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Abstract

Stochastic Capacity and Facility Location Planning with Ambiguous Probabilities

by

Heejung Kim

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Philip M. Kaminsky, Chair

Motivated by the pharmaceutical industry, we consider two strategic models - a capacity
planning model and a facility location planning model - where demand in each period of
the problem horizon will be determined by the outcome of series of random events with
two possible outcomes. These strategic planning problems are complicated by the fact that
the probability of each of the alternative outcomes of these events is uncertain. Given this
setting, we develop approaches for solving these models that are robust to ambiguities in
outcome probabilities.

In the first model, we consider a capacity planning model under this setting. We develop
approaches to solving capacity expansion models in this setting that are robust to ambiguities
in probability of success, and we consider a variety of different objective functions, including
minimizing expected cost, minimizing value at risk and minimizing conditional value at
risk. We formulate these models as multistage (stochastic) robust integer programs. For
cases where these integer programs are challenging to solve to optimality, we propose two
heuristic approaches, a straightforward rolling horizon approach and the more sophisticated
event spike approach. The idea of event spike is adapted from Beltran-Royo et al. (2014),
and in our version, we relax the stage-wise independence restriction which is the assumption
in the original approach. These approaches are further developed to be applicable in the
robust setting with different objectives. The effectiveness of these heuristics is shown through
computational experiments. We also explore how alternative objectives and parameters affect
solutions, and when explicitly modeling ambiguous probabilities adds value.

In the second model, we extend the capacity planning model by considering the additional
decisions of facility location and demand allocation. In addition to ambiguous probabilities
of binary event outcomes, we assume that the uncertainty of demand has not completely
resolved after the binary event occurs. We formulate models that are robust to ambigui-
ties in both probabilities and demands by using (stochastic) robust integer programs. We
propose variants of Nested Decomposition and Stochastic Dual Dynamic Programming to
solve these models more efficiently. We extend these approaches by incorporating ambigu-
ities in probabilities and demand. We also propose approaches that involve decomposing
our large problem into a smaller number of sub-problems with longer horizons, and then
applying Nested Decomposition and Stochastic Dual Dynamic Programming in this revised
setting. In the computational study, we explore the effectiveness of the robust approach in
this setting, and demonstrate the performance of the proposed heuristic approaches.
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Chapter 1

Introduction

Capacity expansion and facility location decisions play an important strategic role in many
capital intensive industries, and are a key concern of chemical, communication, electrical
power, semiconductor, and pharmaceutical firms, among others (Luss, 1982; Wu et al.,
2005).

Capacity expansion planning involves determining the timing, size, type, and locations
of investments in new facilities, or in expanding the capacity of existing facilities. Facility
location planning deals with the decisions of geographical locations of facilities and allocation
of customers to facilities such that the demand for some service or product is satisfied.

Significant investments are typically made based on these decisions, and are often irre-
versible in the short run. Therefore, a mismatch between strategic decisions and demand
can significantly impact the profitability of the firm.

The problems are challenging because there is often a high level of uncertainty around
future demand, costs, and other problem parameters. Effective planning must both model
this uncertainty to the extent possible, and focus on objectives that in some way take this
uncertainty into account in a way that is useful for managers.

In particular, we consider a class of discrete-time planning models where demand in
each period is determined by the outcome of a series of “binary events,” or events that can
have two possible outcomes. Depending on the specific problem context, these events rep-
resent clinical trials, experimental outcomes, approvals, competitive product introductions,
for example. We are specifically motivated by our experiences working with several firms in
the biopharmaceutical industry. In this industry, demand for products is quite often well-
understood given a series of events, such as outcomes of clinical trials for new products or
new indications for existing products, competitive actions, the outcomes of licensing reviews,
etc. However, the outcome of these events is often uncertain, and in many cases, the proba-
bility of outcomes cannot be effectively estimated. At the same time, building and licensing
traditional commercial-scale production capacity can take 4-5 years and can cost up to 1
billion US dollars.

A classic example of the interaction of clinical trial uncertainty and capacity planning
involves Genentech, a biopharmaceutical company, which in 2004 was successfully producing
Avastin, a new cancer drug (Snow et al., 2006). The firm was expecting steep demand growth,
and considered investing in multiple facilities, in South San Francisco (California), Vacaville
(California) and Porrino (Spain). However, at the time, this new drug was in clinical trials
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for use on other forms of cancer, and these trials take at least five years. Ultimate demand
was highly dependent on trial outcomes, and strategic decisions at the company were being
supported by models with hundreds of scenarios. Generally, in this industry, although the
demand is highly dependent on trial outcome, it is quite well understood given the trial
results. However, the underlying probability of success of trial is not well understood, and
ultimately, the firm invested in capacity that went unused.

In some situations, demand uncertainty may not be completely resolved after the binary
event outcome. For example, in the biopharmaceutical industry, although demand is quite
often well-understood given a series of binary events, this is not always true. There may
still be a good deal of uncertainty once trial results are realized. In particular, if demand
is defined for each customer as well as time period, its exact size is even more difficult to
estimate accurately, which is the case for the facility location planning. In addition, it is
possible that the demand distribution after the binary event outcome is not known or not
valid to model.

In this thesis, we present mathematical models for capacity expansion planning and
facility location planning problems, where demand is dependent on the outcome of a series
of Bernoulli trials with ambiguous probabilities of successes (which we often call “trials” in
what follows). We apply robust modeling techniques in this context to find solutions that are
robust to these ambiguities in parameters (probability of success in Chapter 3; probability of
success and demand in Chapter 4), and thus the models are formulated as (stochastic) robust
integer programs. For capacity expansion planning models, we formulate robust models with
a variety of different objectives in this context. These models enable us to explore questions
when robust models are effective, and how alternative objectives affect solutions.

These integer programs are in some cases challenging to solve to optimality, and thus we
also develop and test fast heuristic approaches for solving models. Building on approaches
in the literature, we develop new approaches with significant modifications, because it is
non-trivial to adapt these techniques directly to our models in this setting.

For capacity planning models, we propose two heuristic approaches, a straightforward
rolling horizon approach and the more sophisticated event spike approach. The idea of
the event spike approach is adapted from Beltran-Royo et al. (2014), who initially devel-
oped it for stage-wise independent multistage stochastic linear programmings. We develop
a version of the event spike approach that relax the stage-wise independence restriction.
These approaches are further developed to be applicable in the robust setting with different
objectives.

For facility location planning models, we propose two solution approaches. The event
spike approach developed in Chapter 4 mainly focuses on reducing the number of scenarios,
but the problem size of facility location planning models depends on the number of sce-
narios, the number of facility sites and the number of demand locations. Motivated by Yu
et al. (2018), who introduce the use of the Stochastic Dual Dynamic Programming (SDDP)
algorithm for a multi-period stochastic facility location problem, we propose heuristic ap-
proaches that extend the concepts of Nested Decomposition (ND) and SDDP to our setting.
In both standard ND and SDDP algorithms, multistage stochastic programming problems
are formulated as the equivalent recursive dynamic programs (DP). In the ND, the cost-to-go
functions of DP is approximated by adding Benders’ cuts, and it converges in finite steps to
an optimal solution (Birge, 1985). The SDDP, first developed by Pereira and Pinto (1991),
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is a sampling based ND, and based on stage-wise independence, and it reduces the num-
ber of DP equations significantly. In our setting which includes ambiguities in probability
and demand, the standard ND and SDDP cannot be directly applied to our problems. We
extend these approaches by incorporating these ambiguities. We also propose approaches
where we first decompose our large problem into a smaller number of sub-problems with
longer horizons, and then we apply the ND or SDDP to these decomposed problems. This
reduces the number of DP equations, and in some cases the number of iterations required
for convergence.

The remainder of this thesis is organized as follows. In Chapter 2, we present a review
of the literature related to the models in this thesis. In Chapter 3, we formulate capacity
expansion models that capture a variety of different objectives, where the probability of
each trial success is known, using a multistage stochastic mixed-integer programming. We
next extend these models to incorporate ambiguous probabilities. We also develop heuristic
algorithms for these models, and present computational results. In Chapter 4, we formulate
facility location model as a (stochastic) robust integer program to find a solution that is
robust to the ambiguities in probability and demand. We also present solution approaches
and computational analysis. Finally, in Chapter 5, we present summary and closing remarks.
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Chapter 2

Literature Review

We explore the capacity planning and the facility location planning literature which is most
obviously connected to our models in this thesis. For the capacity planning problem, we
consider a variety of alternative objectives for our models, and thus we also briefly survey
some related optimization models that feature relevant objective functions. Because our
motivating problems consider ambiguities in parameters, and our goal is to find solutions
that are robust to these parameters, we also survey literature that use robust optimization
approaches in settings similar to ours.

2.1 Capacity Planning

Models for capacity planning have been studied intensively since the early 1960’s. Luss (1982)
provides a comprehensive survey of early work, including modeling approaches, algorithmic
solutions, and relevant applications, and a more recent review appears in Julka et al. (2007).
Capacity management problems under uncertainty are surveyed by Van Mieghem (2003),
who also discusses the incorporation of risk aversion into these models.

Early capacity planning models utilize the tools of stochastic control theory. Manne
(1961), in one of the earliest papers that explicitly incorporates stochastic demand, models
demand growth as an infinite horizon stochastic process. Related work can be found in Bean
et al. (1992), Freidenfelds (1980) and Davis et al. (1987), but overall, that is challenging to
model complex constraints using this approach.

Stochastic programming has also been employed for this class of problems (Birge and
Louveaux, 2011). This class of models can incorporate complex problem details, but the
resulting models may be challenging to solve. Early work in this area focuses on two-stage
models, where all fixed charges occur at the first stage where capacity decisions are made,
facilitating the use of decomposition methods. Eppen et al. (1989) propose a model for
capacity planning in the auto industry using a two-stage stochastic integer programming with
recourse, and additional work employing two-stage stochastic models for capacity expansion
problems can be found in Fine and Freund (1990), Riis and Andersen (2002), Riis and Lodahl
(2002), and Swaminathan (2000).

Multistage models, where capacity expansion decisions that depend on uncertainty re-
solved up to that time can be made at each time stage, have become more common as
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computing power has increased and optimization software has advanced. In the context of
capacity planning, Rajagopalan (1994) proposes a multistage model for capacity expansion
and replacement over time. Demand is assumed to be non-decreasing and the available ca-
pacity of a technology, when it appears, is assumed to be sufficient. Z.-L. Chen et al. (2002)
develop a multistage stochastic programming model for determining technology choices and
capacity plans given a linear investment cost function. They provide a solution procedure
based on the augmented Lagrangian method that solves problems with up to 5, 000 scenarios
in a reasonable amount of time. Both papers assume either non-decreasing demand or linear
investment cost for tractability. Ahmed and Sahinidis (2003) develop a fairly general capacity
expansion model that does not require these assumptions. They utilize a multistage stochas-
tic mixed-integer model, and propose a linear programming-based approximation scheme to
solve large instances of this model. They prove this scheme converges asymptotically to an
optimal solution as the problem size increases. Ahmed et al. (2003) reformulate these prob-
lems using variable disaggregation and solve them using a specialized branch-and-bound
procedure. Huang and Ahmed (2009) propose an asymptotically optimal approximation
scheme to solve capacity expansion problems and apply this scheme to semiconductor tool
planning. Singh et al. (2009) apply the variable splitting technique to reformulate a stochas-
tic multistage capacity expansion planning with one or more production facilities, and solve
these using Dantzig-Wolfe decomposition.

In contrast to the bulk of traditional stochastic capacity expansion planning literature,
which considers randomness (mainly in demand) with known probability distributions, we
consider a setting where the probability distribution parameters of uncertain events are not
known.

2.2 Alternative Objectives: Minimizing Regret

The most common objective functions for capacity expansion models involve minimizing the
expected cost or the worst-case cost. However, solutions that minimize the expected cost may
allow too much variability in possible outcomes, and solutions that minimize the worst-case
may prove to be too conservative. Regret theory postulates that individuals may explicitly in-
corporate notions of minimizing potential regret into their decision-making process (Loomes
and Sugden, 1982). In finance, for example, Value-at-Risk(VaR) and Conditional Value-at-
Risk(CVaR) are popular risk-based objectives. VaR for a specified quantile of potential losses
captures the threshold value that losses may exceed with the specified probability. Although
VaR is popular, it is not a coherent risk (a measure that satisfies properties of monotonicity,
sub-additivity, homogeneity, and translational invariance) as shown in Artzner et al. (1999).
CVaR, also known as Expected Shortfall, equals the expected value of losses conditioned on
those losses exceeding the threshold. CVaR is a coherent risk measure, making models that
use this objective easier to solve, and it is also less sensitive to rare events in the extreme
tail of the event probability distribution (Rockafellar and Uryasev, 2002).

In the context of capacity expansion problems, the regret associated with each scenario
under a given plan is defined as the difference between the objective value for the scenario
using the given plan and the objective value that comes from using the optimal plan for
that scenario. Chien and Zheng (2011) propose a model with a min-max regret strategy for
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capacity planning under demand uncertainty in semiconductor manufacturing. The model
considers each possible outcome of the multi-period demand forecast, and the regret of an
expansion decision plan is given in terms of capacity oversupply and shortage. Claro and
de Sousa (2008) use a mean-risk objective, where CVaR is the risk measure, for a multistage
capacity investment problem with economies of scale in capacity costs.

Daskin et al. (1997) propose a model called the α-reliable min-max regret model and
apply it to a stochastic facility location model. The model minimizes the maximum regret
associated with the scenarios in an endogenously selected subset of given scenarios with asso-
ciated probabilities. The planner defines a number of scenarios and estimates the probability
of each scenario occurring. G. Chen et al. (2006) present an α-reliable mean-excess regret
model for the stochastic facility location model. In this model, they minimize the expectation
of regret associated with the scenarios in the tail of outcome probabilities with a collective
probability of 1 − α. Compared with the α-reliable min-max regret, this model explicitly
controls the magnitude of the regrets in the tail and is computationally much easier to solve.
They also show that the α-reliable mean-excess criterion matches the α- reliable min-max
criterion closely. Noyan (2012) considers a two-stage stochastic programming model with
CVaR as the risk measure. The author presents two decomposition algorithms based on a
generic Benders-decomposition to solve these problems and applies the proposed model to
a disaster management problem, determining response facility locations and the inventory
levels of relief supplies at each facility. Schultz and Tiedemann (2005) also develop a solu-
tion algorithm for a two stage stochastic mixed-integer programming involving CVaR. The
algorithm is based on the Lagrangian relaxation of non-anticipativity constraints.

In the first capacity planning models, we consider many of these same objectives in our
setting, as we discuss in Section 3, and explore how alternative objectives and parameters
affect solutions.

2.3 Facility Location

Owen and Daskin (1998) provide a comprehensive review of facility location problems, in-
cluding dynamic and stochastic versions of the problem. Dynamic characteristics involve
difficult timing issues in locating facilities over an extended time horizon. Stochastic charac-
teristics involve uncertainty in problem input parameters such as forecast demand or distance
values.

Most of the models for dynamic facility location problems in the literature consider relo-
cation of facilities between time periods in response to changes in demand when there exist
relocation costs such as initial investment costs for new facilities, closure costs for existing
facilities. Early multi-period models that include dynamic characteristics were studied by
Ballou (1968) and Wesolowsky (1973). Many researchers point out that capacity expansion
is one of the crucial features to be considered when modeling this class of the problem in
many application (Antunes and Peeters, 2001, Canel et al., 2001, and Melo et al., 2006).
In Torres Soto (2009), the author formulates the model as a multi-period capacitated fixed
charge location problem when the demand is changing in a deterministic manner over time.
The objective is to minimize the maximum regret(deviation) between a robust configuration
of facilities and the optimal configuration for each time period. Local search and simulated
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annealing meta-heuristics are implemented to solve this model efficiently. A multi-period fa-
cility location problem with multiple commodities and multiple capacity levels in a dynamic
setting is also studied recently by Jena et al. (2016). They suggest a hybrid heuristic that first
applies Lagrangian relaxation and then constructs a restricted mixed-integer programming
model based on the previously obtained Lagrangian solutions.

To handle the uncertainty in problem input parameters, stochastic programming and
robust optimization have traditionally been employed to formulate these sequential decision-
making problems. Both robust and stochastic facility location models which handle demand
uncertainty in facility location problems are surveyed by Snyder (2006) and Correia and
da Gama (2015).

Most models for multi-period stochastic facility location problems in the literature are
formulated as a two-stage stochastic programs, where facility locations for the entire plan-
ning horizon are determined in the first stage, and then, in the second stage, transportation
decisions are made. Multistage stochastic programming is also used to formulate stochas-
tic multi-period facility location problems, but solving these problems is computationally
challenging. Nickel et al. (2012) formulate a multi-period facility location problem with
uncertainty in demand and interest rates as a multi-stage stochastic mixed-integer linear
program. They observe that this model takes a long time to solve. For example, 6 hours is
required to solve a 216 scenario instance using a commercial software solver. To tackle this
class of the problems, researchers have explored a variety of approximation approaches, such
as a heuristic combining branch and bound algorithm (Hernández et al., 2012), and fix and
relax coordination approximation (Albareda-Sambola et al., 2013). Yu et al. (2018) compare
two modeling frameworks, a two-stage stochastic model and a multistage stochastic model,
for a multi-period facility location problems under risk-neutral and risk-averse measures.
They employ a stochastic dual dynamic programming approach to solve these models.

Robust optimization is often applied when there are uncertain parameters with no dis-
tributional information available.

Atamtürk and Zhang (2007) study a model related to two-stage robust facility location
problems, and recognize that evaluating the objective is already computationally intractable
even for a single period problem. Gabrel et al. (2014) also consider a robust version of the
facility location problems with uncertain demand. They use a two-stage formulation, and
employ Kelley’s cutting- plane algorithm to solve the model. Zeng and Zhao (2013) also
propose a cutting plane algorithm to solve the same problem, and their method, a column
and constraint generation algorithm, improves the computation time to solve the problem.

Baron et al. (2010) use robust optimization for a multi-period fixed charge facility location
problem with uncertainty in demand with a profit maximization objective. They consider
two types of demand uncertainty set: a box uncertainty set and an ellipsoid uncertainty set.
They show that applying the robust optimization approach in this setting is tractable and
improves on the nominal solution to the problem.

Ardestani-Jaafari and Delage (2018) and Bertsimas and de Ruiter (2016) also use a robust
optimization approach for the problem described in Baron et al. (2010). Ardestani-Jaafari
and Delage (2018) notice that the decisions of production and shipment can be delayed until
demand is realized in each period in this problem, and add a small amount of flexibility
to these delayed decisions to correct for the overly conservative solutions observed in the
approach of Baron et al. (2010). This idea is implemented in six tractable conservative
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approximation models employing a different form of the application of affine adjustments.
To tackle realistic size problem instances, a row generation algorithm is also presented.
Bertsimas and de Ruiter (2016) apply affine adjustments on a dual reformulation of the same
problem setting in Ardestani-Jaafari and Delage (2018), and show a significant improvement
in computational time.

In most of the facility location literature, to handle the uncertainty in problem input
parameters such as demand or cost, either stochastic programming or robust optimization is
used. We consider a setting where (stochastic) demand in each period is determined by the
outcome of a series of binary events, where the likelihood of outcomes is unknown. To handle
this setting, our approach combines robust optimization and stochastic programming.

2.4 Robust Optimization

One drawback of the stochastic programming approach is that probability distributions must
be known, although in many cases they are not. Robust optimization addresses this problem
by minimizing the objective for the worst instances of an ambiguous parameter set. Ben-Tal
et al. (2009) compile the research related to robust optimization.

Some of the models we present in this thesis incorporate ambiguity in the probability of
trial success and in demand, and to solve these we employ a robust optimization approach.

We briefly review the robust optimization principle that we rely on in this thesis. Consider
the following problem:

min cTx

s.t. Ax ≥ b

l ≤ x ≤ u

In a typical setting, we assume that c, b, and A are deterministic and we can often ob-
tain an optimal solution by solving the problem using a commercial software. In robust
optimization, parameter values lie within a so-called uncertainty set. The solution of the
robust optimization problem is feasible when parameters take on any value within the un-
certainty set. In this approach, the problem with uncertain parameters is reformulated as its
robust counterpart by replacing each constraint that has uncertain coefficients constraints
that reflects the uncertainty set. Thus, a key feature of the robust optimization approach
is its tractability, which depends on the structure of the uncertainty set. Our approach is
motivated by Bertsimas and Sim (2003), Bertsimas and Thiele (2006), and Thiele (2007),
who demonstrate the tractability of this approach in other settings.

Specifically, in the problem above, we assume that the data uncertainty only affects the
elements in matrix A, without any loss of generality. Each uncertain coefficient aij is known
to belong to an interval centered at its nominal value āij and of half length âij, but its
exact value is unknown. The scaled deviation of parameter aij from its nominal value is
also defined as zij, and total (scaled) variation of the parameters is limited to a threshold,
known as the budget of uncertainty. Bertsimas and Sim (2003) show that uncertain linear
programming problems can be formulated as robust linear programs in this setting and this
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budget of uncertainty allows greater flexibility to build a robust model without excessively
affecting the optimal cost.

Bertsimas and Thiele (2006) apply this technique to supply chain problems. Thiele
(2007) uses this idea to reformulate the min-max stochastic programming problem where
the decision-maker minimizes the maximum expected cost over a family of probability dis-
tributions. In Bertsimas and Thiele (2006), the uncertainty set is defined for outcomes of
the random variables, but in Thiele (2007) as well as in our research, it is defined for their
probabilities. However, the approach in Thiele (2007) differs from ours in that it builds on
a set of recursive equations for dynamic programs in order to formulate an approach for
multi-stage stochastic problem, whereas we directly apply the robust optimization approach
to the problem. In addition, we explore a variety of different objectives, and we also focus
on algorithm development.
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Chapter 3

Capacity Planning with Ambiguous
Probabilities

3.1 Introduction

In this chapter, we consider a capacity planning in a setting where results of experiments,
trials, or tests are received each period, and demand in any period is a function of results
received up to that period. Specifically, we consider a single product discrete-time planning
problem with a horizon of T time periods. In each period, the amount of the product that can
be manufactured is constrained by available capacity. Capacity expansion costs are assumed
to be known, and capacity investment decisions to expand the amount of available capacity
can be made in any period. At the same time, over the horizon, demand evolves based on
test outcomes. These tests are modeled as a series of Bernoulli experiments, one in each
period, which have either a successful or an unsuccessful outcome. Given a particular series
of outcomes, the demand is assumed to be known, and thus, demand uncertainty can be
modeled using a scenario tree. This demand model is motivated by our experience working
with biopharmaceutical firms, where, although demand is random, it is well-characterized
given the outcome of a series of events, but can vary quite substantially depending on
the outcome of these events (where events might be approval for a new indication, trial
outcomes, introduction of a competing product, etc.). Several facility types to invest are
considered which have different cost and construction lead time. This is also motivated by
biopharmaceutical firms, where two options of facilities are available which are an expensive
new technology equipment with shorter lead time to build and relatively cheaper traditional
equipment with longer lead time.

In this setting, we consider the problem of deciding when and by how much to expand
capacity in order to meet a variety of different objects, including minimizing expected cost,
or the α-quantile of regret. When optimizing capacity investment decisions, it is often
challenging to determine what objective to focus on. Our goal is to explore how alternative
objectives affect solutions, and find some insights to be useful for decision makers. We
initially assume that the probability of success of each Bernoulli trial is known, and we
later extend our models to account for ambiguity in these probabilities. These models are
typically challenging to solve when the planning horizon is relatively long (which is typical
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for capacity expansion planning), so we present heuristics for these models in Section 3.4.
The remainder of this chapter is organized as follows. In Section 3.2, we begin by formu-

lating capacity expansion models where the probability of each trial success1 is known, using
a multistage stochastic mixed integer programming, following the approach introduced by
Ahmed and Sahinidis (2003). We extend our basic model, which minimizes expected cost to
a variety of other objectives. Finally, we extend these models to incorporate ambiguous prob-
abilities. In Section 3.4, we develop heuristic algorithms for these models based on a rolling
horizon approach. In Section 3.5, we present the results of computational experiments. We
evaluate the performance of our heuristics, and we explore the impact of different objectives
in this robust optimization setting.

3.2 Models with Unambiguous Probabilities

In this section, we present our preliminary models, which assume that the probability of
each trial success is known. As described above, in this setting, demand uncertainty can be
modeled by a scenario tree where each node n in stage t of the tree represents a realization of
the demand, and each edge is labeled with the probability of a trial outcome. We denote this
probability by πn, which equals the conditional probability of reaching node n given parent
node A(n). Each node n of the tree, except the root (n = 0), has a unique parent A(n), and
each non-leaf node has children C(n). A scenario p corresponds to a single path from the
root to each unique leaf node. P (p) is used to denote the set of nodes on the path of scenario
p and S(n) to denote the set of scenarios in which node n is included. The probability of
realization of scenario p, denoted by θp, is computed by

∏
i∈P (p) πi. A node in any stage

t also can be identified with a ”bundle” B of scenarios passing through it. We denote the
set of bundles at time t by Bt. For example, at time 1, the set B1 contains a single bundle
consisting of all scenarios. Figure 3.1 illustrates the notation related to a scenario tree.

We utilize a fixed charge to model economies of scale in capacity investment. For each
facility type i there is a unit capacity size Ui, and capacity can be expanded by multiples of
Ui for facility type i. Our results generalize to continuous multiples of increment, but integer
variables more closely model instances we have seen in practice, particularly for large unit
capacity sizes. We summarize notation used to formulate the model as follows.

Sets and indices:

• P : Set of scenarios

• N : Set of nodes

• Bt: Bundle of scenarios passing through a node at time stage t

• t: Index for time periods (t = 1, ..., T )

• i: Index for facility type (i = 1, ..., I)

Parameters:

1Recall that when are using the terminology trial to represent a Bernoulli trial, which models an event
with two possible outcomes, not specifically restricted to clinical trials.
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Figure 3.1. The scenario tree notation

• fit: Fixed cost of facility type i at time t

• cit: Construction cost per unit capacity of facility type i at time t

• st: Shortage penalty cost of product at time t

• Ui: Unit capacity of a facility i

• dpt : Demand at time t under a scenario p

• θp: Probability of realization of a scenario p (
∑

p∈P θ
p = 1)

• li: Construction lead time of facility type i

• M : Sufficiently large number(maxp∈P
∑T

t=1

∑
g∈G d

p
tg)

Decision Variables:

• xpit: 1 if capacity of facility type i is acquired at time t under scenario p, 0 otherwise

• ypit: Amount of capacity added to facility type i at time t under scenario p

• zpit: Cumulative capacity of facility type i at time t under scenario p

• wpt : Amount of shortage at time t under scenario p

• F (p): Total cost for scenario p

Following Ahmed and Sahinidis (2003), the risk neutral model with known probabilities
(RN) can be formulated as follows:
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RN:

min
∑
p∈P

θpF (p) (3.1)

s.t. F (p) =
T∑
t=1

(stw
p
t +

I∑
i=1

(fitx
p
it + city

p
it)), p ∈ P (3.2)

zpit = zpi(t−1) + Uiy
p
i(t−li), ∀i ≤ I, t > li, p ∈ P (3.3)

zpit = zpi(t−1), ∀i ≤ I, t ≤ li, p ∈ P

dpt −
I∑
i=1

zpit ≤ wpt t ≤ T, p ∈ P (3.4)

wpt ≤ dpt t ≤ T, p ∈ P (3.5)

Mxpit ≥ ypit, ∀i ≤ I, t ≤ T, p ∈ P (3.6)

xp1t = xp2t , y
p1
t = yp2t , s

p1
t = sp2t , ∀(p1, p2) ∈ Bt, t ≤ T (3.7)

xpit ∈ {0, 1}, ∀i ≤ I, t ≤ T, p ∈ P (3.8)

ypit ∈ Z+, ∀i ≤ I, t ≤ T, p ∈ P (3.9)

The objective function (3.1) minimizes the expected cost of fixed and construction cost
and shortage cost. Constraint (3.3) describes the amount of available capacity of facility
type i at time t under scenario p. Constraint (3.4) represents that the amount of shortage
at time t under scenario p. Constraint (3.5) ensures that the amount of shortage cannot
exceed demand at time t under scenario p. Constraint (3.6) ensures that the fixed cost is
charged when additional capacity investment is made. Constraints (3.7) are known as non-
anticipativity constraints. That is, if two scenarios p1 and p2 belong to the same node Bt of
the scenario tree at time stage t then the corresponding decisions up to that point have to
be identical. Constraints (3.8) and (3.9) enforce binary and integer conditions on variables.

Alternative Objectives

We also extend model RN by considering alternative objectives that minimize regret.
The regret Rp associated with scenario p under a given solution is defined to be the difference
between the cost of the best possible solution given scenario p, denoted by V p and the cost
under the given solution.

For the first extension, we minimize the maximum of the α-quantile of the regret, denoted
by W , where α is the desired reliability level. The maximum regret is computed over a
reliability set whose collective probability of occurrence is at least a desired reliability level
α. This model only considers the α-quantile of the regret, and does not assess the magnitude
of the regret associated with the scenarios that are not included in the reliability set. We
follow the approach proposed by Daskin et al. (1997) for the p-median problem, but adapt
it to our setting. In addition to the notation defined earlier, we define the binary variable
np. np is to equal 1 if scenario p is included in the set over which the maximum regret is
minimized, and 0 otherwise.
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MMR:

min W (3.10)

s.t. (3.2)− (3.9)

Rp − (F (p)− V p) = 0, ∀p ∈ P (3.11)

W −Rp +M(1− np) ≥ 0, ∀p ∈ P (3.12)∑
p∈P

πpnp ≥ α (3.13)

np ∈ {0, 1}, ∀p ∈ P (3.14)

The objective function (3.10) minimizes the α-reliable maximum regret. Constraint (3.11)
defines the regret associated with scenario p. Constraint (3.12) defines W in terms of indi-
vidual scenario regrets and indicator variables that denote the scenarios to be included in
the maximum regret computation. Constraint (3.13) ensures that the probability associated
with the set of scenarios over which W is computed must be at least α.

In MMR, the regret in the tail could be significantly higher than α-reliable maximum
regret since the model does not control the regret in the tail. We formulate another model
that considers the magnitude of regrets in the tail by minimizing the expectation of regrets
associated with the scenarios in the tail, whose collective probability is no greater than 1−α.
For this model, we closely follow G. Chen et al. (2006) model adapted from a p-median model
to the capacity expansion setting. Before we present the actual model, we briefly explain
the α- reliable mean-excess regret as follows.

Suppose X represents the vector for all decision variables not associated with regret for
a model. In addition, we have the following decision variables associated with regret.

• R(X, p): Regret with function of X and scenario p

• f(X, ζ): Given X, the collective probability of scenarios in which the regret does not
exceed ζ, that is, P{p|R(X, p) ≤ ζ}
• ζα(X): α– quantile regret, that is, min{ζ : f(X, ζ) ≥ α}
• φα(X): Conditional probability weighted average of the regret which is greater than

ζα(X), that is,

∑
p:R(X,p)>ζα(X)

πpR(X, p)∑
p:R(X,p)>ζα(X)

πp

Then, the α-reliable mean-excess regret for a given feasible solution X is:

λζα(X) + (1− λ)φα(X),

where λ =
f(X, ζα(X))− α

1− α
∈ [0, 1]. As shown in Rockafellar and Uryasev (2000) and

Rockafellar and Uryasev (2002), α-reliable mean-excess regret given X can be modified as
follows:
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ζ +
1

1− α
∑
p∈P

πpMax{[R(X, p)− ζ], 0}

This can be further simplified by denoting Up as the amount of individual scenario regret
that exceeds ζ, which is Max{[R(X, p)− ζ], 0}.

Now, with these two additional variables ζ and Up, the model that minimizes the α-
reliable mean-excess regret with known probabilities can be formulated as follows:

MER: :

min ζ +
1

1− α
∑
p∈P

πpUp (3.15)

s.t. (3.3)− (3.9), (3.11), (3.12)

Up ≥ Rp − ζ ∀p ∈ P (3.16)

Up ≥ 0 ∀p ∈ P (3.17)

The objective function (3.15) minimizes the α-reliable mean-excess regret. Constraint
(3.16) defines the amount of individual scenario regret that exceeds ζ, the α-quantile regret.

3.3 Models with Ambiguous Probabilities

Next, we extend models (RN, MMR, and MER) to model ambiguity in the probability
of success of each Bernoulli trial. While in practice it may be possible to estimate these
probabilities using relevant historical data, models (RN, MMR, and MER) are sensitive
to small changes in probability estimates. Consider the following example:

Example 1. We consider 4 periods of capacity expansion model with 2 types of facilities.
Two facilities have different lead time and costs. Uncertain demand is described in Figure 3.2
as a scenario tree. For each branch of the scenario tree, the demand takes either upper node
value or lower node value with probabilities p+δp̂ and 1−p−δp̂, respectively. Parameters used
in this example are l1 = 0, l2 = 1, spt = 20, f1t = 500, f2t = 200, c1t = 100, c2t = 50, p = 0.5
and p̂ = 0.5. Now we solve the risk neutral model for 5 values of δ : 0,−0.2, 0.2,−0.6, 0.6.
The available capacity for each facility of each path in the optimal solution for these 5 values
of δ is provided in Table 3.1. As shown, optimal solutions are quite different depending on
probability distributions, but it is not easy to describe the changes using some simple function
of δ. This example explains why we need an approach that considers ambiguous probabilities.

This motivates us to consider a robust optimization(RO) approach. In RO, rather than
assuming a particular distribution on the realization of uncertain data, we assume that possi-
ble realizations belong to a given set, the so-called uncertainty set. In particular, we employ
an approach introduced by Bertsimas and Sim (2003), who develop a general framework
of robust linear optimization and present a technique involving polyhedral uncertainty sets
that leads to robust linear counterparts to ambiguous linear programs.
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Figure 3.2. Demand for Example1

Table 3.1. Available capacity of each path in the optimal solutions under different probability
distributions

δ 0 -0.2 +0.2 -0.6 +0.6

Path 1 (10, 0, 0, 0) (10, 0, 0, 0) (10, 0, 0, 0) (10,30, 0, 0) (10, 0, 0, 0)
(60, 0,0, 0) (30,30, 0, 0) (60, 0, 0, 0) ( 0,30, 0, 0) (60, 0, 0, 0)

Path 2 (10, 0, 0, 0) (10, 0, 0, 0) (10,0, 0, 0) (10,30, 0, 0) (10, 0, 0, 0)
(60, 0,0, 0) (30,30, 0, 0) (60, 0, 0, 0) ( 0,30, 0, 0) (60, 0, 0, 0)

Path 3 (10, 0, 0, 0) (10, 0, 0, 0) (10, 0,0, 0) (10,30, 0, 0) (10, 0, 0, 0)
(60, 0,0, 0) (30,30, 0, 0) (60, 0, 0, 0) ( 0,30, 0, 0) (60, 0, 0, 0)

Path 4 (10, 0, 0, 0) (10, 0, 0, 0) (10, 0, 0, 0) (10,30, 0, 0) (10, 0, 0, 0)
(60, 0, 0, 0) (30,30, 0, 0) (60, 0, 0, 0) ( 0,30, 0, 0) (60, 0, 0, 0)

Path 5 (10, 0, 0, 0) (10, 0,40, 0) (10, 0, 0, 0) (10, 0,70, 0) (10, 0, 0, 0)
(60,10, 0, 0) (30, 0, 0, 0) (60,10, 0, 0) ( 0, 0, 0, 0) (60,10, 0, 0)

Path 6 (10, 0, 0, 0) (10, 0,40, 0) (10, 0, 0, 0) (10, 0,70, 0) (10, 0, 0, 0)
(60,10, 0, 0) (30, 0, 0, 0) (60,10, 0, 0) ( 0, 0, 0, 0) (60,10, 0, 0)

Path 7 (10, 0, 0, 0) (10, 0, 0, 0) (10, 0, 0, 0) (10, 0, 0,30) (10, 0, 0, 0)
(60,10, 0, 0) (30, 0, 0, 0) (60,10, 0, 0) ( 0, 0, 0, 0) (60,10, 0, 0)

Path 8 (10, 0, 0, 0) (10, 0, 0, 0) (10, 0, 0, 0) (10, 0, 0, 0) (10, 0, 0, 0)
(60,10, 0, 0) (30, 0, 0, 0) (60,10, 0, 0) ( 0, 0, 0, 0) (60,10, 0, 0)

We denote the ambiguous probability by π̃n to distinguish it from unambiguous proba-
bility πn. π̃n belongs to an interval centered at π̄n and of half length π̂n, but its exact value
is ambiguous. The sum of probabilities branched from node n must satisfy

∑
i∈C(n) π̃i = 1,

where n can be any node except leaf nodes in a scenario tree. The probability of sce-
nario p is computed by

∏
i∈P (p) π̃i, which also becomes ambiguous and we denote this by
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θ̃p. The nominal value of θ̃p, θpmid, is
∏

i∈P (p) π̄i, and θ̃p can take the value in the range of

[
∏

i∈P (p) π
−
n ,
∏

i∈P (p) π
+
n ] where π+

n = π̄n + π̂n and π−n = π̄n − π̂n. Formally, the uncertainty
set Ω for ambiguous parameter π̃n is:

Ω = {π̃|π̃n ∈ [π−n , π
+
n ]∀n ∈ N \ {0},

∑
i∈C(n)

π̃i = 1,∀n ∈ N,C(n) 6= ∅}

To capture ambiguity in our models, we modify RN, MMR, and MER by replacing θp

with
∏

i∈P (p) π̃i given Ω. These modified models minimize the objective values for the worst-

case over Ω. However, in general, this approach may be too conservative (or pessimistic), so
we adjust the level of “conservativeness” using a budget of uncertainty approach.

Specifically, we define the positive and negative scaled deviation of θ̃p from its nominal
value θpmid as

zp+ = (θ̃p − θpmid)/θ̂
p
+

zp− = (θ̃p − θpmid)/θ̂
p
−

where θ̂p+ =
∏

i∈P (p) π
+
n − θpmid and θ̂p− = θpmid −

∏
i∈P (p) π

−
n , respectively. The scaled

deviations take values in [0, 1]. Then, we impose a budget of uncertainty, where the total
variation of scenario realization probabilities cannot exceed some threshold Γ, not necessarily
integer: ∑

p∈P

zp+ + zp− ≤ Γ

We substitute Ω by Θ, which is the uncertainty set for θ̃p, in order to replace the non-
linear term

∏
i∈P (p) π̃i, and add in the budget of uncertainty to Θ. Note that π̃n can be

represented as the sum of probabilities of scenario realizations that include node n divided
by the sum of probabilities of realized scenarios that include the parent of node n, i.e.,∑

i∈S(n) θ̃
i/
∑

i∈S(A(n)) θ̃
i. Then

π−n ≤ π̃n ≤ π+
n ⇔ π−n

∑
i∈S(A(n))

θ̃i ≤
∑
i∈S(n)

θ̃i ≤ π+
n

∑
i∈S(A(n))

θ̃i

Also, the sum of scenario probabilities must satisfy
∑

p∈P θ̃
p = 1. Under this transfor-

mation, the probability constraints
∑

i∈C(n) π̃i = 1 become trivial, as we show below:

∑
i∈C(n)

π̃i = 1⇔
∑
i∈C(n)

∑
k∈S(i)

θ̃k/
∑
j∈S(n)

θ̃j = 1⇔
∑
j∈S(n)

θ̃j/
∑
j∈S(n)

θ̃j = 1⇔ 1 = 1

Therefore, the uncertainty set Θ for θ̃p is:
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Θ =

{
θ̃ ∈ R|P ||θ̃p = θpmid − θ̂

p
−z

p
− + θ̂p+z

p
+,

0 ≤ zp+ ≤ 1, 0 ≤ zp− ≤ 1, ∀p ∈ P,

π−n
∑

i∈S(A(n))

θ̃i ≤
∑

i∈S(n)

θ̃i ≤ π+
n

∑
i∈S(A(n))

θ̃i, ∀n ∈ N \ {0}

∑
p∈P

θ̃p = 1,
∑
p∈P

zp+ + zp− ≤ Γ

}
Given this, the robust versions of RN, MMR, and MER that minimize their respective

objective values for the worst-case over Θ can be written as follows:

RN-R: min max
θ̃∈Θ

∑
p∈P

θ̃pF (p) (3.18)

s.t. (3.2)− (3.9)

MMR-R: min W

s.t.
∑
p∈P

θ̃pnp ≥ α ∀θ̃ ∈ Θ (3.19)

(3.2)− (3.9), (3.11)− (3.12)

MER-R: min max
θ̃∈Θ

ζ +
1

1− α
∑
p∈P

θ̃pUp (3.20)

s.t. (3.2)− (3.9), (3.11), (3.16)− (3.17))

Since the ambiguous parameter, θ̃p does not take on integer values, we can adapt the
standard approach used for robust linear programming to this setting. We identify an auxil-
iary linear program that finds the worst-case probability for any given solution, and use this
insight to arrive at the following theorem:

Theorem 1. RN-R, MMR-R, and MER-R can be formulated as MILPs:

RN-PR: min
∑
p∈P

θpmidF (p) + C ′ (3.21)

s.t. (3.2)− (3.9)

K+(p) ≥ F (p)θ̂p+, K
−(p) ≥ −F (p)θ̂p− p ∈ P (3.22)

t ≥ 0 (3.23)

rp+ ≥ 0, rp− ≥ 0 p ∈ P (3.24)

wn+ ≥ 0, wn− ≥ 0 ∀n ∈ N \ {0} (3.25)
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MMR-PR: min W

s.t. (3.2)− (3.9), (3.11), (3.12), (3.23)− (3.25)

− α ≥ −
∑
p∈P

θpmidn
p + C ′ (3.26)

K+(p) ≥ −npθ̂p+, K−(p) ≥ npθ̂p− p ∈ P

MER-PR: min ζ +
1

1− α
∑
p∈P

Upθpmid + C ′ (3.27)

s.t. (3.2)− (3.9), (3.11), (3.16), (3.17), (3.23)− (3.25)

K+(p) ≥ 1

1− α
Upθ̂p+,

K−(p) ≥ − 1

1− α
Upθ̂p− p ∈ P

where

C ′ =tΓ +
∑
p∈P

(rp+ + rp−) +
∑
n∈C(0)

π̂n(wn+ + wn−)

+
∑
n∈N−

π̂n
∑

i∈S(A(n))

θimid(w
n
+ + wn−)

K+(p) =qθ̂p+ + t+ rp+ +Ka(θ̂p+) +Kb(θ̂p+) +Kc(θ̂p+)

K−(p) =− qθ̂p− + t+ rp− +Ka(−θ̂p−) +Kb(−θ̂p−) +Kc(−θ̂p−)

Ka(a) =
∑

m∈P (p)
A(m)=0

a(wm+ − wm− ),

Kb(b) =
∑
n∈P (p)
A(n) 6=0

b{(1− π+
n )wn+ − (1− π−n )wn−}

Kc(c) =
∑

A(n)∈P (p)
n/∈P (p)

{c(π−nwn− − π+
n pw

n
+)}

Proof. The constraint (3.18) is equivalent to solving the following problem with variables
zp+, z

p
−.
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RNX: max
∑
p∈P

(θpmid + θ̂p+z
p
+ − θ̂

p
−z

p
−)F (p)

s.t. θ̃p = θpmid + θ̂p+z
p
+ − θ̂

p
−z

p
− (3.28)∑

p∈P

θ̃p = 1 (3.29)

π−n
∑

i∈S(A(n))

θ̃i ≤
∑
i∈S(n)

θ̃i ∀n ∈ N \ {0} (3.30)

∑
i∈S(n)

θ̃i ≤ π+
n

∑
i∈S(A(n))

θ̃i ∀n ∈ N \ {0} (3.31)

∑
p∈P

zp+ + zp− ≤ Γ (3.32)

0 ≤ zp+ ≤ 1 ∀p ∈ P (3.33)

0 ≤ zp− ≤ 1 ∀p ∈ P (3.34)

RNX can be rewritten as a minimization problem using strong duality, because the
feasible set is nonempty (zp+ = 0, zp− = 0 is solution) and bounded.

We introduce dual variables q, wn−, w
n
+, t, r

p
+, and rp− for constraints (3.29), (3.30), (3.31),

(3.32), (3.33) and (3.34). Then, the dual problem becomes:

min C ′

s.t. K+(p) ≥ F (p)θ̂p+ p ∈ P
K−(p) ≥ −F (p)θ̂p− p ∈ P
t ≥ 0

rp+ ≥ 0, rp− ≥ 0 p ∈ P
wn+ ≥ 0, wn− ≥ 0 ∀n ∈ N \ {0}

Finally, by reinjecting this into the original problem, we can reformulate RN-R with
an uncertainty budget as a Mixed-Integer Linear Program (MILP), RN-PR. Similarly, we
can reformulate MMR-R and MER-R with uncertainty budget constraints as the MILPs
MMR-PR and MER-PR.

3.4 Heuristic Algorithms

As we detail in Section 3.5, we can solve only relatively small instances of our models using
commercial optimization software. However, in our experience with the pharmaceutical
industry, for example, a planning horizon of at least 20 periods (quarterly buckets for five
years) is typically considered for planning, in light of the duration of clinical trials and the
required lead times for construction and permitting. Thus we are motivated to find efficient
heuristics for bigger problems.
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We propose two heuristic approaches for this problem, a straightforward rolling horizon
approach and the more sophisticated event spike approach, in this section. We adapt the
idea of the event spike approach from Beltran-Royo et al. (2014), who initially developed it
for stage-wise independent (where current stage results are independent of previous results)
multistage stochastic LPs(MSLP). This approach requires significant modifications for our
setting because we’re optimizing an multistage stochastic integer program that is not stage-
wise independent. In particular, we propose a version of the event spike approach that
works for a special case of our problem setting, where events are “pathwise-independent”
(so that events can depend on past events, but not on when those events occurred). This
is applicable, for example, if events at the current stage depend on the number of previous
successes, but not the timing of those previous successes. Later, we introduce an approach
that allows us to relax this restriction.

3.4.1 Rolling Horizon

Before introducing the event-spike approach, we consider a rolling horizon approach, in which
we solve the problem for a subset of the entire horizon in each period, and make decisions
based on the truncated horizon. Of course, to evaluate the overall effectiveness of a policy
like this, we need to determine the rolling horizon decisions along each of the possible paths
through the scenario tree (stepping through one period at a time and incrementing the final
period in the truncated horizon each time), and then average over solutions).

Specifically, in each iteration i, we solve the problem from period i to i−1+ r, where r is
the length of rolling horizon. At the beginning of each iteration i, decisions for nodes before
time i are already fixed, and after the iteration i, decisions for nodes between period i to
i−1+r are re-solved. However only decisions in period i are fixed, and others are recalculated
at each iteration. The set of nodes considered in each iteration i are decomposed into 2i−1

independent sub-trees, thus each sub-tree can be solved in parallel. In the last iteration,
when i = T − r + 1, decisions for all nodes between i to T are fixed, and thus we obtain
the final set of solutions (and can determine the expected cost of that set of solutions).
A graphical example is shown in Figure 3.3. In this example, a rolling horizon r = 3 is
considered. In iteration 1, a sub-tree from period 1 to 3 is solved, then the solution of the
root node is fixed. In iteration 2, given the fixed decision at the root node, 2 sub-trees from
time 2 to 4 are solved independently, and then the decisions for the two nodes in period 2
are fixed.

3.4.2 Event Spike Approach

More sophisticated approaches are also possible. As described at the beginning of this
section, motivated by Beltran-Royo et al. (2014), we approximate the current problem with a
smaller problem using a version of the so-called “event spike” approach. The original version
of this approach proposed by Beltran-Royo et al. (2014) leverages conditional expectation
for instances of MSLP where the stochastic process is stage-wise independent, so that the
multistage scenario tree is very simple. In other words, at a given stage t, all the nodes have
the same set of successors. For example, in Figure 3.4, at time 2, there are two nodes A and
B that have same immediate successor events C and D. The term “event” here is defined as
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Figure 3.3. Concept of Rolling Horizon Approach

the realization of uncertainties (demand in our problem). Uncertainties are represented in
a simpler way in the “event spike graph”. That is, the event spike graph considers events,
rather than scenarios. For instance, suppose only two events occur in each stage as shown
Figure 3.4. All 8 possible paths are considered in the scenario tree, whereas 3 connected
two stage trees are considered in the event spike graph. In a two-stage tree in an event
spike graph at time t, the node of the first stage accounts for the expected value of decision
variables at t, and the nodes of the second stage account for all the possible events and the
corresponding decisions at t + 1. The expected value of the decision variables at time t + 1
is determined by taking the expectation of all the corresponding decision variables at t+ 1.

To apply the concept behind this approach to our problem, we start by reformulating RN
into an equivalent node-based formulation RN(N). In RN(N), the objective and constraints
are defined over nodes of the scenario tree. We summarize notation relevant to RN(N)
below:

Parameters

• t: Index for time periods(t = 1, ..., T )

• m: Index for node counters in time t(m = 1, ..., 2(t−1))

• P(tm): Path from the root to a node tm

• ptm: Probability of reaching node tm, that is,
∏

n∈P(tm) πn

Variables

• xitm: 1 if capacity of facility type i is acquired at node tm, 0 otherwise

• yitm: Amount of capacity added to facility type i at node tm

• zitm: Cumulative capacity of facility type i at node tm

• wtm: Demand shortage at node tm
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Figure 3.4. Concept of Event Spike Approach (Beltran-Royo et al., 2014)

Given this notation, the node-based formulation of RN is:

RN(N) :

min
T∑
t=1

2(t−1)∑
m=1

ptm(stwtm +
I∑
i=1

(fitxitm + cityitm)) (3.35)

s.t. zitm = ziA(tm) + Uiyi(t−li)m, ∀i ≤ I, t > li,m ≤ 2(t−1) (3.36)

zitm = ziA(tm), ∀i ≤ I, t ≤ li,m ≤ 2(t−1)

dtm −
I∑
i=1

zitm ≤ wtm, ∀t ≤ T,m ≤ 2(t−1) (3.37)

wtm ≤ dtm, ∀t ≤ T,m ≤ 2(t−1) (3.38)

Mxitm ≥ yitm, ∀i ≤ I, t ≤ T,m ≤ 2(t−1) (3.39)

xitm ∈ {0, 1}, yitm ∈ Z+ ∀i ≤ I, t ≤ T,m ≤ 2(t−1) (3.40)

The objective function (3.35) minimizes the expected cost. Constraint (3.36) describes
the amount of available capacity of facility type i at node tm. Constraint (3.37) determines
that the amount of shortage at node tm. Constraint (3.38) ensures that the amount of
shortage cannot exceed demand at node tm. Constraint (3.39) ensures that the fixed cost
is charged when additional capacity investment is made. Note that we do not need non-
anticipativity constraints in this formulation.

The original event spike approach developed in Beltran-Royo et al. (2014) assumes stage-
wise independence. We relax this restriction, as described below, to a setting where events
are “pathwise” independent but not necessarily stage-wise independent. Thus, demand at a
node can depend on the number of previous trial successes, but not on when those successes
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occurred. In other words, for example, if t = 4, demand will be the same if there were two
successful trials in the first four periods, regardless of when those successes occurred. While
this is in many cases an approximation, it is significantly less constraining than insisting on
stage-wise independence. We describe below how we combine this approach with a rolling
horizon approach in a way that proves to be computationally effective in our general settings.

To modify and apply the event spike approach to RN(N), let us denote each node by tmk
where k is the number of trial success, t is the time period, and m is a node counter. Nodes
tmk and tm′k, that have k successes by time t, are collapsed into one node tk, which we call
a pseudo-event node, as shown in Figure 3.5. A decision for pseudo-event node (t + 1)k is
based on the decisions made as a consequence of pseudo-events tk and t(k − 1), and thus
we take the expectation of these, and call this t̄k. Additionally, we define the probability of
reaching the pseudo-event node tk,

p′tk =
2t−1∑

m=1,(NS(tm)=k)

ptm

where NS(n) is the number of trial successes at node n. We also let p′(t, t′, k, k′) is the
probability that number of trial successes at time t and t′ are k and k′ respectively.

For each pseudo-event node tk and facility type i, we define decision variables, x̂itk, ŷitk
and ẑitk. The cumulative capacity is the input to the next stage, and thus the expected
decision is defined for z̄itk, which is expressed as

z̄itk =
1

p′(t+1)k

min(k,t)∑
k′=max(k−1,1)

p′(t+ 1, t, k, k′)ẑitk′

When there is a construction lead time, the capacity expansion decision made at time
t−li is added to cumulative capacity at stage t, and thus the expected decision is also defined
for ȳitk, so

ȳitk =
1

p′(t+li)k

min(k,t)∑
k′=max(k−li,1)

p′(t+ li, t, k, k
′)ŷitk′
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Figure 3.5. Modified Event Spike Approaches for our model

The event spike version of our problem with a risk neutral objective can be formulated
as a MILP, RN(ES), and the detailed formulation is as follows.

RN(ES) :

min
T∑
t=1

t∑
k=1

p′tk(stŵtk +
I∑
i=1

(fitx̂itk + citŷitk))

s.t. ẑitk = z̄i(t−1)k + Uiŷitk ∀i ≤ I, k ≤ t, t > li

zitk = zi(t−1)k ∀i ≤ I, k ≤ t, t ≤ li

dtk −
I∑
i=1

ẑitk ≤ ŵtk, ŵtk ≤ dtk ∀t ≤ T, k ≤ t

Mx̂itk ≥ ŷitk ∀i ≤ I, t ≤ T, k ≤ t

z̄itk =
1

p′(t+1)k

min(k,t)∑
k′=max(k−1,1)

p′(t+ 1, t, k, k′)ẑitk′ ∀i ≤ I, t < T, k ≤ t+ 1

ȳitk =
1

p′(t+li)k

min(k,t)∑
k′=max(k−li,1)

p′(t+ li, t, k, k
′)ŷitk′ ∀i ≤ I, t ≤ T − li, k ≤ t+ 1

x̂itk ∈ {0, 1}, ŷitk ∈ Z+ ∀i ≤ I, t ≤ T, 2 ≤ k ≤ t− 1

0 ≤ x̂itk ≤ 1, ŷitk ≥ 0 ∀i ≤ I, t ≤ T, k = 1, t
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Lemma 2. RN(ES) is a relaxation of RN(N) when the stochastic process is pathwise
independent.

Proof. We show that RN(ES) can be derived from the constraint aggregation induced by
the conditional expectation operator applied to objective function and constraints of RN(N)
as follows. The objective function (3.35) can be rewritten as follows.

T∑
t=1

2(t−1)∑
t=1

ptm(stwtm +
I∑
i=1

(fitxitm + cityitm))

=
T∑
t=1

E[stwtm] +
I∑
i=1

E[fitxit + cityit]

=
T∑
t=1

stE[wtm] +
I∑
i=1

fitE[xit] + citE[yit]

=
T∑
t=1

stE[E[wtm|dt]] +
I∑
i=1

fitE[E[xit|dt]] + citE[E[yit|dt]]

Constraint (3.36) can be aggregated by using the conditional expectation operator.

E[zitm|dt] = E[ziA(tm) + Uiyi(t−li)m|dt]
= E[ziA(tm)|dt] + UiE[yi(t−li)m|dt]
= E[E[ziA(tm)|dt−1]|dt] + UiE[E[yi(t−li)m|dt−li ]|dt]

Constraint(3.37) can be aggregated by using the conditional expectation operator.

E[dtm|dt]− E[
I∑
i=1

zitm|dt] ≤ E[wtm|dt]⇔ dtk −
I∑
i=1

E[zitm|dt] ≤ E[wtm|dt]

E[dtm|dt] = dtk holds by assumption that demand depends only on the number of success
and total time.

Constraint(3.38) can be aggregated by using the conditional expectation operator.

E[wtm|dt] ≤ E[dtm|dt]⇔ E[wtm|dt] ≤ dtk

Constraint(3.39) can be aggregated by using the conditional expectation operator.

ME[xitm|dt] ≥ E[yitm|dt]
Integral constraints (3.40) can also be aggregated by using the conditional expectation

operator.

0 ≤ E[xitm|dt] ≤ 1 ∀i ≤ I, t ≤ T,m ≤ 2(t−1)

E[yitm|dt] ≥ 0 ∀i ≤ I, t ≤ T,m ≤ 2(t−1)
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Thus, applying the conditional expectation operator to RN(N) results in the following
problem with aggregated constraints:

P1 :

min
T∑
t=1

I∑
i=1

fitE[E[xit|dt]] + citE[E[yit|dt]]

s.t. E[zitm|dt] = E[E[ziA(tm)|dt−1]|dt] + UiE[E[yi(t−li)m|dt−li ]|dt] ∀i ≤ I, k ≤ t, t > li

E[zitm|dt] = E[E[ziA(tm)|dt−1]|dt] ∀i ≤ I, k ≤ t, t ≤ li

dtk −
I∑
i=1

E[zitm|dt] ≤ E[wtm|dt] ∀t ≤ T, k ≤ t

E[wtm|dt] ≤ dtk ∀t ≤ T, k ≤ t

ME[xitm|dt] ≥ E[yitm|dt] ∀i ≤ I, t ≤ T

0 ≤ E[xitm|dt] ≤ 1, E[yitm|dt] ≥ 0 ∀i ≤ I, t ≤ T

Let x̂itk = E[xitm|dt], ŷitk = E[yitm|dt], ẑitk = E[zitm|dt], ŵtk = E[wtm|dt], and the problem
P1 becomes as follows.

P2 :

min
T∑
t=1

I∑
i=1

fitE[x̂itk] + citE[ŷitk]

s.t. ẑitk = E[ẑiA(tmk)] + UiE[ŷi(t−li)mk] ∀i ≤ I, k ≤ t, t > li

ẑitk = E[ẑiA(tmk)] ∀i ≤ I, k ≤ t, t ≤ li

dtk −
I∑
i=1

ẑitk ≤ ŵtk ∀t ≤ T, k ≤ t

ŵtk ≤ dtk ∀t ≤ T, k ≤ t

Mx̂itk ≥ ŷitk ∀i ≤ I, t ≤ T

0 ≤ x̂itk ≤ 1, ŷitk ≥ 0 ∀i ≤ I, t ≤ T

Replacing E[ẑitk] = z̄itk, E[ŷitk] = ȳitk, we see that P2 is equivalent to RN(ES). Let
z∗RN(ES), z

∗
P1
, z∗P2

and z∗RN(N) be the optimal objective values of model RN(ES), P1, P2 and

RN(N) respectively. Then, we will prove that

z∗RN(ES) = z∗P2
≤ z∗P1

≤ z∗RN(N)

z∗P1
≤ z∗RN(N) follows from the fact that problem P1 is a relaxation of RN(N) by con-

straint aggregation. To prove z∗P2
≤ z∗P1

, assume that X∗ = (x, y, z, w) is the optimal solution

for P1 and define X̂ such that

X̂itk = E[Xitm|dt]
Then, X̂ is a feasible solution for P2, and thus z∗P1

(X̂) = z∗P2
(X∗), and this proves

z∗P2
≤ z∗P1

. Therefore, we can conclude that RN(ES) is a relaxation of RN(N).
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Figure 3.6. Delayed Event Spike

3.4.3 The Delayed Event Spike Approach

In some cases, the “pathwise” independence restriction required for the event spike approach
is quite limiting. In this section, we introduce an approach to partially relax this restriction.

Recall that in the event spike approach, we collapse the scenario tree to efficiently develop
a heuristic solution. In the Delayed Event Spike (DES) approach, as the name implies, we
delay the time period in which the scenario tree is collapsed. In other words, until a given
time period, TES, the original scenario tree is maintained, and after TES, the remaining
portion of the scenario tree is approximated by using the event spike approach, as shown in
Figure 3.6. In DES, we are not restricted to pathwise independence prior to TES, and events
after TES can depend on past events, and if those events occurred before or at TES, on the
timing of those events.

For example, demand at a node at t = 4(TES = 2) can depend on the number of previous
successes, and when those successes occurred if they occurred before or at TES = 2. Now
suppose there were two successful trials in the first four periods. Those successes could occur
in periods one and two, one and three, or one and four, and let corresponding demand be
d1, d2 and d3, respectively. Then, d2 and d3 must be the same, but d1 can be different. We
call this “partial- pathwise independence”.

In DES, at time TES there are B = 2TES−1 nodes, and B sub-event spike trees are
constructed rooted from these nodes. Let ESb be the sub-event tree, where b = 1...B. Nodes
tmk and tm′k, which have the same ancestor node at time TES and represent k successes by
time t, are collapsed into one pseudo-event node tbk. We define the set of event nodes prior
to TES and pseudo-event nodes at or after TES as follows:

E = {tlk|l = m,m = 1..2t−1,∀t < TES, l = b, b = 1...B, ∀t ≥ TES}

Each sub-event tree ESb has Ot = t− TES + 1 pseudo-event nodes at t.
As with the event spike approach described in the previous sub-section, a decision for

pseudo-event node (t + 1)bk is based on the decisions made as a consequence of pseudo-
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events tbk and tb(k − 1), and thus we take the expectation of these, and call this ¯tbk. The
probability of reaching node tlk is therefore

p′′tlk =

ptm l = m, t ≤ TES∑
B(tm)=b,
NS(tm)=k

ptm l = b, t > TES

where B(tm) = dm/Be is the group b to which node tm belongs. In addition, we define

ED1 = {tbk|t > TES, k − rb = 0}

and
EDm = {tbk|t > TES, k − rb = t− TES}

where rb = NS(TESb), the number of trial successes at the root node of ESb. Given these
definitions and assumptions, the DES version of the problem can be formulated as a MILP.
The detailed formulation is as follows:

RN(DES):

min
∑
tlk∈E

p′′tlkF (tlk)

s.t. ẑitmk = ẑiA(tmk) + Uiŷitmk, ∀i ≤ I, t ≤ TES,m ≤ 2t−1, k ≤ t (3.41)

ẑitbk = z̄i(t−1)bk + Uiŷitbk, ∀i ≤ I, t > TES, b ∈ B, k ≤ t (3.42)

F (tlk) = stwtlk +
I∑
i=1

(fitx̂itlk + citŷitlk), ∀tlk ∈ E (3.43)

dtlk −
I∑
i=1

ẑitlkp ≤ ŵtlk, ∀tlk ∈ E (3.44)

ŵtlk ≤ dtlk, ∀tlk ∈ E (3.45)

Mx̂itlk ≥ ŷitlk, ∀tlk ∈ E, i ≤ I (3.46)

z̄itbk = ẑitbk, ∀i ≤ I, tbk ∈ ED1 (3.47)

z̄itb(k+1) = ẑitbk, ∀i ≤ I, tbk ∈ EDm (3.48)

z̄itbk = Gi(tbk), ∀i ≤ I, t ≥ TES, tbk /∈ ED1 ∪ EDm, (3.49)

x̂itmk ∈ {0, 1}, ŷitmk ∈ Z+, ∀i ≤ I, t ≤ TES, k ≤ t (3.50)

x̂itbk ∈ {0, 1}, ŷitbk ∈ Z+, ∀i ≤ I, tbk ∈ ED1 ∪ EDm

0 ≤ x̂itbk ≤ 1, ŷitbk ≥ 0, ∀i ≤ I, t > TES, tbk /∈ ED1 ∪ EDm

where Gi(tbk) = 1
p′′
(t+1)bk

∑min(k,t)
k′=max(k−1,1) p

′′(b, t + 1, t, k, k′)ẑitbk′ , and p′′(b, t, t′, k, k′) is proba-

bility that the number of trial success at time t and t′ are k and k′, respectively, and node
tm for any m belongs to block b. Note that if TES = 1, the formulation is the same as the
formulation of RN(ES). For simplicity, we do not include the construction lead time, but
it can be implemented in a straightforward way.

A rolling horizon approach is often used to obtain good feasible solutions for multistage
stochastic linear programs (see, e.g., Beltran-Royo et al., 2014). As we illustrate in Figure
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Figure 3.7. Concept of rolling horizon with event spike

3.7, we similarly use a rolling horizon strategy in this case. We solve the approximate problem
using the DES approach for the entire remaining horizon, fix decisions in the current period,
and then move forward.

Specifically, in iteration/time stage i, we solve the problem for periods i to T using
DES, where the tree in periods i + TES to T is approximated by an event spike tree. At
the beginning of each iteration i, decisions for nodes before time i are fixed, and after the
iteration i, decisions for nodes between i and T are re-solved. However, at each stage, only
decisions for period i are fixed, and other decisions are recalculated in future iterations. In
the final iteration, when i = T − TES, all decisions are fixed. This algorithm solves the
problem sequentially, and the decisions for nodes in the starting period of each iteration
are feasible for RN(N), so after the algorithm terminates, we obtain a feasible solution for
RN(N).

We can also approximate a problem that is not pathwise independent by using the con-
ditional expectation of instances of the problem given time t and the number of successes.
This approximate problem does not provide a lower bound on RN(N) because it is not a
relaxation of RN(N) (which requires pathwise independence). However, the decisions for
the first period of the approximate problem is feasible for the original problem, and thus,
we can find a feasible solution for problems without pathwise independence using the DES
approach in a rolling horizon setting.

3.4.4 Delayed Event Spike Approach for Models Minimizing Re-
grets

In MMR and MER, regret is associated with specific scenarios, but scenarios are aggregated
in the event spike approach. Thus, we need to an approach to represent regret in the event
spike approach in order to apply DES. We note that a scenario can be approximated by
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one of the paths to reach the pseudo-event node Tbk at time T in the event spike, and thus
we can define a mapping between pseudo-event node Tbk and scenario p. For example, in
Figure 3.6, pseudo-event nodes 515 and 514 can be mapped to scenario 1, and to scenarios
2 and 3, respectively. LetMTbk be a set of scenarios which is mapped to pseudo-event node
Tbk. We denote cumulative total cost to reach node tlk by CF (tlk), which can be expressed
as

CF (tmk) =

{
F (tmk) + CF (A(tmk)), for t <= TES

F̄ ((t− 1)bk) + CF (A(tbk)), for t > TES

where F (tlk) is the total cost at each node and F̄ (tbk) is the expected cost based on decisions
for pseudo-events tbk and tb(k − 1). Given V p, the minimum cost given scenario p, we let
VTbk be the minimum cost to reach pseudo-event node Tbk, which is the average over all of
the minimum cost scenarios mapped into Tbk:

VTbk =
∑

(p,T bk)∈M

πpV p∑
(p,T bk)∈M πp

Then, the regret RTbk, defined as difference between the total cost to reach pseudo-
event node Tbk under a given solution and the expected minimum cost of the corresponding
scenarios leading to that node, is expressed as follows.

RTbk = CF (Tbk)− VTbk

We define the binary variable nTbk to be equal to 1 if at least one scenario p ∈ MTbk is
included in the set (called the reliability set) over which W is minimized, and 0 otherwise.
Because it is possible that only part of scenarios inMTbk can be included in the reliability set,
we introduce a fractional variable n′Tbk to compute the sum of probabilities in the reliability
set, which must be at least α. Then, the MMR and MER models based on the DES
approach can be formulated as MILPs, which we denote by MMR(DES) and MER(DES),
respectively.
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MMR(DES):

min W

s.t. (3.41)− (3.50)

CF (tmk) = F (tmk) + CF (A(tmk)) t ≤ TES (3.51)

CF (tbk) = F̄ ((t− 1)bk) + CF (A(tbk)) t > TES (3.52)

VTbk =
∑

(p,T bk)∈M

πpV p∑
(p,T bk)∈M πp

∀Tbk ∈ E (3.53)

RTbk − (CF (Tbk)− VTbk) = 0 ∀Tbk ∈ E (3.54)

F̄ (tbk) = F (tbk) tbk ∈ ED1 (3.55)

F̄ (tbk) = F (tb(k − 1)) tbk ∈ EDm (3.56)

F̄ (tbk) =
p′′tbkF (tbk) + p′′tb(k−1)F (tb(k − 1))

p′′tbk + p′′tb(k−1)

tbk /∈ ED1 ∪ EDm (3.57)

W −RTbk +M(1− nTbk) ≥ 0 Tbk ∈ E (3.58)∑
Tbk∈E

p′′T lkn
′
Tbk ≥ α (3.59)

n′Tbk − nTbk ≤ 0 Tbk ∈ E (3.60)

n′Tbk ∈ {0, 1} Tbk ∈ ED1 ∪ EDm, nTbk ∈ {0, 1} (3.61)

0 ≤ n′Tbk ≤ 1 Tbk /∈ ED1 ∪ EDm (3.62)

Constraint (3.58) defines W in terms of individual regret to reach pseudo-event nodes
in the last period, as well as indicator variables that denote paths to the nodes in the last
period that are to be included in the maximum regret computation. Constraints (3.59) and
(3.60) together ensure that the probability associated with the set of scenarios over which
W is computed must be at least α.

Similarly, MER based on the DES approach can be formulated as follows.

MER(DES):

min ζ +
1

1− α
∑
Tbk∈E

p′′T lkUTbk

s.t. (3.41)− (3.57)

UTbk ≥ RTbk − ζ Tbk ∈ E (3.63)

UTbk ≥ 0 Tbk ∈ E (3.64)

As in the previous section, we can utilize a rolling horizon approach, in which we solve the
approximate problem using MMR(DES) or MER(DES) for the entire remaining horizon,
fix decisions in the current period, and then move forward.
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3.4.5 Delayed Event Spike Approach with Ambiguous Probabili-
ties

Models with ambiguous probabilities also can be approximated using the DES approach. To
do this, we first develop robust versions of the DES models developed in previous subsection
(RN(DES), MMR(DES) and MER(DES)), and then use the approach described in Sec-
tion 3.3 to derive equivalent MILP models. Below, we illustrate the details of this approach
using RN(DES).

We first develop the uncertainty set Ω′ for ambiguous probability π̃tm.

Ω′ = {p̃|π−tmp̃A(tm) ≤ p̃tm ≤ π+
tmp̃A(tm),

∑
m∈2t−1

π̃tm = 1,∀t ≤ T}

To do this, we substitute p̃tm =
∏

n∈P(tm) π̃n = π̃tmp̃A(tm) into Ω. For simplicity, we do
not consider an uncertainty budget, but this can be incorporated in a straightforward way.
Recall that we use the probability of reaching pseudo-event node tlk (p̃′′tlk) to formulate
RN(DES), and thus we define the uncertainty set in terms of p̃′′tlk. Let this uncertainty set
be Ω′′ = Ω′′1 ∪ Ω′′2, where

Ω′′1 = {p̃|π−tmkp̃A(tm) ≤ p̃tmk ≤ π+
tmp̃A(tm),

∑
m∈2t−1

π̃tm = 1,∀t ≤ TES}

Ω′′2 = {p̃|π−tbk ≤ p̃tbk ≤ π+
tbk,

∑
b≤B,k≤t

π̃tbk = 1, p̃TESbk =
∑
k≤t

p̃tbk,∀t > TES}

When the probabilities of successes are ambiguous, both the objective function and con-
straints (3.49) in RN(DES) must be modified using the robust optimization approach.
Given Ω′′, the objective function of RN(DES) with ambiguous probabilities and equality
constraint (3.49) can be rewritten as follows:

min{ max
p̃tlk∈Ω′′

∑
tlk∈E

p̃′′tlk(
I∑
i=1

(fitx̂itlk + citŷitlk))} (3.65)

z̄itbk −Gi(tbk) ≤ 0 ∀p̃tbk ∈ Ω′′ (3.66)

− z̄itbk +Gi(tbk) ≤ 0 ∀p̃tbk ∈ Ω′′ (3.67)

Using strong duality, we can derive the deterministic robust counterpart of this model,
and thus formulate a MILP for the robust version of RN(DES). We denote this model by
RN(DES)-PR, and the detailed formulation is as follows:
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min
T∑
t=1

qt +
∑
tlk∈E

(p+
tlkγ

+
tlk − p

−
tlkγ

−
tlk)

s.t. (3.41)− (3.48), (3.50)

q1 = F (111), δ11 = 0

qt + δtmk − γ−tmk + γ+
tmk − δA(tmk) ≥ F (tmk), 2 ≤ t < TES, tmk ∈ E

qt + δtbk − γ−tbk + γ+
tbk − δA(tbk) +

T−TES+1∑
τ=1

ζτb ≥ F (tbk), j ≤ 2t−1, t = TES

qt − γ−tbk + γ+
tbk − δA(tbk) ≥ F (tbk), t = TES + 1

qt − γ−tbk + γ+
tbk − ζtb ≥ F (tbk), t ≥ TES + 2∑

k≤t

(p
′′+
tbkγ

d
tbk − p

′′−
tbkγ

c
tbk) + p+

TESbk
γdTESb − p

−
TESbk

γcTESb ≤ Gi(tbk) ∀i ≤ I, t ≥ TES,

tbk /∈ ED1 ∪ EDm

ν+
tbk + γdtbk − γctbk ≥ z̄itbk − ẑitbk
ν+
tbk + γdtb(k−1) − γctb(k−1) ≥ z̄itbk − ẑitb(k−1)

ν+
tbk + γdtbl − γctbl ≥ 0 l 6= m,m− 1

− ν+
tbk + γdTESb − γ

c
TESb
≥ 0∑

k≤t

(p
′′+
tbkγ

g
tbk − p

′′−
tbkγ

f
tbk) + p+

TESbk
γgTESb − p

−
TESbk

γfTESb ≤ −Gi(tbk) ∀i ≤ I, t ≥ TES,

tbk /∈ ED1 ∪ EDm

ν−tbk + γgtbk − γ
f
tbk ≥ −z̄itbk + ẑitbk

ν−tbk + γgtb(k−1) − γ
f
tb(k−1) ≥ −z̄itbk + ẑitb(k−1)

ν−tbk + γgtbl − γ
f
tbl ≥ 0 l 6= m,m− 1

− ν−tbk + γgTESb − γ
f
TESb
≥ 0

γ+
tlk ≥ 0, γ−tlk ≥ 0, tlk ∈ E
γctbk ≥ 0, γdtbk ≥ 0, γftbk ≥ 0, γgtbk ≥ 0 ∀k ≤ t, γfTESb ≥ 0, γgTESb ≥ 0

3.5 Computational Study

In the previous sections, we proposed a series of MILP models with varying objectives and
ambiguous success probabilities, as well as heuristic approaches to solve these problems.
Here, we conduct a numerical study to answer the following questions:

• How large are the models that we can solve to optimality using commercial software?
How effective are the proposed heuristics for instances that are too large to solve to
optimality?
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• What is the impact of explicitly modeling ambiguous probabilities of success in this
class of planning models? When is it worth doing so?

• How do alternative objective functions change capacity expansion decisions? Are there
the decisions that these models make robust to alternative objectives?

We implement and test our models on a desktop computer with a Core i7 3.4 GHz
processor and 16 GB of RAM. We code all models using Optimization Programming Lan-
guage(OPL) and solve them using CPLEX, version 12.6, from IBM. Recall that we use the
following abbreviations for models presented in Section 3.2.

• RN: Model minimizing expected cost with nominal probabilities

• RN-PR: Model minimizing expected cost with ambiguous probabilities

• MMR: Model minimizing α- reliable max regret with nominal probabilities

• MMR-PR: Model minimizing α- reliable max regret with ambiguous probabilities

• MER: Model minimizing α- reliable mean excess regret with nominal probabilities

• MER-PR: Model minimizing α- reliable mean excess regret with ambiguous proba-
bilities

3.5.1 Computational Analysis of Heuristic Approaches

In this section, we solve the models in Section 3.2 and 3.3 using both commercial software
and the two heuristics presented in Section 3.4. We compare the time to solve models using
these approaches. Our goal is to determine when we can solve models to optimality using
commercial software, when we need to use heuristics, and how effective those heuristics are
when we do use them.

We solve the models presented in Section 3.2 and 3.3 using CPLEX version 12.6, as
described above, with a 3,600 seconds time limit. We vary the planning horizon T in these
tests, because the size of the problem depends on T . Recall that total number of scenarios
is |P | = 2T−1 and the number of variables and constraints increases as P increases. For
each planning horizon T , we solve (or attempt to solve) 5 problem instances, randomly
generated as follows: We consider one capacity type, and keep all parameters constant over
time (and so drop the subscript t in the subsequent explanation). We draw an integer
value for each parameter Ui, ci, and fi independently from Unif(500, 1500), Unif(100, 300)
and Unif(50, 100) distributions, respectively, and we assume no construction lead time, so
li = 0. We randomly select shortage penalty s from {0.1, 1, 2, 3}, where each possibility has
equal probability. Each Bernoulli trial has a probability of success in the range (0.25, 0.75),
and for nominal models, we assume the center of that range, 0.5. The demand in the first
period is generated from a Unif(0, 1000) distribution. From the second period on, if the
trial result is a success, demand equals A+ B, where A is the demand from the last period
if this is not the first success, A is randomly selected from Unif(2000, 4000) distribution if
this is the first success, and B is randomly selected from Unif(500, 1500) distribution. If
the trial result is not a success, demand remains the same as in the previous period.
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The average computation time and the average optimality gap observed in these experi-
ments are presented in Table 3.2. For each problem instance, we solve each model, denoted
by m, to optimality or to the 3,600 second time limit, whichever comes first. We denote
the objective function value by zMIP (m). Small instances, such as instances with T < 10
for RN, RN-PR ,MER, MER-PR, and MMR-PR, and with T < 8 for MMR, can be
solved in less than a few seconds using CPLEX. Large instances cannot be solved optimally
within the 1 hour time limit. We increase T until a feasible integer solution is not found
within the time limit or an out-of-memory error is returned. If a feasible solution is found
but an optimal solution is not, we report the optimality gap and the time that the best
feasible solution is found.

As expected, we observe that these models become harder to solve as T increases. For
RN and RN-PR, instances with T > 13 require at least 1, 200 seconds to find an optimal
solution, and problem instances with T = 16 result in a greater than 20% optimality gap on
average after an hour of computation. For MMR, MMR-PR, MER, and MER-PR, we
observe that on average, the instances with at most 8, 10, 10, and 10 period planning horizons,
respectively, can be solved in less than 1, 200 seconds with less than 10% gap. Unsurprisingly,
we observe that incorporating ambiguous probabilities into our nominal models does not
increase computation time significantly.

We refer to solution attempts using CPLEX as MILP. In Table 3.2, we compare the com-
putational performance of MILP with that of our heuristics, simple rolling horizon (SRH),
and delayed event spike with rolling horizon (DERH).

For the two heuristics, we must select values for r (the rolling horizon time) and TES
(the starting time period where the scenario tree is collapsed to event spike). As r and TES
are increased, there will be a trade-off between solution quality and computation time. For
small instances (T ≤ 12 for RN, T ≤ 9 for MMR, and T ≤ 10 for MER), we set r = T − 1
and TES = T − 2. For large instances, we set r = 11, 8, and 9 for RN, MMR, and MER,
respectively. If suggested r is the time horizon for the problem instance, as shown in Table
3.2, it takes less than 80 seconds to solve models using MILP. The computation time to solve
each sub-problem in both heuristics depends on the number of nodes in the problem. The
time to solve each sub-problem with an r-period time horizon in SRH is similar to the time to
solve a r-period time horizon problem using MILP. In DERH, if the number of event nodes
in each sub-problem is close to the number of nodes in an r-period MILP problem, their
computation times will be similar. We choose TES for which the total number of events in
the first iteration is closest to the number of nodes in an r+ 1-period MILP problem. (Note
that since the number of event nodes in each sub-problem decreases as we move forward in
the rolling horizon, we compare with an r + 1 rather than an r-period problem.)

We denote the objective values of the solutions found using SRH and DERH by zSRH(m)
and zDERH(m), respectively. Each sub-problem in the heuristics is solved using CPLEX, but
we set a 300 second time limit and a 3% relative MIP gap (when r ≥ 10) rather than solving
sub-problems to optimality.

To determine the effectiveness of the heuristic solutions, we compute the gap from the
best bound, zMIP (m)(1− (MIP gap)/100), for h = SRH, DERH:

zh(m)− zMIP (m)(1− (MIP gap)/100)

zh(m)
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Table 3.2. Average computation time and optimality gap using commercial software and heuristics

(RN) (RN-PR)
MILP SRH DERH MILP SRH DERH

T Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap
(s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%)

8 0.99 0 0.43 0 0.36 0 0.42 0 0.6 0.1 0.71 0.2
9 1.79 0 0.62 0.3 3.6 0 3.45 0 0.98 1.5 0.63 0.02
10 15.6 0 11.3 0.1 3.8 0.14 110.6 0 2.8 1.1 0.95 1.6
11 51.0 1.2 7.3 3.2 25.3 1.7 74.8 0.4 1.9 3.1 2.77 1.9
12 226.6 2.7 91.9 4.3 32.3 3.4 277.5 1.9 10 3.7 7.1 3.1
13 448.4 3.2 88.4 5.2 65.7 4.5 426.9 2.9 48.7 5.6 17.0 4.5
14 2,414 5.0 55.8 8.6 94.3 5.2 2,103 4.4 47.8 8.6 24.02 6.5
15 3,163 9.9 353 10.8 415.3 4.7 3,085 7 240 6.8 52.2 6.3
16 3,600 24.2 222 10 402.7 7.9 3,600 21.5 235.1 10.6 113.8 9.1

(MMR) (MMR-PR)
MILP SRH DERH MILP SRH DERH

T Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap
(s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%)

8 19.3 0 1.8 6 10.8 0 3.9 0 1.46 0 1.24 0
9 1,365 12.5 1.5 14.1 67.3 8.8 22.9 0 2.9 11.5 3.6 1.3
10 1,660 100+ 33.2 4.9* 251.6 (1.8)* 264.3 0 18.1 8.2 27.6 2.2
11 3,600 100+ 69.9 (27.4)* 335.2 (41.8)* 1,541 1.1 23.6 4.8 40 3.8

(MER) (MER-PR)
MILP SRH DERH MILP SRH DERH

T Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap
(s) (%) (s) (%) (s) (%) (s) (%) (s) (%) (s) (%)

8 2.2 0 0.8 6.7 0.94 0 4.6 0 1.03 1.4 0.7 0
9 13.5 0 3.3 0 11.7 0 26.8 0 3.8 0 5.2 0
10 536.8 0 21.5 13.1 135.3 0.9 1,203 0 25.1 5.6 89.5 4.1
11 3,052 9.7 81 21.6 103.4 10.6 1,429 0.3 55.8 4.0 51.2 1.0
12 3,600 27.3 193 31 396.1 21.2 2,933 22.2 216.9 11.6 249.6 9.8
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When the MIP gap is greater than 100% (MMR with T = 10, 11), we compute the gap
from zMIP , which is noted with ∗ in Table 3.2. In this case, zMIP is not a lower bound on
the optimal solution, so the gap can be negative.

We observe that the two heuristics perform better than the MILP in terms of computation
time and optimality gap, especially for large problem instances. For example, for RN, when
T ≤ 14, both SRH and DERH find solutions to problem instances in less than 100 seconds,
and the average gaps increase only at most 3.6% and 1.3% for SRH and DERH. When T = 16,
we observe that the average gaps decrease by 14.2% and 16.3% for SRH and DERH compared
to MILP. Note that in MER, although there are huge improvements in computation time
using the heuristics, the average gaps using SRH increase by up to 13.1% in our examples.
However, the average gaps using DERH only increase by at most 0.9% and improve by 6.1%
when T = 12. Thus, we can conclude that DERH performs better than SRH in this case.
Similarly, the average gaps are smaller for DERH than for SRH when we are solving other
models, although the computation time is slightly greater for DERH than for SRH. This
is because DERH considers all remaining periods, whereas SRH considers only truncated
periods in the rolling horizon.

For instances that are too large to be solved using the MILP, we can use our heuristic
approaches to find a feasible solution. We randomly generate 5 instances with T = 20 as
described above for models RN and RN-PR, and solve them using SRH and DERH. For
RN, the average computation times using SRH and DERH are 1, 180 and 1, 350 seconds,
respectively, while the average expected cost is 10% lower using DERH than using SRH. For
RN-PR, the average computation times using SRH and DERH are 2, 600 and 436 seconds,
respectively. DERH requires significantly less computation time than SRH, especially when
solving later periods in the rolling horizon. RN-PR tends to build more capacity in the
early periods, and solutions of DERH also have a similar tendency, which makes the problem
easier to solve later in the rolling horizon. Recall that the objective of RN-PR is to minimize
worst-case expected cost. It is computationally challenging to find the exact worst-case value
over all possible probabilities for these large instances, so we use simulation to compare the
objective function values from SRH and DERH. We simulate 50 sample scenario trees with
resolved probability uncertainty, and compute the expected costs of two heuristic solutions.
We compute empirical CDFs of expected costs of solutions from the two heuristics over these
50 sample scenario trees, and observe that on average, the worst-case expected cost is 5%
lower using DERH than using SRH. In other words, DERH can provide better solutions than
SRH for large instances, consistent with what we saw in small instances.

Figure 3.8 shows an example of empirical cumulative distribution function (ECDF) of
expected costs of solutions from our two heuristics. We observe that on average, the worst
case expected cost is 5% lower using DERH than using SRH.

Overall, commercial software can effectively solve problems with shorter time horizon,
that is, 13, 13, 8, 10, 10, 9 for RN, RN-PR, MMR, MMR-PR, MER, and MER-PR,
respectively. For problems that are too large to solve optimally using commercial software,
our heuristic, DERH, is a very effective alternative.
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Figure 3.8. An example of ECDF of expected costs for two heuristic solutions of RN-PR (T = 20)

3.5.2 When Is It Worth Explicitly Modeling Ambiguous Success
Probabilities?

To address the question in the title of this section, we compare solutions for a set of instances
of each model presented in Section 3.2. The goal of these tests is to develop insight into the
value of incorporating ambiguous probabilities into these models of capacity expansion, and
also to explore the impact of alternative objective functions on capacity expansion decisions
(note that we discuss this second goal in the subsequent section). The test instances we
choose are intended to capture various computationally tractable decision-making scenarios
in this setting.

We employ a 10 period of planning horizon for these test problems. We consider a
primary facility type (denoted “Type A”) with 3 periods of associated construction lead
time. We describe demand uncertainty using a scenario tree with 512 paths. The demand in
the first three periods is 0. From the 4th period on, if there have been at least four successful
trials, demand equals 3000+1000∗(additional number of successes), and otherwise, demand
remains the same as in the previous period. See Table 3.3 for details.

Table 3.3. Demand Structure of a test instance

Time Period
Path 1 2 3 4 5 ... 10

1 0 0 0 3000 4000 ... 9000
2 0 0 0 0 3000 ... 8000
3 0 0 0 0 3000 ... 8000
. . . . . . ... .
. . . . . . ... .
. . . . . . ... .

512 0 0 0 0 0 ... 0
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We set the probability of success of each node in the scenario tree, π̃n, to fall in the range
of (0.25, 0.75) centered at π̄ = 0.5. We use π̄ and π̃n to solve nominal and robust models,
respectively.

To assess the sensitivity of results to parameters, we consider the following parame-
ter settings. We keep all parameters constant over time, so we drop the subscript t.
We vary incremental capacity unit size UA = {1000,2000, 3000, 4000}, construction cost
cA = {200,300, 400, 500} per capacity unit UA, and fixed setup cost fA = {0, 100, 200, 300}.
We also vary the shortage cost for every unit of unmet demand as follows: s = {0.1, 1,2, 3}.
Additionally, we consider a setting where the firm has both facility Type A and an ad-
ditional facility (denoted “Type B”) to choose from. This additional facility Type B has
shorter construction lead time (lB) and smaller incremental unit capacity (UB), but higher
construction cost (cB). In our experiments, we set fB = 0 and vary cB, UB and lB as follows:
(CB, UB, lB) = {(160, 1000, 2), (90, 500, 1), (50, 250, 0)}

In our experiments, to generate test cases, we vary each parameter in turn, and keep
other parameters at their boldfaced base setting from the lists above.

Figure 3.9. An example of Cumulative Distribution Function of costs

For each set of test parameters, we solve each of the models (RN, RN-PR, MMR,
MMR-PR, MER, and MER-PR) to optimality, and then simulate 100 sample scenario
trees with resolved probability uncertainty to find the distribution of outcomes. Specifically,
for each simulation run, the (resolved) success rate of each node πn is randomly generated
from Unif(0.25, 0.75) distribution in our tests. We then calculate the cumulative distribution
function(CDF) of costs and regrets for each of the simulated scenario trees. For example,
Figure 3.9 illustrates the CDF of costs for a sample simulated scenario tree given solutions
to an instance of models RN and RN-PR. We then compute the average of the 50th, 75th,
95th, and 100th percentile of costs and regret over the 100 simulation runs.
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In Figures 3.10-3.13, we compare the average percentiles for nominal versus robust models
in our setting with ambiguous event probabilities, in an attempt to characterize settings
where robust models add value.

(a)

(b)

Figure 3.10. Cost and regret measures of nominal vs robust models with various incremental
capacity unit
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(a)

(b)

Figure 3.11. Cost and regret measures of nominal vs robust models with various construction
costs

In Figure 3.10, we report the average 50th, 75th, 95th, and 100th percentile of cost
(3.10a) and regret (3.10b) for each model as UA varies. The X-axis and Y -axis represent
average cost or regret for nominal models (mid point probabilities are used) and robust
models (ambiguous probabilities are used with 100% budget), respectively. The red line
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represents y = x, so points below represent the robust model out-performing the nominal
model, whereas points above the line represent the opposite. Figure 3.10a thus shows that
the- worst case cost (100%) is significantly lower utilizing the solution of robust model RN-
PR and MMR-PR than that of the nominal model RN and MMR. Figure 3.10b illustrates
that most regrets over the 50th percentile are smaller when using solution to RN-PR and
MMR-PR than when using solution to RN and MMR. When using solution to MER and
MER-PR models, however, most points lie above the red line – in this case, cost and regret
measures perform worse when robust models are employed. We observe similar tendencies
when the construction cost CA varies, in Figure 3.11.

The solution to model RN-PR tends to decrease the cost of high demand paths to
minimize the worst-case expected cost, and thus, more capacity is built and fewer shortages
are observed when the robust solution is used than when the nominal solution is used.
MMR-PR and MER-PR both try to decrease the worst-case regret. We see that when
the shortage cost is high relative to the investment cost, the penalty due to unmet demand
on high demand paths leads to higher regret than the unused capacity on low demand paths.

When the shortage cost s is varied, as shown in Figure 3.12, similar observations can be
made except when the shortage cost is very low (s = 0.1). In this case, in contrast to the
previous cases, the unused capacity on low demand paths leads to higher regret than unmet
demand on high demand paths, and as a result, RN-PR is not effective for minimizing
regret.

When the setup cost fA has a positive value or an additional facility is introduced, the
budget of uncertainty(Γ) plays a bigger role in the performance of solutions to these models,
especially model RN-PR. We thus compare the solutions to robust model RN-PR with
Γ = 100% and Γ = 10% with those to nominal model RN in Figure 3.13. To simplify
exposition, we identify these robust models as RN-PR(Γ = 100%) and RN-PR(Γ = 10%).

When fA > 0, as shown in Figure 3.13a and 3.13b, the worst-case cost and regret are
smaller when using RN-PR(Γ = 10%) than when using RN, whereas 95% regret and mean
excess regrets are larger when using RN-PR(Γ = 100%). Positive fixed cost increases the
investment cost and encourages less frequent capacity construction, and thus may lead to
more excess capacity on low demand paths while protecting the worst-case cost in the robust
solution. The budget of uncertainty can prevent this overly conservative decision-making,
and thus, the worst-case cost and regret perform better when the robust model is employed.

When an additional facility is introduced, all average cost measures are lower utilizing
the solution to RN-PR(Γ = 10%) than when the solution to RN is employed, and some
of cost measures are lower when the solution to RN-PR(Γ = 100%) is utilized. However
regret measures are worse when using both RN-PR(Γ = 10%) and RN-PR(Γ = 100%)
than when using RN.

When the shortage cost is very low, slightly more capacity is built with type A facilities
(cheaper but with longer lead times) at the start of the planning horizon to decrease the
cost of paths with high demand in the solution to RN-PR. This leads to wasted capacity
in paths with low demand, so regret is worse, despite the decrease in construction costs.

Overall, we observe in our experiments that managers in this setting, with uncertainty
around event probabilities, who are concerned about only minimizing the worst-case cost
or worse case regret, should use the corresponding robust models. Managers concerned
with simultaneously minimizing the worst-case cost, overall regret, and the worst-case regret
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(a)

(b)

Figure 3.12. Cost and regret measures of nominal vs robust models with various shortage cost

should choose the robust model that minimizes expected cost, particularly when shortage cost
is high relative to investment cost (in our experiments, for example, when the shortage cost
per unit is at least double to the investment cost per unit). However, if minimizing expected
overall cost is the primary concern, then it is better to choose the nominal model that
minimizes expected cost. When shortage cost is low relative to investment cost, managers
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(a)

(b)

Figure 3.13. Cost and regret measures of RN vs RN-PR with various fixed cost

concerned with minimizing both overall and worst case regret should choose the nominal
model that minimizes mean excess regret. Mangers concerned primarily with minimizing
expected overall cost should choose the nominal model that minimizes expected cost.

In addition, when there are several types of capacity available, the robust solution with
a correctly chosen budget of uncertainty reduces construction costs in many high demand
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(a)

(b)

Figure 3.14. Cost and regret measures of RN vs RN-PR with various construction cost and
lead time of additional facility

scenarios, but at the expense of higher regret. Thus, the robust model that minimizes
expected cost will be useful if the firm is primarily concerned with minimizing expected
overall cost.
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Table 3.4. Average objective value difference to the optimal in percentages

Objective
Model 95% 95%

Expected Max Mean Excess
Cost Regret Regret

RN 0.9 24.0 77.3
RN-PR 2.3 0 0.3
MMR 2.3 0 10.1

MMR-PR 3.3 0 0.3
MER 12.7 0 0.3

MER-PR 34.2 50.0 16.4
(a) UA = 2, 000, cA = 300, s=2 (base case)

Objective
Model 95% 95%

Expected Max Mean Excess
Cost Regret Regret

RN 0.6 46.8 15.7
RN-PR 10.4 48.2 29.2
MMR 3.5 14 9.4

MMR-PR 0.6 47 15.7
MER 10.8 7.4 2.6

MER-PR 5.6 48.0 15.8
(b) UA = 2, 000, cA = 300, s=0.1

3.5.3 Impact of alternative objective functions

We also explore the impact of alternative objective functions on capacity expansion decisions.
We choose two test instances- base case (UA = 2, 000, cA = 300, s = 2) and the case with
very low shortage cost (UA = 2, 000, cA = 300, s = 0.1) - among various instances described
in Section 3.5.2, since they can be two representative cases in terms of the investment and
shortage cost.

In the following tests, we observe how each solution performs for each of the objective
functions when the probability distribution is unknown.

In particular, for each set of test parameters, we solve six models (m ∈ {RN, RN-PR,
MMR, MMR-PR, MER, MER-PR}) to optimality, and let X∗m be the vector of optimal
solution for model m. We simulate 100 sample scenario trees with resolved probability
uncertainty as we described in Sub-Section 3.5.2. We denote the corresponding objective
function of model m by f(m) ∈ {EC(Expected cost), MMR(95% Max regret), MER(95%
Mean excess regret)}. For example, f(RN) and f(RN-PR), the corresponding objective
functions of model RN and RN-PR are EC.

For each of sample scenario trees, denoted s, we solve each of the nominal models -RN,
MMR, MER- to optimality, and define the optimal objective value of the model to be
z∗f(m),s. For each solution X∗m of model m ∈ {RN, RN-PR, MMR, MMR-PR, MER,

MER-PR}, given a simulated scenario tree s, we compute each of the objective function
value f(m′) for m′ ∈ { RN, MMR, MER} denoted Zf(m′),s(X

∗
m). We calculate the gap

between Zf(m′),s(X
∗
m) and the optimal objective value, that is,

Zf(m′),s(X
∗
m)− z∗f(m′),s

z∗f(m′),s

, and then average those over the 100 simulations runs.
In Table 3.4, we report average difference between computed objective function value and

optimal objective function value of solutions of each model in percentages for the two test
cases. We can compare the values in each row to observe how each solution performs for each
objective function. We see that for the base case, the expected cost using the solutions to
model RN-PR, MMR-PR performs only slightly worse (2.3% and 3.3%, respectively) than

47



the optimal expected cost on average, while 95% max regret and 95% mean excess regret
are close to optimal. However, when the shortage cost is low(s = 0.1), performance is less
consistent. As we discussed in the previous section, when the shortage cost is relatively higher
than the investment cost, penalty due to unmet demand on high demand paths leads to high
regret, and thus efforts to reducing cost on high demand paths are aligned for minimizing
both the worst expected cost and regret.

Overall, the solutions to the robust model that minimizes expected cost perform well
for all objectives with a slight loss in terms of optimal expected cost, particularly when the
shortage cost is high relative high to the investment cost. Thus, in this case, if managers
choose the robust model that minimizes expected cost, the decision can be robust to alter-
native objectives. When the shortage cost is low relative to the investment cost, choosing
the most appropriate objective function becomes more critical.

3.6 Conclusion

In this chapter, we study a capacity planning model where demand is dependent on the
outcome of a series of Bernoulli trials with unknown probabilities of success. We develop
approaches to formulate and solve models that capture a variety of different objectives such
as minimizing expected cost, minimizing α-reliable regret, and minimizing α-reliable mean
excess regret. To find solutions that are robust to these ambiguities in probability of success,
we formulate these models as robust stochastic integer programs and show that incorporating
ambiguity in these probabilities does not increase the complexity of the problems. Our
computational study suggests that when the shortage cost is relatively higher than the
capacity investment cost, explicitly modeling ambiguous probabilities focusing on minimizing
expected cost leads to solutions that actually perform quite well for all of the objective
functions we consider in this chapter. For cases where these mixed integer linear programs
are challenging to solve to optimality, we develop and test fast heuristic approaches. These
include both a simple rolling horizon(SRH) approach, and a delayed event spike approach
with rolling horizon (DERH). Through computational testing, we demonstrate that both
SRH and DERH enable us to find good solutions to large problems that we are unable to
solve effectively with commercial optimization software, and that DERH is computationally
more expensive, but it outperforms SRH in terms of solution quality.
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Chapter 4

Facility Location Planning

4.1 Introduction

In the capacity expansion planning model discussed in Chapter 3, we consider models opti-
mizing timing, size and type of capacity investment – the building and expansion of facilities.
In this chapter, we extend our capacity expansion models to optimize facility location and the
allocation of customers to facilities, in addition to capacity expansion decisions. Thus, the
problem we consider in this chapter is a version of the capacitated facility location problem,
which is solved in a wide range of applications such as hub or supplier locations problems,
and network design problems.

The facility location problems often involves uncertainties in input parameters such as
demands, costs and among others. Our problem is related to models for facility location
problems in the literature that include these characteristics. These uncertainties are often
modeled using either stochastic programming or robust optimization, depending on whether
probability distributions are known. In our setting, (stochastic) demand in each period is
determined by the outcome of a series of binary events, where the likelihood of outcomes
is unknown. We apply both robust optimization and stochastic programming to handle the
uncertainty in this setting.

In many applications of the facility location problems, as mentioned above, there is a high
degree of uncertainty surrounding future demands, costs, and other problem characteristics.
To adapt to changing situations, firms may relocate facilities or expand the capacities of
existing facilities, which may be expensive or inefficiently used. Sometimes, it may not be
possible to relocate facilities – firms may be stuck with decisions that were made many years
ago considering an entirely different set of circumstances. For example, power plants and
hospital are often built anticipating many years of operation(Torres Soto, 2009). Therefore,
it is often critical that firms properly account for future uncertainty in their decision-making
processes in order to avoid expensive and inefficient investments.

As in Chapter 3, our focus here is on a class of discrete time planning models where
demand in each period is determined by the outcome of a series of “binary events” in that
period and in previous periods. In many ways, the setting in this chapter is similar: the out-
come of events is uncertain, and the probability of outcomes cannot effectively be estimated.
In contrast to Chapter 3, however, in this chapter, demand uncertainty is not completely
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resolved after binary event outcome. For example, in the biopharmaceutical industry, al-
though demand is quite often well-understood given a series of binary events, this is not
always true. There may still be a good deal of uncertainty once trial results are realized.

Our goal is to find solutions that are robust to the ambiguities described above. We
formulate the models in this chapter as (stochastic) robust integer programs, and because
these multistage stochastic programming problems are challenging to solve to optimality as
the problem size becomes large, we propose heuristic approaches that extend the concepts
of Nested Decomposition (ND) and Stochastic Dual Dynamic Programming (SDDP) to
our setting in an effort to solve these models. These algorithms formulate the problem as a
dynamic program (DP) and approximate the convex cost-to-go functions by adding Benders’
cuts.

Since there are ambiguities in probabilities and demands, we modify standard ND and
SDDP to work in a robust setting. In addition, to speed by convergence of those approaches,
we consider splitting a large problem into moderate-sized problems rather than small-sized
problems (problems with a single period). This concept can reduce the number of DP
equations to iterate, and may reduce the number of iteration to converge although time to
solve each sub-problem is increased. We call these approaches Blocked Nested Decomposition
(BND) and Blocked Stochastic Dual Dynamic Programming (BSDDP).

Specifically, we consider the problem of selecting the locations of facilities, the capacity
of these facilities, and the amounts shipped from these facilities to customers over a discrete
and finite time horizon. The decision to open facilities is made once at the beginning of
the time horizon, and for those opened facilities, the amount of available capacity can be
expanded in any period. In each period, the amount of the product that can be shipped to
retailers from a facility is constrained by available capacity of the facility. We optimize a
function of sales revenue, product cost, facility construction costs, capacity expansion costs,
and shipping costs. As in Chapter 3, we use a scenario tree to describe the uncertainty of
demand which evolves based on trial outcomes.

For unresolved uncertainty of demand after the series of binary event outcomes, we
may assume that we can sample using the Monte Carlo sampling approach given the true
distribution of demand. However, the true distribution of demand is often unknown. Even
if we assume that the true distribution is known, adding sampled realizations to the scenario
tree increases the size of scenario tree significantly. The scenario tree that describes demand
uncertainty based on binary test outcomes includes

∑T
t=0 2t nodes in total. If, for example, 5

realizations are sampled for each node, the total number of nodes in the scenario tree becomes∑T
t=0 10t. As an alternative approach, we employ robust optimization to capture remaining

ambiguities in demand after the binary event outcomes. We also incorporate ambiguities in
probabilities using robust optimization, which does not increase computational complexity
significantly.

The size of the problem increases as the number of scenarios, the number of candidate
facility sites, and number of demand sites increase. The event spike approach, which we
used in the previous chapter, primarily focuses on reducing the number of the scenarios.
Motivated by Yu et al. (2018), who introduce the use of SDDP for a multi-period stochastic
facility location problem, we adapt concepts from ND and SDDP algorithms to develop
algorithms that solve our problem efficiently.

The remainder of this chapter is organized as follows.
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In Section 4.2, we formulate our facility location models, where the probability of Bernoulli
trial success, is known, using a multistage stochastic mixed integer program. Then, we ex-
tend this model to incorporate ambiguous probabilities and demand. In Section 4.3, we
develop the ND and SDDP-based approaches for efficiently solving these models. In Section
4.4, we present our preliminary computational testing, where we explore the effectiveness of
the robust approach, and the performance of the algorithms we have developed.

4.2 Model

We consider a discrete time multi-period facility location problem with T -period time hori-
zon, a set of potential facility sites, I, and a set of demand locations, J . We begin by
introducing our initial model, which assumes that the probability of each trial success is
known, and demand uncertainty is completely resolved after the binary event outcome is
revealed. As described above, given this scenario, demand uncertainty can be modeled as
a scenario tree, where each node tm in stage t and node counter m of the tree represents a
realization of demand, and edges are labeled with the probability of trial outcomes. Each
node of the tree from t = 1 to T has a unique parent node A(tm), and each non-leaf node
has a set of child nodes, denoted C(tm). We denote the probability on the edge from A(tm)
to tm by πtm – the conditional probability to reach node tm given A(tm). The probability
that scenario s is realized, θs, equals

∏
n∈P(s) πn, where P(s) is the set of nodes on the path

of scenario s.
We denote by rt the unit price of a product at time t, by fi the fixed cost opening a

facility at location i, by cti the cost of expanding capacity by one unit at facility in location
i at time t, by vtij the cost of shipping one unit from facility i to customer j at time t, by Ui
the unit capacity of facility i, and by dtmj the demand of customer j at node tm.

We define decision variables xi ∈ {0, 1} such that xi = 1 if we open a facility at location
i, and xi = 0 otherwise. We also define decision variables ytmi to be the amount of capacity
added to facility i at node tm, and variables ztmij to equal the amount of product shipped
from facility i to customer j at node tm.

We summarize notation used to formulate the model as follows.

Sets and indices:

• S: Set of scenarios (s ∈ S)

• I: Set of potential facility locations (i ∈ I)

• J : Set of customers (j ∈ J)

• N : Set of nodes (tm ∈ N or n ∈ N)

• t: Index for time periods (0, ..., T )

• m: Index for nodes at time t, (1, .., 2t)

Parameters:

• rt: Unit price of a product at time t

• Ui: Unit capacity of a facility i
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• fi: Fixed cost opening a facility i

• cti: Cost per unit of capacity adding to a facility at site i at time t

• vtij: Shipping cost per unit from facility at site i to customer j at time t

• dtmj : Demand of customer j at time t at node tm

• πtm: Conditional probability of reaching node tm

• θs: Probability of realization of a scenario s (θs =
∏

n∈P(s) πn)

Decision Variables:

• xi: 1 if opening a facility i, 0 otherwise

• ytmi : Amount of capacity added to facility i at time t at node tm

• ztmij : Amount of products shipped from facility i to customer j at time t at node tm

• F (tm): Profit at node tm

• P (s): Total profit for scenario s

Given this notation, we formulate the capacitated facility location problem with the goal
of maximizing the expected profit as follows. We present a node-based formulation to avoid
the large number of non-anticipativity constraints.

FL

max
∑
s∈S

θsP (s) (4.1)

s.t. F (01) = −
∑
i∈I

(fixi + c0
i y

01
i ) +

∑
i∈I

∑
j∈J

(r0 − vtij)z01
ij (4.2)

F (tm) = −
∑
i∈I

ctiy
tm
i +

∑
i∈I

∑
j∈J

(rt − vtij)ztmij ∀tm ∈ N, t ≥ 1 (4.3)

P (s) =
∑

tm∈P(s)

F (tm) s ∈ S (4.4)

∑
i∈I

ztmij ≤ dtmj j ∈ J, tm ∈ N (4.5)

ytmi ≤Mxi i ∈ I, tm ∈ N (4.6)∑
j∈R

ztmij ≤ Ui
∑

n∈P(tm)

yni i ∈ I, tm ∈ N (4.7)

xi ∈ {0, 1} i ∈ I (4.8)

ytmi ≥ 0, ztmij ≥ 0 i ∈ I, j ∈ J, tm ∈ N (4.9)

The objective function (4.1) maximizes the expected profit. Constraint (4.2) defines
the profit of the root node (the beginning of planning horizon). The first term expresses the
fixed facility opening and capacity building cost; the second term, revenue less shipping cost.
Constraint (4.3) defines the profit of each node when t ≥ 1. The first term expresses the
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capacity adding cost; the second term, revenue less shipping cost. Constraint (4.5) implies
that amount fulfilled for customer j at a node is at most its demand quantity. Constraint(4.6)
states that capacity is only added at open facilities. Constraint (4.7) ensures that the demand
satisfied by facility i at node tm is less than its capacity. All remaining constraints are the
non-negativity and binary constraints.

In the following two sections, we extend the model FL in order to model ambiguity in
the probability of success of each Bernoulli trial and ambiguity in demand after the trial
outcome is realized. As we point out in Chapter 3, although it may be possible to estimate
these probabilities and demand using historical data, the model FL is sensitive to small
changes in probability and demand estimates.

This leads us to consider a robust optimization(RO) approach, similar to the approach
we applied in Chapter 3. Recall that in this approach, each ambiguous parameter lies in an
interval and the number of parameters which can take their extreme values is limited by a
budget.

We first describe the uncertainty sets for ambiguous probabilities and demand, and then
formulate the robust version of FL that incorporates ambiguities in probability and demand.

4.2.1 Uncertainty Sets for Ambiguous Parameters

We begin by describing the uncertainty sets for the ambiguous parameters. Let π̃tm be the
ambiguous probability, which belongs to an interval centered at π̄tm and of half length π̂tm.
Without a budget of uncertainty, the uncertainty set Ω for ambiguous parameter π̃tm is:

Ω = {π̃|π̃tm ∈ [π̄tm − π̂tm, π̄tm + π̂tm] ∀tm ∈ ∪t=1..TN
t,∑

n∈C(tm)

π̃n = 1,∀tm ∈ ∪t=0..T−1N
t}.

In general, considering all possible values of probabilities is too conservative, and so as in
the previous chapter, we adjust the level of conservativeness using a budget of uncertainty
as follows. We define the positive and negative scaled deviation of θ̃s from its nominal value
θsmid =

∏
tm∈P(s) π̄tm as

zs+ = (θ̃s − θsmid)/θ̂s+
and

zs− = (θ̃s − θsmid)/θ̂s−
where θ̂s+ =

∏
i∈P (s) π

+
tm − θsmid and θ̂s− = θsmid −

∏
i∈P (s) π

−
tm, respectively. The scaled devia-

tions take values in [0, 1]. Then, we force a budget of uncertainty as follows:
The total variation of scenario realization probabilities cannot exceed some threshold Γ, not
necessarily integer: ∑

s∈S

zs+ + zs− ≤ Γ

We transform Ω for π̃tm to the uncertainty set Θ for θ̃s in order to remove nonlinear term∏
i∈P (s) π̃i, and we add the budget of uncertainty described above. Note that π̃tm can be

represented as the sum of probabilities of scenario realizations that include node tm divided
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by the sum of probabilities of realized scenarios that include the parent of node tm, i.e.,∑
i∈S(tm) θ̃

i/
∑

i∈S(A(tm)) θ̃
i. Then

π−tm ≤ π̃tm ≤ π+
tm ⇔ π−tm

∑
i∈S(A(tm))

θ̃i ≤
∑

i∈S(tm)

θ̃i ≤ π+
tm

∑
i∈S(A(tm))

θ̃i

Also, the sum of scenario probabilities must satisfy
∑

s∈S θ̃
s = 1. Under this transforma-

tion, the probability constraints
∑

i∈C(tm) π̃i = 1 become trivial, as we show below:

∑
i∈C(tm)

π̃i = 1⇔
∑

i∈C(tm)

∑
k∈S(i)

θ̃k/
∑

j∈S(tm)

θ̃j = 1⇔
∑

j∈S(tm)

θ̃j/
∑

j∈S(tm)

θ̃j = 1⇔ 1 = 1

Therefore, the uncertainty set Θ for θ̃s is:

Θ =

{
θ̃ ∈ R|S||θ̃s = θsmid − θ̂s−zs− + θ̂s+z

s
+,

0 ≤ zs+ ≤ 1, 0 ≤ zs− ≤ 1, ∀s ∈ S,

π−tm
∑

i∈S(A(tm))

θ̃i ≤
∑
i∈S(n)

θ̃i ≤ π+
tm

∑
i∈S(A(tm))

θ̃i, ∀tm ∈ N, t ≥ 1

∑
s∈S

θ̃s = 1,
∑
s∈S

zs+ + zs− ≤ Γ

}

We also describe the uncertainty set for demand at each node tm, d̃tmj as follows. We

let d̃tmj take values in [d̄tmj − d̂tmj , d̄tmj + d̂tmj ]. The total variation of the scaled deviations of
demand at node tm cannot exceed some threshold ΓDtm:

∑
j∈J

|d̃tmj − d̄tmj |
d̂tmj

≤ ΓDtm

Then, the uncertainty set D for d̃tmj is:

D =
{

d̃ ∈ RI×N×T |d̃tmj ∈ [d̄tmj − d̂tmj , d̄tmj + d̂tmj ] ∀j ∈ J, tm ∈ N,∑
j∈J

|d̃tmj − d̄tmj |
d̂tmj

≤ ΓDtm ∀tm ∈ N
}

4.2.2 Models using Robust Optimization

Given uncertainty sets Θ and D , we formulate the robust version of FL as follows.
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FL-R

maxmin
θ∈Θ

∑
s∈S

θ̃sP (s) (4.10)

s.t. (4.2)− (4.4), (4.6)− (4.9)∑
i∈I

ztmij ≤ d̃tmj j ∈ J, tm ∈ N, d̃tmj ∈ D (4.11)

Next, we derive the Mixed Integer Linear Program (MILP) for the uncertain MILP model
FL-R. Given uncertainty set Ω, the objective function (4.10) which includes the ambiguous
parameter θ̃s, is equivalent to solving the following auxiliary problem with variables zs+ and
zs−.

max −
∑
s∈S

(θsmid + θ̂s+z
s
+ − θ̂s−zs−)P (s)

s.t. θ̃s = θsmid + θ̂s+z
s
+ − θ̂s−zs− (4.12)∑

s∈S

θ̃s = 1 (4.13)

π−n
∑

i∈S(A(n))

θ̃i ≤
∑
i∈S(n)

θ̃i n ∈ N \ {0} (4.14)

∑
i∈S(n)

θ̃i ≤ π+
n

∑
i∈S(A(n))

θ̃i n ∈ N \ {0} (4.15)

∑
s∈S

zs+ + zs− ≤ Γ (4.16)

0 ≤ zs+ ≤ 1 s ∈ S (4.17)

0 ≤ zs− ≤ 1 s ∈ S (4.18)

We introduce dual variables q, ωn−, ω
n
+, t, γ

s
+, γ

s
− for constraints (4.13), (4.14), (4.15), (4.16),

(4.17) and (4.18). Then, the dual problem becomes:

min C ′

s.t. K+(s) ≥ −P (s)θ̂s+ s ∈ S
K−(s) ≥ P (s)θ̂s− s ∈ S
t ≥ 0,

γs+ ≥ 0, γs− ≥ 0, s ∈ S
ωn+ ≥ 0, ωn− ≥ 0 n ∈ N \ {01}
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where

C ′ =tΓ +
∑
s∈S

(γs+ + γs−) +
∑
n∈C(0)

π̂n(ωn+ + ωn−) +
∑
n∈N−

π̂n
∑

i∈S(A(n))

θimid(ω
n
+ + ωn−)

K+(s) =qθ̂s+ + t+ rs+ +Ka(θ̂s+) +Kb(θ̂s+) +Kc(θ̂s+)

K−(s) =− qθ̂s− + t+ rs− +Ka(−θ̂s−) +Kb(−θ̂s−) +Kc(−θ̂s−)

Ka(a) =
∑

m∈P (s)
A(m)=0

a(ωm+ − ωm− ), Kb(b) =
∑
n∈P (s)
A(n) 6=0

b{(1− π+
n )ωn+ − (1− π−n )ωn−}

Kc(c) =
∑

A(n)∈P (s)
n/∈P (s)

{c(π−n ωn− − π+
n ω

n
+)}

The constraint (4.10) includes the ambiguous parameter d̃tmj , and it is equivalent to the
following inequality: ∑

i∈I

ztmij ≤ d̄tmj − d̂tmj ∗min(1,ΓDtm)

With this observation, FL-R can be reformulated as follows:

FL-RC

max
∑
s∈S

θsmidP (s)− C ′ (4.19)

s.t. (4.2)− (4.4), (4.6)− (4.9)∑
i∈I

ztmij ≤ d̄tmj − d̂tmj ∗min(1,Γtm) j ∈ J, tm ∈ N (4.20)

K+(s) ≥ −P (s)θ̂s+ s ∈ S (4.21)

K−(s) ≥ P (s)θ̂s− s ∈ S (4.22)

t ≥ 0, γs+ ≥ 0, γs− ≥ 0, ωn+ ≥ 0, ωn− ≥ 0 (4.23)

We can make various choices when modeling ambiguities in probabilities and demands.
We may estimate the values for both parameters and use the nominal model. We may
estimate the one parameter, and incorporate ambiguities in another parameter or incorporate
ambiguities in both parameters. We may consider a model, where demand is not based on
binary outcomes.

In the following example, we can see that decisions vary depending on modeling choices.
We also observe that when including the setting where demand depends on binary outcomes
in the robust models, the solutions to the models are less conservative.

Example 2. As an example, consider a problem with T = 1 and two customers, j = 1, 2.
For each j, demand at each node is d̃01

j = 0, d̃11
j ∈ [8000, 12000] and d̃12

j ∈ [1000, 5000].
The locations of customers are the candidate locations of the two facilities. The open facility
will cover demand, if possible, with rt = 1, fi = 2, 000, ci0 = 0.1, c1

i = 0.3 for all i. The
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Table 4.1. Solutions under different modeling choices for Example 2

FL RC(P) RC(D) RD(PD) RO

O.V. 7,000 4,900 3,400 1,580 0
t=0 (10,000,10,000) (5,000,5,000) (8,000,8,000) (1,000,1,000) (0,0)
t=1 (0,0) (5,000,5,000) (0,0) (7,000,7,000) (0,0)

(0,0) (0,0) (0,0) (0,0)

transportation cost is vtij = 1 if i 6= j, and vtij = 0 otherwise. We assume a box uncertainty
set, where ΓDtm = 2. The probability of success p̃11 falls in the interval [0.3, 0.7]. We compare
solutions to the nominal model FL and the robust model FL-RC. For FL, we use the mid-
point values of intervals for all uncertain parameters. For FL-RC, we consider ambiguities
in probability only, demand only, and both probability and demand, and we denote these
by RC(P), RC(D), and RC(PD), respectively. We also consider a model where demand is
not based on binary outcomes, RO, where for each j, demand is defined as d̃0

j = 0 and

d̃1
j ∈ [1000, 12000]. In Table 4.1, we present the expected profit and capacity built at each

period and facility in the solutions to models described above. As shown in Table 4.1, solutions
vary from model to model. Note that if we ignore the setting where demand depends on binary
outcomes, the solution becomes very conservative resulting in not building any facilities.

In many location-allocation models, shipment quantity is often presented as a fraction of
total demand. In our model, we can substitute ζtmij d̃

tm
j for ztmij where ζtmij is the proportion

of demand j at node tm. The optimal solution remains same in nominal model, but this
is not true for robust model. Specifically, Ardestani-Jaafari and Delage (2018), argue that
this may lead to over-conservative solution when we consider ambiguities in demand, and
the following example supports this observation. In Example 3, we use the same problem
instance described in Example 2, and focus on ambiguities in demand. We compare the
solution to FL-RC with the solution to a version of the model where we replace ztmij by

ζtmij d̃
tm
j . We call this model FL-FRV.

Example 3. The optimal objective value of FL-RC is 3, 400 as shown the column of RC(D)
in Table 4.1. However, when we use the fractional variable, the optimal objective value of FL-
FRV is 2, 600. In the optimal solution to FL-FRV 12, 000 units of capacity for each facility
is built at time 0 to satisfy the largest possible demand, because the following constraint needs
to be satisfied for all possible demand:∑

j∈R

ζtmij d̃
tm
j ≤ Ui

∑
n∈P(tm)

yni (4.24)

However, in the following objective function, the worst-case profit is computed, where we
account for the smallest possible demand.

maxmind∈D

∑
s∈S

θs((−
∑
i∈I

(fixi + c0
i y

01
i ) +

∑
i∈I

∑
j∈J

(r0 − vtij)
∑
j∈R

ζ01
ij d̃

01
j )

+ (
∑

tm∈P(s)

−
∑
i∈I

ctiy
tm
i +

∑
i∈I

∑
j∈J

(rt − vtij)
∑
j∈R

ζtmij d̃
tm
j ))
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This leads 4, 000 units of capacity in each facility is not used in the optimal solution to
FL-FVB of this example, and its worst-case profit is 800 less than the worst-case profit of
FL-RC. In the following, we show the case that this possibility to waste large capacity may
lead to overly conservative decision when using FL-FRV.

Suppose we let fi = 3, 000, d̃11
j ∈ [8, 000, 15, 000] and keep other parameters unchanged.

The optimal objective value of FL-RC is equal to 600, but the optimal objective value of
FL-FRV is equal to 0. The solution to FL-FRV becomes very conservative resulting in not
building any facilities, where we may lost an opportunity to make a profit.

Ben-Tal et al. (2004) introduce the adjustable robust optimization (ARO) methodology,
where decision variables can have one component that cannot be adjusted due to the uncer-
tain data, and another component that can be adjusted based on the uncertain data. They
point out that introducing these variables often makes solutions less conservative at the cost
of additional computational time. In FL-FRV, ztmij is a decision variable that can be written
in terms of ambiguous demand, and adapting a concept from ARO, we use the following
substitution:

ztmij = wtmij + ζtmij d̃
tm
j

This substitution guarantees that the following revised model always provides a solution
that is at most as conservative as the solution to FL-RC. In other words, the objective value
of the revised model is always higher than the objective value of FL-RC.

Next, we formulate the robust version of FL with the two additional variables wtmij and
ζtmij as follows:

FLFV-R

maxmin
θ∈Θ

∑
s∈S

θ̃sP (s) (4.25)

s.t. F (01) = −
∑
i∈I

(fixi + c0
i y

01
i ) +

∑
i∈I

∑
j∈J

(r − vtij)(w01
ij + ζtmij d̃

01
j ) (4.26)

F (tm) = −
∑
i∈I

ctiy
tm
i +

∑
i∈I

∑
j∈J

(r − vtij)(wtmij + ζtmij d̃
tm
j ) ∀tm ∈ N, t ≥ 1 (4.27)

P (s) =
∑

tm∈P(s)

F (tm) s ∈ S (4.28)

∑
i∈I

wtmij + ζtmij d̃
tm
j ≤ d̃tmj j ∈ J, tm ∈ N, d ∈ D (4.29)

ytmi ≤Mxi i ∈ I, tm ∈ N (4.30)∑
j∈R

(wtmij + ζtmij d̃
tm
j ) ≤ Ui

∑
n∈P(tm)

yni i ∈ I, tm ∈ N (4.31)

xi ∈ {0, 1} i ∈ I (4.32)

ytmi ≥ 0, wtmij ≥ 0, ζtmij ≥ 0 i ∈ I, j ∈ J, tm ∈ N (4.33)

Lemma 3. FLFV-R can be formulated as a MILP.

58



Proof. We note that (4.26)- (4.27) are equality constraints with ambiguous parameters.
Thus, we can rewrite objective function (4.25) and constraints (4.26)- (4.28) as follows:

maxmin
θ∈Θ

∑
s∈S

θ̃sP (s) (4.34)

= maxmin
θ∈Θ

∑
s∈S

θ̃s
∑

tm∈P(s)

F (tm)

= maxmin
θ∈Θ

∑
s∈S

θ̃s
∑

tm∈P(s)

max
d∈D

F (tm)

where

F (tm) = −
∑
i∈I

ctiy
tm
i +

∑
i∈I

∑
j∈J

(r − vtij)(wtmij + ζtmij (d̄tmj + d̂tmj e+tm
j − d̂tmj e−tmj ))

Then, maxd∈D F (tm) is equivalent to solving the following auxiliary linear program:

max
∑
i∈I

∑
j∈J

(r − vtij)ζtmij d̂tmj etmj

s.t 0 ≤ etmj ≤ 1 j ∈ J (4.35)∑
j∈J

etmj ≤ ΓDtm (4.36)

We can apply strong duality, since the feasible set is nonempty and bounded. Let λjtm
and µtm be dual variables for constraints (4.35) and (4.36), respectively. Then, the dual
problem becomes:

min
∑
j∈J

λjtm + ΓDtmµ
tm

s.t. λjtm + µtm ≥
∑
i∈I

d̂tmj ζtmij (r − vtij)

λjtm ≥ 0, µtm ≥ 0

Now, maxd∈D F (tm) can be rewritten as:

F ′(tm) = −
∑
i∈I

ctiy
tm
i +

∑
i∈I

∑
j∈J

(r − vtij)(wtmij + ζtmij d̄
tm
j ) +

∑
j∈J

λjtm + ΓDtmµ
tm.

Objective (4.34) now can be transformed to

maxmin
θ∈Θ

∑
s∈S

θ̃s
∑
P(s)

F ′(tm) (4.37)

Let P ′(s) =
∑
P(s) F

′(tm), and the objective (4.37) is

maxmin
θ∈Θ

∑
s∈S

θ̃sP ′(s) (4.38)
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. As we have seen in FL-RC, this objective function can be rewritten as follows.

max
∑
s∈S

θsmidP (s)− C ′

s.t. K+(s) ≥ −P ′(s)θ̂s+ s ∈ S
K−(s) ≥ P ′(s)θ̂s− s ∈ S
t ≥ 0, γs+ ≥ 0, γs− ≥ 0, ωn+ ≥ 0, ωn− ≥ 0

In addition, constraints (4.29) and (4.31) also include ambiguous parameter d̃, and can
be rewritten as follows:

For each j ∈ J, tm ∈ N , constraint (4.29) is equivalent to:∑
i∈I

wtmij − (1− ζtmij )(d̄tmj − d̂tmj ∗min(1,Γtm)) ≤ 0

For each i ∈ I, tm ∈ N , Constraint (4.31) is equivalent to solving following problem.

max
∑
i∈I

ζtmij d̂
tm
j etmj

s.t 0 ≤ etmj ≤ 1 j ∈ J∑
j∈J

etmj ≤ ΓDtm

Applying strong duality,

min
∑
j∈J

θijtm + ΓDtmν
i
tm

s.t. θijtm + νitm ≥ ζtmij d̂
tm
j

θijtm ≥ 0, νitm ≥ 0

Reinjecting all of these equivalent constraints into the original problem, we arrive at the
following MILP:
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FLFV-RC

max
∑
s∈S

θsmidP (s)− C ′

s.t. F (01) = −
∑
i∈I

(fixi + c0
i y

01
i ) +

∑
i∈I

∑
j∈J

(r − vtij)(w01
ij + ζtmij d̄

01
j ) +

∑
j∈J

λj01 + ΓD01µ
01

F (tm) = −
∑
i∈I

ctiy
tm
i +

∑
i∈I

∑
j∈J

(r − vtij)(wtmij + ζtmij d̄
tm
j ) +

∑
j∈J

λjtm + ΓDtmµ
tm

∀tm ∈ N, t ≥ 1

P (s) =
∑

tm∈P(s)

F (tm) s ∈ S

λjtm + µtm ≥
∑
i∈I

d̂tmj ζtmij (r − vtij) ∀tm ∈ N∑
i∈I

wtmij − (1− ζtmij )(d̄tmj − d̂tmj ∗min(1,Γtm)) ≤ 0 j ∈ J, tm ∈ N

ytmi ≤Mxi i ∈ I, tm ∈ N∑
j∈R

(wtmij + ζtmij d̄
tm
j ) +

∑
j∈J

θijtm + ΓDtmν
i
tm ≤ Ui

∑
n∈P(tm)

yni i ∈ I, tm ∈ N

θijtm + νitm ≥ ζtmij d̂
tm
j i ∈ I, tm ∈ N

xi ∈ {0, 1} i ∈ I
K+(s) ≥ −P (s)θ̂s+ s ∈ S
K−(s) ≥ P (s)θ̂s− s ∈ S
t ≥ 0, γs+ ≥ 0, γn− ≥ 0, s ∈ S
ωn+ ≥ 0, ωn− ≥ 0, λjtm ≥ 0, µtm ≥ 0, θijtm ≥ 0, νitm ≥ 0 tm ∈ N

Lemma 4. For a given problem instance L, let f ∗(FL−RC)(L) and f ∗(FLFV−RC)(L) be the
optimal objective values to model FL-RC and FLFV-RC, respectively. Then,

f ∗(FL−RC)(L) ≤ f ∗(FLFV−RC)(L)

Proof. Suppose we constrain ζtmij = 0 in FLFV-R. In this case, FLFV-R is equivalent to
FL-R. Therefore, FLFV-R is an upper bound on FL-R.

We have seen that that FL-RC and FLFV-RC are deterministic robust counterparts
of FLFV-R and FL-R, respectively. Therefore, we can conclude that FLFV-RC is also
upper bound on FL-RC, and as a result,

f ∗(FL−RC)(L) ≤ f ∗(FLFV−RC)(L)
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4.3 Heuristic Algorithms

As we will observe in Section 4.4, we can solve moderate-sized problem instances of our
model optimally using commercial optimization software such as CPLEX. However, we need
alternative approaches to solve large instances.

Multistage stochastic linear programming problems (MSLP) can be equivalently formu-
lated as recursive dynamic programs (DP). In these DPs, the cost-to-go function is piece-wise
linear and convex. Thus, these cost-to-go functions can be approximated by linear cuts as in
nested Benders decomposition, also known as L-shaped decomposition. This nested Benders
decomposition algorithm approximates the convex cost-to-go functions by adding Benders’
cuts, and it converges in finite steps to an optimal solution (Birge, 1985). However, when
the size of problem is large, nested Benders decomposition becomes computationally in-
tractable. Pereira and Pinto (1991) develop a sampling-based nested decomposition (ND)
method, Stochastic Dual Dynamic Programming (SDDP), which utilizes stage-wise inde-
pendence of stochastic process, so that the number of equations in DP reduces significantly.
Z.-L. Chen and Powell (1999) prove that given finite scenarios and linear programs in ev-
ery stage, SDDP converges in finite iterations. SDDP also has been applied to stochastic
processes with stage-wise dependence, for example, using auto-regressive processes (Shapiro
et al., 2013).

Motivated by Yu et al. (2018), who introduce the use of SDDP for multi-period stochastic
facility location problems, we propose heuristic approaches that extend the concepts of ND
and SDDP to our setting. Although our model is formulated as a MILP, integer variables only
relate to the initial period, and thus our profit-to-go function (our model maximizes expected
profit, and thus we use the term profit-to-go instead of cost-to-go) is convex. However, the
approaches in the literature do not directly apply to our setting, since our model includes
ambiguities in probabilities and demand. We incorporate these ambiguities by adopting the
machinery of robust optimization. In both our ND and SDDP-based approaches, we express
the value functions of the DP for each time period t given state variables and a realization of
random variables at t. This implies that each value function is formulated as a single-period
linear program. In our models, the number of scenarios only doubles in each period, and
thus the size of scenario tree expands relatively slowly.

This motivates us to consider decomposing our large problem into a smaller number of
sub-problems with longer horizons, and we call this sub-problem a “block” in what follows.
In this case, each value function is formulated as a multi-period linear program. If the
size of sub-problems is moderate, the computational time to solve them does not increase
significantly. In addition, the total number of DP equations is reduced, and the number of
iterations to converge may decrease. This approach accelerates convergence in most cases.
We call these approaches Blocked ND (BND) and Blocked SDDP (BSDDP).

4.3.1 Dynamic Program

Recall the nominal model FL. We originally formulated this as multistage stochastic pro-
gramming with binary variables, and we present equivalent dynamic program in this section.

We first introduce a new state variable stmi to represent the cumulative amount of capacity
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built up to time t, that is,

stmi =
∑

n∈P(tm)

yni .

We modify the facility opening decision variable xi as follows. Recall that for each node,
the constraint (4.6)

ytmi ≤Mxi i ∈ I

needs to be satisfied. We introduce a continuous variable x̂tmi for each node, the following
constraint for the root node 01,

x̂01
i = xi i ∈ I

and the following constraints for each node tm ∈ N .

x̂tmi = x̂
A(tm)
i i ∈ I

In addition, we modify constraint (4.6) using the new variable x̂tmi as follows.

ytmi ≤Mx̂tmi i ∈ I.

This modification ensures that the integer variable only appears in the initial period in
the following DP equations.

We use vector x01 ∈ ZI+ to denote {x01
i }i∈I . For each tm ∈ N , we use vector x̂tm ∈ RI

+ to
denote {x̂tmi }i∈I , vector stm ∈ RI

+ to denote {stmi }i∈I , and vector dtm ∈ ZJ+ to denote demand
{dtmj }j∈J . Let wtm := (stm, x̂tm) be a state variable vector for a node tm.

We denote the objective function at tm as follows:

g0(x̂01, s01, z01) = −
∑
i∈I

(fix̂i + c01
i s

01
i ) +

∑
i∈I

∑
j∈J

(r0 − v01
ij )z01

ij

gt(sA(tm), stm, ztm) = −
∑
i∈I

ct(s
tm
i − s

A(tm)
i ) +

∑
i∈I

∑
j∈J

(rt − vtij)ztmij

.
The DP equations for the optimal value function of FL at node tm ∈ N can then be

written as follows:

(P01) max
∑
i∈I

g0(x̂01, s01, z01) +
∑
n∈C(0)

πnQn(w01) (4.40)

s.t.
∑
i∈I

z01
ij ≤ d01

j j ∈ J (4.41)

s01
i ≤Mxi i ∈ I (4.42)

x̂01
i = xi i ∈ I (4.43)∑
j∈R

z01
ij ≤ Uis

01
i i ∈ I (4.44)

s01
i ≥ 0, xi ∈ [0, 1], x̂01

i ≥ 0, z01
ij ≥ 0 i ∈ I, j ∈ J (4.45)
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where w0 = (0, 0), and for each node tm ∈ N \ {01}:

(Ptm) Qtm(wA(tm)) :=

max gt(sA(tm), stm, ztm) +
∑

n∈C(tm)

πnQn(wtm) (4.46)

s.t.
∑
i∈I

ztmij ≤ dtmj j ∈ J (4.47)

stmi ≤Mxtmi i ∈ I (4.48)

x̂tmi = x̂
A(tm)
i i ∈ I (4.49)

s
A(tm)
i ≤ stmi i ∈ I (4.50)∑
j∈R

ztmij ≤ Uis
tm
i i ∈ I (4.51)

stmi ≥ 0, x̂tmi ≥ 0, ztmij ≥ 0 i ∈ I, j ∈ J (4.52)

with QTm(w(T+1)m) = 0.
In the sections below, we use the following notation. We let XA

tm(wA(tm), dtm) be a
feasible set defined by constraints (4.47)-(4.52), and XB

t (w0, d01) be a feasible set defined by
constraints (4.41)-(4.45). We also denote the expected profit to-go function by Qtm(wtm) :=∑

n∈C(tm) πnQn(wn).

4.3.2 Nested Decomposition

In this section, we describe the how the nested decomposition (ND) algorithm (Birge and
Louveaux, 2011) can be applied to our nominal model FL, and in the next section, we extend
and modify this approach so that it can be applied to our robust model. In this algorithm,
the problem for each node tm ( (4.53)) is solved in a forward and backward step. In the
forward step, the solution for stage t + 1 is updated, and in the backward step, cuts for
stage t − 1 are generated. This procedure iterates these forward and backward steps until
the stopping criteria is met. We outline algorithm details below:

In each iteration l, the ND algorithm consists of a forward step and a backward step. In
iteration l, the forward step considers all nodes tm ∈ Nt from t = 0 to T , where Nt denotes
a set of nodes at t. In particular, in iteration l, at node tm, given slA(tm) and xlA(tm) obtained

from solving the problem of its parent node A(tm), we solve the problem NDl
tm(wlA(tm), ψ

l
tm)

defined as:

(NDl
tm(wlA(tm), ψ

l
tm)) (4.53)

Ql

tm
(wlA(tm), ψ

l
tm) :=max gt(s

l
A(tm), s

l
tm, z

l
tm) + ψltm(sltm, x

l
tm)

s.t. (sltm, x̂
l
tm, z

l
tm) ∈ XA

tm(wA(tm), dtm)

where the approximate expected profit to-go function is:

ψltm(sltm, x̂
l
tm) := max{φtm :φtm ≤ Btm

φtm ≤
∑

n∈C(tm)

πn(βqn + αAqn sltm + αBqn x̂ltm),∀q = 1..l − 1}. (4.54)
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(a) Forward (b) Backward

Figure 4.1. Forward and backward steps of the nested decomposition algorithm

ψltm(sltm, x̂
l
tm) provides a piece-wise linear convex under-approximation of the expected

profit-to-go function Qtm(wtm), and we assume there is an upper bound Btm on φtm to avoid
unboundedness.

(sltm, x̂
l
tm), an optimal solution to NDl

tm(wlA(tm), ψ
l
tm) is passed as a state variable wltm

to the problems NDl
k(w

l
tm, ψ

l
k) of child nodes k ∈ C(tm) of node tm. When all forward

problems are solved in iteration l, we can obtain a lower bound (LB) to the optimal value
of FL as follows.

LB := g0(xl01, s
l
01, z

l
01) +

∑
s∈S

θs
∑
tm∈P

gt(s
l
A(tm), s

l
tm, z

l
tm). (4.55)

Figure 4.1 illustrates the forward and backward steps of the ND algorithm. In this
graphical example, at time stage 1 in iteration l, the forward step proceeds as follows. Given
the state variable wl01 = (sl01, x̂

l
01), which is obtained by solving NDl

01, NDl
11 and NDl

12 are
solved independently. The solutions (sl11, x̂

l
11) and (sl12, x̂

l
11) to NDl

11 and NDl
12 are passed

as a state variable to solve the problems at their child nodes at t = 2.

The backward step starts from the final stage T . In the final stage T , ψlTm = 0 since
there is no expected profit-to-go function. The goal of the backward step is to update the
expected profit to-go function at each node by adding a new cut. In particular, at a node
Tm of the final stage T , we solve NDl

Tm(wlA(Tm), ψ
l
Tm) given a candidate solution obtained

from the forward step, and collect cut coefficients (βlTm, α
Al
Tm, α

Bl
Tm). The cut coefficients are

obtained from a linear inequality that approximates the true value function QTm(wA(tm))
based on weak duality.

When cut coefficients are collected for all nodes Tm ∈ NT , we proceed to stage T −
1. At node (T − 1)m, a cut is added by using cut coefficients generated from its child
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nodes and inequality (4.54), and thus ψl(T−1)m is updated to ψl+1
(T−1)m. In other words, we

generate a cut, which is an inequality that approximate true value of QTm(.), by taking
the average of inequalities of all children of node (T − 1)m. Then we solve the updated
problem NDl

Tm(wlA((T−1)m), ψ
l+1
(T−1)m) at node (T − 1)m in the backward step to collect cut

coefficients. This set of cut coefficients is aggregated with those of its sibling node in stage
T − 2 to generate a cut for its parent node. The backward step continues in this way until
it reaches the root node (01) of the tree.

In Figure 4.1, the backward step is proceeded as follows. At node 21 in iteration l, given
cut coefficients obtained from solving NDl

31 and NDl
32, ψl21 is updated to ψl+1

21 . Then we
solve NDl

21 to collect a set of cut coefficients, which is aggregated with cut coefficients from
NDl

21 to update ψ11.
Since the cuts are approximations of the true expected to-go profits, the optimal objective

value obtained by solving

(NDl
01(w0, ψ

l
01)) Ql

01
(w0, ψ

l+1
01 ) := max g0(xl01, s

l
01, z

l
01) + ψl01(sl01, x̂

l
01)

s.t. (sl01, x
l
01, z

l
01) ∈ XB

0 (w0, d0)

provides an upper bound, UB, to the optimal expected profit of the original problem FL.
These forward and backward steps are repeated until the stopping criterion, UB−LB ≤ ε,
is met. We summarize the ND algorithm below.

Step 1: Initialization. LB ← −∞, UB ←∞, l← 1
For all tm ∈ N , initialize ψ1

tm, ψ1
tm = {φtm : φtm ≤ Btm}

Step 2: Forward Step.
For t = 0..T and tm ∈ Nt, solve NDl

tm(wtm, ψ
l
tm), collect solution (x̂ltm, s

l
tm, z

l
tm),

update g0(xl01, s
l
01, z

l
01) and gt(s

l
A(tm), s

l
tm, z

l
tm).

Step 3:

LB← g0(xl01, s
l
01, z

l
01) +

∑
s∈S

θs
∑
tm∈P

gt(s
l
A(tm), s

l
tm, z

l
tm)

Step 4: Backward Step.
For t = T..1 and tm ∈ Nt, do followings.

If n ∈ C(tm) exists,
add a cut (4.59) using cut coefficients (βln, α

Al
n , α

Bl
n ) for all n ∈ C(tm), then ψl+1

tm ← ψltm
Otherwise, ψl+1

tm ← ψltm.
Solve NDl

tm(wtm, ψ
l+1
tm ), and collect cut coefficients (βltm, α

Al
tm, α

Bl
tm)

Step 5: Solve NDl
01(w0, ψ

l+1
01 ) and set UB be the optimal value.

Step 6: If some stopping criterion is met, then stop.
Otherwise, l← l + 1 and go to Step 2.
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4.3.3 The Nested Decomposition Approach for a Model with Am-
biguities in Probabilities and Demand

We now extend the ND approach to the problem with ambiguities in probabilities and
demand. In the robust setting with respect to ambiguous parameters d̃tm and π̃n, the Bellman
equations can be written as follows:

Qtm(wA(tm)) := max min
d̃tm∈D

gt(sA(tm), stm, ztm) + max
πn∈Ω,n∈C(tm)

∑
n∈C(tm)

πnQn(wtm) (4.57)

s.t. (stm, x̂tm, ztm) ∈ XA
tm(wA(tm), d̃tm)

Q01 := max min
dtm∈D

g0(x01, s01, z01) + max
πn∈Ω,n∈C(01)

∑
n∈C(01)

πnQn(w01) (4.58)

s.t. (s01, x01, z01) ∈ XB
0 (w0, d̃01)

In the nominal setting, to find the optimal value of Q01, we solve the problem NDl
tm

(4.53), which is formulated as a linear program, at node tm in each iteration l in forward and
backward steps of the ND algorithm. In order to show that we can use a ND-based approach
in our robust setting, we need to show that the problem NDl

tm can still be formulated as a
linear program in this setting.

We first focus on the inner maximization problem in the objective function (4.57) of
Qtm(wA(tm)), which is,

max
πn∈Ω,n∈C(tm)

∑
n∈C(tm)

πnQn(wtm) (4.59)

Recall that in our setting, each node tm has only two child nodes, and we denote these
nodes by c(tm)s and c(tm)f . Since πc(tm)s + πc(tm)f = 1, given wtm, the problem (4.59) can
be written as a linear program with respect to πc(tm)s :

max πc(tm)sQc(tm)s(wtm) + (1− πc(tm)s)Qc(tm)f (wtm)

s.t. πc(tm)s ≤ π+
c(tm)s

(4.60)

− πc(tm)s ≤ −π−c(tm)s
(4.61)

This auxiliary problem is feasible (since πc(tm)s = π̄c(tm)s is a feasible solution) and
bounded. Let γ+

tm and γ−tm be the dual variables corresponding to constraints (4.60) and
(4.61). Then, the dual of the auxiliary problem is:

min Qc(tm)f (wtm) + π+
c(tm)s

γ+
tm − π−c(tm)s

γ−tm

s.t. γ+
tm − γ−tm ≥ Qc(tm)s(wtm)−Qc(tm)f (wtm)

By reinjecting this into the DP equations (4.57) and (4.58), we can rewrite these DP
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equations as follows:

Qtm(wA(tm)) := (4.62)

max min
d̃tm∈D

gt(sA(tm), stm, ztm) +Qc(tm)f (wtm) + π+
c(tm)s

γ+
tm − π−c(tm)s

γ−tm

s.t. (stm, x̂tm, ztm) ∈ XA
tm(wA(tm), d̃tm)

γ+
tm − γ−tm ≥ Qc(tm)s(wtm)−Qc(tm)f (wtm)

Q01 := max min
d̃tm∈D

gt(x01, s01, z01) +Q12(wtm) + π+
11γ

+
01 − π−11γ

−
01

s.t. (s01, x01, z01) ∈ XB
0 (w0, d̃01)

γ+
01 − γ−01 ≥ Q11(w01)−Q12(w01).

In the inner minimization problem, ambiguous parameter d̃tm is only found in the con-
straint (4.47), which is, ∑

i∈I

ztmij ≤ d̃tmj j ∈ J, d̃tm ∈ D.

This constraint is equivalent to:∑
i∈I

ztmij ≤ d̄tmj − d̂tmj ×min(1,ΓDtm). (4.63)

We denote by X̃A
tm(wA(tm), d̃tm) a feasible set defined by constraints (4.48)-(4.52) and (4.63),

all of which are linear.
Then, in the robust setting, our ND-based algorithm solves the following NDRl

tm prob-
lem, which is formulated as a linear program:

Ql

tm
(wlA(tm), ψ̂

l
C(tm)) :=

max min
d̃tm∈D

gt(s
l
A(tm), s

l
tm, z

l
tm) + ψlc(tm)f

(wltm) + π+
c(tm)s

γ+
tm − π−c(tm)s

γ−tm

s.t. (sltm, x̂
l
tm, z

l
tm) ∈ XA

tm(wlA(tm), d̃tm)

γ+
tm − γ−tm ≥ ψ̂lc(tm)s(w

l
tm)− ψ̂lc(tm)f

(wltm)

Ql

01
(w0, ψ̂

l
C(tm)) :=

max min
d̃01∈D

g0(xl, sl01, z
l
01) + ψl12(wl01) + π+

c(01)s
γ+

01 − π−11γ
−
01

s.t. (sl01, x̂
l
01, z

l
01) ∈ XB

0 (w0, d̃01)

γ+
01 − γ−01 ≥ ψ̂l11(wl01)− ψ̂l12(wl01)

where ψ̂l(wlA(tm)), the approximation of value function Qtm(wA(tm)), is defined as:

ψ̂ltm(wlA(tm)) := max{φtm : φtm ≤ Btm

φtm ≤ (βqtm + αAqtmsA(tm) + αBqtmx̂A(tm)),∀q = 1..l − 1} (4.64)
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The corresponding NDRl
tm for model FLFV-RC can be found in the Appendix A.1.

Note that we add two cuts here instead of an aggregated single cut which was the case
in the ND algorithm presented in the previous section. While our ND-based algorithm has
similar steps to the original ND algorithm, the backward step needs some modification due
to these multi-cuts.

The detailed algorithm is as follows. Our ND-based algorithm for the robust model also
consists of a forward step and a backward step in each iteration. The forward step is the
same as in the traditional ND algorithm. We solve NDRl

tm for each node tm, and for each
iteration l, and update a proposed solution. We compute the LB to the optimal value of the
robust model as follows. For n ∈ N , we let π′n be π−n if the trial result is success at node n,
and π+

n otherwise. Then we compute the worst-case scenario probability θ′s =
∏

n∈P π
′
n, and

using this the LB becomes

LB := g0(xl01, s
l
01, z

l
01) +

∑
s∈S

θ′s
∑
tm∈P

gt(s
l
A(tm), s

l
tm, z

l
tm).

In the backward step, we solve NDRl
tm, and collect cut coefficients obtained from a linear

inequality that approximates the true value function Qtm based on weak duality. In contrast
to the traditional ND algorithm, where a cut is added to its parent node A(tm) after being
aggregated with its sibling node, a cut is added to self node tm. Thus, at node tm, ψ̂ltm is
updated to ψ̂l+1

tm . When all problems are solved for all nodes tm at stage t, we proceed to
stage t−1. At a node (t−1)m, given updated cuts from its child nodes, we solve the updated
problem NDRl

(t−1)m at node (t− 1)m, and generate a cut for node (t− 1)m. The backward

step continues in this way until it reaches the root node (01) of the tree. We summarize the
modified ND algorithm for our robust model below.

Step 1: Initialization. LB ← −∞, UB ←∞, l← 1
For all tm ∈ N , initialize ψ1

tm, ψ1
tm = {φtm : φtm ≤ Btm}

Step 2: Forward Step.
For t = 0..T and tm ∈ Nt,

solve NDRl
tm(wtm, ψ̂

l
C(tm)), collect solution (x̂ltm, s

l
tm, z

l
tm),

and update g0(xl01, s
l
01, z

l
01) and gt(s

l
A(tm), s

l
tm, z

l
tm).

Step 3:

LB← g0(xl01, s
l
01, z

l
01) +

∑
s∈S

θ′s
∑
tm∈P

gt(s
l
A(tm), s

l
tm, z

l
tm)

Step 4: Backward Step.
For t = T..1 and tm ∈ Nt, do followings.

Solve NDRl
tm(wtm, ψ

l+1
C(tm)), collect cut coefficients (βltm, α

Al
tm, α

Bl
tm), and

add a cut (4.64) to ψltm, and set this as ψl+1
tm .

Step 5: Solve NDRl
01(w0, ψ

l+1
C(01)) and set UB be the optimal value.
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Step 6: If some stopping criterion is satisfied, then stop.
Otherwise, l← l + 1 and go to Step 2.

4.3.4 Blocked Nested Decomposition

In the ND algorithm, we solve the problem NDl
tm for all nodes tm ∈ N in each iteration l.

Each NDl
tm is a single-period problem, and thus the computation time to solve each problem

is very short. This algorithm generates as many DP equations as the number of nodes in the
scenario tree of a multistage stochastic program, and requires many iterations to converge,
and thus it often takes a long time, even though each sub-problem can be solved quickly.

In our setting, each node in the scenario tree only has two child nodes, and the size of the
scenario tree expands relatively slowly as the planning horizon increases. Thus, moderate
size problem instances can be solved optimally in a short time using commercial software
such as CPLEX. For example, as we will see in Section 4.4, a problem instance with T = 5, 10
potential facility sites, and 20 demand locations takes less than 50 seconds to solve optimally.

In our ND-based algorithm, we propose splitting our one large problem into a smaller
number of sub-problems by increasing individual sub-problem horizons. This implies that
each value function will be formulated as a multi-period linear program. If the size of sub-
problems is moderate, the computational time to solve them does not increase significantly as
described above. In addition, the total number of DP equations is reduced, and the number
of iterations to converge may decrease. Thus, we can expect relatively faster convergence in
this approach.

In this section, we first formulate our models using recursive blocked dynamic program-
ming equations, and then introduce the Blocked Nested Decomposition algorithm.

Blocked Dynamic Programming Equations

We divide a planning horizon into B separate time intervals, [0, t1], [t1 + 1, t2]... and [tB−1 +
1, T ]. In each division, sub-trees are created rooted from each node in the first period of
the corresponding time interval . We call a sub-tree a block. For example, in Figure 4.2,
we divide a scenario tree into two [0, 2] and [3, 3] time intervals. In division [0, 2], there is
1 sub-tree (block) rooted from node 01, and in division [3, 3], there are 8 sub-trees (blocks)
rooted from all nodes tm at t = 3. We denote a set of all blocks by B.

Each block, denoted by b, is also a scenario tree with a root node r(b), and d[r(b),tb] denotes
a demand vector from the root node r(b) to all descendant nodes through stage tb. The set
of nodes in the block b is denoted by Nb. The set of nodes on the path from root node r(b)
to node n, including node n, is denoted by P(r(b), n). S(n) denotes the set of scenarios in
which node n is included. Lb denotes all leaf nodes at stage th in the scenario tree of block
b. Let pk be the probability of reaching node k ∈ Lb, where pk =

∏
n∈P(r(b),k) πn.

We use vector xN(b) for each block b to denote {x̂ni }i∈I,n∈Nb , vector sN(b) to denote
{sni }i∈I,n∈Nb , and vector zN(b) to denote {znij}i∈I,j∈J,n∈Nb .

We denote the objective function at block 1 and other blocks b > 1 as follows:

g1(xN(1), sN(1), zN(1)) = g0(x01, s01, z01) +
∑
k∈Lb

pk
∑

n∈P(01,k)

gt(sA(n), sn, zn)
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Figure 4.2. Blocked Nested Decomposition: Notation

gb(xN(b), sN(b), zN(b)) =
∑
k∈Lb

pk
∑

n∈P(r(b),k)

gt(sA(n), sn, zn)

.
Given this notation, we can write the blocked DP equations for the optimal value function

of FL at the first block (r(b = 1) = 01) as follows:

Qb=1 := max g1(xN(1), sN(1), zN(1)) +
∑
k∈Lb

pk
∑

n∈C(k),
r(b′)=n

πkQb′(wk)

s.t.
∑
i∈I

znij ≤ dnj j ∈ J, n ∈ Nb (4.65)

sni ≤Mx̂ni i ∈ I, n ∈ Nb (4.66)

x̂ni = x̂
A(n)
i i ∈ I, tm ∈ Nb (4.67)∑

j∈R

znij ≤ Uis
n
i i ∈ I, n ∈ Nb (4.68)

x01
i ∈ [0, 1] (4.69)

x̂ni , s
n
i ≥ 0, znij ≥ 0 i ∈ I, j ∈ J, n ∈ Nb (4.70)

where for other blocks b > 1,

Qb(wA(r(b))) := max gb(xN(b), sN(b), zN(b)) +
∑
k∈Lb

pk
∑

n∈C(k),
r(b′)=n

πkQb′(wk)

s.t. (4.65)− (4.68), (4.70)
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with Qb(wTm) = 0 for r(b) ∈ C(Tm).
We let XA

b (wA(r(b)), d[(r(b),tb]) be a feasible set defined by constraints (4.65)-(4.68), and
(4.70). We also let XB

1 (w0, d[01,t1]) be a feasible set defined by constraints (4.65)-(4.70).

Blocked Dynamic Programming Equations with Ambiguous Probabilities and
Demand

In this subsection, we formulate the robust model FL-RC using recursive blocked dynamic
programming equations. Recall that we use the probability pk of reaching node k ∈ Lb
and πk′ for k′ ∈ C(k) in the blocked DP equation Qb(wA(r(b))) for block b. Let θ′k′ be the
probability of reaching node k′, that is, θ′k′ = pkπk′ . Then, we need to define the uncertainty
set in terms of θ′k′ for the robust version of Qb(wA(r(b))). Let C(Lb) be a set of child nodes of
all nodes in Lb.

We define the positive and negative scaled deviation of θ′k′ from its nominal value θ
′mid
k′ =

pA(k′)π̄k′ to be
z+
k′ = (θ′k′ − θ

′mid
k′ )/θ̂+

k′

and
z−k′ = (θ′k′ − θ

′mid
k′ )/θ̂−k′

where θ̂+
k′ =

∏
n∈P(r(b),k′) π

+
n −θ

′mid
k′ and θ̂−k′ = θ

′mid
k′ −

∏
n∈P(r(b),k′) π

−
n , and the scaled deviations

take values in [0, 1]. Then, θ′k′ can be written as:

θ′k′ = θ′midk′ + θ̂′
+
k′z

+
k′ − θ̂

′−
k′z
−
k′ .

Recall that given a budget of uncertainty, we assume that the total variation of sce-
nario realization probabilities cannot exceed Γ. For each block b, we define the budget of
uncertainty as described below.

Let Sb be the number of the child nodes of the all leaf nodes in the tree of block b. If
block b includes the last period of nodes from the original scenario tree, we let Sb be the
total number of scenarios in the tree of block b. Then, for the tree in each block b, the total
variation of the probabilities θ′k′ for all k′ ∈ C(k), k ∈ Lb is forced not to exceed Γ

|S| ∗ Sb.
More formally, we can write this as follows:∑

k∈Lb

∑
k′∈C(k)

z+
k′ + z−k′ ≤

Γ

|S|
∗ Sb

Then, the uncertainty set Θ2 for θ′ is:

Θ2 =

{
θ′ ∈ R|C(Lb)||θ′k′ = θ′midk′ + θ̂′

+
k′z

+
k′ − θ̂

′−
k′z
−
k′ ,

0 ≤ z+
k′ ≤ 1, 0 ≤ z−k′ ≤ 1, ∀k′ ∈ C(Lb),

π−n
∑

i∈S(A(n))

θ′i ≤
∑
i∈S(n)

θ′i ≤ π+
n

∑
i∈S(A(n))

θ′i, ∀n ∈ Nb ∪ C(Lb)

∑
k′∈C(Lb)

θ′k′ = 1,
∑

k′∈C(Lb)

z+
k′ + z−k′ ≤

Γ

|S|
∗ Sb

}
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Given the uncertainty set Θ2 and D, the blocked DP equation for the value function of
FL-RC at the first block is:

Q̃b=1 := max min
d̃[(r(1),t1]∈D,

θ′∈Θ2

g1(xN(1), sN(1), zN(1)) +
∑
k∈Lb

∑
n∈C(k),
r(b′)=n

θ′nQb′(wk)

s.t. (sN1 ,xN1 , zN1) ∈ XB
1 (w0, d[(r(1),th])

where for other blocks b > 1,

Q̃b(wA(r(b))) := max min
d̃[(r(b),tb]∈D,

θ′∈Θ2

gb(xN(b), sN(b), zN(b)) +
∑
k∈Lb

∑
k′∈C(k),
r(b′)=k′

θ′k′Qb′(wk) (4.71)

s.t. (sNb ,xNb , zNb) ∈ XA
b (wA(r(b)), d̃[(r(b),th]).

In the following lemma, we show that Q̃b can be rewritten as Q′b. Q
′
b allows us to apply

the our ND-based algorithm - Blocked Nested Decomposition, which will be described in the
following subsection.

Lemma 5. The DP equation Q̃b for block b can be equivalently formulated as the following
Q′b:

max
∑
k∈L(b)

∑
n∈P(r(b),k)

θmidk′ gt(sA(n), sn, zn) +
∑

k′∈C(Lb),
r(b′)=k′

θmidk′ Qb′ − C ′

s.t. (sNb ,xNb , zNb) ∈ X̃A
b (wA(r(b)), d[(r(b),th])

K+(k′) ≥ −
∑

n∈P(r(b),A(k′))

gt(sA(n), sn, zn)−Qb′ θ̂
+
k′ ∀k

′ ∈ C(Lb)

K−(k′) ≥
∑

n∈P(r(b),A(k′))

gt(sA(n), sn, zn) +Qb′ θ̂
−
k′ ∀k

′ ∈ C(Lb)

t ≥ 0, rk
′

+ ≥ 0, rk
′

− ≥ 0, wn+ ≥ 0, wn− ≥ 0

where

C ′ = t
Γ

|S|
∗ Sb +

∑
k′∈C(Lb)

(rk
′

+ + rk
′

− ) +
∑

n∈C(r(b))

π̂n(wn+ + wn−) +
∑
n∈N−

π̂n
∑

i∈S(A(n))

θ′midi (wn+ + wn−)

K+(k′) = qθ̂k
′

+ + t+ rk
′

+ +Ka(θ̂k
′

+ ) +Kb(θ̂k
′

+ ) +Kc(θ̂k
′

+ )

K−(k′) = −qθ̂k′− + t+ rk
′

− +Ka(−θ̂k′− ) +Kb(−θ̂k′− ) +Kc(−θ̂k′− )

Ka(a) =
∑

m∈P(r(b),k′)
A(m)=0

a(wm+ − wm− ), Kb(b) =
∑

n∈P(r(b),k′)
A(n) 6=0

b{(1− π+
n )wn+ − (1− π−n )wn−}

Kc(c) =
∑

A(n)∈P(r(b),k)
n/∈P(r(b),k)

{c(π−nwn− − π+
n pw

n
+)}
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Proof. Recall that

gb(xN(b), sN(b), zN(b)) =
∑
k∈Lb

pk
∑

n∈P(r(b),k)

gt(sA(n), sn, zn).

Since pk can be replaced by

pk =
∑

k′∈C(k)

θ′k′ ,

the inner minimization problem of (4.71) is equivalent to solving following linear program:

AUX :

max −
∑

k′∈C(Lb)

θ′k′
∑

n∈P(r(b),k)

gt(sA(n), sn, zn)−
∑

k′∈C(Lb)

θ′k′Qk′(w
l
k′)

s.t. θ′k′ = θ′midk′ + θ̂′
+
k′z

+
k′ − θ̂

′−
k′z
−
k′ k′ ∈ C(Lb)∑

k′∈C(Lb)

θ′k′ = 1

π−n
∑

i∈S(A(n))

θ′i ≤
∑
i∈S(n)

θ′i ∀n ∈ Nb ∪ C(Lb) \ {r(b)}∑
i∈S(n)

θ′i ≤ π+
n

∑
i∈S(A(n))

θ′i ∀n ∈ Nb ∪ C(Lb) \ {r(b)}

∑
k′∈C(Lb)

z+
k′ + z−k′ ≤

Γ

|S|
∗ Sb

0 ≤ z+
k′ ≤ 1 k′ ∈ C(Lb)

0 ≤ z−k′ ≤ 1 k′ ∈ C(Lb)

Then, the dual of AUX is

min C ′

s.t. K+(k′) ≥ −
∑

n∈P(r(b),A(k′))

gt(s
l
A(n), s

l
n, z

l
n)−Qk′ θ̂

+
k′ ∀k ∈ Lb, k

′ ∈ C(k)

K−(k′) ≥
∑

n∈P(r(b),A(k′))

gt(s
l
A(n), s

l
n, z

l
n) +Qk′ θ̂

−
k′ ∀k ∈ Lb, k

′ ∈ C(k)

t ≥ 0, rk
′

+ ≥ 0, rk
′

− ≥ 0, wn+ ≥ 0, wn− ≥ 0

We reinject this into the original objective function.
With ambiguous parameter d̃, the constraint (4.65) is equivalent to solving:∑

i∈I

ztmij ≤ d̄tmj − d̂tmj ×min(1,ΓDtm) j ∈ J, tm ∈ Nb. (4.72)

We denote a feasible set defined by constraints (4.66)-(4.70) and (4.72), all of which are
linear constraints by X̃A

b (wA(r(b)), d[(r(b),th]) , which will replace XA
b (wA(r(b)), d[(r(b),th]).

Finally, the resulting formulation is Q′b as in the statement of the lemma.
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Next, we describe a modified version of nested decomposition which we use to solve
blocked dynamic programming equations. We call this the Blocked Nested Decomposition
algorithm. We first describe the algorithm for the nominal model, and extend it to the
robust model.

Blocked Nested Decomposition

Similar to the ND algorithm, the Blocked Nested Decomposition (BND) algorithm consists
of a forward and a backward step in each iteration. In contrast to the ND, which solves the
problem for each node, in the BND we solve the following problem for each block b in each
iteration l:

(BNDl
b(w

l
A(r(b)), ψ

l
C(Lb))

Ql

b
(wlA(r(b)), ψ

l
C(Lb)) :=

max gb(xN(b), sN(b), zN(b)) +
∑
k∈Lb

pk
∑

k′∈C(k),
r(b′)=k′

πk′ψ
l
b′(w

l
k)

s.t. (slNb ,x
l
Nb
, zlNb) ∈ X

A
b (wlA(r(b)), d[(r(b),tb])

Ql

1
(w0, ψ

l
C(Lb)) :=

max g1(xN(1), sN(1), zN(1)) +
∑
k∈L1

pk
∑

k′∈C(k),
r(b′)=k′

πkψ
l
b′(w

l
k)

s.t. (slN1
,xlN1

, zlN1
) ∈ XB

1 (wlA(r(1)), d[(r(1),t1])

where the value function of block b′ is approximated by:

ψlb′(w
l
A(r(b′))) := max{φb′ : φb′ ≤ Btm

φb′ ≤ (βqtm + αAqtmsA(r(b′)) + αBqtmx̂A(r(b′))),∀q = 1..l − 1} (4.73)

and ψlC(Lb) is a set of ψlb′(w
l
A(r(b′))) for all k ∈ C(Lb) and r(b′) = k.

Then, the BND algorithm can be described as follows:
Step 1: Initialization. LB ← −∞, UB ←∞, l← 1
For all b ∈ B, initialize ψ1

b , ψ
1
b = {φb : φb ≤ Btm}

Step 2: Forward Step.
For b ∈ B, in ascending order,

solve BNDl
b(w

l
A(r(b)), ψ

l
C(Lb)), collect solution (slNb ,x

l
Nb
, zlNb),

and update g1(xN(1), sN(1), zN(1)) and gb(xN(b), sN(b), zN(b)).

Step 3:

LB← g1(xN(1), sN(1), zN(1)) +
∑

b∈B\{1}

(
∏

n∈P(01,r(b))

πn)gb(xN(b), sN(b), zN(b))
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Step 4: Backward Step.
For b ∈ B, in descending order, do followings.
Solve BNDl

b(w
l
A(r(b)), ψ

l
C(Lb)), collect cut coefficients (βlb, α

Al
b , α

Bl
b ), and

add a cut (4.74) to ψlb, and set this as ψl+1
b .

Step 5: Solve BNDl
1(w0, ψ

l+1
C(L1)) and set UB be the optimal value.

Step 6: If some stopping criterion is satisfied, then stop.
Otherwise, l← l + 1 and go to Step 2.

For the robust model, we solve the following problem for each block b in each iteration l
in the BND algorithm, and we denote this problem by (BNDRl

tm(wlA(r(b)), ψ
l
C(Lb))).

Ql

b
(wlA(r(b)), ψ

l
C(Lb)) :=

max gb(xN(b), sN(b), zN(b)) +
∑

k′∈C(Lb),
r(b′)=k′

θmidk′ ψ
l
b′(w

l
A(k))

s.t. (sNb ,xNb , zNb) ∈ X̃A
b (wA(r(b)), d[(r(b),th])

K+(k′) ≥ −
∑

n∈P(r(b),A(k′))

gt(sA(n), sn, zn)− ψlb′(wlA(k))θ̂
+
k′ ∀k

′ ∈ C(Lb)

K−(k′) ≥
∑

n∈P(r(b),A(k′))

gt(sA(n), sn, zn) + ψlb′(w
l
A(k))θ̂

−
k′ ∀k

′ ∈ C(Lb)

t ≥ 0, rk
′

+ ≥ 0, rk
′

− ≥ 0, wn+ ≥ 0, wn− ≥ 0

Ql

1
(w0, ψ

l
C(Lb)) :=

max g1(xN(1), sN(1), zN(1)) +
∑

k′∈C(Lb),
r(b′)=k′

θmidk′ ψ
l
b′(w

l
A(k))

s.t. (slN1
,xlN1

, zlN1
) ∈ XB

1 (wlA(r(1)), d[(r(1),t1])

K+(k′) ≥ −
∑

n∈P(r(b),A(k′))

gt(sA(n), sn, zn)− ψlb′(wlA(k))θ̂
+
k′ ∀k

′ ∈ C(Lb)

K−(k′) ≥
∑

n∈P(r(b),A(k′))

gt(sA(n), sn, zn) + ψlb′(w
l
A(k))θ̂

−
k′ ∀k

′ ∈ C(Lb)

t ≥ 0, rk
′

+ ≥ 0, rk
′

− ≥ 0, wn+ ≥ 0, wn− ≥ 0

where gb(xN(b), sN(b), zN(b)) =
∑

k∈L(b)

∑
n∈P(r(b),k) θ

mid
k′ gt(sA(n), sn, zn)−C ′, the value function

of block b′ is approximated by:

ψlb′(w
l
A(r(b′))) := max{φb′ : φb′ ≤ Btm

φb′ ≤ (βqtm + αAqtmsA(r(b′)) + αBqtmx̂A(r(b′))),∀q = 1..l − 1} (4.74)

and ψlC(Lb) is a set of ψlb′(w
l
A(r(b′))) for all k ∈ C(Lb) and r(b′) = k.
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We follow the BND algorithm described above, but BNDRl
tm(wlA(r(b)), ψ

l
C(Lb)) is solved

in each step instead of BNDl
tm(wlA(r(b)), ψ

l
C(Lb)).

4.3.5 Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming (SDDP) is a sampling based nested decomposition
method proposed in Pereira and Pinto (1991) that takes advantage of stage-wise indepen-
dence. The scenario tree is stage-wise independent when any two nodes at the same stage
share an identical set of child nodes. Under this assumption, the value functions and the
expected profit-to-go functions depend only on the stage rather than the nodes, and thus
there is a significant reduction in the number of DP equations. If the stochastic process is
stage-wise dependent, it can typically be modeled using an auto-regressive process, and as a
result, additional state variables are created to keep track of previous stochastic outcomes.
If the stochastic variable is on the right-hand sides of constraints, a standard SDDP is valid
because the value function is still convex with respect to state variables.

In our problem, we assume that demand is dependent on the outcomes of a series of
Bernoulli trials. We restrict this setting in order to apply SDDP. Specifically, we require
demand at time t to be related to the demand at time t−1 as well as the outcome of current
trial. Then, demand can be modeled as follows.

dt = δtdt−1 +Xtht + εt (4.75)

where Xt ∼ Bernoulli(πt), and P (Xt = 1|X[t−1]) = P (Xt = 1), and error vectors ε1, ...εt are
independent of each other.

Although this demand model has its limitation, it is significantly more flexible than
insisting on stage-wise independence. It also captures the basic assumption in our setting –
in the scenario tree of our problem, when more positive outcomes are observed, more demand
is expected. Also, the stochastic variable, the demand, only appears on the right-hand side
of constraint (4.5) in FL, and thus we can use the standard SDDP algorithm for our nominal
model. In particular, the Bellman equation for each node tm with demand model (4.75) is:

Qtm(wA(tm), dA(tm), Xtm, εtm) :=

max gt(sA(tm), stm, ztm) +Qtm(stm, xtm, dtm)

s.t.
∑
i∈I

ztmij ≤ δtdA(tm) +Xtmht + εtm j ∈ J

dtm = δtdA(tm) +Xtmht + εtm

(stm, xtm, ztm) ∈ XA
tm(wA(tm), dtm)

Let ξt := (Xt, εt). Recall that in demand model (4.75), P (Xt = 1|X[t−1]) = P (Xt = 1),
and εt ∀t ≤ T are independent, and thus, ξt ∀t ≤ T are independent. Let Et be a set
of realizations of ξt (in our case, there are two realizations), and the probability of each
outcome defined as πtn where n = 1..|Et|.

We define state variable ẃt := (st, xt, dt). Then, the DP equations and the expected
profit-to-go functions depend on the stage rather than the nodes, and a DP equation per
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stage is:

Qt(ẃt−1, ξt) :=

max gt(st−1, st, zt) +Qt+1(ẃt) (4.76)

s.t.
∑
i∈I

ztij ≤ δtdt−1 +Xtht + εt j ∈ J

dt = δtdt−1 +Xtht + εt

(st, x̂t, zt) ∈ XA
t (wt−1, dt).

Now, we describe the standard SDDP proposed in Pereira and Pinto (1991) when applied
to solve FL.

The SDDP algorithm consists of a forward step, where sample paths are generated from
the stochastic process and solutions are updated, and a backward step, where we improve
the approximation of the profit-to-go functions in each iteration. In each iteration l, in the
forward step, we start by sampling K scenarios from the tree. Next, from t = 0 to T , we
solve the following problem for each k. In particular, for each k at stage t given a state
variable ẃklt−1, the problem SDDP l

t (ẃ
kl
t−1, ξ

k
t , ψ

l
t) for a particular realization of ξt (denoted by

ξkt where ξkt ∈ Et ) is defined as:

(SDDP l
t (ẃ

kl
t−1, ξ

k
t , ψ

l
t))

Ql

t
(ẃklt−1, ξ

k
t , ψ

l
t) :=

max gt(s
kl
t−1, s

kl
t z

kl
t ) + ψlt(ẃ

l
t)

s.t.
∑
i∈I

zklijt ≤ δtd
k
t−1 +Xk

t ht + εkt j ∈ J

dkt = δtd
k
t−1 +Xk

t ht + εkt

(sklt , x
kl
t , z

kl
t ) ∈ XA

t (wklt−1, d
k
t )

where expected profit-to-go function ψlt is defined as

ψlt(ẃt) := max{φt :φt ≤ Bt

φt ≤
∑
m∈Et

π(t+1)m(βmqt+1 + (αmqt+1)T ẃt) ∀q = 1, .., l − 1}

(sklt , x
kl
t , z

kl
t ), which is an optimal solution to the problem SDDP l

t (ẃ
kl
t−1, ξ

k
t , ψ

l
t), is given

as a state variable ẃklt to the problem SDDP l
t+1(ẃklt , ξ

k
t , ψ

l
t) of stage t+ 1 for scenario k.

After all the forward problems on the sampled paths are solved in iteration l, we construct
a probabilistic lower bound on the optimal value to the problem FL with confidence 1 − α
as

LB:=µ̂− zα/2
σ̂√
K

where ok =
∑T

t=0 gt(s
lk
t−1, s

lk
t , z

lk
t ), µ̂ = 1/K

∑K
k=1 o

k, σ̂2 = 1/(K − 1)
∑K

k=1(ok − µ̂)2 as
proposed in Zou et al. (2018).

The backward step starts from the stage T . The goal of the backward step is to update
the expected profit to-go function at each stage by adding a new cut. In particular, in stage t
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(a) Forward (b) Backward

Figure 4.3. Illustration of Stochastic Dual Dynamic Programming

for scenario k, given a candidate solution ẃklt−1, we solve SDDP l
t (ẃ

kl
t−1, ξ

n
t , ψ

l+1
t ) for all n ∈ Et

and collect cut coefficients (βnlt , α
nl
t ). Then the following cut is added to ψlt−1 to get ψl+1

t−1.

φt−1 ≤
∑
m∈Et

πtm(βnlt + (αnlt )T ẃt−1

Figure 4.3 illustrates the forward and backward steps in the lth iteration of SDDP. In the
forward step, scenario 5 is sampled, and SDDP l

t problems at nodes 01 to 35 in scenario 5
are solved in iteration l and solutions are updated. In the backward step of this example,
SDDP l

3 problems at 35 and 36 are solved to generate a cut which adds to ψl2.
The linear cuts added in backward steps approximate the true expected profit-to-go

function, and thus the optimal value of the problem at the root node provides an upper
bound, UB. However, we can only get a probabilistic lower bound, the validity of which is
guaranteed with a certain probability given that K is not too small, and thus it is possible
that LB ≥ UB even for big K. As a result, careful consideration is required when choosing
a stopping criterion. As suggested in the literature, we stop the algorithm when the upper
bound becomes stable, and the probabilistic lower bound using large sample size K is close
to the upper bound.

We summarize the SDDP algorithm below:

Step 1: Initialization. LB ← −∞, UB ←∞, l← 1
For all t ≤ T , initialize ψ1

t , ψ
1
t = {φt : φt ≤ Bt}

Step 2: Sample K scenarios Σl = {ξl0, ...ξlT}

Step 3: Forward Step.
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For t = 0..T and k = 1..K,
Solve (SDDP l

t (ẃ
kl
t−1, ξ

k
t , ψ

l
t)), collect solution (x̂klt , s

kl
t , z

kl
t ),

and update g0(xkl0 , s
kl
0 , z

kl
0 ) and gt(s

kl
t−1, s

kl
t , z

kl
t ).

Step 4:

ok ←
∑T

t=0 gt(s
lk
t−1, s

lk
t , z

lk
t ), µ̂← 1/K

∑K
k=1 o

k, σ̂2 ← 1/(K − 1)
∑K

k=1(ok − µ̂)2

LB← µ̂− zα/2
σ̂√
K

Step 5: Backward Step.
For t = T..1, and for k = 1..K repeat followings.

For n = 1..2, solve (SDDP l
t (ẃ

kl
t−1, ξ

k
t , ψ

l
t)), and collect cut coefficients (βnlt , α

nl
t )

Add a following cut to ψlt−1, and set this as ψl+1
t−1.

φt−1 ≤
∑
m∈Et

πtm(βnlt + (αnlt )T ẃt−1

Step 6: Solve SDDP l
0(w0, ξ

1
0 , ψ

l+1
0 ) and set UB be the optimal value.

Step 7: If some stopping criterion is satisfied, then stop.
Otherwise, l← l + 1 and go to Step 2.

Blocked Stochastic Dual Dynamic Programming for a Model with Ambiguities
in Probabilities and Demand

We now extend the SDDP approach to our problem with ambiguities in probabilities and
demand. In addition, we borrow a concept from Blocked ND for SDDP. We call this Blocked
Stochastic Dual Dynamic Programming (BSDDP).

Specifically, we divide the planning horizon into [0, t1], [t1 + 1, t1 + 2], ... and [T − 1, T ],
where a sub-tree (block) in the first time interval is the only one with multiple periods.
Recall that the DP equation for the first block with ambiguous parameters is as follows:

Q̃b=1 := max min
d̃[(r(1),t1]∈D,

θ′∈Θ2

g1(xN(1), sN(1), zN(1)) +
∑
k∈Lb

∑
n∈C(k),
r(b′)=n

θ′nQb′(wk)

s.t. (sN1 ,xN1 , zN1) ∈ XB
1 (w0, d[(r(1),th])

For b > 1, instead of considering Qb, we consider a DP equation per stage as shown in
previous section:
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Qt(ẃt−1, ξt) := (4.77)

max gt(st−1, st, zt) +Qt+1(ẃt)

s.t.
∑
i∈I

ztij ≤ δtdt−1 +Xtht + εt j ∈ J

dt = δtdt−1 +Xtht + εt

(st, x̂t, zt) ∈ XA
t (wt−1, dt).

We incorporate ambiguous parameters to Qt, the value function (4.77), as we did in
section 4.3.3, and then the DP equation with ambiguous parameters for stage t is:

Qt(ẃt−1, ξt) :=

maxmin
d̃t∈D

gt(st−1, st, zt) +Qt+1(ẃt, ξ
2
t ) + π+

(t+1)1γ
+
t − π−(t+1)1γ

−
t

s.t.
∑
i∈I

ztij ≤ δtdt−1 +Xtht + εt j ∈ J

dt = δtdt−1 +Xtht + εt (4.78)

(st, x̂t, zt) ∈ XA
t (wt−1, dt)

γ+
tm − γ−tm ≥ Qt+1(ẃt, ξ

1
t )−Qt+1(ẃt, ξ

2
t ).

When we incorporate d̃t, the equality constraint (4.78) becomes infeasible. Instead, in the
BSDDP algorithm below, we sample some j ∈ J at time stage t, and let the demand be
equal to its worst values while demand for other j is at its nominal values.

We describe the changes for our BSDDP algorithm for the robust model from SDDP
algorithm below. We first present the problem, denoted by BSDDP l

t (ẃ
kl
t−1, ξ

k
t , ψ

l
t+1), which

will be solved in each forward and backward step in each iteration.

Ql

1
(w0, ψ

l
t1+1) :=

max g0(xN(1), sN(1), zN(1)) +
∑

k′∈C(Lb)

θmidk′ ψ
l
t1+1,n,e(k′)(w

l
A(k′))

s.t. (slN1
,xlN1

, zlN1
) ∈ XB

1 (wlA(r(1)), d[(r(1),t1])

K+(k′) ≥ −
∑

n∈P(r(b),A(k′))

gt(sA(n), sn, zn)− ψlt1+1,e(k′)(w
l
A(k))θ̂

+
k′ , ∀k

′ ∈ C(Lb)

K−(k′) ≥
∑

n∈P(r(b),A(k′))

gt(sA(n), sn, zn) + ψlt1+1,e(k′)(w
l
A(k))θ̂

−
k′ ∀k

′ ∈ C(Lb)

t ≥ 0, rk
′

+ ≥ 0, rk
′

− ≥ 0, wn+ ≥ 0, wn− ≥ 0
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Ql

t
(ẃklt−1, ξ

k
t , ψ

l
t+1) :=

max gt(s
kl
t−1, s

kl
t z

kl
t ) + ψlt+1,2(ẃklt ) + π+

(t+1)1γ
+kl
t+1 − π−(t+1)1γ

−kl
t+1

s.t.
∑
i∈I

zklijt ≤ φtd
k
t−1 +Xk

t ht + εkt j ∈ J

dkt = φtd
k
t−1 +Xk

t ht + εkt

γ+
tm − γ−tm ≥ ψlt+1,1(ẃklt )− ψlt+1,2(ẃklt )

(sklt , x
kl
t , z

kl
t ) ∈ XA

t (wklt−1, d
k
t )

where g0(xN(b), sN(b), zN(b)) =
∑

k∈L(1)

∑
n∈P(r(b),k) θ

mid
k′ gt(sA(n), sn, zn) − C ′, and the profit

to-go function of stage t and a realization n ∈ Et is approximated by:

ψlt,n(ẃt−1) := max{φt,n :φt,n ≤ Bt

φt,n ≤ βqt,n + (αqt,n)T ẃt−1 ∀q = 1, .., l − 1}

and ψlt is a set of ψlt,n(ẃt−1) for all n ∈ Et.
Note that for t ≤ t1, we solve a single multi-period problem instead of several single period

problems. When we solve BSDDP l
t for t ≥ t1 + 1, we incorporate ambiguous parameter

d into our algorithm in following way. Recall that d̃j belongs to an interval [d−j , d
+
j ], and

demand for all j ∈ J at node tm is constrained by a budget of uncertainty ΓDtm. In iteration
l, at time stage t, scenario k, we sample ΓDt values of j from J . We set the demand of all
sampled j to their worst values (dtjk = dt−jk ), and for other j we set the demand at their

nominal values (dtjk = d̄tjk). Then BSDDP l
t for t ≥ t1 + 1 becomes a linear program.

We summarize the BSDDP algorithm below:

Step 1: Initialization. LB ← −∞, UB ←∞, l← 1
For all t ≤ T , n ∈ Et initialize ψ1

t,n, ψ1
t,n = {φt,n : φt,n ≤ Bt}

Step 2: Sample K scenarios Σl = {ξl0, ...ξlT}
Sample M = Γt customers for each t and k, ∆tk = {jt1, ...jtM}

Step 3: Forward Step.
For t = 0,

Solve (BSDDP l
0(w0, ψ

l
t1+1)), collect solution, and update g1(xlN(1), s

l
N(1), z

l
N(1))

For t = t1 + 1, .., T and k = 1..K,
For j ∈ J ,
If j ∈ ∆tk, set dtjk = dt−jk . Else, set dtjk = d̄tjk
Solve (BSDDP l

t (ẃ
kl
t−1, ξ

k
t , ψ

l
t+1)), collect solution (x̂klt , s

kl
t , z

kl
t ),

and update gt(s
kl
t−1, s

kl
t , z

kl
t ).

Step 4:

ok ←
∑T

t=0 gt(s
lk
t−1, s

lk
t , z

lk
t ), µ̂← 1/K

∑K
k=1 o

k, σ̂2 ← 1/(K − 1)
∑K

k=1(ok − µ̂)2
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LB← g1(xlN(1), s
l
N(1), z

l
N(1)) + µ̂− zα/2

σ̂√
K

Step 5: Backward Step.
For t = T..t1 + 1, and for k = 1..K repeat the following:

For n = 1..2, do the following:
For j ∈ J ,
If j ∈ ∆tk, set dtjk = dt−jk . Else, set dtjk = d̄tjk,

Solve (BSDDP l
t (ẃ

kl
t−1, ξ

n
t , ψ

l+1
t+1)), and collect cut coefficients (βlt,n, α

l
t,n)

Add a following cut to ψlt, and set this as ψl+1
t .

φt,n ≤ (βlt,n + (αlt,n)T ẃt−1

Step 6: Solve (BSDDP l
0(w0, ψ

l+1
t1+1)) and set UB be the optimal value.

Step 7: If some stopping criterion is satisfied, then stop.
Otherwise, l← l + 1 and go to Step 2.

Figure 4.4 illustrates the forward and backward steps in the lth iteration of BSDDP. In the
forward step, the problem BSDDP l

b=1 from t = 0 to 1 is solved, then for sampled scenario
5, SDDP l

t problems at nodes 23 and 35 are solved, and then solutions are updated. In the
backward step of this example, BSDDP l

3 problems at 35 and 36 are solved to generate cuts
which are added to ψl3,1 and ψl3,2. Then these are set as ψl+1

3,1 and ψl+1
3,2 . At t = 2, cuts for

ψl2,1 and ψl2,2 are added to get ψl+1
2,1 and ψl+1

2,2 . For problem BSDDP l
0, ψl+1

2,1 and ψl+1
2,2 are used

for all child nodes 11 and 12.

4.4 Computational Study

In the previous sections, we propose a MILP model with ambiguous success probabilities
and demand, as well as heuristic approaches to solve this problem. Here, we conduct a
computational study to answer the following questions:

• What is the impact of explicitly modeling ambiguous probabilities of successes and
demand in this class of planning models? When is it worth doing so? Are there any
insights about the decisions made by robust model in terms of the number of facilities,
the capacity of open facilities, amount of covered demand, and amount of unused
capacity?

• How large are the models that we can solve to optimality using commercial optimization
software? How effective are the proposed heuristics for instances that are too large to
solve to optimality?
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(a) Forward (b) Backward

Figure 4.4. Blocked SDDP

We implement and test our models on a desktop computer with a Core i7 3.4 GHz
processor and 16 GB of RAM. We code all models using Python and solve them using
CPLEX, version 12.6, from IBM.

4.4.1 When Is It Worth Explicitly Modeling Ambiguities in Prob-
ability and Demand?

In this section, we analyze the decisions made by our model in Section 4.2 to explore the
impact of modeling ambiguous successes probabilities and demand on decision strategy. To
perform this analysis, we run the following experiments. The test instances are chosen to
capture various decision-making scenarios in this setting.

We employ a 5 period of planning horizon, 15 facility locations being 15, and 15 demand
locations for these test problems. We randomly generate 15 and 15 points on a square
representing the candidate facility locations and customer locations, respectively. More
specifically, let (x, y) be a (longitude, latitude) pair indicating a point on a square with a
side length of 100. For each point, we draw a value for x and y from Unif(0, 100) and
Unif(0, 100) distributions, respectively. The distance between a facility i and a customer j,
denoted by distij is computed as Euclidean distance.

For each demand location, the nominal demand for the first period (t = 0) is 0. The
demand evolves based on the following model,

dt = δtdt−1 +Xtht + εt,

and we draw a value for ht and εt from Unif(1000, 20000) and Unif(0, 50) distributions,
respectively. Each Bernoulli trial has a probability of success in the range (0.1, 0.9), and for
nominal models, we assume the center of that range, 0.5.
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To assess the sensitivity of results to parameters, we consider the following parameter
settings: we draw a value for fixed facility construction (fi) from various interval of uniform
distribution as follows: For each facility i, fi ∼ {Unif(20000, 30000), Unif(30000,40000),
Unif(40000, 50000), Unif(50000, 60000)}. Capacity expansion cost per unit in the initial
period (c0

i ) is randomly generated from uniform distributions as follows: For each i, c0
i ∼

{Unif(0.1, 0.2), Unif(0.5,0.6), Unif(1, 1.1), Unif(1.5, 1.6)}. Cost per unit of adding ca-
pacity (cti) for t >= 1 is increased by 10%. For the product price per unit (rt) and the
transportation cost (vtij), we keep parameters constant over time, so we drop the subscript
t in the subsequent explanation. r is randomly generated from various interval of uniform
distribution as follows: r ∼ {Unif(1, 1.5), Unif(1.5,2), Unif(2, 2.5), Unif(2.5, 3)}. Trans-
portation cost vij is computed by ν × distij, and we vary ν = {0.005, 0.01, 0.02, 0.03}.

In our experiments, to generate test cases, we vary each parameter in turn, and keep
other parameters at their boldfaced base setting from the lists above. In addition, we vary
the level of budget of uncertainty. The threshold value for the budget of uncertainty of
probabilities Γ varies as follows: Γ(%) = 0, 10, 20, 30, 40, 50, where Γ = |S| × Γ(%)/100, and
S is a set of scenarios. The threshold value for the budget of uncertainty of demand ΓDtm
varies as follows: ΓDtm(%) = 0, 20, 60, 100, where ΓDtm = |J | × ΓDtm(%)/100, and J is a set of
customers. In what follows, when we refer Γ and ΓDtm, we are referring to Γ(%) and ΓDtm(%),
respectively.

For each set of test parameters, we generate 30 problem instances, and we solve the
model to optimality with various level of budget of uncertainty. We then simulate 30 sample
scenario trees with resolved probability uncertainty to find the distribution of outcomes.
Thus, 900 simulation runs are considered in total for each test set.

We run separate experiments for ambiguities in probabilities and demand to observe
the impact each has on decisions more clearly. Specifically, when we consider ambiguities in
probabilities, for each simulation run, the (resolved) success rate of each node πn is randomly
generated from Unif(0.1, 0.9) in our tests. We then calculate the cumulative distribution
function (CDF) of profits for each of the simulated scenario trees, and then the average of
the 10th, 20th, 30th, 50th, 70th and 90th percentile of profits over all simulation runs.

Similarly, when we consider ambiguities in demand, for each simulation run, the resolved
demand at each node in the scenario tree is randomly generated from a uniform distribution
described above for each node in each problem instance. To evaluate the solutions of models
using various ranges of ΓDtm, we fix investment decisions (opening facility and amount of
capacity expansion) for all nodes using each of the solutions, and resolve the nominal model
for each of the simulated scenario trees. We then calculate the average expected profit over
all simulation runs and the CDF of the profits for each of the simulated scenario trees, and
then 10th, 20th, 30th, 50th, 70th and 90th percentile over all simulation runs.

We report the number of open facilities and the expected total capacity in the last period
averaged over all simulation runs for various level of uncertainty and parameters. We also
report the demand coverage and the amount of wasted capacity.

In Figure 4.5-4.7, we compare the average percentiles for nominal (Γ = 0) versus robust
(Γ > 0) models in our setting with ambiguous event probabilities, in an attempt to char-
acterize settings where robust models add value. Each percentile profit for the model with
various Γ is expressed as a percentage of nominal model profit.

In Figure 4.5, we report the average percentage of 10th, 20th, 30th, 50th, 70th and 90th
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percentile profit for the model with various Γ as c0
i varies.

As shown in Figure 4.5, the 10th percentile of profit increases as Γ increases, and the
increase in rate is larger when c0

i is higher. Since our model maximizes the profit, the
10th percentile of profit captures “bad” scenarios. Thus, if we observe higher profit in a
low percentile, the solution is better protected against worse cases. However, the 50, 70,
and 90th percentile profits decrease as Γ increases. One interesting observation is that the
10th percentile profit is slightly better in solutions with a large Γ than in solution with
a small Γ. However, higher percentile profits (50, 70th and 90th) are much worse in the
same comparison. For example, the average 10th percentile profit is only 0.2% worse in
the solutions with Γ = 40 than in the solutions with Γ = 50. However, the average 90th
percentile profit is 12% better when using the solutions with Γ = 40 than when using the
solutions with Γ = 50. As expected, the observation implies that there is a trade-off between
overall profit and the worst-case (or worse case) profit depending on the value of the budget
of uncertainty (Γ). It also shows that the small increase of Γ when Γ is large, may lead to a
much conservative solution, and thus a value between 10 and 40 is better to be chosen for Γ
based on what the primary concern (overall profit or the worst-case) is.

Figure 4.5. Average percentage of robust model to nominal model in 10, 20, 30, 50, 70 and 90th
percentile profit when varying Γ and capacity expansion cost(c0

i )

The solutions to robust models tend to increase the profit of low demand paths to max-
imize the worst-case expected profit, and this is achieved by reducing excess capacity on
low demand paths. When the capacity expansion cost is higher, the excess capacity impacts
the profitability more significantly, and we observe that it is worth using a robust model
in settings with high capacity expansion cost in order to achieve lower risk. On the other
hand, overly conservative solutions hurt the profitability of high demand paths significantly
by expanding capacity in higher cost or not fulfilling more demand. A budget of uncertainty
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Figure 4.6. Average percentage of robust model to nominal model in 10, 20, 30, 50, 70 and 90th
percentile profit when varying Γ and fixed facility opening cost(fi)

can mitigate this. We observe the similar tendencies when varying the fixed facility opening
cost, in Figure 4.6.

This is also supported by the results shown in Table 4.2, where we report the average
number of open facilities, total capacity, proportion of covered demand, and proportion of
unused capacity when varying Γ when varying c0

i and fi. As expected, as investment cost
increases, the number of open facilities and the total capacity decrease. As fi varies, the
number of open facilities changes significantly, but the total capacity built, the covered
demand, and the unused capacity portion only change slightly. On the other hand, when c0

i

varies, the number of open facilities changes slightly, but the total capacity built, the covered
demand portion, and the unused capacity portion are changed more significantly.

In Table 4.2, we also observe that the average number of open facilities and total capacity
decreases as Γ increases. This is not surprising because more conservative solutions are
expected for large Γ, and thus less capacity is installed. Notice that more demand is covered
in solutions with small Γ, but capacity is more effectively used in solutions with large Γ.

When the price of product r is varied, as shown in Figure 4.7, the 10th percentile of profit
increases as Γ increases, and the increase in rate is larger when r is lower. However, the
50, 70, and 90th percentile profits decrease as Γ increases. When the unit price of product is
low, marginal profit is low. All demand is more likely fulfilled on low demand paths for many
possible decisions, and thus the unused capacity impacts the profitability more significantly
on these low demand paths. Therefore, as observed in results, the robust model is more
effective for lowering the risk when the price is low.
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Table 4.2. Number of open facilities, total capacity, proportion of covered demand, and proportion
of unused capacity, averaged over 30 problem instances and over a 30 sample scenario trees when

varying Γ and capacity expansion cost(c0
i ) and opening facility cost(fi)

Γ c0
i fi(×103)

(%) [.1,.2] [.5,.6] [1,1.1] [1.5,1.6] (20,30) (30,40) (40,50) (50,60)
Average 0 3.6 3.63 3.47 3.4 4.2 3.63 3.2 3

Number of 10 3.4 3.4 3.23 3.2 4 3.4 3.03 2.73
Open 20 3.13 3.1 3.03 3.0 3.8 3.13 3.17 2.8

Facilities 30 3.1 3.06 2.87 2.87 3.63 3.06 2.97 2.67
40 2.9 2.9 2.73 2.7 3.53 2.9 2.87 2.63
50 2.8 2.83 2.7 2.6 3.37 2.83 2.83 2.57

Average 0 408 408.1 357.6 331.7 408.1 408.1 407.4 407.4
Total 10 398.8 394.3 340.6 318.8 395.8 394.3 393.6 392.5

Capacity 20 380.9 376.3 328.5 306 377.1 376.3 374.4 373.6
30 359.6 345.6 300.1 284.2 349.7 345.6 346.6 342.9
40 340 333.3 290.7 272.2 333.7 333.3 329.8 326.8
50 318.8 307.5 262.8 235.9 310 307.5 304.6 297.6

Average 0 83.3 83.3 81.5 80.7 83.3 83.3 83.3 83.3
Covered 10 82.9 82.8 80.8 80.1 82.9 82.8 82.8 82.8
Demand 20 82.1 81.8 79.8 78.7 81.9 81.8 81.8 81.7

(%) 30 80.5 79.9 77.8 76.7 80.1 79.9 79.9 79.7
40 79.1 79.1 77 75.7 79.1 79.1 78.9 78.7
50 76.6 75.7 72.7 70 75.9 75.7 75.6 75.1

Average 0 30.2 30.3 28.5 24.6 30.3 30.3 30.3 30.3
Unused 10 28.2 28.2 26.9 23.8 28.2 28.2 28.2 28.2

Capacity 20 26.7 27.3 25.8 23.7 27.3 27.4 27.3 27.2
(%) 30 22.6 23.6 23.5 22.3 23.5 23.4 23.6 23.4

40 19.7 20 19.4 17.4 20.7 20.5 19.9 19.8
50 21.5 19.8 19.3 17.9 20.7 20.3 19.9 19.9
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Figure 4.7. Average percentage of robust model to nominal model in 10, 20, 30, 50, 70 and 90th
percentile profit when varying Γ and price(r)

Figure 4.8 also show that the 10th percentile profit increases more sharply as the mul-
tiplier of transportation cost, ν, increases. Increased ν encourages opening more facilities,
which are located closer to customers, and it may lead to excessive investment on low de-
mand paths while the robust model attempts to reduce this risk. Also, in both figures, we
observe that employing the budget of uncertainty can mitigate over-conservatism as shown
in previous cases.

Table 4.3 supports the observations above when varying the price and transportation
cost. As r increases, both the number of open facilities and the total capacities increase.
However, as ν increases, the number of open facilities increases, but the total capacities
decrease. We also observe that the average number of open facilities and total capacities
decrease as Γ increases.

Next, we report observation for our model in the setting with ambiguous demand, in an
attempt to characterize where the robust model adds value and impacts decision-making.

In Table 4.4, we compare the average expected profit for the nominal versus the robust
model with various budgets of uncertainty in the setting with ambiguous demand for each
node.

We compare the solutions resulting from varying capacity expansion costs(c0
i ) and the

multiplier of transportation costs(ν). The solutions of the nominal model are obtained by
setting ΓDtm = 0. One interesting observation is that when budget of uncertainty is employed
(ΓDtm = 20, 60), the robust model can provide solutions that outperform the solutions of
the nominal model in terms of average expected profit in some cases, for example, when
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Table 4.3. Number of open facilities, total capacity, proportion of covered demand, and proportion
of unused capacity, averaged over 30 problem instances and over a 30 sample scenario trees when

varying Γ, and r and ν

r ν
Γ(%) [1,1.5] [1.5,2] [2,2.5] [2.5,3] 0.005 0.01 0.02 0.03

Average 0 3.53 3.63 3.63 3.63 2.43 3.63 5 5.7
Number of 10 3.27 3.4 3.4 3.4 2.3 3.4 4.7 5.3

Open 20 3.1 3.13 3.13 3.13 2.07 3.13 4.3 5.03
Facilities 30 2.97 3.06 3.07 3.07 1.99 3.06 4.13 4.9

40 2.76 2.9 2.9 2.9 1.95 2.9 3.93 4.57
50 2.73 2.83 2.83 2.83 1.9 2.83 3.86 4.43

Average 0 384.5 408.1 408.1 408.1 408.4 408.1 403.4 378.2
Total 10 367.2 394.3 397.2 397.3 395.5 394.3 387.4 361.1

Capacity 20 350.5 376.3 377.8 381.6 376.5 376.3 366.4 340.3
30 320.3 345.6 356.3 357.2 347.4 345.6 337.9 315.7
40 305.6 333.3 336 337.6 325.8 333.3 323.4 298
50 277.5 307.5 313.1 321.8 298.2 307.5 295.3 273

Average 0 82.5 83.3 83.3 83.3 83.3 83.3 83.2 81.5
Covered 10 81.8 82.8 82.9 82.9 82.9 82.8 82.6 80.5

Demand(%) 20 80.6 81.8 82 82 81.8 81.8 81.4 78.8
30 78.5 79.9 80.3 80.5 79.9 79.9 79.4 77.2
40 77.4 79.1 79.1 79 78.5 79.1 77.8 75.1
50 73.4 75.7 76.1 76.2 74.6 75.7 74.1 71.5

Average 0 29.6 30.3 30.3 30.3 30.4 30.3 30 29.1
Unused 10 27.6 28.2 28.2 28.2 28.3 28.2 28 27.4

Capacity(%) 20 26.8 27.3 27.2 27.2 27.4 27.3 27 26.5
30 23.5 23.6 23.3 22.8 23.4 23.6 23.4 23.1
40 19.7 20 20.4 20.2 19.8 20 20.8 20.3
50 19.8 19.8 21 21.6 20.2 19.8 21.2 20.8
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Figure 4.8. Average percentage of robust model to nominal model in 10, 20, 30, 50, 70 and 90th
percentile profit when varying Γ and multiplier of transportation cost(ν)

Table 4.4. Average expected profit

c0
i ν(×103)

ΓDtm(%) [.1,.2] [.5,.6] [1,1.1] [1.5,1.6] 0.005 0.01 0.02 0.03
0 100 100 100 100 100 100 100 100
20 100.6 99.8 99.6 98 100.6 99.8 99.8 100.4
60 100.5 100.03 93.4 91.9 99.0 100.03 96.6 99.3
100 81.5 82.3 82.1 80.4 81.2 82.3 83.6 83

c0
i ∈ [.1, .2], and ν = 0.005, 0.03.

The robust model with ΓDtm = 20, 60 builds more capacity than the nominal model,
particularly when the capacity expansion cost is low, for example c0

i ∈ [.1, .2], as shown in
Table 4.5. When ambiguities in demand are realized, more demand can be satisfied with this
additional capacity. Since the capacity expansion cost is low, fulfilling more demand when
higher demand is realized can outweigh the penalty of wasting capacity when less demand
is realized. Thus the robust solution has better expected profit than the nominal solution
in this case. We also observe in Table 4.5 that the robust model with ΓDtm = 20 builds more
capacity than the nominal model, and this is more noticeable when ν = 0.005, 0.03. This
additional capacity can be beneficial when the transportation cost is relatively lower than
the capacity expansion cost. If ν has a small value, then transportation cost is also low.
Also, if ν has a large value, then more facilities are built and facilities are located closer to
customers, which can lead to lower transportation cost.
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Table 4.5. Number of open facilities, total capacity, proportion of covered demand, and proportion
of unused capacity, averaged over 30 problem instances and over a 30 sample scenario trees when

varying ΓDtm and c0
i and ν

c0
i ν

ΓD(%) [.1,.2] [.5,.6] [1,1.1] [1.5,1.6] 0.005 0.01 0.02 0.03
Average 0 3.63 3.63 3.47 3.4 2.4 3.63 4.9 5.37

Number of 20 3.46 3.27 3.13 3 2.1 3.27 4.47 5.2
Open 60 3.2 3.13 3.03 3 2 3.13 4.3 4.93

Facilities 100 3.03 3.03 2.9 2.9 2 3.03 4.2 4.6
Average 0 412 411.5 355.4 333.7 412.4 411.5 403.3 373.6

Total 20 490.7 415.8 361.7 305.3 431.6 415.8 408.8 389.1
Capacity 60 463.3 345.2 281.1 253.5 349.7 345.2 332.1 298.1

100 288.5 287.8 244 232.3 288.6 287.8 278.7 252.9
Average 0 82.7 82.7 80.9 80.0 82.7 82.7 82.4 80
Covered 20 83.3 82.3 81 77.7 82.9 82.3 82.1 80.1

Demand(%) 60 83.2 80.4 76.1 72.7 80.6 80.4 79.4 75.7
100 72.4 72.4 69.3 66.1 72.6 72.4 71.9 68.1

Average 0 31 31.1 28.9 25.3 31.3 31.1 30.8 30
Unused 20 39.1 35.5 30.8 27.8 35.5 35.5 34.6 33.9

Capacity(%) 60 37 29.5 24.7 21.9 29.8 29.5 28.4 26.3
100 22.5 22.6 21.1 20.2 22.8 22.6 22.2 21.7

Additionally, we present the values in percentiles for the average expected profit in the
Appendix A.2.1. We also compare the average percentiles of profits for nominal versus robust
models as the capacity expansion cost(c0

i ) varies in Appendix A.2.2. The observations in
these analysis found in Appendix align with the result of the expected profit analysis shown
in Table 4.4.

Overall, at least in these examples, we observe that it is beneficial to model ambiguities
in event probabilities with a proper budget of uncertainty to find risk averse solution at little
expense to overall profit. Also, modeling ambiguities in demand with a proper budget of
uncertainty is beneficial for finding solutions that provide better expected profit and better
overall profits, particularly when the investment costs or transportation costs are low.

4.4.2 Computational Analysis of Heuristics

In this section, we solve the model in Section 4.2 using both commercial software and the
heuristics presented in Section 4.3. We compare the time to solve the model and the gap
to optimality using these approaches. Our goal is to determine when we can solve models
to optimality using commercial software, when we need to use heuristics, and how effective
those heuristics are when we do use them.

We solve our model using CPLEX version 12.6, as described above, with a 3,600 second
time limit. We vary the planning horizon(T ), the number of facility (|I|), and the number
of demand locations (|J |) because the size of the problem depends on T , |I| and |J |. Recall
that the total number of scenarios is |P | = 2T−1. The number of variables and constraints
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increases as T , |I| and |J | increase. In particular, we vary T , |I| and |J | as follows: T =
{1, 5, 10}, (|I|, |J |) = {(5, 10), (10, 20), (20, 40), (50, 100)}. We also attempt to measure the
impact of varying the budget of uncertainty, where Γ(%) = {10, 20, 50} and ΓDtm(%) =
{10, 50, 100}. we keep ΓDtm constant for all nodes tm, so we drop the subscript tm in the
subsequent explanation.

For each combination of (T, |I|, |J |,Γ,ΓD), we solve (or attempt to solve) 5 problem
instances using commercial software. We randomly generate the problem instances using
base setting of parameters described in the Section 4.4.1.

Table 4.6 presents the average computation time over 5 problem instances for various
problem sizes. For each problem instance, we solve the model to optimality or to the 3, 600
second time limit, whichever comes first.

If a feasible solution is found but an optimal solution is not, we report the optimality gap.
If a feasible integer solution is not found within the time limit or an out-of-memory error
is returned, dashes are reported in Table 4.6. We omit reporting the results for very small
instances such as (T, |I|, |J |) = (1, 5, 10), (1, 10, 20), (1, 20, 40), (5, 5, 10) which obviously can
be solved within a few seconds using CPLEX.

As expected, we observe that as the planning horizon, the number of facility locations,
and the number of customer locations increase, the model becomes significantly harder to
solve. In our tests, when T = 5, the model becomes challenging to solve for the instances
with (|I|, |J |) = (50, 100) and ΓD ≥ 10. When T = 10, the model can be solved only
for the some instances with (|I|, |J |) = (5, 10) and (|I|, |J |) = (10, 20). For instances with
(|I|, |J |) = (5, 10), optimal solutions can be found only when the budget of uncertainty as
follows: ΓD = 0, 100 or Γ = 0 or (Γ,ΓD) = (10, 10), (10, 20). For instances with (|I|, |J |) =
(10, 20), optimal solutions can be found only when the budget of uncertainty as follows:
ΓD = 0 or (Γ,ΓD) = (0, 10)

We observe that incorporating ambiguous probabilities into our nominal model increases
computation time significantly only when the problem size is large (e.g., (T, |I|, |J |) =
(5, 50, 100), (10, 10, 20)), and it does not increase computation time significantly for small
problem instances. However, when we incorporate ambiguous demand into our nominal
model, the computation time increases significantly. Recall that to formulate FLFV-R, we
borrow the concept of ARO, where the decision variable ztmij is defined as wtmij + ζtmij d̃

tm
j . As

Ben-Tal et al. (2004) points out, ARO is computationally more expensive than RO, and this
also explains our case. In particular, in our model, the number of variables is increased by
1+2|S|+2|N | = 3|N |+2 (since |N | = 2|S|−1) when incorporating ambiguous probabilities,
whereas it is increased by (|I| + |J | + |I||J |)|N | when incorporating ambiguous demands.
For example, our robust model in the instance with (T, |I|, |J |) = (5, 20, 40) has additional
number of variables, 191 from modeling ambiguous probabilities and 54, 180 from model-
ing ambiguous probabilities, compared to the nominal model. Therefore, this significant
increased number of variables from modeling ambiguous demand causes a notable increase
in computation time.

We also explore the effectiveness of our heuristic algorithms, Blocked Nested Decompo-
sition (BND) and Blocked Stochastic Dual Dynamic Programming (BSDDP). We consider
several problem instances of different sizes, as follows: (|I|, |J |, T ) = (5, 10, 15), (10, 20, 10),
(10, 20, 15), (20, 40, 10), (20, 40, 15), (50, 100, 5), (50, 100, 10). We also vary the budget of
uncertainty. These instances are chosen based on the result of the first computational ex-
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Table 4.6. Average computation time (in seconds) using CPLEX when varying problem sizes and
the budget of uncertainties

ΓD(%)
T |I| |J | Γ(%) 0 10 50 100
1 50 100 0 4.37 40.8 49.6 8.95

10 4.19 40.4 50.3 9.37
20 4.28 39.7 50.3 9.44
50 5.31 48.9 20.5 11.4

5 10 20 0 2.31 14.6 28.3 10.0
10 2.97 24.0 42.5 15.2
20 3.99 36.3 42.1 20.9
50 4.48 49 49.8 26.0

20 40 0 11.03 672.1 444.9 144.3
10 21.6 655.8 656.3 318.7
20 27.3 912.3 809.3 301.6
50 56.9 837.5 867 414.4

50 100 0 207.7 (20.6%) (29.6%) (10.4%)
10 369.8 - - (12%)
20 714.6 - - (16%)
50 1089.8 (61.4%) (70.2%) (61%)

10 5 10 0 31.8 319.6 628.1 332.2
10 69.6 1660.4 - 729.2
20 65.2 1518.6 - 882.7
50 83.9 - - 1463.8

10 20 0 154.1 730.7 - -
10 467.1 - - -
20 426 - - -
50 728.1 - - -

20 40 0 - - - -
10 - - - -
20 - - - -
50 - - - -

50 100 0 - - - -
10 - - - -
20 - - - -
50 - - - -
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periment, where we observed that CPLEX is incapable of solving them due memory or time
constraints.

For BSDDP, we select one sample path randomly in the forward step until the upper
bound becomes stable. This approach is computationally beneficial as shown in Zou et al.
(2018) and Shapiro et al. (2013). We then choose 50 samples randomly for a Monte Carlo
simulation to construct a 95% confidence probabilistic lower bound.

In Table 4.7, the column Heuristic indicates the heuristic algorithm used to solve each
problem instance. Time presents the computation time in seconds. Gap(%) indicates the
gap between best upper bound in the backward step and probabilistic lower bound in the
simulation for each problem instance of (T, |I|, |J |,Γ,ΓD). It is worth mentioning that the
gaps when using BSDDP may not decrease monotonically, because the probabilistic lower
bound depends on the sample paths chosen.

In our tests, we use BND to solve problem instances of (10, 20, 10) and (20, 40, 10), since
BND requires fewer iterations than BSDDP to converge. Although each iteration takes
slightly longer in BND than in BSDDP, the computational time to find converged solution
can be shorten more significantly by having fewer iterations for these medium size instances.
For large problem instances which have long planning horizon(in our example, T = 15) or
large numbers of locations (in our example, (|I|, |J |) = (50, 100)), we find BSDDP is more
efficient, and thus we report the result of this algorithm. As shown table 4.7, we find solutions
with less than a 3% gap within a reasonable time in most cases using BND and BSDDP
except when (T, |I|, |J |) = (10, 50, 100).

When (T, |I|, |J |) = (10, 50, 100), particularly with Γ > 0 or ΓD > 0, we cannot solve
this instance using CPLEX as we run out of memory. Using BSDDP, we are able to find a
feasible solution for this problem instance within 3, 600 seconds, however, gaps of 26− 27%
are observed.

Overall, commercial software can effectively solve moderate-sized problems with a plan-
ning horizon of fewer than 10 periods if the number of locations are not large, for example,
(|I|, |J |) = (5, 10)(10, 20)(20, 40) or the planning horizon is at most 5 if the number of lo-
cations are large (|I|, |J |) = (50, 100). For large problem instances which are challenging
to solve using commercial software, the heuristic algorithms BND and BSDDP are effective
alternatives. In particular, BND can be effective for smaller problems, whereas BSDDP can
be effective for larger problems which have long planning horizon or large number of loca-
tions. However, for problems with long planning horizon and the large number of locations,
novel heuristics are still needed.

4.5 Conclusion

In this chapter we study the capacitated facility location model where demand is dependent
on the outcome of a series of Bernoulli trials with uncertain probabilities of success, and
where demand is not completely resolved after the event outcomes are known. We present
a robust stochastic integer programming formulation. Our numerical studies suggest that
it is beneficial to model ambiguities in event probabilities with a correctly chosen budget
of uncertainty to find risk averse solution at a little expense to overall profits. Also, when
the investment cost or transportation cost are low, it is beneficial to model ambiguities in
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Table 4.7. Average computation time (in seconds) using heuristic algorithms when varying prob-
lem sizes and the budget of uncertainties

|I| |J | T Heuristic ΓD(%) Γ(%) Time Gap(%)
5 10 15 BSDDP 0 0 251.7 1.1

10 361.7 2.03
10 0 253.4 1.13

10 360.6 2.03
50 257 3

10 20 10 BND 0 0 35.99 1.99
10 406.8 0.35

10 0 230.6 0.67
10 409.8 0.36
50 674.3 0.99

15 BSDDP 0 0 1,215.4 1.6
10 1,487.8 1.6

10 0 1,726.9 1.15
10 1,506.4 1.65
50 2,262.9 0.25

20 40 10 BND 0 0 389.3 0.8
10 916.2 0.5

10 0 704.1 0.67
10 700.9 0.67
50 1,466.8 0.4

15 BSDDP 0 0 3,141.8 0.7
10 3,627 0.5

10 0 3,589.8 0.9
10 3,553.9 0.5
50 4,060 19

50 100 5 BSDDP 0 0 475.1 2.5
10 313.1 2.9

10 0 626.7 0.92
10 619.5 0.92
50 1,035.6 2.03

10 BSDDP 0 0 3,590 6.9
10 3,820 27

10 0 3,800 27
10 3,680 26.1
50 3,671 26.1
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demand after the event realization with a correctly chosen budget of uncertainty in terms of
the expected profit and overall profits.

We also develop and test two heuristics: Blocked Nested Decomposition(BND) and
Blocked Stochastic Dual Dynamic Programming(BSDDP). We demonstrate that both heuris-
tics can effectively solve large problem instances that we cannot solve using commercial soft-
ware. In particular, BND is effective for smaller problems, whereas BSDDP is effective for
larger problems, although more efficient approaches needs to be developed for much larger
problems with both a long planning horizon and a large number of locations.
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Chapter 5

Summary

In this thesis, we studied two strategic decision planning models – a capacity planning
model and a capacitated facility location planning model, where demand is dependent on
the outcome of a series of Bernoulli trials with unknown probabilities of success.

In the first problem, we developed approaches to formulate and solve models that capture
a variety of different objectives such as minimizing expected cost, minimizing α-reliable
regret, and minimizing α-reliable mean excess regret. We formulated these models as robust
stochastic integer programs and showed that incorporating ambiguity in success probabilities
does not increase the complexity of the problems. Our computational study suggests that
when the shortage cost is relatively higher than the capacity investment cost, explicitly
modeling ambiguous probabilities focusing on minimizing expected cost leads to solutions
that actually perform quite well for all of the objective functions we considered in our models.
Two effective heuristic approaches – a simple rolling horizon(SRH) approach, and a delayed
event spike approach with rolling horizon (DERH) are developed to find good solutions to
large problems that we are unable to solve effectively with commercial optimization software.
We demonstrated that DERH is computationally more expensive, but it outperforms SRH
in terms of solution quality.

In this problem, we have thus far limited our consideration to a single-product, to binary
event outcomes, and to deterministic demand given event outcomes. In many real world
settings, however, multiple products are under consideration. For example, in the pharma-
ceutical industry, multiple products are often concurrently under clinical trials, and some of
these products could potentially share manufacturing capacity. Often, these products are
in different stage of clinical trials. It can be one direction for future research to develop
approaches that enable us to address these computationally more challenging settings.

Next, we developed approaches to formulate and solve the capacitated facility location
model with an objective of maximizing expected profit. In addition to ambiguous success
probabilities, we considered ambiguous demand, where demand is not completely resolved
after the event outcomes are known. These ambiguities were incorporated into our nominal
model using robust optimization techniques.

Our numerical studies suggest that it is beneficial to model ambiguities in event prob-
abilities with a correctly chosen budget of uncertainty to find risk averse solution at little
expense to overall profits. Also, when investment or transportation cost are low, explicitly
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modeling ambiguities in demand after the event realization with a correctly chosen budget of
uncertainty is beneficial for finding better solutions than those found by the nominal model
in terms of the expected profit and the overall profits.

Two effective heuristic approaches – Blocked Nested Decomposition(BND) and Blocked
Stochastic Dual Dynamic Programming(BSDDP) were developed to solve large problem
instances that we cannot solve using commercial software. We demonstrated that BND is
effective for smaller problems, whereas BSDDP is effective for larger problems, although
more efficient approach needs to be developed for much larger problems with both a long
planning horizon and a large number of locations.
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Appendix A

Supplement Materials

A.1 Nested Decomposition for model FLFV-RC

In Section 4.2, we presented model FLFV-RC using following variable.

ztmij = wtmij + ζtmij d̃
tm
j

Let the objective function at tm as follows:

g̃t(s
l
A(tm), s

l
tm, z

l
tm) = −

∑
i∈I

cti(s
tm
i −s

A(tm)
i )+

∑
i∈I

∑
j∈J

(rt−vtij)(wtmij +ζtmij d̄
tm
j )+

∑
j∈J

λjtm+ΓDtmµ
tm

g̃0(x̂l01, s
l
01, z

l
01) = −

∑
i∈I

(fix̂i + ctis
01
i ) +

∑
i∈I

∑
j∈J

(r0 − v0
ij)(w

01
ij + ζ01

ij d̄
01
j ) +

∑
j∈J

λj01 + ΓD01µ
01

Recall that in FLFV-RC, the following constraints are introduced due to ambiguous
parameter dt and substitution of ztmij .

∑
j∈R

(wtmij + ζtmij d̄
tm
j ) +

∑
j∈J

θijtm + ΓDtmν
i
tm ≤ Ui

∑
n∈P(tm)

yni i ∈ I (A.1)

∑
i∈I

wtmij − (1− ζtmij )(d̄tmj − d̂tmj ∗min(1,ΓDtm)) ≤ 0 j ∈ J (A.2)

λjtm + µtm ≥
∑
i∈I

d̂tmj ζtmij (r − vtij) ∀j ∈ J (A.3)

θijtm + νitm ≥ ζtmij d̂
tm
j i ∈ I (A.4)

Then, for the robust model FLFV-RC, the recursive equation NDRl
tm at node tm which

we solve in each iteration of ND-based algorithm can be formulated as a linear program as
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shown below.

(NDRl
tm)

Ql

tm
(wA(tm)l, ψ̃lC(tm)) :=

max g̃t(s
l
A(tm), s

l
tm, z

l
tm) + ψc(tm)f (wtm)l + π+

c(tm)s
γ+
tm − π−c(tm)s
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s.t. (4.48)− (4.51), (4.52)

(A.1)− (A.4)
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01
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l
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l
01, z

l
01) + ψ12(w01)l + π+

11γ
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01 − π−11γ

−
01

s.t. (4.42)− (4.43), (4.45)

(A.1)− (A.4)

γ+
01 − γ−01 ≥ ψ11 − ψ12

where ψ̂l(wlA(tm)), the approximation of value function Qtm(wA(tm)), is defined as:

ψ̂ltm(wlA(tm)) := max{φtm : φtm ≤ Btm

φtm ≤ (βqtm + αAqtmsA(tm) + αBqtmx̂A(tm)), ∀q = 1..l − 1}

A.2 Computational Analysis in the setting with Am-

biguous Demand

A.2.1 Analysis of Average Expected Profit

In Table A.1, we compare the average percentage of 10th, 20th, 30th, 50th, 70th and 90th
percentile expected profit of robust models to those expected profit of nominal model (Γ = 0).
We observe that the percentage values of each percentile are all very close to the percentage
values of the average expected profit in Table 4.4. Thus, modeling ambiguities in demand
with a proper uncertainty budget can be beneficial in terms of overall expected profit in
particular when the capacity investment cost is low (ci ∈ [.1, .2]) or the transportation cost
is low (ν = 0.005, 0.03). Recall that when ν is small, transportation cost is also obviously
low. When ν is large, vijt is high. However, facilities are forced to be located closer to
customers in the solution , and it leads to lower the transportation cost.

A.2.2 Analysis of Average Percentile of Profits

In Figure A.1, we compare the average percentiles of profits for nominal versus robust models
as the capacity expansion cost(c0

i ) varies. Figure A.1 is very different from Figure 4.5 (and
other figures above when we test our models in the setting with ambiguous probabilities).
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Table A.1. Average expected profit

Γ Percentile c0
i ν

(%) (%) [.1,.2] [.5,.6] [1,1.1] [1.5,1.6] 0.005 0.01 0.02 0.03
20 10 100.3 99.6 99.4 97.8 100.4 99.6 99.6 100.2

20 100.4 99.7 99.4 97.8 100.4 99.7 99.6 100.3
30 100.5 99.8 99.5 97.9 100.5 99.8 99.7 100.3
50 100.6 99.9 99.6 98.1 100.5 99.9 99.8 100.5
70 100.7 99.9 99.7 98.1 100.7 99.9 99.8 100.5
90 100.8 100 99.8 98.2 100.7 100 99.9 100.6

60 10 100.3 99.9 93.8 92 98.9 99.9 96.6 99.3
20 100.3 99.9 93.7 91.9 98.8 99.9 96.6 99.3
30 100.4 100 93.7 91.9 98.9 100 96.6 99.3
50 100.5 100 93.7 91.9 99 100 96.7 99.4
70 100.5 100.1 93.6 91.8 99 100.1 96.6 99.4
90 100.6 100.2 93.7 91.9 99.1 100.2 96.6 99.5

100 10 81.6 82.5 82.5 80.7 81.3 82.5 83.9 83.2
20 81.6 82.5 82.4 80.6 81.3 82.5 83.8 83.1
30 81.6 82.4 82.3 80.5 81.2 82.4 83.8 83.1
50 81.5 82.4 82.2 80.3 81.2 82.4 83.7 83
70 81.4 82.2 82.1 80.2 81.1 82.2 83.5 82.9
90 81.4 82.2 82 80.2 81.1 82.2 83.5 82.8

When the capacity expansion cost is high, for example, c0
i ∈ (1.5, 1.6), the 10th percentile

profit is significantly higher in the robust solution with ΓDtm = 20% than in the nominal
solution, but other percentile profits are slightly low in the same comparison. This leads to
slightly lower average expected profit in the robust solution than in the nominal solution as
shown in Table 4.5.

When the capacity expansion cost is low, for example, c0
i ∈ (0.1, 0.2), all percentile profits

are slightly higher in the robust solutions with ΓDtm = 20, 60% than in the nominal solutions,
which aligns with the result of the expected profit analysis shown in Table 4.4.
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Figure A.1. Average percentage of robust model to nominal model in 10, 20, 30, 50, 70 and 90th
percentile profit when varying Γ and transportation cost(cit)
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