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Abstract 

wrge grid-digital terrain data sets used in scientific visualization, G/S 
and training & simulation applications are far too complex to be ren­
dered at interactive frame rates as a whole, and easily exceed available 
physical main memory capacity. Therefore, to avoid excessive pag­
ing in virtual memory, the terrain data must be maintained on disk 
and dynamically loaded into main memory as required by the render­
ing algorithm. Furthermore, the elevation data must be organized in 
a multiresolution triangulation framework to allow efficient rendering 
at different levels-of-detail. In this paper, we propose novel clustering 
algorithms and data structures to map multiresolution terrain data to 
external memory such that dynamic loading (paging) of elevation data 
at varying level-of-detail is very efficient and minimizes the number of 
page faults ( 110 ). 

1 Introduction 

Interactive visualization of very large scale terrain data in scientific vi­
sualization, GIS or simulation & training applications is a hard prob­
lem. Because the grid digital terrain elevation models are not only too 
large to be rendered in real-time but also exceed physical main memory 
capacity, traditional in-memory multi-resolution triangulation and ren­
dering techniques do not provide a sufficient solution. Relying only on 
virtual memory and the operating system's paging mechanism does not 
sufficiently take into account spatial as well as level-of-detail (LOD) 
relations in a multi-resolution triangulation framework. For render­
ing large terrain from out-of-core, the multi-resolution data structure 
and rendering algorithm themselves must provide an efficient paging of 
LOD data from disk. 

In [8] several different multidimensional access methods and spatial 
indexing structures are discussed. However, those methods are not very 
suitable for terrain data. Vertices in terrain data cannot be physically 
clustered only based on their spatial location but must also be clus­
tered based on the LOD and the triangle mesh connectivity. For similar 
reasons, the clustering technique presented in [5] that minimizes the 
external path length for disk based data structures is not directly appli­
cable to multi-resolution terrain data. Our approach is to incorporate 
the LOD (geometric approximation error) of vertices into the process 
of page mapping, integrating three constraints: space constraint, vertex 
dependency constraint and the LOD constraint. 

As main contributions of this paper we propose novel clustering al­
gorithms and data structures to map terrain data to secondary memory 
(disk blocks) such that dynamic loading (paging) of elevation data is 
very efficient and minimizes the number of page faults (I/O). The multi-

resolution triangulation framework we use is a hierarchical quadtree 
based terrain triangulation method. 

The paper is organized as follows: related work is discussed in Sec­
tion 2, in Section 3 our clustering techniques are introduced, the phys­
ical data file storage structure is given in Section 4, in Section 5 we 
present experimental results, and Section 6 concludes the paper. 

2 Related Work 

2.1 Multi-resolution triangulation 

Many mesh simplification and multi-resolution triangulation methods 
have been developed over the last decade. We refer to the literature for 
overviews on general mesh simplification and multi-resolution model­
ing [9, 4, 14] and only point out closely related multi-resolution terrain 
triangulation methods here. 

For grid-digital terrain data sets hierarchical quadtree [12, 16] or 
bin-tree [6, 3, 17, 7] based multi-resolution triangulation methods have 
shown to be exceptionally efficient. These methods all define the same 
class of triangulations on a regular rectilinear grid of points but differ 
in algorithms, data structures and error metrics used to efficiently gen­
erate and render an adaptively triangulated terrain surface. We adopt 
the notion of a quadtree based triangulation as in [16] that uses the de­
pendency relation presented in [12] to guarantee crack-free conforming 
LOD triangulations. Figure 1 shows the basic recursive triangulation of 
the quadtree hierarchy. 
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Figure 1 : Two-stage subdivision of the hierarchical quadtree triangulation 
shown in a), b) and c). An adaptive conforming triangulation example shown in 
d). 

Figure 2 shows the dependency relations that have to be satisfied 
when generating an adaptive triangulation. If a vertex is selected for 
a particular LOD triangulation then also the vertices pointed to by the 
dependency graph have to be selected to guarantee a conforming trian­
gulation. Note that these dependencies always propagate from finer to 
coarse grid resolutions. 

The object space error metric o used in this paper is the vertical dis­
tance between corresponding vertices in the original and the simpli­
fied terrain surface. For view-dependent triangulation and rendering an 
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Figure 2: Parent-child dependency shown in a) and c), neighboring vertex 
dependency shown in b) and d). 

image-space error metric p is used which is a perspective projection of 
8. 

2.2 Visualization from external memory 

While efficient out-of-core algorithms and data structures have been 
studied in the literature [2, 1] and applied to some extend in scien­
tific visualization (see special issue journal [15]), only little work has 
been done for multi-resolution terrain rendering from external memory. 
In [16] a multi-resolution terrain quadtree is maintained in an object­
oriented database for efficient out-of-core access, however, the physical 
clustering is mostly left to the database system. In [10] the terrain data 
is partitioned and clustered into square tiles without taking any LOD 
information into account. Furthermore, this approach does not cluster 
data into fixed size disk blocks. In [13] the multi-resolution terrain tri­
angulation hierarchy is linearized into an array and a memory-mapped 
file mechanism (supported by the operating system) is used to provide 
efficient out-of-core access. The main drawbacks are that the terrain 
data is only clustered on disk with respect to the linearization of the 
triangulation hierarchy and that the storage cost is comparatively high. 

3 Clustering Algorithms 

In interactive terrain visualization, whether or not a vertex or triangle 
is rendered not only depends on its spatial location with respect to the 
current view frustum (space constraint) but also is determined by its 
approximation error and a given image- or object-space error threshold 
(LOD constraint). Considering the adaptive triangle mesh refinement, 
it is very likely that not all vertices within a query window (i.e. the 
view frustum) are required for rendering. For view-dependent terrain 
triangulation and rendering only vertices with a projected image-space 
error p larger than a user defined threshold are needed. To achieve a 
conforming triangulation additional vertices may have to be selected 
(triangulation dependency constraint). 

If we want to reduce terrain access time from external memory we 
must avoid loading too many vertices which are not used for rendering. 
To satisfy the space constraint terrain data can be organized in a spatial 
index structure. However, within the spatial region of interest vertices 
with projected image-space error p below the given threshold should 
not be loaded from disk. Previously this was only addressed by order­
ing terrain data by level within the hierarchy. Unfortunately the error of 
a vertex cannot be expressed by its level information precisely. Further­
more, p is view-dependent and cannot be used for clustering vertices. 
However, p is strongly related to the object space approximation error 
8 which can be precomputed. The LOD constraint can thus be satisfied 
partially by grouping vertices on disk with respect to 8. 

As shown in Figure 3, suppose each page can hold 21 quadtree 
nodes. We can cluster vertices in set A, a small balanced sub-quadtree, 
into one page (tiling strategy). Thus the error variation among vertices 
is ignored. Another way is to cluster sets B, C, D, E into one page of 
the same size. This scheme not only aims at spatial clustering but also 
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limits the error variation within one page. Accessing all vertices with 
error greater than 70, the first approach loads 8 pages (page of A and 7 
more pages just below A) while the second method only loads one page 
(containing the relevant sets B, C, D, E). 

~---------~----------~ 
A 

I 

Figure 3: Clustering of quadtree nodes with associated object space error 8, 
and page capacity of 21 nodes. Set A contains 21 nodes representing a complete 
three-level subtree of the quadtree hierarchy. Sets B, C, D and E together 
represent a more flexible clustering of 20 nodes. 

Based on the above observations we propose clustering techniques 
for quadtree based multiresolution terrain triangulation incorporating 
spatial location, 8 values and dependency relation to minimize disk ac­
cess times and page faults. 

3.1 Basic clustering technique ( Cbasic) 

Let us first define some notations that we will use in the remainder of 
the paper. 

Node is a quadtree node storing five vertices (Center, West, South, East 
and North) as shown in Figure 4. 

Evenness E is a measure of variation of object space error 8 among a 
set of nodes or vertices. 

Primitive element (PE) is a set of nodes with similar object space er­
rors, satisfying some evenness threshold. Each PE is a small com­
plete quadtree, and for storage efficiency we define the minimal 
PE to be a two-level quadtree consisting of five nodes. 

Linker is the pointer from a parent PE' s leaf node to the child PE' s root 
node (see also Figure 6). Intra-linker connect two PEs within the 
same page, and inter-linker connect PEs between different pages. 

Page height is the total number of pages to be visited from the root to 
load a set of nodes or vertices. 
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Figure 4: A, B, C, and Dare quadtree nodes. Each node is associated with 5 
vertices: Center, West, South, East and North 

Intuitively, given an evenness threshold c: we can partition the com­
plete terrain quadtree into a set of PEs and map this set to secondary 
memory pages. However, this mapping cannot be done arbitrarily. The 
idea of this mapping is to minimize the page height as well as the total 
page number for the entire data set. The following issues have to be 
considered: 



(i). What is the optimal size of a PE? We have defined the lower bound 
above, and the upper bound is clearly the size of an external mem­
ory page. 

(ii). How can the page height be minimized for loading a set of vertices 
in a given region at a given LOD? 

(iii). How can the terrain quadtree be mapped to a minimum number of 
pages? 

Studies have shown that optimizing (ii) and (iii) is NP-complete even 
all PEs have the same size. It can be reduced to the bin-packing problem 
easily. The detailed proof can be found in [5]. 

To address point (i) we grow PEs according to an evenness threshold 
c:. Starting with a minimal PE we grow level by level until the even­
ness E of the leaf nodes of the current PE exceeds c or the size of the 
PE exceeds the current page size. Based on the actual traversal of the 
multiresolution terrain quadtree we introduce the following heuristic 
for point (ii). If a node is visited and selected for triangulation its chil­
dren and neighbors will have the highest possibility to be selected too. 
Therefore, we should merge PEs which are close in space and LOD into 
the same page. To address point (iii), if the PE stored in a page cannot 
be grown anymore and the remaining free page memory is larger than 
a minimal PE, we start a new PE in the same page. This strategy guar­
antees that the wasted memory per page is not larger than the size of 
a minimal PE (a negligible fraction for reasonable page sizes). The 
pseudo-code of the algorithm is given in Figure 5. 

Each time before generating a new PE, the current disk page is 
checked whether it has enough room for a new PE or not. If not, the 
current page is finished and a new empty page becomes the current page 
to be filled. A new minimal PE is generated starting at an unprocessed 
node from a priority queue, or if it is empty, from the set of unpro­
cessed quadtree nodes. Siblings of this PE root node are pushed into 
the priority queue Qpage· The current PE is grown level by level until 
the current page is full, the leaf level of the quadtree is reached, or the 
evenness threshold c is exceeded. Upon completion of a PE its child 
nodes are pushed into Qpage. 

The priority queue Qpage stores the potential root nodes for new 
PEs within the same page. Qpage is ordered based on the nodes' ob­
ject space errors in relation to the current page's first PE. This strategy 
assures that PEs in the same page are not only close in space but have 
also little difference in object space error. Upon completion of a page 
this priority queue is emptied. 

Furthermore, to preserve memory locality for efficient retrieval it is 
desirable that consecutive pages on disk store vertices and nodes closely 
related in space and LOD. We implement this by top-down depth-first 
traversal of the terrain quadtree to get the root node of the first PE of 
each page. Another advantage of the depth-first traversal is that we do 
not need to hold the entire quadtree in main memory. Instead, only the 
nodes located along the same path from the root node to the current 
page are maintained in main memory, making this a real out-of-core 
pre-process. 

Finally, let us define the evenness E used above for PE generation. 
We define absolute Eabs and relative evenness Erzt as follows: 

(b"max - b"min) 

b"rnax 

(<>node - <>child) - (c5root - b"node) 

(1) 

(2) 

For a PE, c5max and <>min are the max/min object space errors of all 
unprocessed nodes just below of the PE. c5node is the object space error 
of one node below the current PE, and c5child is the min object space 
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Algorithm Generate-Primitive-Element( quad-tree t) 
{ 

} 

if(there is no room in the current page for a new primitive element) 

return (the current page is full); 

Node n = Get-Primitive-Element-Root(t) ; //start a new PE. 

if(n==NULL) 
return (the whole quad-tree is finished); 

Construct a minimum PE c rooted at n; 

store n's unprocessed siblings into the priority queue q 

as the potential roots for the next new PEs. 

while(check-next-level(t, c)) 

//the current primitive element is growing 

expand the PE c to the next level; 

store e's children into the priority queue q 

as the potential roots for the next new PEs; 

return c; 

Algorithm Get-Primitive-Element-Root( quad-tree t) 
{ 

} 

if(the priority queue q is not empty) 

return (dequeue(q)) ; 

If there is( are) node(s)in t which is not processed 

return the first node searched by Depth-first-search; 

else 

return NULL; 

Algorithm check-next-level( quad-tree t, PE c) 
{ 

} 

if (the current level of c is leaf level) 

return false; //stop the current PE. 

if(there is no room in the current page for the next level) 

return false; //stop the current PE. 

if(the next level is leaf level)//load leaf level anyway. 

return true ; 

if(the evenness of the next level of c meets the requirement) 

return true; //grow to the next level. 

return false ; //stop the current PE 

Figure 5: Pseudo-code for generating Primitive Elements 

error of the four children of this node. c5raot is the root node object 
space error of the current PE. 

Eabs measures the evenness among the nodes of the next level below 
the current PE. If Eabs is equal or less than a given threshold c then the 
current PE is grown by one more level. The relative evenness Eru 
measures whether a node in the next level is closer to its children or 
closer to the root of the current PE in terms of object space error. If 
Erzt of all nodes just below the current PE is equal or less than zero 
then the current PE is grown by one more level. 

3.2 Optimized clustering technique (Capt) 

We observed from experiments as shown in Figure 7 that around 25% or 
more of the vertices in any frame are selected not based on their LOD 
but only due to triangulation dependency constraints (see Figure 4). 
The parent-child dependency enforces that when a vertex from a child 
node is selected also vertices from the parent node are selected, and is 
accounted for in the above clustering technique. However, the neigh­
boring dependency that propagates vertex selection to sibling nodes is 



not incorporated. We introduce a subtle change in the clustering strat­
egy here to improve clustering by grouping sibling nodes. 

As shown in Figure 6 a minimal PE now includes four sibling nodes, 
each being the root of a small two-level quadtree. Growing of PEs with 
this optimized clustering method Capt is similar to the basic method 
Cbasic discussed above, all child nodes of the current leaf nodes of the 
PE are added level by level. 

:~ .. 
; y 1 '<1 Linker 

~\ 
; ' 1 °" 

Cnpt 

Figure 6: Logical clustering structure of similar size PEs according to strate­
gies Cbasic and Capt· In Cbasic a PE is a small complete quadtree with n 
levels with each leaf node having 4 linkers pointing to the respective child PEs. 
In Capt a PE contains 4 sub-quadtrees of n - 1 levels of sibling nodes with each 
leaf node having only 1 linker to the PE containing its 4 children. 

There are two advantages to the Capt clustering strategy. First, it re­
duces the number of linkers between PEs to 1/4, thus reducing storage 
cost significantly. Second, in 50% of the cases the neighboring depen­
dency relation points to within the same PE, thus reducing I/O cost for 
loading PEs to resolve triangulation dependencies. Our experimental 
results in Section 5 show the effect of these two advantages and the re­
sulting performance increase of this subtle change from Cbasic to Capt· 
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Figure 7: Shows the percentage of vertices which are loaded due to their 
screen projection error p exceeding the threshold T = 0.015 over a test-run of 
12000 frames. Thus about 20%, and up to 60% in the worst case, are loaded due 

elevation range is kept constant for all nodes within the same PE due to 
the small variation). 

Each node in the leaf level of a PE contains 4 linker elements for 
Cbasic, respectively 1 for Capt· The leaf nodes of the entire terrain 
quadtree do not store any linker pointers. For I/O efficiency, the object 
space error and a bounding box of the child PE are both stored with the 
inter-linker element in the parent PE. Therefore, pages are never loaded 
in vain only to check for LOD or visibility. On the other hand, the intra­
linkers only store a pointer to the child PE because accessing the child 
PE within the same page does not cause any additional I/O cost. 

The nodes of each PE are mapped to the disk page ordered by level. 
Considering redundancy, only three vertices (Center, West and North) 
of each node are actually stored with the node itself (see also Figure 4). 
The other vertices East and South are stored in sibling nodes. Only at 
the boundary of the terrain data set we actually store all vertices with a 
node to avoid degenerate nodes along the boundary. Since selection of 
any non-center vertex causes both adjacent nodes to be loaded due to 
dependency constraints as shown in Figures 2 and 4, this storage layout 
will eliminate any vertex storage redundancy and does not increase I/O 
cost. For example, in Figure 4 if the East vertex V of node A is to be 
loaded then also the Center vertex of node B is required and thus node 
Bis loaded which actually stores the initially requested vertex V (as its 
West vertex). 

Each vertex only stores the terrain elevation value and its object 
space error 6. 

The entire data file consists of a file header and a set of disk pages as 
shown in Figure 8. The file header contains the following information: 
the page size, the total number of quadtree levels of the entire terrain 
data set, the resolution of the elevation values, the geographical range 
of the terrain data, the elevation values of the bounding box comers, the 
information about the top-level quadtree root node, and the four point­
ers to the child PEs of the root node for Cbasic (or one pointer for Capt). 

Each page stores the number of PEs as the only meta information. 

I File header (512BH 

I Page 1 I 
1Page21 I 
I Page al 

Datafile 

I Page hearder ('I,, 
[E[jJ // 

PEk 

Page 

I PE hearder (98) I 
!Node 1 I 
I Node 21 

I Vertices I 
lunker(s) I 
Node 

Figure 8: Logical storage layout of data file. A Node contains at least the 
vertices West, Center and North (and also South, East for boundary nodes). PEs 
contain 4 (Cbasic) or 1 (Capt) linker elements. 

to triangulation dependencies only. 5 Results 

4 Storage structure 

As shown in the Figure 6, each PE contains one (Cbasic method) or 
four (Capt strategy) small complete quadtrees. Each PE stores infor­
mation on its spatial location (its SW comer), number of quadtree lev­
els it covers, and boundary type (touches none, the East, South, or both 
boundaries). Furthermore, a PE stores the maximum object space error 
and a bounding box of all its descendant vertices. Conservative bound­
ing boxes of nodes are dynamically computed at rendering time based 
on their position in the quadtree within a PE (only geographical extent, 
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The main objectives of the conducted experiments are to show the ef­
fectiveness of our clustering techniques and to determine the influence 
of the adjustable parameters. For this we implemented a simple ter­
rain viewer that simulates a series of user operations such as changing 
the LOD parameter or viewing area. The viewer operates on our ex­
ternal memory terrain data structure and dynamically loads elevation 
data from disk as required by the LOD or viewing parameters. While 
not optimized for speed, the triangulation and rendering algorithm in­
corporates simple view-dependent vertex selection as outlined in the 
following section. 

For comparison, we also implemented the quadtree-based indexing 
scheme and file mapping of [13] (with embedded white quadtree). Ad-



ditionally, we implemented a hierarchical tile partitioning with tiles of 
(2k + 1) x (2k + 1) vertices and (2k) 2 child nodes similar to the VGIS 
approach [ 11]. 

The following three performance aspects are studied: 

(i). File sizes of entire data set. 

(ii). Number of page faults (i.e. how many pages are accessed and 
retrieved, total 1/0 cost). 

(iii). Loading and processing times of pages (relative 1/0 cost with re­
spect to total rendering cost). 

5.1 Experimental environment 

The hardware configuration is a one-processor 1.5GHz Pentium IV PC 
with the Microsoft Windows 2000 operating system and 1.5GB of main 
memory (actually used main memory for elevation and triangulation 
data was 20MB). 

The source terrain data used for our statistical experiments is 
(213 + 1) x (213 + 1) (67M vertices) ranging from latitude 35°, 

longitude -120° to latitude 41°49' 37", longitude -113°10
1 

20" 
at 250 meters horizontal and 1 meter vertical resolution. (From 
http://edc.usgs.gov/glis/hyper/ guide/l _dgr _demfig/nj 11. html). 

Elevation data and object space errors o are 4-byte values, and the 
bounding box occupies 8 bytes. In our implementation of a tiled terrain 
partitioning and the simulation of the approach presented in [13] each 
vertex occupies 16 bytes (compared to 20 bytes in [13]). 

The basic algorithm we use for terrain mesh generation and render­
ing is the recursive top-down vertex selection algorithm from [16]. Our 
implementation is not optimized for rendering speed but rather focused 
on efficient 1/0 and dynamic terrain loading from external memory. 
The viewer application incorporates view-dependent vertex selection 
that includes view-frustum culling according to the boundfo.g box in­
formation of quadtree nodes, and an screen projection error threshold 
T. From the geometric approximation error o, the image-space error is 
computed by 

0 
p= ) llp-ell2 

(3) 

with p being the vertex position and the viewpoint position e. For 
back-tracking we use p = 11 ~I at Center vertices of nodes with p-e 2-r 

bounding sphere radius r. 
We implemented our approaches with clustering strategies Cbasic 

and Capt as discussed in Section 3. They are represented by PEl and 
PE2 respectively in the below figures. With LP we denote the embedded 
quadtree layout and indexing proposed in [13], and Tile denotes a reg­
ular hierarchical terrain partitioning. All approaches are implemented 
in the same framework using the same main memory rendering algo­
rithm and only differ in the indexing and physical data layout on disk. 
We believe this provides a fair comparison of page faults and other 1/0 
measures such as data locality or vertex utility rate. 

For page loading experiments we limited the main memory us­
age of our test application to 20MB for storing elevation data, 
and pages are freed according to a least-recently-used caching 
strategy. If not specified otherwise the viewpoint is at 20000 
meters altitude with a POV of 45°. For fly-through tests the 
flight path consisted of four straight line segments between points 

(38°24
1 

43"' -116°35
1

11''), (38°24
1 

43"' -119°55
1 

li"), (35°4
1 

43"' 
-119°55

1 

ll") and (35°4
1

48", -116°35
1 

ll") in latitude, longitude 
coordinates. The fly-through test rendered 12000 frames in total. 
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Page size(bytes) LP Tile Cbasic Co pt 

1024 l.33GB NIA 0.711GB 0.518GB 

2048 l.33GB 2.00GB 0.662GB 0.5GB 

5120 l.33GB 1.25GB 0.606GB 0.576GB 

Table 1 : File sizes of different clustering approaches for varying page sizes. 
Our clustering techniques Cbasic and Copt used an absolute evenness threshold 
ofE: = 0.2. 

5.2 Experimental results 

5.2.1 Data file size 

In Table 1 we compare the file sizes resulting from different partitioning 
and clustering techniques with respect to different page sizes. For the 
hierarchical Tile approach the file size greatly depends on the page size 
because the tile size is limited by the disk page size, and because the 
occupancy rate is related to the combination of page and tile size. A 
high occupancy rate of 90.3% can only be achieved with a large page 
size of SK that stores a 17 x 17 tile per page. The file size of the LP 
approach is independent of the page size and only depends on the size 
of vertex elements (16 bytes) and the occupancy rate. In comparison, 
the approach in (10] requires 50 bytes per vertex (the 70 bytes reported 
in the paper include some additional information not used in here). 

The file sizes of our clustering techniques and storage layout depend 
to some (minor) extent on the actual page size. That is because of vari­
ations in the sizes of PEs and the number of linkers. Furthermore, since 
the wasted memory per page is at most the size of a minimal PE the oc­
cupancy rate is very high even for small pages and increases with page 
size. 

From Table 1 we can observe that the file sizes of our approach are 
significantly smaller than the other two approaches despite some added 
extra information such as linker elements. Besides the high occupancy 
rate and otherwise compact representation of PE the main reason for 
the space savings is that bounding box information is only recorded 
for each PE rather than for every single vertex. As mentioned in Sec­
tion 4 bounding boxes of nodes are dynamically computed from the PE 
bounding box only at run-time for efficient back-tracking of the top­
down vertex selection algorithm. Note that the error introduced by this 
conservative bounding box measure is very little as shown below. 

First, for the same screen projection error threshold T more triangles 
are generated by our techniques because of the conservative bounding 
box computation. Second, the ratio of extra triangles is no more than 
2.5%. Thus the significant space savings of 50% or more come only 
at the expense of a very slight increase of number of rendered triangles 
per frame. 

The strategy of storing the bounding box information only with spe­
cific elements or nodes cannot be applied to the LP [13] method, in 
particular because the memory mapped file organization does not allow 
array elements of varying size. 

5.2.2 Static I/O 

Figure 9 shows the number of page faults for a static view frustum 
under different screen projection error thresholds r. This test measures 
how many pages have to be loaded from external memory to generate 
an adaptive triangulation satisfying the image-space tolerance r. Our 
Copt clustering strategy achieves best results with fewer page faults for 
any threshold T and saves almost 50% page faults when r is small, 
compared to LP. The LP approach achieves similar results as Cbasic for 
larger threshold values T > 0.05. But Cbasic performs much better 
than LP for small tolerances T < 0.05. 
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Figure 9: Page faults for different screen projection error thresholds T to ren­
der the fixed view centered at (lat: 38°15148",lon: -116°35111") with 
FOVof45°. 

5.2.3 Dynamic I/O 

In this section we report tests of dynamic access to the terrain data 
based on a fly-through sequence as outlined in Section 5 .1 consisting of 
12000 rendered frames. If not specified otherwise, the absolute even­
ness threshold is set to c = 0.2 and the page size is 2KB. 

Figure 10 shows the cumulative number of page faults for each of 
the 12000 frames of a fly-through test. We can observe that also for 
continuously changing viewpoints our clustering techniques show con­
stantly better page fault performance and Capt has about half as many 
page faults as LP. 

-+-PE2 .... PE1 -r-Tile -+LP 

60000 ~-------------~-----! 

50000 
en 

~ 40000 

iil' 
~ 30000 

~ E 20000 
8 

····································································································· ··········j 

: : I 
I 

2000 4000 6000 8000 10000 12000 

frame 

Figure 10: Accumulated number of page faults for a fly-through test with 
12000 frames and T = 0.015. · 

Figure 11 shows the cumulative page faults for different image-space 
error tolerances r. It can be seen that the relative advantages of our clus­
tering techniques are largely maintained for varying thresholds, only for 
large values of r the LP approach reaches the same or better efficiency 
as Cbasic· 

In Figure 12 the cumulative page faults are related to different page 
sizes. We can observe that the page size does not affect the relative 
page fault performance among the different techniques. Our optimized 
clustering technique Capt has constantly fewer page faults than all other 
approaches iITespective of which parameters are changed. The hierar­
chical Tile approach is always the worst. 

In Figure 13 we measured the loading times of pages from external 
memory for the different clustering techniques for a fly-through test. 
Assuming that fixed sized pages require constant loading time it is to 
be expected and shown in Figure 13 that the cumulative loading time 
statistic is strongly related to the cumulative page faults of Figure 10. 
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Figure 11 : Accumulated number of page faults for different screen projection 
thresholds T. 
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Figure 12: Accumulated number of page faults for different page sizes and 
T = 0.015. 

We can observe that Capt and also Cbasic are both more than two times 
faster than the LP technique. Compared to the page faults shown in 
Figure 10, this improved I/O efficiency is achieved by a good physical 
memory locality of the elevation data on disk. From a different view­
point we can say that Cbasic loads 13274 pages within 10 seconds, and 
Capt loads 9677 pages within 7.9 seconds. In contrast, the LP method 
only loads 7200 pages in 10 seconds or 5473 pages in 7.9 seconds. 
The loading times per page for Capt, Cbasic. LP and Tile are 0.76ms, 
0.82ms, 1.13ms and 0.63ms respectively. 
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Figure 13: Accumulated loading times for a fly-through test with 12000 
frames and T = 0.015. 

Figure 14 demonstrates the cumulative time of data retrieving (in­
cluding data loading and processing) for the different clustering ap­
proaches. Here the data processing in run time consists of two sub-
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Figure 14: Cumulative loading and data processing times for a fly-through 
test with 12000 frames and r = 0.015. 

processes: deriving bounding sphere information from bounding box 
information and computing global coordinate ( x, y, z) for each vertex. 
By comparing Figure 14 & Figure 13, we can see that the total retriev­
ing time of using Cbasic or Capt is even less than the pure loading time 
of using LP or Tile. In LP, part of run-time processing can be avoided 
using the data structure proposed in [13]. However each vertex will 
occupy more space, thus increasing page faults. 

Figure 15 shows the dependency of cumulative loading times of a 
fly-through test on the evenness parameter c:. The corresponding cu­
mulative page faults are about 13200 and 9700 for Cbasic and Capt re­
spectively. While the page faults stay similar for different c: the loading 
times change noticeably. From this we can conclude that the evenness 
parameter has some impact on the resulting physical data locality on 
external memory (affecting latency and seek times). Best results have 
been achieved using the absolute evenness threshold c: = 0.2. 
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Figure 15: Cumulative loading times of a fly-through with r = 0.015 for dif­
ferent absolute evenness thresholds c: = 0.1, 0.2, 0.3, 0.5 and using the relative 
evenness (rlt) for Capt and Cbasic clustering strategies. 

In Figure 16 we recorded the number of loaded vertices during the 
fly-through test and compare this to the number of actually selected and 
rendered vertices. Utility rate of total loading vertices by using Capt or 
Cbasic is higher than that of others when T < 0.04. After that, the 
utility rate of LP is slightly better than that of Capt or Cbasic· 

6 Conclusion 

In this paper we present novel clustering algorithms and data structures 
to support interactive large scale terrain visualization from out-of-core. 
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Figure 16: Utility rate of loaded vertices during a fly-through test for different 
screen projection error thresholds r. 

Frame Number #1 #650 #1000 #1321 #2000 

Capt 435 1588 2133 3064 4528 

Cbasic 645 2089 2782 3944 6205 
LP 950 2736 3730 5279 8053 

Table 2: Cumulative page faults of different clustering techniques at different 
frames from the same-route-fly-over sequences, see pictures in Figure 18 

Our clustering techniques allow efficient paging of terrain data at dif­
ferent LOD from disk with minimal number of page faults since our 
clustering techniques are more closely related to space and LOD con­
strained access patterns. From our experiments we can draw the fol­
lowing conclusions: 

1. Capt is the best clustering technique among the tested methods 
under all conditions. 

2. Our clustering techniques make the data file have a better property 
of data locality. 

3. In most cases, by using Capt or Cbasic approach, the total page 
faults (1/0) can be reduced to less than 20% (compared to the 
hierarchical tile structure) or less than 50% (compared to the LP 
algorithm). And the total data loading time can be reduced to less 
than 30% . 

4. Because Capt and Cbasic approaches can reduce the total page 
faults so greatly, more benefits will be gained when the large scale 
terrain visualization applications are distributed. 

To our knowledge this is the first work to address the clustering of 
elevation data into disk blocks according to spatial location as well as 
LOD information. 
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