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Abstract 

Nine-month-old infants can distinguish the word-stress 
patterns of two artificial languages after a few minutes of 
exposure to words from one of the languages, apparently by 
making transitive inferences from known word-stress 
constraints to unknown constraints. We report on a neural-
network simulation of these data using the sibling-descendant 
cascade-correlation algorithm. The simulations cover the 
infant data and generate some predictions for further infant 
research.   

Introduction 
Learning how to stress the syllables in words is an important 
part of acquiring a language, easily distinguishing skilled 
from novice speakers. Word stress is an interesting problem 
to study because it has been given a fairly complete 
linguistic description, it can be studied independently of 
other aspects of language, and it has attracted competing 
computational models using principles and parameters on 
the one hand (Dresher & Kaye, 1990) and neural networks 
on the other (Gupta & Touretzky, 1994).  

Remarkably, infants as young as 9 months can learn 
something about novel word-stress patterns with a few 
minutes of exposure to artificial words (Gerken, 2004). 
Such infant research, perhaps coupled with computational 
modeling, has the potential to uncover some of the 
fundamental properties of the human language-learning 
system (Gómez & Gerken, 2000; Shultz, 2003). This paper 
reports on artificial-neural-network simulations of these 
infant data. We first review the infant research, then discuss 
the properties of our computational model, and finally 
present three simulations.  

Evidence with Infants 
Gerken (2004) asked whether 9-month-olds could learn an 
optimality-theoretic stress system that had been used in an 
adult production study by Guest, Dell, and Cole (2000). The 
logic of the adult experiment was to expose learners to 
multisyllabic nonwords whose stress patterns provided 
evidence for several rankings of stress constraints. In 
optimality theory (Prince & Smolensky, 1997), different 
stress-assignment constraints can conflict in their 
application to a particular word. When two constraints do 
conflict, only the more highly ranked applies. Importantly, 
in the Guest et al. (2000) and Gerken (2004) experiments, 

one ranking was not attested in the initial input, but it could 
be inferred from attested rankings, based on transitivity. For 
example, if learners have evidence that constraint A 
outranks (>>) constraint B and B >> C, they should be able 
to infer that A >> C. Adults showed evidence of accepting 
test words reflecting the unattested ranking from their 
training grammar, while rejecting very similar words that 
reflected a different grammar (Guest et al., 2000).  

To determine if infants would behave similarly, 18 nine-
month-olds were familiarized for two minutes to three- and 
five-syllable words (Gerken, 2004). The stress patterns in 
these spoken words conformed to either Language 1 (n = 9; 
Table 1) or Language 2 (n = 9; Table 2). In these tables, 
syllables in upper case are stressed, whereas those in lower 
case are unstressed. Seven variants of each familiarization 
and test word were created using the seven solfège syllables 
(do, re, mi, fa, so, la, ti) and substituting re for do, mi for re, 
etc., in the example words of Tables 1 and 2. No 
substitutions were made for the syllable ton.  
 
Table 1: Example words and constraint rankings for infants 

familiarized to L1. 
Familiarization Attested ranking 
TON ton do RE mi A >> B 
TON do re B >> C1 
DO re TON B >> C1 
DO re TON mi fa B >> C1 
DO re mi FA so C1 >> D1 
L1 test  Inferred ranking 
do TON re MI fa  A >> D1 

 
Table 2: Example words and constraint rankings for infants 

familiarized to L2. 
Familiarization Attested ranking 
do RE mi ton TON A >> B 
do re TON B >> C2 
TON do RE B >> C2 
do re TON mi FA B >> C2 
do RE mi fa SO C2 >> D2 
L2 test Inferred ranking 
do RE mi TON fa A >> D2 

 
The following four word-stress constraints, all of which 

are typical of constraints in natural languages, were used in 
the study:  
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A. Two stressed syllables cannot be adjacent. 
B. Heavy syllables (i.e., those ending in a consonant) are 

stressed. 
C. Syllables are stressed if they are second to last (C1 in 

L1) or second (C2 in L2). 
D. Alternating syllables are stressed, starting from the left 

(D1 in L1) or right (D2 in L2). 
The familiarized words provide evidence for three 

rankings of stress principles. In L1, A >> B, B >> C1, and 
C1 >> D. For example, the word TON do re in L1 attests that 
constraint B (heavy syllables are stressed) outranks 
constraint C1 (syllables are stressed if they are second to 
last). Likewise, in L2, A >> B, B >> C2, and C2 >> D. No 
direct evidence was provided that A >> D1 (for L1) or A >> 
D2 (for L2). However, these unattested rankings could be 
inferred using transitivity from the attested rankings.  

During testing, infants heard on different trials words with 
new stress patterns that were consistent with A >> D1 or A 
>> D2 inferences. Note that L1 and L2 test items had the 
same stress pattern (second and fourth syllables stressed) 
and differed only in the location of the heavy syllable TON. 
Therefore if infants can discriminate the two types of test 
items, they presumably did so by making inferences across 
words in their familiarization language.  

Infants were tested in a head-turn preference procedure, 
and their looking times revealed a significant 
familiarization-language x test-language interaction, F(1, 
16) = 7.78, p < .02. Infants familiarized with L1 listened 
longer to L2 test words and vice versa, as shown in Figure 
1. These data, which have been replicated at least once, F(1, 
16) = 9.97, p < .01 (Gerken, 2004), suggest that infants were 
able to make inferences across multiple words in their 
familiarization language, and on that basis could distinguish 
the stress patterns of the two languages.  

 

0

2

4

6

8

10

L1 L2

Familiarization

M
ea

n 
lo

ok
in

g 
(s

ec
)

L1 test L2 test

 
Figure 1: Infant interest in hearing word-stress patterns in 

two languages. 

Properties of Our Computational Model 
In familiarization experiments like those of Gerken (2004), 
it is assumed that infants build categories for repeated 
stimuli and then subsequently ignore stimuli corresponding 
to their categories and concentrate instead on stimuli that are 
relatively novel. Such shifts of attention would be of 

obvious adaptive value in promoting cognitive and 
linguistic development. The building of categories for 
familiar stimuli is typically discussed in terms of 
recognition memory. If a stimulus is recognized as a 
member of a familiar category, then it often elicits less 
attention than a stimulus not recognized as familiar.  

Recently it has become possible to simulate such 
processes with artificial neural networks. One of the most 
effective techniques employs feed-forward encoder 
networks (Mareschal & French, 2000; Mareschal, French, & 
Quinn, 2000; Shultz & Bale, 2001; Shultz & Cohen, 2004). 
In such networks, stimulus features are represented as real 
numbers in an input vector, then encoded in representations 
on a relatively small number of hidden units, and finally 
decoded on an output vector. Discrepancy between output 
and input representations is computed as network error. 
Familiar stimuli produce less error than novel stimuli, and 
this extra error indicates that the novel stimuli merit further 
processing and perhaps learning. Such encoder networks are 
able to generalize, abstract prototypes, and complete input 
patterns that are missing components. After training, error 
on familiar stimuli is typically less than that on novel 
stimuli. Various learning algorithms have been employed 
for this purpose, including back-propagation (BP) with 
static networks and cascade-correlation (CC) with 
constructive networks (Shultz, 2003).  

Here we report on our efforts to simulate Gerken’s (2004) 
experiments on word stress with a variant of CC called 
sibling-descendant cascade-correlation (SDCC; Baluja & 
Fahlman, 1994). Like CC, SDCC recruits new hidden units 
as it needs them to learn. But unlike CC, which installs each 
new hidden unit on a separate layer, SDCC determines 
whether it is better to install each new recruit on the current 
highest layer of hidden units (as a sibling) or on its own new 
layer (as a descendant). Algorithms that construct their own 
networks, like CC and SDCC, have been found better at 
simulating a variety of phenomena in psychological 
development than algorithms like BP that merely learn to 
adjust connection weights in a static, pre-designed network 
topology (Shultz, 2005). The mathematics underlying CC 
and SDCC can be found elsewhere (Shultz, 2003).  

Simulation 1: Familiarization x Test-pattern 
Interaction 

The principal aim of the present simulations was to capture 
Gerken’s (2004) familiarization-language x test-language 
interaction with the tests discussed earlier. To this end, we 
created seven examples of each of five training-word types, 
totaling 35 training patterns and seven examples of test 
words, just as in the infant experiments.  

Coding of Words 
We coded the words used in Gerken’s (2004) experiments 
on a sonority scale, shown in Table 3. This scale is based on 
phonological research (Vroomen, van den Bosch, & de 
Gelder, 1998) and has been used to simulate other infant 
experiments with artificial-language stimuli (Shultz & Bale, 
2001). Sonority is the quality of vowel likeness and it has 
both acoustic and articulatory aspects. As can be seen in 
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Table 3, the sonority scale ranges from -6 to 6 in steps of 1, 
with a gap and change of sign between the consonants and 
vowels. 

 
Table 3: Phoneme sonority scale. 

Phoneme category Examples Sonority 
low vowels /a/  /æ/ 6 
mid vowels /Є/  /e/  /o/  /ɔ/ 5 
high vowels /I/  /i/  /U/  /u/ 4 
semi-vowels, laterals /w/  /y/  /l/ -1 
nasals /n/  /m/  / ŋ / -2 
voiced fricatives /z/  /ʒ/  /v/ -3 
voiceless fricatives /s/  /ʃ/  /f/ -4 
voiced stops /b/  /d/  /g/ -5 
voiceless stops /p/  /t/  /k/ -6 

Note. Example phonemes are represented in International 
Phonetic Alphabet. From “Infant familiarization to artificial 
sentences: Rule-like behavior without explicit rules and 
variables.” By T. R. Shultz and A. C. Bale. In L. R. 
Gleitman & A. K. Joshi (Eds.), Proceedings of the Twenty-
Second Annual Conference of the Cognitive Science Society 
(p. 461), 2000. Mahwah, NJ: Erlbaum. Copyright 2000 by 
the Cognitive Science Society, Inc. Adapted by permission. 
 

Because words could have up to five syllables, with up to 
three phonemes per syllable, 15 units were required to code 
each word. The stress given to each of the potential five 
syllables was coded as -0.5 for unstressed and 0.5 for 
stressed. Twenty-five input units coded each word as 
follows, with subscripts 1-5 indicating the slots for cv or cvc 
syllables and the stress (s) each syllable received: cvc1 cvc2 
cvc3 cvc4 cvc5 s1 s2 s3 s4 s5. Five-syllable words required all 
five syllable slots for both sonority and stress, but three-
syllable words were coded only in slots 2-4. Missing final 
consonants and missing syllables were coded as 0.0. 
Twenty-five output units had this same structure. Codes for 
the phonemes of each syllable are shown in Table 4. 
 

Table 4: Sonority codes for syllables. 
Syllable Consonant1 Vowel Consonant2 
do -5.0 5.0 0.0 
re -1.0 5.0 0.0 
mi -2.0 4.0 0.0 
fa -4.0 6.0 0.0 
so -4.0 5.0 0.0 
la -1.0 6.0 0.0 
ti -6.0 4.0 0.0 
ton -6.0 5.0 -2.0 

Procedures and Parameters 
We ran nine networks in each familiarization condition in 
order to match the statistical power of the infant 
experiments. A training epoch is a single pass through all of 
the training patterns. SDCC networks alternate between two 
phases: output phase and input phase. In output phase, 
weights entering output units are adjusted in order to reduce 
network error. When error reduction stagnates, SDCC 
switches to input phase in order to recruit a new hidden unit.  

In input phase, weights from inputs and existing hidden 
units to candidate recruits are adjusted in order to increase 
the size of a correlation between candidate-unit activation 
and network error. When those correlations stagnate, the 
unit with the largest absolute correlation is recruited, and the 
other candidates are discarded. The candidate pool contains 
equal numbers (4) of siblings and descendants, each with 
initially random connection weights from input units and 
any existing hidden units. As is customary with SDCC, 
recruitment of descendant candidate units was penalized by 
multiplying their correlations with error by a factor of 0.8 
(Baluja & Fahlman, 1994). 

We tested each network’s performance every 25 output 
epochs. Training was stopped after 280 total epochs because 
pilot simulations suggested that this amount of training 
provided a good match to the size of the key interaction F 
ratio in Gerken’s (2004) infant experiments. The simulation 
results reported here are quite robust in that they can be 
replicated over a wide range of maximum training epochs. 
Infant trials cannot be precisely equated to network epochs 
because it is unknown how much processing occurs during 
an infant trial.  

Results  
After 280 epochs, these networks recruited a mean of 6.2 
hidden units on a mean of 1.3 layers. The final topology for 
a typical network with four hidden units on one layer and 
two hidden units on the next layer is shown in Figure 2. The 
arrows indicate full connectivity, with all of the units in one 
layer being connected to all of the units in the next layer. 
The bias unit always has an input value of 1 and is 
connected to all downstream units by trainable connection 
weights, thus establishing a learnable resting level of 
activation for each hidden and output unit. As is customary 
with encoder networks, there are no direct input-to-output 
connections here. This is to prevent trivial solutions in 
which a network might learn weights of about 1 from each 
input unit to its corresponding output unit. Such solutions 
would memorize the training patterns quickly but would not 
generalize well to untrained test patterns. 
 
 

 
 

 

 

 

 

 

 

 
Figure 2: Final topology of an SDCC network. 
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As is typical of both infant attention to a repeated 

stimulus category and CC and SDCC simulations of infants 
in such experiments, network error decreased exponentially 
over time. Error reduction in a typical network is plotted in 
Figure 3. 
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Figure 3: Error reduction in a representative network. 

 
Network error after 280 epochs was subjected to a mixed 

ANOVA in which familiarization language served as a 
between-network factor and test language served as a 
within-network factor. The key interaction between the two 
was significant, F(1, 16) = 15, p < .001. The associated 
means are plotted in Figure 4. As with infants, there was 
more interest in the test language with novel stress patterns, 
signaled here by network error.  
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Figure 4: Network interest in word-stress patterns in two 

languages. 

Simulation 2: Effects of Constraint Deletion 
If the results of the infant experiments and Simulation 1 are 
due to transitive inferences about constraints, then it should 
be possible to produce different results depending on which 
constraints are deleted from the familiarization words. For 
example, deletion of one of the three B >> C familiarization 
word types should disrupt transitive inferences less than 
deletion of the only C >> D familiarization word type. The 
former deletions should not matter much because there are 
still two other word types present that attest to the B >> C 
constraint ranking. In contrast, the latter C >> D deletions 

might matter a lot because they would break the transitive 
inference chain required to make the A >> D inference.  

To test this idea, we ran a simulation in which we deleted 
the third of the B >> C word types from each language for 
18 networks in one condition, and the C >> D word type 
from each language for 18 networks in another condition. 
See Tables 1 and 2 for the particular word types deleted.  

Network error was subjected to a mixed ANOVA in 
which deletion condition and familiarization language 
served as between-network factors and test language served 
as a within-network factor. With a significant deletion x 
familiarization-language x test-language interaction, F(1, 
32) = 17, p < .001, we then analyzed the familiarization-
language x test-language interaction for each deletion 
condition. The familiarization-language x test-language 
interaction was significant for the C >> D deletions, F(1, 
16) = 6.7, p < .03, as well as the B >> C deletions, F(1, 16) 
= 27, p < .001. Interaction means are plotted in Figure 5 for 
the B >> C deletions, and in Figure 6 for the C >> D 
deletions. It is noteworthy that the variance associated with 
the familiarization-language x test-language interaction was 
36 times larger for the B >> C deletions than the 
corresponding variance for the C >> D deletions, showing 
that the C >> D deletions were more disruptive to this key 
interaction than were the B >> C deletions, as expected.  
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Figure 5: Network interest in word-stress patterns in two 

languages when a B >> C word type is deleted. 
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Figure 6: Network interest in word-stress patterns in two 

languages when the C >> D word type is deleted. 
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Thus, omitting a unique link in the transitive-inference 

chain disrupts the key familiarization-language x test-
language interaction more than omitting a redundant link 
does.  

Simulation 3: Position of a Heavy Syllable 
A reviewer of the paper reporting the infant experiments 
(Gerken, 2004) suggested an alternative explanation for 
successful generalization to the test sentences. This reviewer 
noted that the heavy syllable TON occurs earlier in L1 
familiarization words than in L2 familiarization words. 
These average positions happen to correlate with the 
positions of TON in the test sentences. TON is in second 
position in the test sentence for L1 and fourth position in the 
test sentence for L2. Perhaps infants generalized to the test 
sentences, not by performing transitive inference on 
constraint rankings, but rather by using the relative positions 
of the heavy syllable.  

We tested this idea in neural networks by equating the 
position of TON in the two languages. We omitted the first 
B >> C familiarization word type from both languages and 
doubled the frequency of the second B >> C familiarization 
word types. As the reader can verify from Tables 1 and 2, 
this yields a mean serial position of 3.0 for TON in the 
familiarization words of each language (assuming that three-
syllable words are coded on the middle-three banks of input 
and output units). With these changes to the familiarization 
languages, nine networks were run in each familiarization 
condition as in Simulation 1.  

Network error was analyzed as in Simulation 1. The 
familiarization-language x test-language interaction was still 
present, F(1, 16) = 38, p < .001. Associated means are 
plotted in Figure 7. As far as networks are concerned, the 
serial position of the heavy syllable TON is irrelevant to the 
expected interaction between familiarization language and 
test language. Coupled with the results of Simulation 2, this 
suggests that, at least for networks, differential 
generalization to the familiar and novel languages arises, not 
from the position of the heavy syllable, but rather from 
transitive inferences across known constraints.  
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Figure 7. Network interest in word-stress patterns in two 

languages with equated serial positions of the heavy 
syllable. 

Discussion 
The infant results simulated here are quite remarkable when 
one considers the nature of the test words. The two test 
words have entirely different stress patterns than do the 
familiarization words in either L1 or L2. Moreover, the two 
test words exhibit the same stress pattern, differing only in 
the location of the heavy syllable TON. Therefore, the 
obtained familiarization x test interaction suggests that 
infants are able to generalize beyond stress patterns 
encountered during familiarization to the abstract system 
underlying these patterns. That a simple neural-network 
model, after being familiarized to words in the same fashion 
as the infants were, can also generalize in this manner is 
perhaps equally remarkable. How do they (infants or 
networks) do that, particularly on the basis of rather limited 
exposure to a few example words? Poverty-of-the-stimulus 
arguments might well be employed to support some sort of 
innate knowledge of word-stress rules (Dresher & Kay, 
1990). We are still quite far from understanding how infants 
execute this skill, but it is somewhat easier to examine 
computational models to determine how they perform.  

Although we have described the inferences on which this 
generalization is based in terms of transitive reasoning, it is 
noteworthy that SDCC networks do not perform any explicit 
logical reasoning on symbolic propositions. A simulation of 
transitive inference in older children and adults shows that 
CC networks, even without hidden units, can simulate such 
inferences in an entirely neural manner (Shultz & Vogel, 
2004). An important computational trick used by those 
networks is to learn connection-weight strengths that 
effectively represent the linear order of the training stimuli.  
Such weights can then be used to make accurate 
comparisons of unattested stimulus pairs. In several ways, 
the word stimuli and training regime used in the present 
simulations are more complicated, but the ability of the 
learning algorithm to construct an essentially neural solution 
to a transitivity problem is comparable. We plan to explore 
the exact nature of this solution to word-stress assignments 
in a longer paper in which we perform detailed analyses of 
network knowledge representations.  

As far as we are aware, no other computational models 
have yet been applied to these infant data. Of the two most 
prominent models in the area of word-stress learning, it is 
interesting that one is a symbolic model based on principles-
and-parameters theory (Dresher & Kaye, 1990) and the 
other is a connectionist model using static BP networks 
(Gupta & Touretzky, 1994). One thing that these two, very 
different models share is that each learning algorithm is 
presented with stress-pattern information abstracted away 
from the actual phonemes in a word. As might be expected, 
such pre-processing of the input simplifies the learning task 
immensely. Speech sounds can be ignored in these models, 
enabling the learning algorithm to focus only on the pre-
abstracted stress patterns, which are identical for all words 
of the same number of syllables in the language being 
learned. Although these models have a number of 
interesting features, we believe that our model is more 
realistic in view of the fact that both numerically-coded 
speech sounds and syllabic-stress information are included. 
This might enable our model to deal with anticipated effects 
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of phonological content on the learnability of stress patterns. 
Humans, whether infants or adults, are never presented with 
abstract stress patterns, only with streams of speech in 
which word syllables are stressed according to the stress 
syntax of the language.  

We plan to implement and compare alternate models to 
our SDCC model in future work. The principles-and-
parameters model (Dresher & Kaye, 1990) will be 
particularly interesting to study in this context because 
many of its predictions would be quite different from those 
that our model would make.  

One current prediction of our model concerns the 
differential effects on test-word performance of deleting 
certain word-stress constraints from the familiarization 
words. Simulation 2 showed that deleting one of the three 
familiarization word types attesting to the B >> C constraint 
disrupted performance on the test words less than did 
deleting the familiarization word type containing the only 
evidence of the C >> D constraint. Although it is likely that 
a model using explicit transitive inference would predict 
something similar, its prediction would be more extreme 
than the one made by our model. This is because our model, 
even without the important C >> D familiarization 
information, still retained some capacity to make a correct 
transitive inference regarding the A >> D constraint. An 
explicit-reasoning model would likely generate no A >> D 
inference at all without some C >> D evidence. Like other 
neural-network models, ours predicts a graceful degradation 
of performance in the face of important evidential gaps, in 
contrast to the more brittle performance of an explicit-
reasoning model.   

Another prediction of our model ruled out an alternate 
hypothesis concerning the relative position of a heavy 
syllable in both familiarization words and test words. Even 
when mean serial positions of the heavy syllable were 
equated across the two languages, networks were still 
relatively more interested in the novel language, as revealed 
by a difference in mean network error. Predictions such as 
these should be interesting to test with infants.  
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