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SUMMARY

The spikelet is the basic unit of the grass inflorescence. In tetraploid (Triticum turgidum) and hexaploid

wheat (Triticum aestivum), the spikelet is a short indeterminate branch with two proximal sterile bracts

(glumes) followed by a variable number of florets, each including a bract (lemma) with an axillary

flower. Varying levels of miR172 and/or its target gene Q (AP2L5) result in gradual transitions of glumes

to lemmas, and vice versa. Here, we show that AP2L5 and its related paralog AP2L2 play critical and

redundant roles in the specification of axillary floral meristems and lemma identity. AP2L2, also targeted

by miR172, displayed similar expression profiles to AP2L5 during spikelet development. Loss-of-function

mutants in both homeologs of AP2L2 (henceforth ap2l2) developed normal spikelets, but ap2l2 ap2l5

double mutants generated spikelets with multiple empty bracts before transitioning to florets. The coor-

dinated nature of these changes suggest an early role of these genes in floret development. Moreover,

the flowers of ap2l2 ap2l5 mutants showed organ defects in paleas and lodicules, including the homeo-

tic conversion of lodicules into carpels. Mutations in the miR172 target site of AP2L2 were associated

with reduced plant height, more compact spikes, promotion of lemma-like characters in glumes and

smaller lodicules. Taken together, our results show that the balance in the expression of miR172 and

AP2-like genes is crucial for the correct development of spikelets and florets, and that this balance has

been altered during the process of wheat and barley (Hordeum vulgare) domestication. The manipula-

tion of this regulatory module provides an opportunity to modify spikelet architecture and improve

grain yield.

Keywords: Triticum aestivum, Triticum turgidum, spikelet development, floral meristem, miRNA, AP2, floral

organs, lodicules.

INTRODUCTION

Cereal inflorescence architecture is a major determinant of

grain yield and, not surprisingly, it has been extensively

modified by human selection during crop domestication.

Modifications in cereal inflorescence development facili-

tated increases in grain number and size, and fine-tuned

factors limiting shattering while improving threshability

(Doebley, 2006; Debernardi et al., 2017). A better under-

standing of the molecular mechanisms that control inflo-

rescence development may allow the engineering of new

architectures with enhanced grain productivity.

Inflorescence development begins when the shoot apical

meristem (SAM) transitions from the vegetative to the

reproductive phase. In the ancestral grass inflorescence,

the panicle, the inflorescence meristem (IM) generates

lateral primary and secondary branches, each ending in a

spikelet (‘little spike’). In tetraploid (Triticum turgidum) and

hexaploid wheat (Triticum aestivum), the primary and sec-

ondary branches of the inflorescence are absent, resulting

in spikelets attached directly to the rachis, forming a

derived structure called a spike. The wheat IM generates a

determined number of lateral spikelet meristems (SMs) in

an alternating distichous pattern along the central rachis

before forming a terminal spikelet (Kellogg et al., 2013).

The spikelet is the basic unit of the grass inflorescence

and comprises a series of overlapping bracts arising distic-

hously from a short axis called the rachilla (Clifford, 1987).

In wheat, the two proximal bracts lack axillary meristems

and are designated as glumes, whereas the next bracts,

called lemmas, have axillary meristems that develop into
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short reproductive shoots. In the floral axis, the floral

meristem generates the palea (a membranous two-keeled

structure), two scales called lodicules that can swell to

spread the lemma and palea, three stamens and a terminal

ovary. These lateral shoots with their subtending lemmas

are designated as florets (Clifford, 1987). In some grass

species the SM produces a determinate number of florets,

e.g. in Hordeum vulgare (barley), Oryza sativa (rice),

Sorghum sp. and Zea mays (maize), whereas wheat gener-

ates an indeterminate number of lateral florets with only

the most basal florets surviving to support grains (Kellogg,

2001; Guo et al., 2017; Sakuma et al., 2019).

The grass inflorescence architecture is determined by

the maintenance or termination and the identities acquired

by the IM and lateral meristems, which in turn depend on

the expression and interactions of developmental regula-

tory genes in the meristem or in adjacent signaling centers

(Whipple, 2017; Bommert and Whipple, 2018). In wheat, it

was recently shown that the MIKC-type MADS-box pro-

teins of the APETALA 1 (AP1)-like family (VRN1, FUL2 and

FUL3) play central roles controlling the activity and deter-

minacy of the IM and the specification of the SMs and their

subtending bracts (Li et al., 2019). These and other MIKC-

type MADS-box proteins play conserved roles in the speci-

fication of SM fate and floral organ identity, which are well

documented in the ABCDE model of flower development

(Callens et al., 2018; Wu et al., 2018; Chongloi et al., 2019).

MADS-box genes act as tetrameric complexes and differ-

ent protein combinations result in the specification of dif-

ferent floral organ identities (Theissen et al., 2016).

In contrast, the mechanisms and genes that control the

transition of the SM, from producing sterile glumes to flo-

rets, are not entirely clear. Members of the APETALA 2

(AP2)-like family of transcription factors (TFs) are good

candidates for this function. Combined mutations in two

closely related AP2-like genes from maize, INDETERMI-

NATE SPIKELET 1 (IDS1) and SISTER OF INDETERMINATE

SPIKELET 1 (SID1) (Chuck et al., 2008), or in the two ortho-

logs from rice, OsIDS1 and SUPERNUMERARY BRACT

(SNB) (Lee and An, 2012), result in spikelets that generate

multiple bract-like structures before producing one or more

florets (except for the maize tassel, where no florets are

formed). In polyploid wheat, the orthologs of IDS1 include

the well-known gene Q on chromosome 5A. This gene

played a critical role during wheat domestication by con-

ferring the square spike and free-threshing characteristics

(Simons et al., 2006). Loss-of-function mutants in the Q

gene in tetraploid wheat also resulted in the formation of

additional sterile bracts with characteristics intermediate

between glumes and lemmas (Debernardi et al., 2017).

Studies of the conserved microRNA172 (miR172), which

targets AP2-like mRNAs for cleavage (Huijser and Schmid,

2011; Zhu and Helliwell, 2011), provide additional evidence

for the roles of AP2-like genes in inflorescence and spikelet

development. In maize, disruption of the miR172e locus by

a transposon insertion in the mutant tasselseed 4 (ts4) or a

single mutation within the miR172 binding site of IDS1 (Ts6

allele) resulted in the production of additional florets in the

spikelet and a lack of pistil abortion in the tassel (Chuck

et al., 2007). Similarly, disruption of barley miR172 by a

transposon insertion showed abnormal spikelet develop-

ment, including the conversion of glumes to partially devel-

oped florets in apical regions of the spikes (Brown and

Bregitzer, 2011). The domesticated Q allele in wheat origi-

nated from a point mutation in the miR172 target site that

reduced miR172 activity. Further reduction in miR172 activ-

ity (generated by target mimicry, henceforth MIM172) or an

extra point mutation in the miR172 binding site ofQ showed

a similar conversion from glumes to florets in spikelets

located in distal positions of the spike (Debernardi et al.,

2017; Greenwood et al., 2017). In spikelets located in subter-

minal positions, glumes were converted into sterile florets

consisting of only a lemma and a palea. In proximal spike-

lets, the glumes subtended no axillary meristems but had

longer awns and reduced keels relative to the wild type,

indicative of a partial transition to lemmas. This gradient of

homeotic conversions correlated with a decrease of miR172

and an increase of Q expression levels from basal to apical

regions of the spike (Debernardi et al., 2017).

Overexpression of an miR172 precursor driven by the

maize UBIQUITIN promoter (Ubi::miR172) also results in

alterations in inflorescence and spikelet development. Rice

Ubi::miR172 panicles showed reduced branching and addi-

tional glume-like bracts similar to those observed in

snb osids1 double mutants. The Ubi::miR172 plants with

the highest miR172 expression levels showed more severe

effects than the double mutants, however, suggesting that

additional miR172 targets were likely involved in the

Figure 1. Wheat AP2-like genes. (a) Representative spikes of a wild-type plant (Wt), ap2l5 null mutant and T0 transgenic lines transformed with a vector express-

ing the miR172d precursor under the maize UBIQUITIN promoter (Ubi::miR172). Scale bar: 1 cm. (b) Genomic structure of a typical AP2-like gene, showing the

exons in blue, the AP2 domains in pink and the miR172 target site in red (sequences for different wheat AP2-like genes below, with variants in red). (c) Neigh-

bor-joining molecular phylogenetic analysis of Arabidopsis, Brachypodium, rice, maize, barley and wheat AP2-like proteins (based on alignments of the two

AP2-domains). (d) RNA-seq heat map showing the expression of different AP2-like homeologs from hexaploid wheat in different tissues (data from the web tool

available at http://www.wheat-expression.com). Each row corresponds to a different developmental stage (from younger to older) of the tissue listed on the left.

(e) Relative expression of AP2-like genes in apices from the tetraploid variety Kronos at different developmental stages on the Waddington scale (W1, vegetative

apex; W2, early double-ridge stage; W3, glume primordium; W3.25, lemma primordium; W3.5, floret primordium). Expression data were determined by qRT-

PCR using the DDCt method and ACTIN as endogenous control. Expression was normalized to W1 stage for each gene. Bars represent means � SEMs of three

or more biological replicates, and different letters indicate statistically significant differences (P < 0.05).

© 2019 The Authors.
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regulation of these phenotypes (Lee and An, 2012). A simi-

lar result was observed in wheat transgenic plants overex-

pressing miR172. Most wheat Ubi::miR172 plants showed

similar phenotypes to the Q-null mutants, with one or two

florets transformed into sterile glume-like structures

(Debernardi et al., 2017). However, two out of the 14 inde-

pendent wheat transgenic plants showed an even stronger

phenotype, with a large number of sterile glume-like

organs (Figure 1a). These plants failed to produce seeds,

limiting further analyses and precluding their inclusion in

our previous study.

We hypothesized that the more severe spikelet pheno-

types observed in the strong Ubi::miR172 plants relative to

the wheat Q-null and rice snb osids1 double mutants (Lee

and An, 2012) could result from the downregulation of

additional AP2-like paralogs. In this study, we combined

gene expression data with transgenic and genetic

approaches to show that another AP2-like gene, an ortho-

log to barley HvAP2 Cly1/Zeo and rice SHAT1 genes (Nair

et al., 2010; Zhou et al., 2012; Houston et al., 2013; Wang

et al., 2015a), plays an important and overlapping role with

Q in wheat floret development.

RESULTS

Wheat AP2-like family

To prioritize which mutant AP2-like genes to combine with

the Q loss-of-function mutant, we characterized the A, B

and D homeologs for the three other wheat AP2-like genes

harboring a miR172 target site (Figure 1b; Table S1; from

Wheat Genome RefSeqv1.1). We designated these genes

as AP2L1, AP2L2, AP2L5 (synonymous with Q) and AP2L7,

with numbers corresponding to their chromosome loca-

tions. Henceforth, and to avoid confusion, we will use the

symbols Q and q to refer specifically to the A-genome alle-

les with or without the mutation in the miR172 binding

site, respectively, AP2L5 when referring to the overall func-

tion of the different homeologs, and ap2l5 when referring

to the loss-of-function mutants for all homeologs.

A phylogenetic analysis including all AP2-like genes tar-

geted by miR172 from wheat, barley, rice, maize, Brachy-

podium and Arabidopsis showed that the wheat AP2L5

gene belongs to the IDS1/SID1 cluster (Figure 1c), and that

the ortholog of SID1/SNB is absent in wheat and barley

genomes. We also failed to detect an ortholog of SID1/SNB

in the available genomic sequences of Secale cereal (rye),

Triticum urartu (einkorn wheat, an A-genome progenitor),

Aegilops tauschii (a D-genome progenitor) and Triticum

turgidum ssp. dicoccoides (wild emmer), accession Zavitan

(Avni et al., 2017) (Table S2). These observations suggest

that the ortholog of SID1/SNB was probably lost in the

tribe Triticeae.

The wheat gene most closely related to AP2L5 is AP2L1, a

homolog of the flowering repressor TOE1 from Arabidopsis

and maize (Aukerman and Sakai, 2003; Salvi et al., 2007).

The RNA-seq data available (Borrill et al., 2016; Ramirez-

Gonzalez et al., 2018) show that AP2L1 is expressed at very

low levels in the spike (Figure 1d), making it an unlikely can-

didate for inflorescence or flower development. Wheat

AP2L7, the ortholog of maize GLOSSY15 (Moose and Sisco,

1996) (Figure 1c), was nearly undetectable in all tissues,

whereas AP2L2 showed a very similar expression profile to

AP2L5, with high transcript levels in the spikes (Figure 1d).

Wheat AP2L2 belongs to the same clade as the rice SHAT1,

barley Cly1/Zeo1 and Arabidopsis AP2 genes (Jofuku et al.,

1994; Nair et al., 2010; Zhou et al., 2012; Houston et al.,

2013) (Figure 1c), which are all important regulators of

inflorescence and/or flower development.

To confirm the published RNA-seq data, we performed

quantitative reverse transcription PCR (qRT-PCR) on cDNA

derived from the vegetative SAM and early stages of spike

development identified using the Waddington scale

(Waddington et al., 1983) (Figure 1e). All four AP2-like

genes were expressed in vegetative apices (W1), but

AP2L1 and AP2L7 expression decreased after the reproduc-

tive transition (from W2 to W3.5). Expression of AP2L5 and

AP2L2 did not change significantly in the different develop-

mental stages and were expressed at the floret primordia

stage (W3.5), when floral meristems and floral organs are

specified (Figure 1e). Based on the expression data and the

phylogenetic proximity to other AP2-like genes involved in

inflorescence development, we prioritized AP2L2 for fur-

ther functional characterization.

AP2L2 and AP2L5 function redundantly in the specification

of lemma identity and the development of axillary floral

meristems

Using a sequenced mutant population in the tetraploid

wheat variety Kronos (Krasileva et al., 2017), we identified

100 and 79 mutations in the coding regions of AP2L-A2

and AP2L-B2, respectively. For the A-genome copy, we

selected line K2233 that has a mutation in the splicing

donor site of the fourth intron, and for the B-genome copy

we selected line K3634 with a mutation in the splicing

acceptor site of the fourth intron (Figure S1a). Sequencing

of K2233 ap2l-A2 transcripts revealed that the splice site

mutation causes the use of a nearby intronic GT site,

resulting in four additional nucleotides and a frame-shift

mutation (Figure S1b). The encoded protein (393 amino

acids) lacks the two critical AP2 domains and is most likely

not functional. Transcripts from the K3634 ap2l-B2 allele

were not detected in the expression experiments (see

Experimental procedures), suggesting that the mutation

may affect transcript stability. We backcrossed the individ-

ual mutant lines with wild-type Kronos twice to reduce

background mutations, and then intercrossed the ap2l-A2

and ap2l-B2 mutants to generate an ap2l2-null mutant,

which for simplicity will be referred to hereafter as ap2l2.

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2020), 101, 171–187

174 Juan Manuel Debernardi et al.



We next compared the phenotypes of ap2l2 and ap2l5

mutants in a growth-chamber experiment. As previously

observed, the spikes of the ap2l5 mutant plants displayed

reduced spikelet number and density and a higher number

of florets per spikelet than wild-type spikes (Figure 2a,b,d,

e). In contrast, ap2l2 mutant plants produced spikes that

were no different from wild-type spikes, both in spikelet

density and in number of florets (Figure 2a,b,d,e). We

observed that the ap2l2 mutants produced a reduced num-

ber of grains per spike (Figure S1c), although we did not

detect clear developmental defects in floret organs to

explain this observation.

The most important result was observed when we com-

bined the ap2l2 and ap2l5 mutations. The ap2l2 ap2l5

mutant plants (four homozygous mutations) displayed

more severe spike phenotypes than the single-gene

mutants (Figure 2a), which were reminiscent of the stron-

gest Ubi::miR172 overexpression plants (Figure 1a). The

spikelet density of ap2l2 ap2l5 was significantly reduced

relative to ap2l5 (Figure 2d), although the spikelet number

per spike was unchanged (Figure S2a). Furthermore, the

spikelets of ap2l2 ap2l5 produced an increased number of

organs, but instead of florets, we observed mostly empty

bracts with no axillary floral organs (Figure 2a,b,e).

In mature spikes of Kronos and the ap2l2 mutant,

glumes had short awns and strong keels, whereas lemmas

had elongated awns and less pronounced or no keels (Fig-

ure 2b,c). In the spikelets of the ap2l5 mutant, the first

lemma looked like a third glume, as it was always empty,

and it had a shorter awn and a more pronounced keel than

the wild-type lemma (Figure 2b,c,f,h). The second lemma

had a longer awn, reduced keel and most of the time

developed an axillary meristem. In the spikelets of

ap2l2 ap2l5, all the empty lemmas resembled glumes (Fig-

ure 2b), with significantly shorter awns and longer keels

than in the ap2l5 mutant (Figure 2b,c,f–i).
To describe the phenotypes in more detail, we dissected

and compared immature reproductive apices from the
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Figure 2. ap2l2 ap2l5 mutant spikelets produce multiple glume-like lemmas instead of florets. (a–d) Representative pictures showing the phenotypes observed

in the primary spike of Kronos (Wt), ap2l2, ap2l5 and ap2l2 ap2l5 mutants. (a) Primary spike 3 weeks after heading. Scale bar: 1 cm. (b) Mature central spikelets

with separated organs to show the higher number of empty glume-like lemmas (white asterisks) in the ap2l2 ap2l5 mutant. Scale bar: 1 cm. (c) Transverse sec-

tions of the second glume and the second lemma from central spikelets. A white arrowhead points to the more pronounced keel in the second lemma of the

ap2l2 ap2l5 mutant. Scale bar: 200 lm. (d) Spikelet density in the primary spike. (e–i) Number of organs (n ≥ 20) (e), length of the awn (n ≥ 10) and keel (n ≥ 8)

in the first (f and h) and in the second (g and i) lemma in the central spikelet of the primary spike. Bars represent means � SEMs and different letters indicate

statistically significant differences (P < 0.05) by the Student–Newman–Keuls mean comparison test.
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different genotypes (Figures 3 and S3). At the double-ridge

stage, we did not observe differences between the wild

type and the mutants (Figure S3a); however, differences

became evident during the differentiation of the floral

meristems (Figure 3). Scanning electron microscopy (SEM)

of the wild type and ap2l2 showed the normal develop-

ment of glumes and lemmas with their axillary floral

meristems (Figure 3a). In the ap2l5 mutants, the develop-

ing floral meristems were also visible, but the first floret

primordium was always replaced by a lemma primordium

without an axillary meristem. This phenotype was more

severe in the developing spikelets of ap2l2 ap2l5, where all

initial lemma primordia lacked axillary meristems (Fig-

ure 3a). At a later developmental stage, we observed

developing floral organ primordia in the spikelets of wild-

type and single-mutant plants (Figure 3b). At this stage,

the ap2l2 ap2l5 spikelets contained mostly empty bracts,

although we observed a floral meristem developing in the

axil of some of the late-developing lemmas (Figure 3b). In

a more advanced developmental stage (Figure S3b), the

awns of the lemmas were elongated in the wild type, ap2l2

and ap2l5 spikes, but not in the ap2l2 ap2l5 mutant, where

the lemma primordia were similar to glume primordia.

Taken together, our phenotypic observations indicate

that both AP2L2 and AP2L5 promote the transition from

glumes to lemmas and the formation of floral meristems

in the axil of the lemmas in the developing spikelets.

AP2L2 and AP2L5 regulate floral organ identity and

modulate the expression of floral organ identity genes

The conversion from florets to sterile glume-like lemmas in

ap2l2 ap2l5 spikes was not complete, and most spikelets

were still able to develop axillary flowers, generally in the

distal positions of the spikelets (Figure 2e). Those flowers

exhibited many developmental defects and did not pro-

duce grains, however. Flowers from the wild-type plants

include a carpel surrounded by three stamens, two lod-

icules and one palea, all subtended by one lemma (Fig-

ure 4a,g), whereas in the ap2l2 ap2l5 florets the lodicules

were absent, the number of stamens was reduced, and

occasionally the palea was missing (Figure 4d–f). Interest-
ingly, we observed that in ~40% of the flowers a carpelloid

organ replaced the lodicules and the adjacent anterior sta-

men (Figure 4e–g). In addition, we also observed that

~45% of the flowers developed only carpel-like structures

(Figure 4d). The frequency of these changes in organ num-

ber per flower is presented in Table 1 (note that empty

glume-like lemmas were not included in this analysis).

Similar phenotypes, but at a lower frequency, were

observed in the flowers of the ap2l5 spikelets (Table 1).

The flowers of ap2l2 had a normal number of organs (Fig-

ure 4b), but with larger lodicules compared with wild-type

plants (Figure S1d–f).
To further describe the mutant phenotypes, we mea-

sured the expression of the wheat orthologs of several

MIKC-type MADS-box genes previously described as

members of the ABCE flowering model (Paolacci et al.,

2007; Theissen et al., 2016; Chongloi et al., 2019) in the

different genotypes by qRT-PCR (Table S3). We extracted

RNA from developing spikes when the lemma, palea

and floral meristem primordia were visible at the termi-

nal spikelet (Figure 5a, W3.5–W4.25). As a reference, we

compiled the expression levels of the same genes

during spikelet development from a published RNA-seq

study (Li et al., 2018) and summarized the data in

Figure S4.

VRN1, FUL2 and FUL3, which belong to the A-class

genes, are the earliest to be expressed and their

(a)

(b)

Figure 3. ap2l2 ap2l5 mutants fail to specify floral

meristems during spikelet development. Scanning

electron microscopy (SEM) of developing spikes of

wild-type Kronos (Wt), ap2l2, ap2l5 and ap2l2 ap2l5

mutants. (a) Lateral view of developing spikes col-

lected 24 days after planting (W3.25–W3.5). White

arrowheads indicate floral meristems. Red arrow-

heads indicate empty lemmas. (b) Developing cen-

tral spikelets from plants 27 days after planting

(W3.5–W4.25). At this stage, the wild-type (Wt),

ap2l2 and ap2l5 lemmas have elongating awn pri-

mordia and surround the growing floral organs.

Note that the first lemma (L1) of the ap2l5 mutant is

empty. In the spikelets of the ap2l2 ap2l5 mutant

most of the lemmas were empty, except for a devel-

oping floral meristem surrounded by the fourth

lemma (L4, white arrowhead). G1, glume 1; G2,

glume 2; L1–L5, lemmas 1–5. Scale bar: 0.5 mm.
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expression increases through spike development, except

for VRN1 that decreases after the double-ridge stage (Fig-

ure S4a). B-class TaPI1 and TaAP3 (Figure S4b) and C-class

genes TaAG1 and TaAG2 (Figure S4c) are both expressed

mainly after the glume primordium differentiation stage.

Finally, E-class genes can be divided into two groups

based on their expression profiles, an earlier group includ-

ing TaSEP5 and TaSEP6 that is expressed at the double-

ridge stage (Figure S4d) and a later expressing group

including TaSEP2, TaSEP3 and TaSEP4, which is upregu-

lated at or after the glume primordium differentiation stage

(Figure S4e).

We then compared the expression levels of the same

genes between Kronos, ap2l2, ap2l5 and ap2l2 ap2l5

mutants. No significant differences in expression among

genotypes was detected for the A-class genes VRN1, FUL2

and FUL3 (Figure 5b). By contrast, transcript levels of the

B-class genes were significantly reduced in ap2l5 and in

ap2l2 ap2l5, with the latter showing a stronger reduction

(Figure 5c). The C-class gene TaAG2 was upregulated in

ap2l5 and ap2l2 ap2l5, whereas TaAG1 was only upregu-

lated in ap2l2 ap2l5 (Figure 5d). The early expressing

TaSEP5 and TaSEP6 showed no significant differences in

expression among genotypes (Figure 5e), whereas the late

expressing TaSEP2, TaSEP3 and TaSEP4 were significantly

downregulated in ap2l5 and ap2l2 ap2l5, with the latter

showing a stronger reduction (Figure 5f).

Taken together, the expression results described above

show that the young spikes of ap2l5 ap2l2, and less dra-

matically the ap2l5 single-gene mutant, have reduced

expression of genes involved in floral organ identity (B-

class and late-expressing E-class genes), but increased

expression of AG-like genes (C-class).

Mutations in the miR172 target site of AP2L2 result in

pleiotropic effects on plant height, spike architecture and

lodicule size

After testing the effect of the ap2l2 loss-of-function muta-

tions in Kronos, we explored the effect of mutations in the

miR172 binding site of AP2L2 in tetraploid Kronos and in

hexaploid wheat. First, we identified a tetraploid wheat till-

ing mutant (K2236) with a point mutation in the miR172

target site of the AP2L-A2 homeolog (henceforth resistant

Ap2l-A2 or rAp2l-A2), in exactly the same position as the

one that generated the Q allele in AP2L-A5 (Figures 6a and

1b). This mutation is silent but significantly affects the

repression mediated by miR172 (Debernardi et al., 2017).

We backcrossed K2236 with wild-type Kronos and geno-

typed and phenotyped the F2 segregating population. F2
plants homozygous for the rAp2l-A2 allele had more com-

pact spikes (Figure 6b,c) and were 14% shorter than the

wild type (Figure 6d). Plants heterozygous for the K2236

mutation showed intermediate spikelet density and plant

height.

Pa

Le

Lo

St

Ca

Pa

Le

St

Ca

Ca

(a)

(d) (e) (f) (g)

(b) (c)

Figure 4. AP2L2 and AP2L5 control floral organ identity. (a) Wild-type first floret from a central spikelet. The lemma and palea were separated to show the inner

floral organs. Scale bar: 2 mm. (b) First floret from an ap2l2 mutant central spikelet. Scale bar: 2 mm. (c) First floret from an ap2l5 mutant central spikelet. Scale

bar: 2 mm. Note that in this mutant background the first floret is generated after one or two glume-like lemmas are produced. (d–f) Representative florets from

ap2l2 ap2l5 mutants. Scale bar: 2 mm. (f) Magnification of (e) to show the floral organs. Scale bar: 0.5 mm. A red arrow points to a carpelloid organ replacing

the lodicules, and white arrows point to immature stamens. (g) Floral diagrams for the wild type (left) and the ap2l2 ap2l5 mutant (right). Ca, carpel; Le, lemma;

Lo, lodicule; Pa, palea; St, stamen. Note the replacement of lodicules and the adjacent stamen by a carpel.
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A second induced mutation in the miR172 target site of

AP2L2 was identified in the hexaploid winter wheat variety

Wedgetail. We had previously identified a dwarf compact

spike mutant in a mutagenized population of this variety

(Figure 6f). Sequencing of the miR172 target site of the

AP2L-A5 and AP2L-D5 homeologs did not reveal any poly-

morphisms (AP2L-B5 is not functional). Sequencing of the

miR172 target site of the AP2L2 homeologs revealed an

SNP at a different position in the miR172 target site of the

AP2L-B2 gene (henceforth rAp2l-B2, Figure 6e) , however.

This mutation produces an Asp?Asn change in the

encoded protein, which is predicted to have limited effect

on protein structure and function (BLOSUM 62 score = 1).

This mutation is also predicted to have a stronger effect on

miR172 activity than the mutation previously described for

K2236, as reflected by a higher free energy of interaction

(Figure 6e). The mutant line was backcrossed with the

wild-type parental line and the F2 population was geno-

typed and phenotyped. F2 plants homozygous for the

rAp2l-B2 allele showed increased spikelet density (even

higher than the K2236 mutant; Figure 6f,g) and a 28%

reduction in plant height (Figure 6h), both of which co-seg-

regated with the rAp2l-B2 mutant allele.

Reducing miR172 activity in wheat by a MIM172

approach or by mutations in the miR172 target site of

AP2L-A5 promoted glume-to-lemma transitions that were

recognized by reduced keels and increased awn length,

and in the distal spikelets by the formation of axillary flow-

ers in the glumes (Debernardi et al., 2017; Greenwood

et al., 2017). Interestingly, distal spikelets of the spike of

the F2 plants carrying the rAp2l2 alleles have glumes with

longer awns and reduced keel compared with the lines car-

rying the wild-type alleles both in tetraploid Kronos (Fig-

ure 6i–l) and in hexaploid wheat (Figure S5a–c).
In barley, point mutations in the miR172 target site of

the AP2L2 ortholog reduce lodicule swelling (Nair et al.,

2010), so we examined the lodicules in the wheat F2 popu-

lations. Lodicules in the tetraploid and hexaploid plants

carrying the rAp2l2 allele were still able to swell at anthesis

(Figures 6m and S5d). A detailed inspection showed that

the swollen area of the lodicules in the plants carrying the

rAp2l2 alleles was significantly reduced (45% in rAp2l-A2

and 30% in rAp2l-B2) when compared with the wild type

(Figures 6n and S5d), however. These results indicate that

the regulation of AP2L2 expression by miR172 is important

for lodicule swelling in wheat, as was observed in barley.

Taken together, the results from two independent

mutant lines show that mutations in the miR172 site of

AP2L2 homeologs induce phenotypes that are similar to

the effects generated by the domesticated Q allele (re-

duced plant height, compact spike and glume-to-lemma

transitions), with the exception of the specific effects on

lodicules.

DISCUSSION

Wheat AP2L2 and AP2L5 genes have overlapping roles in

the regulation of homeotic changes between glumes and

lemmas, the development of axillary floral meristems,

spike compactness and plant height. The simultaneous

absence of both genes results in spikelets with multiple

sterile bracts that form a few distal florets with no lodicules

and with other altered floral organs. In addition to their

overlapping functions, AP2L2 affects lodicule size and

AP2L5 affects spikelet number, heading time and floret

number. We discuss first the traits for which both genes

have overlapping effects and then the specific effects of

each gene.

AP2L2 and AP2L5 reduce plant height and increase spike

compactness

Mutations in the miR172 binding site of AP2L2 resulted in

reduced plant height in tetraploid and hexaploid wheat,

with a stronger effect in hexaploid wheat. This stronger

effect is likely to be associated with the more disruptive

effect of the rAp2l-B2 mutation in hexaploid wheat relative

to the rAp2l-A2 mutation in tetraploid wheat. An induced

mutation in the miR172 binding site of AP2L-A5, which

already had the Q mutation, also resulted in a severe

reduction in plant height (Greenwood et al., 2017). These

results suggest that both AP2L2 and AP2L5 have overlap-

ping roles in the regulation of plant height in wheat. This

Table 1 Percentage of plants with different numbers of floral
organs per floret in wild-type (Wt) plants, and in ap2l2, ap2l5 and
ap2l2 ap2l5 mutants. 0 indicates absence. For ap2l5 and ap2l2
ap2l5, empty lemmas were not considered as florets and were not
included in the analysis. More than 35 florets from central spike-
lets were analyzed for each genotype

No. of organs/ floret 0 1 2 3 4 5

Lemma Wt 100
ap2l2 100
ap2l5 100
ap2l2 ap2l5 100

Palea Wt 100
ap2l2 100
ap2l5 2.7 97.3
ap2l2 ap2l5 35.3 64.7

Lodicules Wt 100
ap2l2 100
ap2l5 21.6 8.1 70.3
ap2l2 ap2l5 100

Stamen Wt 2.5 97.5
ap2l2 2.9 97.1
ap2l5 2.7 21.6 64.9 10.8
ap2l2 ap2l5 44.1 16.2 27.9 10.3 1.5

Carpel Wt 100
ap2l2 100
ap2l5 91.9 8.1
ap2l2 ap2l5 1.5 20.6 41.2 26.5 7.4 2.9
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function seems to be conserved in other grass species

because rice MIM172 plants with increased levels of AP2-

like genes also exhibited reduced plant height (Wang et al.,

2015a). The molecular mechanisms responsible for the

height changes remain unknown, however.

Both ap2l2 and ap2l5 single mutants showed more lax

spikes (with a lower number of spikelets per cm), but the

differences were significant only for ap2l5. However, the

ap2l2 ap2l5 mutant showed a significant reduction in spi-

kelets per cm relative to the ap2l5 mutant (Figure 2), con-

firming that both genes have overlapping roles in the

regulation of this trait. The role of AP2L2 in this trait was

further demonstrated by the increase in spikelets per cm in

rAp2l2 mutants (Figure 6). Similar observations have been
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Figure 5. Expression analysis of MIKC-type MADS-domain genes of the ABCE flowering model in developing spikes of the wild type (Wt), and the ap2l2, ap2l5

and ap2l2 ap2l5 mutants. (a) Dissected apices from Wt and ap2l2, ap2l5 and ap2l2 ap2l5 mutants at the W3.5–W4.25 stage (Waddington scale). Scale bars:

250 lm. Magnified developing terminal spikelets at the W3.5 stage are shown (bottom row). Scale bars: 200 lm. The red arrows indicate floral meristems. (b–f)
Transcript levels relative to the ACTIN gene. (b) A-class genes VRN1, FUL2 and FUL3. (c) B-class genes TaPI1 and TaAP3. (d) C-class genes TaAG2 and TaAG1.

(e) Early expressed E-class genes TaSEP5 and TaSEP6. (f) Late expressed E-class genes TaSEP2, TaSEP3 and TaSEP4. The expression data were determined by

quantitative reverse transcription PCR and normalized against the wild type. Bars represent means � SEMs of four biological replicates, and different letters

above error bars indicate statistically significant differences (P < 0.05).
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made in barley, where synonymous and non-synonymous

mutations in the miR172 binding site result in spikes that

were more compact (Houston et al., 2013).

AP2L2 and AP2L5 promote floret development

Homologies between grass-specific spikelet organs and

floral organs in non-grass species have been widely

debated and controversies persist. Glumes are generally

interpreted as bracts, but lemmas have been interpreted

either as floral bracts or as sepals (Clifford, 1987; Prasad

et al., 2001; Malcomber et al., 2006). Comparative studies

and mutants are helping to resolve this controversy. In

many grass species, sterile lemmas (with no axillary meris-

tem) are located between glumes and lemmas, suggesting

a developmental gradient between these two organs (Mal-

comber et al., 2006). A similar gradient has been observed

in tetraploid wheat ap2l5 mutants and transgenic plants

overexpressing miR172. These plants have one or two

empty lemmas between the glumes and the fertile lem-

mas, which are not observed in the wild-type plants
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Figure 6. Mutations in the miR172 target site of AP2L2 (rAp2l2) alter spike and floret development and plant height. (a–d) rAp2l-A2 in Kronos K2236. (a) Sche-

matic representation of the interaction between miR172 and AP2L-A2 miR172 target sites in the wild type and rAp2l-A2 (mutation in red). The predicted energy

of the interactions is indicated beneath the sequences. (b) Primary spike of a homozygous wild-type plant (left) and a homozygous rAp2l-A2 plant (right),

3 weeks after heading. Scale bar: 1 cm. (c–d) Spikelets per cm in the primary spike (c) and plant height (d) in the F2 population segregating for rAp2l-A2 (n ≥ 8).

(e–h) rAp2l-B2 in hexaploid wheat Wedgetail. (e) Schematic representation of the interaction between miR172 and AP2L-B2 wild-type and mutant miR172 target

sites (mutation in red). The predicted energy of the interactions is indicated beneath the sequences. (f) Primary spike of a wild-type plant (left) and a homozy-

gous rAp2l-B2 plant (right). Scale bar: 1 cm. (g) Spikelets per cm in the primary spike and (h) plant height in cm in an F2 population (n ≥ 17). (i–j) rAp2l-A2 in

Kronos K2236. (i) Typical penultimate spikelets from a wild-type plant and a homozygous rAp2l-A2 plant. Red arrows point to glume-1 (G1) and glume-2 (G2)

awn tips. Scale bars: 1 cm. (j) Length of the awn in the F2 population segregating for rAp2l-A2 (n ≥ 8). (k) Transverse sections and (l) length of the keel of the

second glumes in the penultimate spikelet from segregating homozygous wild-type and rAp2l-A2 plants (n = 15). (m) Dissected lodicules from homozygous

wild-type and mutant florets. Scale bar: 0.5 mm. (n) Area of the swollen region of lodicules from wild-type, heterozygous and homozygous rAp2l-A2 florets

(n = 40). Bars represent means � SEMs. Different letters indicate statistically significant differences (P < 0.05) by the Student–Newman–Keuls mean comparison

test. ***Significant difference (P < 0.001) by Student’s t-test.
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(Debernardi et al., 2017). The ap2l5 mutant also showed

lemmas subtending a palea without other floral organs

between the empty and fertile lemmas, representing an

additional intermediate state (Debernardi et al., 2017). The

number of empty bracts with intermediate glume-lemma

characteristics increased dramatically in the ap2l2 ap2l5

mutant, indicating that both genes play redundant roles in

these transitions (Figure 2b). By contrast, overexpression

of Q (Song et al., 2019), mismatches in the miR172 binding

site of Q (Greenwood et al., 2017) or increased expression

of multiple AP2-like genes by a MIM172 approach resulted

in the conversion from glumes to empty or fertile lemmas

(Debernardi et al., 2017). The continuous and gradual mod-

ifications of the morphological characteristics that differen-

tiate glumes from lemmas support the interpretation that

glumes and lemmas are homologous organs.

In addition to the different levels of AP2L5 detected

among genotypes, Debernardi et al. (2017) observed an

miR172 and AP2L5 gradient along the wheat-spike axis.

The lower levels of AP2L5 at the base of the spike were

associated with a more complete conversion of the lem-

mas into glumes and a higher proportion of empty lemmas

than in more distal parts of the spike (Debernardi et al.,

2017). The strong correlation between the degree of differ-

entiation of the axillary meristem and the differentiation of

its subtending bract suggests that the AP2L5 and AP2L2

genes play an early role in floret development, probably

before the differentiation of the axillary meristem and its

subtending bract. By contrast, rice mutants have been

identified that affect the glume–lemma transition (Prasad

et al., 2001; Yoshida et al., 2009, 2012; Gao et al., 2010;

Hong et al., 2010; Lin et al., 2014; Wang et al., 2017; Wu

et al., 2018) and the differentiation of the axillary meristem

(Zhang et al., 2017) separately.

Previous results in other grass species also support an

important role of AP2-like genes in the development of the

axillary meristems. Double mutants in the maize AP2-like

genes ids1 sid1 fail to produce florets but generate many

bract-like structures in the tassel (Chuck et al., 2008). In

rice, osids1 snb mutants also exhibited spikelets with mul-

tiple glume-like structures, but eventually produced floral

organs. An even more severe phenotype was observed in

rice plants overexpressing miR172, which suggests that

additional miR172 target genes participate in the determi-

nation of the axillary floral meristem (Lee and An, 2012). In

this study, we show that AP2L2, a paralog distinct from

SID1/SNB (Figure 1c), has an overlapping role with AP2L5

in the regulation of the floral axillary meristems, and that

ap2l2 ap2l5 mutants have multiple glume-like organs that

failed to produce axillary floral meristems. This phenotype

was very similar to the strongest wheat Ubi::miR172 lines,

which suggests that AP2L2 and AP2L5 account for most of

the effect of the miR172-targeted genes involved in this

function. We speculate that mutations in the rice AP2L2

ortholog OsSHAT1 combined with osids1 snb would result

in a phenotype similar to that observed in the rice trans-

genic plants overexpressing miR172 (Lee and An, 2012). By

contrast, a reduction of miR172 activity in wheat, barley

and maize promoted the formation of axillary floral meris-

tems in the spikelets (Chuck et al., 2007; Debernardi et al.,

2017; Greenwood et al., 2017; Zhao et al., 2018), suggest-

ing a negative and conserved role of miR172 in the specifi-

cation of axillary floral meristems.

AP2-like genes in both grasses and Arabidopsis share a

common role in promoting the establishment and differen-

tiation of floral meristems. In Arabidopsis, AP2 controls the

establishment of floral meristem identity in addition to its

later role in the specification of floral organ identity (Bow-

man et al., 1993). Under SD conditions, ap2 mutant flowers

showed enhanced inflorescence-like characteristics (Oka-

muro et al., 1997). We speculate that AP2-like genes might

have an ancestral role promoting floral meristem establish-

ment in Angiosperms.

AP2-like genes alone are not sufficient to establish floral

meristem identity, however. These genes are expressed in

many other tissues (including root, leaf and shoot; Fig-

ure 1d) and AP2 overexpression does not produce ectopic

flowers in vegetative tissues. These observations indicate

that in order to promote floral meristems, the AP2 genes

require the activation of additional genes involved in the

reproductive phase. For example, the Arabidopsis triple

mutant ap1 cal ful shows a non-flowering phenotype in

which plants continuously generate leafy shoots in place

of flowers (Ferr�andiz et al., 2000). Combined mutations in

the homologous wheat genes vrn1 ful2 ful3 resulted in

spikes where the lateral spikelets were replaced by vegeta-

tive tillers (Li et al., 2019). In rice, the triple mutant of the

SEP-like genes osmads1 osmads5 osmads34 also showed

a significant increase in the number of sterile bracts (Wu

et al., 2018). These results suggest that the expression of

A-class and some early E-class MADS-box genes may be a

prerequisite for the AP2-like genes to promote the differen-

tiation of axillary floral meristems.

AP2L2 and AP2L5 affect floral organ identity

The ap2l2 ap2l5mutant was still able to produce distal florets

that featured various floral organ abnormalities, including an

absence of palea, homeotic transformations of lodicules and

the adjacent stamen into carpelloid structures, and a reduced

number of stamens. Floral abnormalities were also observed

in the ap2l5 mutant, but at a lower frequency (Table 1). The

only abnormality detected in the ap2l2 mutant was an

enlargement of the lodicules (Figure S1). To understand bet-

ter the floral phenotypes observed in the AP2-like mutants,

we characterized the transcript levels of several MADS-box

genes known to be involved in the ABCE model, for the

determination of floral organ identity (Coen and Meyerowitz,

1991; Theissen et al., 2016).
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The transcript levels of A-class genes VRN1, FUL2 and

FUL3, which control early stages of spike and spikelet

development (Li et al., 2019), did not significantly differ

between ap2l2 ap2l5 and the wild type control (Figure 5b).

This result suggests that the A-class MADS-box genes

operate upstream of AP2L2 and AP2L5 genes. The B-class

genes TaPI1 and TaAP3, the orthologs of which control

lodicule and stamen development in rice and maize

(Ambrose et al., 2000; Nagasawa et al., 2003; Whipple

et al., 2004; Yao et al., 2008), showed a greater than 10-fold

reduction in transcript levels in the ap2l5 and ap2l2 ap2l5

mutants relative to the control (Figure 5c). This result may

explain the developmental defects observed in the lod-

icules and stamens in these two mutants. Although no sig-

nificant differences in transcript levels between ap2l2 and

the wild type were detected for TaPI1 and TaAP3, their

transcript levels were consistently lower in ap2l2 ap2l5 rel-

ative to ap2l5 (not significant), suggesting a limited role of

AP2L2 in the regulation of B-class genes. This result may

explain the increase in lodicule size observed in ap2l2 (Fig-

ure S1d–f) and the decrease in lodicule size in the rAp2l2

plants (Figure 6m).

Two closely related C-class AGAMOUS-like genes,

TaAG1 (OsMADS58) and TaAG2 (OsMADS3), have been

identified in monocots (Yamaguchi et al., 2006), and both

were highly upregulated in the wheat ap2l2 ap2l5 mutant

(Figure 5d). The rice homologs have partially sub-function-

alized roles in the specification of stamens and carpels

(Yamaguchi et al., 2006; Dreni et al., 2011), so their

increased expression in the ap2l2 ap2l5 wheat mutant may

explain the generation of ectopic carpelloid organs replac-

ing the lodicule and adjacent stamen. In Arabidopsis, the

negative regulation of AG by AP2 and the expansion of the

AG expression domain in ap2 mutants is a central concept

in the classical ABC model (Bowman et al., 1991; Coen and

Meyerowitz, 1991; Drews et al., 1991). Our data suggest

that this interaction also persists in wheat.

The SEP-like genes (E class), are divided into two sub-

families (Malcomber and Kellogg, 2005). TaSEP4 and

TaSEP3 belong to the SEP3 subfamily, which controls lod-

icule, stamen and carpel identity in rice (Cui et al., 2010).

The other SEP-like genes, including TaSEP2, TaSEP6 and

TaSEP5, belong to the LOFSEP subfamily and are involved

in the specification of most spikelet and floral organs (Cui

et al., 2010; Wu et al., 2018). Two of the LOFSEP genes,

TaSEP5 (OsMADS34) and TaSEP6 (OsMADS5) are

expressed earlier than the other SEPALLATA genes in both

rice (Wu et al., 2018) and wheat (Figure S4d). In rice,

OsMADS34 (= PAP2) is the earliest expressed among the

SEP-like genes and regulates the timing of the transition

between branches and spikelet meristems (Kobayashi

et al., 2010). Interestingly, mutations in ap2l5 and

ap2l5 ap2l2 only affect the expression of the three SEP-like

genes expressed later in flower development (Figure S4e).

This result is consistent with the effect of AP2L2 and

AP2L5 in the regulation of B- and C-class but not A-class

genes, as described above. The 10-fold downregulation of

TaSEP2 (OsMADS1) in ap2l5 and ap2l5 ap2l2 may con-

tribute to the conversion of lemmas to glumes, as overex-

pression of the rice ortholog OsMADS1 results in the

conversion of rudimentary glumes to lemmas (Prasad

et al., 2001).

Genetic studies in rice and maize have shown that the

functions of the B-, C- and E-class genes are relatively well

conserved between eudicots and grasses, but that the role

of A-class genes is less clear (Litt, 2007; Causier et al.,

2010). Mutations in Arabidopsis AP2, an A-class gene

(Theissen et al., 2016), affect development of the first

(sepal) and second (petal) whorls. In strong ap2 mutants,

the number of organs in the third whorl (stamens) is also

reduced, whereas the fourth whorl is normal in all ap2

mutant alleles (Kunst et al., 1989; Drews et al., 1991). In the

wheat ap2l2 ap2l5 mutant, lemmas resemble glumes and

the development of lodicules and paleas are affected, indi-

cating that these genes also control the identity/develop-

ment of the perianth. Moreover, the reduced number of

stamens in whorl 3 is similar to the phenotype of the

strongest ap2 alleles in Arabidopsis.

The homeotic conversion of lodicules to carpels

observed in the ap2l2 ap2l5 mutants is different from the

petal-to-stamen conversion observed in Arabidopsis ap2

mutants. We propose that the floret phenotypes observed

in the ap2l5 and ap2l2 ap2l5 mutants probably result from

a failure to specify floral meristem fate (Litt 2007; Causier

et al. 2010) combined with the misregulation of B-class

and C-class genes (Figure 5). In the Arabidopsis ap2

mutants, the unchanged activity of B-class genes and the

expansion of the AG expression domain converts petals

into stamens. By contrast, the reduced expression of B-

class genes and increased expression AG-like (C-class)

genes in the wheat ap2l2 ap2l5 mutant result in the con-

version of lodicules into carpelloid organs.

AP2L2 affects the swollen area of lodicules

The swelling of the lodicules is necessary to force apart

the lemma and palea at anthesis, allowing the stamen fila-

ments to extrude the anthers that release the pollen. There

are natural variants of barley where the palea and lemma

remain tightly closed throughout the period of pollen

release, a character known as cleistogamy (Nair et al.,

2010; Ning et al., 2013). In barley the locus regulating cleis-

togamy (Cly1/Zeo) was mapped to the distal region of

chromosome arm 2H (Turuspekov et al., 2004). Cloning of

this gene revealed that it was a homolog of Arabidopsis

AP2 (Nair et al., 2010) that belongs to the same clade as

AP2L2 in wheat (henceforth, HvAP2L2; Figure 1). Cleistoga-

mous flowering in barley is caused by a mutation in the

binding site of miR172 in HvAP2L2 (cly1.b), which reduces
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mRNA cleavage (Nair et al., 2010) and results in a higher

accumulation of HvAP2L2 protein in the lodicules and

reduced lodicule size (Anwar et al., 2018). An epigenetic

modification in a regulatory region has been postulated to

explain the reduced expression of HvAP2L2 and the

increased swelling of the lodicules (although still insuffi-

cient to open the floret) in barley accession SV235 relative

to cly1.b, in spite of having the same miR172 target

sequence (Wang et al., 2015b).

In wheat, the ap2l2 mutant generated larger lodicules

than in wild0type plants (Figure S1). By contrast, wheat

lines with the rAp2l-A2 and rAp2l-B2 alleles developed flo-

rets with smaller lodicules in both tetraploid (Figure 6m–n)
and hexaploid wheat (Figure S5i). Thus, similarly to barley,

the swollen area of the lodicules seems to be inversely cor-

related with the AP2L2 levels. The lodicules were always

present in the ap2l2 mutant, but they were missing in

21.6% of ap2l5 flowers and 100% of ap2l2 ap2l5 flowers

(Table 1). These results suggest that both AP2L2 and

AP2L5 play critical and redundant roles in lodicule devel-

opment.

A previous characterization of natural variation in AP2L2

in 63 wheat accessions found no natural variation in the

miR172 binding site within the AP2L-A2, AP2L-B2 or AP2L-

D2 homeologs (Ning et al., 2013). Although there is a poly-

morphism in the second position between a thymine in the

A and D genomes and a cytosine in the B genome, these

mutations are in the 50 end of the target site and are pre-

dicted to have little to no effect on miRNA activity (Liu

et al., 2014). Moreover, a similar mutation in the 50 end of

the miR172 target site of HvAP2L2 from barley Morex does

not have phenotypic effects (Nair et al., 2010).

We looked at 72 additional wheat accessions comprising

two diploid, 11 tetraploid and 59 hexaploid accessions

(Table S4), and we failed to detect variation in the miR172

binding site of the different AP2L2 homeologs. Therefore,

the two rAp2l2 alleles identified in this study in tetraploid

and hexaploid wheat represent useful tools to modulate

plant height, spike compactness and lodicule function. In

wheat, reduced anther extrusion and closed flowering has

been associated with a lower risk of Fusarium head blight

infections (Kubo et al., 2010, 2013). It would be interesting

to combine rAp2l-A2 and rAp2l-B2 to see if they are suffi-

cient to induce cleistogamy in polyploid wheat.

AP2L5, but not AP2L2, affects spikelet and floret number

and heading time

AP2L5 increases spikelet number. The ap2l5 mutants

showed a significant reduction in spikelet number per

spike (SNS), which indicates a premature transition of the

inflorescence meristem to a terminal spikelet. This effect

was not observed in the ap2l2 mutant, and was not

enhanced in ap2l2 ap2l5 relative to ap2l5 (Figure S2a).

Mutations in the miR172 binding site of AP2L5 resulted in

increased SNS, indicating a delay in the transition between

IM and the terminal spikelet (Greenwood et al., 2017). Sim-

ilar effects were reported in rice, where snb osids1 double

mutants showed fewer branches (Zhu et al., 2009; Lee and

An, 2012) whereas MIM172 plants had increased branching

(Wang et al., 2015a). The tassels of maize sid1 isd1

mutants also showed reduced branching (Chuck et al.,

2008), whereas the de-repression of AP2-like genes in ts4

and Ts6 (rIDS1) resulted in increased tassel branching

(Chuck et al., 2007). These results suggest a conserved role

of grass AP2L5/IDS1 SID orthologs in delaying the transi-

tion of inflorescence meristems (or branch meristems) into

spikelets.

The previous results seem related to the role of AP2 in

Arabidopsis in maintaining the stem cell niche (= apical ini-

tial cells) and the proliferative nature of the shoot meris-

tem (Wurschum et al., 2006; Balanza et al., 2018). In the

Arabidopsis IM, the MADS-box protein FUL directly and

negatively regulates the accumulation of AP2, and ful

mutants produce more fruits than the wild type. (Balanza

et al., 2018). Interestingly, loss-of-function mutations in

wheat FUL2 or VRN1 (homologs of Arabidopsis FUL) result

in significant increases in SNS and number of grains per

spike (Li et al., 2019), suggesting the potential conservation

of a similar regulatory module in wheat and Arabidopsis

inflorescence meristems.

AP2L5 controls floret number. The ap2l5 mutant (but not

the ap2l2 mutant) showed a significant increase in floret

number per spikelet (Figure 2e). The ap2l2 ap2l5 mutants

also exhibited a large number of organs per spikelet, but in

this case, most of them were sterile bracts (Figure 2b,e). In

maize and rice, the ids1 sid1 and osids1 snb mutants pro-

duced multiple sterile bracts before the development of a

terminal spikelet (Chuck et al., 2007; Lee and An, 2012).

These observations indicate a role of AP2L5 and its ortho-

logs in reducing the meristematic activity of the spikelet

meristem and the number of florets that can be generated.

We currently do not know why mutations in the ap2-like

genes in grasses operate differently in the IM (reducing the

number of lateral organs) than in the SM (increasing the

number of lateral organs).

AP2L5 delays heading time. If spikelets are generated by

the IM at the same rate in different genotypes, a reduction

in SNS is expected to accelerate heading time. This was

observed in the ap2l5 mutants, which flowered approxi-

mately 4 days earlier than the wild-type controls (Fig-

ure S2); however, Ubi::miR172 plants produce one fewer

leaf than the wild type, suggesting that one or more AP2-

like genes also affect the transition of the SAM from the

vegetative to the reproductive stage. AP2-like genes are

known repressors of the flowering promoting gene FT in

many species, and mutation in several ap2-like genes or
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overexpression of miR172 produce early flowering (Huijser

and Schmid, 2011; Zhu and Helliwell, 2011). The flowering

phenotype of wheat ap2-like mutants suggests that AP2L5,

but not AP2L2, may have a conserved role in the regulation

of FT expression.

In summary, AP2L5 in wheat seems to have retained a

broader role controlling reproductive development (spike-

let and floret number and heading time) than AP2L2,

which seems to be more restricted to spikelet and floret

development.

CONCLUSION

The results from this and previous studies show that the

balance in the expression of miR172 and AP2-like genes is

crucial for the correct development of the grass spikelet,

and that this balance has been altered during the domesti-

cation of wheat and barley. Both the domesticated allele of

wheat gene Q, a major determinant of the free-threshing

and compact spike character, and the barley Cly1/Zeo1

gene, which confers compact spike and cleistogamy,

resulted from spontaneous mutations in their miR172 tar-

get sites that reduce miR172 cleavage activity. These

examples show the potential for the modulation of the

activity of the AP2-like genes to control important agro-

nomic traits. The two rAp2l2 alleles identified in this study

provide tools to explore the value of the resulting modifi-

cations in plant height and spike compactness in different

wheat classes and/or in different environments.

In addition to its potential practical applications, this

study provided insights on the critical and redundant roles

of AP2L2 and AP2L5 in the development of axillary floral

meristems and the differentiation of lemma characteristics

in the subtending bract. Finally, our study showed an

essential role of these genes in the development of lod-

icules and on the regulation of B-, C- and late E-class

MADS-box floral genes.

EXPERIMENTAL PROCEDURES

Plant materials and growth conditions

The tetraploid wheat variety Kronos used in this study has a
spring growth habit determined by the Vrn-A1c allele. Kronos also
has the Q allele, which confers the subcompact spike phenotype
and the free-threshing character. TILLING populations of Kronos
mutagenized with ethyl methane sulphonate (EMS) (Uauy et al.,
2009) were used to screen for mutants of the AP2L2 gene. The
two selected truncation mutations and the mutation in the miR172
target site were confirmed in M4 grain using the genome-specific
primers described in Table S5.

The effect of the mutations on the AP2L2 transcripts was veri-
fied by RT-PCR on RNA extracted from leaves of the ap2l2 mutant.
The genome-specific primers are described in Table S5. For the
K3634 mutation we also tested nested PCR, but we were unable to
detect the transcript in the mutant. For all experiments, grains
were first cold imbibed for 2–4 days at 4°C. The plants were grown
in cones in PGR15 growth chambers (Conviron, http://www.

conviron.com) adjusted to 16 h of light (22°C) and 8 h of darkness
(18°C). The intensity of the sodium halide lights measured at the
height of plant heads was (~260 lM m�2 s�1). The line with the
mutation in the miR172 target site of the AP2L-B2 mutant was
obtained in the winter hexaploid variety Wedgetail, which was
mutagenized using sodium azide (Chandler and Harding, 2013).
Primers used to genotype the mutant line are listed in Table S5.
Phenotyping for co-segregation analysis was performed in a
glasshouse with 16 h of light (22°C) and 8 h of dark (18°C), after
7 weeks of vernalization.

qRT-PCR

RNA samples were extracted using the Spectrum Plant Total RNA
Kit (Sigma-Aldrich, https://www.sigmaaldrich.com). We followed
Protocol A that allows for the purification of total RNA including
small RNA molecules. Total RNA was treated with RQ1 RNase-free
DNase (Promega, https://www.promega.com). cDNA synthesis
was carried out using SuperScript II Reverse Transcriptase (Invit-
rogen, now ThermoFisher Scientific, https://www.thermofisher.
com). mRNAs were reverse transcribed starting from 1 lg of total
RNA and using OligodTv primer. The product from the first-strand
synthesis was diluted 1 in 20, and 5 ll of diluted cDNAs was used
in the qRT-PCR reaction, which was performed using SYBR Green
and a 7500 Fast Real-Time PCR system (Apply Biosystems, a
brand of ThermoFisher Scientific). The ACTIN gene was used as
an endogenous control for mRNAs. Primers are listed in Table S5.

Morphological traits

To study the anatomical changes in the glumes and lemmas of
the different genotypes we made transverse sections of dry
glumes and lemmas of fully developed spikes. We boiled the
organs in water and then sectioned them by hand using a razor
blade. Transverse sections were stained with toluidine blue O
solution for 30 s. Images of the stained sections and dissected flo-
ret organs were digitally captured using a stereo-dissecting scope.

Scanning electron microscopy (SEM)

Spikes at different developmental stages were dissected, fixed for
a minimum of 24 h in FAA (50% ethanol, 5% v/v acetic acid, 3.7%
v/v formaldehyde), rinsed twice in the same buffer, and dehy-
drated through a graded ethanol series to absolute ethanol. Sam-
ples were critical-point dried in liquid CO2 (tousimis� 931 series
critical point drier; tousimis, https://tousimis.com), mounted on
aluminum stubs, coated with gold (Denton Desk II Sputter Coater)
and examined with a ThermoFisher Quattro scanning electron
microscope operating at 5 kV. Images were recorded with a slow
scan for high definition and saved as TIFF files.

Phylogenetic analysis

The complete protein sequences of the different AP2-like genes
from Brachypodium, maize, rice and Arabidopsis were obtained
from the Phytozome web resource (https://phytozome.jgi.doe.gov/
pz/portal.html). Sequences from barley were obtained from the
International Barley Sequencing Consortium (https://webblast.ipk-
gatersleben.de/barley_ibsc/viroblast.php). Protein sequences from
wheat were obtained from Wheat Genome RefSeqv 1.1. Evolution-
ary analysis was conducted in MEGA X. For analysis, we used a
region that included the two AP2 domains.

Wheat transformation

Transgenic wheat plants were generated at the UC Davis Plant
Transformation Facility (http://ucdptf.ucdavis.edu/) using the
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Japan Tobacco (JT) technology licensed to UC Davis. Immature
embryos from Kronos were transformed using Agrobacterium
EHA105. The selection of transgenic plants was conducted using
hygromycin, and transgene insertion was validated by DNA
extraction and PCR.
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