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Abstract 

Dynamic Power Management (DPM) is an important technique to reduce power consumption in em­
bedded and portable systems. Power hungry devices such as disk drives, network interfaces, and other 
peripheral devices are often designed with multiple power saving states, and control knobs are pro­
vided for changing their power states under the operating system control. DPM strategies are "online" 
strategies since they must make decisions about the timing of transitioning to lower power consumption 
states during idle periods without knowing when the next request for service will arrive. In this paper, 
we present a novel approach to designing adaptive online DPM strategies. This approach dynamically 
learns the probability distribution of idle period lengths from recent request patterns. A probability­
based scheme then uses this information to optimize power saving actions. We present experimental 
results comparing our strategy with various strategies in the literature, including our previous work. 
Our study includes measuring power usage as well as the additional latency introduced from the delay 
in powering back up when a new request for service arrives. Our strategy exhibits the lowest power 
consumption among all the online algorithms. The other algorithms which come close to matching its 
performance in power all suffer at least an additional 40% latency on average. Meanwhile, the algo­
rithms which have comparable latency to our method all use at least 25% more power on average. Thus, 
our probability-based DPM strategy is the most successful algorithm in balancing power usage as well 
as latency incurred. 
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1 Introduction 

The technical focus of the work presented here is on strategies that can be employed by the operating 

system, networking software and to some extent application software in effectively managing power 

usage. Due to constraints on power budgets of electronic systems, Dynamic Power Management (DPM) 

is increasingly gaining importance, as evidenced in the research literature [7, 23, 4, 3, 21, 19, 5, 20], 

as well as concerted industry efforts such as Microsoft's OnNow [13] and ACPI [8]. Significant work 

has been done in the area of DPM in search of strategies that yield the most reduction in power/energy 

with the least amount of runtime computational effort. These include heuristic shutdown policies [18], 

prediction based shutdown policies [7, 23], multiple voltage scaling [4], and stochastic modeling based 

policy optimization [16, 17]. However, there is a lack of formal methodology to evaluate the perfor­

mance of such strategies and to guide the design of new strategies ones. Empirical analysis has been 

done extensively in [11], to compare various DPM strategies in an experimental framework. Although, 

this work gave an experimental foundation for quantitative comparison of various DPM strategies, there 

still is no theoretical foundation for designing DPM strategies. Most strategies are designed using ex­

perimental intuition and are then experimentally evaluated to be effective. In our work, we are trying to 

create a foundation on which to build strategies in a more systematic manner. As discussed in [3], the 

design and analysis of power management policy optimization techniques are still wide open fields of 

research. Our framework for analysis is that of Competitive On-line Computation [1] and most of our 

designs are based on examining the problem in the light of competitive analysis. 

1.1 Dynamic Power Management(DPM) and Competitive Analysis 

System Level Dynamic Power management is an "online" problem in the sense that critical decisions 

must be made before the entire input sequence is available. For the DPM problems we consider, the 

input to the strategy is the length of an upcoming idle period for a device and the decision to be made 

is whether to transition to a lower power dissipation state while the system is idle. For instance, the 

intervals between data transfer requests to a radio subsystem in a packet radio network interface are not 

known in advance. It may not be an effective power reduction strategy to shutdown power to such a 

device as soon as it is detected to be idle. If the idle period is too small, power up cost could surpass the 

energy saved by shutting down the subsystem. On the other hand, it is important to power down for long 
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idle periods when the device is not in use. 

Typically on-line algorithms are evaluated by their competitive ratios [1] which indicate the worst case 

performance of the algorithm over all possible sequences of inputs. The competitive ratio is the ratio of 

the cost of an online algorithm to the cost of the optimal offiine algorithm that has a complete knowledge 

of the input in advance. Competitive analysis has been a powerful tool for proving the efficiency of 

algorithms without having to make assumptions about the input sequence. Competitive ratios for various 

DPM strategies can be found in [9, 18, 19]. However, this analysis is usually very pessimistic, similar 

to lower bound analysis in complexity theory, due to the fact that it is based on the worst case input 

sequence instead of focusing on typical input sequences. For example in the implementations described 

in [11], the simple competitive strategy of [9] seems to out perform many other strategies in practice. 

One way to address this issue is to characterize typical input sequences by a probability distribution 

and optimize the online algorithm for that distribution. This has the advantage that algorithms are tuned 

for the input sequences that are thought to be more typical of those arising in the given application. Of 

course, the success of this method depends on the ability to accurately describe the input sequence by a 

probability distribution. 

There is an extensive set of research work [15, 16, 17, 5, 22] on probabilistic formulation of the DPM 

problem, where the power state changes are modeled as Markov/Semi-Markov processes, and the input 

request arrivals are modeled as well known distributions, Binomial or Poisson, and inter-arrival times 

are then distributed as Geometric, Exponential etc. The formulation is then turned into an optimization 

problem, which is then solved to obtain system parameters to tune the DPM strategy. However, it is 

a strong assumption that inter-arrival times are exponentially or geometrically distributed, especially 

when the arrivals are very much application dependent. With this concern, we use recent trace history to 

learn a probability distribution describing idle period lengths and optimize power management decisions 

based on this distribution. A very appealing feature of this approach is that it makes no assumptions as 

to the form of the probability distribution which generates the idle period lengths. 

1.2 Single Value Predictive Strategies 

Previous work on prediction based dynamic power management can be categorized into two groups: 

adaptive and non-adaptive. Non-adaptive strategies set a threshold on the idle time interval for transi-
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tioning from the active to the sleep state. For multiple state systems, there is a sequence of thresholds 

each of which indicates when to transition to the next lower power consumption state. In either case, 

non-adaptive strategies set these thresholds once and for all and do not alter them based on observed in­

put patterns. Adaptive strategies, on the other hand, use the history of idle periods to guide the decisions 

of the algorithm for future idle periods. There have been a number of adaptive strategies proposed in the 

literature [7, 9, 2, 5]. 

Many adaptive dynamic power management strategies [7, 23, 19, 9, 5, 12] use a sequence of past 

idle period lengths to predict the length of the next idle period. These strategies typically describe their 

prediction for the next idle period with a single value. Given this prediction, they transition to the power 

state that is optimal for this specific idle period length. In the case that their prediction is wrong, they 

transition to the lowest power state if the idle period extends beyond a fixed threshold value. For the 

sake of comparison with other approaches, we shall call these predictive DPM schemes "single-value 

prediction schemes (SVP)". In particular, Chung, Benini and De Micheli [6] address multiple idle state 

systems using a prediction scheme based on adaptive learning trees. Their method has an impressively 

high hit ratio in its prediction. 

One of the chief limitations of the single-valued prediction approach is that it fails to capture uncer­

tainty in the prediction for upcoming idle period length. For example, if a very short idle period and a 

very long idle period are equally likely, these methods are forced to pick a single prediction and pay a 

penalty in the likely event that the prediction is wrong. We address this limitation by using a probability 

distribution to describe the upcoming idle period. The distribution allows for a much richer prediction so 

that the algorithm can optimize in a way that takes the nature of this additional information into account. 

The idea of modeling idle period lengths by a probability distribution leads to two distinct questions: 

1. If the upcoming idle period length will be generated according to a probability distribution known 

to the algorithm, how can this information be used to optimize power consumption? 

2. Given historical data for previous idle periods, how can we use this information to reliably con­

struct a probability distribution describing future idles periods? Note that, this probability dis­

tribution changes dynamically depending on applications running on the system. Hence, this 

probability distribution needs to be learned dynamically as well. 

Our previous work addresses the first of these questions [20]. An algorithm is given which determines 

4 



thresholds to transition from one state to the next given that the next idle period will be generated by 

a fixed, known distribution. Analytical as well as empirical results are used to demonstrate that this 

algorithm does very well when the idle periods follow an a priori known probability distribution. The 

problem of obtaining obtain this probability distribution, however, was left open. 

In this paper, we develop a method to use recent history to form an estimate for a distribution gov­

erning future usage patterns for the device. This method is used in conjunction with the algorithm that 

uses a probability distribution to determine a power management strategy. We test the overall strategy 

empirically using data on file system access patterns obtained from [24]. The results are compared to 

the performance of a variety of other strategies suggested in the recent literature. Our results show that 

our method outperforms other methods in balancing power usage with latency. 

Our experimental framework has Java applet interface which is available on our website [14] for users 

to upload their data and evaluate our algorithms and other known algorithms that we have implemented 

in our simulation framework. 

2 System Model 

We focus on strategies for a single peripheral device whose power is managed by the operating system. 

The device can be in one of the n power states denoted by { s1, ... , sn}. The power consumption for state 

i is denoted by ai. The states are ordered so that ai > a1 as long as i < j. Thus, state s1 is the ready state 

which is the highest power consumption state. 

We are also given from the manufacturer's specification, the transition power PiJ, and transition times 

tiJ, to move from state Si to SJ· Usually the power needed and time spent to go from a higher state to a 

lower state is negligible, whereas the power and time needed to transition to a higher state to lower state 

is high. Thus, we simplify the model by considering only the time and power necessary to power up 

the system. Furthermore, all of the algorithms considered in this paper have the property that they only 

transition to the ready state when powering up and never transition to an intermediate higher powered 

state. As a result, we only need the time and total energy consumed in transitioning up from each state i 

to the ready state. The total energy used in transitioning from state i to the ready state is denoted by ~i. 

We note that in cases where the time and energy used in transitioning to lower power consumption 
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states is non-negligible, they can be easily incorporated by folding them into the corresponding power­

up parameters. This can be done as long as the time and energy used in transitioning down is additive. 

That is, we require that for i < j < k, the cost to go from i to j and then from j to k is the same as the 

cost of going from i directly down to k. 

The input to the DPM is a sequence of requests for service that arrive through time. With each 

request, we are told the time of its arrival and tl:ie length of time it will take to satisfy the request. If 

the device is busy when a new request arrives, it enters a queue and is served on a first-come-first-serve 

basis. In this case, there is no idle period and the device remains active through the time that the request 

is finished. This means that the number of idle periods is generally less than the number of requests 

serviced. Whenever a request terminates and there are no outstanding requests waiting in the system, an 

idle period begins. In these situations, the DPM is invoked to determine to which power consumption 

states the device should transition and at what times. 

If the device is not busy when a new request arrives, it will immediately transition to the ready state 

to serve the new request if it is not already there. In the case where the device is not already in the ready 

state, the request can not be serviced immediately, but will have to incur some latency in waiting for 

the transition to complete. This delay will cause future idle periods to be shorter. In fact, if a request 

is delayed, some idle periods may in fact disappear. Thus, we have an interesting situation where the 

behavior of the algorithm effects future inputs (idle period lengths) given to the algorithm. 

Another interesting phenomenon is that delaying servicing a request will tend to result in lower power 

usage. Consider the extreme case where the power manager remains in the deepest sleep state while 

it waits for all the requests to arrive and then processes them all consecutively. This extreme case is 

not allowed to happen in our model since we require that the strategy transition to the ready state as 

soon as any request appears. However, it illustrates the natural tradeoff which occurs between power 

consumption and latency. See [ 19] for a more extensive discussion of this tradeoff. Our experimental 

results explore this tradeoff for the set of algorithms studied. 

3 Online Probability .. Based DPM 

The Online Porbability-Based Algorithm (OPBA) works as follows: a window size w is chosen in 

advance and is used throughout the execution of the algorithm. The algorithm keeps track of the last w 
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Figure 1. Energy consumption for each state for a four state system. Each state is represented by a line which indicates the 

energy used if an algorithm stays in that state as a function of the length of the idle period. 

idle period lengths and summarizes this information in a histogram. The set of all possible idle period 

lengths (0, 00) is partitioned into n intervals, where n is the number of bins in the histogram. Let r; be 

the left endpoint of the ith interval. The ith bin has a counter which indicates the number of idle periods 

among that last w idle periods whose length fell in the range [r;, n+ 1). The bins are numbered from 0 

through n-1. ro = 0 and rn = oo. 

The last w idle periods are held in a queue. When a new idle period is completed, the idle period at 

the head of the queue is deleted from the queue. If this idle period falls in bin i, then the counter for bin i 

is decremented. The new idle period is added to the tail of the queue. If this idle period length falls into 

bin j, the counter for bin j is incremented. Thus, the histogram always includes data for the last w idle 

periods. Our experimental results include a study experimenting with values for w. Our results show 

that the algorithm is very robust under a variety of different ranges for the window size, w. (See Section 

5). 

Periodically, the histogram is used to generate a new power management strategy. We begin with a 

brief discussion about the offline power management strategy which can be found in greater detail in 

[20]. For each state, we can plot the total energy spent if the algorithm transitions immediately to state i, 

remains in state i for the duration of the interval and transitions to the ready state just in time to serve the 

next request. This energy expenditure is a linear function int, the length of the idle period. See Figure 

1 for a graph showing the energy expenditure functions for a system with four states. 

The optimal offline algorithm which knows the length of the idle period in advance will select the state 

which corresponds to the line on the lower envelope of the curve. This naturally imposes an ordering on 
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the states: the order in which they appear on the lower envelope of the curve. Accordingly, we order the 

states s1, ... , sm, with s1 being the highest power consumption state (the ready state) and the Sm being 

the deepest sleep state. We refer to the discontinuities of the lower envelope by t1, ... tm-1 · These will 

also be referred to as the offiine thresholds. 

Our algorithm will transition from state to state in this order as long as the idle period continues. 

What remains to determine are the times (or thresholds) at which the online algorithm will transition to 

the next state. Since there are m states, m - 1 thresholds must be defined. The th threshold indicates 

when the online algorithm will transition from state i to state i + 1 if a new request has not yet arrived. 

If a new request arrives at any point in the idle period, the algorithm will immediately transition to 

the ready state and the idle period will end. Note that our algorithm only transitions to the ready state 

in response to an incoming request. Some of the other algorithms we consider in our study wake-up 

preemptively in anticipation of an incoming request. Although the preemptive wake-up is not helpful in 

power minimization, it does help reduce latency. 

We now describe how the thresholds are chosen. Our algorithm uses a probability distribution (in 

our case, discrete histogram) to determine these thresholds. Given a two state system and a probability 

distribution generating the idle period length, it is known how to analytically determine the threshold 

which will minimize the expected cost [9]. We use this algorithm to find the threshold between each pair 

of consecutive states in a multi-state system. Let re be a probability distribution which generates the next 

idle period length. The value for the threshold 'Li is 

argmin r rc(t)t( a; - a;_i)dt 
't" lo 

+ i= n:(t)[-r( a; -a;_t) + (~;-1 - MJdt. 

Previous work ([20]) gives analytical and experimental results for this algorithm under the assumption 

that the idle period length is indeed generated by the distribution re. 

This paper addresses the problem that re is unknown by using the histogram to estimate re. Recall 

that the histogram consists of a series of bins. Bini covers the range from n to n+l · The counter for bin 

i is denoted by Ci. The threshold is selected among n possibilities: ro, ... , rn-1 (the lower end of each 

range). We estimate the distribution re by the distribution which generates an idle period of length n with 

probability cif w for each i E {O, ... , i- 1 }. The sum of the counters is the window length w. Thus, the 

8 



threshold is taken to be 

argmin 
1

~ C 1
) r J( ct; - a;-1 )dt 

ft j=l w 

+ f (c1) [r;(a;-Ci.i-il+(~;-1-~;)]dt. 
j=t w 

A similar approach was taken in for a two state system in the context of determining virtual circuit 

holding time policies in IP-over-ATM Networks [10]. 

Naturally, we would also like to implement this algorithm as efficiently as possible. We have imple­

mented the algorithm for finding the all m-1 thresholds in time O(mn), where mis the number of states 

and n is the number of bins in the histogram. Two important factors which determine the cost (in time 

expenditure) of implementing our method is the frequency with which the thresholds are updated and 

the number of bins in the histogram. The frequency with which the thresholds are updated is the subject 

of one set of experiments which we perform. The results can be found in Section 5 

Naturally, we would also like to minimize the number of bins used in the histogram. This must be 

balanced with the fact that the finer grained the histogram, the more accurate our choice of thresholds 

will be. One important fact that arose in implementing this strategy is that a finer grained binning is 

more important in some ranges than in others. A way of addressing this problem that was key to the 

success of the algorithm is to use the thresholds of the optimal strategy (the t1, ... , tm- l from above) to 

guide the choice of bins and their ranges. We choose a constant c number of bins per state. In our case, 

we chose c = 5. The range from ti to ti+ 1 is divided into c equal sized bins. Figure 3 shows a sample 

histogram from our experiments. 

4 Experimental Design 

4.1 Data Used in our Experiments 

To demonstrate the utility of our probability-based algorithm, we use a mobile harddrive from IBM 

[25]. This drive has four power down states, as shown in Figure 3. Here, the start-up energy refers to 

the energy cost in transitioning from a state to the active state. For application disk access data, we used 

trace data from auspex file server archive which is available at [24]. From this data, we collected the 
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Range: Range: Range 

Bin Low End High End Size Count 

1 0 11.2 11.2 35 

2 11.2 22.4 11.2 2 

3 22.4 33.6 11.2 4 

4 33.6 44.8 11.2 7 

5 44.8 56 11.2 4 

6 56 478.8 422.8 5 

7 478.8 901.6 422.8 3 

8 901.6 1324.4 422.8 2 

9 1324.4 1747.2 422.8 0 

10 1747.2 2170 422.8 4 

11 2170 4911 2741 7 

12 4911 7652 2741 9 

13 7652 10393 2741 2 

14 10393 13134 2741 5 

15 13134 15875 2741 4 

16 15875 19050 3175 2 

17 19050 22225 3175 3 

18 22225 25400 3175 1 

19 25400 28575 3175 0 

20 28575 00 00 1 

Figure 2. A snapshot of the histogram used in OPBA. Note that the offline thresholds are 56, 2179 and 15875 milliseconds. 

The number of bins per state is 5. 
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arrival times and lengths for requests for disk access for 0.4 million disk accesses divided into multiple 

trace files, corresponding to different hours of the day. 

Power Start-up Transition 

State Consumption Energy Time 

in Watts in Joules to Active 

Sleep 0 4.75 SS 

Stand-by .2 1.575 1.5 s 
Idle .9 .56 40mS 

Active 2.4 0 0 

Figure 3. Values for the power dissipation and start-up energy for the IBM mobile harddrive at used in our experiments. 

Figure 4 gives some data on these traces. The first column gives the number of requests. The sub­

sequent columns give information about the behavior of the optimal algorithm when run on each trace. 

Specifically, they show for each state, the percentage of idle periods in which the optimal algorithm 

transitions to that state. In all the traces, there is a high percentage of short sequences for which the 

optimal strategy is to stay in the ready state (shown in column 2). The remaining percentages vary 

somewhat from trace to trace. All of the results reported in this paper are an average of the results on 

each individual trace, weighted by length. 

4.2 Algorithm Test Suite 

We compare OPBA to several other algorithms presented in the literature. The algorithms come in 

two groups. The algorithms in the first group use a series of thresholds which determine when the 

algorithm will transition from each state to the next lower power consumption state. OPBA and the 

Deterministic Competitive Algorithm, described below fall into this group. The second group are single­

valued prediction algorithms. They use a single prediction for the upcoming idle period and transition 

immediately to the optimal state for that state. They differ only in how they select a prediction for the 

next idle period length. 

Optimal Offline Algorithm (OPT): This algorithm is assumed to know the length of the idle period 

in advance. It selects the optimal power usage state for that idle period and then transitions to the 
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Trace 

Length State 1 State 2 State 3 State 4 

34575 0.804 0.158 0.011 0.024 

68139 0.673 0.233 0.092 2.9E-05 

36161 0.824 0.065 0.084 0.025 

7250 0.727 0.045 0.057 0.169 

10648 0.787 0.096 0.061 0.054 

7154 0.571 0.043 0.179 0.205 

72026 0.783 0.145 0.056 0.013 

5130 0.643 0.155 0.063 0.137 

46929 0.78 0.152 0.031 0.034 

24821 0.59 0.208 0.151 0.048 

9587 0.741 0.126 0.028 0.104 

16110 0.608 0.107 0.199 0.084 

18131 0.79 0.15 0.016 0.042 

14774 0.858 0.056 0.019 0.066 

Figure 4. This figure shows, for each trace, the percentage of idle periods for which the optimal algorithm chose to transition 

to each state. 
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ready state before the new request arrives in order to service the incoming request just as it arrives. 

Deterministic Competitive Algorithm (DET): This algorithm, presented and analyzed in [20], simply 

uses the discontinuities of the lower envelope curve for the offtine algorithm ( t1, ... tm-1 ) as 

thresholds which determine when to transition from each state to the next. 

Last Period (LAST): This is a single-valued prediction algorithm which simply uses the last period as 

a predictor for the next idle period. 

Exponential Decay (EXP): This algorithm, developed by Hwang, Allen and Wu [7] keeps a single 

value for the upcoming idle period. After a new idle period ends, the prediction is updated by 

taking a weighted average of the old prediction and the new idle period length. Let p be the 

current prediction and l the length of the last idle period. p is updated as follows: 

p t-'Ap+ (1-'A)l, 

where A is a value in the range (0, 1 ). We use a value of .5 for A. 

Adaptive Learning Tree: This method uses an adaptive learning tree to predict the value of the next 

period based on the recent sequence of idle period lengths just observed. Details of this method 

can be found in [ 6]. 

There are different possible versions of single-valued prediction algorithms which are worth men­

tioning here. In describing these variations, we refer to the offtine thresholds, t1, ... , tm-1, described in 

Section 3. The authors of the Learning Tree Algorithm observe that there are many idle periods which 

are very short. In order to avoid transitioning to a lower powered state for such short idle periods, they 

keep their system in the active state until the first offtine threshold t1 has been passed. Only then do they 

transition to the predicted optimal state. We ran all single-valued prediction algorithms with and without 

this initial delay. We found that the results were not significantly different between the two versions. In 

this paper, we will only report results for the versions without this delay. 

Another feature which the authors of the Learning Tree Algorithm employ is to transition to the ready 

state after the threshold for the predicted optimal state is reached. This is done in hopes that a job will 

arrive shortly thereafter and the system can avoid incurring any additional latency in powering up after 
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the new job has arrived. If no job arrives before the last threshold, then the algorithm transitions to 

the lowest sleep state. To summarize, if there are m states and the prediction is that state i will be the 

optimal state, the algorithm will transition immediately to state i. If a new request has not arrived by 

time ti, the algorithm will transition back to the ready state (state 1). Finally, if a request has not arrived 

by time tm-1, the algorithm will transition to the deepest sleep state, state m. We call this version of 

single-valued prediction algorithms to be the Preemptive-Wake-Up version. 

The alternative to this is to transition immediately to state i if that is the predicted optimal state and 

then to transition directly to the deepest sleep state if a request has not arrived by time t;. We call 

this version the Non-Preemptive-Wake-Up version. Naturally, the preemptive-wake-up version will use 

more power but will tend to incur less latency on average. We report results for both versions of all the 

single-valued predictive algorithms used in the study. 

5 Experimental Results 

5.1 Experimentation with Window Size 

Figure 5 shows the average energy consumed per request as the window size is varied. The most 

notable feature is that the variation is not very large, indicating that our method is fairly robust to choices 

in window size. Our method performs best with a relatively small value for the window size, indicating 

that it is the most recent history which is the most relevant predicting upcoming idle period length. It 

also indicates that the distribution over idle period lengths is not necessarily stable over time. However, 

the results get worse if the window size gets below 10, showing that there need to be enough values to 

get a representative sample. We select a value of 50 for the window size which is used for the remainder 

of the results presented. 

5.2 Experimentation with Threshold Update Frequency 

Figure 6 shows the average energy consumed per idle period as the frequency of updating the thresh­

olds is varied. As one would expect, as the interval between updates grows, so does the power usage. 

However, there do not to seem to be large differences in the cost, so we adopt a frequence of update of 

50. 
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Figure 5. Average energy consumed per request as a function of window size for the Online Probability-Based Algorithm. 

The thresholds are updated every 10 requests. 
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Figure 6. Average energy consumed per request as a function of frequency of update for the Online Probability-Based 

Algorithm. The window size is 50. 
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5.3 Evaluation of Algorithm Performance 

Figures 7 and 8 give the main results from our study. The first column of numbers in Figure 7 is the 

average energy used per request for each of the algorithm. The second column is the ratio of this figure 

to the average energy consumed per request by the optimal offiine algorithm. Interestingly, there were 

some traces where this ratio is less than one (although they always averaged out to be greater than 1 over 

all the traces). The reason it is possible for an algorithm to be better than the optimal offiine algorithm 

on power consumption is because the optimal algorithm is always forced wake-up preemptively before 

a request arrives. This means that the optimal algorithm incurs no additional latency. Recall that since 

there is a power-latency tradeoff, this will tend to penalize the optimal algorithm with respect to power 

usage. The average latency per request is shown in the final column of the figure. 

The results are also shown graphically in Figure 8 which plots the power usage (middle column from 

Figure 7) against the average latency (last column from Figure 7). The OPBA exhibits the lowest power 

consumption among all the online algorithms. The other algorithms which come close to matching its 

performance in power (the non-preemptive versions of LAST, TREE and EXP) all suffer at least an 

additional 40% latency on average. Meanwhile, the algorithms which have a lower average latency than 

OPBA (DET and the preemptive versions of LAST, TREE and EXP), they all use at least 25% more 

power on average. Thus, OPBA is the most successful algorithm in balancing power usage as well as 

latency incurred. 

6 .. Acknowledgement 

This work was partially supported by SRC, NSF and DARPA. 

References 

[l] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, 

1998. 

[2] L. Benini, A. Bogliolo, G. Paleologo, and G.D. Micheli. Policy optimization for dynamic power manage­

ment. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 18(6):813-833, 

1999. 

16 



Average Average 

Algorithm Energy Ratio Latency 

Optimal 438.47 1 0 

DET 647.41 1.47 870.91 

OPBA 446.45 1.01 1332.41 

LAST: Preempt 868.51 1.9 1010.87 

LAST: Non-Preempt 477.96 1.09 2183.92 

TREE: Preempt 990.53 2.25 1285.01 

TREE: Non-Preempt 460.44 1.05 2239.57 

EXP: Preempt 550.75 1.25 1080.16 

EXP: Non-Preempt 458.98 1.04 1897.29 

Figure 7. Energy is measured in Joules and Latency is measured in milliseconds. 

3500 
Optimal Ill 

3000 Det x 
OPBA * Last-P EJ 

» 2500 Last-NP + 
u 9t- Tree-P 0 i= 
~ 2000 Tree-NP • "" A.. Exp-P A ....1 
Q) Exp-NP A.. bl) 

1500 E! 
Q) * 0 ;:.. 
~ 

1000 A EJ x 
500 

0 
0 0.5 1.5 2 2.5 

Average Energy/Optimal Energy 

Figure 8. Energy is measured in Joules and Latency is measured in milliseconds. 

17 



[3] L. Benini, G. De Micheli, and E. Macii. Designing Low-power Circuits: Practical Recipes. IEEE Circuits 

and Systems Magazine, 1(1):6-25, Mar. 2001. 

[4] L. Benini and G.D. Micheli. Dynamic Power Management: Design Techniques and CAD Tools. Kluwer 

Publications, 1998. 

[5] E. Y. Chung, L. Benini, A. Bogliolo, and G.D. Micheli. Dynamic Power Management for Non-Stationary 

Service Requests. In Proceedings of the Design Automation and Test Europe, 1999. 

[6] E.-Y. Chung, L. Benini, and G.D. Micheli. Dynamic Power Management Using Adaptive Learning Trees. 

In Proceedings of ICCAD, 1999. 

[7] C.-H. Hwang, C. Allen, and H. Wu. A Predictive System Shutdown Method For Energy Saving of Event­

Driven Computation. In Proceedings of the IEEE/ACM International Conference on Computer Aided De­

sign, pages 28-32, 1996. 

[8] Intel and Microsoft and Toshiba. Advanced Configuration and Power Interface Specification. Website, 1996. 

[9] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Randomized competitive algorithms for non-uniform 

problems. In First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 301-309, 1990. 

[10] S. Keshav, C. Lund, S. Philliips, N. Reaingold, and H. Saran. An empirical evaluation of virtual circuit hold­

ing time policies in ip-over-atm networks. IEEE Journal on Selected Areas in Communications, 13:1371-

1382, 1995. 

[11] Y. Lu, E. Chung, t. Simunic, L. Benini, and G. DeMicheli. Quantitative Comparison of Power Management 

Algorithms. In DATE - Proceedings of the Design and Automation and Test in Europe Conference and 

Exhibition, 2000. 

[12] Y. Lu and G. DeMicheli. Adaptive Hard Disk Power Management on Personal Computers. In Proceedings 

of the Great Lakes Symposium on VLSI, 1999. 

[13] Microsoft. OnNow Power Management Architecture for Applications. Website, 1997. 

[14] Online Strategies for Dynamic Power Management Website (OSDPM). Java Applet based DPM Strategy 

Evaluation Website. 

[15] G. A. Paleologo, L. Benini, A. Bogliolo, and G. D. Micheli. Policy Optimization for Dynamic Power 

Management. In Proceedings of Design Automation Conference, 1998. 

[16] Q. Qiu and M. Pedram. Dynamic Power Management Based on Continuous-Time Markov Decision Pro­

cesses. In Proceedings of Design Automation Conference, pages 555-561, June 1999. 

[17] Q. Qiu, Q. Wu and M. Pedram. Stochastic Modeling of a Power-Managed System: Construction and Opti­

mization. In Proceedings of the International Symposium on Low Power Electronics and Design, 1999. 

18 



[18] D. Ramanathan. High-level timing and power analysis for embedded systems. In PhD thesis, University of 

California at Irvine, 2000. 

[19] D. Ramanathan, S. Irani, , and R. K. Gupta. Latency Effects of System Level Power Management Algo­

rithms. In Proceedings of the IEEE International Conference on Computer-Aided Design, 2000. 

[20] S. Irani and S. Shukla and R. Gupta. Competitive Analysis of Dynamic Power Management Strategies for 

Systems with Multiple Power Saving State. In Proceedings of the Design Automation and Test Conference 

Europe ( DATE02 ), 2002. 

[21] S. Shukla and R. Gupta. A Model Checking Approach to Evaluating System Level Power Management 

for Embedded Systems. In Proceedings of IEEE Workshop on High Level Design Validation and Test 

(HLDVTOJ). IEEE Press, 2001. 

[22] T. Simunic, L. Benini, and G.D. Micheli. Event Driven Power Management of Portable Systems. In In the 

Proceedings of International Symposium on System Synthesis, pages 18-23, 1999. 

[23] M. B. Srivastava, A. P. Chandrakasan, and R. W. Broderson. Predictive Shutdown and Other Architectural 

Techniques for Energy Efficient Programmable Computation. IEEE Trans. on VLSI Systems, 4(1):42-54, 

1996. 

[24] Auspex File Traces from the NOW project, available at. http://now.cs.berkeley.edu/Xfs/ AuspexTraces/auspex.html, 

1993. 

[25] Technical specifications of hard drive IBM Travelstar VP 2.5inch, 

http://www.storage.ibm.com/storage/oem/data/travvp.htm, 1996. 

19 

available at. 




