Lawrence Berkeley National Laboratory
Recent Work

Title

TEE CLASSICAL S-MATRIX: A MORE DETAILED STUDY OF CLASSICALLY FORBIDDEN
TRANSITIONS IN INELASTIC COLLISIONS

Permalink

https://escholarship.org/uc/item/6h7771hy

Author
Miller, William H.

Publication Date
1970-09-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6h7771hr
https://escholarship.org
http://www.cdlib.org/

Submitted to Chemical . UCRL-20318

Physics Letters Preprint
c. 2

THE CLASSICAL S-MATRIX: A MORE
DETAILED STUDY OF CLASSICALLY FORBIDDEN
TRANSITIONS IN INELASTIC COLLISIONS

William H. Miller

September 1970

AEC Contract No. W-7405-eng-48

CEIVE - ™

AWRENCE
.ON LABOR: TWO-WEEK LOAN COPY

ST =11970

This is a Library Circulating Copy
L ,
;un?g:?; o which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Division, Ext. 5545

N y

LAWRENCE RADIATION LABORATORY
UNIVERSITY of CALIFORNIA BERKELEY

871€0¢-T1TED0N

<'D>



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.



~la= UCRL=20318

The Classical S-Matrix: A More
Detailed Study of Classically Forbidden

. e . .. $
Transitions in Inelastic Collisions

*
William H. Miller

Inorganic Materials Research Division,
of the Lawrence Radiation Laboratory,
and the Department of Chemistry,
University of California,
Berkeley, California

ABSTRACT

Procedures are investigated for describing classicaliy forbidden
collision processes within the framework of @ﬁe.ciassicai‘limit of quantum
mechanies. The goél is to use'exact classical mechanics (numerically
computed trajectbfies) to treat classically forbidden transitions in a
complex collision (such as an atom plus diatom) in a manner analogous to
the way one uses it to treat barrier tranémission by a single particle
in one dimension (a classically forbidden process); in this latter example
the transmission coefficient is exp(-26), 6 being the classical action
integral through the barrier (a classically forbidden region). Numerical
application of these proceduies is made to the linear atom - diatom
collision system (without reactibn), and the resulting vibrational transi-
tion probabilities for the classically forbidden transitions are in as
good agreement with the exact guantum mechanical values as are the transi-
tion probabilities for claésically allowed transitions. It appears, there-
fore, that the dynamics of even these classically forbidden transitions

is accurately described in this semiclassical framework.
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I. INTRODUCTION

1-3

It has recently been shown how one can use exact classical
mechahics (numerically computed trajectories) to obtain the classical
limit of the time-independent quantum mcchznical S-matrix for a gi?en
collision system. Numerical application was made in IT to the linear
atom-diatom collision system (without .reaction), and the resulting vibra-
" tional transition probabilities were éf such accuracy as to suggest that
classical mechanics may indeed be suffiéiently accurate to describe the
dynamics of complex heavy particle coilisions - provided one makes the
classical approximation to the appropriate transition amplitude (i.e.,
S-matrix element) and tekes account of interferences which appear in the
resulting transition probability (or cross section, for a three-dimensional
system). ,

In the present work we wish to explore more fully ﬁhe question of
classically forbidden transitions (a term explained precisely in II), in
particular, how one can use exact classical mechanics to obtain results
for classically forbidden processes.5 At first glance this may seem self-
contradictory, but consider the simple example of barrier transmission
(tunneling) by -a single particle in one dimension.6 Although the strictly
classi®dl limit (B = O) for the transmission coefficient is zero, the
WKB approximation gives exp(-26), 6 being the phase integral through the
barrier. This WKB result, however, is actually obtainable classically,
for 6 is a classical quantity'(the classical action integral through a
classically forbidden region). From another point of view one may note.
that the Hamilton-Jacobi equation (which is equivalent to the classical
equations of motion) does possess solutions in classically forbidden re-
gions; classical mechanics ordinarily ignores these solutions since here
the momentum is imaginary, but the classical 1limit of quantum mechanics
(in one dimension the WKB approximation) shows that they do have signifi- -
cance (ef. the WKB wave function in a classically forbidden region).

The goal, then, is to show how exact classical mechanics can be
used to treat classically forbidden processes for multi-dimensional systems
(such as an atom-diatom collision) in & manner analogous to the way one
uses it in the above mentioned one particle problem; the mattor is greatly

complicated, of course, by the fact that one does ncli possess closed form
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solutions for the classical trajectories (as one does for one particle in}
one dimension.) This author is of the opinion that this "zeroth order"
treatment of classically forbidden processes, if it can be effected, will
be of useful acduracyj the numerical results preéented below (see Table I)
certainly support this thesié. N . .

Sections II and III present two approaches to the problem, with
specific'feference to (and numerical results for) the linear atom-diatom
system. These results are considefably more accurate than the rather _ |
crude pérabolic{ap?roximaﬁon used in pgpér II for the classically forbidden
trahsitions. Although there are some practical problems associated'with
the procedures présentéd in Sections II and III (which are discussed below),
the numerical results indicate that this semiclassical tréatmént is as
accurate for classically forbidden‘processes as 1t is for classically
allowed ones. ‘

-
TI. CILASSICALLY FORBIDDEN TRANSITIONS BY
ANALYTIC CONTINUATION

Although we now consider speéifically the linear atom—diatqm col-
lision system as in II [and one should consult this workvfor a more
detailed description of the procedure summarized below by Egs. (1)-(6)],
the baézc result appiies to more generai systems with obvious general-
izations.

The uniform semiclassical expression for the transition probability

developed in IT is

nf=

1 1
= “'212 Aig(‘z)[pl2 + P11 ]2

1, (1)

nz,Nny

1 1
+ 7]2|2 Bi®(-2)[p;® - pyp

W

where ny and nz are the initial and final vibrational gquantum numbers; pI.
and pyy are probabilities associated with the two independent trajectories

which contribute to the nj- np, transition:
‘ 1

P = [2ﬂ |§£aé%:;_,_§;l,] - , (2)
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with g, equal to 51 (for pI) or aiI (for pII); gy is the initial phase of
the oscillator (the diatom) and the function nx(qy, n,) (the final vibra-
tional quantum number as a function of the initial vibrational quantum
number and initial phase) is actually evaluated by specifying values for
al and ny, and integrating the classical equations of motion to determine
no; the particular values aI and iII are the two roots of

)

ns(ay, ny) = nz ;| (3)

. oo . . . . 7
Ai and Bi in Equation (1) are the regular and irregular Airy functions',

with z defined by

2 = (30 9)%3 | . (1)

where
-

6 = 8y ) - o(ap m) | (5)

is the phase difference of the two trajectories. For large phase differences

Equation (1) takes on the "primitive" semiclassical form

1
e , P = P+ P+ 2(PP )2 sin(a 9)- (6)

‘Nz, Ny I II IT

-As noted in II, the n;-» np transition is classically forbidden if

there is no value of qy in its (0,2x)domain for which Equation (3) is
satisfied. There will in general, however, be complex roots of Equation

(3); suppose aI is one such complex root
ne(aI) = no ) (31)

where we have suppressed the argument n; since it is constant throughout.
Assuming that nx(g,) is an analytic function of q; (which is certainly

true for sone region about the real al - axis), one has

n2(ay) = n2(3y),

so that complex conjugation of Equation (3%) gives (since np on the RES is



some real integer)
- ¥
n2(qI ) =Nz
i.e., the second root aII is the complex conjugate of aI’
_o*

It follows, then, that
‘nz'(al)l = ‘nz'(aI*)\ = ‘ne'(qII)\ )

so that the probabilities Pr and pyy @re equal; the second term in Equa-
tion (1) is therefore absent. Furthermore, since #(q,) is also (assumed to

be) an analytic function-of q, ,

Ceagy) - @)

b =
= o(q*) - o(qp)
’ = o(3)" - 0(qy),
. |
or Ad = -2i Im ¢(&I);' (8)

i.e., Ad is pure imaginary.

Substituting these results into Equation (1) gives

1 :
= 12 A58 : : 13!
nz,ny br yz] 2 AL% (z) p (1 )

for the classically forbidden transition nl—>né, where

p = fon lnor (3] 17 (2)

[3/2 Im ¢'(§I)]2/3

N
Hi

(4)

!

For large z one may invoke the asymptotic form of the Airy function and

obtain the "primitive" semiclassical exnression
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Png,nl =p exp [~ IIm ¢(aI)’] . . (9)

It is Equation (9) that is the most readily interpretable physically -

it is the precise generalization of the exp (-20) transmission coefficient
for one-dimeunsicunal tunneling by a single particle; the factor p in
Equation (9) is simply a Jacobian (the Jacobian for a single particle in
one dimension is always'unity). Two other illuminating analogies to
Equations (6) and (9) are the WKB wave~function in classically allowed
and forbidden regions, respectively, and the rainbow effect in potential
scattering8 - in all such situations the classically allowed region has
oscillatory structure [Equation (6)] and the classically forbidden région
is damped [Equation (9)]. The uniform semiclassical expression, Eguation
(1)[and Equation (1') which is just Equation (1) written out explicitly
for a classically forbidden transition], is valid even through the region
Of the ClauSLCll/n0n~ClaSSlcal boundary and reduces to Equations (6) and
(9) in the appropriate limits. '

The question now is, how does one apply Equations (1) or (9). In II
a parabolic approximation to ng(ql) was made at its extrema, but here we
wish to apply Equations (1) and (9) exactly, to see the limit of accuracy
of these semiclassical expressions.

Our first‘&pproach was naively straight-forward: the initial phase
al was';llowed to be complex (with appropriate COMPLEX designations in-
serted into the Fortran programs) and the equations of motion integrated
as usual. Surprisingly, this worked - at least sometimes. If Imal
becomes too large, though, the trajectory diverges. The procedure des-
cribed in the foliowing section is more satisfactory, and since it can be
applied in all those situations in which the present approach is successful,
no numerical results will be gquoted for the present procedure. In those
cases for which this method does work, however, it gives exactly the same
numerical results as the method of Section III; thic must be true, of course,
since they both are the direct application of Equations (1) and (9) -
they differ orly in the method used to flnd the complex root of Equation

(3)-

IIL. ANALYTIC CONTINUATION BY FOURIER SERIES

-

The method dezerited here Is in the same gpirit as the original v are-

bolic approxinciion used in II; namely, one computes ng(ﬁl) for a sample
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of real él valucs in the (0,2%) interval and uses these values to fit
some analytic form Tor nz(qy). The natural extension of the parabolic
approxiretion is to expand ng(al) about an extremum in a Taylor series of
higher order. We found it much more convenient (and accurate), however,
to take advantage of the periodic nature of nz(qy) [i.e., no(qy + 21) =
ng(il)] and expand it as a Fourier series:

. - X _ ' .

na(@) = a  + Y & cos(ky) + by sin(kd); (10)
o) k

; k=1 : »
no(qy) was computed at (2N + 1) equally spaced points in the interval
(0,2n) and standard procedures9 used to cbtain the coefficients gzﬁiﬁ

and b % from this input. Since np(qgy) is naturally periodic [see II

for figures showing ng(al) for typical cases]} the coefficients decrease
'rapidly with increasing k. ’
. With the coefficiénts in Equation (10) thus determined, one solvés
numerically for the complex root‘df‘Equation (3), usiﬁg Equation (10) for"
n>(q1). The phase ¢(gy) is also expanded in a Fourier serieslo, so that
all the quantities required in Equations (1') and (9) are obtained. In’ V_
‘practice we performed the calculation for a sequence of N-values [N being
the number of terms in Equation (lO)], starting with small N and increas-
ing it;gntil there was no significant change in the transition probabilitiés
being computed (N x 5-~10 was normally sufficient).

Table T shows the numerical results obtained for the parameters
o = .3,‘m = 2/3 (which correspond roughly to Hp + He), compared to the
exact quantum mechanical results’ of Secrest and Johnsonll; all the transi-
tions in Table I are classically forbidden. It is seen that the uniform
semiclassical results [Egquation (ll)] are in excellent agreement with the
exact quantum values, considerably more so than the parabolic approxima- '
tion used with Equation (1) in II. The results with the "primitive"
semiclassical expression [Equation (9)] are less accurate, being better
the smaller the transition probability; this is as it should be, for the
primitive semiclassical expressions are most accurate far from the clas-
sical/non«classical boundary.

There are some problems,_howevér, in applying this procedure; in
particular, if Imgy is too large, the series 1s divergent. It is easy to

see that this will heappen, since it becomes effectively a power series in
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v exp['Ima1|]. Just as with the direct method outlined aﬁ the end of
Section ITI, therefore, this Fourier series procedure fails if g; wanders
too far from the real axis; thus one is unable to treatf transitions that
are too highly forbidden classically. The 4; 1-3 trangition (sge.Table I
for an explanation oflthis labeling) in Tatle T is an ex=ample of»this
failure; footnote e shows that the transition probabilily dces hbt take
on a consistent value as N is increased (although it is nevértheless of
the correct order of magnitude).

‘The basic reéson for this failuré is that one is attempting to
describe the function no(qy) for values of q; (large Tmgy) far removed
from the "imput" values of qy (real values). What is needed is a prac-
tical method for integrating Hamilton's equations through a classically
forbidden region. |

L)

IV. CONCLUSIONS

It has been demonstrated that oné can use exact classical mechanics
to describe classically forbidden processes, even for complex collisions;
the numerical results indicate this treatment of classically forbidden
transitions to'be as accurate as the analogous treatment of classically
allowed transitions. '

There are practical problems, however, in applying Eduations (1) and
(9) to highly forbidden transitions; these problems stem from the fact
that one does notvpossess closed form ekpressions for the trajectories
and must integrate Hamilton's equations numerically to obtain them. For
tunneling by a single particle in one dimension, the transmission coef-
ficient is accurately given by exp(~29) even though 6 is extremely large;
no trouble arises for this highly forbidden process because one has an
explicit expression for the classical action integral through the classi-
cally forbidden region. ' : |

It is. clear that thé general problem of applying classical mechanics
to classically forbidden processes requires much further rescarch. The
indications are, however, that this semiclassical treatment of classically

forbidden processes is of quite useful accuracy.
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TABLE T

Transitions Provabilities for

Cilrnzgically Forbidden Transitions

a,

Transition Semlclassical Uniform ¢ Quantum
3; 1-0 2.5 x ;ofg  2.3x107° 2.2 x 107°
3; 1-2 1.1 x 1073 1.0 x 1073 0.9 x 1073 .
4; 1-2 5.1 x 1072 | b x 1072 b2 x 1077
Ly 1.3 - { e 1.5 x 10'5
6; 0-2 8.5 x 107° 6.6 x 10°° 6.8 x 107°
6; 1-3 b x 1072 3.7 x 1072 3.7 x 1072
6; 2-L 6.7 x 1073 6.2 x 1073 6.0 x 1073
©10; 0-0 5.0 x 1072 41 x10°° (6.0 x 10'2)

. 10; 0-k 4.9 x 10‘2 8.6 x 1072 8.9 x 1072
10; 1-5 13.8 % 1072 7.6 x 107° 7.7 x 10°°
10; 2-6 4.8 x 1072 3.7 x 1072 3.7 x 1072

a. The notation is E; nj-ns, where E is the total energy (in units of

h aﬂ and n; and np> are.the initial and final Vibrationalbquantum

numbers (or vice-versa since P =P };all of these results:
Ng, N3 ny,nz _

pertain to.the Secrest-Johnson parameters o =,3, m = 2/3 (corres-

pording roughly to Ho + He).

Results are from the "primitive" semiclassical expression, Equation

(9)

Results are from the uniform semiclassical expression, Equation (ll).

Essentially exact quantum mechanical results of Secrest and Johnsonll;

the figure in parenthesis is actually only an upper bound to the exact

vdiagonal transition probability.

The values 5.9, 2.6, 2.2, 1.3, 0.7 x 10™7 were obtained for 4L, 6, 8,

10, and 12 terms, respectively, in Equation (10); see text for a

discussion of this failure.

o~
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