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Shear Alfvén Wave Perpendicular Propagation from the Kinetic to the Inertial Regime

Stephen Vincena,*,† Walter Gekelman, and James Maggs
Department of Physics and Astronomy, University of California at Los Angeles, California, USA

(Received 29 April 2004; published 2 September 2004)
105003-1
We report on observations of shear Alfvén waves radiated from a source of small transverse size, and
the subsequent radial confinement of wave magnetic field energy within a cylindrical plasma. The radius
of confinement lies between the kinetic regime of the bulk plasma and the inertial regime at the plasma
edge; this radius is found to be a function of wave frequency. Numerical calculations using kinetic
theory predict a zero in the perpendicular group velocity at a radius which varies in accord with the
observations. An analytic expression for the perpendicular group velocity (valid for small perpendicu-
lar wave numbers) is given in the vicinity of the zero crossing.

DOI: 10.1103/PhysRevLett.93.105003 PACS numbers: 52.35.Bj, 52.72.+v
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FIG. 1. Schematic of experimental setup.
The magnetized plasmas of stars, planetary magneto-
spheres, and fusion research are all of finite extent,
though their characteristic length scales may be vastly
different. This finite nature dictates gradients perpendicu-
lar to the background magnetic field in plasma tempera-
ture and density. Within these plasmas, slow changes in
the magnetic topology are mediated by low-frequency
electromagnetic waves such as the shear Alfvén wave.
In the ideal, magneto-hydrodynamic (MHD) limit
Alfvén waves propagate exactly along the background
magnetic field lines, but more realistic descriptions of
these waves include the effects of either electron inertia
or pressure which leads to a nonzero parallel electric field
of the wave and cross-field propagation. This description
has been invoked to explain the spatial structure of the
shear wave and electron acceleration in phenomena rang-
ing from auroral arcs [1–3], ionospheric density cavities
[4,5], coronal loops [6], the solar wind [7], to tokamaks
[8] and other laboratory plasmas[9].

When expanding on the MHD limit, it is important to
consider the ratio of the electron thermal speed (v2

e �
2Te=me) to the Alfvén speed (v2

A � B2
0=4�nimi), where

Te is the electron temperature in eV, me the electron mass,
B0 the background field strength, ni the ion density, and
mi the ion mass. A convenient parameter to distinguish
between two limiting regimes is the electron plasma beta
�e � neTe=8�B

2
0, scaled by the ion-to-electron mass

ratio: ��e � �emi=me � �ve=vA�
2.

For ��e > 1, the shear wave is termed the ‘‘kinetic
Alfvén wave’’; in this limit, the fast-moving electrons
are able to respond adiabatically to the presence of the
wave fields. Some authors also use this nomenclature for
Alfvén waves with ion Larmor radius effects, but we refer
specifically to the ��e > 1 limit. The characteristic per-
pendicular length scale in this case is the ion sound
gyroradius 
s � cs=!ci, where cs �

�������������
Te=mi

p
is the ion

sound speed and !ci � eB0=mic is the ion-cyclotron
frequency, with e the quantum of electric charge and c
the speed of light. In the opposite limit ( ��e < 1), the
0031-9007=04=93(10)=105003(4)$22.50 
inertia of the electrons becomes important, and the shear
wave is termed the ‘‘inertial Alfvén wave.’’ Here, the
characteristic perpendicular length scale is the electron
collisionless skin depth �e � c=!pe, where the electron

plasma frequency !pe �
������������������������
4�nee2=me

p
. The kinetic limit

is relevant to the physics of the Earth’s equatorial mag-
netosphere and the interior of tokamak plasmas, while the
inertial limit applies to the earth’s ionosphere and the
edge regions of laboratory plasmas.

There is an additional and important distinction be-
tween these regimes: for ��e > 1, the wave is forward
propagating (with respect to the phase velocity) while
for ��e < 1, the wave is backward propagating. This
change in sign has been invoked by Streltsov et al.
[10,11] to explain trapping of dispersive Alfvén waves
on auroral magnetic field lines between the ionospheres.
Subtle evidence for electron acceleration [12] and wave
refraction [13] have been observed in laboratory parallel
��e gradients. Experiments on Alfvén waves in the inter-
mediate regime have been minimal and mainly limited to
measurements of the phase velocity [14,15]. The scarcity
of perpendicular group velocity measurements motivates
our present investigation.

These experiments are performed in the Large Plasma
Device (LaPD) at the University of California, Los
Angeles [16]. The device (shown schematically in
Fig. 1) is a stainless steel cylindrical vacuum chamber
(length � 10 m and diameter � 1 m). Not shown in the
figure are the 68 electromagnets surrounding the chamber
2004 The American Physical Society 105003-1
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FIG. 2. (a) Measured radial profiles of electron density and
temperature. (b) The resulting scaled electron plasma beta,
��e � �emi=me, along with an analytic fit as described in the
text.

FIG. 3. Time evolution of the radial magnetic field energy
density profiles (integrated over the azimuthal coordinate).
Error bars (approximately 5% for each value) have been omit-
ted for clarity. The wave frequency is one-half of the ion-
cyclotron frequency.
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which produce the confining magnetic field, here at
1.0 kG. The device is backfilled with helium at pressures
of approximately 1� 10�4 torr. The plasma is produced
by means of a pulsed (t � 4:2 ms, V � 50 V) electron
discharge between a heated, oxide-coated nickel cathode
and a copper mesh anode. The cathode-anode separation
is 94 cm, leaving the remainder of the device current free.
The highly reproducible discharge is repeated once per
second which allows for the collection of ensemble data
sets. The wave launching antenna is the same design used
in other experiments [9,12,17], and the radiation has been
modeled theoretically in both the inertial [18] and kinetic
[19] regimes. The antenna is simply a 1 cm diameter,
circular copper mesh of 50% optical transparency. It is
inserted into the center (r � 0) of the plasma column
with the normal to the plane of the antenna aligned with
the background magnetic field. A positive bias pulse is
applied to the antenna for 1.5 ms during the plasma
discharge. The antenna bias of 20 V is with respect to a
floating copper end plate which terminates the plasma
column. The waves are launched by modulating this
electron current through an isolation transformer with a
20-cycle, phase-locked tone burst from an rf amplifier at
frequencies �! � !=!ci < 1. This method generates shear
Alfvén waves with a high degree of azimuthal symmetry
[17]. The wave magnetic fields are detected as a function
of radius using a 3-axis, differentially wound induction
coil probe located a distance z � 94 cm from the antenna,
and the data are averaged over 20 plasma discharges at
each spatial location. The antenna modulation and data
acquisition occur 100 �s after the bias is applied, so the
@B=@t measurements are insensitive to the field produced
by the current channel. To first order, the wave magnetic
field has only an azimuthal component: B � B��̂.

Radial profiles of the electron density (calibrated with
a microwave interferometer) and electron temperature are
made with a swept Langmuir probe and presented in
Fig. 2(a). From these, ��e is computed and presented in
Fig. 2(b). Also shown is an analytic fit which will be used
later. The fitting function is arbitrary, but is chosen to
reflect features in the data: a flat profile in the bulk plasma
and an exponential decay at the plasma edge; it is given by

�� e � �0f1� tanh	�r� r1�=r2
g; (1)

with the least-squares fitted parameters: �0 � 2:0, r1 �
18:4 cm, and r2 � 4:3 cm.

To discuss the radial propagation of wave energy, it is
convenient to consider how much energy is distributed in
the wave at any given radius in the plasma. The quantity
U� is defined as the wave magnetic field energy density
integrated over the azimuthal coordinate U� �

1
8� �R

2�
0 hB�i

2rd�, where h� � �i denotes a sliding, one-period
rms-average, centered about the time, t. Using the azi-
muthal symmetry of the wave patterns, U� � rhB�i

2=4.
Physically, U��r�z yields the magnetic energy of the
wave at time, t, in a thin ring; hence, U� is referred to as
105003-2
the ‘‘ring energy density.’’ For large radii, B� � 1=r [9,19]
and therefore U� � 1=r as well. The wave electric field is
of order vA=c ( � 10�2) smaller than the magnetic field.

Figure 3 presents the time evolution of the ring energy
density for �! � 0:5 at four select times, with t � 0 de-
fined as the initial modulation of the antenna current. The
patterns are normalized to their peak value to compare
relative features. The pattern after four wave periods is
essentially steady state, presumably since the wave has
105003-2
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had time to reflect from the axial boundaries. As a func-
tion of increasing radius, the patterns for all times shown
begin at zero, increase approximately linearly to a peak
value, decrease as 1=r, increase again near the plasma
edge, and then decay beyond the point where ��e � 1. The
patterns thus comprise two parts: the expected U� analo-
gous to a current-carrying wire, but where the time-
varying currents are those of the Alfvén wave, and a
pileup of energy at the plasma edge. The cause of this
pileup is interpreted to be the slowing of the perpendicu-
lar group velocity: vg?. Streltsov et al. [11] have predicted
that for dispersive shear waves, vg? should go to zero at
��e � 2 (assuming Ti � 0). This point is also shown in
Fig. 3, but does not as clearly contain the energy pileup,
especially for early times. More importantly, this turning
point is not predicted to be a function of frequency, which
is discussed next.

Figure 4 shows normalized radial profiles of the ring
energy density for two frequencies: �! � 0:5 and �! � 0:9,
centered about the same relative time: one-half period
after the initial modulation. To distinguish the energy
pileup from the expected 1=r behavior, the profiles are
modified by fitting and then subtracting a 1=r pattern
from each. It is clear that the initial deviation from 1=r
occurs at an increased radius for increased frequency. In
addition, the modified profiles are roughly Gaussian in
appearance, as evidenced in curves (c) and (d) in Fig. 4.
Although there is no a priori reason to suspect that the
subtracted patterns should have this form, it allows a
systematic approach to determine the peak locations.
The patterns, however, do not represent probability dis-
tributions of a random process, so the standard deviation
of the Gaussian fits are not a true measure of the uncer-
FIG. 4. Frequency variation of the radial magnetic field en-
ergy density profiles (integrated over the azimuthal coordi-
nate). The two frequencies shown are (a) �! � 0:5 and
(b) �! � 0:9. For both frequencies, a 1=r profile is fit to the
data, subtracted, and that result is fit to a Gaussian, shown in
curves (c) and (d). For small radii, the wave pattern does not
behave as 1=r and the subtraction results in large negative
numbers, which are not plotted.
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tainty of the peak location; instead, the uncertainty is
taken to be equal to the radial step size (�r � 2 cm for
r > 10 cm). In the remainder of this section, a theoretical
explanation for the frequency dependence is developed
and compared to the data.

In cylindrical geometry, the dispersion relation for
shear Alfvén waves may be written in terms of the
elements of the dielectric tensor � and the index of
refraction n � ck=!, as

n2?�? � n2
k
�k � �?�k; (2)

where ? ( k ) indicates the component perpendicular
(parallel) to B0. From this, the perpendicular group ve-
locity is given by

vg? � 2k?

��
!2

c2
�

k2
k

�?

�
@�k
@!

� �k

�
2!

c2
�

k2
k

�2?

@�?
@!

��
�1
:

(3)

This expression is general and can be used numerically
for a wide range of parameters; however, a simplified
expression may be obtained for experimental conditions
in the LaPD. First, Ti is set equal to zero. This approxi-
mation is valid in the LaPD for frequencies as high as
�! � 0:95 [12]; however, it cannot necessarily be made for
plasmas such as the Earth’s equatorial magnetosphere or
those within the interiors of tokamaks. Also, the plasma
is assumed to be collisionless, so that the only damping of
wave energy will be through electron Landau damping.
Finally, terms higher than first order in k?L are ignored,
where L is either of the length scales: 
s or �e.

The perpendicular dielectric tensor element (given by
Stix [20]) is �? � �c=vA�

2=�1� �!2�, and the parallel
element is �k � ��!pe=!�2"2Z0�"�, where " is the ratio
of the parallel wave phase speed to the electron thermal
speed (" � !=kkve) and Z0 is the derivative of the plasma
dispersion function [21] with respect to its argument.
With these assumptions, k2

k
� !2v�2

A �1� �!2��1, and
Eq. (3) reduces to

vg? � �2k?
2
s!=Z0�"�: (4)

Two limiting forms of this expression are easily obtained:
in the kinetic limit, Z0 ! �2 and vg? � k?


2
s!; while in

the inertial limit, Z0 ! "�2 and vg? � k?�
2
e!�1� �!2�.

These are the correct expressions [18,19] for the above
assumptions.

In general, Z0 and hence vg? will be complex-valued
functions and we interpret the real part as being the
physically measurable quantity. Stratton [22] offers a
discussion of wave packet propagation in a dispersive
and dissipative medium. With this interpretation,

vg? � �2k?
2
s!Re	Z0�"�
=jZ0�"�j2: (5)

Note that vg? goes to zero when the real part of Z0 does.
With an assumption of weak damping, " is approximately
a real number (denoted by "R) and Re	Z0�"R�
 � 0 at
105003-3



FIG. 5. Radial location of zero perpendicular group velocity
as a function of frequency. Shown are (a) measured locations
determined from Gaussian fits to the wave energy pileup,
(b) predictions using the simplified expression of Eq. (6),
(c) predictions of Eq. (3) [this nearly overlaps (b)], and
(d) predictions using the theory of Streltsov et al. [11] with
Ti � 0.
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"R � �"0, where "0 � 0:924. The two values of "R are
for waves traveling in the �z directions. In either case,
"2 � �1� �!2�= ��e and the radius at which vg? � 0, de-
noted r0, is determined through the relation ��e�r � r0� �
�1� �!2�="20 . Using Eq. (1),

r0 � r1 � r2tanh�1

�
1� �1� �!2�=��0"20 �

�
: (6)

Figure 5 displays the experimental values of r0 obtained
from Gaussian fits of U�, as in Fig. 4, and [as curve (b)]
the result of Eq. (6). Also included in this figure [curve
(c)] are the values of r0 obtained from the zero crossing
predicted by taking the real part of a numerical calcu-
lation of Eq. (3) using local solutions of the dispersion
relation, Eq. (2), and assuming a fixed value of k? �
0:35 cm�1. Note from Eq. (5) that the zero crossing itself
will be independent of k?. The two curves (b) and (c) are
nearly indistinguishable, which justifies the assumptions
used to obtain Eq. (4). Also shown in Fig. 5 is the
frequency-independent prediction of Streltsov et al.[11].
Although the zero of the group velocity is not directly
measured, there is a general agreement as a function of
frequency between the predictions of Eq. (6) and the
initial deviation of U� from a 1=r pattern. The results
are not as good at low frequencies, which could be the
result of a near field effect of the antenna because the
parallel wavelengths are longer at lower frequencies.

In summary, we have provided the first (to our knowl-
edge) clear experimental evidence for the theoretically
predicted perpendicular group velocity turning point be-
tween the kinetic and inertial regimes of the shear Alfvén
wave. The turning point is a function of frequency as
105003-4
predicted by the kinetic dispersion relation. Although the
wave amplitudes in this experiment were too small to
significantly heat the plasma, the transition from large to
small ��e is an effective way to confine Alfvén wave
energy and to create localized regions of electron accel-
eration via Landau damping of the wave.

The authors would like to thank Professor George
Morales for many useful discussions. This work was
supported by ONR Grant No. N00014-97-1-0167, NSF
Grant No. ATM-970-3831, and DOE Grant No. DE-
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