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Abstract

This paper describes a method of kernel regression that can be used to investigate
the relationship between a directional explanatory variable and a real-valued response
variable. Cross-validation and bootstrap methods for obtaining sensible bandwidths
and standard error estimates are also described. The proposed method is applied to
wildfire and meteorological data from Los Angeles County, California, with the goal of
summarizing and quantifying the impact of wind direction on the total area burned per
day in wildfires. The results confirm that winds blowing from the NorthEast and East
are associated with significantly higher burn areas than winds from other directions
and that the daily burn area on days with winds from the NorthEast is about 4.7 times

that associated with the winds from the SouthWest.

Key words: circular statistics, cross-validation, directional statistics.

1 Introduction.

Kernel regression is very commonly used as a means of summarizing the relationship be-
tween two real-valued variables without requiring the assumption of a parametric form for
this relationship. Numerous examples of applications are described in Silverman [1]. In
the context of wildfires in Los Angeles County, California, Schoenberg et al. [2] used kernel
regression to show that monthly wildfire occurrence depends critically on various ecologi-
cal covariates including temperature, windspeed, precipitation, relative humidity, and fuel
moisture, and suggested that several of such variables have an approximately thresholded

linear relationship with burn area. Similar types of analyses have been made e.g. by Flan-



nigan and Harrington [3]; see also Pyne et al. [4] and Johnson and Miyanishi [5]. While the
relationship between wind direction in Southern California and wildfire activity has been
well-documented, little work has aimed at quantifying this relationship. The present work
extends the method of kernel regression to directional data for the purpose of describing and
quantifying the association between wind direction and area burned in wildfires.

In Southern California, seasonal Santa Ana winds tend to begin each Fall just after a
dry season of 6 months or more [6]. These offshore winds reach speeds exceeding 100kph
at a relative humidity below 10%, and are annual events lasting several days to several
weeks, creating the most wildfire-prone weather conditions in the United States [7]. The
blustery, dry and warm Santa Ana winds which originate from the great basin and blow
SouthWestward through the canyon towards the coast dehydrate the vegetation, heat the
air and thus aggravate the dangers of wildfires [8]. While large wildfires throughout the
western USA are nearly always associated with severe weather conditions, these conditions
do not occur every year in most locations, whereas southern California Santa Ana winds are
predictable annual events [6].

Unlike temperature, precipitation and many other meteorological variables, wind direc-
tion cannot be treated as a single real random variable. The directionality of this variable
implies that standard methods for univariate or multivariate analysis cannot be used and
special methods based on circular statistics are required. The goal of the present analysis
is the investigation of the relationship between wind direction and burn area in Los Angeles
County using a kernel regression method for directional data.

The case considered here is that of a circular explanatory variable (wind direction) and



a real-valued response variable (burn area). Methods for the reverse scenario, where the
response variable is directional and the explanatory variable is real-valued, were described in
Sections 12.8.1 and 12.8.2 or Mardia and Jupp [9]. Wahba [10] and Mardia et al. [11] discuss
a spline approach for the case of a circular explanatory variable, but a kernel regression
approach to such a case appears not to have been discussed in prior research. The current
approach is similar to existing kernel density estimation methods for directional data, such
as circular histograms or rose diagrams (see e.g. [9]).

The remainder of this paper is organized as follows. Section 2 describes the wildfire
and wind data from Los Angeles County considered here. Kernel regression methods for its
analysis, including techniques for bandwidth selection and confidence interval estimation,
are described in Section 3. Section 4 contains the results, and a discussion and suggestions

for future work are provided in Section 5.

2 Data

2.1 Wildfire data

Our analysis is based on the historical data of wildfire occurrences in Los Angeles County
provided by the Los Angeles County Department of Public Works (LACDPW), the Los
Angeles County Fire Department (LACFD). This dataset contains information on 1985 fires
dating back to the year 1878 and includes the origin dates, locations, burn areas, and spatial
burn patterns of recorded wildfires. Many wildfires may be missing from the catalog, but

LACFD officers noted that the catalog is believed to be complete since 1950 for fires burning



at least 0.405 km? (100 acres), and previous analyses suggested that the data between 1976-
2000 may be complete for fires burning at least 0.0405 km? (10 acres) [2,12]. Since wind
data from Remote Automatic Weather Stations in Los Angeles County are unavailable before
1976, data from previous years were excluded from the present analysis, and our attention
is restricted to the 592 fires burning at least 0.0405 km? occurring between January 1, 1976
and December 31, 2000.Such fires account for 75.5% of the available wildfire records between
1976 and 2000, and are responsible for 99.78% of the area burned in Los Angeles County
wildfires during this period. For further details about this dataset as well as images of the

centroid locations of these wildfires, see [12].

2.2 Meteorological Data

Daily meteorological observations collected from 16 Remote Automatic Weather Stations
(RAWS) distributed in Los Angeles County were obtained from the USDA Forest Service
since May 1975. The locations of each of the RAWS are shown in Fig. 1. Data are recorded
at approximately 1:00pm every day when conditions for fire are considered to be most severe.
Information on air temperature, fuel temperature, precipitation, wind speed, wind direction,
relative humidity and several other variables are recorded [13]. We focus here on wind speed
and wind direction data from January 1, 1976 to December 31, 2000. Each station’s mea-
surement of wind direction is recorded as an integer between 1 and 8, with 1 corresponding
to winds blowing from the North-East, 2 corresponding to winds blowing from the East, etc.
It should also be noted that not all of the stations contained complete data for each day

covering the entire 25 years, and data were most often missing in January and February,



when wildfire incidence is typically minimal. Details on missing data in Los Angeles County

can be found in [12], and for further information on RAWS data see [14,15,16].

3 Methodology

In order to obtain a spatial aggregate of windspeed and wind direction data for all of Los
Angeles County on each day, the weighted mean wind direction was computed for each
day. For any particular day, consider the wind observations from the sixteen RAWS as
vectors 'y, ..., 16 whose lengths representing the speed and whose angles representing the
wind direction for that day. The weighted mean wind direction 6 is defined as the direction
of the resultant sum #; + ... + Z14 [9] . On days when data from one or more of the RAWS
stations is missing, we substituted the weighted mean of the remaining observations. All of
the following analysis is based on this daily weighted mean wind direction.

A systematic introduction to kernel methods is given in the monograph of Silverman [1].
In the elementary case of estimating a univariate density f(z) using real-valued observations

x1, ..., Tn, the kernel estimator with kernel k is defined by

f(:n):rj,%:lx(f”;”i),

where h is the bandwidth. Usually the kernel function k£ is assumed to be a symmetric
probability density function such as the Gaussian density. Kernel density estimation extends
readily to circular data, though care must be taken in the selection of the kernel function.
Since for any ¢ and any integer j, the angles # and 0+ 2j7 are identical, a circular probability

density function may be desired for the kernel k. One possible option raised by Mardia and



Jupp [9] is the von Mises distribution which has the probability density function

1
2mly(K)

9(0; 1, k) = ereosOm),

where [ denotes the modified Bessel function of the first kind and order 0, which is defined

by

2

1
Ih(k) / e,

T or

The parameter p is the directional center of the distribution and the parameter  is known
as the concentration parameter. The concentration parameter can be used to control the
degree of smoothing in circular kernel density estimation and is analogous to the bandwidth
parameter except that larger values of k lead to less smoothing and smaller values of k yield
more smoothing.

The focus of our analysis is to quantitatively describe the association between wind
direction and wildfire burn area using directional kernel regression. As with kernel density
estimation, kernel regression can be extended from the case of a real-valued explanatory
variable to the case of a directional explanatory variable by choosing a circular density
function ¢ such as the von Mises distribution as the kernel. Given n observations of a
directional explanatory variable 01, ..., 6, such as daily mean wind direction and a real-valued
response variable yq, ..., y, such as daily burn area, suppose that y; = m(6;) +¢€;, where ¢; are
independent and identically distributed random variables with zero mean. Then the kernel

regression estimate of m(#) may be given by

n! i v;9(0 — 0;;0,K)
=1

m(0; k) = — :
n-t Z 9(0 - 017 07 ’i)
i=1



Such an estimate is a natural analog of the Nadaraya-Watson estimator described in [1].
Choosing the degree of smoothing is of crucial importance in both density estimation
and kernel regression. Various methods for selecting the smoothing parameter subjectively
or automatically exist [1,17] and may be extended to the case of circular kernel regression.
For instance, when kernel-smoothing real-valued data using a Gaussian kernel, Silverman
[1] recommends a bandwidth of 0.96n~'/% and the value hg = 1.066n~'/° was suggested in
[18]. (In both cases, ¢ is typically given by the minimum of the sample standard deviation
and the interquartile range divided by 1.34.) They can be connected to the parameter x in
the von Mises distribution using the following well-known connection between the von Mises
distribution and the Gaussian distribution property of the von Mises distribution (see [9]):
if 6 is distributed according to the von Mises distribution centered at pu and with parameter

K, then
K20 — ) —p N(0,1) (2)
as k — 00. This suggests choosing the concentration parameter s via
K= —. (3)

Another option is to select xk by least-squares cross-validation (LCV). As in the real-

valued case, one may choocse k to minimize the function

CV (k) = nli [yj —m(0;; /-i)ra

where m 7 are the leave-one-out estimators:
> yig(0; — 0:;0, k)
i#£]

> 9(0; —0:50,k)
i#]

(055 1) =




It is well-known that kernel estimates with bandwidths selected by LCV can be inconsis-
tent under a variety of circumstances [19,20]. In particular, for discrete data with multiple
repeated values, such as the Los Angeles County wind direction data considered here, cross-
validation tends to suggest bandwidths that smooth too little, i.e. x will tend to be too large.
Hence values of k chosen according to (3) may be preferred in this case.

Confidence intervals for m () may readily be obtained by resampling, as follows. After
randomly assigning a mean wind direction to each day by sampling with replacement from
the empirical distribution of mean wind directions, one may obtain an estimate of m(6)
using kernel regression. This procedure is repeated 1000 times and the confidence band is
generated by connecting the 0.025 and 0.975 quantiles. The resulting 95% confidence bounds
represent range within which m would be expected to fall, assuming no relationship between
wind direction and wildfire burn area exists.

Circular kernel regression may also be used in order to assess the extent to which the
observed relationship between wind direction and burn area may be confounded by other
ecological variables, For instance, one may suspect that large burn areas occur when temper-
atures are high and when relative humidities are low (see e.g. [3]), and such days may be more
prevalent on days with certain wind directions. Hence we also investigate the relationships
between wind direction and air temperature and relative humidity using kernel-smoothed

scatterplots.



4 Results

The seasonal patterns of Los Angeles wind direction from 1976-2000 are highlighted in Figure
2, which shows a circular kernel density estimate of daily mean wind direction. In Fig. 2,
the estimated density function of the wind direction is shown separately for each month.
The results indicate that the annual wind directions can generally be divided into three
groups. During October through April, the wind direction is roughly uniformly distributed
in all directions with only a slightly higher prevalence of winds blowing from the South and
SouthWest. By contrast, winds blowing from the SouthWestern coast dominate in June, July
and August. May and September can be viewed as transition months between the other two
groups. Fig. 2 confirms that the Santa Ana winds, which originate from the NorthEastern
great basin and blow through the canyon, occur mostly during Fall, Winter and Spring,
tending to peak in occurrence in December.

Fig 3 displays a scatter plot of daily mean wind direction versus burn area. One sees
that 7 of the 13 largest wildfires that occurred during this period were associated with winds
blowing generally from the NorthEast. Indeed, the largest fire in this catalog began on
October 23, 1978, burning 52.3 sq. miles, and it occurred when the mean windspeed was 58
mph and the mean wind direction was NorthEast.

The association between the wind direction and wildfire hazard is more obviously illus-
trated by the smoothed curve in Fig 4. The estimated burn area associated with winds
from the NorthEast is 0.179 square miles per day, and which is 4.72 times that associated
with winds from the SouthEast (7 = 0.038 sq. miles per day). The difference is clearly

statistically significant, as shown by the 95% confidence bounds obtained by resampling,
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representing the null hypothesis that wind direction has no impact on wildfire hazard. Note
that the 95% bounds are not quite circular because of the non-uniformity of the observations:
more days are observed with winds from the SouthWest than those from the NorthEast, for
instance, the confidence bounds corresponding to the SouthWest are somewhat smaller as a
result.

One may question the extent to which the association between wind direction and burn
area may be confounded by other covariates known to be related to burn area, such as
temperature and relative humidity. Fig. 5 displays a scatterplot of the weighted mean wind
direction versus daily air temperature (averaged over the available RAWS stations) and Fig
6 displays the corresponding kernel regression estimate of the relationship between these
two variates. One sees from Fig. 6 that higher temperatures are associated with winds
from the SouthWest: indeed, the fitted temperature associated with SouthWestern winds is
72.5°F and the fitted temperature associated with NorthEastern winds is 66.2°F. Since this
association is in the opposite direction of that between wind direction and burn area, the
correlation observed between wind direction and burn area certainly cannot be explained by
the correlation between wind direction and temperature.

Similarly, Figures 7 and 8 show the scatterplot and corresponding kernel regression es-
timate of the relationship between mean wind direction and daily relative humidity (again
averaged over the available RAWS stations). The association between NortheEastern winds
and dry air is readily apparent and highly significant. This is consistent with well-known
meteorological principles, since winds from the SouthEast and South tend to bring more

moisture while the Santa Ana winds from the NorthEast tend to bring dry air into the
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Los Angeles basin [8]. Hence the relationship between wind direction and burn area may
be expected to be seriously confounded by relative humidity. Nevertheless, winds from the
NorthEast tend to be associated with higher burn area rates even when relative humidity is
held fixed. Fig. 9a displays the kernel regression estimate of the relationship between mean
wind direction and wildfire area burned on days when mean relative humidity is less than
15% and Fig. 9b presents the same result for days when mean relative humidity is between
15% and 30%. In agreement with Figure 4, both plots indicate that NorthEastern winds are

associated with significantly higher burn area rates, for given relative humidity conditions.

5 Discussion

The fact that in Los Angeles County, winds blowing from the NorthEast are associated with
higher wildfire burn area rates than those blowing from other directions is not surprising,
and is in agreement with existing knowledge about Santa Ana winds. The main contribu-
tion of circular kernel regression in the present context is the ability to quantify that such
wind conditions are associated with approximately 4.7 times as much wildfire burn area per
day, compared with the more common winds from the SouthWest. This relationship is not
confounded by temperature, which has the reverse relationship with wind direction, and
remains statistically significant even when controlling for relative humidity. These results
suggest that more accurate assessments of wildfire hazard may be obtained by incorporating
wind direction into a model for predicting burn area, such as that in [12] or [21].

Several shortcomings in the present analysis must be emphasized. It should be noted that

the response variable studied here is really not daily burn area but rather the area burned by
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wildfires ignited on the given day. The latter may actually be more relevant to firefighters,
urban planners, and others concerned with conditions under which large wildfires initiate.
Whereas the daily amount of burn from pre-existing wildfires may depend more heavily on
firefighting practices and other management decisions, it should also be noted that such
practices are also related to the probability that a small ignition becomes a large wildfire.
The current work assesses mean wind direction and burn area over all of Los Angeles
County; a more localized analysis may be a subject for future research. It is possible, for in-
stance, that certain wind directions at particular RAWS stations within Los Angeles County
are associated with higher burn areas, compared with other stations. Further, on days when
weather observations were missing from particular stations, wind data from existing stations
were averaged in computing the daily mean wind direction in the present analysis. Such
missing observations may have corresponded to extreme wind conditions at those locations,
in which case their inclusion might have had an impact on our results. Since most of these
missing observations occurred on cool days in January and February when conditions were
ill-suited for wildfires, however, it seems unlikely that these missing observations would have

very significantly altered the present results.
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List of Figures and their Captions:

Figure 1: Locations of the 16 Remote Automatic Weather Stations in Los Angeles County.

Figure 2: Kernel density estimation of weighted mean wind direction for each month (s
is calculated by (3), and the values for January through December, respectively, are 3.98,
4.91, 5.45, 4.70, 10.27, 16.04, 18.58, 15.44, 8.74, 5.50, 4.38, 2.34 ).

Figure 3: Scatterplot of burn area versus weighted mean wind direction.

Figure 4: Kernel regression of burn area versus weighted mean wind direction (k=2.3 by
LCV).

Figure 5: Scatterplot of temperature versus weighted mean wind direction.

Figure 6: Kernel regression of temperature versus weighted mean wind direction (k=51
by LCV).

Figure 7: Scatterplot of relative humidity versus weighted mean wind direction.

Figure 8: Kernel regression of relative humidity versus weighted mean wind direction
(k=49 by LCV).

Figure 9: Kernel regression of burn area versus weighted mean wind direction when
relative humidity is (a) less than 15% (k=0.8 by LCV); (b) between 15% and 30% (k=0.9

by LCV).
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