
UCLA
UCLA Previously Published Works

Title
ACTIVE GALACTIC NUCLEUS BLACK HOLE MASS ESTIMATES IN THE ERA OF TIME DOMAIN 
ASTRONOMY

Permalink
https://escholarship.org/uc/item/6h48c9xx

Journal
The Astrophysical Journal, 779(2)

ISSN
0004-637X

Authors
Kelly, Brandon C
Treu, Tommaso
Malkan, Matthew
et al.

Publication Date
2013-12-20

DOI
10.1088/0004-637x/779/2/187
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6h48c9xx
https://escholarship.org/uc/item/6h48c9xx#author
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

30
7.

52
53

v1
  [

as
tr

o-
ph

.H
E

] 
 1

9 
Ju

l 2
01

3
Draft version July 9, 2018
Preprint typeset using LATEX style emulateapj v. 5/2/11

QUASAR BLACK HOLE MASS ESTIMATES IN THE ERA OF TIME DOMAIN ASTRONOMY

Brandon C. Kelly1, Tommaso Treu1, Matthew Malkan2, Anna Pancoast1, Jong-Hak Woo3

Draft version July 9, 2018

ABSTRACT

We investigate the dependence of the normalization of the high-frequency part of the X-ray and
optical power spectral densities (PSD) on black hole mass for a sample of 39 active galactic nuclei
(AGN) with black hole masses estimated from reverberation mapping or dynamical modeling. We
obtained new Swift observations of PG 1426+015, which has the largest estimated black hole mass
of the AGN in our sample. We develop a novel statistical method to estimate the PSD from a
lightcurve of photon counts with arbitrary sampling, eliminating the need to bin a lightcurve to
achieve Gaussian statistics, and we use this technique to estimate the X-ray variability parameters
for the faint AGN in our sample. We find that the normalization of the high-frequency X-ray PSD is
inversely proportional to black hole mass. We discuss how to use this scaling relationship to obtain
black hole mass estimates from the short time-scale X-ray variability amplitude with precision ∼ 0.38
dex. The amplitude of optical variability on time scales of days is also anti-correlated with black
hole mass, but with larger scatter. Instead, the optical variability amplitude exhibits the strongest
anti-correlation with luminosity. We conclude with a discussion of the implications of our results for
estimating black hole mass from the amplitude of AGN variability.
Subject headings: accretion, accretion disks; black hole physics; methods: statistical; galaxies: active;

quasars: general; galaxies: Seyfert

1. INTRODUCTION

The ability to measure black hole mass, MBH , is of
fundamental importance for active galactic nuclei (AGN)
research. When combined with luminosity, the black hole
mass gives an estimate of the Eddington ratio, provid-
ing two of the most important quantities for studies of
accretion physics and the growth of supermassive black
holes. Estimates of MBH and L/LEdd are important
for understanding the physics of accretion flows because
many aspects of accretion physics at fixed radius scale
with MBH and accretion rate (e.g., Frank et al. 2002),
and the Eddington ratio is related to the accretion rate.
Estimates of MBH and L/LEdd are important for un-
derstanding the growth of supermassive black holes be-
cause the mass distribution directly probes the buildup
of the black hole population, while the Eddington ratio
distribution is related to the instantaneous growth rate of
the black hole population. Moreover, the energy output
from accretion onto the black hole scales with the black
hole’s mass, and is thought to be an important ingredi-
ent in models of galaxy formation and evolution (e.g.,
Di Matteo et al. 2005; Bower et al. 2006; Croton et al.
2006; Hopkins et al. 2006).

It is well accepted that currently the most reliable
method for estimating MBH is through modeling the
spatially resolved stellar and gas dynamics in the host
galaxy’s nucleus. However, for most AGN this is not fea-
sible, both due to the presence of the active nucleus and
due to the strong requirements on the angular resolu-
tion of the nucleus. Maser kinematics offers another av-
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enue for estimating MBH (e.g., Greene et al. 2010), but
are rare. For the vast majority of AGN reverberation
mapping (e.g., Blandford & McKee 1982; Peterson 1993)
provides the most reliable means of estimating MBH .
In general, masses derived from reverberation mapping
are only good to within a multiplicative scaling factor
that varies for each AGN and depends on the geome-
try of the broad line region, the importance of radia-
tion pressure, and other potential sources for systematic
error (e.g., Krolik 2001). Typically an average scaling
factor is used, which is estimated by assuming the rever-
beration mapping estimates of MBH lie on the MBH–
σ∗ relationship (e.g., Onken et al. 2004; Woo et al. 2010;
Graham et al. 2011; Park et al. 2012; Woo et al. 2013;
Grier et al. 2013), although efforts are underway to de-
rive this geometric factor from the data (Pancoast et al.
2011; Brewer et al. 2011; Pancoast et al. 2012) or from
direct dynamical modeling of the gas in the nuclear re-
gions (Hicks & Malkan 2008). Using this average scal-
ing factor, MBH estimates from reverberation mapping
are generally considered to be good to within a factor
of a few, as estimated from the scatter in the masses
about the MBH–σ∗ relationship (e.g., Collin et al. 2006;
Woo et al. 2010).

Unfortunately, the spectroscopic monitoring cam-
paigns required of reverberation mapping are expensive
to carry out, and thus far mass estimates derived using
this technique have only been obtained for ∼ 50 low red-
shift AGN (e.g., Peterson et al. 2004; Bentz et al. 2009b;
Denney et al. 2010; Barth et al. 2011b,a; Grier et al.
2012). Instead, scaling relationships are used to obtain
mass estimates for large numbers of AGN over a broad
range in redshift and luminosity. Such scaling relation-
ships are based on correlations between MBH and some
feature, or set of features, that are easier to measure.
The scaling relationships are calibrated to masses de-
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rived from either stellar and gas dynamical modeling or
from reverberation mapping. The scatter in the masses
derived from the scaling relationships at fixed MBH de-
fines the statistical error in the mass estimates with re-
spect to the masses derived from dynamical modeling or
reverberation mapping.

The most common scaling relationships used to esti-
mate MBH are those based on the host galaxy properties
(e.g., McLure & Dunlop 2002; Merritt & Ferrarese
2001; Tremaine et al. 2002; Häring & Rix 2004;
Graham & Driver 2007; McConnell & Ma 2013),
with the luminosity or stellar velocity dispersion of the
bulge being the most common proxies for MBH , or
those based on the AGN luminosity and broad emission
line widths (e.g., Wandel et al. 1999; McLure & Jarvis
2002; Vestergaard & Peterson 2006; Shen et al. 2011);
scaling relationships involving the AGN radio and X-ray
luminosities (e.g., Merloni et al. 2003; Falcke et al.
2004) or X-ray variability (e.g., Czerny et al. 2001;
Nikolajuk et al. 2004; Gierliński et al. 2008; Kelly et al.
2011) are also occasionally used. By far the most
common scaling relationship used to estimate MBH

in AGN is the one involving the broad emission lines.
Broad line mass estimates have been used in studies
of AGN accretion physics (e.g., Shemmer et al. 2006;
Kelly et al. 2008; Trump et al. 2011; Davis & Laor
2011), black hole growth (e.g., McLure & Dunlop
2004; Netzer et al. 2007; Vestergaard & Osmer 2009;
Kelly et al. 2010; Trakhtenbrot et al. 2011; Shen & Kelly
2012; Kelly & Shen 2013), and evolution in scaling re-
lationships between the host galaxy and MBH (e.g.,
Treu et al. 2004; Peng et al. 2006; Treu et al. 2007;
Woo et al. 2008; Bennert et al. 2010; Merloni et al.
2010).

The various scaling relationships for estimating MBH

have their advantages and disadvantages. Moreover,
there is considerable potential for systematic error in
these scaling relationships, and employing mass esti-
mates derived from more than one scaling relationship is
important for assessing the impact of unknown systemat-
ics on the scientific conclusions. The broad line mass esti-
mates can only be obtained for Type 1 AGN, and thus are
not applicable to AGN that are either obscured or diluted
by their host galaxy. Moreover, several studies have indi-
cated that the statistical scatter in these mass estimates
for AGN in a narrow luminosity range is smaller than
the ∼ 0.4 dex scatter seen about the reverberation map-
ping masses (e.g., Kollmeier et al. 2006; Fine et al. 2008;
Shen et al. 2008; Steinhardt & Elvis 2010; Shen & Kelly
2012; Kelly & Shen 2013), which may be indicative of a
bias in these mass estimates as a function of luminosity
(Shen & Kelly 2010, 2012; Shen 2013), at least when the
line width is estimated using the FWHM. And finally, the
broad line mass estimates are usually calculated based on
the Hβ, MgII, or CIV emission lines. The mass estimates
based on Hβ are considered the most secure, primarily
due to the fact that most of the reverberation mapping
analysis is based on Hβ, but there is still considerable un-
certainty regarding the systematics of the MgII and CIV

lines. There is almost no reverberation mapping data
involving the MgII line (e.g., Woo 2008). The CIV line is
often considered the most problematic, as it is thought
to arise from the base of a wind launched from the accre-
tion disk, and thus may have a significant non-virial com-

ponent (e.g., Baskin & Laor 2005; Richards et al. 2011).
Indeed, while the FWHM for Hβ and MgII correlate, the
FWHM between MgII and CIV exhibit only a weak cor-
relation (e.g., Shen & Liu 2012) likely due to the pres-
ence of a non-variable component in the emission line
(Denney 2012). However, the mass estimates do correlate
for Hβ and CIV when one uses the second moment of the
CIV line obtained from high S/N spectra (Denney et al.
2013). And finally, the AGN studied via reverberation
mapping occupy a narrower range of parameter space
with respect to their emission line properties than does
the general population (Richards et al. 2011), and it is
unclear if systematic errors become significant when ex-
trapolating beyond this region of parameter space.

In contrast to the broad line mass estimates, mass es-
timates derived from the host galaxy properties can be
obtained for AGN that are obscured or diluted by their
host. However, the host galaxy properties are difficult
to impossible to measure for bright AGN, and the broad
line mass estimates must be used in this case. Moreover,
much recent work has shown that the host galaxy scal-
ing relationships are more complicated than originally
thought, and depend on the host galaxy morphology
(e.g., Hu 2008; Gültekin et al. 2009; Greene et al. 2010;
Kormendy et al. 2011; Graham 2012; McConnell & Ma
2013). In addition, there is considerable uncertainty re-
garding the form of these scaling relationships beyond
the local universe. While many studies have found ev-
idence that the normalization in the scaling relation-
ships evolves (e.g., Peng et al. 2006; Treu et al. 2007;
Merloni et al. 2010; Bennert et al. 2011; Canalizo et al.
2012; Schramm & Silverman 2013, but see (Lauer et al.
2007; Shen & Kelly 2010; Schulze & Wisotzki 2011) for
cautionary notes), there is still considerable uncertainty
in whether the slope or scatter also evolve. Indeed, many
models connecting the growth of supermassive black
holes and their host galaxies predict evolution in the
scaling relationships (e.g., Robertson et al. 2006; Croton
2006; Volonteri & Natarajan 2009).

X-ray variability provides a third scaling method for
estimating MBH that is competitive with the broad emis-
sion line and host galaxy techniques, and can overcome
some of their respective disadvantages. In fact, recent
work has suggested that scaling relationships involving
X-ray variability provide mass estimates with ∼ 0.3
dex precision (e.g., Zhou et al. 2010; Kelly et al. 2011;
Ponti et al. 2012), which is comparable to mass esti-
mates derived from the MBH–σ∗ relationship for ellip-
ticals (Gültekin et al. 2009) and better than mass es-
timates derived from the broad emission lines (∼ 0.4
dex, Vestergaard & Peterson 2006). Even before reliable
MBH estimates were available it was suggested that X-
ray variability properties should scale with MBH (e.g.,
Barr & Mushotzky 1986; Wandel & Mushotzky 1986;
McHardy 1988; Green et al. 1993). Recent work has
also found trends between the optical variability prop-
erties of AGN and MBH (e.g., Collier & Peterson 2001;
Kelly et al. 2009; MacLeod et al. 2010), although they
are not as well established as the X-ray trends. However,
the investigation of such trends will provide an important
foundation for interpreting and utilizing the variability
information from current and planned time-domain op-
tical surveys, such as those obtained by Pan-STARRS
and the Large Synoptic Survey Telescope (LSST).
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The origin of the X-ray variability scaling relation-
ship is a dependence of the X-ray power spectral den-
sity (PSD) on black hole mass. The X-ray PSDs of both
galactic black holes and supermassive black holes are sim-
ilar within the uncertainty caused by the poorer data
quality of AGN lightcurves (e.g., McHardy et al. 2004),
especially for galactic black holes in the ‘high-soft’ state.
AGN X-ray PSDs are typically well-modeled by a bend-
ing power law form, P (f) ∝ 1/fα, where the PSD slope
is α ∼ 1 down to some high-frequency break fH , and
then steepens to α ∼ 2 at frequencies f > fH . Many au-
thors have found a significant anti-correlation between
fH and MBH (e.g., Uttley et al. 2002; Markowitz et al.
2003; McHardy et al. 2004; Uttley & McHardy 2005;
Kelly et al. 2011; González-Mart́ın & Vaughan 2012),
which extends all the way down to galactic black
holes. The time scale corresponding to the break fre-
quency scales with MBH and luminosity approximately
as τH ∝ M2

BH/L (McHardy et al. 2006; Körding et al.
2007), which implies τH ∝ MBH/ṁ where ṁ is the ac-
cretion rate relative to Eddington. In principle the X-ray
variability time scale can be used to estimated MBH , but
in practice it is hard to measure, requiring a lightcurve
that is well sampled on time scales near τH .

A related scaling relationship between the am-
plitude of the PSD at frequencies f > fH and
MBH shows considerable promise as a mass esti-
mator (Hayashida et al. 1998; Czerny et al. 2001;
Nikolajuk et al. 2004; Gierliński et al. 2008; Kelly et al.
2011; McHardy 2013). The normalization of the
high-frequency PSD can be measured by fitting a
power-law to the periodogram (i.e., the empirical power
spectrum) (e.g., Green et al. 1993; Czerny et al. 2001;
Gierliński et al. 2008) or by fitting a stochastic process
to the measured lightcurve (Kelly et al. 2009, 2011). Al-
ternatively, it is common to use the excess variance (e.g.,
Nandra et al. 1997) as a probe of the high-frequency
PSD. The excess variance is the fractional variance in
a X-ray lightcurve after subtracting off the variance
due to the Poisson noise from counting photons. It
is related to the amplitude of the high-frequency PSD
because it is the integral of the PSD over the time
scales probed by a lightcurve. Several groups have
found a significant anti-correlation between the excess
variance and MBH (Lu & Yu 2001; Bian & Zhao 2003;
Nikolajuk et al. 2004; Papadakis 2004; O’Neill et al.
2005; Niko lajuk et al. 2006; Miniutti et al. 2009;
Zhou et al. 2010; Caballero-Garcia et al. 2012;
Ponti et al. 2012; McHardy 2013). Results obtained
from fitting the normalization of the high-frequency
PSD and the excess variance imply that these scaling
relationships can be used to derive mass estimates with
∼ 0.2–0.3 dex precision relative to the mass estimates
obtained from reverberation mapping or through dy-
namical modeling (Zhou et al. 2010; Kelly et al. 2011).
Because the mass estimates derived from reverberation
mapping themselves are uncertain, it is possible that
the true scatter in the high-frequency X-ray variability
relative to MBH may be even smaller. Moreover,
motivated by upcoming massive time-domain optical
surveys, such as those performed by LSST, it is worth
investigating if similar trends with MBH hold for the
optical variability as well; the existence of such trends
could potentially enable black hole mass estimates for

millions of quasars.
While there is significant potential in high-frequency

X-ray variability as a mass estimator, in practice it can
be difficult to measure. The periodogram is distorted
by the finite, and possibly irregular, sampling of the
lightcurve. This can cause biases in the derived high-
frequency normalization when fitting the empirical PSD,
and Monte Carlo techniques are required to correct for
this (Uttley et al. 2002). The excess variance, while easy
to measure, is also problematic. In order for the excess
variance to be proportional to the normalization of the
high-frequency PSD, the length of the lightcurve must
not be significantly longer than the break time scale, τH ,
or must be broken up into smaller segments. If the break
frequency is not known, there is no guarantee that this re-
quirement is satisfied. The fact that the break frequency
increases with decreasing MBH further complicates this
issue. Moreover, because the expected value of the excess
variance is the integral of the PSD over the time scales
probes by the lightcurve, it will depend on the length
and sampling of the lightcurve, and thus must be normal-
ized to some fiducial lightcurve length; failure to correct
for the effects of sampling can lead to biases in the in-
ferred excess variance (e.g., Pessah 2007; Allevato et al.
2013). These issues regarding sampling the PSD above
the break frequency are illustrated in Figure 1. And fi-
nally, the excess variance is a noisy estimate, exhibiting
large changes when measured in non-overlapping inter-
vals from a stochastic lightcurve (Vaughan et al. 2003).
Monte Carlo methods need to be used to assess the bias
and uncertainty in the excess variance estimates. These
issues can inhibit the widespread use of the X-ray vari-
ability as a black hole mass estimator.

The techniques developed by Kelly et al. (2009, 2011,
hereafter KBS09 and KSS11, respectively) that derive
the high-frequency PSD by fitting a stochastic process to
the lightcurve do not suffer from these distortions caused
by the sampling pattern. Moreover, KBS09 and KSS11
derive the likelihood function for the PSD parameters,
including the break frequency fH and the normalization
of the PSD at f > fH , under the assumption that the
high frequency PSD falls off as P (f) ∝ 1/f2. Thus in
these models the amplitude of high-frequency variability
is a parameter which can be estimated via maximum-
likelihood or Bayesian methods, providing an optimal use
of the information in the data and rigorous uncertainties
on the parameters. This is an advantage over the ex-
cess variance or empirical PSD techniques, as it provides
more precision in the mass estimates than does the ex-
cess variance, and it does not require expensive Monte
Carlo simulations.

Essentially all methods that have been used to estimate
the high-frequency PSD have assumed that the measure-
ment errors on the background-subtracted lightcurve are
normally distributed. However, this assumption becomes
inaccurate for faint X-ray sources, in which case it may
be necessary to use large time bins to ensure approximate
Gaussian statistics, thus reducing the amount of variabil-
ity information. In addition, this assumption becomes in-
accurate when the background count rate becomes com-
parable to the source count rate. In order to enable X-
ray variability-based mass estimates for large numbers
of AGN it is necessary to develop statistical techniques
that can be applied directly to the X-ray counts.
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Fig. 1.— Illustration of how the variance in a lightcurve relates to
the PSD features, neglecting the window function caused by sam-
pling a continuous time process; note that the units are arbitrary.
Both the break frequency and the PSD amplitude above the break
depend on MBH . The variance of a lightcurve is given by the in-
tegral of the PSD over the frequencies corresponding to the time
scales probed by the lightcurve. When the lightcurve is probing
time scales corresponding to frequencies above the break, then the
variance is correlated with MBH . However, when the lightcurve
is probing time scales below the break, the correlation with MBH

weakens. Because the break frequency is in general unknown, this
can cause problems when using the lightcurve variance as a MBH

estimator. In this work we describe a statistical technique to al-
ways measure the PSD amplitude above the break frequency, which
can then be used to estimate MBH .

Motivated by these issues, we have set out in this paper
to first develop a method for estimating the normaliza-
tion of the high-frequency PSD that works directly on
a time series of X-ray counts without employing Gaus-
sian approximations, thus providing tools to obtain X-ray
variability based MBH estimates in practice. After doing
this, we seek to derive scaling relationships between the
amplitude of high-frequency X-ray variability and MBH

using 34 AGN with MBH estimated from reverberation
mapping or dynamical modeling; this is the largest sam-
ple yet of its kind used for investigating this scaling rela-
tionship. These scaling relationships not only provide the
calibration needed to use the amplitude of high-frequency
X-ray variability as a mass estimator, but also provide
valuable empirical constraints on the physics of the ac-
cretion flows. And finally, using this same set of AGN
we investigate whether the optical variability also shows
significant trends with MBH that might enable it to be
used as a mass estimator, as well as provide empirical
constraints on the physics of the accretion flows.

2. DATA

Our sample consists of those AGN that have black hole
masses estimated from reverberation mapping or dynam-
ical modeling. All values of MBH derived from reverber-
ation mapping were recalculated from the virial factors
assuming a value of f = 4.38 (Grier et al. 2013), where
f is the proportionality constant between MBH and the
virial factor. Using this data set as a starting point,
we searched the literature for archival X-ray and opti-

cal lightcurves. In addition, we obtained a new X-ray
lightcurve for PG 1426+015 from Swift. Our sample is
summarized in Table 1. The MBH estimates were taken
from the references given in the Table, and the bolome-
teric luminosities were taken from Vasudevan & Fabian
(2009) or Woo & Urry (2002).

2.1. X-ray Data

2.1.1. Archival Data

Our X-ray sample consists of those AGN with X-ray
variability parameters derived from KSS11 or archival
X-ray data from XMM, Chandra, or Suzaku. In
addition, we obtained new Swift observations of PG
1426+015. This source did not have sufficient archival
X-ray lightcurves for analysis, but is important because
it has the highest mass black hole out of AGN with mass
estimates obtained from reverberation mapping or dy-
namical modeling. We did not include in our analysis IC
4329A and PG 1211+143, which Peterson et al. (2004)
deem to have unreliable MBH estimates derived from
their reverberation mapping analysis. For each AGN not
already studied by KSS11, we only use the data from a
single X-ray observatory. We do this because we derive
the fractional variability information from the counts for
a single source, and we want to avoid any contribution
to the derived variability caused by differences in the in-
strument calibrations, effective areas, etc. We primarily
use the XMM data because it has the largest effective
area, and thus should have the highest signal-to-noise
for variability studies. The two exceptions were NGC
4395 and Zw 229-15. For NGC 4395 we use the Chan-
dra data to avoid confusion with nearby X-ray sources,
and for Zw 229-15 we use a 167 ksec Suzaku observation
because it is much longer than the 29 ksec XMM obser-
vation. For Fairall 9, NGC 3227, NGC 3783, NGC 4051,
and Mrk 766 we use the Sup-OU process parameters de-
rived by KSS11 from flux-calibrated RXTE and XMM
lightcurves; the RXTE lightcurves were constructed by
Sobolewska & Papadakis (2009).

The 2–10 keV counts were extracted from the
XMM/PN, Chandra/ASIS, and Suzaku/XIS observa-
tions using the standard reduction routines from the
XMM SAS, CIAO, and the HEASoft suite, respectively.
Background counts were extracted from a nearby region.
Because our analysis method requires a good estimate
of the background rate (see § 3.3), the background re-
gion was chosen to be much larger than the source re-
gion when possible, typically ≈ 5–10 times larger. The
XMM lightcurves were binned every 48 s, the lightcurve
for NGC 4395 from Chandra was binned every 16.2 s, and
the lightcurve for Zw 229-15 from Suzaku was binned ev-
ery 160 s. For Zw 229-15 we created our final lightcurve
by combining the counts from the two front-illuminated
detectors, XIS-0 and XIS-3.

The sources PG 1613+658 and PG 1617+175 both
have archival X-ray data but were not used in our anal-
ysis. The XMM observation for PG 1613+658 was dom-
inated by strong background, while PG 1617+175 is X-
ray weak and serendipitously observed by Chandra ≈ 12′

off-axis. Consequently, the PG 1617+175 observation
was too faint to perform a meaningful variability analy-
sis.
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TABLE 1
Sample Properties

Name z logMBH logLa Referenceb X-ray Data Optical Data?
M⊙ ergs s−1

3C 120 0.03301 7.71 ± 0.04 45.3 1 XMM Y
3C 390.3 0.0561 9.04 ± 0.05 45.2 1 XMM Y
Ark 120 0.032713 7.98 ± 0.09 45.3 1 XMM Y
Fairall 9 0.047016 8.29 ± 0.09 44.8 2 KSS11c Y
Mrk 766 0.012929 6.10 ± 0.29 44.4 1 KSS11 Y
Mrk 110 0.03529 7.32 ± 0.14 45.1 1 XMM Y
Mrk 279 0.030451 7.47 ± 0.06 45.0 1 XMM Y
Mrk 290 0.029577 7.27 ± 0.07 44.4 4 . . . Y
Mrk 335 0.025785 7.03 ± 0.11 45.1 2 XMM Y
Mrk 50 0.023433 7.41 ± 0.07 43.8 9 XMM N
Mrk 509 0.034397 7.95 ± 0.02 45.2 1 XMM N
Mrk 590 0.026385 7.47 ± 0.09 43.8 1 XMM Y
Mrk 6 0.018813 8.02 ± 0.04 44.4 10 XMM N
Mrk 79 0.022189 7.89 ± 0.14 44.3 1 XMM Y
Mrk 817 0.031455 7.77 ± 0.07 45.0 1 XMM Y
NGC 3227 0.003859 7.18 ± 0.17 42.5 3 KSS11 Y
NGC 3516 0.008836 7.47 ± 0.04 43.5 1 XMM Y
NGC 3783 0.00973 7.26 ± 0.08 44.1 1 KSS11 Y
NGC 4051 0.002336 6.32 ± 0.09 42.6 1 KSS11 Y
NGC 4151 0.003319 7.65 ± 0.05 42.8 5 XMM Y
NGC 4395 0.001064 5.44 ± 0.13 40.7 6 Chandra N
NGC 4593 0.009 6.94 ± 0.08 43.7 1 XMM Y
NGC 5548 0.017175 7.76 ± 0.06 44.3 1 XMM Y
NGC 6814 0.005214 7.19 ± 0.06 43.9 1 XMM Y
NGC 7469 0.016317 7.30 ± 0.13 44.8 1 XMM Y
PG 0026+129 0.142 8.48 ± 0.11 45.4 2 . . . Y
PG 0052+251 0.15445 8.45 ± 0.09 45.8 2 XMM Y
PG 0804+761 0.1 8.72 ± 0.05 45.9 2 XMM Y
PG 0953+414 0.2341 8.32 ± 0.09 46.5 2 XMM Y
PG 1226+023 0.158839 8.94 ± 0.09 47.1 2 XMM Y
PG 1229+204 0.06301 7.80 ± 0.07 44.9 1 XMM Y
PG 1307+085 0.155 8.52 ± 0.12 45.6 2 XMM Y
PG 1411+442 0.0896 8.01 ± 0.14 45.4 1 XMM Y
PG 1426+015 0.08657 9.16 ± 0.08 45.6 1 Swift Y
PG 1613+658 0.129 8.33 ± 0.2 45.9 2 . . . Y
PG 1617+175 0.112438 8.65 ± 0.2 45.5 1 . . . Y
PG 1700+518 0.292 8.77 ± 0.10 46.6 2 . . . Y
PG 2130+099 0.062977 7.93 ± 0.06 45.0 7 XMM Y
Zw 229-015 0.027879 6.9 ± 0.09 43.8 8 Suzaku N

References. — (1) Grier et al. (2013) (2) Peterson et al. (2004) (3) Davies et al. (2006) (4)
Denney et al. (2010) (5) Onken et al. (2007) (6) Peterson et al. (2005) (7) Grier et al. (2008) (8)
Barth et al. (2011a) (9) Barth et al. (2011b) (10) Grier et al. (2012)
a The bolometeric luminosity.
b Reference for the MBH value.
c The values from Kelly et al. (2011) were used for these sources.

2.1.2. New Swift Observations of PG 1426+015

We obtained 30 Swift (Gehrels et al. 2004) observa-
tions of PG 1426+015 every couple of days between 2013
April 2 and 2013 June 3. The typical exposure per visit
was ∼ 2 ksec. The OBSID associated with our monitor-
ing campaign is 91700 with segments 01–30. The Swift -
XRT (Burrows et al. 2005) event files were created us-
ing the Swift analysis tool xrtpipeline version 0.12.6.
We constructed our 2–10 keV lightcurve by extracting
the photon-counting mode events within a circular re-
gion centered on the source with a radius of 50” us-
ing xselect version 2.4. The background counts were
extracted from a large annular region centered on the
source with outer radius 377” and inner radius 142”. The
extracted lightcurves were corrected using the Swift anal-
ysis tool xrtlccorr, which corrects the lightcurves for
telescope vignetting, the point spread function, and bad
pixels or columns falling within the extraction region.
We compared our derived lightcurve with that generated

by the UK Swift Science Data Centre XRT light curve
repository4 (Evans et al. 2007, 2009) and found that they
were very similar. The Swift -XRT lightcurve for PG
1426+015 is shown in Figure 2.

2.2. Optical Data

Most of the optical continuum lightcurves used in this
study are presented in Peterson et al. (2004) and were
obtained from the International AGN Watch5 projects,
the Lovers of Active Galaxies (LAG) campaign, the Ohio
State monitoring program (Peterson et al. 1998), and the
Wise Observatory/Steward Observatory monitoring pro-
gram (Kaspi et al. 2000). These data are further dis-
cussed in Peterson et al. (2004). For Mrk 290, Mrk
817, NGC 3227, and NGC 3516 we used the lightcurves

4 www.swift.ac.uk/xrt_lcurves/
5 Data obtained as part of the Interna-

tional AGN Watch projects are available at
http://www.astronomy.ohio-state.edu/~agnwatch

www.swift.ac.uk/xrt_lcurves/
http://www.astronomy.ohio-state.edu/~agnwatch
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Fig. 2.— Swift-XRT 2–10 keV lightcurve for PG 1426+015.

presented in Denney et al. (2010), and for Mrk 6, PG
2130+099, 3C120, and Mrk 335 we used the lightcurves
presented in Grier et al. (2012). The optical lightcurves
for Mrk 766 and NGC 6814 were taken from Walsh et al.
(2009), who obtained these lightcurves as part of the Lick
AGN Monitoring Project (LAMP, Bentz et al. 2009b;
Barth et al. 2011b).

3. NEW METHODS FOR QUANTIFYING
VARIABILITY FROM A LIGHTCURVE OF

COUNTS

In this section we describe our extension of the stochas-
tic modeling of KBS09 and KSS11 to lightcurves of
counts. We first briefly review the Ornstein-Uhlenbeck
(OU) process, and the superposition of Ornstein-
Uhlenbeck processes (sup-OU), providing the necessary
mathematical background. Further details can be found
in KBS09 and KSS11.

KBS09 and KSS11 derived the likelihood function of
these processes under the assumption of Gaussian errors,
providing a means of performing statistical inference on
the parameters; Koz lowski et al. (2010) provide an alter-
native algorithm for calculating the likelihood function
for the OU process. In this section we derive the likeli-
hood function when the data consists of a time series of
counts, and describe how to perform statistical inference
on the OU and sup-OU process parameters from count
data. Because we take a Bayesian approach in this work,
we base our inference on an MCMC sampler which gen-
erates both random draws of the OU or sup-OU process
parameters and of the count rates from their joint prob-
ability distribution, conditional on the observed counts.

3.1. The Ornstein-Uhlenbeck Process

KBS09 introduced the OU process as a statistical
model for the optical flux variations of AGN, and showed
that it provides a good description of AGN optical vari-
ability on time scales of ∼ days to ∼ years within the
data quality of ground-based observations. Subsequent
work has confirmed their results (Koz lowski et al. 2010;
MacLeod et al. 2010; Zu et al. 2013; Andrae et al. 2013),
although high-quality Kepler lightcurves show a steeper

PSD slopes than expected from the OU process model
on time scales . 3 months (Mushotzky et al. 2011).

An OU process, X(t), is described by the following
stochastic differential equation:

dX(t) = −ω0(X(t) − µ)dt + ςdW (t), ω0, ς > 0. (1)

The term dW (t) is a Gaussian white noise process. More
general Lévy noise processes may be used in place of the
Gaussian white noise process (e.g., Raknerud & Skare
2012), although statistical inference is more complicated
in that case. The parameters of the OU process are the
characteristic frequency, ω0, the stationary mean µ, and
the amplitude of driving noise, ς . Assuming an initial
condition of X(t = 0) = X0, the solution to Equation
(1) for t > 0 is

X(t) = µ + (X0 − µ)e−ω0t + ς

∫ t

0

e−ω0(t−s)dW (s). (2)

It is clear from Equation (2) that in the absence of the
driving noise (i.e., ς = 0), X(t) decays back to its mean
value with an e-folding time scale τ0 = 1/ω0. The role
of the driving noise is to introduce stochasticity into the
lightcurve, which persistently and randomly ‘kicks’ the
lightcurve about its mean value. It is because of this
interpretation that many astronomical researchers have
referred to the OU process as a ”damped random walk”.

The stationary autocovariance function of the OU pro-
cess is

ROU (t− s) ≡ cov(X(t), X(s)) =
ς2

2ω0
e−ω0|t−s|. (3)

Here, cov(x, y) denotes the covariance between the ran-
dom variables x and y. The stationary variance of the
process is ς2/(2ω0), obtained by setting t = s in Equa-
tion (3). The power spectral density (PSD) of the OU
process is obtained from the Fourier transform of the au-
tocovariance function:

POU (ω) =
1

2π

∫ ∞

−∞

e−iω0tROU (t) dt

=
ς2

2π

1

ω2
0 + ω2

. (4)

The PSD of an OU process is a Lorentzian centered at
zero; it is flat for frequencies ω ≪ ω0 and decays as
POU (ω) ∝ ς2/ω2 for frequencies ω ≫ ω0. A flat PSD
is indicative of a white noise process, implying that τ0
represents the time scale beyond which the variations in
the lightcurve become uncorrelated. Hence, under the
OU process model τ0 may be interpreted as the ”relax-
ation”, or ”characteristic” time scale of the lightcurve,
and marks the location of the knee in the PSD. The
form of the autocovariance function also suggests this
interpretation of ω0 = 1/τ0.

The interpretation of the term ς , on the other hand,
is not as obvious. The parameter ς controls the normal-
ization of the high-frequency (1/ω2) part of the PSD,
and is thus proportional to the amplitude of short-time
scale variability. Thus, ς2 may be interpreted as control-
ling the amplitude of variability on time scales ∆t ≪ τ .
In addition, we note that the units of ς2 are rms2/time.
This, combined with Equation (1), suggests that ς2 may
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be interpreted as the rate at which stochastic variabil-
ity power is introduced into the lightcurve. Therefore,
we will refer to ς2 as the ‘rate of stochastic variability
power’ (RSVP).

Under the assumption that dW (t) is a Gaussian white
noise process, the OU process itself is Gaussian. In this
case, it is possible to derive the likelihood function for
an OU process sampled at times t1 < t2 < . . . < tn.
Denote the sampled values of the OU process as x =
[x1, . . . , xn]T , where x

T is the transpose of the vector x.
The likelihood function is the probability of observing
x given the OU process parameters6. Because the OU
process is Markovian, the probability distribution of the
next flux value only depends on the current flux value.
Therefore, we can factor the joint probability distribution
of x|ω0, ς, µ as

p(x1, . . . , xn|ω0, ς, µ) = p(x1|ω0, ς, µ)
n
∏

i=2

p(xi|xi−1, ω0, ς, µ).

(5)
Under the assumption that the OU process is Gaussian
and stationary, i.e., that the probability distribution of
the process is not varying in time, the probability of the
first sampled value is just the stationary distribution,

p(x1|ω0, µ, ς) =
1

√

2πROU (0)
exp

{

−
1

2

(x1 − µ)2

ROU (0)

}

. (6)

For a Gaussian OU process, the probability distribution
of xi|xi−1 can be calculated from Equation (2) (e.g.,
Brockwell & Davis 2002) as

p(xi|xi−1, ω0, ς, µ) =

1
√

2πROU (0)(1 − ρ2i )
exp

{

−
1

2

(x̃i − ρix̃i−1)2

ROU (0)(1 − ρ2i )

}

(7)

x̃i = xi − µ (8)

ρi = e−ω0(ti−ti−1). (9)

Equations (5)–(9) allow us to compute the likelihood
function of a sampled OU process, and thus perform
statistical inference on the variability parameters. We
note that above we have assumed that the sampled data
points x are measured without error. KBS09 provide the
likelihood function when the sampled data are contami-
nated by normally distributed measurement errors, while
Koz lowski et al. (2010) provide an alternative algorithm
for calculating the likelihood function. Below in § 3.3 we
discuss the situation in which the sampled data points
consist of a series of individual photon count measure-
ments, as is the case for X-ray or γ-ray lightcurves.

3.2. Superpositions of Ornstein-Uhlenbeck Processes

KSS11 introduced a superposition of OU processes as a
model for the X-ray lightcurves generated by black holes.
The sup-OU processes are able to model processes ex-
hibiting ”long-memory” and have been used in a variety
of other disciplines (e.g., Barndorff-Nielsen & Shephard
2001). Long-memory processes have a PSD that decays

6 Technically, we also condition on the time values as well. While
these may also be random, we assume that their probability dis-
tribution is independent of the OU process parameters and x. For
simplicity we drop the dependence on t1, . . . , tn in our notation.

as 1/ωα with 0 < α < 1 as ω → 0, and therefore exhibit
correlations that decay slowly with time. The PSDs of
X-ray lightcurves for both AGN and galactic black holes
in the soft state exhibit this type of behavior7; galac-
tic black holes in the ‘hard-state’ also have an additional
low-frequency break in their PSD where the PSD flattens
from a form with α ≈ 1 to one with α ≈ 0 toward the low-
est frequencies sampled. In addition, KSS11 showed that
the sup-OU process is a solution to the linear stochastic
diffusion equation, providing an interpretation of the pa-
rameters within the context of accretion physics.

For a set of M independent zero-mean OU pro-
cesses X1(t), . . . , XM (t) with characteristic frequencies
ω1, . . . , ωM and fixed RSVP ς2, we construct a sup-OU
process as

YM (t) = µ +
∑

j=1

cjXj(t), (10)

where c1, . . . , cM are the mixing weights. The autoco-
variance and PSD of this process are, respectively,

RY,M (t) =
ς2

2

M
∑

j=1

c2j
ωj

e−ωj |t| (11)

PY,M (t) =
ς2

2π

M
∑

j=1

c2j
ω2
j + ω2

. (12)

The PSDs of X-ray lightcurves from AGN and lower
S/N lightcurves from galactic black holes can be well
described as a doubly-broken power-law

P (ω) ∝







1 ω ≪ ωL

1/ωα ωL ≪ ω ≪ ωH

1/ω2 ω ≫ ωH

(13)

for 0 < α < 2; typically α ≈ 1. The parameters ωL and
ωH define the low and high break frequency, respectively,
and correspond to time scales at which the variability
properties of the accretion flow emission change. In order
to model a PSD of the form of Equation (13) KSS11 used
the following sequence of characteristic frequencies and
mixing weights:

logωj = logωL +
j − 1

M − 1
log(

ωH

ωL
), j = 1, . . . ,M (14)

cj = ω
1−α/2
j





M
∑

j=1

ω2−α
j





−1/2

. (15)

Within this weighting scheme the 1/ωα part of the PSD
is built up by the ‘knees’ of the PSDs of the M individual
OU processes. In addition, under this weighting scheme
the normalization of the PSD on frequencies ω ≫ ωH is
still proportional to ς2, so we will also refer to ς2 for the
sup-OU process as the RSVP.

The sup-OU process is not Markovian, so the proba-
bility distribution for a sampled process x1, . . . , xn as a

7 The PSDs of galactic black holes exhibit more structure than a
simple broken power-law form, with a sum of Lorentzian functions
often providing a good fit. However, as we are primarily interested
in lightcurves of counts the simple broken power-law model will be
sufficient for modeling such low S/N lightcurves.
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function of the parameters θ = (µ, ς, ωL, ωH , α) is fac-
tored as

p(x1, . . . , xn|θ) = p(x1|θ)
n
∏

i=2

p(xi|x<i, θ). (16)

Here, x<i = [x1, . . . , xi−1]T . Computation of Equation
(16) is more complicated than Equation (5) and is done
using the Kalman recursions (e.g., see Brockwell & Davis
2002, KSS11). KSS11 derive an efficient method for
calculating the likelihood function under normally dis-
tributed measurement errors, and Equation (16) can be
computed using their Equations (30)–(41) while setting
the measurement error variances to zero.

3.3. OU and sup-OU Processes for a Time Series of
Counts

In the previous sections we have provided the mathe-
matical background for the OU and sup-OU processes,
as well as the likelihood function, which can be used
to fit the variability parameters from a sampled ver-
sion of these processes. However, in reality we do not
observe a sampled version of the process (i.e., the true
lightcurve values), and in practice we have to introduce
a measurement process that connects sampled values of
the true lightcurve to a measured lightcurve. When
the lightcurve is contaminated with normally distributed
measurement error, then the likelihood function for the
measured lightcurve is given by KBS09 for the OU pro-
cess model and by KSS11 for the sup-OU process model;
we refer the reader to those papers for further details.
However, for X-ray and γ-ray data it is often the case
that one detects individual photons, and therefore the
measurements consist of a time series of photon counts8.
In this case the measurement process is a Poisson pro-
cess, with the rate parameter controlled by the unknown
true count rate within the source extraction region. This
true count rate is a mixture of the source count rate and
the background count rate. In this work we model the
source count rate as a sup-OU process with weighting
scheme given by Equation (15).

Denote the measured counts within the source extrac-
tion region in a time bin ti as Si. The measured counts
within the source extraction region follows a Poisson dis-
tribution with rate parameter given by the sum of the
source and background count rates:

p(Si|si, bi) =
(δi(si + bi))

Si

Si!
e−δi(si+bi). (17)

Here, δi, si, and bi are the exposure time, source count
rate, and background count rate for the ith time bin,
respectively. Similarly, the measured counts within the
background extraction region, Bi, also follows a Poisson
distribution

p(Bi|bi) =
(Rareaδibi)

Bi

Bi!
e−Rareaδibi , (18)

where Rarea is the ratio of the area of the background
extraction region to the source extraction region. Equa-

8 This is a simplification. What are actually observed are the
photon arrival times. The number of photons arriving within a
given time bin are counted, creating the measured time series of
counts.

tions (17) and (18) provide the necessary equations that
enable us to link the measured counts to the variability
parameters.

Based on the Poisson measurement process, we have
the following hierarchical model that relates the mea-
sured time series of counts to the sup-OU process pa-
rameters, θ:

Si|si, bi ∼ Poisson(δi(si + bi)), (19)

Bi|bi ∼ Poisson(Rareaδibi), (20)

log s|µ, ς, ωL, ωH , α ∼ sup-OU(t1, . . . , tn, µ, ς, ωL, ωH)
(21)

bi, . . . , bn|θb ∼ p(b1, . . . , bn|t1, . . . , tn, θb) (22)

µ, ς, ωL, ωH , α, θb ∼ p(µ, ς, ωL, ωH , α, θb). (23)

Here the notation x ∼ p(x) means that x has
the probability distribution p(x), Poisson(λ) de-
notes a Poisson distribution with rate parameter
λ, sup-OU(t1, . . . , tn, µ, ς, ωL, ωH , α) denotes a sup-
OU process sampled at the time values t1, . . . , tn,
p(b1, . . . , bn|t1, . . . , tn, θb) denotes the probability dis-
tribution of the background count rates at the sam-
pled times as a function of its parameters θb, and
p(µ, ς, ωL, ωH , α, θb) denotes the prior on the parameters.
We will later specify p(b1, . . . , bn|t1, . . . , tn, θb), and pos-
sible choices include stochastic processes such as an OU
or sup-OU process, or deterministic forms such as a con-
stant, polynomial, or spline. We model the logarithm
of the count rates as a sup-OU process instead of the
actual count rates because the sup-OU process can be
negative. Because we are assuming a Gaussian sup-OU
process, the marginal distribution of the count rates as-
suming Equation (21) will be a log-normal distribution,
in agreement with what is observed for the X-ray binary
Cyg X-1 and what is implied by the rms–flux relationship
of X-ray binaries and AGN (Uttley et al. 2005). Finally,
we note that one can replace Equation (21) with an OU
process to obtain the equivalent results when using an
OU process model.

In order to derive the likelihood function of the source
and background counts as a function of the parameters,
we start with the likelihood function for both the un-
known count rates and the measured counts (i.e., the
‘complete’ data likelihood function) and then marginal-
ize over the unknown values of the count rates. From
Equation (19)–(22) we derive the complete data likeli-
hood function by multiplying the conditional probability
distributions together:

p(S,B, s,b|µ, ς, ωL, ωH , α, θb) =
n
∏

i=1

p(log si|s<i, µ, ς, ωL, ωH , α)p(bi|b<i, θb)

×
(Rareaδibi)

Bi(δi[si + bi])
Si

Bi!Si!
e−δi(si+[1+Rarea]bi).

(24)

Here, S,B, s, and b denote vectors containing the values
for these quantities for the n data points, and s<i should
be ignored for i = 1. Note that the background model
need not depend on the earlier values, b<i, and if the
background model is deterministic then p(bi|b<i) is just
a delta function centered at the model value of bi. The
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measured data likelihood function is then found by inte-
grating Equation (24) over the unknown values of s and
b:

p(S,B|µ, ς, ωL, ωH , θb) =
n
∏

i=1

∫ ∞

bi=0

p(bi|b<i, θb)
(Rareaδibi)

Bi

Bi!
e−Rareaδibi

×

{∫ ∞

log si=−∞

p(log si|s<i, µ, ς, ωL, ωH)

×
(δi[si + bi])

Si

Si!
e−δi(si+bi) d log si

}

dbi

(25)

A maximum-likelihood fit of the sup-OU parameters can
be obtained by maximizing Equation (25) with respect
to (µ, ς, ωL, ωH , α, θb). Alternatively, one can obtain the
posterior probability distribution of (µ, ς, ωL, ωH , α, θb)
given the measured counts by combining Equation (25)
with the prior distribution used in Equation (23).

3.4. Practical Implementation of OU Process Models
to Count Data

The integral in Equation (25) is intractable and Equa-
tion (25) is not used in practice. Instead, the inte-
gral in Equation (25) is evaluated stochastically (e.g.,
Jung et al. 2006), as in, for example, Monte Carlo in-
tegration. In Bayesian inference this is typically done
by regarding the unknown source and background count
rates, s and b, as additional parameters to be estimated.
This is often referred to as ‘data augmentation’ (e.g.,
Gelman et al. 2004), and this is the approach employed
in this work.

The posterior probability distribution of the count
rates and the variability parameters, given the mea-
sured counts, is proportional to Equation (24). One
then uses an MCMC sampler to generate random draws
of the count rates and parameters from their poste-
rior. This has the advantage that we also obtain an
estimate of the true count rate and its uncertainty
for a source, which can be helpful for visualizing the
lightcurve. In this work we employ an MCMC sampler
based on an ancillarity-sufficiency interweaving strategy
(ASIS, Yu & Meng 2011). The basic idea behind this ap-
proach is to improve MCMC efficiency by updating the
source or background count rates and their parameters
under two different data augmentations. A näıve MCMC
sampler under the parameterization described by Equa-
tions (19)–(23) would update the values of si one at a
time. This is very inefficient due to large correlations in
the posterior of s1, . . . , sn, and the addition of a second
data augmentation significantly improves the efficiency of
the MCMC sampler (Yu & Meng 2011). When updating
the values of the count rates and parameters we use a
Metropolis algorithm with normally distributed propos-
als centered at the current value.

Even with the ASIS steps, we still experienced slow
convergence of our MCMC sampler. In order to improve
convergence we introduced a few simplifications to our
sampler. First, we fix the values of ωL and α. We do
this because in this work we are primarily interested in
estimating ς , and because ς is proportional to the nor-
malization of the PSD on frequencies ω ≫ ωH the pos-
terior distribution for ς is not sensitive to the values of

ωL and α. Moreover, in general we do not expect to sig-
nificantly sample the PSD at frequencies ω ≪ ωH due to
our use of X-ray lightcurves which in general are . 100
ksec. For comparison, the value of τH = 1/ωH is ex-
pected to be ∼ ksec and ∼ days to weeks for a 107 and
109M⊙ black hole, respectively (e.g., KBS11). We fix the
value of α to be equal to one, a typical value for AGN
(e.g., Uttley & McHardy 2005). We fix the value of ωL

to be the smaller of the inverse of ten times the length
of the lightcurve or 10−5 ksec−1. These values were cho-
sen to correspond to sufficiently long time scales that we
would not observe the low-frequency break in any of our
lightcurves.

We model the background count rates, b1, . . . , bn as
being generated by an OU process. This is probably
not exactly true in practice, but the point of this model
is to provide estimates of the background count rates
which are smoothed versions of the measured counts in
each bin. We estimate the background rates by first run-
ning our MCMC sampler only on the counts extracted
from the background region, using an OU process model
instead of a sup-OU process model. In this step the
b1, . . . , bn play the role of the s1, . . . , sn in Equations
(19)–(23) and the background counts and count rates are
set to zero. Our MCMC sampler then returns a sample
of b1, . . . , bn from its probability distribution given the
measured counts extracted from the background region,
under the prior assumption that it follows an OU pro-
cess. We then estimate the background count rates as
the median values of bi obtained in this manner, provid-
ing smoothed estimates of the background counts. These
values of b1, . . . , bn are then held fixed when running
our MCMC sampler on the counts extracted from the
source region. The accuracy of this approximation im-
proves with the S/N of the background lightcurve, so it
is best to use a much larger background extraction re-
gion compared to the source extraction region. We have
performed simulations to confirm that our approach for
handling the background does not introduce significant
biases on the estimation of the source parameters, so long
as the background count rate do not dominate the source
count rate. If the background dominates in certain time
intervals, then it is best to remove these intervals.

We assume a uniform prior on the parameters
(µ, ς, logωH). The mean of the logarithm of the count
rate is constrained to be ln 10−6 < µ < ln 106 and the
location of the high frequency break is constrained to be
ωL < ωH < 1/min(ti+1 − ti).

3.5. Illustration with Simulated Data

In order to illustrate our method, we simulated a 30
ksec lightcurve assuming a sup-OU process with a value
of τH = 3 ksec, ς = 2.4 × 10−3 cnt / sec1/2, and a mean
count rate of 0.45 counts / sec. We used a low-frequency
break corresponding to a time scale a factor of 100 longer
than the length the lightcurve to ensure that we were al-
ways on the 1/f or 1/f2 part of the PSD, as is typical
for AGN. Our background rate was chosen to be a re-
sampled and wavelet-denoised version of the background
from the XMM observation of PG 2130+099. We chose
the background for this object because it contains regions
of flaring activity, and thus should provide a good test
of our technique. We then simulated source and back-
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MCMC Results

Fig. 3.— Illustration of our new statistical technique on a
simulated lightcurve of counts. The top panel shows the mea-
sured counts (data points), the true count rate for the simulated
lightcurve (darker blue line), the background rate (orange line).
The lighter blue shaded region contains 90% of the posterior prob-
ability on the count rate derived from our Bayesian approach. The
bottom panels show the posterior probability distribution (his-
tograms and red contours) for the high-frequency break time scale
τH and the RSVP ς2, as estimated from the MCMC sampler out-
put (data points). The two straight lines mark the true values used
to simulate the lightcurve. The true values of the lightcurve, τH ,
and ς2 are recovered from the counts.

ground counts using a bin size of 30 sec, and assumed
that the background extraction region was a factor of
seven larger than the source extraction region. We ap-
plied our MCMC sampler to this simulated lightcurve,
running four independent chains with a total of 1.5×105

iterations including 5 × 104 iterations of burn-in. The
results are shown in Figure 3. Our technique is able to
recover the simulated lightcurve as well as the variability
parameters within the uncertainties from the count data.

The bumpiness in the posterior distribution for log τH
is Monte Carlo error due to slow convergence and poor
mixing of the chains. If we had run our MCMC sampler
for longer the posterior would be smoothed out. We also
observed this for the log τH posteriors obtained for the
AGN in our sample. We do not consider this a concern
because we are primarily interested in the posterior for
log ς2, and in particular lower order summaries of the
posterior such as the median and standard deviation, as
well as upper limits in the case of no detection. Low order
summaries converge must faster in an MCMC sampler
than, say, the tails of the distribution.

4. TRENDS BETWEEN X-RAY VARIABILITY,
OPTICAL VARIABILITY, AND BLACK HOLE

MASS

The X-ray and optical RSVP and their uncertainties
are given in Table 2.

We applied our new method for deriving the sup-OU
parameters from a lightcurve of counts to those sources
in Table 1 that had X-ray lightcurves. For the sources
already analyzed by KSS11 we used the values of ς de-
rived by them, as those sources are bright enough that
the X-ray counts are well approximated as coming from a
normal distribution, and because their values are derived
from a combination of XMM and RXTE lightcurves. For
each source not in the KSS11 sample we ran four paral-
lel chains of our MCMC sampler for 3 × 105 iterations
and discarded the first 105 iterations as burn-in. We also
used an MCMC sampler based on the Gaussian approx-
imation method of KSS11 as a check for consistency; for
all but the faintest sources the two methods produced
similar posteriors for ς .

Unfortunately, in spite of the large number of itera-
tions used when running our MCMC sampler, we still
had poor convergence of ς when directly analyzing the
count data for Mrk 79, NGC 5548, 3C 390.3, Mrk 50,
and 3C 273. The MCMC sampler of KSS11 based on the
Gaussian approximation converges much faster, so we
used the method of KSS11 on these four sources. These
sources are all bright enough to justify the Gaussian ap-
proximation, having count rates of & 1 counts / sec. In
addition, we were only able to obtain an upper limit on
ς for PG 0052+251, PG 0804+761, PG 0953+414, PG
1229+204, PG 1307+085, Mrk 279, and PG 1411+442.

The Swift -XRT lightcurve for PG 1426+015 exhibits
strong variability, and the amplitude of variability is
unusual for a source with a MBH ∼ 109M⊙ black
hole. For this source we obtained a value of log ς2X =
−5.49 ± 0.37 fraction2/sec and τH . 1 day. This is con-
siderably more variable than expected for such a mas-
sive black hole. Moreover, the timescale correspond-
ing to the high-frequency break is much shorter than
the value of τH ∼ 30–100 days expected for MBH ∼
109M⊙ (e.g., McHardy et al. 2006; Kelly et al. 2011;
González-Mart́ın & Vaughan 2012). For example, be-
tween the 20–26 day markers in Figure 2 the count rate
triples over a couple of days, and then drops to half this
value a couple of days later. This strong flare corre-
sponds to the count rate obtained from segment 12; such
a strong flare is unexpected for this type of object, a
radio-quiet quasar with MBH ∼ 109M⊙. The count rate
of this segment of the lightcurve differs from that ex-
pected based on the best-fit sup-OU process by ∼ 2.7σ,
suggesting that this data point is an outlier. The primary
reason for the large count rate is the large correction fac-
tor for this segment calculated by the xrtlccorr routine,
probably due to the fact that the source fell further off-
axis for this observation segment compared to the others;
the count rate obtained before performing this correction
was not particularly unusual. Whether this data point
is an outlier due to systematics or real flaring activity,
this data point is inconsistent with being generated from
a sup-OU process and is indicative of coming from a dif-
ferent variability process. Because of this we removed
this data point. After removing this data point we find
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TABLE 2
X-ray and Optical Rate of Stochastic Variability Power

Name log ς2
X

log ς2
X

Errora log ς2opt log ς2opt Error

3C 120 -7.21 0.16 -8.25 0.11
3C 390.3 -7.79 0.28 -7.83 0.14
Ark 120 -7.15 0.13 -7.62 0.14
Fairall 9 -7.84 0.13 -7.75 0.17
MRK 766 -5.15 0.05 . . . . . .
Mrk 110 -6.69 0.21 -7.7 0.09
Mrk 279 -6.22 0.0 -7.94 0.13
Mrk 290 . . . . . . -8.23 0.09
Mrk 335 -5.1 0.05 -8.47 0.12
Mrk 50 -6.32 0.32 . . . . . .
Mrk 509 -7.03 0.05 . . . . . .
Mrk 590 -6.65 0.42 -7.62 0.09
Mrk 6 -6.67 0.25 . . . . . .
Mrk 766 . . . . . . -7.81 0.13
Mrk 79 -6.6 0.18 -8.3 0.09
Mrk 817 -5.54 0.38 -8.86 0.1
NGC 3227 -6.05 0.06 -7.37 0.09
NGC 3516 -5.9 0.05 -7.34 0.1
NGC 3783 -6.81 0.05 -7.53 0.12
NGC 4051 -4.56 0.04 -7.52 0.1
NGC 4151 -6.47 0.07 -6.81 0.14
NGC 4395 -3.63 0.08 . . . . . .
NGC 4593 -5.62 0.23 -7.21 0.22
NGC 5548 -6.75 0.12 -7.66 0.03
NGC 6814 -5.42 0.13 -7.48 0.11
NGC 7469 -6.21 0.08 -7.78 0.16
PG 0026+129 . . . . . . -8.31 0.08
PG 0052+251 -4.93 0.0 -8.1 0.09
PG 0804+761 -6.8 0.56 -8.77 0.08
PG 0953+414 -4.67 0.0 -8.95 0.1
PG 1226+023 -7.88 0.13 -9.09 0.1
PG 1229+204 -5.16 0.0 -7.7 0.11
PG 1307+085 -4.46 0.0 -8.44 0.12
PG 1411+442 -3.58 0.0 -7.85 0.12
PG 1426+015 -6.16 0.33 -8.52 0.1
PG 1613+658 . . . . . . -8.62 0.08
PG 1617+175 . . . . . . -8.36 0.09
PG 1700+518 . . . . . . -9.32 0.15
PG 2130+099 -6.16 0.3 -8.65 0.08
Zw 229-015 -5.41 0.09 . . . . . .

Note. — The units of both ς2X and ς2opt are fractional variance / sec.

a The values of ς2X with an error of zero are upper limits.

more reasonable constraints on the variability timescale
of τH . 15 days, although values closer to ∼ 1 day are
still preferred. In addition, the value of X-ray RSVP is
reduced but still high at log ς2X = −6.16± 0.33. The val-
ues we report in Table 2 for PG 1426+015 are obtained
after removing segment 12 of the lightcurve.

For the optical data we used the MCMC sampler based
on the CAR(1) model described by KBS09. We sub-
tracted the host galaxy flux from the optical lightcurves
using the values from Bentz et al. (2009a, 2013). We
then ran our MCMC sampler on the logarithm of the
flux values to ensure that ς2opt is in units of fraction2 /
sec.

4.1. X-ray Variability as a Black Hole Mass Estimator

In Figure 4 we compare the X-ray RSVP, ς2X , with
black hole mass. A strong anti-correlation is apparent.
To quantify this anti-correlation (and all other linear fits
in this work), we used the Bayesian linear regression
method of Kelly (2007) which accounts for the uncer-
tainty in both ς and MBH , as well as the upper limits on
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Fig. 4.— X-ray rate of stochastic variability power, ς2X , as a
function of black hole mass. The sizes of the ellipses denote the
size of the error bars, and their colors denote the Eddington ratios.
The arrows denote upper limits, defined to be the 99th percentile
of the posterior probabilities for ς2

X
.

ς :

log
ς2X

fraction2 sec−1
=

(−6.81 ± 0.13) − (1.12 ± 0.13) log
MBH

108M⊙
.

(26)

The intrinsic scatter about this relationship is estimated
to be std(log ς2X |MBH) = 0.46 ± 0.10, where the no-
tation std(x|y) denotes the standard deviation in x at
fixed y. The small intrinsic scatter about the relation-
ship implies that ≈ 72% of the variations in ς2X for our
sample are driven by variations in MBH . Our result
is consistent with other recent work based on the X-
ray excess variance (e.g., Zhou et al. 2010; Ponti et al.
2012) or normalization of the high-frequency X-ray PSD
(Gierliński et al. 2008; McHardy 2013), the results from
which imply ς2X ∝ 1/MBH. We did not find a statistically
significant additional dependence on the bolometeric lu-
minosity, suggesting that the dependence of ς2X on the
Eddington ratio at fixed MBH is weak or nonexistent.
Moreover, at fixed MBH we did not find any statistically
significant evidence for a dependence of ς2X on optical lu-
minosity, redshift or radio-loudness, where the radio flux
values came from NED9.

The tight anti-correlation between the X-ray RSVP
and black hole mass suggests that ς2X may be used as
a black hole mass estimator. Fitting MBH as a function
of ς2X we find

log
MBH

M⊙
= (8.07 ± 0.10)

− (0.73 ± 0.09) log
ς2X

10−7fraction2 sec−1
.

(27)

The standard deviation in MBH at fixed ς is

9 http://ned.ipac.caltech.edu

http://ned.ipac.caltech.edu
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Fig. 5.— Comparison of the ςX–based mass estimates against
those from the literature (mostly from reverberation mapping).
The solid line marks the identity relationship; this is another way
of representing the trend in Figure 4, but better highlights the
use of ς2

X
as a mass estimator. The linear relationship defined by

Equation (27) provides a good fit, and there is no evidence for
non-linearity in MBH as a function of ςX .

std(logMBH |ςX) = 0.38 ± 0.08. This result im-
plies that mass estimates derived from the X-ray
RSVP may be obtained with precision comparable to
those derived from the rest-frame optical/UV spectra
(Vestergaard & Peterson 2006), and from the MBH–σ∗

relationship (e.g., McConnell & Ma 2013). Figure 5 com-
pares the mass estimates derived from ς2X with the liter-
ature values.

In Figure 6 we compare the residuals of the ςX -based
mass estimates with optical luminosity, redshift, and
radio-loudness. We did not find statistically significant
evidence for any dependence of MBH |ςX on optical lu-
minosity, redshift, or radio-loudness.

4.2. Comparison between Optical Variability, X-ray
Variability, and Black Hole Mass

In order to search for trends between the optical vari-
ability and MBH , we performed the same analysis as in
§ 4.1. In Figure 7 we compare the optical RSVP, ς2opt, as a
function of MBH . There is a statistically significant anti-
correlation between the optical RSVP and MBH , which
we quantify as

log
ς2opt

fraction2 sec−1
=

(−8.11 ± 0.09) − (0.50 ± 0.13) log

(

MBH

108M⊙

)

.

(28)

The intrinsic scatter in ς2opt at fixed MBH is

std(log ς2opt|MBH) = 0.47 ± 0.07. This trend is not
as strong as that in the X-rays. Moreover, perform-
ing a linear regression on the reverse relationship we

find that the scatter in MBH at fixed optical RSVP is
std(logMBH |ςopt) = 0.59 ± 0.09, implying that mass es-
timates derived from this scaling relationship will not be
as precise as those obtained from the other scaling rela-
tionships.

Interestingly, although the optical RSVP does not
show as tight of a correlation with MBH as does ς2X , it is
tightly anti-correlated with the luminosity. This corre-
lation is implied by the observed increase in the optical
RSVP with Eddington ratio at fixed MBH that is appar-
ent in Figure 7. In Figure 8 we show ς2opt as a function of
the optical luminosity and L/LEdd. The optical RSVP
is most tightly correlated with optical luminosity:

log
ς2opt

fraction2 sec−1
=

(−8.14 ± 0.06) − (0.47 ± 0.06) log

(

λLλ(5100Å

1044 erg s−1

)

.

(29)

The intrinsic scatter about Equation (29) is
std(log ς2opt|L5100) = 0.33 ± 0.05. The slope and
scatter of the trend with Eddington ratio is very similar
to that for MBH . We did not find any statistically sig-
nificant evidence for an additional dependence of optical
RSVP on black hole mass at fixed optical luminosity.

In Figure 9 we compare the optical RSVP against the
X-ray RSVP. Despite the fact that both the optical and
X-ray RSVP exhibit strong anti-correlations with some
combination of MBH , L, and L/LEdd, they are uncorre-
lated. This therefore implies that on time scales short
compared to their respective break frequency, AGN that
exhibit strong variable at, say, x-ray wavelengths will
not necessarily exhibit strong variability at optical wave-
lengths. In addition there is a much larger spread in ς2X
than ς2opt, implying that there is considerably more va-
riety in the amplitude of X-ray variability than optical
among AGN, at least over the time scale probed by this
study.

5. DISCUSSION

5.1. Comparison with Previous Work

Previous work on comparing the amplitude of high-
frequency variability with MBH has primarily focused
on the X-ray excess variance, σ2

rms. The excess variance
of a lightcurve on time scales t1 < ∆t < t2 is given by
the integral of the power spectrum over the correspond-
ing frequency interval; for regularly sampled lightcurves
t2 corresponds to the length of the lightcurve and t1 cor-
responds to the sampling interval. Neglecting sampling
effects, when the length of the lightcurve is t2 ≪ τH ,
then the excess variance and RSVP are proportional:

σ2
rms ∝ ς2X(t2 − t1). (30)

However, for a real lightcurve the sampling pattern in-
troduces a more complicated relationship between excess
variance and ς2X (e.g., Pessah 2007), and Equation (30)
only holds approximately.

Many authors have found that the scaling between X-
ray excess variance, σ2

rms, and MBH is consistent with
σ2
rms ∝ 1/MBH (e.g, Bian & Zhao 2003; Nikolajuk et al.

2004; Zhou et al. 2010). The previous works that are
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Fig. 7.— Optical rate of stochastic variability power, ς2opt, as a

function of black hole mass. The symbols are the same as for Figure
4. The strong correlation in the optical RSVP with luminosity is
manifested in the apparent correlation between ς2opt and L/LEdd

at fixed MBH .

most similar to our analysis are the recent papers
by Zhou et al. (2010), KSS11, Ponti et al. (2012), and
McHardy (2013). Zhou et al. (2010) found σ2

rms ∝
M−1.00±0.10

BH based on a sample of 21 AGN with MBH

from reverberation mapping and excess variance mea-
surements taken from O’Neill et al. (2005); O’Neill et al.
(2005) calculated σ2

rms from ASCA lightcurves having at
least one X-ray observation with a duration of at least 40
ksec. These authors also estimate the intrinsic dispersion
in MBH at fixed σ2

rms to be std(logMBH |σ2
rms) = 0.20

dex. Ponti et al. (2012) calculated the excess variance
from XMM observations for 32 AGN with MBH primar-
ily from reverberation mapping. They calculated the ex-
cess variance from lightcurves of length 10, 20, 40, and
80 ksec, when available. Using the 10 ksec lightcurves,
they find σ2

rms ∝ M−1.21±0.1
BH , and that the intrinsic scat-
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Fig. 8.— Optical rate of stochastic variability power, ς2opt, as a

function of optical luminosity (top) and Eddington ratio (bottom).
As with MBH , there is a significant anti-correlation between these
quantities, with brighter AGN becoming less variable on short time
scales.

ter in the excess variance is std(log σ2
rms|MBH) ≈ 0.45

dex. McHardy (2013) compared MBH for 10 AGN with
the amplitude of the power spectrum at 2 × 10−4, nor-
malized to the square of the source count rate, as calcu-
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Fig. 9.— Comparison between the X-ray and optical RSVP.
There is no evidence that the optical and X-ray variability am-
plitudes are correlated on time scales short compared to their re-
spective break frequencies.

lated from EXOSAT observations longer than 20 ksec by
Green et al. (1993); they refer to this quantity as the nor-
malized variability amplitude, NVA. The mass estimates
used in the McHardy (2013) study are primarily from re-
verberation mapping or dynamical modeling, with a cou-
ple estimated from the host galaxy σ∗. McHardy (2013)
find NVA2 ∝ M−1.08±0.08

BH . Using a sample of 10 AGN,

KSS11 found ς2X ∝ M−1.58±0.44
BH based on a combination

of RXTE and XMM ligthcurves, where the MBH esti-
mates were from a combination of reverberation map-
ping, dynamical modeling, and scaling relationships. All
of this previous work is consistent with our finding that
ς2X ∝ M−1.12±0.13

BH and std(log ς2X |MBH) = 0.46 ± 0.10
dex, especially considering the differences in samples, and
that the excess variance can become a biased estimate
of the normalization of the high-frequency PSD if the
lightcurve is longer than τH .

There has been little previous work comparing the am-
plitude of high-frequency optical variability and MBH .
Instead, most authors have focused on the total vari-
ability on longer time scales (e.g., Wold et al. 2007;
MacLeod et al. 2010; Zuo et al. 2012). KBS09 found
ς2opt ∝ M−0.52±0.08

BH from a heterogeneous sample of opti-
cal lightcurves for 71 AGN with MBH estimated primar-
ily from the broad emission lines. Mass estimates from
reverberation mapping were used for 20 of the AGN in
the KBS09 study, but KBS09 did not remove the contri-
bution from the host galaxy to the optical flux. In spite
of these differences, their result is in excellent agreement
with our result that ς2opt ∝ M−0.50±0.13

BH . However, while
KBS09 do find a statistically significant but weak trend
with luminosity, they were not able to conclude whether
luminosity or MBH was the dominant correlation. This
is in contrast to the result obtained here, where we find
a strong trend with luminosity that dominates over the
MBH correlation. This difference is probably due to the
fact that in this work we subtracted the host galaxy con-
tribution to the optical lightcurve before computing the
optical RSVP.

5.2. Implications for Black Hole Mass Estimation

The tight anti-correlation between MBH and the short
time scale X-ray variability implies that the X-ray vari-
ability provides a means of estimating MBH that is com-
petitive with other scaling relationships. The scatter
in this relationship implies that MBH estimates derived
from the X-ray RSVP have a precision of ≈ 0.38 ± 0.08
dex with respect to the MBH estimates derived in the
literature. This is similar to MBH estimates obtained
through the MBH–σ∗ relationship for elliptical galax-
ies (≈ 0.34 dex, McConnell & Ma 2013) from the AGN
broad emission lines (∼ 0.4 dex, Vestergaard & Peterson
2006).

We also investigated the use of the optical RSVP as a
mass estimator. The optical variability scaling relation-
ship shows considerably more scatter, implying mass es-
timates with ∼ 0.6 dex precision relative to the literature
values of MBH . Therefore it is unlikely that ς2opt-based
mass estimates will be preferable to the other scaling re-
lationships. However, it may still be possible to use the
optical RSVP to obtain reasonable constraints on the de-
mographics of MBH for a large sample of AGN optical
lightcurves, such as would be obtained by, for example,
LSST. This would be relevant for surveys that obtain
optical lightcurves for large numbers of AGN, but lack
the X-ray or spectroscopic observations needed to obtain
more precise mass estimates from X-ray variability or
the broad emission lines. In addition, the correlation of
the residuals in the ς2opt–MBH relationship implies that
the combination of optical RSVP and optical luminosity
would provide more precise mass estimates compared to
simply using ς2opt. Unfortunately, in order to accurately

estimate the scatter in MBH at fixed ς2opt and optical lu-
minosity, and thus the precision in the mass estimates, it
is necessary to obtain an unbiased sample with respect
to the AGN Eddington ratio distribution. The sample
analyzed in this work is heterogeneously selected, and
thus unlikely represents the Eddington ratio distribution
of the general AGN population. Further work using a
sample that is unbiased with respect to Eddington ratio
is needed in order to calibrate MBH estimates based on
optical variability and luminosity.

5.2.1. Sources of Systematic Uncertainty in the MBH–ς2X
Scaling Relationship

We did not find any significant trends in the X-ray
RSVP derived mass estimates with luminosity, redshift,
or radio-loudness; the independence of the residuals with
radio-loudness implies that the scaling relationship is not
strongly affected by the presence of a jet. Previous work
has found that the scaling relationship between the X-
ray excess variance on short times scales does not exhibit
a strong dependence on the spectral range used to com-
pute the X-ray variance over the range 0.3–10 keV (e.g.,
Ponti et al. 2012). We therefore do not expect a strong
systematic effect with redshift so long as the X-rays de-
tected from an AGN remain predominantly within this
spectral range in the source’s rest-frame. Because the
number of photons / keV decays as n(E) ∝ E−ΓX for
AGN, with ΓX ∼ 2 (e.g., Young et al. 2009), most of
the photons detected from an AGN will have rest-frame
energies of < 10 keV even out to z ∼ 4.

It is also unclear if the MBH–ς2X scaling relation-
ship holds for obscured AGN, or for those radiating at
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L/LEdd . 10−2–10−3. In the simple case obscuration
reduces the X-ray flux by a multiplicative factor. If the
properties of the obscuring material do not vary signif-
icantly on time scales shorter than the high frequency
break (e.g., ∆t . 1 day), then the obscuration should
not alter the AGN fractional variability. If that is the
case then the MBH–ς2X relationship should still hold for
obscured sources, assuming that their X-ray emission has
the same origin as for unobscured sources. Further inves-
tigation of the X-ray variability properties of obscured
AGN is necessary to confirm this. In addition, it is
unclear if the scaling relationship found here applies to
AGN radiating at L/LEdd . 10−3. Galactic black holes
are observed to undergo a transition in their spectral
and variability properties around L/LEdd ∼ 10−2–10−3,
likely caused by a change in the accretion flow geometry
and state (e.g., Done et al. 2007). If supermassive black
holes also undergo such state transitions, the variability
properties of AGN with L/LEdd . 10−3 may be differ-
ent than the higher Eddington ratio objects investigated
here. Therefore, the scaling relationship presented here
should only be used to obtain mass estimates for unob-
scured AGN with Eddington ratios 10−3 . L/LEdd . 1.

Recent Kepler observations suggest that AGN optical
PSDs decay as P (f) ∼ f−3 (Mushotzky et al. 2011). Be-
cause our sup-OU and OU models assume that at high-
frequencies P (f) ∼ f−2, it is of interest to investigate
what systematic errors might be introduced by assuming
a PSD that is too flat. For a given frequency range, a con-
stant systematic offset is likely introduced to the inferred
amplitude of high-frequency variability by assuming a
flatter PSD. Because the trends between high-frequency
variability and MBH reported here are empirical, any
constant offset in MBH caused by the difference between
the ‘true’ PSD normalization and that inferred from the
RSVP is absorbed into the calibration of the variability-
based mass estimates. Therefore, so long as the range of
frequencies used to estimate ς2 are similar to the calibra-
tion discussed here, there should not be any systematic
biased introduced. However, systematic errors may arise
when the range of frequencies probed by a lightcurve is
different from the lightcurves analyzed in this work.

To assess the impact of mischaracterizing the PSD
slope we fit a OU process to the Kepler lightcurve for
Zw 229-15 from Q8. This lightcurve is nearly continu-
ously sampled every 30 minutes for 67 days. For the full
lightcurve we derive a value of ς2opt = 2.96 ± 0.22 × 10−3

fraction2 / sec. We also down-sampled the lightcurve to
have a cadence of 1 day; the down-sampled lightcurve
samples a range in frequency space that is about two
orders of magnitude narrower than the full lightcurve.
For the down-sampled lightcurve we derive a value of
ς2opt = 8.97 ± 1.89 × 10−3 fraction2 / sec. This sug-

gests that for PSDs that decay steeper than 1/f2 the
RSVP will overestimate the amplitude of high-frequency
in lightcurves that sample narrower frequency ranges. In
particular, for a PSD that decays as P (f) ∼ 1/f3 the
RSVP will overestimate the high-frequency variability by
a factor of ∼ 3 when the sampled frequency range is re-
duced by a factor of ∼ 100, resulting in an underestimate
of MBH by a factor of ∼ 1.7. As it is unlikely that for
most applications the frequency ranges probed by AGN
lightcurves will vary by more than two orders of magni-

tude, it is doubtful that systematic errors in MBH larger
than a factor of ∼ 2 will be introduced by incorrectly
assuming the OU process model when the true PSD is
steeper.

5.2.2. Comparison with Mass Estimates Derived from
Other Scaling Relationships

Mass estimates derived from the various scaling rela-
tionships have their advantages and disadvantages. For
the host galaxy scaling relationships, they can be used
to obtain MBH estimates for both active and inactive
galaxies using a single-epoch measurement, so long as
the active nucleus can be separated from the host emis-
sion. However, this can be difficult to do for bright AGN.
Moreover, their primary disadvantage is that the evolu-
tion in the scaling relationships, including the amplitude
of their scatter, is currently poorly understood. This cur-
rently hinders their use as a MBH estimate beyond the
local universe.

Mass estimates derived from the broad emission lines
have the advantage that they can be estimated from a
single-epoch measurement. In addition, they can in prin-
ciple be employed even at high redshift, as there is good
reason to assume that the scaling relationship that they
are based on does not exhibit significant evolution. This
assumption is based on the fact that the scaling rela-
tionship between luminosity and broad line region size is
driven by photoionization physics, and should not change
with redshift unless certain characteristics of the broad
line region change with redshift. The fact that AGN have
surprisingly uniform spectra across a broad range of red-
shift argues that evolution is not a significant source of
bias for these mass estimates. One of the disadvantages
of these mass estimates is that they are difficult to obtain
for AGN with either weak or nonexistent broad emission
lines. Another disadvantage is that the scaling relation-
ships involving the MgII and CIV lines are not as well
understood, and involve extrapolation to regions of the
SED parameter space beyond the region occupied by the
AGN that they are calibrated with. This is a concern as
Hβ redshifts out of the optical at z & 1, and many in-
vestigators turn to MgII and CIV at these redshifts. And
finally, the line width measurement relies on accurately
separating the emission line from the surrounding spec-
tral features, which can be difficult and lead to biases in
low S/N spectra (e.g., Denney et al. 2009, 2013).

The X-ray RSVP based MBH estimates help to bal-
ance out some of the pros and cons of the other scaling
relationships. Because the X-ray RSVP scaling relation-
ship has a completely different physical origin than the
others, they offer a valuable cross-check against potential
systematics. The disadvantages of the ςX -based MBH es-
timates include the fact that they may not be valid for
obscured AGN or those radiating below L/LEdd ∼ 10−3.
The X-ray ς2X can be a more expensive measurement than
σ∗ or the broad line mass estimates in terms of observ-
ing time. For a MBH ∼ 107M⊙ AGN the break time
scale occurs at τH ∼ 1 day (González-Mart́ın & Vaughan
2012), and thus the ς2X can be measured from a single
long-look observation, depending on the orbit of the X-
ray observatory. However, at higher masses a monitoring
campaign is likely the only way to sample the 1/f2 part
of the PSD above the Poisson noise, which is needed in
order to measure ς2X , thus requiring more observations
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than the single-epoch estimators. However, the X-ray
RSVP MBH estimates have several advantages relative
to the other scaling relationships. The ς2X–based mass
estimates can be used for AGN regardless of how diluted
they are in the optical by their host galaxies. In addition,
it is not necessary to calibrate different scaling relation-
ships, as needed for the broad emission lines. And finally,
perhaps the strongest advantage is that the X-ray RSVP
is a simple and clean quantity to estimate, and does not
require separating out the feature of interest through a
decomposition, as is necessary to measure the properties
of a host galaxy bulge or an emission line width.

It may appear that it is not possible to obtain MBH

estimates from ς2X for faint AGN or those with only a few
epochs in their lightcurve, as the 1/f2 part of the PSD
may never appear above the Poisson noise level. In this
case the uncertainties on ς2X would be so large as to dom-
inate the statistical scatter in the mass estimates. How-
ever, even in this case it is still possible to use the X-ray
lightcurves for a large sample of AGN to obtain an esti-
mate of the distribution of MBH , and consequently the
black hole mass function. This is because the variabil-
ity information in lightcurves for large numbers of AGN
can be pooled together to provide meaningful constraints
on the distribution of ς2X , and therefore on MBH , even
though the values of ς2X for any individual AGN may
be poorly constrained. Hierarchical modeling provides
a statistical framework to estimate the black hole mass
function in this situation (e.g., Kelly & Merloni 2012).
This is important as it implies that even X-ray monitor-
ing campaigns that only obtain several epochs on time
scales ∆t . 1 month for some area of the sky can still ob-
tain meaningful constraints on the black hole mass func-
tion through the ensemble variability, thereby providing
an important tool for studying black hole growth. This
same argument may apply to the optical lightcurves as
well, which, in spite of their larger statistical scatter with
respect to MBH , may provide meaningful constraints on
MBH demographics for large time-domain samples of
AGN.

5.3. Connection with the Accretion Flow

In order to lend some insight into what drives the X-
ray RSVP correlation with MBH , we transform the units
of ς2X to be with respect to the Keplerian frequency of
the accretion disk, ΩK . The disk orbital time scale is

tφ = Ω−1
K ∝ MBH

(

R

RS

)3/2

, (31)

where RS is the Schwarzschild radius. The dependence of
ς2X on MBH is shown in Figure 10, after transforming ς2X
to be in units of fractional variance per disk orbital time
scale. Because most of the physically relevant time scales
in the disk are proportional to Ω−1

k , the dependence of ς2X
on MBH would be the same if we had used, say, the disk
thermal time scale. After transforming ς2X to be in units
of fractional variance per disk orbital time scale, the cor-
relation with MBH disappears. This suggests that the
tight anti-correlation between ς2X and MBH is a manifes-
tation of the fact that the fractional variability generated
per disk physical time scale on time scales ∆t ≪ τH is
independent of MBH . The residual scatter in the X-ray
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Fig. 10.— The MBH–ς2X relationship, expressed in terms of the

accretion disk Keplerian frequency, tφ = Ω−1
K

. For clarity we have

omitted the AGN with only upper limits on ς2X . When the X-
ray RSVP is expressed in terms of fractional variability per disk
orbital time scale, there is no evidence for a trend with MBH . This
suggests that for AGN the fractional variability in the X-rays per
unit disk orbital time scale is independent of MBH with an intrinsic
scatter of a factor of ∼ 2.

RSVP at fixed MBH may reflect variations in the loca-
tion of the X-ray emitting region in terms of RS , black
hole spin, the disk scale height, or the viscosity of the
accretion flow. Some of the residual scatter could also
be due to deviations in the high-frequency PSD shape
from our assumption that P (f) ∝ 1/f2. There is no ev-
idence that the residual scatter in ς2X is correlated with
the Eddington ratio, implying that the dependence of ς2X
on MBH is not simply a reflection of the dependence of
τH on MBH , as τH is correlated with both MBH and
L/LEdd (e.g., McHardy et al. 2006). Similar conclusions
were reached by Ponti et al. (2012) with regard to the
X-ray excess variance.

The optical emission is emitted much further out than
the X-ray emission; recent microlensing investigations
imply that the optical radiation is generated at ∼ 50–100
gravitational radii, while the X-rays are generated from
within several gravitational radii (Morgan et al. 2012).
In addition, the optical emission is thought to be ther-
mal radiation from an optically thick geometrically thin
accretion disk, while the X-ray emission comes from an
optically thin corona of hot electrons. As seen in Figure
9 the amplitude of optical RSVP (corresponding to time
scales of ∼ days) is uncorrelated with the X-ray RSVP
(corresponding to time scales of ∼ seconds). This sug-
gests that the optical variability on time scales of ∼ days
is not primarily driven by reprocessing of X-ray emission,
but instead is likely driven by processes in the disk local
to where it is emitted.

The optical RSVP is more tightly correlated with lumi-
nosity than either MBH or L/LEdd. Standard thin accre-
tion disk models assume that the disk is optically thick
in the height-direction, implying that the disk should
roughly radiate locally as a blackbody. If the accretion
disk radiates as a blackbody at a radius R, then the disk
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temperature at R can be derived by equating the dissipa-
tion rate per unit face area of the disk to the blackbody
flux (e.g., Frank et al. 2002):

T (R) ∝

(

MBHṀ

R3

)1/4

. (32)

Here, Ṁ is the accretion rate. Under these assumptions,
most of the emission at a characteristic wavelength λ is
coming from a radius

R ∝ M
1/3
BHṀ1/3λ4/3. (33)

Noting that the disk orbital time scale is τorb ∝

R3/2M
−1/2
BH and assuming L ∝ Ṁ , we find

τorb ∝ λ2L1/2. (34)

Because many other physically relevant time scales are
proportional to τorb, the L1/2 scaling holds for a va-
riety of time scales. In particular, for an α-disk
(Shakura & Sunyaev 1973), the disk thermal time scale
is ttherm ∝ torb/α where α is the standard viscosity pa-
rameter.

Similar to the X-ray RSVP interpretation, if we as-
sume that the fractional optical variability per disk or-
bital time scale is constant, then Equation (34) implies
that ς2opt ∝ L−1/2 when the optical RSVP is expressed
in units of fractional variability per second. This scal-
ing is in excellent agreement with what we find empir-
ically in Equation (29). Therefore, our empirical trend
between the optical RSVP and luminosity is consistent
with an interpretation where the disk emits locally as
roughly a blackbody, and the fractional variability emit-
ted per disk orbital or thermal time scale is constant.
Within this interpretation, the additional scatter in ς2opt
could be caused by variations in the location and size of
the region emitting optical radiation at a characteristic
wavelength λ, and by variations in the viscosity α. Part
of the residual scatter may also be caused by deviations
in the high-frequency PSD logarithmic slope from our
assumed value of −2.

6. SUMMARY

In this work we investigated correlations involving the
amplitude of short time scale AGN optical and X-ray
variability and black hole mass, luminosity, and Edding-
ton ratio. In summary:

• We presented a new Swift lightcurve for PG
1426+015, the AGN with the highest estimated
black hole mass obtained from either reverberation
mapping or dynamical modeling, sampling time
scales ≈ 2 days to ≈ 60 days.

• We presented a new Bayesian statistical technique
for measuring variability parameters directly from
a lightcurve of photon counts for arbitrary sam-
pling. The technique is based on the likelihood
function of the measured lightcurve, and thus ef-
ficiently uses all of the information in the data.
This technique will be useful for measuring variabil-
ity parameters for faint sources as the X-ray count
rates do not need to be binned to obtain Gaussian

statistics in the lightcurve; such measurements will
enable X-ray variability based black hole mass esti-
mates for AGN over a broader range of luminosities
and redshifts.

• We analyzed both X-ray and optical archival
lightcurves for a sample of 39 AGN, measuring the
normalization of the high-frequency part of their
PSDs.

• We find that the normalization of the high-
frequency X-ray PSD is tightly anti-correlated with
MBH , with no residual trend with Eddington ratio.
This anti-correlation is consistent with previous
work that has found that the X-ray excess variance
is inversely proportional to MBH . We also find
that this ς2X–MBH scaling relationship can be used
to obtain MBH estimates from the high-frequency
X-ray variability with ≈ 0.38 dex precision relative
to the literature values of MBH . The ς2X–MBH

trend implies that the high-frequency fractional X-
ray variability per disk dynamical time scale is in-
dependent of MBH and L/LEdd.

• We find that the amplitude of optical variabil-
ity on time scales ∼ days is anti-correlated with
MBH , L/LEdd, and L, with the tightest trend be-
ing with luminosity. We quantified the trends with
MBH and L as ς2opt ∝ M−0.52±0.13

BH and ς2opt ∝

L−0.43±0.06. We find that estimates of MBH based
on the optical variability scaling relationship would
have a precision of ∼ 0.6 dex relative to the litera-
ture values of MBH . While this is not as precise as
other scaling relationship, it still may provide rea-
sonable estimates of MBH demographics for large
samples of AGN. In addition, the optical variabil-
ity scaling relationship exhibits an additional trend
with luminosity at fixed mass, and therefore it may
be possible to obtain MBH estimates with better
precision as a function of both ς2opt and L; future
work using an unbiased sample of AGN is needed
to investigate this. The optical variability trends
found here will provide an important foundation
for interpreting AGN optical variability in the era
of Pan-STARRS and LSST.
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