
Figure 2.3. Skill Optimization Surface (SOS) of statistical downscaled 10-km resolution u- 
and v-winds. Skill for each p-k model complexity is the mean correlation from 1674 grid 
cells over the SoCal domain.  
 

 

Closer examination of the correlations maps of models on the upper diagonal (from 

SD 2-2 through SD 5-5), shows that one-step addition of PC and CC produces very localized 

improvements. Figure 2.4 shows the various models’ correlation map difference in 

percentage relative to the simplest skillful model SD 2-2. In u-wind maps, higher correlations 

are located in a topographically complex area entrenched between Santa Rosa Mtns and San 

Bernardino Mtns. Refinement of reproduced winds is also observed across San Rafael and 
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Santa Ynez Mtns and on the east side of San Bernardino Mnts. In the case of v-winds, 

progressively higher correlations result alongshore in line with CC3, CC4 and CC5 

explaining mostly meridional wind variance in this region. 

 

 
Figure 2.4. Correlation map of SD 2-2 with CaRD10 for u and v-winds (top two panels). 
Differences in percentage between SD of increasing complexity (3 < p ≥ 5 and p=k) and SD 
2-2 (lower panels). 

 

 

In terms of wind direction and speed, models from SD 2-2 to SD 5-5 overall 

reproduce the wind distribution (Figure 2.5a-d) with most frequent and strongest winds from 

the northwest quadrant. However, winds roses showing statistical downscaled wind errors of 
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direction and speed in percentage relative to CaRD10 winds the model of highest complexity 

(SD 5-5) achieves the smallest wind direction and speed errors relative to CaRD10 winds 

(Figure 2.5e-h). Specifically, of all models in Figure 2.5, SD 5-5 provides the best winds 

distribution of wind direction and speed of less dominant northeasterly and southeasterly 

winds. 

 

 
Figure 2.5. Wind roses of CaRD10 winds and downscaled winds with 2 <p ≤ 5 and p = k 
(panels a-e) and corresponding errors of downscaled winds relative to CaRD10 data (panels 
f-i). Mean wind speed and frequency errors are calculated in 10˚ bins. Wind speed errors are 
shown in color scale and and frequency error are shown in radial scale. Red line equals to 0% 
error and every radial step is a 20% error. Therefore, bins falling inward and outwards the red 
line are under and over estimations, respectively.  
 

 

2.3.2.1 Skill of the downscaled SAWs subset 

Figure 2.6 shows the error wind roses of SAWs for the statistical models SD 2-2 to 

SD 5-5. Similarly to the error wind roses of all-winds, the sequential addition of PC-CC 

reduces both the wind distribution error and the wind speed error of downscaled SAWs. 

Therefore, the inclusion of canonical correlate pairs unrelated to the SAW regime (e.g., CC3 

and CC5, both correlated with alongshore flow) provides more detail in the wind field 
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variability resulting in more realistic statistically downscaled winds. The statistical 

downscaling configuration SD 5-5 yields the smallest wind distribution error and wind speed 

error (+30% and -18%, respectively) relative to that observed in CaRD10 SAWs.  

 

 
Figure 2.6. Wind roses of mean SAW speed and frequency errors in 10˚ bins. SAW speed 
errors are shown in color scale and SAW frequency error are shown by radial scale. Red line 
equals to 0% error and every radial step is a 20% error. Thus, bins falling inward and 
outwards the red line are under and over estimations, respectively.  
 

As wind speed thresholds are fundamental to our locally detected SAWs, we revise 

the spatial distribution of downscaled SAW speed thresholds and compare to those from 

CaRD10. All SD fairly reproduce the wind speed threshold spatial fingerprint (Figure 2.7): 

stronger at the leeside of Laguna Mtn., San Gabriel Mtn., and across the coast of Ventura 

County. The most complex SD configuration (SD 5-5) yields the closest wind speed 

thresholds to CaRD10. The average of the wind speed thresholds over the SAW domain for 

SD 5-5 is 4.9 m s-1 (22.1% weaker than the corresponding value for CaRD10). Average 

errors for each SD configuration are shown in Figure 2.7.  

Based on skill, wind direction error, and wind speed error for SAW detection, we 

deem SD 5-5 as the optimal statistical downscaling configuration. Thus, this configuration 
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was the one employed to downscale winds from GCMs and we referred to it as R1 SD in 

Chapter 3. Further validation of R1 SD is done in Chapter 3 and focuses on the parameters 

evaluated for describing the main features of SAWs. 

 

Figure 2.7. Maps of SAW speed thresholds for CaRD10 and statistical downscaling 
configurations from SD2-2 to SD 5-5 (upper panels). SAW speed threshold are defined as 
wind speed above the 75th percentile of all northeasterly winds detected at each grid cell. 
Errors of SAW speed thresholds relative to CaRD10 (lower panels). Mean speed thresholds 
and errors over the SAW domain are shown at the left-bottom corner of each map. 
 

 

2.4 Summary, conclusions and future work 

We have developed, performed and tested a hybrid dynamical/statistical approach to 

downscale daily wind vectors from a global reanalysis resolved on a coarse grid ~200X200 

km onto a fine 10X10 km grid covering SoCal. The prognostic statistical downscaling model 

based on CCA applied to a dynamically produced training data set (u and v daily 10km winds 

from CaRD10), evaluated for physical meaning, optimized and evaluated for skill. In Chapter 

3 of this dissertation, we apply the statistical method so achieved to downscale daily wind 

fields over SoCal from eight CMIP5 GCMs. The resulting daily 10X10 km gridded surface 

wind fields covering a period from 1950 to 2100 over the SoCal domain will be made 
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publicly available. We expect these data to contribute to research motivated by various 

applications from energy to public health.  

After thus downscaling all daily R1 winds, we applied the Santa Ana Wind detection 

methodology of Guzman Morales et al. (2016) to obtain daily SAWs from R1 (1948-2017) 

and validated them with respect to various metrics representing SAW activity over SoCal. 

The hybrid dynamical/statistical downscaling methodology performed well in terms of the 

salient features of SAWs including realistically rendered seasonal cycle, interannual 

variability, and historical extreme events.  

Our statistical approach can be applied to other dynamically downscaled wind 

products, including those at finer resolutions. This should allow for flexibility and skill in 

extending short dynamical wind data sets over longer historical periods as well as beyond to 

the GCM-projected futures. Our unique methodology will be applied in Chapter 3 to 

downscale CMIP5 historical simulations (1950-2005) and future climate projections. 

 

Chapters 2 in full, has been submitted for publication to Geophysical Research 

Letters, with slight modifications. Guzman-Morales, J., and Gershunov, A. (2018). Climate 

Change Suppresses the Santa Ana Winds of Southern California and Sharpens their 

Seasonality. Submitted for publication in GRL. The dissertation author was the primary 

investigator and author of this paper. 
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Chapter 3 

Climate Change Suppresses the Santa Ana Winds of Southern California 

and Sharpens their Seasonality 

We applied the statistical downscaling component developed in Chapter 2 to eight 

GCMs to downscale daily u and v surface wind vectors at 10x10km resolution. To these 

downscaled wind field, we subsequently applied the automated windspeed- and direction-

based SAW detection approach to derive the Regional SAW Index (SAWRI) described in 

Chapter 1 (Guzman-Morales et al., 2016), and validated them further with respect to their 

abilities to simulate key features of the SAW climatology. Finally, we assessed the behavior 

of projected SAWs, paying special attention to changes in their extreme occurrences, during 

the first and last halves of 21st Century. We found SAW activity decrese in the shoulders of 

the season and smallest decreases in Novermber-December-January near the peak of the 

season. The decreases are mainly driven by changes in frequency and less so by changes in 

intensity. These changes are observed in the two projection periods of the 21st century under 

examination but intensify by the last half of century. The modest decrease in the most 

frequent and stronger SAWs in winter altogether with independent projections of diminishing 

precipitation in the fall would result in a shift of the traditional peak of the wildfire season 

(October) to later months. Nonetheless, less desicatting SAWs during fall, the effect of 

increasing precipitation year-to-year variability to the availability of  dry vegetation fuel, as 

well as land–human dynamics are factors yet to be quantified. 
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3.1 Introduction 

Coastal California’s wildfire season displays a unique seasonality. While the rest of 

western North America and much of the vegetated world are susceptible to wildfires during 

summer, coastal California’s fire season peaks, historically, in the fall. This timing is 

determined by a climatic coincidence of two seasonal factors: the dry and gusty downslope 

winds, whose season starts in the fall when vegetation is at its seasonal driest after the long 

dry calm summer and before the first rains of winter defining this Mediterranean climate 

regime. The downslope wind systems desiccating California’s coastal ranges, although 

probably synoptically related, are regionally distinct. Among these are the Diablo Winds of 

Northern California’s Bay Area, the Sundowners of Santa Barbara and Ventura Counties, and 

the Santa Ana winds of Southern California (SoCal, a domain that in our reckoning includes 

the border region with Northern Baja California). The Santa Ana Winds (SAWs) are 

dynamically distinct from the rest and probably the most notorious for fanning California’s 

largest wildfires. When vegetation is dry, the fires fanned by these winds are largely 

uncontrollable. SAW-fanned wildfires typically rage in the sloping coastal backcountry, with 

its encroaching wildland-urban-interface (WUI), where the gusty downslope SAWs are the 

strongest (Guzman-Morales et al., 2016) and ignitions are nearly always human-caused 

(Syphard & Keeley, 2015). While the local impacts of these wildfires are devastating 

(https://www.nytimes.com/2017/12/05/us/california-wildfire-ventura.html, 

https://www.newyorker.com/culture/cultural-comment/after-the-mudslides-an-absence-in-

montecito), the smoke blowing towards the densely populated coastal zone exposes much 

larger and diverse populations to remote respiratory health impacts (Delfino et al., 2009). 

Smoke impacts can, moreover, be exacerbated by out of season coastal heat waves driven by 
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the SAWs themselves adiabatically, via compression of air descending to sea level (Kalkstein 

et al., 2018).  

The largest wildfire in California’s recorded history, the Thomas Fire, was recently 

fanned by Santa Ana winds and raged through most of December 2017 into January 2018, 

when the first significant rains of the water year occurred. Beyond the duration and 

magnitude of this fire, its most unusual feature was its December timing. Following a bone 

dry fall and early winter, the vegetation was desiccated in December 2017, allowing 

successive SAWs to fan the Thomas Fire. Although SAW activity peaks in December 

(Guzman-Morales et al., 2016), the vegetation is typically no longer flammable by then as 

several rain storms would have normally occurred by that late into the wet season. However, 

climate change is projected to decrease the frequency of precipitation in California (Polade et 

al., 2015, 2017), particularly in SoCal and especially in the shoulder seasons of fall and 

spring (Pierce et al., 2013). This is expected to result increasingly more often in dry 

flammable fuels persisting into the peak of the SAW season, which is during the traditional 

wet season, and therefore in a lengthening wildfire season (Jennings et al., 2018). This 

reasoning is predicated on the assumption of no significant change in future SAW activity. In 

this work, we examine the validity of this assumption.  

 Guzman-Morales et al., (2016, hereafter GM'16) developed a historical 65-year 

catalog of hourly SAWs, validated them with the available observations, analyzed their 

climatology and variability at different time scales, and identified potential sources of 

seasonal predictability. GM’16 detected SAWs purely from wind speed and direction. 

Although significant multidecadal variability was observed, this longest available record of 

SAWs did not manifest trends attributable to anthropogenic causes.  



	 46 

Two studies directly addressed changes of SAWs in future climate projections.  These 

studies provided conflicting results. First, Miller & Schlegel (2006) assessed projected 

climatological monthly changes of SAW occurrences as detected using large scale pressure 

gradient in two Climate Model Intercomparison Project, Phase 3 (CMIP3, Meehl et al., 2007) 

global climate models (GCMs) forced by low (B1) and high (A2) IPCC4 emission scenarios. 

Their results suggested a decline of SAW occurrences in September but a significant increase 

in December, at the peak of the SAW season, in the last 30 years of the 21st century relative 

to the equivalent period of the 20th century. However, variation in those results was 

identified in the early and middle parts of the 21st century between models and emission 

scenarios. The second study by Hughes et al. (2011) used one dynamically downscaled 

CMIP3-generation GCM under A1B scenario  to generate a local gap-flow-based projection 

of SAWs. This study reported an all-season (Oct-Mar) mean decrease of ~20% in the number 

of annual Santa Ana days by mid 21st century from which only Oct and Feb had a 

statistically significant decrease. This anthropogenic change was attributed to the 

disproportionate warming of the cold pool of air over the Great Basin relative to that of the 

coastal marine airmass, attenuating the temperature gradient between the Great Basin and the 

Pacific Ocean off the coast of California, which is an important thermodynamic mechanism 

for the formation of SAWs  (Hughes & Hall, 2010).  

Two related studies, Yue et al. (2014) and Jin et al. (2015) addressed the SoCal 

wildfire regime change and explicitly estimated SAWs as climatic drivers for mid-21st 

century projections of total SoCal burned area.  Their results show increases of 40% and 

64%, respectively, of total burned areas over a comparable region. Resolving the historical 

fire season, Sep – Nov, and using seven CMIP3 GCMs and an approach similar to Miller & 
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Schlegel (2006) to project SAWs for the mid-21st century in a middle-of-the-road A1B 

scenario,  Yue et al. (2014) report an increase of wildfire activity in November associated 

with an increase of SAWs during that month. However, model agreement is weak and the 

overall increase of wildfires seems to respond mainly to projected general future warming 

and drying than to an increase in SAW activity.  Jin et al. (2015) using five GCMs from 

CMIP5 (Taylor et al., 2012) forced by RCP8.5 and a dynamical downscaling approach as 

well as a local SAW definition similar to Hughes et al., (2011), attribute the increase in their 

mid-21st century projected Santa Ana (SA) wildfire category also mostly to the reduction of 

relative humidity and to a lesser extent to increasing wind speed during SAW events.  

The inconsistencies in projected SAW trends over the 21th century identified by the above-

mentioned studies seem to arise, at least partially, from differences in the approach used to 

define, detect and downscale SAWs as well as from the limited choice of GCMs in some 

studies. In our work we construct future projections of SAWs based on a hybrid (dynamical-

statistical) downscaling of daily winds (u and v vectors on a 10X10km grid) over the SoCal 

domain in a set of eight GCMs. These GCMs were previously validated for their general 

climate realism over this region and we validate them further with respect to their ability to 

reproduce key features of SAW (Section 3.3.2). Using these downscaled GCMs, we provide 

a description of future SAW behavior focusing on changes in SAW activity, reflecting 

changes in frequency, intensity, and seasonality, as well as on extreme SAW events (Section 

3.3.3). We then examine the synoptic cause of projected SAW trends - the pressure gradient 

force (Section 3.3), and conclude by discussing the results in the context of SoCal’s changing 

wildfire regime (Section 4).  
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3.2 Data and Methods  

3.2.1 Downscaling of winds from GCMs 

For the downscaling of winds fields from GCMs, we retrieve daily historical (1950-

2005) u- and v- surface wind fields from eight Global Climate Models (GCMs) as well as 

their future projections (2006-2100) forced with the “business as usual” RCP8.5 emissions 

scenario (IPCC 2013). These 8 GCMs (Table 3.1) were those providing the requisite daily 

data among the ten GCMs previously selected, from a total of 31 CMIP5 GCMs, for their 

realism in reproducing several key features of the California climate  (California Department 

of Water Resources, Climate Change Technical Advisory Group,  Lynn et al., 2015). We 

utilize equivalent domains to that used for the development of our hybrid 

dynamical/statistical downscaling presented in Chapter 2, a region extending 121˚W-116˚W 

in longitude and 36˚N-32˚N in latitude.  

The optimal statistical downscaling configuration described and evaluated in Chapter 

2 was then applied to the eight GCM simulations from 1950 to 2100.  

 

3.2.2  GCM-derived SAWs selection and validation 

For each GCM, daily SAWs were detected at each 10X10km grid cell in the resultant 

downscaled SoCal domain following our SAW local detection scheme (Chapter 2). 

Subsequently, the Santa Ana Wind Regional Index (SAWRI) was derived. Physically, 

SAWRI is the daily mean SAW speed computed over the grid cells within the SAW domain 

and therefore is expressed in speed units (m s-1).  

We assessed the GCMs’ ability to reproduce SAWRI by quantifying its behavior, e.g. 

frequency, intensity, seasonality, timing, and sensitivity to its synoptic driver - the pressure 
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gradient force (PGF) - over the historical period by comparison to SAWRI derived from R1D 

and CaRD10 winds. Table 3.1 summarizes these validation results for the eight GCMs, 

which are discussed in Section 3.3.2. The validation helps us to interpret anthropogenic 

trends in projected SAW activity. Unless otherwise stated, SAW Activity is defined as the 

accumulation of SAWRI over the relevant period in question (e.g. month, year). We focus on 

projected changes occurring in two time periods: the first and second halves of the 21st 

Century, 2000-2049 and 2050-2099, respectively. Changes are evaluated relative to the last 

half of the 20th Century, 1950-1999.  

 

3.2.3 Quantifying SAW sensitivity to Synoptic Pressure Gradient Force (PGF)  

To validate GCMs with respect to their ability to realistically reproduce the salient 

synoptic-scale patterns of Sea Level Pressure associated with SAWs, we use SLP data from 

R1 and GCMs in a synoptic domain that expands from (227.5˚E, 50˚N) to (255˚E, 25˚N) in 

its most northeast and southwest points, respectively. GCM’s future projections (RCP8.5) of 

SLP were also used to track changes in synoptic patterns. SLP climatology from 1950 to 

2005 was subtracted in all data sets before subsequent computations. 

We computed daily SLP anomalies in the synoptic domain for R1 and GCM data sets 

during the historical validation period shared by R1 and the GCMs (1950-2005). Associated 

Pressure Gradient Force (PGF) fields were derived as the negative of the SLP gradient in the 

x and y direction:  

𝑃𝐺𝐹:; = 𝑃𝐺𝐹: + 𝑃𝐺𝐹; = − >?
>:

5
+ >?

>;

5
   (3.1) 
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 m Then, for each data set (R1 and GCMs) we produce a map of correlations evaluated in the 

x-y (lon-lat) space between the corresponding SAWRI and the PGF resolved over the 

synoptic domain: 

 

𝑟@AB:;,CDEFG = 𝑟@AB:,CDEFG
5 + 𝑟@BA;,CDEFG

5   (3.2) 

 

The sub-region where  𝑟@AB:;,CDEFG  values are above the 95th percentile of 

correlations across the synoptic domain is continuous and coincides well with the SAW 

region, and defines the region of maximum PGF-SAW association in all data sets (Figure 

3.1). The spatial mean correlation in this region is 0.71 in the R1 data set, and ranges from 

0.65 to 0.92 in GCMs. Daily average PGF over this SAW-relevant sub-region (PGFr95) was 

retrieved for every SAW day in the historical validation period. We then linearly regressed 

SAWRI and PFGr95. 
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Figure 3.1.  PGF and SAWRI correlation (rPGFxy,SAWRI) maps. Correlations above the 95th 
percentile are shown in brown arrows and their mean values 𝑟

¯
#$%& 	are at the left bottom 

corner for  each map.  
 
 
 
3.3 Results 

3.3.1  SAW Sensitivity to Synoptic Pressure Patterns 

The SLP composite of SAW days from R1 shows a high anomaly located over the 

east side of the Great Basin centered at the intersection of Nevada, Utah and Idaho (Figure 

3.2a), traditionally considered the signature large-scale SLP forcing of SAWs (Abatzoglou et 

al., 2013; Raphael, 2003; Sommers, 1978). This SLP anomaly creates a northeasterly PGF 
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field over a region that covers most of California, expanding from the San Francisco Bay 

Area to Northern Baja California. The average  𝑃𝐺𝐹H#$ (highlighted in red arrows on Figure 

3.2) during all SAW days amounts to 91 Pa m-1. Deriving downslope SAWs from large 

circulation, i.e. PGF, would require consideration of topography, vertical katabatic 

acceleration and friction terms; here instead, we intend to develop a quantitative relationship 

between a metric derived from large-scale SLP anomaly patterns and regionally-averaged 

SAWs based on simplified synoptic-scale forcing considerations – circulation features that 

may be affected by climate change.  

All eight models reasonably reproduce a realistic SLP composite anomaly pattern and 

associated northeasterly PGF field over the relevant regional domain, i.e. California and 

Northern Baja California (Figure 1) during SAW days.  The composite SLP anomaly shape 

variation between GCMs seems responsible for the variations in PGF directions over the area 

of high correlations (r95).  Despite these differences, the mean PGFr95 associated with the SLP 

anomaly in GCMs is comparable (77.1 Pa m-1 – 95.2 Pa m-1) to that manifest in R1 (91 Pa m-

1). 

The pressure gradient force (PGFr95) explains 68% (r=0.83) of the daily variability of 

SAWRI in the R1 data set and between 40% and 67% (0.63 < r < 0.82) in GCMs. The linear 

fit between SAWRI and PGFr95 is shown in Figure 3.3 and the associated correlation 

coefficients and slopes are summarized in Table 3.1. The quantitative evaluation of SAWRI 

sensitivity to PGF in GCMs relative to R1 is further discussed in section 3.3.2, whereas the 

SAWRI versus PGFr95 changes in the 21st Century are addressed in section 3.3.3. 
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Figure 3.2. SLP and PGF composite maps during SAW days. SLP anomalies are shown by 
contour lines and associated PFG field is indicated by white arrows. Brown arrows mark the 
region where correlation between PGF and SAWRI is above the 95th percentile as shown in 
Figure 3.1. 
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Figure 3.3. SAWRI sensitivity to PGFr95 of all R1 and GCMs. Plots are from daily values 
when SAW conditions are present (SAWRI>0) in the historical validation period (1950-
2005). Black lines show the linear fit whose slope and correlation coefficient are listed in 
Table 3.1. 
 

 

3.3.2 GCMs’ Downscaled Performance in Reproducing SAWs 

No GCM can be considered “best” for realistically capturing all SAW features 

evaluated here. With respect to total seasonal SAW activity, CNRM-CM5, CMCC-CSM, 

ACCESS1-0, and HadGEM2-ES have negative bias relative to R1, whereas CanESM2, 

GDFLCM-3, HadGEM2-CC, and MIROC5 yield larger positive bias (Figure 3.4a, Table 

1.3). A closer examination of SAW frequency and intensity (as summarized by SAWRI), 
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which together define total seasonal SAW activity, allows us to identify the source of bias in 

seasonal SAW activity for each GCM. All models overestimate the frequency of SAW days 

but vary on the sign of intensity error (Figure 3.4b, Table 1.3). CNRM-CM5 and CMCC-

CSM overestimate frequency and underestimate intensity by a similar degree yielding the 

closest mean total annual SAW activity and associated inter-annual variability compared to 

R1.  ACCESS1-0 and HadGEM2-ES show larger underestimations of SAWRI (-32% in both 

cases), corresponding to a larger negative bias in total annual SAW activity. By contrast, the 

positive bias of SAW activity from GDFL-CM3 and HadGEM2-CC is dominated by the 

overestimation of SAW frequency, while intensity errors are remarkably small. Finally, 

CanESM2 and MIROC display the least realistic performance with the highest 

overestimations of SAW frequency and intensity, respectively, that produces the largest 

positive errors in annual SAW activity.  

GCMs generally reproduce SAW seasonality: monthly SAW activity ramping up 

through fall, peaking in winter, and gradually declining by late spring (Figure 3.4c). All 

GCMs manifest no or negligible SAW activity over summer, JJA. ACCESS1-0, and 

HadGEM2-ES show the most realistic seasonality with the smallest monthly SAW activity 

difference relative to R1D (21 and 18.5 m s-1, respectively), measure as the root sum of 

squared differences across all months in the SAW year (Aug-Jul). By breaking down 

seasonal total SAW activity, again into frequency and intensity, we observe that the 

amplitude differences in seasonality are dominated by intensity errors (Figure 3.5a-b), while 

deviation in shape is better explained by frequency errors (Figure 3.5c-d) as is the case for 

the overestimation of SAW activity in fall for CMCC-CMS and GDFL-CM3. According to 

R1D, the annual maximum SAW day tends to occur on Dec 31 ±29 (1 standard deviation) 



	 56 

days (Figure 3.4d). CNRM-CM5, and MIROC5 yield the closest timing falling within two 

days of what is recorded historically, but displaying a larger spread. 

 

Table 3.1. Summary of GCMs’ performance in reproducing SAW features: activity, 
frequency, intensity, seasonality, timing of annual maximum SAW day, and sensitivity to 
PGF. Differences, and errors in the table are relative to R1 SD (first row), and are mean 
values of 56 years in the historical validation period (1950-2005).  SAW activity differences 
in seasonality between GCMs and R1 SD are measured as the root sum of squared 
differences of all moths in the SAW year (Aug-Jul), and the sign retained in parenthesis 
indicate the direction of models’ bias. The two smallest values for each metric are marked 
with asterisks.  

Data	Set	 Activity	
(m)	

Frequency	
(y-1)	

Intensity	
	(m	s-1)	

Seasonality	
(m)	

Timing	of	
annual	

maximum	
SAW	day	

Sensitivity	to	PGF	

Slope	
mPFG-SAWRI	

Correlation	
coefficient	
rSAWRI-PGF	

R1	SD	 316.4	 89.5	 3.47	 ---------------	 Dec	31	 4.6	 0.83	

CNRM-CM5	 -9.9		
(-3.1%)*	

+17.4		
(+19%)	

-0.66		
(-19%)	 (-)			24.3	 -0.1*	 -1.2	 0.75	

ACCESS1-0	 -45.7		
(-14.6%)	

+22.5		
(+25%)	

-1.10		
(-32%)	 (-)			21.0*	 +9.6	 -2.4	 0.74	

CanESM2	 +134.1		
(+43.0%)	

+26.5		
(+30%)	

+0.40		
(+11%)	 (+)		57.0	 -22.1	 +1.1	 0.82*	

CMCC-CMS	 -11.1		
(-3.5%)*	

+13.9	
	(+16%)*	

-0.56		
(-16%)	 (-)			34.2	 -12.4	 -1.2	 0.76	

GDFL-CM3	 +36.7		
(+11.7%)	

+14.1	
(+15%)*	

-0.11		
(-3%)*	 (+)		48.4	 -14.3	 -0.5*	 0.63	

HadGEM2-CC	 +80.7		
(+25.8%)	

+20.3	
(+22%)	

+0.10		
(+3%)*	 (+)		51.7	 +6.9	 -0.5*	 0.78*	

HadGEM2-ES	 -47.0	
	(-15.1%)	

+22.1	
(+25%)	

-1.10	
	(-32%)	 (-)		18.5*	 +10.3	 -2.2	 0.78*	

MIROC5	 +184.5		
(+59.1%)	

+15.9	
(+17%)	

+1.22	
	(+35%)	 (+)	80.04	 -2.1*	 +1.3	 0.71	
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Figure 3.4. Validation of SAWs derived from downscaled GCMs. All values are seasonal 
means for 56 seasons in the historical validation period (1950 -2005), unless stated 
otherwise. CaRD10 is included here for comparison purposes (grey). Panel (a): Annual (Aug-
Jul) SAW activity. SAW activity is the sum of SAWRI over the SAW year (Aug-Jul). Thick 
lines within boxes show the median. Lower and upper box limits correspond to the 25th and 
75th percentiles, respectively. Whiskers extend to the most extreme data point which is no 
more than 1.5 times the inter-percentile range from the box. Grey dashed horizontal line 
marks the R1D SAWRI median across all models. Panel (b): Frequency and speed errors. 
Panel (c):  Seasonality of SAW activity (sum of SAWRI over each month) Panel (d): Timing 
of strongest SAW day. Timing is recorded as the day number at each SAW season (Aug 1-Jul 
31). Dots represent each season.	 
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Figure 3.5. Seasonality of SAW Frequency and Intensity. Errors are relative to R1 SD 
seasonality. All values represent mean values from 56 seasons in the historical validation 
period (1950-2005).  
 

 

In terms of SAWRI sensitivity to daily variations in PGF, HadGEM2-CC, HadGEM2-

ES, and CanESM2 display the highest and most realistic correlations, with the PGF 

explaining between 60% and 67% of the daily SAWRI variance. Differences in the linear fit 

slope (Table 3.1) show that HadGEM2-CC and GDFL-CM3 detect the most realistic 

magnitude of SAWRI response to PGFr95 variability, while HadGEM2-ES and ACCESS1-0 

underestimate the most the effect of PGF variations on SAWRI (flattest slopes).  
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In summary, there are no clear winners or losers among the models. Therefore, it is 

difficult to highlight a subset of these 8 GCMs when we consider projected changes in Santa 

Ana winds. Results of these validation exercises, however, will help interpret elements of 

projected SAW changes by illuminating individual model idiosyncrasies.  

 

3.3.3 Projections of SAWs through the 21st Century 

All GCMs project a decrease of total seasonal SAW activity during the first half of 

the 21st century (not shown) that intensifies during the last half century. The reduction of 

SAW activity is -18.5% ±4.5% on seasonal average. Meanwhile, the decrease of extreme 

SAW activity (the 10% of the strongest events) is about twice as large (-34.3% ±9.2%) as 

shown in Figure 3a. The reduction of SAW activity is explained by a larger reduction in 

SAW frequency than in intensity, according to most models (Figure 3.6).  This is especially 

true for extremes SAWs, where the reduction in intensity is very small (-0.81% ±0.99%) 

relative to the reduction in frequency (-33.8% ±9.9%).  

In terms of seasonality, reduction of SAW activity is robust across all months and all 

GCMs (Figure 3.6c) with very few exceptions: CNRM-CM5, CMCC-CMS, HadGEM2-CC, 

and GDFL-CM3 show an increase of SAW activity in Oct (+14%), Nov (+11%), Sep 

(+273%), and Feb (+45%), respectively. However, the actual SAW activity detected by 

HadGEM2-CC in Sep is unrealistically weak, while SAW activity detected by GDFL-CM3 

in Feb is considerably smaller than that in the R1D historical record (Figure 3.4c).  

In the second half of the 21st century on average, Nov and Dec are projected to have 

the smallest decrease of SAW activity of about -12% on average. At the tails of the SAW 

season, the average reduction reaches -68% (Sep) and -50% (May) with a higher decrease 
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over the early season (Sep-Oct) than over late season (Mar-May).  For extreme SAWs, we 

find a more pronounced decrease overall with similar proportional distribution across the 

season, that is, smallest decreases around the peak season in Nov and Dec (-25%) with 

greater decreases early and late in the season (Figure 3.6c). Our results are in general 

agreement with those of Hughes et al. (2011) who show the stronger decrease at the shoulder 

of their season (Oct and Feb) and a slight, nonetheless not statistically significant, increase at 

the second most active month of the season (Jan). 

We find no agreement among GCMs regarding changes in the mean timing of annual 

maximum SAW day (Figure 3.6d). GCMs do not show consistent changes towards a specific 

time of the season or consistent tendency within-model for the first and last half of the 21st 

century. It is noteworthy, however; that the strength of maximum annual SAW day shows a 

very modest average decrease (2.1–8.4%) consistent with smaller intensity reductions 

projected for extreme SAW winds as compared with average SAWs.  

Lastly for all GCMs, except CanESM2, we find that the decrease in SAWRI is 

associated with a decrease of PGFr95 regardless of the specific SAWRI-PGFr95 sensitivity 

(Figure 3.7). SAW-associated PGF is not projected to clearly decrease in that model, while 

SAWs slightly decreases regardless. The other GCMs show a remarkable consistency in the 

cause of projected decrease in SAW activity as well as in its evolving trend through the 21st 

century. 
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Figure 3.6. Future projection of SAWs features. Changes are for the last half of the 21st 
Century (2045-2099) and are relative to the the base historical period (1950-1999).  Panel 
(a): Percentage change of total seasonal SAW run for all SAW days (left) and extreme SAW 
days (right). Panel (b): Percentage change of wind speed and frequency for all SAW days 
(left) and extremes SAW days (right). Panel (c): Percentage change of the SAW run 
seasonality.  Thick black line shows the all GCMs mean and grey envelopes ± 1 standard 
deviation. Thick red line corresponds to the all GCMs mean change of extreme SAWs. Panel 
(d): Timing of maximum annual SAW day. Changes for the first half of the 21st Century are 
also included in panel (d). 
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Figure 3.7. SAW sensitivity to changes in PGF. Values are mean from 50 years 
corresponding to the periods here examined. All values are referenced to R1D (black cross at 
0,0). 
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coarsely resolved winds in a 7-decade-long global Reanalysis (R1) and a set of eight GCMs 

forced with historical and future (RCP8.5) greenhouse gas concentrations and aerosols. 

Training data for the statistical downscaling model came from a validated dynamical 
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simulate annual SAW activity and its salient features: seasonality, frequency, intensity, and 

timing of extremes. We also assessed the sensitivity of SAWs to synoptic-scale PGF and 

further validated GCMs in this respect. This exercise did not yield clear winners among 

GCMs. In general, we found the ability of downscaled GCMs to represent SAWs to be 

reasonable overall, but some models displayed serious problems with specific features of 

SAWs.  Nonetheless, the agreement between models on projected SAW changes was rather 

striking. We note that our study was limited to wind speed and direction only. The other 

salient features of SAWs – humidity and temperature – were not considered here. For winds, 

however, our results provide a consistent picture that provides important nuance heretofore 

unavailable.  

Overall, GCMs agree on the gradual decrease in SAW activity, particularly in the 

shoulder seasons of fall and spring. The decrease in SAW activity is least pronounced during 

the winter peak of the SAW season. This decrease, which appears to be gradual, i.e. 

monotonic during the first and second halves of the 21st century, but not yet clearly evident in 

the 20th century, is driven by decreased PGF that is associated with SAWs. This result 

generally agrees with the conclusion of Hughes et al. (2011), who project decreased SAW 

frequency as a result of the greater warming projected over the Great Basin compared to that 

over the north-eastern Pacific Ocean. We further find that the decrease in SAW activity is 

driven most strongly and consistently by decreased frequency of SAWs, particularly in the 

shoulder seasons. Projected intensity, i.e. wind speed, also tends to decrease consistently, but 

to a much lesser degree. This is especially true for extreme SAWs, whose frequency is 

projected to decrease strongly (by 34±10%, i.e. mean±1sd) by the last half of the current 

century, but whose intensity is hardly projected to change.  
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A robust result that is salient for the timing of the wildfire season is that the SAW 

season is narrowing around its natural peak in December, when changes in SAW activity are 

projected to be minimal (-4% ±8% and -11% ±8%, for the first and second halves of the 21st 

century, respectively). November and January SAWs are also projected to become somewhat 

less active: by -5%±10% and -13%±11% in November, and by -12% ±5% and -18% ±5% in 

January. The strongest decreases in SAW activity are projected for the early SAW season 

(68% and 30%, respectively, on ensemble average for September and October in the second 

half of the century) and for the late season (35% in April and 50% in May). The expectation, 

therefore, is that climate change may result in a weakening contribution of SAWs to the 

traditional SoCal wildfire season’s October peak. However, we may expect an increase in 

late-season, November-December-January, wildfires given the projected diminished decrease 

in SAW activity during this traditional peak of the SAW season and the independent 

projection of decreased fall precipitation (Pierce et al., 2013; Swain et al., 2018). 

Importantly, the intensity of extreme SAWs during the peak of the SAW season is not really 

expected to diminish.  The slightly diminished SAWs (mainly in their frequency) in 

December, for example, will still tend to be stronger and more frequent in the late 21st 

century compared to historical SAWs in October, the historical peak of the wildfire season. 

In other words, the projected precipitation regime and SAW changes suggest a tendency for 

migration of the SoCal wildfire season peak from October towards December. Similar 

projected changes in precipitation and SAW regimes likely reflect the influence of poleward-

expanding subtropical subsidence (Previdi & Liepert, 2007; Quan et al., 2014), which pushes 

synoptic activity, that drives both precipitation and SAWs, poleward, particularly in the 

shoulder seasons.  
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In light of these projections, the largest wildfire in SoCal history (Thomas Fire) 

occurring in December 2017 and fanned by back-to-back SAW events was a harbinger of 

wildfire seasonality we expect to experience more often in the future. In December, back-to-

back SAWs are most probable providing opportunities for wildfires to burn longer and 

bigger. In the future, the probability of back-to-back events will diminish somewhat, but will 

still remain much stronger in December than it ever was in October or even November. The 

higher year-to-year precipitation volatility (Polade et al., 2014) translates into higher 

probability of extremely wet winters followed by extremely dry winters (Swain et al., 2018) 

and additionally suggests a boost to the availability of dry fuels, bolstering the later peak in 

future wildfire activity, i.e. nudging the extremes of future later fires to be more intense and, 

therefore, more extensive. On the other hand, the progressively less frequent SAWs in early-

mid fall (September-October) would result in less fuel desiccation via SAWs themselves, 

which has yet to be quantified. Obviously, the above expectations about anthropogenically-

driven changes in future wildfire activity need to be evaluated in a more robust framework 

involving precipitation and SAW projections including humidity and temperature, in addition 

to projected ecosystem changes, as well as population and WUI dynamics, all as 

comprehensive inputs into wildfire risk models. Such comprehensive models could then be 

used to test our hypotheses about the future of wildfire seasonality and dynamics in SoCal as 

well as to begin assessing future impacts of wildfires on society.   
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