
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Distinguishing learned categorical perception from selective attention to adimension: 
Preliminary evidence from a new method

Permalink
https://escholarship.org/uc/item/6h83637g

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors
Andrews, Janet
de Leeuw, Joshua
Andrews, Rebecca
et al.

Publication Date
2019
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6h83637g
https://escholarship.org/uc/item/6h83637g#author
https://escholarship.org
http://www.cdlib.org/


Distinguishing learned categorical perception from selective attention to a 
dimension:  Preliminary evidence from a new method 

 
Janet Andrews (andrewsj@vassar.edu) 

Department of Cognitive Science, 124 Raymond Ave. 
Poughkeepsie, NY 12604 USA 

 
Joshua de Leeuw (jdeleeuw@vassar.edu) 

Department of Cognitive Science, 124 Raymond Ave. 
Poughkeepsie, NY 12604 USA 

 
Rebecca Andrews (reandrews@vassar.edu) 

Department of Cognitive Science, 124 Raymond Ave. 
Poughkeepsie, NY 12604 USA 

 
Cole Landolt (clandolt@vassar.edu) 

Department of Cognitive Science, 124 Raymond Ave. 
Poughkeepsie, NY 12604 USA 

 
Chrissy Griesmer (chgriesmer@vassar.edu) 

Department of Cognitive Science, 124 Raymond Ave. 
Poughkeepsie, NY 12604 USA 

 
 

Abstract 

A novel experimental method is motivated and applied in an 
effort to test for effects of category learning on perceptual 
discrimination so as to clearly distinguish category boundary 
effects of expansion and compression from changes in 
sensitivity to stimulus dimensions.  The method includes a 
control group performing a task that, like category learning, 
requires attention to one systematically varying stimulus 
dimension rather than another.  Discrimination accuracy is 
tracked over time and measured using a psychophysical 
staircase procedure tailored to individual participants that 
doesn’t rely on memory.  Initial results suggest improvement 
in discrimination accuracy over time, particularly on the 
dimension relevant to the categorization or control task, but 
no evidence of category boundary effects or effects of 
category learning on dimension perception stronger than those 
of the control task.  Possible reasons for this and directions for 
further research are briefly discussed. 

Keywords: categorical perception; categorization; learning;  
expansion; compression; dimensional modulation; selective 
attention 

Introduction 
It is well known that various kinds of experience can 
produce perceptual learning, i.e., improved ability to 
distinguish objects, features, or values on a dimension 
(Goldstone, 1998).  One of the processes that is claimed to 
have special effects on the perceptual judgment of stimuli is 
learning to categorize the items, the phenomenon known as 
learned categorical perception (CP) (Goldstone & 
Hendrickson, 2009).  Learned CP effects reported in the 
literature include boundary effects whereby items placed in 
different categories become more distinguishable, 

sometimes called expansion, and/or items placed in the 
same category become less distinguishable, sometimes 
called compression.  However, these are not always clearly 
distinguished from dimension-wide effects where there is 
sensitization to the category-relevant dimension(s) and/or 
desensitization to the category-irrelevant dimension(s). 

There are potentially many tasks besides category 
learning that require or benefit from greater attention to one 
dimension rather than another whereas only category 
learning would be expected to produce the boundary effects 
of expansion and/or compression.  It is therefore very 
important that measures of learned CP carefully distinguish 
dimensional effects from boundary effects, something that 
previous research has not necessarily done. An important 
goal of the work reported here is to develop a method that 
distinguishes boundary effects of category learning from 
dimension-wide effects and, if category learning does cause 
dimension-wide effects, to determine if it does so to a 
greater extent than a task that doesn’t involve category 
learning. 

One reason that learned CP effects are of theoretical 
interest is that they may provide key evidence of genuine 
top-down effects on perception, an issue of considerable 
current controversy (Firestone & Scholl, 2016).  But since 
the vast majority of learned CP evidence is based on 
measures that rely on memory (e.g., successive judgments 
of pairs of stimuli for same-different or similarity 
judgments), it is hard to argue that they are genuinely 
perceptual effects rather than reflecting higher level 
cognitive processes.  Another purpose of the method 
adopted here is to eliminate the role of memory and 
determine if learned CP effects still occur. (Of course, even 
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if they do, other challenges raised by Firestone and Scholl 
might still need to be addressed.) 

An examination of the existing body of learned CP 
research also reveals a bewildering pattern of effects and 
non-effects (compression vs. expansion vs.  both, boundary 
effects with or without accompanying dimensional effects 
and vice versa, etc.).  Researchers rarely have specific 
predictions regarding which effects will or won’t occur and 
often don’t distinguish clearly between them or test for all 
of them.  As noted above, our study will clearly distinguish 
boundary effects from dimension-wide effects of category 
learning. 

A recent p-curve meta-analysis of this body of research 
(Andrews, de Leeuw, Larson, & Xu, 2017) found a low 
level of statistical power, suggesting that it may be 
unproductive to try to interpret the patterns of effects and 
non-effects in the existing literature, since low statistical 
power is likely to produce both false positive and false 
negative results.  Without a firm grasp on which learned CP 
effects do and don’t occur under what conditions, it will be 
very difficult to make progress understanding the theoretical 
basis of learned CP or modeling the relevant mechanism(s). 
In addition to simply running better powered studies, 
another strategy to increase the informativeness of the data 
that are collected is to use analysis techniques such as 
Bayesian statistics that indicate the relative support for 
different hypotheses regarding learned CP effects, including 
the null hypothesis of no effects. 

Another important methodological feature that renders 
previous results difficult to interpret is the fact that learned 
CP experiments almost always use a before-after 
comparison, a control group that only performs the final 
task performed by the learning group after category training, 
or at most, a control group that receives passive exposure to 
the category training stimuli. The goal of the research 
reported here is to address this and the other features of 
learned CP research that render its results ambiguous.  Our 
approach relies on the use of a new method for tracking the 
effects of learning to categorize a set of patterns over time 
and in comparison to the effects of performing an 
appropriate non-category-based control task.  Tracking 
over time is important for addressing another ambiguity 
when effects are only measured after training:  expansion 
effects cannot be distinguished from a combination of 
compression and sensitization to the category-relevant 
dimension.  These could potentially be distinguished if they 
emerge at different rates or times over the course of training. 
In order to track effects of learning over time, we test for 
changes in discrimination ability using a psychophysical 
staircase procedure throughout the entire experiment, 
alternating with classification or control task trials.  

Because we use simultaneous stimulus presentation to 
avoid memory effects, a standard same-different or XAB 
task would allow successful performance based on the 
comparison of meaningless pixel-level features. We 
therefore developed a stimulus set where the potentially 
category-relevant dimensions vary both systematically in 

one respect (e.g., number/density of dots inside a circle) and 
also randomly (e.g., the exact location of the dots). This 
means that two stimuli with the same values on the two 
systematically varying dimensions will not be identical, 
much in the same way that individual instances of real 
world categories are usually unique.  This allows us to use a 
variation on same-different judgments that highlights the 
role of the dimensions and works with simultaneous 
presentation, as explained in the method section.   

The above features of our method make it different from 
the usual learned CP experiment in a number of ways, but 
we think it is essential to determine whether learned CP will 
occur under these more controlled conditions. If it does not, 
we can systematically re-introduce more traditional 
methodological features, such as successive presentation on 
the discrimination test, to determine which are necessary to 
produce the effects in order to better understand them.  
While we only report one experiment and acknowledge that 
our method likely needs adjustment to be fully successful in 
achieving its goals, our hope is that by sharing our work at 
this stage we can obtain useful feedback to inform and guide 
our next steps. 

 
Method 

All study materials, data, and analysis scripts are available 
at this OSF site:  https://osf.io/msq57/. 

Participants 
A total of 101 participants (52 women; mean age 34.8; age 
range 18-72) were recruited using the online crowdsourcing 
platform Prolific and paid $4 for participating.  Data from 8 
participants were missing or incomplete leaving a final total 
sample size of 93. 

Stimuli 
Stimuli for this experiment were sunbursts. The 
number/density of dots and lines was systematically varied 
across stimuli but the exact placement of the dots and lines 
and the length of the lines were random (see Figure 1). For 
each participant in the experimental group (see below), 
category membership was randomly assigned to be based on 
either line or dot density. The density of dots or lines in a 
particular stimulus ranges from 300-2000 dots and 30-550 
lines.  (Each range is treated as 0.0-1.0 here.) 

Procedure 
The software jsPsych was used to create the experiment (de 
Leeuw, 2015).  Phase 1 used a same-different task variant 
we call the odd-one-out task. Four sunbursts appeared 
simultaneously:  three had the same dot and line densities 
and one differed on one of those dimensions. Participants 
had 4 seconds to press a number key (1-4) to indicate the 
odd one out and receive feedback (see Figure 2). 

At the beginning of Phase 1, the dimension that differed 
in the odd one differed by a large amount from the others. 
This distance was subsequently adjusted through a  staircase  
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Figure 1.  The stimulus space illustrating the two 

dimensions and the two possible sets of categories. 
 
 

 
 

Figure 2.  An odd-one-out trial display in Phase 1. 
 
procedure, decreasing or increasing by 15% depending on 
whether the response was correct or incorrect. Trials 
continued until at least eight reversals occurred on each 
dimension. The goal of Phase 1 was to identify an 
approximation of each individual participant’s just 
noticeable difference (JND) on each dimension, defined as 
the average of the distances of the last four reversals. 

In Phase 2, odd-one-out trials alternated with one of two 
other tasks, classification or number judgment, to which 
participants were randomly assigned. For both tasks, a 
single sunburst appears with a question and participants 
press a key to answer and receive feedback (see Figure 3).  

 

 
 

Figure 3.  A classification task trial display (left) and a 
number judgment task trial display (right) in Phase 2. 

 
The number judgment (control) task is to say “more” (M) or 
“less” (L) in response to a question about the number of dots 

or lines, where the number varied from trial to trial.  For a 
given participant, the number judgment questions are 
always about just one of the two dimensions, randomly 
assigned, so that the control task matches the category 
learning task in relying on attention to one “relevant” 
dimension to answer correctly.  For the classification 
(“experimental”) group, the randomly assigned relevant 
dimension defined the category boundary as shown in 
Figure 1. 

The specific stimuli used in Phase 2 odd-one-out trials 
were initially based on each JND value from Phase 1 for 
each participant and dimension. The sets of four stimuli (see 
Figure 2) were of three types as shown below in Figure 4.  
For both BE (between category) and WI (within category) 
comparisons, the odd one out differed from the other three 
only on the relevant dimension while for IRR comparisons, 
it differed only on the irrelevant dimension. All 48 possible 
adjacent stimulus pairs were used as the basis for the odd-
one-out trials and drawn from the participant’s JND-based 
dimensional space at a given moment.  

Phase 2 trials proceeded in 40 blocks each containing six 
odd-one-out trials (one BE, two WI, and three IRR trials to 
sample the stimulus space evenly) and six classification or 
number judgment trials in a random order.  The staircase 
procedure on the odd-one-out task was continued 
individually for each participant throughout Phase 2 just as 
in Phase 1, but separately for these six comparison subtypes. 
This controls for discriminability differences due to 
stimulus magnitude (e.g., Weber’s law).  Since adjacent 
dimensional values were already near JND level, the 
proportion change from one trial to the next of that subtype 
was reduced from 15% to 5% and the maximum distance 
allowed between dimension values was .33. 

 

 
 

Figure 4.  Illustration of the six comparison subtypes for 
the odd-one-out trials with dots as the relevant dimension. 

Analysis Plan 
A traditional learned CP analysis takes a behavioral measure 
such as similarity rating or same-different accuracy and 
compares the experimental (category learning) and control 
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groups on that measure for between-category vs. within-
category pairs.  Our experiment tracked changes in the size 
of the distance between the two dimensional values used in 
odd-one-out task trials. Therefore, our learned CP measure 
was the change in this value for a given dimension from the 
beginning to the end of Phase 2. If participants improved on 
the odd-one-out task, their scores will be negative since they 
will become able to accurately judge smaller differences, 
and a larger negative score represents more improvement. 
Because differences in speed of discriminating between-
category vs. within-category pairs are sometimes taken as 
evidence for CP, we also used mean correct reaction time 
over the last four blocks on odd-one-out trials as an alternate 
measure. We standardized RTs within subject by converting 
them to z scores.  Note that for both of these measures, a 
smaller score reflects better performance. 
   It is traditional for the above types of analysis to adopt 
some criterion of successful category learning and exclude 
participants who don’t meet it.  However, the choice of the 
criterion is arbitrary, may well influence the results, and is 
not explicitly motivated in learned CP research.  In addition, 
because our continuous staircasing procedure kept 
dimensional differences between adjacent stimuli near JND, 
we expected category learning to be relatively difficult and 
produce a wide range of performance levels.  Since it seems 
reasonable to predict that learned CP measures should 
positively correlate with category learning success (see 
Gureckis & Goldstone, 2008 for a similar approach and 
positive evidence), we only reported that type of analysis. 
 

Results 
Figure 5 shows an example of a result of the Phase 1 
staircase procedure for illustrative purposes.  Participants 
whose Phase 1 JND on either dimension exceeded the 
maximum of .33 allowed in Phase 2 by more than .05 were 
excluded from subsequent analysis since the Phase 2 
staircasing procedure would not apply correctly to them.  
This produced a final n of 72 (35 control, 37 experimental). 
 

 
 
Figure 5.  Example outcome of Phase 1 staircase procedure. 
 

The mean proportion correct over Phase 2 on the 
classification task was .678 (SD = .145) and on the number 
judgment task it was .807 (SD = .13). 

Phase 2 began with dimensional differences based on 
each individual participant’s Phase 1 JND.  Did the staircase 
procedure continuing throughout Phase 2 (in alternation 

with the classification or number judgment task) produce 
further perceptual learning?  Figure 6 shows that in general, 
averaging across all participants, it did, particularly on the 
relevant dimension comparisons, as one might expect. 
Using the mean distance change for each participant 
averaging over the three odd-one-out trials differing on the 
relevant dimension (BE, WI1, and WI2) in the final block, 
the mean of the entire sample (M = -2.57) was significantly 
less than zero (t(71) = -3.547, p < .0001).  This was not the 
case for the irrelevant dimension (averaging over IRR1, 
IRR2, and IRR3 trials) (M = -0.72, t(71) = -0.996, p = .16). 
A one-tailed paired samples t-test yielded a significant 
difference between relevant and irrelevant mean distance 
change (t(71) = -2.014, p = .024). 

 

 
 
Figure 6.  Overall perceptual learning in the experiment; the 
y axis represents number of staircase steps, e.g., a change in 
distance of -10 means the staircase has gotten 10 steps more 

difficult, indicating improved discrimination accuracy. 
 

The left panel in Figure 7 illustrates the pattern that would 
be expected to hold for the control group, with better 
performance on the number judgment task coinciding with 
better performance on the odd-one-out task only (or to a 
greater degree) for the dimension relevant to the number 
judgment task, and no difference in the patterns for between 
and within category comparisons.  The right panel shows 
what the pattern would be if the experimental group showed 
learned CP boundary effects, with better classification 
performance associated with better odd-one-out perfor- 
mance on between-category comparisons (expansion) and/or 
worse odd-one-out performance on within-category 
comparisons (compression) relative to the control group.  If 
the experimental group were to show stronger sensitization 
to the relevant dimension or desensitization to the  irrelevant  

1345



 
 
Figure 7.  Relationship between classification or number 
judgment task performance (x axis) and either dependent 

variable (y axis) predicted by learned CP boundary effects. 
 
 

dimension relative to the control group, the patterns would 
be slightly different, but we will focus on the boundary 
effects that are typically what is meant by learned CP. 

Figure 8 shows the actual relationship in our data between 
total distance change over Phase 2 (y axis) and an estimate 
of the probability of a correct response at the end of Phase 2 
on the number judgment (left) or classification (right) task 
(x axis) obtained by fitting a logistic regression model for 
each individual subject. 

Overall there is a weak negative relationship such that 
discrimination performance tended to be better when 
classification or number judgment was more accurate, 
perhaps reflecting a general effect of effort. These data were 
analyzed using a Bayesian linear model to predict total 
distance change from three variables:  comparison type 
(between, within, or irrelevant), group (control or 
experimental), and estimated final performance on the 
number judgment or classification task.  The model also 
included the three-way interaction between these three 
variables  since,  as shown in  Figure 7, this  would  have  to 
be present if learned CP effects occurred.  The analysis 
produced a BF10 of 119 for the estimated final performance 
variable, supporting the effort effect mentioned previously.  
To assess evidence for the critical three-way interaction, we 
determined the ratio of the BF10 for the full model 
containing the three predictor variables and the three-way 
interaction (.94) to the BF10 for the model containing just 
the three predictor variables (7.18).  This yielded a BF10 of 
.131 indicating moderate support for H0 and therefore no 
evidence for learned CP. 

The same analysis was performed for the RT measure 
(see Figure 9) and showed only one  result favoring the 
alternative  hypothesis  and   that  was  for  comparison  type 

 
 

Figure 8.  Relationship between estimated final performance 
on the classification or number judgment task and actual 

discrimination accuracy improvement over Phase 2 for the 
three comparison types. 

 
 

 
 

Figure 9.  Relationship between estimated final performance 
on the classification or number judgment task and 

standardized mean correct RT on the last four blocks of 
Phase 2 for the three comparison types. 

 
(BF10 = 41).  The graph shows this to be due to irrelevant 
dimension odd-one-out trial responses being slower in 
general than relevant dimension trials of either type.  The 
ratio of the BF10 for the full model containing the three 
predictor variables and the three-way interaction (.095) to 
the BF10 for the model containing just the three predictor 
variables (.942) yielded a BF10 of .101.  This constitutes 
fairly strong support for H0 and thus no learned CP effects. 

Discussion 
This experiment employed a novel methodology designed to 
rigorously test for learned CP effects.  Stimuli varied 
systematically on two dimensions, only one of which was 
relevant for either category learning or a control task.  The 
stimuli also varied in random low-level features to allow for 
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simultaneous presentation in the discrimination (“odd-one-
out”) task to eliminate reliance on memory.  A staircasing 
procedure was used to initially determine the JND for each 
participant on each dimension and this staircasing continued 
with discrimination trials alternating with classification or 
control task trials to allow for continuous measurement of 
discrimination ability on each dimension.   

The results provide evidence of sensitization to the 
relevant dimension for both the classification task and a 
control task that was comparable in requiring attention to 
one of the two dimensions. This was seen in significant 
discrimination performance improvement from the 
beginning to the end of Phase 2 for the sample as a whole on 
the relevant but not the irrelevant dimension.  The 
interesting question then is whether there were differences 
in discrimination performance between the two groups that 
fit any of the patterns consistent with learned CP. 

We did not report traditional analyses of learned CP 
effects, comparing successful category learners to the 
control group on our odd-one-out performance measures as 
a function of comparison type, due to the arbitrariness of 
setting a criterion for successful learning and the fact that 
our continuous staircasing procedure kept discrimination 
across the category boundary difficult.  Instead, we 
examined whether learned CP effects appeared in the form 
of different relationships between category learning 
performance and discrimination performance as a function 
of comparison type and in relation to the control group. 

The only effects we found were a positive correlation 
between success on the classification or number judgment 
task on the one hand and the odd-one-out task on the other, 
and slower response times by the end of the experiment for 
odd-one-out trials that required distinguishing stimuli 
differing on the irrelevant dimension.  The critical three-way 
interaction between group, comparison type, and level of 
classification or number judgment performance that would 
be required in order to demonstrate any variety of learned 
CP effects was lacking for both dependent measures, and 
the analyses showed more than anecdotal support for its 
absence. 

Note that if learned CP effects had occurred in this 
experiment, our continuous measurement of discrimination 
ability on the three types of comparisons would have been 
valuable for tracking the emergence of different types of 
effects (e.g., expansion vs. compression) and would have 
potentially allowed us to distinguish otherwise similar end 
results (i.e., expansion vs. a combination of compression 
and relevant dimension sensitization).  However, since we 
did not obtain any learned CP effects overall, we were not 
able to take advantage of this capability. 

There are many possible reasons for these negative 
results, due to the ways in which our methodology deviated 
from typical learned CP experiments.  Perhaps the 
constantly changing stimulus set and its randomly varying 
sub-features below the dimensional level prevented learned 
CP from occurring.  Or it may be that constantly alternating 
between a classification task and the odd-one-out task 

interfered with learned CP.  If learned CP effects depend on 
memory and thus require tasks with a delay between stimuli 
in order to occur, our simultaneous stimulus presentation 
would be the cause.  Or it could be that, previous evidence 
of boundary effects notwithstanding, so-called learned CP 
effects are really due to paying attention selectively to one 
dimension rather than another, and thus also occur as a 
result of other tasks besides category learning such as the 
number judgment task used by our control group. 

We believe it is very important to determine the 
conditions under which learned CP effects do and do not 
occur, which has not been addressed sufficiently in the 
literature.  Our negative results can provide a useful initial 
reference point.  One strategy for building on this would be 
to next conduct a traditional version of the experiment 
utilizing a fixed set of the same stimuli and and a successive 
presentation version of our discrimination task to establish 
whether learned CP effects do occur under those conditions.  
If they do, methodological changes can then be incorporated 
one at a time, such as simultaneous rather than successive 
discrimination testing and comparison to a control group 
that performs a task requiring attention to one dimension, to 
determine which manipulations change and/or eliminate 
learned CP effects.  This would allow us to make real 
progress in understanding the phenomenon of learned CP 
and its scope and limits. 
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