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Abstract 
After being taught by teachers, learners often need to work 
independently in new situations. However, a teaching strategy 
that most efficiently fosters independent learning remains 
elusive. In this study, we developed a novel experimental 
paradigm to compare various teaching strategies. In addition, 
we formalized autonomy-supportive teaching and constructed 
an autonomy-support algorithm that estimates learners' mental 
states and aims to enhance both learners’ competence and 
autonomy. In the experiment, participants were taught through 
different teaching algorithms depending on the experimental 
conditions, after which they independently worked on a new 
set of tasks. Our results demonstrate that compared to the all- 
and no-teach algorithms, the autonomy-support algorithm 
enhances learners' engagement while being taught and 
enhances performance when learners independently work on a 
new set of tasks. Our findings contribute to the existing 
observational and interventional research on education by 
providing rigorous evidence in an experimentally controlled 
setting.  

Keywords: autonomy; instruction; motivation; pedagogy; 
performance; teaching 

Introduction 
Teaching is one of the fundamental building blocks of human 
society. People teach others not only in schools, but also in 
other educational settings. Parents teach their children at 
home and mentors teach mentees in the workplace. 
Successful teaching gives ability to learners to solve a novel 
problem efficiently, even when the solution needs to be 
explored independently. For example, a mentor teaches a 
mentee how to cook French cuisine, who then replicates the 
cooking style taught by the mentor. In a few years, the mentee 
independently opens new restaurants in different areas, and 
tries to adapt to local preferences and ingredients. Can the 
mentee cook different cuisines well independently? The 
mentor should teach mentees considering that the mentees 
will eventually cook different cuisines on their own in future. 
The goal of the present study is to examine the teaching 
strategy that can lead to better performance among learners 
when they subsequently work independently, in a new 
situation. 

All-Teach and No-Teach Strategies 
There are several teaching strategies. The simplest approach 
is to teach everything. Many studies have shown that 
instructions and direct advice enhance task performance 

(Biele, Rieskamp, & Gonzalez, 2009; Rosedahl, Serota, & 
Ashby, 2021). For example, in a concept-learning task, 
learners who received verbal instructions regarding the 
optimal strategy performed better than those who did not 
receive any instructions (Rosedahl et al., 2021). However, 
excessive instructions or advice may worsen performance 
when learners work independently. Direct instructions on use 
of a machine ensures that learners follow the instructed 
method only and are less likely to explore a new method 
(Bonawitz et al., 2011). Moreover, students who perceive 
their teacher as controlling (e.g., giving a learner an answer 
immediately) tend to be less autonomous and have lower 
academic performance (Grolnick, 2016).  

Another simple approach is to teach nothing. If teachers do 
not teach at all, the learners have maximum opportunities to 
work on a task by themselves. However, it is inefficient to 
work without being taught when a task is too difficult for 
learners; they often have limited time and cannot master their 
skills without being taught. Moreover, repeated failures can 
cause learners to give up (Hiroto & Seligman, 1975).  

Autonomy-Supportive Teaching Strategy 
In the field of educational psychology, researchers have been 
investigating the development of autonomous learners and 
have proposed the theory of autonomy-supportive teaching 
(Reeve & Cheon, 2021; Ryan & Deci, 2017), which includes 
instructional behaviors. For example, autonomy-supportive 
teachers give learners the time they need to work at their own 
pace, and also give helpful hints when the learners seem stuck. 
Such autonomy-supportive behaviors emerge when the 
learner’s perspective is considered (Reeve & Cheon, 2021), 
such as trying to understand their needs and gauge their 
understanding of the material. In other words, taking the 
learners’ perspective enables autonomy-supportive behavior 
in teachers. Many observational and interventional studies 
have shown that learner perceived autonomy-supportive 
teaching is positively related to intrinsic motivation (interest 
and enjoyment) and engagement (Reeve, 2016), which in turn 
is positively related to academic performance (Lerner, 
Grolnick, Caruso, & Levitt, 2022). 
   However, almost all studies on autonomy support have 
used surveys, observation, or interventions as methodology. 
Surveys and observational research cannot provide strong 
causal inference for teaching strategies, and school 
interventions cannot test this effect in controlled settings. 
Although in a recent study (Reeve et al., 2022), autonomy 

174
In M. Goldwater, F. K. Anggoro, B. K. Hayes, & D. C. Ong (Eds.), Proceedings of the 45th Annual Conference of the Cognitive Science
Society. ©2023 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



support was experimentally manipulated using verbal 
instruction (e.g., asking teacher participants to understand the 
learner's perspective and be supportive), this manipulation 
was weak and ambiguous. Possibly because of that, the study 
did not find any statistically significant effect of autonomy-
support on the learners' performance. Precise manipulation is 
required by formalizing teaching strategies and removing 
verbal ambiguity (Guest & Martin, 2021). 

Other Teaching Strategies 
In cognitive science, various teaching strategies have fostered 
learning. For example, tests foster learners to remember more 
content than additional studies of the same content, which is 
called the testing effect (Roediger III & Karpicke, 2006). 
Expectations for tests also enhance long-term retention 
(Szpunar, McDermott, & Roediger, 2007). Thus, a teaching-
then-testing strategy encourages learners to consolidate 
memory of the content, and the learners are more likely to use 
the content when they work independently in a new situation. 
In addition, research on self-regulated learning has shown 
that monitoring one’s own thinking and regulating learning 
processes enhances academic performance (Mega, Ronconi, 
& De Beni, 2014; Pintrich, 2004; Zimmerman, 1998). Thus, 
by letting learners decide whether or when they ask teachers 
questions, learners can accurately monitor their 
understanding and work more efficiently in a new situation 
independently. 

The Present Study 
Which of the teaching strategies leads to the best performance, 
especially when learners subsequently need to work 
independently in a new situation? Despite many theories and 
findings on teaching strategies, to the best of our knowledge, 
no study has experimentally tested this important question. It 
is challenging to compare teaching strategies across different 
studies based on existing findings because previous studies 
have used different tasks, set differing control conditions, and 
measured varied outcomes. The effectiveness of various 
strategies must be compared in the same setting (Hameiri & 
Moore-Berg, 2022). 
   The present study aims to formalize teaching strategies that 
extract the essence of previous findings and to systematically 
compare the effectiveness of teaching strategies by 
developing an experimental paradigm. Inspired by 
computational studies that formalize the decision-making 
processes in teaching (Bridgers, Jara-Ettinger, & Gweon, 
2020; Ho, Cushman, Littman, & Austerweil, 2019), we 
experimentally manipulated autonomy-supportive teaching 
by constructing a computational algorithm. As the first step, 
we developed an autonomy-support algorithm and compared 
it with no- and all-teach algorithms. 

Experiment 
Experimental Task As a task that requires learners to 
explore uncertain environments and form new concepts, we 
employed a type of conceptual learning task: a category 
learning task (Zeithamova et al., 2019). During the task, 

learners are presented with a stimulus in each trial and asked 
to classify it into one of the two categories. The task consists 
of two sessions: an exploration and a generalization session. 
In the exploration session, the learners receive feedback for 
each response (i.e., correct or not). By repeating classification 
and feedback, the learners form an association between 
stimuli features and their categories, and pay attention to the 
features that are relevant to classification (Kruschke, 1992; 
Love, Medin, & Gureckis, 2004; Nosofsky, 1986). 
Subsequently, the learners integrate information across 
stimuli and form the category rules (Bowman & Zeithamova, 
2018). The generalization session tests whether the learners 
find the category rules. In this session, learners are shown 
new stimuli without feedback and are asked to classify them 
using the same category rule as in the exploration session. 

 
Overview of Autonomy-Support Algorithm The 
fundamental strategy of our autonomy-support algorithm is 
based on the theoretical research on autonomy support 
(Reeve & Cheon, 2021; Ryan & Deci, 2017). This research 
proposes that the essence of autonomy-supportive teaching is 
to (1) take the learners' perspectives and support their 
competence (e.g., giving helpful hints when learners seem 
stuck); and (2) take learners' perspectives and support their 
autonomy (e.g., letting the leaners work at their own pace). 
Our autonomy-support algorithm takes the learners’ 
perspective (e.g., level of understanding, the time required by 
a learner to master a task, etc.) by calculating the learners’ 
responses; it aims to enhance the learners’ competence by 
enabling them to master a task, and enhances their autonomy 
by maximizing the opportunity for learners to think on their 
own. Particularly on the category task, the autonomy-support 
algorithm (1) estimates a learner's accuracy of classification 
and partially teaches items that learners cannot find the 
category-relevant features of (i.e., enabling them to master 
the task); and (2) estimates the number of trials required by a 
learner to master a task to a certain level and delay the start 
of teaching until then (i.e., maximizing the opportunity for 
learners to think on their own). These features of the 
algorithm are considered effective in enhancing the learners' 
competence and autonomy, which leads to higher intrinsic 
motivation of the category task. Subsequently, the learners 
are likely to independently perform better in the exploration 
and generalization sessions. 
 
Hypothesis We had two hypotheses. (1) Performance during 
the independent exploration and generalization sessions in 
the autonomy-support condition would be better than that in 
the no- and all-teach conditions. (2) The effect of autonomy-
support on performance would be mediated by self-reporting 
intrinsic motivation measured after the teaching sessions.  

Methods 
Participants We recruited 172 participants from the United 
Kingdom using the Prolific Research Platform (Mage = 35.42 
years, SD = 7.99, range = 20 to 49; 75 female, 94 male, 1 did 
not answer). Before recruitment, the necessary sample size 
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was estimated using G*Power (Faul, Erdfelder, Lang, & 
Buchner, 2007).  As this was the first attempt to investigate 
the effect of an autonomy-support algorithm using the 
category learning task, we estimated a medium effect size (f) 
of .25 for comparing the three conditions on between-
participant design and set power at .80 and alpha level at .05. 
The results of the power analysis indicated that 159 
participants were required to obtain a statistically significant 
effect. Two participants were excluded for failing attention 
checks; therefore, our final sample size consisted of 170 
participants. Participants were randomly assigned to three 
conditions: 66, 53, and 51 to the no-teach, all-teach, and 
autonomy-support conditions, respectively. The number of 
participants did not differ statistically significantly across the 
conditions (p > .310). 
 
Materials We created four types of creature stimuli (Figure 
1) based on previous category-learning studies (Bowman & 
Zeithamova, 2018; Bozoki, Grossman, & Smith, 2006; 
Rosedahl & Ashby, 2018). Each creature contained eight 
items. An individual item had three features (e.g., crest, foot, 
and tail, which varied among items in a bird type). Items were 
divided into two categories: red and blue. Each category has 
prototypical features (e.g., the foot of the red category has 
three nails, whereas the foot of the blue category has one nail). 
The items were categorized according to the number of 
features relevant to the categories. This rule was followed for 
classification of the items into categories. 
 

 
 
Figure 1: Example of stimuli. The features that are relevant 
to each category are circled with each category's color. 
 
Procedure The experiment was conducted online using 
jsPsych (de Leeuw, 2015). The task consisted of five 
sessions: three teaching sessions, an independent exploration 
session, and an independent generalization session (Figure 2). 
Four types of creatures were randomly assigned to one of the 
three teaching sessions or to a set of independent sessions 
(exploration and generalization). In each trial, an item was 
presented for a maximum of two seconds, and participants 
were asked to indicate their response with a keyboard press 
at their own pace. Items were ordered pseudo-randomly, such 
that each item presented once in a set, and no more than three 
items from the same category were presented consecutively  
(Bowman & Zeithamova, 2018).  

In the teaching sessions (Figure 2; Upper part), participants 
classified each of the eight items of a creature 15 times (8 

items × 15 times = 120 trials per teaching session). After each 
classification, participants received feedback regarding 
whether their answer was correct or wrong. In each trial, the 
algorithm for each condition decided whether a hint was 
required (Figure 2). If an item’s feature was associated with 
the red category, it was marked with a red circle. If an item’s 
feature was associated with the blue category, it was marked 
with a blue circle. After the three teaching sessions, 
participants were asked to rate their intrinsic motivation on 
the category task. 

In the independent sessions (Figure 2; Bottom part), the 
participants classified items of another type of creature 
without any hints. In the independent exploration session, 
participants classified each of the eight items of a creature 15 
times (8 items × 15 times = 120 trials). They were asked to 
attempt learning of the creature’s category rule based on 
feedback. In the independent generalization session, the 
participants classified the same eight items and forty novel 
items of the same kind as those in the independent 
exploration session (8 items + 40 items = 48 trials). The forty 
items in the generalization session were slightly different 
from those in the independent exploration session and had 
additional features. During the generalization session, the 
participants did not receive any feedback. They were asked 
to use the same category rule as that in the independent 
exploration session.  

 

 
 

Figure 2: Procedure of the experiment. 
 

Experimental Conditions Depending on the conditions, the 
algorithm for the hint timing differed in the teaching sessions. 
The independent exploration and generalization sessions 
were the same across all conditions. 
   No-Teach and All-Teach Algorithms The no-teach 
algorithm never gave participants a hint. The all-teach 
algorithm gave participants a hint of every trial (three 
relevant features were highlighted by red and/or blue circles).  
   Autonomy-Support Algorithm The autonomy-support 
algorithm estimated the learner's accuracy of classification 
and partially taught what the learners could not understand. 
The algorithm divided the eight items into four-item pairs 
based on the features of the creature (Pair 0 to Pair 3 in Figure 
1). At the beginning of the first teaching session, the 
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algorithm provided a hint on the first two trials of each pair 
and then allowed the participants to solve the remaining six 
trials by themselves, without any hint. Using the responses of 
these six trials, the algorithm calculated the accuracy (e.g., 
five correct responses ÷ six trials = .83 accuracy), which was 
interpreted as the participant's level of understanding of the 
task. Based on this estimation, the algorithm decided whether 
to provide hints. If the accuracy was .80 or higher, the 
algorithm assumed that the participant had mastered the item 
pair and allowed them to perform the task by themselves. The 
algorithm then calculated the accuracy again, using the 
responses of consecutive trials without a hint (e.g., seven 
trials). The algorithm repeated this calculation and allowed 
the participant to perform the task by themselves, as long as 
the accuracy was .80 or higher. If the accuracy was lower 
than .80, the algorithm provided a hint for the next two trials. 
This procedure was repeated, leaving participants by 
themselves without a hint of six trials, and the accuracy was 
calculated again using the responses of these six trials. The 
algorithm estimated the classification accuracy by the 
participants in the same way during the second and third 
sessions. 
   In the second and third sessions, the algorithm estimated 
the number of trials necessary for a learner to master a task to 
a certain level and delayed the start of providing the first hint. 
Using the response data in the first teaching session, the 
algorithm calculated the number of trials that participants 
needed to achieve an accuracy rate of .80, for every four-item 
pairs. For example, 6 trials were needed to obtain .80 
accuracy on pair 0, 14 trials on pair 1, 30 trials on pair 2, and 
16 trials on pair 3. The number of these trials was added, and 
the total number of necessary trials was calculated (66 trials); 
this total number was considered as the necessary time. Based 
on the estimation of the necessary time, the algorithm 
determined when to provide hints in the second teaching 
session. The algorithm calculated the number of self-trials by 
subtracting the number of necessary trials (e.g., 66) from the 
total number of trials in a session (e.g., 120 – 66 = 54). At the 
beginning of the teaching session, the algorithm allowed 
participants to perform the task independently without hints 
on the number of self-trials (e.g., 54 trials). At the beginning 
of the third teaching session, the algorithm estimated the 
necessary time using response data from the second teaching 
session and delayed the start of teaching accordingly. 
 
Measurement To measure performance, the classification 
accuracy in the independent exploration and generalization 
sessions were calculated by averaging the responses for each 
session. As a measure of intrinsic motivation, four items from 
the Intrinsic Motivation Inventory (Ryan, 1982) were used as 
self-report measures (e.g., “I thought the task was very 
interesting”; Cronbach’s α = .93). Participants responded on 
a scale of 1 (strongly disagree) to 7 (strongly agree). 

 
Data Analysis To examine the main effects of conditions on 
accuracy in the independent exploration and generalization 
sessions, we conducted a two-way ANOVA. The 

independent variables were conditions (between participants) 
and sessions (within participants), and the dependent variable 
was accuracy in five sessions (three teaching sessions, an 
independent exploration session, and an independent 
generalization session). Mediation analysis was conducted 
using the bootstrap method on an R package: mediation 
(Tingley, Yamamoto, Hirose, Keele, & Imai, 2014). The 
experimental design was represented by dummy coding  
(Cohen, Cohen, West, & Aiken, 2003). The autonomy-
support condition was chosen as the reference condition, and 
two dummy codes were created: autonomy vs. no-teach code 
(autonomy-support condition = 0, no-teach condition = 1, all-
teach condition = 0), and autonomy vs. all-teach code 
(autonomy-support condition = 0, no-teach condition = 0, all-
teach condition = 1). The first code contrasted the autonomy-
support and no-teach conditions, whereas the second code 
contrasted the autonomy-support and all-teach conditions. 
For this analysis, 10,000 bootstrap samples with 
replacements were used. All analyses were performed in the 
R programming environment (R Core Team, 2022).   

Results and Discussion 
Main Results Figure 3 shows the means of accuracy of the 
teaching sessions, the independent exploration session, and 
the independent generalization session. Two-way ANOVA 
showed that the interaction effect between condition and 
session was statistically significant (F(2,167) = 43.44, p 
< .001). Not surprisingly, in the teaching sessions, the simple 
effects of condition were statistically significant (ps < .001), 
and accuracy in the all-teach condition was higher than that 
in the autonomy-support (ps < .001) and no-teach (ps < .001) 
conditions. 
 

 
 
Figure 3: Means on accuracy of each session across 
conditions. Error bars represent the 95% confidence interval 
of the mean. 
 
   Importantly, in the independent exploration session, the 
simple effect of condition was statistically significant 
(F(2,167) = 4.276, p = .015), and accuracy in the autonomy-
support condition was higher than that in the no-teach (p 
= .033) and all-teach (p = .033) conditions (Figure 4a). 
Simple effect tests of session showed that in the no-teach 
condition, the accuracy of the independent exploration 
session did not statistically significantly differ from that of 

Teach1 Teach2 Teach3 Generalization
Sessions

Exploration
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the teaching sessions (ps > .217). Thus, the difference among 
conditions in the independent exploration session can be 
interpreted as a positive effect of the autonomy-support 
algorithm rather than a negative effect of fatigue and 
boredom in the no-teach condition. However, in the 
independent generalization session, the simple effect of 
condition was not statistically significant (F(2,167) = 0.725, 
p = .486), contrary to our hypothesis.  
 

 
 
Figure 4: Means on accuracy of the independent exploration 
session and intrinsic motivation across conditions. Error bars 
represent the 95% confidence interval of the mean. Dots in 
the figure represent value for each participant. 
 
Mediation by Intrinsic Motivation We examined whether 
intrinsic motivation mediated the effect of the autonomy-
support algorithm on the accuracy of the independent 
exploration session. First, we examined the effect of 
condition on intrinsic motivation. ANOVA showed that the 
main effect was statistically significant (F(2,167) = 3.984, p 
= .020). Intrinsic motivation in the autonomy-support 
condition was statistically significantly higher than that in the 
all-teach (p = .016) condition, whereas there was no 
statistically significant difference between the autonomy-
support and no-teach conditions (p = .097) (Figure 4b). 
Second, the correlation between intrinsic motivation and 
accuracy in the independent exploration session was weak 
and not statistically significant (r = .147, p = .056). In contrast 
to this hypothesis, intrinsic motivation was not a mediator of 
the positive effect of the autonomy-support algorithm on 
performance in the independent exploration session. 
 
Mediation by Engagement We explored the reason for 
enhanced accuracy with the autonomy-support algorithm in 
the independent exploration session. First, we calculated the 
correlation between accuracy in the independent exploration 
session and reaction time in the teaching sessions. The 
correlation coefficient was positive and moderate (r = .363, p 
< .001). Longer reaction time may suggest that participants 
observed a stimulus more carefully and considered 
categorization. Therefore, reaction time may be interpreted as 
engagement in the category task.  
   Second, we calculated the means on reaction time across 
conditions (Figure 5) and examined the effect of condition on 
reaction time by conducting a two-way ANOVA (condition 
× session). We found that the interaction effect between 

condition and session was statistically significant (F(2,167) 
= 4.435, p < .001). The simple effects of condition in the 
teaching sessions were statistically significant (ps < .010), 
and in the second and third teaching sessions, reaction time 
in the autonomy-support condition was longer than that in the 
all-teach (ps < .011) and no-teach conditions (ps < .011). 
However, the simple effects of the condition in the 
independent exploration session were not statistically 
significant (p = .624). These results suggest that the 
autonomy-support algorithm enhanced the participants’ 
engagement, specifically during the teaching sessions. 
Finally, mediation analysis was conducted. The results 
showed that the indirect effects of reaction time were 
statistically significant (standardized partial regression 
coefficient β = -.059, 95% CI [-.129, .001], p = .047 for 
autonomy vs. no-teach code; β = -.138, 95% CI [-.231, -.063], 
p < .001 for autonomy vs. all-teach code). This suggests that 
the autonomy-support algorithm enhances engagement 
during teaching sessions, which in turn enhances 
performance in the independent exploration session. 
 

 
 
Figure 5: Means on reaction time of each session across 
conditions. Error bars represent the 95% confidence interval 
of the mean. 

General Discussion 
In the present study, we developed a novel experimental 
paradigm that allowed us to systematically compare various 
teaching strategies. In addition, based on autonomy-
supportive teaching in the educational psychology literature, 
we implemented autonomy-supportive teaching as an 
algorithm and examined its effect on learners' performance. 

Our results demonstrate that the autonomy-support 
algorithm led to longer reaction time during the teaching 
sessions, which likely reflects the greater task engagement of 
learners. This result is in line with previous correlational 
research on the association between perceived autonomy 
support and academic engagement (Reeve, 2016). More 
importantly, the autonomy-support algorithm enhanced 
learners’ performance in the independent exploration session.  
According to the theories of category learning (Kruschke, 
1992; Love et al., 2004; Nosofsky, 1986), as learners repeat 
classifying stimuli and getting feedback many times, learners 
find that some features are particularly relevant for 
classification (e.g., the foot of bird stimuli in our study). In 
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our experiment, learners were shown relevant features as a 
hint in the teaching sessions, and learners in the autonomy-
support condition were more engaged in the sessions. Thus, 
learners in the autonomy-support condition may learn to 
identify relevant features. Then, in the independent 
exploration session, learners may find relevant features of 
different types of creatures' stimuli more quickly, which in 
turn would enhance performance. 

An alternative explanation for the performance results in 
the independent exploration session might be that the all-
teach and no-teach algorithms might have decreased learners' 
performance. For example, learners in the all-teach condition 
worked on an easy task with a hint at every trial during the 
teaching sessions. Thus, they might have expected the task in 
the independent exploration session to be easy and could have 
concentrated less. In addition, learners in the no-teach 
condition worked on difficult tasks without hints of any trial 
in the teaching sessions and might have been tired. Thus, they 
might have lacked mental resources during the independent 
exploration session. However, in the no-teach condition, 
performance in the teaching sessions did not statistically 
significantly differ from performance in the independent 
exploration session, which indicates that the no-teach 
condition is the baseline. Performance in the all-teach 
condition did not statistically significantly differ from that in 
the baseline no-teach condition. In addition, there was no 
statistically significant difference in the reaction time during 
the independent exploration session among the three 
conditions, suggesting that task engagement did not differ 
across the conditions. Therefore, the result concerning the 
independent exploration session can be attributed to the 
positive effect of the autonomy-support algorithm. 

In contrast to our hypothesis, in the independent 
generalization session, there was no statistically significant 
difference in performance among the conditions. The reason 
for this result may be that the teaching sessions were more 
like the exploration session than the generalization session. 
Previous research suggests that forming a category rule 
requires learners to integrate information across stimuli 
(Bowman & Zeithamova, 2018). In our experiment, although 
learners had the opportunity to learn the identification of 
relevant features of stimuli using hints given by the algorithm, 
they did not have the opportunity to learn integration and 
generalization of information regarding stimuli in the 
teaching sessions. Therefore, in future experiments, it would 
be important and interesting to test, whether the autonomy-
support algorithm enhances performance in the independent 
generalization session when generalization was also included 
in the teaching sessions. 

We developed a new experimental paradigm to identify the 
teaching strategy that leads to the best performance among 
learners. Recent studies in social science have compared 
various online interventions and identified the most effective 
interventions for social problems (e.g., prejudice and 
intergroup conflicts) (Hameiri & Moore-Berg, 2022). 
However, there is little research using this approach for 
critical problems in the educational context, which may be 

because it requires considerable time and resources to 
conduct many teaching strategies in schools or workplaces. 
In our experimental paradigm, teaching strategies are 
formalized by judging whether to give learners a hint, and are 
represented as algorithms by changing when to give a hint. 
Conducting our experimental paradigm online enables us to 
compare various teaching strategies in a cost-effective 
manner to determine the most effective strategy. 

Limitations and Future Directions 
Despite the positive contributions of this study, some 
limitations suggest directions for future research. First, the 
positive effect of the autonomy-support algorithm can be 
explained as the testing effect. Previous findings show that 
the teach-then-test method encourages learners to remember 
content (Roediger III & Karpicke, 2006; Szpunar et al., 2007). 
The autonomy-support algorithm provided a hint on the first 
two trials (i.e., teach), and then allowed the participants to 
solve the remaining six trials without any hint (i.e., test). This 
may have encouraged learners to consolidate their memory 
of the association between features and categories in the 
teaching sessions, and learners may have recalled the 
association in a better way in the independent sessions. 
Teach-then-test algorithm, which gives a hint at several trials 
and lets one at next several trials in the teaching sessions, may 
enhance learners' performance in the independent exploration 
session. 

Second, it is unclear whether algorithms are needed to take 
learners’ perspective and decide when to provide a hint. The 
theory of self-regulated learning shows that monitoring one’s 
own thinking and regulating learning processes enhances 
academic performance (Mega et al., 2014; Pintrich, 2004; 
Zimmerman, 1998). By simply letting learners decide 
whether they get a hint at every trial in the teaching sessions 
(self-pace algorithm), the learners may monitor their 
understanding more accurately and pay attention to stimuli' 
features more efficiently. By comparing the effectiveness of 
these algorithms to the autonomy-support algorithm, we 
address these possible confounding factors and test the best 
strategy for enhancing learners' performance when they work 
independently in a new situation. 
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