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ARTICLE OPEN

Gene-based polygenic risk scores analysis of alcohol use
disorder in African Americans
Dongbing Lai 1✉, Tae-Hwi Schwantes-An1, Marco Abreu1, Grace Chan 2,3, Victor Hesselbrock2, Chella Kamarajan 4,
Yunlong Liu 1, Jacquelyn L. Meyers 4, John I. Nurnberger Jr 1,5, Martin H. Plawecki5, Leah Wetherill 1, Marc Schuckit6,
Pengyue Zhang7, Howard J. Edenberg 1,8, Bernice Porjesz4, Arpana Agrawal 9 and Tatiana Foroud 1

© The Author(s) 2022

Genome-wide association studies (GWAS) in admixed populations such as African Americans (AA) have limited sample sizes,
resulting in poor performance of polygenic risk scores (PRS). Based on the observations that many disease-causing genes are shared
between AA and European ancestry (EA) populations, and some disease-causing variants are located within the boundaries of these
genes, we proposed a novel gene-based PRS framework (PRSgene) by using variants located within disease-associated genes. Using
the AA GWAS of alcohol use disorder (AUD) from the Million Veteran Program and the EA GWAS of problematic alcohol use as the
discovery GWAS, we identified 858 variants from 410 genes that were AUD-related in both AA and EA. PRSgene calculated using
these variants were significantly associated with AUD in three AA target datasets (P-values ranged from 7.61E−05 to 6.27E−03;
Betas ranged from 0.15 to 0.21) and outperformed PRS calculated using all variants (P-values ranged from 7.28E−03 to 0.16; Betas
ranged from 0.06 to 0.18). PRSgene were also associated with AUD in an EA target dataset (P-value= 0.02, Beta= 0.11). In AA,
individuals in the highest PRSgene decile had an odds ratio of 1.76 (95% CI: 1.32–2.34) to develop AUD compared to those in the
lowest decile. The 410 genes were enriched in 54 Gene Ontology biological processes, including ethanol oxidation and processes
involving the synaptic system, which are known to be AUD-related. In addition, 26 genes were targets of drugs used to treat AUD or
other diseases that might be considered for repurposing to treat AUD. Our study demonstrated that the gene-based PRS had
improved performance in evaluating AUD risk in AA and provided new insight into AUD genetics.

Translational Psychiatry          (2022) 12:266 ; https://doi.org/10.1038/s41398-022-02029-2

INTRODUCTION
Alcohol use disorder (AUD) is one of the most common public health
problems [1] and both genetic and environmental factors contribute
to risk. Estimates of the heritability of AUD range from 40% to 60%
[2–4]. Recently, several large-scale genome-wide association studies
(GWAS) of AUD-related phenotypes have reported many genetic
variants associated with AUD [5–7]. These GWAS reiterated the highly
polygenic underpinnings of AUD and related phenotypes where
many variants contribute small effects on AUD. Consequently,
polygenic risk scores (PRS) have proven to be a strong approach
for assessing AUD genetic liability beyond the genome-wide
significant variants [5, 7]. For instance, in our previous study of an
European ancestry cohort [8], individuals comprising the top PRS
decile were almost twice as likely to meet the criteria for AUD
compared to all others, an estimate comparable to those published
for the first-degree family history of AUD in national surveys [9, 10].
However, PRS analysis of AUD in admixed populations, such as
African Americans (AA), suffer from poor performance due to the
much smaller sample sizes of the discovery GWAS [5].

The performance of PRS relies on well-powered discovery GWAS
to accurately select the disease-associated variants and estimate
their effect sizes, and well-matched target datasets. For admixed
populations, the sample sizes of the discovery GWAS comparable
to European ancestry (EA) populations (hundreds of thousands to
>1 million) require extensive and strategic data collection. Studies
have shown that many disease-causing genes are shared among
different populations [11–14]. Therefore, large-scale EA GWAS
summary statistics can be leveraged to improve the performance
of PRS in non-EA populations by increasing the overall discovery
GWAS sample size. However, disease-associated variants may have
different allele frequencies and effect sizes in different popula-
tions, and linkage disequilibrium (LD) patterns are also different
[12, 15–18], i.e., the target datasets are not matched to the
discovery GWAS. Furthermore, for admixed populations such as
AA, the proportions of African ancestry range from close to 0 to
almost 100% and are differently distributed across the genome,
making AA an extremely heterogeneous population. Therefore,
different AA target datasets may also have different LD patterns
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and allele frequencies, and PRS results from one study cannot be
generalized to other studies. Methods aimed to address these
challenges have been proposed, but their performance remains
far from ideal [19–23].
The majority of variants in the genome are likely not related to a

particular condition and including them in PRS calculations will
reduce the performance by introducing noises. Ideally, only
variants that act on disease-causing genes should be used in
calculating PRS. However, most of these variants and genes
remain to be discovered. If a variant located in a gene is nominally
associated (e.g., P-values < 0.05) with a disease in both EA and
non-EA populations and has the same direction of effect, then it is
more likely to be a shared disease-causing variant and that gene is
likely to be a shared disease-causing gene across populations.
Therefore, using these variants to calculate PRS is expected to
improve the performance by excluding many variants in the
genome that are unlikely to be related to a disease, thereby
increasing the signal-to-noise ratio. Moreover, since these disease-
causing variants are shared among different populations, the
discovery GWAS and target datasets do not have to be well-
matched and the large-scale EA GWAS can be used to increase the
overall discovery GWAS sample size. Based on these observations,
we propose a novel gene-based PRS framework aimed at
enhancing the performance of PRS in admixed populations. We
first used an AA GWAS and an EA GWAS to identify genes that
were associated with AUD in both populations, then used variants
located within these genes’ boundaries to calculate PRS (PRSgene).
We compared the performance of PRSgene with PRS calculated
using variants located in intergenic regions (PRSintergenic) and all
available variants (PRSall). Furthermore, for genes included in
gene-based PRS calculations, we performed gene enrichment
analysis using Gene Ontology (http://geneontology.org/) to test
whether they were enriched in AUD or other biological processes
that could provide novel insight into AUD mechanism. In addition,
we tested in which tissues these genes were enriched. We also
searched a publically available drug target database [24] to
evaluate whether these genes were potential drug targets for AUD
treatment, or drug targets for the treatment of other diseases but
may be repurposed to treat AUD.

METHODS
Discovery GWAS
The discovery GWAS were from the meta-GWAS of problematic alcohol use
in EA cohorts (EA-PAU) (N= 435,563) [7] and the AA GWAS of AUD from the
Million Veteran Program (AA-AUD) (N= 56,648) [5], the largest GWAS of
AUD-related phenotypes to date in EA and AA populations, respectively. The
EA-PAU was a meta-analysis of problematic alcohol use [7] comprised of the
AUD GWAS of the Million Veteran Program Phase I [5] and Phase II data, the
alcohol dependence GWAS from the Psychiatric Genomics Consortium [25],
and the GWAS of scores from the problem subscale of the Alcohol Use
Disorder Identification Test (AUDIT items 4 to 10) in the UK Biobank [6].
Across both discovery GWAS, A/T, or C/G variants were excluded to avoid
strand ambiguity. As we were focusing on AUD-associated variants shared
between EA and AA, only variants having the same directions of effects in
both EA-PAU and AA-AUD were included. Both GWAS summary statistics
were downloaded from the database of genotypes and phenotypes (dbGaP:
phs001672.v3.p1, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.c
gi?study_id=phs001672.v3.p1).

Target datasets
AA target datasets were drawn from 3 sources: the Collaborative Study on
the Genetics of Alcoholism (COGA: N= 3375) [26], Study of Addiction:
Genetics and Environment (SAGE: N= 930) [27], and YalePenn (N= 2010)
[28]. COGA is a family cohort, in which alcohol-dependent probands and
their family members from inpatient and outpatient alcohol dependence
treatment facilities in seven sites were invited to participate. COGA also
recruited community comparison families from a variety of sources in the
same areas [26, 29]. The study was approved by Institutional review boards
from all sites. Every participant provided informed consent. The Semi-

Structured Assessment for the Genetics of Alcoholism (SSAGA) was
administered to individuals 18 or over and the child version of the SSAGA
was used for those younger than 18 [30, 31]. SAGE (phs000092.v1.p1,
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=ph
s000092.v1.p1) and YalePenn (phs000425.v1.p1, https://www.ncbi.nlm.n
ih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000425.v1.p1) were do
wnloaded from dbGaP. Since COGA had more phenotypic information, if a
sample in the COGA dataset was also in SAGE and/or YalePenn, it was only
analyzed as part of the COGA data. SAGE and YalePenn were mixes of
related and unrelated individuals, although most were unrelated. Only AA
samples from COGA, SAGE, and YalePenn were used. Across all three
datasets, AUD was defined as meeting lifetime criteria for DSM-IV alcohol
dependence [32] or DSM-5 alcohol use disorder [33]. All other individuals
were considered as controls.
The gene-based PRSgene were calculated using variants located in AUD

genes implicated in both AA and EA (i.e., P-values < 0.05 in both
populations), consequently, they should be applicable to both populations.
To test this proposition, an EA target dataset was also tested. As some EA
samples of COGA and SAGE data were part of EA-PAU, they were not
included as the target EA datasets, instead, EA individuals were drawn from
the Indiana Biobank (https://indianabiobank.org/). The Indiana Biobank is a
state-wide collaboration that provides centralized processing and storage
of specimens that are linked to participants’ electronic medical information
via Regenstrief Institute at Indiana University. All Indiana Biobank
individuals included in this study were unrelated. AUD in Indiana Biobank
was diagnosed based on ICD9 (303 and 305.0) and ICD10 (F10) codes.
Individuals not diagnosed as AUD and without AUD-associated conditions
such as alcohol-associated pancreatitis were defined as controls.

Genotype data processing and imputation
Detailed information about COGA, SAGE, and YalePenn data processing
has been reported previously [34–36]. Briefly, all data were combined and
a common set of high quality (minor allele frequency (MAF) > 10%, missing
rate <2%, Hardy-Weinberg Equilibrium (HWE) P-values > 0.001) and
independent (defined as R2 < 0.5) variants (N= 24,135) was used to
identify duplicate samples among different target datasets and confirm the
reported family structures using PLINK [37, 38]; family structures were
updated as needed. The same set of common variants was also used to
estimate the principal components (PCs) of population stratification using
Eigenstrat [39] with 1000 Genomes data (Phase 3, version 5, NCBI GRCh37)
as the reference panel. These PCs were also used to determine AA samples
(first PC between -0.0043 and 0.0115 and second PC between -0.0035 and
0.0059). Due to the different arrays used, each target dataset was imputed
separately to 1000 Genomes by using SHAPEIT2 [40] followed by Minimac3
[41]. Before imputation, variants with A/T or C/G alleles, missing rates >5%,
MAF < 3%, and HWE P-values < 0.0001 were excluded. Imputed variants
with R2 ≥ 0.30 and MAF ≥ 1% were included in all analyses. Indiana Biobank
samples were genotyped using Illumina Infinium Global Screening Array
(GSA, Illumina, San Diego, CA) by Regeneron (Tarrytown, NY). Variants with
missing rate >5%, MAF < 1%, HWE P-value < 1E−10 among cases and
1E−6 in controls were excluded as reported previously [42]. Population
stratification was then estimated using the SNPRelate package [43] from
Bioconductor [44]. Indiana Biobank data were also imputed to 1000
Genomes using the Michigan Imputation Server (https://
imputationserver.sph.umich.edu/index.html#!pages/home) [41]. Imputed
variants with R2 < 0.30 and MAF < 1% were excluded.

PRS calculation
We used PRS-CSx, a recently developed method designed for cross-ethnic
polygenic prediction that showed better performance than other methods
in simulation studies and real data analysis [23]. The posterior effect size of
each variant was estimated via a Bayesian regression framework using
continuous shrinkage priors. African and European samples from the 1000
Genomes Project were used as the LD reference panels. PRS-CSx can
estimate posterior effect sizes of AA only, EA only, and meta-analysis of EA-
PAU and AA-AUD. The authors of PRS-CSx recommend using estimated
AA- and EA-only posterior effect sizes, then testing different linear
combinations of them with different weights in a validating dataset, and
choosing the one with the best performance for testing in independent
datasets [23]. If the validation dataset and independent datasets are
similar, e.g., having similar LD patterns and allele frequencies, this method
will have more power. However, if they are different, then the weights
estimated from the validating dataset will be biased toward that dataset
and different from the independent datasets, resulting in loss of power. As
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we noted earlier, AA is a very heterogeneous population. The three AA
target datasets in this study were recruited under different ascertainment
strategies and in different regions, therefore, meta-analyzed posterior
effect sizes were used in this study. In addition, since we only focused on
AUD-associated variants implicated in both AA and EA, meta-analysis
posterior effect sizes should provide more accurate estimates for those
variants. We first selected variants that had P-values < 0.05 in both EA-PAU
and AA-AUD (i.e., at least showing marginal associations) and had the same
directions of effects (referred to as concordant variants). For our gene-
based PRS (PRSgene), only concordant variants located within gene
boundaries (defined as within the region containing the gene plus 1 kb
upstream of the transcription start site and 1 kb downstream of the
transcription end site; annotated using ANNOVAR [45] based on NCBI
RefSeq GRCh37) were used. To test whether using any concordant variants
regardless of location would do as well, we calculated PRS using
concordant variants located outside gene boundaries (referred to as
PRSintergenic). We also tested whether further extending gene boundaries
used to calculate PRSgene improved results by setting different window
sizes: 10 kb, 25 kb, 50 kb, 100 kb, 250 kb, 500 kb, 1 Mb, 50 Mb, and 100Mb.
Lastly, we also used all variants across the entire genome to calculate PRS
(PRSall) for comparison purposes. For all AA target datasets, PRSgene,
PRSintergenic, and PRSall were calculated using exactly the same sets of
variants, respectively, thus they were directly comparable and can be
combined. PLINK [37, 38] was used to calculate PRS using the posterior
effect sizes estimated by PRS-CSx and imputation dosages. All PRS were
standardized as mean= 0 and standard deviation= 1 in AA (all three
datasets combined) and EA target datasets separately.

Statistical analysis
As COGA, SAGE, and YalePenn include related individuals, generalized
linear mixed models were used with a random effect to adjust for family
relationships. For Indiana Biobank, which is a cohort of unrelated
individuals, logistic regression models were used. We also stratified
individuals based on PRS deciles and compared each to the bottom decile.
Since the sample sizes in COGA, SAGE, and YalePenn had insufficient
sample sizes in each decile, we combined all three target datasets for the
stratified analyses. For all models, sex and the first 10 PCs were included as
covariates. For the combined analysis of COGA, SAGE, and YalePenn data,
we also included the cohort indicator as an additional covariate.
Associations with P-values < 0.05 across all three target datasets were
considered statistically significant for PRSgene, PRSintegenic, and PRSall,
respectively.

Gene enrichment analyses, searching GWAS catalog and
potential drug target genes
For genes included in calculating PRSgene, we performed gene ontology
enrichment analysis using PANTHER (released 2021-01-24) [46] imple-
mented in the Gene Ontology (GO) Resource (http://geneontology.org/,
released 2021-08-18). We focused on GO Biological Processes (GOBPs).
We also used Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA) [47] to test whether these genes were
enriched in Differentially Expressed Gene (DEG) sets calculated using 54
tissues from The Genotype-Tissue Expression (GTEx V8) project [48]. We
searched the GWAS catalog (https://www.ebi.ac.uk/gwas/. accessed:
2021-10-11) [49] to check whether these genes had been previously
implicated in GWAS of AUD-related phenotypes. Lastly, we checked
whether these genes could be potential drug targets by searching the
gene list for targets of the FDA-approved drugs as well as those in
current clinical trial investigations, compiled by Wang et al. [24] derived
from the Informa Pharmaprojects database (https://pharmaintelligen

ce.informa.com/products-and-services/data-and-analysis/pharma
projects).

RESULTS
Samples used in this study are summarized in Table 1. In all target
datasets, about 60% of cases were males while <42% of controls
were males.
PRS-CSx estimated posterior meta-analysis effect sizes for 1 126

428 variants and they were used to calculate PRSall. In total, there
were 1 533 variants with P-values < 0.05 in both EA-PAU and AA-AUD
and having the same directions of effects (i.e., concordant). Among
them, 858 (Table S1) and 675 (Table S3) variants were located within
(410 genes, Table S2) and outside gene boundaries, respectively. As
shown in Table 2, for AA target datasets, both PRSgene and PRSall had
P-values < 0.05 in all target datasets except PRSall for COGA.
PRSintergnic had P-values ≥ 0.10 in all target datasets, demonstrating
that concordant variants located within genes better stratify risk for
AUD than those located in intergenic regions. Effect sizes ranged
from 0.15-0.21 for PRSgene, −0.02 to 0.12 for PRSintergenic, and 0.06-
0.18 for PRSall, respectively. In EA, 847 of 858 variants (Table S1), and 1
061 130 of 1 126 428 variants were present in Indiana Biobank after
QC; both PRSgene and PRSall had P-values < 0.05 (PRSgene Beta=0.11,
SE= 0.02; PRSall Beta= 0.34, SE= 0.05) but not PRSintergenic (Beta=
0.02, SE= 0.05). Results of using different window sizes to extend
gene boundaries are in Table S4 and Fig. S1. The numbers of variants
increased slightly with larger window sizes, and windows 50 and
100Mb had the same number of variants, indicating that most
variants are located within or close to genes. Overall, the results were
similar, therefore, we kept variants within gene boundaries because it
was more straightforward to determine AUD genes, as larger
distances often contained multiple genes, and it is challenging to
assign intergenic variants to a gene.
The association between PRS and AUD increased from the

bottom decile (1st decile) to the top decile (10th decile) (Fig. 1).
Using the bottom decile as the reference group, all except the 2nd
and 3rd deciles showed statistically significant association with the
increased odds for AUD (ORs: 1.37–1.76. Table 3) after adjusting
for covariates.
Of the 410 genes, 353 were uniquely mapped to the GO

database. The unmapped genes were non-coding RNAs, anti-
sense RNAs, pseudo-genes, and read-throughs. Fifty-four GOBPs
had false discovery rate (FDR) P-values < 0.05, including ethanol
oxidation, synaptic signaling, synapse organization, synaptic
plasticity, startle response, neurogenesis, nervous system devel-
opment, learning or memory, protein metabolic process, cell
adhesion, cell development, cell junction organization, movement
of cell or subcellular component, cell-cell signaling, regulation of
signaling, etc. (Table S5). Three hundred and seventy-four genes
were mapped to GTEx V8 DEG sets and enrichment results are in
Fig. S2. The majority of the enrichment sets were found in brain
tissues but also included liver, kidney, and other tissues as well
(Fig. S2).
Only 47 genes were identified in the previous GWAS of AUD-

related phenotypes (Table S2). Twenty-six genes were targets of

Table 1. Sample summary.

Population Target dataset # case (%male) # control (%male) # total # families

AA Alla 2786 (60.80) 3529 (39.27) 6315 3322

COGA 875 (62.06) 2500 (41.60) 3375 590

SAGE 387 (59.17) 543 (37.02) 930 869

YalePenn 1524 (60.50) 486 (29.84) 2010 1863

EA Indiana Biobank 539 (62.15) 3515 (40.40) 4054 4054
aCOGA, SAGE, and YalePenn combined.
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drugs approved by the FDA or in clinical trials. Among them, four
(DRD2, PDE4B, GRM5, and SLC6A9) were drug target genes for AUD
treatment (Table S6); for those 22 genes that were targets of drugs
to treat diseases other than AUD, 21 were involved in the
significant GOBPs identified and five (EIF4E, ESR1, MAPT, METAP1,
and TNKS) were reported by previous GWAS of AUD-related
phenotypes (Table S2).

DISCUSSION
In this study, we found that gene-based PRS (PRSgene) calculated
using 858 variants from 410 genes were significantly associated
with AUD in both AA and EA, and outperformed the PRS
calculated using all variants (PRSall) in AA. Compared to the
bottom decile, those at the top PRSgene decile were nearly twice as
likely to be AUD cases (OR= 1.76) in AA. The 410 genes included
in calculating PRSgene were enriched in 54 GOBPs, and many of
them are likely to be AUD-related. They were also enriched in
brain tissues. In addition, four genes were targets of drugs in
Phase II or III clinical trials to treat AUD; 22 genes were targets of
drugs approved by the FDA or in clinical trials to treat other
diseases but may be repurposed to treat AUD. Together, these
findings showed that biologically meaningful polygenic scores can
be characterized in non-European ancestry individuals byTa
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Fig. 1 Distributions of PRSgene in each decile in AA. Box-plots of
each PRSgene decile.

Table 3. Odds ratios when comparing each PRSgene decile with the
bottom decile in AA (COGA, SAGE, and YalePenn combined).

Decile OR OR 95%CI P-value

10 1.76 1.32–2.34 1.03E−04

9 1.72 1.29–2.29 2.05E−04

8 1.52 1.15–2.00 2.93E−03

7 1.64 1.27–2.12 1.49E−04

6 1.43 1.09–1.87 0.01

5 1.37 1.05–1.79 0.02

4 1.48 1.13–1.93 4.55E−03

3 1.22 0.91–1.62 0.18

2 1.11 0.85–1.45 0.44

Significant P-values are in bold.
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leveraging methods that focus on intragenic signals with
concordant directions of effects across ancestries. Furthermore,
the process identified drugs already under development that
could be evaluated for their potential to treat AUD.
To improve the performance of PRS, more disease-associated

variants should be included and unrelated variants should be
excluded. AUD is caused by many genes with small effects and in
GWAS of AUD, due to the large number of variants tested, many
variants that are unrelated to AUD show some degree of
association (e.g., P-values < 0.05) purely by chance (i.e., false
positives). If sample sizes are large (e.g., hundreds of thousands of
participants or more), while the majority of AUD-associated
variants are still not genome-wide significant, they usually have
smaller P-values than those false positives and can still contribute
to the calculation of PRS. However, when the discovery GWAS
sample sizes are small to moderate, the discrimination between
AUD-related and unrelated variants narrow. This leads to a
reduction in PRS performance. Using large-scale EA discovery
GWAS could mitigate this problem, but the improvement is
limited even with sophisticated statistical methods due to the
differences between the discovery GWAS and the target datasets
[23]. Our gene-based PRS framework leverages the concordant
variants across different populations and discriminates variants
unrelated to the disease of interest leading to the improved
performance of PRS. Using concordant variants also reduces the
chance of selecting the wrong independent index variants due to
a mismatch of LD patterns among the discovery and target
datasets, as well as the external LD reference panels. Moreover, as
PRSintergenic were not associated with AUD in our analyses, the
performance of PRSgene was further improved by focusing on
concordant variants within gene boundaries. RRSgene had superior
performance in all our AA target datasets, thus, we conclude that
this strategy can be used to improve the performance of PRS
when the discovery GWAS sample sizes are not sufficiently large,
notable in admixture populations, and other groups that have
been underrepresented in GWAS studies to date.
While PRSgene outperformed PRSall in AA, the opposite was

observed in EA. This was expected for the following reasons.
First, many GWAS findings, such as variants in KLB and GCKR,
which reached genome-wide significance in EA, had P-values >
0.05 in AA (i.e., these genes may not be AUD-related in AA for
some unknown mechanisms, or variants acting on these genes
in AA have not been identified), therefore, they were not
included in calculating PRSgene but were used in calculating
PRSall in EA. Second, even within genes that have shown
associations with AUD in both AA and EA, different causal
variants may have been important in each ancestral group. One
example is rs2066702 in the ADH1B gene. While relatively
common in AA individuals (MAF= 0.18), the variant is rare in EA
individuals (MAF= 0.002) (https://www.ncbi.nlm.nih.gov/snp/
rs2066702?vertical_tab=true#frequency_tab). This was the only
variant selected in ADH1B in calculating PRSgene, resulting in no
contribution of ADH1B when calculating PRSgene in EA
individuals from the Indiana Biobank. However, for PRSall,
multiple common EA variants in ADH1B (e.g., rs2066701,
rs1042026, and rs2075633) were included, thus increasing the
performance of PRSall. Third, we limited inclusion to variants
within gene boundaries. Although PRSintergenic and PRSgene with
extended boundaries analyses showed that overall including
intergenic concordant variants did not increase the PRS
performance, however, some AUD variants are not located
within gene boundaries and this may affect AA and EA
disproportionately. For example, rs1229978, which is located
between ADH1B and ADH1C, is much more common in
EA (MAF= 0.39) than in AA (MAF= 0.15) (https://
www.ncbi.nlm.nih.gov/snp/rs1229978?vertical_tab=true); ther
e-fore, not including this variant in PRS calculations had a
larger impact in EA than in AA. Nevertheless, the significance of

PRSgene in both AA and EA suggested that most of these genes
were AUD-related in these two populations.
More than half of the 410 genes (244) were involved in

54 significant GOBPs. As expected, ethanol oxidation was among
them and four genes (ADH1B, ADH1C, ADH4, and ADH5) were
involved. Compromised executive functioning (i.e., neuroadapta-
tion) is one of the major mechanisms contributing to AUD [50]
and not surprisingly, several significant GOBPs related to synaptic
systems (synaptic signaling, synapse organization, synaptic
plasticity, startle response) were identified (46 genes). Although
the role of the synaptic system in AUD is well-established [50],
however, only nine genes (CSMD1, DCC, DRD3, EIF4E, ERC2,
LINGO2, MAPT, NRXN2, and TENM2) were implicated in previous
GWAS of AUD-related phenotypes. We also found significant
GOBPs related to learning and memory (27 genes), consistent with
previous findings that AUD and neurodegenerative diseases share
some genetic liability [51]. Nervous system development-related
GOBPs were significant (69 genes), and genes involved may
predispose to AUD via mechanisms yet to be discovered. GOBPs
such as protein metabolic process, cell adhesion, cell develop-
ment, cell junction organization, movement of cell or subcellular
component, cell-cell signaling, and regulation of signaling were
also significant. Intuitively, these GOBPs may not seem to be AUD-
related, however, among 148 genes only involved in these
processes, 20 of them were reported in previous GWAS of AUD-
related phenotypes with some of them, e.g., FTO, PDE4B, and
SLC39A8, being genome-wide significant in recent large-scale
GWAS of AUD [7]. In addition, there were seven genes (EHBP1, EYS,
FNBP4, LOC100507053, TNRC6A, WDR7, and ZNF462) that were not
involved in any significant GOBPs but were reported by previous
GWAS of AUD-related phenotypes. Further studies are needed to
elucidate the roles of these genes in predisposing to AUD. Tissue-
specific enrichment showed that most genes were enriched in
brain tissues as expected, however, other tissues such as liver,
kidney, and pancreas also showed enrichment. Except liver, how
these tissues relate to AUD remain to be discovered. By searching
the drug target gene database, we found four genes (DRD2,
PDE4B, GRM5, and SLC6A9) were already targets of AUD treatment
drugs (Table S6). We also found 22 genes that were targets of
drugs to treat other diseases (Table S6) and could be examined
and/or repurposed to treat AUD. Studies have found that gene-
targeted drugs were more likely to get FDA approval [24, 52, 53],
therefore, identifying the roles of genes used in calculating
PRSgene could facilitate the development of novel treatment
methods.
This study has several limitations. First, we limited to

concordant variants in both AA and EA, thus, variants that
may have discordant but true effects were excluded, reducing
the performance of PRSgene. Second, although most intergenic
concordant variants did not contribute to the PRS signal as
shown in the analyses of PRSintergenic and extended gene
boundaries with different window sizes, some of them are truly
AUD related and contribute to the risk of AUD, and excluding
them leading to a further reduction in the performance of
PRSgene. Third, we used posterior effects estimated from the
meta-analysis of AA-MVP and EA-PAU. As EA-PAU had a much
larger sample size (>7 times of sample size of AA-MVP), more
weight was put on effects estimated from the EA samples.
Therefore, for those variants that had different sizes of effects
between AA and EA, effects from the meta-analysis were biased
toward the EA GWAS. Fourth, studies have shown that using
functional annotations can improve the performance of PRS
and increase the transferability of PRS between different
populations [11, 54–56]. However, most of the available
functional annotation databases were generated using Eur-
opean ancestry samples and were not related to AUD, therefore,
those functional information were not used in this study, which
may also reduce the performance of PRSgene.
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In summary, we calculated PRS for evaluating AUD risk that
worked cross populations based on our novel gene-based PRS
framework. Not only our new framework outperformed the PRS
calculated using all variants in AA, but also the genes included in
calculating PRS showed enrichment for biological plausible
processes and are potential targets for drug development,
therefore, this novel framework demonstrates the utilities of PRS
beyond disease risk evaluation to the identification of biological
processes and drug targets, and shed light on the genetic
mechanism of AUD.
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