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The Classical S-Matrix: A More 

Detailed Study of Classically Forbidden 

Transitions in Inelastic Collisions* 

* William H. Miller 

Inorganic Materials Research Div~sion, 
of the Lawrence Radiation Laboratory, 

and.the Department of Chemistry, 
University of California, 

Berkeley, California 

ABSTRACT 

Procedures are investigated for describing classically forbidden 

collision prOCE;SSes within the framework of the classical limit of quantum 

mechan~s. The goal is to use exact classical mechanics (numerically 

computed trajectories) to treat classically forbidden transitions in a 

complex collision (such as an atom plus diatom) ~n a manner analogous to 

the way one uses it to treat barrier transmission by a single particle 

in one dimension (a classically forbidden process); in this latter example 

the transmission coefficient is exp(-28), e being the classical action 

integral through the barrier (a classically forbidden region). Numerical 

application of these procedures is made to the linear atom - diatom 

collision system (without reaction), and the resulting vibrational transi­

tion probabilities for the classically forbidden transitions are in as 

good agreement with the exact quantum mechanical values as are the transi­

tion probabilities for classically allowed transitions. It appears, there­

fore, that the dynamics of even these classically forbidden transitions 

is accurately described in this semiclassical framework. 
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I. INTRODUCTION 

It has recently been shown l-3 how one can use exact classical 

mechanics (numerically computed trajectories) to obtain the classical 

limit of the time-independent quantum m..:-ch&nical 8-matrix, for a given 

collision system. Numerical application was made in II to the linear 

atom-diatom collision system (without .reaction), and the resulting vibra­

tional transition probabilities were of such accuracy as to suggest that 

classical mechanics may indeed be sufficiently accurate to describe the 

dynamics of complex heavy particle collisions - provided one makes the 

classical approximation to the appropriate transition amplitude (i.e., 

S-matrix element) and takes account of interferences which appear in the 

resulting transition probability (or cross section, for a three-dimensional 

aystem). 

In the present work we wish to explore more fully the question of 

classically forbidden transitions (a term explained precisely in II), in 

particular, how one can use exact4 classical mechanics to obtain results 

for classically forbidden processes. 5 At first glance this may seem self­

contradictory, but consider the simple example of barrier transmission 

(tunneling) by·a single particle in one dimension.
6 

Although the strictly 

classi~l limit (t = 0) for the transmission coefficient is zero, the 

WKB approximation gives exp(-2e), e being the phase integral through the 

barrier. This WKB result, however, is actually obtainable classically, 

for e is a classical quantity (the classical action integral through a 

classically forbidden region). From another point of view one may note 

that the Hamilton-Jacobi equation (which is equivalent to the classical 

equations of motion) does possess solutions in classically forbidden re­

gions; classical mechanics ordinarily ignores these solutions since here 

the momentum is imaginary, but the classical limit of quantum mechanics 

(in one dimension the WKB approximation) shows that they do have signifi­

cance (cf. the WKB wave function in a classically forbidden region). 

The goal, then, is to show how exact classical mechanics can be 

used to treat classically forbidden processes for multi-dimensional systems 

(such as an atom-diatom collision) in a manner analogous to the way one 

uses it in the above mentioned one partj cle problem; th(~ rr,attr;r is greatly 

complicated, of course, by the fact that one does net possess closed form 

.. 1 

.. 



-3-

solutions for the classical trajectories (as one does for one particle in 

one dimension.) This author is of the opinion that this "zeroth order" 

treatment of classically forbidden processes, if it can be effected, will 

be of useful accuracy; the numerical results presented below (see Table I) 

certainly support this thesis. 

Sections II and III present two approaches to the problem, with 

specific reference to (and numerical results for) the linear atom-diatom 

system. These results are considerably more accurate than the rather 

crude parabolic approximation used in p,aper II for the classically forbidden 

transitions. Although there are some practical problems associated with 

the procedures presented in Sections II and III (which are discussed below), 

the numerical results indicate that this semiclassical treatment is as 

accurate for classically forbidden processes as it is for classically 

allowed ones. 

II. CLASSICALLY FORBIDDEN TRANSITIONS BY 

ANALYTIC CONTINUATION 

Although we now consider specifically the linear atom-diatom col­

lision system as in II [and one should consult this work for a more 

detailed description of the procedure summarized below by Eqs. (l)-(6)], 
...-: the bas1c result applies to more general systems with obvious general-

izations. 

The uniform semiclassical expression for the transition probability 

developed in II is 

p 
n2,nl 

1 1 
+ rrlzl2 Bi2(-z)[pi2-

1 
- 2 

PI/J ' (1) 

where n1 and n2 are the initial and final vibrational quantum numbers; pi 

and PII are probabilities associated with the two independent trajectories 

which contribute to the n1~ n2 transition: 
-1 

p = [2n ldn2~31, n1) l] 
oql 

(2) 
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with q 1 equal to qi (for pi) or qii (for pii); q1 is the initial phase of 

the oscillator (the diatom) and the function n2 (q1 , n1 ) (the final vibra­

tional quantum number as a function of the ini t:i.al vi br2.tional quantum 

number and initial phase) is actually evaluated by specifying values for 

q 1 and n1, and integrating the classical equations of motion to determine 

n2 ; the particular values qi and qii are the two roots of 

(3) 

Ai and Bi in Equation (l) are the regular and irregular Airy functions 7, 
with z defined by 

z = (4) 
where ... 

is the phase difference of the two trajectories. For large phase differences 

Equation (1) takes on the "primitive" semiclassical form 

(6) 

As noted in II, the n1~ n2 transition is classically forbidden if 

there is no value of q1 in its (0,2~)domain for which Equation (3) is 

satisfied. There will in general, however, be complex roots of Equation 

(3); suppose qi is one such complex root 

J 

where we have suppressed the argument n1 since it is constant throughout. 

Assuming that n2(q1 ) is an analytic funC'tion of q1 (which is certainly 

true for some region about the real q1 - axis), one has 

= 

so that complex conjugation of Equation (3 1 ) gives (since n2 on the RHS is 
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some real intecer) 

-)(-

n2(qr ) = n2 

i.e., the second root qii is the complex conjugate of q
1

, 

( 7) , 

It follows, then, that 

so that the probabilities Pr and Prr are equal; the second term in Equa­

tion (l) is therefore absent. Furthermore, since ~(ql) is also (assumed to 

be) an analytic function of q1 , 

~<I> - <P(qii) <P(qi) 

= <~>(Cir*) <~>(Cir) 

= <P((ir)* ¢(qr), 

or ~<I> ::: -2i Im <P(}I); 

i.e.,~¢ is pure imaginary. 

Substituting these results into Equation (l) gives 

1 

4~ tzl~ Ai 2 (z) p 

for the classically forbidden transition nl -> n2 , where 

P = (2~ ln2'(q
1
)j ]-l 

z = [3/2 Im <1> (q1)]2/ 3 

( 8) 

For large z one may invoke the asymptotic form of the Airy function and 

ootain the " • -. J... - Tt prl:iiJ. '"1Vf~ s emicJ.ass ica.J. ez:nres:; 1.0'1 
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(9) 

It is EquaU on ( 9) tllat is the most readily interpretable physically -

it is the precise generalization of the exp (-28) transmission coefficient 

for one-dimen~3:iona1 tunneling by a single particle; the factor p in 

Equation (9) Ls simpJy a Jacobian (the Jacobian for a single particle in 

one dimension is always unity). Two other illuminating analogies to 

Equations (G) c!.nd. (9) are the Wlffi wave-function in classically allowed 

and forbiddt'!1 rE:!(!;iOns, respectively, and the rainbow effect in potential 

scatteringS - in all such situations Jhe classically allowed region has 

oscillatory structure [Equation (6)] and the classi~ally forbidden region 

is damped [Equation (9)]. The uniform semiclassical expression, Equation 

(l)[and Equation (1 1
) which is just Equation (l) written out explicitly 

for a classiee.lly forbidden transition], is valid even through the region 

(jf the classical/non-classical boundary and reduces to Equations (6) and 

(9) in the nppropriate limits. 

The question now is, how does one apply Equations (1 1 ) or (9). In II 

a parabolic approximation to n2 (q1 ) was made at its extrema, but here we 

wish to apply Equations (11 ) and (9) exactly, to see the limit of accuracy 

of these semiclassical expressions. 

Our first approach was naively straight-forward: the initial phase .,. 
q1 was allm-:ed to be complex (with appropriate COMPLEX designations in-

serted into the Fortran programs) and the equations of motion integrated 

as usual. Surprisingly, this worked - at least sometimes. If Imq1 

becomes too large, though, the trajectory diverges. The procedure des­

cribed in the following section is more satisfactory, and since it can be 

applied in all those situations in which the present approach is successful, 

no numerical results will be quoted for the present procedure. In those 

cases for which this method does work, howeve:·, it 3ives exactly the same 

numerical results as the method of Section III; thi[ must be true, pf course, 

s-ince they both are the direct application of Equations (11 ) and (9) -

they differ only in the method used to f.:..nd the complex root of Equatiun 

(3). 

III. ANALYTIC CON'riNUATION BY FOURHJ~ SERIES 

bolic approxi:,,c:."__;ion L:.30d in II; namely, one computes n2 (q1 ) for a sample 
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of real q 1 valu~~ in the (o,2rr) interval and uses these values to fit 

some an;:~lyt:Lc fo:rm for nA ql). The natural extension of the parabolic 

ap:p.rox:in~c;-~i_.-,n i2. to expand n2(q1 ) about an extremUJn in a Taylor series of 

hit;her order. l!e found it much more convenient (and accurate), however, 

to take aclvanL'{~C of the periodic nature of n2 (q1 ) [i.e., n2 (q1 + 2rr) = 

nd q1 ) J and expand it as a Fourier series: 

( 10) 

n2(q1 ) was computed at (2N + l) equally spaced points in the interval 

( 0, 2rr) and standard procedures9 used to obtain the coefficients ~ ~ fi: 
and~bk:,?t from thi.s input. Since n2(q1 ) is naturally periodic [see II 

for figures srw•:ring n 2( q1 ) for typical cases J, the C'Oefficients decrease 

rapidly vii tlJ increasing k. 
"" ' 

With the coefficients in Equation (10) thus determined, one solves 

numerically for the complex root of Equation (3), using Equation (10) for 

n2(q1). The phase <l>(q1 ) is also expanded in a Fourier series
10

, so that 

all the quantities required in Equations (11 ) and (9) are obtained. In 

practice v1e performed the calculation for a sequence of N-vallies [N being 

the numlJer of terms in Equation (10) ], starting with small N and increas­

ing it yntil there was no significant change in the transition probabilities 

being computed (N ~ 5-10 was normally sufficient). 

Table I shows the numerical results obtained for the parameters 

a, = . 3, m = 2/3 ( v1hich correspond roughly to H2 + He), compared to the 

exact quantum mechanical results of Secrest and Johnson
1

\ all the transi­

tions in Table I are classically forbidden. It is seen that the uniform 

semiclassical results [Equation (11 )] are in excellent agreement with the 

exact quantUin values, considerably more so than the parabolic approxima­

tion used v1i th Equation ( 11 ) in II. The results with the "primitive" 

semiclassical ex()ression [Equation (9)] are less accurate, being better 

the smaller the transition probability; this is as it should be, for the 

primitive semiclassical expressions are most accurate far from the clas­

sical/non-classical boundary. 

There are some problems, however, in applying this procedure; in 

particular, if Imq1 is too large, the series is divergent. It is easy to 

see that this 1,1 j ·1 '! happen, since it becowes effectively a pm-:er series in 
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exp[ IImq1l]. Just as with the direct method outlined. :.:~t thr:: end of 

Section II, therefore, this Fourier series procedure fo.ils if q1 vmnders 

too far from the real axis; thus one is una.ble to tren.t. trnnsitions that 

are too highly forbidden classically. The 4; 1-3 tra•isJ Vio~1 ( ;;ce Table I 

for an explanation of this labeling) in Tatle I is an cxcuilple of this 

failure; footnote e shows that the transition probability clc:cs not take 

on a consistent value as N is increased (although it is nevertheless of 

the correct order of magnitude). 

The basic reason for this failur.e is that one is attempting to 

describe the function n2 ( q1 ) for values of q1 (large Imq1 ) ft<.r removed 

from the "imput" values of q1 (real values). What is r1eedr:d is a prac­

tical method for integrating Hamilton's equations through Et classically 

forbidden region. 

TV. CONCLUSIONS 

It has been demonstrated that one can use exact classical mechanics 

to describe classically forbidden processes, even for complex collisions; 

the numerical results indicate this treatment of classically forbidden 

transitions to·be as accurate as the analogous treatment of classically 

allowe~ transitions. 

There are practical problems, however, in applying Equations (11 ) and 

(9) to highly forbidden transitions; these problems stem from the fact 

that one does not possess closed form expressions for the trajectories 

and must integrate Hamilton's equations numerically to obtain them. For 

tunneling by a single particle in one dimension, the transmission coef­

ficient is accurately given by exp(...;2e) even though e is extremely large; 

no trouble arises for this highly forbidden process because one has an 

explicit expression for the classical action integral through the classi­

cally forbidden region. 

It is clear that the general problem of applying classjcal mech8.nics 

to classically forbidden processes requires much further research. The 

indications are, however, that this semiclassical treatment of classically 

forbidden processes is of quite useful accuracy. 
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T'!·s.:n:_: j tions Probahili ties foT 

-. 
Transition 

2. 
Semiclassical 

b 
Uniform 

c 
Q,uantmn 

d 
----

3; l-0 10-2 -2 10-2 
2.5 X 2.3 X 10 2.2 X 

3; l-2 1.1 X 10-3 1.0 X l0- 3 0.9 X l0- 3 

4· l-2 ' 5.1 10-2 4.4 X 10-2 
4.2 10 -2 

X X 

4; l-3 e 1.5 X 10-5 

6· 
' 0-2 8.5 X 10-2 6.6 X 10-2 6.8 X 10-2 

6· 
' l-3 !~. 4 X 10-2 

3·7 X 10-2 
3·7 X 10-2 

6· 
' 2-l+ 6.7 X 10-3 6.2 X 10-3 6.0 X l0-3 

'10; 0-0 5.0 X 10-2 
4.1 X 10-2 

(6.0 X 10-2 ) 

... 10; O-l+ 14.9 X 10-2 8.6 X 10-2 
8.9 X 10-2 

10; l-5 13.8 X 10-2 7.6 X 10-2 
7•7 X 10-2 

10; 2-6 4.8 X l0-2 
3•7 X 10-2 

3·7 X 10-2 

a. The notation is E; n1 -n2 , where E is the total energy (in units of 

t m) and n 1 and n2 are the initial and final vibrational quantum 

numbers (or vice-versa since P = P ) ;all of these results 
n2,n1 n1,n2 

pertain to.the Secrest-Johnson parameters a =.3, m = 2/3 (corres-

powing roughly to H2 + He). 

b. Results are from the "primitive" semiclassical expression, Equation 

( 9) 

c. Results are from the uniform semiclassical expression, Equation (11 ). 

d. Essentially exact quantum mechanical results of Secrest and Johnson
11

; 

the figure in parenthesis is actually only an upper bound to the exact 

diagonal transition probability. 

e. 6 -5 . The values 5·9, 2. , 2.2, 1.3, 0.7 x 10 were obta1ned for 4, 6, 8, 

10, and 12 terms, rE'spectively, in Equation (10); see text for a 

discussion of this failure. 
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