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Abstract

Opioid use disorder (OUD) and mental disorders are often comorbid, with increased morbidity 

and mortality. The causes underlying this relationship are poorly understood. Although these 

conditions are highly heritable, their shared genetic vulnerabilities remain unaccounted for. We 

applied the conditional/conjunctional false discovery rate (cond/conjFDR) approach to analyse 

summary statistics from independent genome wide association studies of OUD, schizophrenia 

(SCZ), bipolar disorder (BD) and major depression (MD) of European ancestry. Next, we 

characterized the identified shared loci using biological annotation resources. OUD data was 

obtained from the Million Veteran Program, Yale-Penn, and Study of Addiction: Genetics and 

Environment (SAGE) (15,756 cases 99,039 controls). SCZ (53,386 cases 77,258 controls), BD 

(41,917 cases 371,549 controls) and MD (170,756 cases 329,443 controls) data was provided by 

the Psychiatric Genomics Consortium. We discovered genetic enrichment for OUD conditional on 

associations with SCZ, BD, MD and vice versa, indicating polygenic overlap with identification 

of 14 novel OUD loci at condFDR<0.05 and 7 unique loci shared between OUD and SCZ 

(n=2), BD (n=2) and MD (n=7) at conjFDR<0.05 with concordant effect directions, in line with 

estimated positive genetic correlations. Two loci were novel for OUD, one for BD and one for 

MD. Three OUD risk loci were shared with more than one psychiatric disorder, at DRD2 on 

chromosome 11 (BD and MD), at FURIN on chromosome 15 (SCZ, BD and MD), and at the 

major histocompatibility complex region (SCZ and MD). Our findings provide new insights into 

the shared genetic architecture between OUD and SCZ, BD, and MD, indicating a complex 

genetic relationship, suggesting overlapping neurobiological pathways.

Keywords

Bipolar disorder; genetic overlap; genome-wide association study (GWAS); major depression; 
opioid use disorder; schizophrenia

1 INTRODUCTION

Opioid use disorder (OUD) causes substantial morbidity and mortality worldwide 1. Some 

countries are more affected, such as the USA with the opioid crisis 2. Although OUD is less 

prevalent than other substance use disorders, OUD is an enormous public health burden with 

high rates of overdose deaths, which increased during the COVID-19 pandemic 3.

OUD is relatively prevalent in patients with severe mental disorders, such as schizophrenia 

(SCZ), bipolar disorder (BD) and major depression (MD) 4–6, all of which are associated 

with affective and psychotic symptoms of various degrees. Comorbidities lead to greater 

suffering compared to having either disorder alone 7, and often impede treatment 4. In 

patients with severe mental disorders the estimated prevalence of co-occurring OUD was 

2.6–5.3% 4. Among adults with OUD the prevalence of a co-occurring severe mental 

disorder was estimated to be 27% 8. At a sub-diagnostic threshold, an increased risk of 

nonmedical opioid use was reported for patients who had already been diagnosed with a 

severe mental disorder 9. Similarly, an increased risk of developing severe mental disorders 
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for patients with existing nonmedical opioid use was also found 9. Further, there are 

several lines of evidence suggesting an overlapping neurobiological substrate related to the 

reward system and dopamine across mental illness in general 10, OUD 11, mood disorders 
12, and psychotic disorders 13. For example, negative symptoms in SCZ, a category of 

internal heterogeneity, may be understood as a reward processing impairment 14. A better 

understanding of the mechanisms underlying these comorbidities is crucial for improving 

treatment and quality of life of affected individuals.

OUD and severe mental disorders can increase the risk of developing one another, have 

common environmental and genetic risk factors 15. Both OUD and severe mental disorders 

have moderate to high heritability estimates from twin and family studies, with OUD 

at 0.50 16 SCZ at 0.80 17, BD at 0.70 18 and MDD at 0.35 19. Recent progress in 

genotyping technology and international collaborations assembling large genome-wide 

association studies (GWAS) have provided novel insights into the genetic architecture of 

these complex disorders. A key discovery is that these disorders are highly polygenic 20, that 

is, associated with many genetic risk variants, each with a small effect. Genetic studies have 

also suggested shared genetic aetiologies across severe mental disorders 15, including recent 

research which has found significant concordant genetic correlations (rg) between substance 

use disorders and severe mental disorders 16 with genetic correlation estimates between 

OUD and SCZ at 0.29, for BD at 0.16 and MD at 0.35 21, suggesting common genetic risk 

factors. However, genetic correlation is a genome-wide measure, which includes the effects 

of all Single Nucleotide Polymorphisms (SNPs), and thus does not identify overlap at the 

individual locus level. Moreover, genetic correlation is unable to capture genetic overlap in 

the presence of shared genetic variants with a mixture of same and opposite effect directions 

as they “cancel each other out” 22. Although it may be possible to customize variants 

included in Linkage Disequilibrium score regression (LDSC) and polygenic score (PGS) 

analyses, a modest number of variants is not expected to impact the estimates of genetic 

correlation using LDSC or PGS. In recent years, genome-wide analyses demonstrated 

genetic overlap with mixed effect directions among a wide range of human traits and 

disorders, regardless of their genetic correlations, strongly indicating genetic overlap beyond 

the overall genetic correlations 23. Moreover, a few loci with opposite effect directions 

among psychiatric disorders have been identified, although their biological implications are 

currently poorly understood 24,25. Therefore, investigating genetic overlap beyond genetic 

correlation is required to further elucidate the genetic architecture of complex disorders and 

their genetic relationships. Here, we aimed to reveal more of the shared genetic architecture 

between OUD and the mental disorders SCZ, BD and MD by applying analytical tools 

designed for polygenic architectures 26. We applied the conditional/conjunctional false 

discovery rate (cond/conjFDR) tools to boost discovery of genetic variants and to identify 

overlapping genetic loci between OUD, SCZ, BD and MD, beyond genetic correlation 26.

2 MATERIALS AND METHODS

2.1 GWAS Samples

Independent GWAS data were obtained in the form of summary statistics (p-values and 

effect sizes) (Table 1.). For OUD, data from the Million Veteran Program (MVP), Yale-Penn 
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and the Study of Addiction: Genetics and Environment (SAGE) 21 were used. In the MVP 

cohort, case and control status was defined using electronic health record–data. There 

were 8,529 affected European American (EA) individuals and 71,200 opioid-exposed EA 

controls, 4,032 affected African American (AA) individuals and 26,029 opioid-exposed AA 

controls. The Yale-Penn and SAGE datasets included 2,015 EA cases and 963 controls and 

1,180 AA cases and 847 controls from a previous GWAS 27. To ensure compatibility of the 

linkage disequilibrium (LD) pattern, our main analysis on OUD focused on individuals of 

EA ancestry and included a meta-analysis of a total number of 10,544 cases and 72,163 

opioid-exposed controls. GWAS data on SCZ (53,386 cases and 77,258 controls) 28, BD 

(41,917 cases and 371,549 controls) 29 and MD (170,756 cases and 329,443 controls) 30 

were obtained from the Psychiatric Genetics Consortium (PGC) and were of European 

ancestry. See Supplementary information for details.

2.2 Statistical Analyses

We visualized cross-trait enrichment using conditional quantile-quantile (Q-Q) plots, where 

the distribution of p-values of all SNPs of a primary phenotype and for strata defined by the 

p-values for association with a secondary phenotype are represented. Cross-trait enrichment 

is evident if enrichment of statistical associations in the primary phenotype increases 

with increased significance of association with the secondary phenotype 31. We then 

applied the conditional FDR (condFDR), which leverages cross-trait enrichment between 

two phenotypes to improve genetic discovery. CondFDR readjusts the test-statistics in the 

primary phenotype by conditioning on SNP associations with the secondary phenotype, 

returning a condFDR value. OUD loci were identified at condFDR<0.05. We then applied 

the conjunctional FDR (conjFDR) tool to increase discovery of shared genetic loci jointly 

associated with OUD and in turn SCZ, BD and MD. The conjFDR approach is an extension 

of condFDR 31. Reversing the order of the phenotypes gives the condFDR value for 

the second phenotype conditioned on the first phenotype. ConjFDR then identifies SNPs 

which are significantly associated with both phenotypes 26. Shared loci were found at 

conjFDR<0.05, in line with prior literature 32. To control for spurious enrichment, random 

pruning was averaged over 500 iterations, and one SNP in each LD block (r2>0.1) was 

randomly selected for each iteration. We excluded SNPs within the major histocompatibility 

complex (MHC) (chr6:25000000–33000000), the chromosomal region 8p23.1 (location 

7200000–12500000) and the gene MAPT (chr17:40000000–47000000), all genome build 19 

before fitting the FDR model given their complex LD structures, which could inflate the test 

statistics and bias the FDR estimation 33. We further constructed a polygenic score (PGS) 

with PRSice-2 34 for OUD and tested for associations with SCZ (n=735), BD (n=470), MD 

(n=270) and healthy controls (n=1073) using an independent sample with genotype-level 

data (TOP cohort, see Supplementary information). Finally, we calculated pairwise genetic 

correlations with Linkage Disequilibrium Score regression (LDSC)22,35 (Supplementary 

information).

2.2.1 Sign-consistency test—We performed conjFDR analyses in independent 

samples for OUD (5,212 cases and 26,876 controls) 21, SCZ (22,778 cases and 35,362 

controls) 36, BD (4,501 cases and 192,220 controls) [https://r5.finngen.fi/], and MD (75,607 

cases and 231,747 controls) 37 (Table 1). See Supplementary methods for details. We then 
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conducted a version of the binomial test, that is, the sign-consistency test 38. Finally, we 

tested for variants nominally significant at p<0.05 in each independent sample.

2.2.2 Supplementary analyses—To complement our method we converted cond/

conjFDR values to p-values through a procedure described in 39.

2.3 Genetic locus definition

We defined independent genetic loci according to the FUMA protocol 40. Briefly, 

independent significant genetic variants were identified as variants with conjFDR<0.05 and 

LD r2<0.6 with each other. A subset of these independent significant variants with LD 

r2<0.1 was then selected as lead variants. For each lead variant, all candidate variants were 

identified as variants with LD r2≥0.6. For a given lead variant the borders of the genetic 

locus were defined as min/max positional coordinates over all corresponding candidate 

variants. Loci were then merged if they were separated by less than 250kb. LD information 

was calculated from the 1000 Genomes Project European-ancestry reference panel 41. The 

directional effects of loci were evaluated by comparing z-scores of the lead SNPs. We 

investigated all discovered loci for overlap with previously identified loci using our internal 

database which includes updated GWAS on all the traits investigated in this study.

2.4 Functional annotation of loci shared between OUD and severe mental disorders

The FUMA application SNP2GENE was run to identify genes mapped to the candidate 

SNPs with conjFDR <0.1 40. All analyses were corrected for multiple comparisons. To 

minimize false positive and negative findings, we implemented a gene mapping strategy of 

qualification of at least two out of three of the following criteria: physical proximity of SNPs 

to genes, expression Quantitative Trait Loci (eQTL) and chromatin interaction mapping. 

SNP deleteriousness was measured by a Combined Annotation-Dependent Depletion 

(CADD)-score above 12.37 42. For complementarity we also used the open-source Open 

Targets Genetics application, Variant to Gene (V2G) 43 to map lead SNPs to genes. V2G 

utilizes the physical proximity of SNPs to genes, molecular phenotype quantitative trait loci 

investigations (QTL) which maps SNPs to genes where expression level is influenced by 

allelic variation at the SNP level (eQTL), and protein Quantitative Trait Loci (pQTL) which 

maps SNPs to genes where protein level is influenced by allelic variation at the SNP level, 

and chromatin interaction where 3D DNA-DNA interactions are considered. V2G leverages 

this information in machine learning algorithms on the input of lead SNPs.

2.5 Expression patterns

We provided expression patterns in human brain regions across lifetimes using Human Brain 

Transcriptome 44.

3 RESULTS

3.1 Cross-trait enrichment

To visualize cross-trait enrichment, we constructed stratified quantile-quantile (Q-Q) plots 

that show successive increments of SNP enrichment for OUD conditional on increasing 

levels of SNP associations with SCZ, BD and MD (Figure 1 A–C). We then reversed the 
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stratified Q-Q plots displaying the SNP associations for SCZ, BD and MD conditional on 

SNP associations with OUD (Figure 1 D–F). In all cases we observed successive upward 

and leftward deflection of the Q-Q plots after conditioning the primary phenotype on the 

conditional phenotype, indicative of genetic overlap between the phenotypes.

3.2 CondFDR OUD loci

We applied condFDR to boost discovery of OUD loci conditional on mental disorders 

and identified a total of 20 loci for OUD, including 14 novel loci (condFDR<0.05) (Table 

2). This includes 9 loci for OUD conditioned on SCZ (6 novel loci), 8 loci conditioned 

on BD (5 novel loci) and 13 loci conditioned on MD (8 novel loci), including the locus 

involving the SNP rs1799971 (OPRM1) which is reported in the original OUD GWAS 21. 

The condFDR results are presented in Supplementary Tables 1–3. After converting FDR 

values to p-values 39 2 loci remain significant for OUD conditional on SCZ (at MHC and 

FURIN), 1 (FURIN) for OUD conditional on BD and 1 for OUD conditional on MD (MHC) 

(Supplementary Tables 22–24). Rs1799971 was interestingly not significant in our analyses 

after converting to p-values.

3.3 Shared loci between OUD and mental disorders (conjFDR)

To identify shared loci between OUD and the psychiatric disorders we performed conjFDR 

analyses with a threshold of <0.05 (Figure 2). We identified in total seven loci, two of which 

are novel for OUD and shared with MD at RN7SKP157 and B3GALTL (Table 3). One locus 

was novel for BD at DRD2 and one was novel for MD at PPPC6 (Table 3). All loci were 

identified by applying an additional method converting our FDR values to p-values. Two 

loci shared between OUD and SCZ reached FDR significance (<0.05) and converted FDR 

to p-value significance (p<5.00E-08) (Supplementary Table 25), two loci shared between 

OUD and BD reached FDR significance and one converted FDR to p-value significance 

(Supplementary Table 26). Finally, seven loci shared between OUD and MD reached FDR 

significance (<0.05). One locus reached converted FDR to p-value significance both ways 

(OUD|MD and MD|OUD) and one reached converted FDR to p-value significance for MD|

OUD but not for OUD|MD (Supplementary Table 27). For all lead SNPs in the shared loci, 

the effect directions in OUD and each psychiatric disorder were concordant, that is, the 

risk of OUD was linked to a higher risk of mental illness (Supplementary Tables 4–6). As 

expected, we found a locus shared between OUD, SCZ and MD located in the MHC region 

which has previously been implicated in these disorders at the genome-wide significant level 
28,45,46. This overlapping genetic signal suggests an involvement of the immune system in 

the shared genetic risk of these disorders. However, the extended MHC region has a highly 

complex LD structure spanning a large number of genes. We cannot reliably infer whether 

this overlapping signal reflects separate or shared loci, or causal genes.

3.4 Functional characterization

Functional analyses of candidate SNPs in the loci conditioned on mental disorders with 

condFDR revealed that most were intergenic and intronic (Supplementary Tables 1–3). 

After testing for enrichment (e>1) according to functional category exonic (e=2.27, Fisher’s 

p=0.03) and intronic variants (e=1.15, Fisher’s p=0.03) were significantly enriched for 

OUD|SCZ. For OUD|BD intergenic (e=1.17, Fisher’s p=5.02E-07) and intronic (e=1.08, 
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Fisher’s p=0.05) variants were significantly enriched. For OUD|MD intronic (e=1.50, 

Fisher’s p=2.42E-25) variants were significantly enriched. Functional analyses of candidate 

SNPs in the shared loci identified by conjFDR revealed that most were intergenic and 

intronic (Supplementary Tables 7–9). After testing for enrichment according to functional 

category UTR3 (e=5.43, Fisher’s p=0.01) and exonic variants (e=4.99, Fisher’s p=0.01) 

were significantly enriched for OUD/SCZ. For OUD/BD exonic (e=8.21, Fisher’s p= 

9.66E-05) and intronic (e=2.21, Fisher’s p=2.92E-14) variants were significantly enriched. 

For OUD/MD intronic (e=1.77, Fisher’s p= 3.38E-35) variants were significantly enriched. 

Mapping of shared loci to genes 40 resulted in 98 identified genes shared between OUD and 

SCZ in two loci (Supplementary Table 10). Thirty of these were left after filtering on two 

out of three mapping criteria (positional, eQTL, and chromatin interaction information). We 

identified 19 genes shared between OUD and BD in two loci (Supplementary Table 11). 

Five of these passed filtering with two out of three mapping strategies. Finally, we identified 

145 genes shared between OUD and MD in seven loci (Supplementary Table 12). Thirty-six 

genes passed the filtering strategy.

3.5 Sign-consistency test

We used the sign-consistency test 38 on independent datasets (Table 1) to validate the shared 

loci, which produced one of two concordant variants (50%; binomial p=0.75) for SCZ, two 

of two (100%; binomial p=0.25) concordant variants for BD, six of seven (86%; binomial 

p=0.06) concordant variants for MD, and four of eight (50%; binomial p=0.64) concordant 

variants for OUD. We further assessed the validity of the lead SNPs in loci identified at 

conjFDR<0.05 by testing for presence in independent datasets at p<0.05. One lead variant 

(rs4702 at FURIN) was present in the SCZ GWAS of East Asian ancestry 36. No lead 

variants were present in the BD GWAS of European ancestry (https://r5.finngen.fi/). For 

MD, three of seven lead SNPs (rs28524171 at RN7SKP157, rs6929812 within MHC, and 

rs1800498 at DRD2) were validated in the independent MD GWAS of European ancestry 37. 

Finally, no lead variants in the shared loci for OUD and psychiatric disorders had a p-value 

<0.05 in the independent AA GWAS dataset on OUD 21. A total of four of the OUD risk 

loci identified by conjFDR were identified in recent larger GWAS on OUD, specifically the 

PPP6C 47, NCAM1 45, DRD2 45 and FURIN 45,47,48 loci, however there is considerable 

overlap in the datasets in these studies and ours, and therefore further validation will depend 

on sufficiently powered new samples.

3.6 PGS and genetic correlations

The OUD PGS distribution yielded no significant difference in predictive power compared 

to chance when assessing associations with SCZ, BD, MD or healthy controls. Our LDSC 

calculations were in line with published data. We present the PGS and genetic correlation 

results in the Supplementary information.

4 DISCUSSION

In the current study, we used the cond/conjFDR analytical method and leveraged cross-trait 

enrichment between OUD, and SCZ, BD and MD to improve the statistical power for 

discovery of shared genetic loci to shed light on their genetic relationships. The weaker 
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cross-trait enrichment observed for psychiatric disorders conditional on OUD is expected 

given the smaller sample size and reduced statistical power of the OUD GWAS dataset 

compared to the psychiatric disorders. We identified polygenic overlap beyond genetic 

correlation. Specifically, we discovered 14 novel OUD loci and 7 novel loci jointly 

associated with OUD and psychiatric disorders (Figure 2, Table 2 and 3). There was a 

concordant allelic direction of effects in all the shared loci, indicating that these genetic 

variants increase the risk of both OUD and the respective psychiatric disorders.

To complement our method, we supplemented with an approach converting our FDR 

values to matching p-values described in 39. This produced a more conservative ranking, 

yielding overall fewer significant loci. Interestingly the FURIN locus was significant in both 

approaches for overlap with SCZ and BD, after FDR to p-value conversion but not for MD, 

in line with evidence of a closer genetic relationship between SCZ and BD versus MD 
24 OPRM1 which was identified in the original GWAS was identified with the condFDR 

approach but did not reach significance after FDR to p-value conversion as described in 39.

Several lines of evidence suggest a pleiotropic nature of mental traits and disorders 49. Our 

findings are in line with the observation that multiple genetic variants with small effect sizes 

influence many traits to different degrees 17. The currently identified shared loci explain 

only a small fraction of the genetic architecture of OUD and severe mental disorders and, 

thus, the liability to these disorders. We identified 14 novel loci for OUD, but there are 

still numerous undetected common variants, which will be identified with larger GWAS 

samples 17. In addition, environmental factors, copy number and rare genetic variants play 

an important role in the aetiology of OUD 50, SCZ 51, BD 52 and MD 53. The present 

results increase our understanding of the underlying genetic variants influencing OUD and 

the comorbidity between OUD and the severe psychiatric disorders SCZ, BD and MD. 

These common genetic variants may help generate novel hypotheses about the underlying 

molecular relationships and their role in the development of psychopathology, whether 

overlapping loci represent components of discrete clusters of risk (e.g., for substance use 

disorders) or a general vulnerability to psychiatric symptoms in general 54, is still an 

open question. We also included PGS and LDSC analyses in the study, to complement 

the conjFDR analysis. Corroborating prior studies21, we find significant positive genetic 

correlations between OUD and SCZ, BD and MD, indicating shared genetic effects. The 

PGS analysis, however, in which we tested the association between OUD PGS and case 

control status of SCZ, BD and MD in the TOP sample55, was insufficiently powered. As 

larger OUD datasets become available, analytical tools such as MiXeR56 will be able to 

quantify the genetic overlap in thousands of SNPs, beyond genetic correlation and most 

likely with mixed effect directions. This is not feasible today, due to insufficient statistical 

power.

We identified a pleiotropic locus on chromosome 15 (lead SNP rs4702) which was shared 

between OUD, SCZ, BD and MD at conjFDR<0.05. It has previously been associated with 

SCZ 28, BD 29 and MD 46. This locus was not identified in the original OUD GWAS 
21, but reached genome-wide significance in subsequent GWAS on OUD, validating this 

finding 45,47,48. The lead SNP rs4702 is shown to influence the expression of its nearest 

gene FURIN in neurons derived from human induced pluripotent stem cells, and influence 
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synaptic function in synergy with other SCZ risk variants 57. FURIN encodes a cleaving 

and activating enzyme involved in the cleavage of the endogenous opioid proenkephalin 
58 FURIN is globally expressed in the developing and adult human brain, (Supplementary 

information) 59. We discovered a novel OUD locus at chromosome 5 shared with MD, 

which has previously been associated with both SCZ 36 and MD 60. The nearest gene to 

the lead SNP is pseudogene RN7SKP157, while the most likely causal genes according to 

the V2G algorithm were KIF2A and DIMT1. We also discovered a novel OUD locus at 

chromosome 13, implicating three genes (HSPH1, RXFP2 and B3GALTL). This locus is 

shared with MD and has previously been implicated in SCZ 36 and MD 30. FUMA and V2G 

both identified the nearest gene and most likely implicated gene as B3GALTL, respectively. 

We identified another OUD risk locus on chromosome 11 which was shared with both BD 

and MD. The locus is novel for BD and has previously been implicated in OUD 48, MD 
46, as well as for alcohol use disorder 61 and SCZ 28.The nearest gene to the lead SNP is 

DRD2, while the most likely causal genes according to the V2G algorithm were ANKK1 
and TTC12. The gene cluster TTC12-ANKK1-DRD2-NCAM1 (NTAD) have previously 

been widely linked to nicotine 62, alcohol 63 and other drug dependencies 64. NCAM1 
has previously been found to be associated with SCZ, BD, MD, alcohol use disorder and 

cannabis use disorder 61. Sequence variants in the DRD2 gene has been associated with SCZ 
65, Parkinson’s disease 66 and opioid addiction 67.

The identified genetic variants seem to support neurobiological hypotheses about the 

reward system in substance use disorders (SUD) and severe mental disorders (SMDs). The 

identified loci include variants that may affect the function of the mesocorticolimbic circuit, 

influenced by an altered metabolism of opioids (FURIN variants) and altered dopamine 

receptor function (DRD2 variants). Such functional modification of the reward system 

may lead to an increased risk of SUDs and SMDs, for example via adapted dopamine 

transmission leading to reduced reward processing 14 which may underlie negative psychotic 

symptoms and depressive mood, and increased susceptibility for exogenous opioids due 

to elevated dopamine release 68 resulting in a higher OUD risk. Our findings warrant 

experimental validation to elucidate the pathophysiological mechanisms of the reward 

circuitry underlying comorbid SUDs and SMDs.

The current study has some limitations. We cannot exclude sporadic, non-systematic 

sample overlap; however, we calculated linkage disequilibrium score regression genetic 

covariance intercepts (OUD vs SCZ=0.01 (SE=0.01), p=0.05; OUD vs BD=0.01 (SE=0.01), 

p=0.11; OUD vs MD=0.01 (SE=0.01), p=0.22) and neither are significant, suggesting no 

significant effect of overlap between the samples. We included datasets from a diverse set of 

populations, but larger datasets for other cohorts than Europeans are needed to uncover more 

of the genetic underpinnings of OUD and SMDs.

To conclude, our study suggests overlapping genetic architecture between OUD and SCZ, 

BD, and MD, indicating similarities in the genetic architectures of these debilitating 

disorders. We highlight loci previously associated with SUDs and suggest underlying 

molecular pathways for OUD. Uncovering the underlying genetics of these disorders can 

lead to improvements in patient stratification and the identification of novel targets for drug 

development.
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Figure 1. 
(A–C) Conditional Q-Q plots of observed versus expected opioid use disorder (OUD) 

−log10 p values (corrected for inflation) below the standard GWAS threshold of p < 5.00E–

08 as a function of the significance of the association with schizophrenia (SCZ), bipolar 

disorder (BD) and major depression (MD), at the level of p ≤ 0.1, p ≤ 0.01 and p ≤ 

0.001, respectively. (D–F) Conditional Q-Q plots of observed versus expected SCZ, BD & 

MD −log10 p values (corrected for inflation) below the standard GWAS threshold of p < 

5.0008 as a function of significance of association with OUD, at the level of p ≤ 0.1, p ≤ 

0.01, p ≤ 0.001, respectively. The blue lines illustrate the standard enrichment for all SNPs 

irrespective of their association p value in the second phenotype. The dashed line shows the 

null hypothesis. Successive leftward deflection for declining nominal p values for a given 

disorder from the dashed line of no association indicates that the proportion of non-null 

SNPs increases with higher levels of association with the other disorders.
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Figure 2. 
ConjFDR Manhattan plot. Common genetic variants jointly associated between opioid use 

disorder (OUD) and schizophrenia (SCZ), bipolar disorder (BD) and major depression 

(MD) at conjunctional false discovery rate (conjFDR) < 0.05. Showing the −log10 

transformed conjFDR values for each single nucleotide polymorphism (SNP) on the y 
axis and chromosomal positions along the x axis. The dotted horizontal line represents the 

threshold for significant shared associations (conjFDR = 0.05, i.e., −log10[conjFDR] > 1.3). 

Independent lead SNPs are encircled in black.
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Table 1.

Genome-wide association studies used in the present analyses.

Disorder Consortium Sample size, n Ancestry SNPs, n Reference

Discovery analysis

OUD MVP 10,544 cases
72,163 controls European 5,070,000 21 

SCZ PGC 53,386 cases
77,258 controls European 7,585,078 28 

BD PGC 41,917 cases
371,549 controls European 7,608,183 29 

MD PGC 170,756 cases
329,443 controls European 7,666,894 30 

Sign-consistency test

OUD MVP 5,212 cases
26,876 controls

African
American 6,910,000 21 

SCZ PGC 22,778 cases
35,362 controls East Asian 9,607,215 36 

BD FinnGen 4,501 cases
192,220 controls European 14,114,100 Publicly available (https://r5.finngen.fi/)

MD 23andMe 75,607 cases
231,747 controls European 13,519,496 37 

OUD = opioid use disorder; SCZ = schizophrenia; BD = bipolar disorder; MD = major depression; MVP = Million Veteran Program; PGC = 
Psychiatric Genomics Consortium.
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Table 2.

The most strongly associated single nucleotide polymorphisms (SNPs) in genomic loci associated with opioid 

use disorder (OUD) at conditional false discovery rate (condFDR) < 0.05 given association with schizophrenia 

(SCZ), bipolar disorder (BD) or major depression (MD) after merging regions < 250 kb apart into a single 

locus are shown. The table presents chromosomal position (Chr.), conditional false discovery rate (FDR) 

value, conditioned trait and OUD novelty status. For more details including genes mapped to these loci and the 

full list of all loci associated with OUD at condFDR < 0.05, see Supplemental Tables 1–3.

Chr. Lead SNP Lead SNP bp FDR value Cond. trait Novelty status, OUD

1 rs67237321 55686228 3.54E-03 SCZ, BD, MD Novel

1 rs75555622 189000000 4.24E-02 BD Novel

1 rs78058152 237000000 1.70E-02 SCZ, MD Novel

5 rs28524171 61519672 2.05E-02 MD Novel

5 rs10067519 166000000 3.62E-02 MD Novel

6 rs3777755 12159699 2.66E-02 BD Novel

6 rs6929812 27384520 2.66E-02 MD MHC

6 rs442439 28573006 2.81E-02 SCZ MHC

6 rs1799971 154000000 4.07E-03 SCZ, BD, MD Zhou 2020 21

8 rs35604666 93037953 3.76E-02 BD Novel

9 rs10761184 95698931 2.20E-02 SCZ Novel

9 rs864882 128000000 2.67E-03 MD Kember 2022 45

10 rs7088136 29159490 4.33E-02 MD Novel

10 rs17113901 103000000 4.04E-02 SCZ Kember 2022 45

11 rs1800498 113000000 4.48E-02 BD, MD Kember 2022 45, Deak 2022 48

11 rs9919557 113000000 4.47E-02 BD, MD Kember 2022 45, Deak 2022 48

13 rs116994084 25828354 4.41E-02 MD Novel

13 rs2181967 31832054 3.90E-02 MD Novel

14 rs10145081 80243323 8.65E-03 SCZ, MD Novel

15 rs62011989 54566664 1.92E-02 SCZ Novel

15 rs4702 91426560 9.45E-03 SCZ, BD, MD Kember 2022 45

19 rs117623407 32204489 1.77E-02 BD Novel
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Table 3.

Summary data of shared loci identified between opioid use disorder (OUD) and severe mental disorders 

(SMDs); schizophrenia (SCZ), bipolar disorder (BD) and major depression (MD) at conjunctional false 

discovery rate (conjFDR) < 0.05.

Chr. Lead SNP
Lead SNP 

bp Nearest gene
FDR-
value

Z-
score 
OUD

Z-
score 
SMD

P-value 
OUD

P-value 
SCZ

P-value 
BD

P-value 
MD

5 rs28524171 61519672 RN7SKP157 2.04E-02 −3.97 −4.36 4.38E-05 NA NA 1.00E-06

6 rs6929812 27384520 MHC 2.65E-02 −3.90 −5.67 5.97E-05 1.14E-01 2.15E-01 2.03E-10

6 rs442439 28573006 MHC 2.78E-02 −4.00 −7.32 3.77E-05 6.45E-18 4.70E-03 NA

9 rs4837011 127923014 PPP6C 3.72E-02 −4.30 −3.63 9.64E-06 NA NA 4.71E-05

11 rs9919557 112877408 NCAM1 3.12E-02 3.85 4.03 7.24E-05 2.02E-03 3.58E-04 5.93E-06

11 rs1107162 113289037 DRD2 4.87E-02 3.78 3.56 9.97E-05 9.41E-04 7.87E-05 3.29E-08

11 rs1800498 113291588 DRD2 3.57E-02 3.82 4.87 8.55E-05 7.22E-04 9.30E-05 4.66E-08

13 rs2181967 31832054 B3GALTL 3.88E-02 3.79 3.73 9.49E-05 7.10E-01 2.35E-01 2.81E-05

15 rs4702 91426560 FURIN 9.39E-03 4.27 8.04 1.07E-05 2.79E-21 3.52E-09 4.98E-05

15 rs4702 91426560 FURIN 6.84E-03 4.27 5.33 1.07E-05 2.79E-21 3.52E-09 4.98E-05

15 rs4702 91426560 FURIN 3.85E-02 4.28 3.61 1.07E-05 2.79E-21 3.52E-09 4.98E-05

Bp = base pair; SNP = single nucleotide polymorphism; Chr = chromosome, Bold p-value refers to the listed SMD z-score.
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