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Abstract 
 

The Impact of Neighborhood Traffic Density and Deprivation on Lung Function Among 
Children with Asthma 

by 
 

Sara Lynn Gale 
Doctor of Philosophy in Epidemiology 

 
University of California, Berkeley 

Professor Ira B. Tager, Chair 
 
To investigate the extent to which traffic exposure affects the lung function of children with 
asthma and how local neighborhood factors may modify this relation, a merge of epidemiologic, 
environmental health and geographic methods is necessary.  People and places are linked; 
therefore, it is necessary to consider place-effects on health as well as environmental exposures.  
The Fresno Asthmatic Children’s Environment Study (FACES) is a longitudinal cohort study of 
children with asthma in Fresno, California that followed participants from 2000-2008 to explore 
short-term and long-term effects of ambient air pollution on lung function (as measured by 
spirometry, wheeze, and asthma symptoms). With publicly available data on traffic counts in 
Fresno, CA from 2000-2008, I built a spatial model of traffic exposure that varies both 
temporally and spatially for the FACES cohort.  To capture and quantify neighborhood 
characteristics, I constructed individual neighborhoods based on global positioning software 
(GPS) data and walking distances around participant homes.  To evaluate neighborhood 
deprivation, I collected geographic information system (GIS) data on parks, grocery stores, bus 
stops, etc. from publicly available sources and created an index based on Item Response Theory.  
To assess the marginal risk difference of lung function among children with asthma exposed to 
high levels of traffic pollution and those exposed to lower levels of traffic pollution (as measured 
by traffic density), I apply semi-parametric causal inference methods and use Targeted 
Maximum Likelihood Estimation (TMLE).  More FACES participants who live in high 
deprivation neighborhoods are also farther away from high traffic areas.  Neighborhood 
deprivation, as defined by a combination of GIS variables in this study, does not track well with 
US Census poverty.  The marginal change in lung function from exposure to high neighborhood 
traffic to lower neighborhood traffic, without stratification for neighborhood deprivation, is -
0.233 (95% CI -0.338, -0.129).  The results can be interpreted as—the average decrease of FEV1 
is 0.233 L, or there is a 12% reduction in lung function.  Either neighborhood deprivation does 
not modify the effect of traffic on lung function or there is not enough data to evaluate this type 
of effect modification.  The findings indicate that neighborhood exposure to traffic adversely 
affects lung function among the FACES cohort of children with asthma. 
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Asthma is the most important disease of childhood in terms of occurrence and 
morbidity.1,2    Nationally, one in twelve children (9.6%) is estimated to have asthma.3  Billions 
of dollars are spent annually on the management and care of children with asthma.  Asthma is the 
one of the leading causes of emergency department visits among children under 15 years old in 
the US.4  Defined as the chronic inflammation of the pulmonary airways, asthma is a condition 
where the airways become inflamed, produce mucous, and undergo episodic, reversible 
narrowing that results in wheezing and shortness of breath.  Over the long-term, these processes 
lead to remodeling of the airways characterize by chronic inflammatory cells, increased airway 
wall thickness and decreased airway diameters—especially in airways <2mm in diameter.  The 
net result of these chronic processes is reduced lung function.  Among asthmatics, there are 
many airway irritants or exposures that can trigger an attack: allergens, air pollution, tobacco 
smoke, mold, endotoxin, viral respiratory infections, stress, and exercise.  In females asthma may 
worsen during menstrual cycles and pregnancy.  While the proximate cause and cure of asthma 
remain unknown, and we have considerable understanding of the factors associated with asthma 
prevalence and exacerbations, many unanswered questions remain about specific triggers and 
individual differences in the asthma phenotype.   

Hippocrates states in an aphorism, “Of diseases and ages, certain of them are well- or ill-
adapted to different seasons, places . . .” Asthma is reflective of this aphorism.  In urban 
communities throughout the United States, it is estimated that up to one in five children has 
asthma.  The burden of disease is not shared equally.  Prevalence is the highest among poor 
children (13.5%) and non-Hispanic black children (17%).3  Neighborhoods characterized by a 
higher percentage of minorities, lower incomes, inadequate housing, and ambient air pollution 
are correlated positively with asthma hospitalization rates.5  Neighborhood characteristics such 
as violence, poverty, and poor housing have been associated with asthma prevalence and 
morbidity.6   

The general health of populations and its relation to neighborhood factors is a topic that is 
challenging to study because of the variability in the methodology and data available:  the choice 
of neighborhood characteristics, the quantitative evaluation of those characteristics, definition of 
neighborhood boundaries, the statistical methods to analyze the characteristics, and the pathway 
or rationale for the relation or non-relation.  Neighborhood characteristics can fit into two 
categories:  contextual and integral.  Contextual factors are those social factors that describe a 
neighborhood, such as unemployment and poverty and are derived from summaries of 
individual-level data.  Integral factors are the physical factors found in the neighborhood 
environment, like a park or an auto mechanic shop and are independent of individual-level 
characteristics.  Both types of neighborhood factors are linked to the full panoply of health 
outcomes—with more research emphasis on factors that compose a deprived neighborhood 
instead of an advantaged one.  In addition to the aforementioned challenges of this research 
topic, one must also consider individual-level factors to complete the picture of a neighborhood.7 

It is well established that residents of deprived areas exhibit poorer health compared to 
those from more affluent areas.8-10  Neighborhood characteristics are related to a variety of health 
outcomes—mortality, behavior, mental health, stress, low birth weight, obesity, asthma, and 
cardiovascular disease.9,11-15  In a 30 year retrospective analysis on housing and health trends 
with the National Health and Nutrition Examination Survey (NHANES), researchers found 
positive trends with poor housing stock and Body Mass Index (BMI), blood lead levels, high 
blood pressure and cardiovascular disease, as well as increased asthma prevalence with more 
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broken and barred windows.16  While methods may differ, researchers have consistently found 
that health outcome variation is related to area-level characteristics, independent of individual 
factors.17  Cardiovascular disease has been shown to have strong associations with neighborhood 
factors in some studies, but researchers argue that the pathway to disease is through 
neighborhood social interaction with an individual’s environment.18  Adverse birth outcomes are 
often left unexplained by individual-level factors;19 therefore,  more studies are examining 
neighborhood-level factors. These aggregated factors include residential segregation,20 crime,21,22 
economic disadvantage,21-23 and low education;23,24 and they have all been linked to adverse birth 
outcomes, such as preterm birth and low birth weight.  In a recent study on reported crime and 
perception of crime, neighborhood crime perception was the factor related most to having an 
infant who was small for gestational age.25  Perceived neighborhood crime and disorder often 
result in fear and can explain adverse health conditions. 26   

Asthma shares many of the same associations with neighborhood characteristics as most 
other health outcomes.  Increased asthma prevalence and asthma hospitalizations have been 
associated with levels of deprivation in New Zealand and England.27,28  Poor housing stock, 
overcrowding, homelessness, and air quality are related to emergency department visits for 
difficulty breathing.29  Communities with more violence are associated with an increased asthma 
risk.30  A number of studies have reported associations between community violence and  
increased childhood asthma diagnoses,31 exacerbations32,33 and hospitalizations.34  The exposure 
to violence (controlling for socioeconomic status, housing, stress and negative life events) has 
been linked to greater asthma morbidity,35 but the direct pathway is unknown.36  Like 
cardiovascular disease, researchers have found a relationship between asthma morbidity and 
stress.37,38  Stress exacerbates asthma symptoms and causes greater bronchoconstriction in 
asthmatic patients,39 and, when compared to healthy controls, asthma patients exposed to stress 
have been shown to have increased production of cytokines implicated in the pathophysiology of 
asthma and its exacerbation.39  Asthma patients with lower socioeconomic status (SES) are noted 
to have higher chronic stress and perceived threat.40 

Asthma symptoms and exacerbations are good indicators of the burden and management 
of the disease, but lung function (forced expiratory volume (FEV) and forced vital capacity 
(FVC) measurements as measured by spirometry) among asthmatics is a well-studied to assess 
substantial airflow impairment and long-term mortality.  Forced expiratory volume in one second 
(FEV1) has been shown to be the most closely related airflow measure to chronic respiratory 
symptoms.41  FEV1 and ratios of FEV1 and FVC are strong predictors of all cause mortality, not 
just respiratory, and cardiovascular disease.42,43  There is a large body of literature about lung 
function metrics, and while FEV1 has been used most frequently, FEF25-75 (forced expiratory 
flow between 25% and 75% of vital capacity) more closely reflects the site of important airway 
changes that are related to obstruction.44 

There are many approaches to measure spatial deprivation and advantage at the local 
level.  Often, GIS data from disparate sources are aggregated from the start; researchers must 
“stitch” together datasets for different times and study areas.45  Indicators of neighborhood 
deprivation in the US most often include social and physical factors obtained from the decadal 
US Census, e.g., education, employment, family composition, housing stock, household income, 
poverty, and residential stability.46  Looking beyond the limits of the census data, other research 
has evaluated data on crime, retail availability, services, physical disorder, social capital and 
reciprocity.26,47  Determinants of deprivation reported in the literature include items such as 
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economic disadvantage, unemployment, education, household characteristics, and housing 
conditions.12  In addition, crime, Toxic Release Inventory (TRI) sites, and alcohol outlets are 
being used as markers of contextual and integral neighborhood disadvantage.  For example, 
violent crimes and property crimes are both associated with deprivation (as defined by income 
inequality) and low social capital in the US; the authors of this work dubbed crime a “mirror for 
the social environment.”48  Access to alcohol outlets is another key component of area-level 
deprivation.  Researchers in New Zealand found proximity to alcohol outlets to be strongly 
associated with social deprivation.49  Researchers in Oakland, CA identified a clustering of TRI 
sites in West Oakland, a historically poor, deprived area.50  Neighborhood quality can also be 
measured by factors such as walkability, which can be calculated based on land use, street 
connectivity and residential density.51  Neighborhood air pollution, traffic and noxious land uses 
can be included as integral factors used to describe a small area environment.51,52  While much of 
the research on how social factors relate to health uses neighborhood-level exposures, little work 
has been done, in the context of studies of health interventions, to identify which factors should 
be measured, how to best classify neighborhoods as disadvantaged or advantaged and how to 
validate the measurements. 

Along with the heterogeneity in the definition of deprivation or advantage and no 
generally agreed upon standard to quantify neighborhood characteristics, there are problems with 
the definition and measurement of neighborhood units.  While many studies have reported an 
association between area-level characteristics and health outcomes, in general, neighborhoods 
have yet to be defined more accurately than a census or geopolitical boundary.  For some 
residents, a census geographic unit may not capture adequately important details of their 
neighborhood.53  Boundaries defined to serve geopolitical ends (e.g., taxation, government 
services and statistics) often are not well-suited to identify specific characteristics of 
neighborhoods that are linked to health.54  Neighborhood perception can vary by a person’s age, 
gender, social status, and physical geographic characteristics.53,55,56  There is limited research 
that measures a neighborhood in terms other than census geographic units, despite reports that 
smaller neighborhood units have been shown to provide a more meaningful and exact estimate of 
area effects.54  Since many neighborhood factors are an aggregate of individual-level attributes, 
some researchers argue that neighborhood factors based on aggregation are not identifiable and 
are over emphasized in health research.7  While neighborhood research is a new, promising area 
for understanding adverse health outcomes, most of the studies I cite for a relation between 
health and neighborhood factors use data aggregated to the census or other government defined 
boundary level. 

Once the data collection of deprivation and neighborhood advantage variables is 
complete and the neighborhood boundaries are set, researchers then must quantify the 
neighborhood experience.  As with any data analysis, there are various approaches, and with 
neighborhood analyses these approaches fall into two categories:  one performed outside of the 
GIS in a statistical model or within the GIS as a spatial model.  A method often used to analyze 
neighborhood data is a traditional hierarchical or multi-level model.  This method often is 
plagued by the curse of dimensionality—or sparse cells—and non-identifiability, which means 
that there is little to no overlap between covariate distributions of the exposed and unexposed.7,57   
Neighborhood factors can be used like any other independent variable in a statistical model—i.e.,  
binary or continuous counts, rates, or percentages.  The variables can be combined to create a 
composite of deprivation with  principle components analysis (PCA), factor analysis, propensity 
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scores, or item response theory (IRT) to name a few.  Spatial analyses often examine clustering 
and autocorrelation, or more plainly, the degree to which things that are closer in space are more 
alike.  Cluster analyses are an example of the autocorrelation of related points that can display 
disease patterns as well as exposure patterns and can facilitate identification of “hot spots.”  
There are myriad choices to examine and quantify neighborhood characteristics and there is no 
gold standard or perfect approach to understand the data. 

Part of the neighborhood experience, but beyond strict physical and social attributes, 
involves exposure assessment of local sources of pollution, containments, and toxins.  Among 
the most ubiquitous anthropogenic exposures in the US, is traffic-generated air pollution.  Air 
pollution in the US, like other countries, was largely a result of the burning of soft coal until the 
middle of the twentieth century.  Deadly smog episodes in Donora, Pennsylvania;58 London, 
England;59 and Meuse Valley, Belgium60 provided the need for air pollution regulation.61  The 
Clean Air Act of 1963 setup the Environmental Protection Agency and the underpinnings of the 
regulatory framework that surround air pollution legislation in the US today.  While background 
levels of ambient air pollution have declined drastically since the switch to hard coal, more 
resources were dedicated to the health research of air pollution during the latter part of the 
twentieth century.  Hence, more epidemiologic evidence began to mount by the 1960s--exposure 
to air pollution was linked to adverse health outcomes.62-64  Regulation in the US was and is 
currently based on levels of single pollutants under the Clean Air Act, and, while it makes 
theoretical sense to place restrictions on individual constituents of air pollution, the ambient 
environment constitutes a complex mixture of air pollution that represent the “true” exposure.  
More scientists are calling for research that investigates mixtures of air pollution in 
multipollutant models or targeting mixtures of emissions from a source.65  Moreover, exposure to 
air pollution can be extremely variable—in the US air pollution varies by coast, season, region, 
and among and within cities.  Exposure also varies due to individual and neighborhood 
deprivation.  It is necessary to take these complex attributes into account to estimate an exposure 
that is relevant.  To measure single pollutants and ignore spatial and temporal variation is not an 
appropriate or germane depiction of the environment in which we are exposed. 

Air pollution has been linked to a variety of health metrics, but the strongest evidence for 
a pathway from exposure to disease exists with cardiovascular disease,66,67 asthma exacerbations 
68 and all cause mortality.69,70  Furthermore, traffic-related air pollution is linked to respiratory 
illnesses,70 but the causal evidence is viewed as more suggestive than determinate.71  Ambient air 
pollution consistently has been found to trigger asthma symptoms and to be associated with 
asthma prevalence, but air pollution exposure as the cause of asthma onset is not strongly 
supported.  There are a few studies that have show new onset asthma cases in relation to NO2

72 
and ozone exposure,73 like the Children’s Health Study; however, more evidence with a more 
detailed air pollution exposure assessment and a more rigorous asthma criterion are needed. 
Studies have shown that there is excess asthma morbidity associated with ambient air 
pollution,74,75 and there is a stronger relation with traffic-related pollution and asthma 
morbidity.75-77  More research is emerging about early life exposures to ambient air pollution and 
the development of asthma, with the recent work of Clark et al. on a population based cohort of 
children revealing that traffic-related exposures result in the highest odds for an asthma diagnosis 
by the age of 3 or 4 in children.78   

An estimated 27% of greenhouse gases is attributed to mobile source emissions in the US 
and, of that percentage, passenger cars, trucks and heavy duty vehicles account for 81% of the 
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pollution caused by this sector.79  The brunt of traffic pollution occurs when vehicles are cold-
started, slowed or idling.  Measures of traffic often are used as a proxy for mixtures of ambient 
air pollution, because it is easier to measure the source instead of one pollutant at a time or the 
complex interaction and aging of pollutants occurring in the environment.  It is challenging, if 
not impossible, to distinguish the individual contributions of pollutants, because the effects are 
not independent; climate, topology, and sources all interact and vary based on place.  The 
measurement quality of traffic ranges from crude estimates to refined spatio-temporal models, 
partly because of the ease of computing, but mostly due to the availability and accessibility of 
detailed traffic count data.  In turn, different metrics of traffic can result in different estimates of 
exposures and effects.80  More studies employ crude traffic metrics such as residential distance to 
roadways, type of vehicle (diesel/unleaded gasoline), roadway designations (freeway versus side 
street) within a residential buffer, self-reported traffic density and traffic counts near a residence 
obtained from a public agency.71 However, distances to roadways and vehicle count alone do not 
capture the variability in traffic exposure at the local level.71  Density metrics through time and 
space with meteorology data can better estimate traffic exposure than proximity measures to 
different road way classes or vehicle routes (bus or truck lines).24  Interpolation methods can 
predict traffic or pollution over a defined space with spatial averaging, nearest monitor, inverse 
distance weighting and kriging.24 Other prediction models such as land-use regression can 
incorporate more independent variables such as population density, land-use, elevation, and 
meteorology to predict traffic through space.24      

Ultimately, the best estimate of traffic-related air pollution exposure for an individual 
may be a hybrid model that incorporates both personal monitoring and real-time traffic counts.24  
Researchers in Brooklyn, NY built a small area model to understand traffic-related air pollution 
in a densely populated urban environment with elevated and below grade major sources of traffic 
(bridge and highway).81  This study used personal backpack monitors, local meteorology, 
continuous traffic counters, vehicle class and speed to get a refined characterization of the spatial 
traffic-related pollution.  Exposure to traffic-related air pollution was dependent on time, space, 
meteorology, and topology—the ultrafine particle measurements changed 15-20% within the 
first 100m from the roadway--81 thus, this study indicates that small area/neighborhood 
measurements are vital for accurate exposure classification. 

Recently, environmental justice or equity has developed a quantitative base in public 
health.  Environmental justice calls for “the fair treatment of people of all races, income, and 
cultures with respect to the development, implementation and enforcement of environmental 
laws regulations, and policies, and their meaningful involvement in the decision-making 
processes of the government” (Christine Todd Whitman, USEPA, 2001).  Instances of 
environmental injustice, when a certain social group is disproportionately impacted by harmful 
land uses, are not new phenomena, but both public health researchers and environmental 
advocates have started to highlight the trend to argue for more environmentally conscious 
policies.  Specifically, in the United States, low-income communities and people of color 
experience unequal exposures to lead,82 diesel exhaust,83 traffic emissions,84 and other 
pollutants.85  Poor people are more likely to reside closer to major roadways and point source 
polluters.83 

When Congress first passed the Clean Air Act in 1963, there were provisions for setting 
air quality standards to protect public health; but it was not until significant expansions in 1970 
amendment that “sensitive groups” were included in its language.  Prior to the CAA amendments 
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of 1970, environmental injustices were evident among disempowered social groups; but during 
the civil rights movement in US, cases of environmental injustice began to be linked to health.  
For instance, in 1967, an eight-year old girl drowned in a garbage dump, which was sited 
between an elementary school and a city park in a predominately African American 
neighborhood.  Students at nearby Texas Southern University protested the death and questioned 
the  placement of the dump.86  After a series of communities fought to expose environmental 
injustices in the 1970s and 1980s, there were calls for protective legislation to help clean up 
polluted areas and empower disenfranchised groups.  An infamous case in North Carolina in 
1982 exposed the decision to place solid waste sites to dump polychlorinated biphenyls (PCBs) 
in predominately minority and poor neighborhoods—based on the available scientific evidence 
at that time, these areas were shown to not be among the most suitable choices.87  For years, the 
stretch of the Mississippi River from Baton Rouge to New Orleans was called “Cancer Alley” 
because of the elevated cancer prevalence in small neighborhoods in close proximity to the 
petrochemical corridor along the river. It was not until 1993 that the state of Louisiana issued a 
report that stated the health and environment of this low-income, African American community 
were disproportionately affected by industrial pollution.88  In 1994, President William Clinton 
established Executive Order 12898 and called for each Federal Agency to make “achieving 
environmental justice part of its mission by identifying and addressing, as appropriate, 
disproportionately high and adverse human health or environmental effects.”89  This order 
mandated that the EPA organize an environmental justice working group, which comprises heads 
of relevant Federal agencies.  The working group is responsible to determine what criteria must 
be met to achieve environmental justice and how best to plan for it.  In 2011, while 
environmental justice may be addressed regionally or by states, the Government Accountability 
Office (GAO) finds that the EPA at the Federal level has not developed a clear strategy, 
implementation plan, or performances measures when it comes to defining environmental justice 
and ensuring that plans for justice are made and evaluated.90  The Federal government as well as 
academic researchers does not have a gold standard to approach, quantify, and rectify 
environmental injustice. 

From a GIS and quantitative perspective, environmental justice can be studied by 
comparison of distributions in time over various spaces—source exposures and subgroups.  
Cluster analyses, comparisons between bounded groups, simple proximity measures, or complex 
statistical modeling can all be applied to understand if subgroups are disproportionately located 
and exposed to harmful sources of pollution.  However, whether the subgroups or the toxic 
exposure came first in time, often cannot be established.  Without temporal ordering, a case for 
environmental justice is weakened.  Based on Ripley’s K statistic, researchers in Oakland, CA 
identified a clustering of Toxic Release Inventory (TRI) sites in West Oakland, a historically 
poor—a tool that compares a given distribution of points to a homogeneous Poisson distribution 
that is characterized by complete spatial randomness.50  (As with other environmental justice 
studies in Public Health, there is no mention of whether the neighborhood existed before the TRI 
sites or vice versa.)  An example of comparisons made via boundaries is a clever index of 
inequity by Stuart et al. who quantify the degree to which certain population groups live near air 
pollution monitoring sites. 91  Mathematically, the estimate of inequity is expressed as Fi = 
log(Zi/Ti), where F is the inequity experienced by a subgroup i and Z is the fraction of the total 
population of the subgroup near the pollution source (defined by a distance or buffer around the 
source); and T is the fraction of the total population of the subgroup within the larger boundary, 
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like a county.  Thus, F is positive when there is inequity and a larger percent of the subgroup live 
within areas of high pollution.  F will be negative when a larger percent of the subgroup live 
outside of areas of high pollution. There needs to be further unbiased quantitative analyses of 
environmental justice like those listed above and investigations of temporality—did the subgroup 
move to the harmful site; was the harmful site placed where the subgroup is; and were there 
other options available?  The analyses above lack temporal ordering, but is that necessary to 
shape policies on human health and land use?  Do we need to know what was present first to 
make policy changes that do not allow people to live in close proximity to harmful 
environmental exposures?  Or is it okay, as long as a subgroup is not overrepresented? 

For epidemiologists and public health researchers, environmental justice brings to light 
the need to evaluate our environment more carefully, to study population health inequities, and to 
examine how the environment and social factors act together to cause adverse health outcomes.  
The main reason why epidemiologists have a difficult time studying environmental justice and 
its relation to health outcomes is because we have not characterized precisely the environments 
under study—in terms of exposure assessment.  When measuring air pollution, we often lack 
adequate air monitoring data that is relevant to population locations and is of sufficient temporal 
and spatial resolution for use in health effects assessments, particularly in urban environments in 
which spatial heterogeneity can be substantial. Time-activity data are often missing or not 
collected, but are necessary to understand where people spend their time to accurately assign air 
pollution exposure. Particularly relevant for environmental justice research, are accurate 
aggregated social data to define and quantify how area-level factors affect exposures and 
outcomes, and precise area-level boundaries to characterize what constitutes a neighborhood. 

Neighborhood, defined as a discrete geographic unit, is a subjective and evolving 
construct that remains ill-defined.  Historically, neighborhoods emerged in American cities with 
the decline of the walking city and the development of new modes of transportation in the mid 
nineteenth century.92  Neighborhood boundaries were developed for geopolitical reasons—to 
contain areas for taxation, voting, government services, statistics, etc.  Originally, census tracts 
were designed to capture local areas within a city that were similar in population characteristics 
and contained about 3,000 – 6,000 residents.93   

Furthermore, data and relationships between data can be influenced by the size and/or 
shape of the units from which the data are reported.94  This issue, known as the “modifiable areal 
unit problem” (MAUP)95,96 is critical in the use of spatial analysis to inform community level 
policies and interventions.  The identification of an adequate neighborhood area should be 
considered vis-à-vis the disciplinary framework in which the issue is approached.  For example, 
the American Institute of Architects Architectural Graphic Standards, as well as city and regional 
planners continue to use the neighborhood definition developed by Perry in the 1920s97 as a 
planning unit with a five-minute walking radius.92  The MAUP has no definitive solution but 
remains a challenge to spatial research that should not be overlooked.  Researchers need to 
consider both the appropriate scale and aggregation options when using spatial boundaries.  (In 
my previous work, I choose a neighborhood based on walking distances to bus stops in Oakland 
because our survey sampling took place in public schools.)  My previous analysis illustrates the 
MAUP in Oakland, CA—as the neighborhoods are changed from the census defined areas to the 
neighborhoods we derived with walking distances, I saw significant differences in our exposures 
(crime rate, alcohol outlet rate, etc.) and in general, the differences wane as the buffer sizes 
decrease.98  This is expected and should highlight the need for researchers to carefully consider 
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neighborhood definition and ask: what is the most appropriate size and shape of neighborhoods 
for this research?  Although much of the literature on neighborhoods and health has shown 
associations between the built environment, social factors, and health, scant attention has focused 
on neighborhood definition.   
 
Rationale 

I propose to use a model that incorporates traffic metrics through space and time with 
surrogate air monitoring data from the US EPA central site and home sampling.  This method 
would provide temporal and spatial varying data at the local, neighborhood level.  While much 
research reports an association between area-level characteristics and health outcomes in general, 
I need to define neighborhoods more precisely than a census or geopolitical boundary.  
Moreover, epidemiologic methods are used rarely to infer causality from area-level associations 
and explore the extent of area-level effects.  While much of epidemiology relies on census 
designated neighborhoods,9 my method to define a neighborhood by local area time-activity will 
use the individual to define his or her neighborhood by where he or she spends time. 

A merge of epidemiologic, environmental health and geographic methods is necessary to 
understand adequately how neighborhood factors influence health.  People and places are linked; 
therefore, it is necessary to consider place-effects on health as well as environmental exposures.  
People are not randomly distributed in space or time, and it is naive to treat them as such and to 
ignore a key role in disease processes: human interaction with the environment and other 
humans.  “Randomization by cluster accompanied by an analysis appropriate to randomization 
by individual is an exercise in self-deception.” 99  Much research in air pollution and social 
disparities has been focused on larger scale differences, such as exposures at the census tract and 
city levels--rather than smaller spatial scales, such as the neighborhood level.  We know that air 
pollution and social factors can be quite variable at the city and even census tract level; to ignore 
the heterogeneity in these areas could lead to severe exposure misclassification.  

Last, to my knowledge, there are no analyses of air pollution and lung function that apply 
causal methods and use a population risk difference estimate to describe the impact of exposure 
to air pollution on lung function.  A risk difference approach has advantages over the relative 
risk, a misunderstood measure that epidemiologists have commonly used since Cornfield’s 
seminal paper in 1959.100,101  The relative risk, a ratio of the risk of disease in the exposed and 
unexposed, can obscure a confounder’s impact in the exposed and unexposed groups and the 
baseline disease risk in a population.  The risk difference is more applicable to continuous 
outcome measures, because it gives an absolute measure of disease or alteration of process.  The 
risk difference is a better measure to assess the effect of exposure on disease at a population 
level, because it can be directly applied to calculate total cases of  disease caused by the 
exposure.102  A risk difference, an absolute change in disease frequency, is also the appropriate 
measure to use when estimating causal effects under the counterfactual framework.  The 
counterfactual is unobservable, but it is the hypothetical outcome under the alternative exposure 
scenario.  The counterfactual framework can help conceptualize exchangeability in a dataset.103  
In this study, I will use approaches to better approximate the neighborhood, traffic exposure, and 
the result of traffic on lung function. 
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Specific Aims 
1.  To use publicly available data on traffic counts in Fresno, CA from 2000-2008 to build a 
spatial model of traffic exposure and assign individual exposures that vary both temporally and 
spatially. 
2.  To quantify more precisely individual neighborhoods with global positioning software and 
self-reported health diaries that record time-activity; and to evaluate neighborhood deprivation 
with contextual and integral neighborhood factors collected from publicly available GIS data. 
3.  To assess the marginal risk difference of lung function among children with asthma exposed 
to high levels of traffic pollution, conditional on neighborhood deprivation, and those exposed to 
low levels of traffic pollution. 
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Chapter 2:  Methods 



12 
 

Study Population 
To investigate the effects of traffic exposure and neighborhood deprivation on the lung 

function of asthmatic children, area-level and individual-level covariates must be measured and 
the associations estimated in an exposure model.  The data for my dissertation research come 
from the Fresno Asthmatic Children’s Environment Study (FACES), a longitudinal cohort study 
of children with asthma in Fresno, California.  This study collected data to explore short-term 
and long-term effects of ambient air pollution on lung function (as measured by spirometry, 
wheeze, and asthma symptoms).  To be eligible for the study, participants must have lived within 
a 20 kilometer radius of the EPA central monitoring site in Fresno, CA at the start of the study 
for at least three months, be 6-11 years of age, have a physician diagnosis of asthma, and active 
asthma.  FACES followed children (n=315) from 2000 to 2008 and assessed exposure over time 
to a variety of ambient and indoor air pollutants and bioaerosols including allergens, polycyclic 
aromatic hydrocarbons (PAHs), environmental tobacco smoke, particulate matter, and criteria 
gaseous air pollutants (NOx, SO2, CO, and Ozone and metals as well as endotoxin).104-108  Each 
participant performed twice-daily spirometry and answered symptom questions in up to three 14-
day panels per year.  During these panel days, air pollution data were captured from the EPA 
Super site located in Fresno, CA.  Subjects also were observed semi-annually or annually for 
more detailed health and laboratory evaluations.104-108 

To supplement the central site estimates, FACES collected spatial-temporal ambient 
pollution data around Fresno via mobile trailers and 83 participant homes from February 2002-
February 2003.  In addition to these refined exposure measurements that vary in space and time, 
FACES collected data on the study participants’ physical and social environment.  Family 
income, household features, indoor/outdoor environment, family demographics, and smoking 
habits are a few factors that the study addressed.  In addition to the social and physical 
environment characteristics, FACES collected data on how study participants move through 
space.  Time-activity global positioning system (GPS) data for our study population was 
obtained from subjects during the period June 2006-September 2007.  Students were randomly 
selected by panel days to complete a five-day GPS study.  Each subject wore a GPS unit with a 
data-logger (Wintec WBT-100 GeoLogger, GeoStat, Atlanta, GA) and an accelerometer (MTI 
Actigraph, Fort Watson Beach, FL) with the data-logger while he or she was active. The GPS 
unit accuracy was <3 meters with circular error probability and 6 meters with 2D RMS (twice the 
distance of sigma or 95% of the time the actual position is within 6 meters of the indicated 
position). To complement the GPS data, subjects also kept a diary and recorded the type of 
activities they performed while wearing the GPS device.  The GPS sampling was performed over 
five consecutive days--Wednesday through Sunday or Thursday through Monday—to capture 
weekday and weekend changes in spatial locations and activity patterns from October 2006 to 
October 2007.  There were 134 children selected to do the GPS study.  Students were studied 
both in the summer and during the school year to account for possible seasonal differences in 
outdoor activity patterns. 
 
Study Design 
 This sub-study, like FACES, is a longitudinal, prospective cohort study.  There are 
repeated measures of traffic exposure, neighborhood deprivation, and lung function during the 
panel days of FACES study period, 2000-2008, but the statistical analysis is a point treatment.  
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Methods 
Traffic Exposure Assessment 

I collected traffic count data for the FACES study area in Fresno County, CA from the 
California Department of Transportation, Fresno Council of Governments, the Fresno County 
Road Maintenance Division, the City of Fresno, and the City of Clovis for 2000-2008.  The 
California post-mile marker freeway network from Bigham, et al. (2009) was used to geocode 
the CalTrans freeway data.109  All of the other traffic data from the Fresno agencies, which 
consisted of major and minor collector roads and local roads, were geocoded to the ESRI US 
Streets Premium (October 2010).  The traffic count data from the Fresno agencies are 
represented as 24-hour average daily counts, and the data from CalTrans are annual average 
daily counts.  Each traffic count point was then assigned to the road network line segments.  
There is not a standard method to impute counts to links, but the counts were assigned based on 
roadway name, connectivity, and distance.  The traffic count volumes were given to roadway 
classes based on feature class codes (FCCs), where classes 4, 3, 2 and 1 were assigned volumes 
for connected links up to 5, 7, 10 and 10 km from the original traffic count locations.  Only 
connected streets receive a value; if a street ends and begins at a different location, the traffic 
count value does not carry though to the new location.     

Next, I developed a surface layer for traffic density (measured by annual vehicles per 
area) based on a smoothed function kernel density that changes over time and space.  This traffic 
model, like the model Jerrett, et al. applied in a longitudinal cohort study to estimate the 
association between traffic exposure and obesity, has the advantage over a measure like distance 
to major roadway; because it uses multiple roads and the vehicle count density to explain 
exposure.110  Under this method, I use a kernel estimate in ArcGIS Spatial Analyst based on my 
traffic data points for each year and a decay function based on the distance from the roadways.111  
The kernel density function is based on the quadratic kernel function112 described below in 
Equation 1, where x is the set of data points. 
 
Equation 1. 

 
The fall-off distance for the decay function is set to 500m.113  The zone of influence for 

traffic generated air pollution from a roadway is debated.  Some researchers have shown that 
PM0.1 or ultrafine particles cannot be differentiated from background concentrations at distances 
greater than 300m from the roadway.114  Other work has reported the spatial extent for vehicular 
pollution to reach background levels is 100-400m for elemental carbon, 200-500m for nitrogen 
dioxide and 100-300m for ultrafine particles.115  However, even larger zones have been 
measured in Los Angeles, CA.  Hu et al found that the zone of influence of traffic generated 
pollution can extend 1200m downwind of the freeway, and ultrafine particle concentration was 
found not reach background levels until about 2600m downwind of a freeway before dawn.116  
For upwind concentrations, the same group of researchers found that ultrafine particles were 
elevated above background levels 600m from the freeway.116  Traffic emissions are the major 
source of ultrafine particles in the urban environment.114,117  There is likely a regional component 
of ultrafine particles that extends beyond the decay function that I have set at 500m, but I want to 
focus on the immediate neighborhood traffic contribution.118 
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Neighborhood Assignment   
Historically, neighborhoods emerged in American cities with the decline of the walking 

city and the development of new modes of transportation in the mid nineteenth century.92 With 
the absence of intracity transportation, most people in the U. S. could not segregate themselves 
as well as they do now—by social, economic, religious, or political views.92  Official 
neighborhood boundaries were developed for geopolitical reasons—to contain areas for taxation, 
voting, government services, statistics, etc.  Originally, census tracts were designed to capture 
local areas within a city that were similar in population characteristics and contained about 3,000 
– 6,000 residents.93  However, a boundary does not always dictate where people spend their time 
or define what people view as their neighborhood.  Neighborhood perception can vary by a 
person’s age, gender, social status, and physical, geographic characteristics.53,55,56  There is 
limited research that measures a neighborhood in terms other than census geographic units, 
despite reports that smaller neighborhood units have been shown to provide a more meaningful 
and accurate estimate of area effects.54  Thus, there is no gold standard in terms of definition and 
assessment for research in which neighborhood is a central or important construct. Therefore, my 
approach is to use GPS data to define neighborhoods in the context of where participants spend 
their time.  The location of the child’s home within the urban setting plays an important role in 
the level of exposure that each child has to air pollution; however, where children spend their 
time is paramount to measure appropriate exposure. Air pollution studies often focus mainly on 
exposure assignment with residence data and time-activity data sometimes used to get a more 
accurate exposure measurement.  I propose to use time-activity data to create neighborhood 
boundaries that are relevant to where participants spend their time near their residence and to 
quantify that space. 

The GPS data consist of minute-by- minute location points for each study participant.  To 
capture the immediate neighborhood near the participant’s home and to minimize points 
associated with vehicular travel, I limited the GPS points to those within a mile of each child’s 
residence.  I am more interested in a child’s local surroundings where a family could travel by 
foot or bike.  Each FACES participant’s neighborhood boundary is defined based on his or her 
time-activity data at a maximum of one mile from the home.  With these data, I calculated the 
geometric mean of each participant’s point cloud and the standard distance (Equation 2) between 
points around the geometric mean.119  The standard distance is like an average Euclidean 
distance. 
 
Equation 2.  
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I then built circular neighborhoods with the radius set as the standard distance and the 
centroid of the circle as the geometric mean of the GPS points for each study participant.  The 
centroid of the neighborhood is not constrained to the residence.  For the FACES study 
participants for whom we did not collect GPS data, I designated their neighborhoods as the ½ 
mile from their residence.  Therefore, the participants without GPS data have their residences as 
the centroid of their circular neighborhoods and a 10-15 minute walk (1/2 mile) as their radii.  
The choice of a ½ mile walk is a surrogate for a participant’s immediate surroundings.  In the 
US, it has been shown that people are willing to walk different distances based on their 
purpose—be it commuting to a bus stop or rail station, or running errands and shopping.120  
However, in general, a maximum walking distance of ¼ to ½ mile is reasonable to consider how 
far pedestrians are willing to walk.121 

Each neighborhood is individual to each participant.  Thus, no two children in the study 
will have the same neighborhood, unless they reside in the same home and did not complete the 
GPS study.  Aggregated neighborhood data is often plagued by the curse of dimensionality—or 
sparse cells—and non-identifiability, which means that there is little to no overlap between 
covariate distributions of the exposed and unexposed.43,51  This neighborhood method partly 
solves this problem with the construction of personal neighborhoods.  The neighborhood 
boundaries for participants do change over time, if the participants move within Fresno County 
and stay in the FACES cohort between 2000-2008.   
 
Neighborhood Deprivation Assessment 

With the derived neighborhood boundaries, I use an area-weighted, average method to 
measure the characteristics of each neighborhood.  I developed this method to incorporate the 
aggregated US Census data into individual neighborhoods.98  Thus, the neighborhood boundaries 
can capture both contextual and integral factors. Contextual factors are often aggregated social 
factors derived from individual characteristics.  Integral factors are those that are physical 
features of the environment.  Together, these two types of neighborhood characteristics can be 
used to describe neighborhood deprivation.  As detailed in the Introduction, deprivation is the 
composite state of a neighborhood that describes its lack of healthy environmental influences—
there is no generally agreed upon standard measurement for deprivation. 
Deprivation measures for FACES consist of demographic data from the 2000 US Census, 
alcohol outlet data from the California Alcohol Beverage and Control, and point source pollutant 
data from CaSIL (California Spatial Information Library) and the EPA’s Toxic Release 
Inventory (TRI).  I have also collected public data on access to grocery stores, establishments 
with cigarette licenses, parks, daycare facilities, schools, hospitals and bus stops (see Table 1 for 
sources and details); these datasets will help me define more accurately the social and physical 
environments where study participants live. 
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Table 1.  GIS data collected for Fresno County 
Dataset Data type Description Source Date 

Obtained 
Reference 
Date or 
Date last 
updated 

Alcohol 
Outlets 

GIS point 
locations  

On-sale (e.g., bars and restaurants) 
and off-sale (e.g., liquor stores and 
convenience marts) alcohol outlets 
currently licensed in Fresno County.  
Year of original license included in 
dataset. 

California 
Department of 
Alcohol Beverage 
and Control 
http://www.abc.ca
.gov/ 

August 
19, 2010 

August 
19, 2010 

Bus 
Lines 
and Bus 
Stops 

GIS line 
file and 
point 
locations 

Current Fresno City public bus 
routes FAX (Fresno Area Express) 

City of Fresno 
Information 
Services 
Department 

http://www.fresno
.gov/Government/
DepartmentDirect
ory/InformationSe
rvices/GIS/Layers
.htm 

November 
27, 2010 

February 
11, 2009 

Cigarette 
Permits 

GIS point 
locations 

Business names and addresses for 
all current cigarette permits for 
California and past permits back to 
2004 for cigarette taxes. Year of 
original permit included in dataset. 

California State 
Board of 
Equalization 

December 
16, 2010 

November 
4, 2010 

EPA 
Geospati
al 
Pollution 
data 

GIS point 
locations 
and 
polygons 

Current locations for sites on the 
Superfund National Priorities List 
(NPL), EPA and State Treatment, 
Storage, Disposal facilities, Toxic 
Release Inventory System sites, etc. 
for California 

US 
Environmental 
Protection 
Agency 
http://www.epa.go
v/enviro/geo_data.
html 

November 
30, 2010 

October 
28, 2010 

Farmer’s 
Markets 

GIS point 
locations 

Addresses of current farmer’s 
markets for Fresno, Kern, 
Stanislaus, and San Joaquin 
counties  

California 
Federation of 
Certified Farmers’ 
Markets 
www.cafarmersm
arkets.com 

November 
30, 2010 

November 
30, 2010 

Food 
Stores 

GIS point 
locations 

Addresses and business information 
for current grocery stores, 
convenience stores, markets, and 
other types of food stores classified 
by the standard industrial 
classification (SIC) codes for 
Fresno, Kern, Stanislaus, and San 
Joaquin counties.  Year of 

Dun and 
Bradstreet 
www.dnb.com 

November 
23, 2010 

November 
23, 2010 

http://www.dnb.com/�
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establishment included in dataset. 

Daycares GIS point 
locations 

Fresno County daycare provider 
locations 

Fresno County 
Public Works and 
Planning 

November 
11, 2010 

November 
2, 2010 

Hospitals GIS point 
locations 

Fresno County hospital locations Fresno County 
Public Works and 
Planning 

November 
11, 2010 

November 
2, 2010 

Land 
Parcels 

GIS 
polygons 

Current lot sizes and tax 
information 

Fresno County 
Public Works and 
Planning 

November 
11, 2010 

November 
2, 2010 

Land 
Use 

GIS 
polygons 

Areas zoned for particular types of 
use such as residential, agricultural, 
industrial, etc. as of Fall 2010. 

Fresno County 
Public Works and 
Planning 

September 
30, 2010 

September 
9, 2010 

Neighbor
hood 
Improve
ment 
Areas 

GIS 
polygons 

The City of Fresno identified older 
and poorer neighborhoods in 2005 
that need infrastructure 
improvements in the “No 
neighborhood left behind” project. 

City of Fresno 
Information 
Services 
Department 

http://www.fresno
.gov/Government/
DepartmentDirect
ory/InformationSe
rvices/GIS/Layers
.htm 

October 4, 
2010 

June 17, 
2005 

Parks GIS 
polygons 

Current public park perimeters in 
Fresno County 

Fresno County 
Public Works and 
Planning 

September 
30, 2010 

August 
27, 2010 

Schools GIS point 
locations 

Current public schools in Fresno 
County 

Fresno County 
Public Works and 
Planning 

November 
11, 2010 

November 
2, 2010 

Truck 
Routes 

GIS line 
file 

City of Fresno designated truck 
routes from 2005 

City of Fresno 
Public Works 
Traffic 
Engineering 

August 
17, 2009 

September 
25, 2005 

Traffic 
Density 

GIS point 
locations of 
vehicles per 
24 hours 

Intersections where vehicles were 
counted in Fresno County 2000-
2008 

City of Fresno, 
City of Clovis, 
Fresno County 
and Fresno 
Council of 
Government 

March 10, 
2009 – 
December 
2010 

December 
31, 2008 
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2000 US 
Census 
Demogra
phics 

GIS 
polygons 

Variables expressed as a percentage 
of the blockgroup that include:  
males in management or 
professional occupations, 
households with more than 1 person 
per room, households with 1999 
income below federal poverty level, 
female headed households with 
dependents, households on public 
assistance, households earning less 
than $30k per year, individuals with 
less than a high school education, 
and males and females unemployed 
from the 2000 census 

US Census 
http://factfinder.ce
nsus.gov 

August 6, 
2009 

April 1, 
2000 
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To understand the complex neighborhood environment, I use item response theory (IRT) 
to help characterize the variables that make up a deprived neighborhood with an item response 
model (IRM).  In an IRM, several variables (in this case alcohol outlets, schools, parks, etc.) are 
used to make a scale that describes a latent variable. The motivation for such a model is that one 
does not measure directly the “latent” characteristic of interest, such as intelligence or ability as 
IRT is used in education research. In our case, we use this model as a convenient way to create a 
score of neighborhood deprivation, using the idea behind IRT as intuition, but not deluding 
ourselves that this is the true underlying model.  Thus, we treat neighborhood deprivation as a 
“latent” variable, but we do so because we do not have one variable that captures deprivation—
there are several.  There are many characteristics for which the IRM will provide a convenient 
way of creating a deprivation score as we describe below.  There are also many procedures for 
estimating IRM’s, but, in general, data-adaptive procedures are used based on minimizing an 
estimate of the mean-squared error of prediction.  I use a two parameter logistic model (2PL) and 
maximum likelihood estimation for this analysis.  The 2PL model for the IRT of a latent 
variable, θi, for study subject g in the ith item is as follows: 
 
Equation 3. 
 
Pg (θi) =             1                                             
             1 + exp [−1.7 · ag · (θi − bg )] 
 
where bg is the difficulty parameter, which measures the probability of positive response (or a 
correct answer).  The discrimination parameter, ag, measures the ability of the item to distinguish 
between low/high levels of the latent variable.  Thus, the maximum likelihood estimation, with 
an M x N response matrix X (with M rows and N columns) is—  
 
Equation 4.  
          
                  M    N 
L(a, b|X) =∏ ∏Pg (θi ; ag , bg)Xig · [1 − Pg (θi ; ag , bg)]1−Xig  
           i=1 g=1 
 

For the purposes of this analysis, we had no survey or exam, so the item parameters are 
all of the geographic covariates, which I converted to be positive and negative (0=negative 
neighborhood influence, 1=positive neighborhood influence).  For example, if there were an 
alcohol outlet in a participant’s neighborhood, his or her “response” would be 0 for that item.  If 
there were a park in that neighborhood, the response would be 1.  Scoring is based on the 
proportion of respondents answering the item “correctly,” where 0 is wrong and 1 is right.  Item 
parameters are fixed, and we maximize the likelihood for theta or our deprivation score.  
Ultimately, I will use the item response score to address whether there is a causal association 
between the exposure to traffic and outcome lung function.  
 
Environmental Justice Calculation 

To measure environmental justice, I use a quantitative subgroup index of inequity.91  The 
index measures the degree to which residents of a subgroup, say low SES or racial minority, live 
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near or experience sources of integral neighborhood-level pollution (e.g. distance to major 
roadways, TRI sites, traffic density).  In my analysis, I use low income (study participants whose 
annual family income is less than $15k) and neighborhood deprivation to define the subgroup.  
Mathematically, the estimate of inequity is expressed as 
 
Equation 5. 
 
Fi = log(Zi/Ti) 
 
where F is the inequity experienced by a subgroup i and Z is the fraction of the total subgroup 
(e.g. low-income) FACES population near high traffic pollution and T is the fraction of the total 
subgroup population within the FACES cohort.  Thus, F is positive when there is inequity and a 
larger percent of the subgroup live within areas of high traffic density.  F will be negative when a 
larger percent of the subgroup live outside of areas of high traffic density.  This estimate will 
show children in low income households in comparison to the whole spatial boundary of Fresno.  
The estimate only quantifies exposures and does not assume that unhealthy outcomes occur 
based on any disproportions displayed by estimate. 

To implement this measure of environmental justice with the individual neighborhood 
estimates, I will use each child’s income status (with low income defined as a family annual 
income of less than $15k) and neighborhood deprivation with i as a marker for the low income 
sub-group.  The areas of traffic-related high pollution will be defined by the neighborhood kernel 
density traffic volumes for Fresno County.  This estimate of inequity will show if low income 
children or children who live in areas of high neighborhood deprivation in FACES are 
disproportionately located near high traffic density in comparison to the whole spatial boundary 
of FACES study area and entire FACES study population. 
 
Statistical Model for Causal Inference 

After developing an IRM score for the deprivation variables and assessing any inequity 
between deprivation and exposure to traffic, I will employ the causal inference framework to 
determine if lung function is affected by traffic exposure.  Developing a causal estimate for 
traffic density exposure and lung function of a susceptible population is relevant, because traffic 
exposure can be changed through regulation and public awareness.  Defining parameters of 
interest based on causal inference associations can be motivated by the concept of 
counterfactuals and estimation of marginal, population-level effects.122  In this paper, I am 
interested in the marginal effect of high traffic exposure on lung function.   
My research question is—does exposure to neighborhood traffic reduce lung function?  There 
are three causal analyses.  First, for the ½ mile walking distance neighborhoods, I will assess 
average lung function and its relation to low/high traffic neighborhoods.  For the second and 
third analyses, I will assess the same question about lung function and traffic, but these estimates 
will be stratified by neighborhood deprivation. 

There are several assumptions I have to make about the temporal relation between social 
disadvantage and neighborhood deprivation.  Based on lack of temporality between 
neighborhood deprivation and individual level confounders (often, we cannot separate which 
came first, neighborhood deprivation factors (e.g. liquor stores) or high traffic), I consider 
neighborhood deprivation as an effect modifier in all analyses.  The Directed Acyclic Graph 
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(DAG) in Figure 1 shows the relation between confounders and the outcome and exposure.  
Neighborhood deprivation is not displayed on the DAG in Figure 1 because I am assuming it is 
an effect modifier and will stratify the analysis to account for it.   
 
Figure 1.  Directed Acyclic Graph (DAG) 
 

Individual-level confounders such as SES 
 
 
 
Traffic exposure     lung function 
 

For this analysis, I assume that neighborhood deprivation—both integral and contextual 
factors—causes a different relation between traffic exposure and lung function.  In general, this 
assumption says that the physical environment and social factors change the role that traffic 
exposure has on lung function.  The principle hypothesis that I want to test is if traffic decreases 
lung function among children with asthma conditional on neighborhood deprivation. 
While the FACES study is a longitudinal cohort design, this sub-study follows an observational 
point treatment structure, where there is one outcome and one exposure per study participant.  
(When there is more than one residence per participant, I can assess the health effect.  However, 
we cannot look at a change over time; because we do not have multiple address data on all study 
participants.)  I assess the average traffic exposure and average lung function annually for the 
FACES study population.  The risk difference will be the change in mean lung function when 
exposed to high and low traffic.  A risk difference is a better measure to assess the effect of 
exposure on disease at a population level, as it can be directly applied to calculate total cases of 
disease caused by the exposure.102  This approach has advantages over the relative risk, a 
misunderstood measure that epidemiologists have commonly used since Cornfield’s seminal 
paper in 1959.100,101  The relative risk, a ratio of the risk of disease in the exposed and 
unexposed, can obscure a confounder’s impact in the exposed and unexposed groups and the 
baseline disease risk in a population.  I want an estimate on the scale of the probability of the 
outcome, because it is better for assessment of the population-level impact of changing 
exposures.  The statistical estimator that is the most relevant to answer my research question in 
this study to approximate the risk difference is the estimator from a semi–parametric Targeted 
Maximum Likelihood Estimation (TMLE).  My approach is semi-parametric, because the 
method makes very few assumptions about the data-generating distribution and thus, avoids 
specification of a fully parametric model; we will use a loss-based estimation approach.123 

TMLE uses maximum likelihood estimation of the parameter to reduce bias in the 
estimate by regression of the outcome on a function of the exposure and confounders (a nuisance 
parameter), with an offset for the targeted estimate of the density.124,125  The equation for the 
estimator of TMLE is 
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Equation 6. 

 
where n is the total observations, Q*

n is the function of the outcome and confounders, W, under 
exposure or treatment set to 1 and Q*

n is the function of the outcome and confounders, W, under 
the exposure or treatment set to 0.125  The Q function estimation relies on the estimation nuisance 
parameter g(A,W) from the exposure or treatment, A, and the confounders.  The tmleLite 
package in R (available in R 2.14.1) provides the application for TMLE in this analysis.  Any 
model selection procedure can be used to estimate the Q portion of the likelihood.  The tmleLite 
package employs the DSA (Deletion/Substition/Addition) algorithm (available in R 2.14.1 
statistical software as an add-on package “DSA”), a data adaptive procedure, to model the 
relation between exposure to individual-level covariates from the FACES baseline interview, 
neighborhood-level deprivation, and exposure to traffic.  The DSA is a data-driven learning 
algorithm that uses the L-2 loss function to search for a model in the entire model space of 
polynomials that best fits the user supplied specifications (model form, degree of interaction 
terms, maximum variable numbers, and powers).126  The DSA has an “ID” option that groups the 
selection of observations by ID, if there are repeated measures for study subjects.  While the 
DSA is a data adaptive procedure, I supply it with known confounders of the association between 
exposure to traffic and lung function (FEV1) and use it to model the unknowable data generating 
distribution of these confounders, as implied by the DAG in Figure 1.   

The DSA, while it is a data driven algorithm, evaluates the variables in terms of the 
causal hypothesis in so far as the variables are encoded in the causal graph.  The variables that 
the DSA is allowed to consider are determined by the causal hypothesis and the researcher to get 
at an accurate probability distribution.   

There is no causal inference without causal assumptions and hypotheses.122  While causal 
inference is dependent on a set of assumptions, these assumptions can apply to traditional models 
as well, but none of the assumptions can be tested.  First, I assume that counterfactual outcomes 
exist and can be estimated from the observed data.  I also assume temporality in my data—the 
exposure precedes the outcome and the confounders precede both the outcome and the exposure.  
I also assume that there is no unmeasured confounding in the data with respect to the exposure 
and censoring.  Both the exposure and the missing data, I assume to be assigned at random and 
missing at random, beyond the confounders that we have measured and accounted for in the 
models.  In addition to the assumptions listed above, the data also rely on the Experimental 
Treatment Assignment, which states that no set of variables can deterministically restrict or 
assign the exposure.  The ETA can be checked with a plot of the predicted probabilities for 
treatment over the log odds of treatment for the selected g model.  The final inference and 
interpretation of the data relies on this set of assumptions.  My analysis will help us understand if 
neighborhood deprivation affects exposure to traffic and lung function among children with 
asthma. 
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Traffic Exposure Assessment 
 The traffic data collected from 2000-2008 provided a snapshot of the traffic processes in 
Fresno County, CA.  Table 2 shows the description of the data collected by agency and the 
resulting data that were geocoded to the street network.  Many of the traffic data points were 
added together or divided to fit on the road network (n=7,311); therefore, the total number of 
points was consolidated to 5,924 for the study period.  The reason for these decisions was based 
on the fact that for the majority of data points, we had data on both traffic directions but only one 
line segment, instead of two in the road network.  For example, if we had both eastbound and 
westbound traffic and there was only one line segment in the road network depicting both 
directions, the eastbound and westbound points were added together.  If there was one point 
(labeled “Band” or “both”) and two road segments, the data point was halved. 
 
Table 2. 

Data Source Years Total Raw Data 
Points 

Total Geocoded 
Data Points(%) 

Total fit to Street 
Network by Road type 

City of 
Fresno 

2000-2008 4,102 4,012 (98%) - 

City of 
Clovis 

2002-2008 623 623 (100%) - 

Fresno 
County 

2000-2002, 
2004-2008 

6,955 6,740 (97%) - 

CalTrans 2000-2008 1,992 1,860 (93%) - 

Total 2000-2008 13,672 13,235 (97%) 5,924 (43%) 

 
 The traffic data reveal adequate coverage for the County of Fresno with data gaps in 
more rural areas (Figures 2a and b). 
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Figure 2a.  Map of Fresno County, CA traffic data points (n=5924) overlaid on the County street 
network 2000-2008 with the FACES participants’ residences (n=518) 
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Figure 2b.  Zoomed in map of Fresno County, CA FACES study area with traffic data points 
(n=5924) overlaid on the County street network 2000-2008 and the FACES participants’ 
residences (n=518) 
 

  
The traffic volume data points were then linked to the street network, such that each line 

segment in the street network is assigned a volume based on the nearest input.  The maximum 
distance for a volume assignment from a data point was set to 5, 7, 10 and 10 kilometers for road 
classes 4, 3, 2, and 1 respectively.  The roadway classes are coarsely defined: 4=local 
neighborhood road, 3=secondary and connecting road, 2=primary road, and 1= highway.  Figure 
3 shows the street network covered with the traffic volumes. 
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Figure 3a.  Map of Fresno County, CA traffic volume assignment to street network 2000-2008 

 



28 
 

Figure 3b.  Zoomed in map of Fresno County, CA FACES study area with traffic volume 
assignment to street network 2000-2008 
 

 
Kernel densities by year illustrate heavier traffic density along the freeways and Fresno 

City area and lower traffic density in the rural areas (Figure 4).   
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Figure 4.  Example of a kernel density in the Fresno Metro Area, CA for average daily traffic in 
2005 

 
 
Neighborhood Assignments 
 Figure 5 shows the results of a sample of FACES participants’ neighborhoods based on 
the GPS time-activity points.  Each neighborhood centroid does not necessary reflect a 
participant’s residence with the GPS defined neighborhoods.  Contrary to the GPS 
neighborhoods, the ½ mile walking distance neighborhoods use the participant’s residence point 
as the centroid for the circular neighborhood with a radius of ½ mile. 
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Figure 5.  Example of GPS neighborhoods in Fresno, CA 2006-2007 
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Both the GPS and ½ mile walking distance neighborhoods were assigned traffic density 
exposures based on the year last lived at each residence location.  For example, if a participant 
lived at 10 Main Street from 2000 to 2004, the traffic exposure will relate to the traffic data 
collected for 2004.  Study participants moved residences throughout the nine study years; 
consequently, there can be more than one neighborhood for each participant.  There are 518 
different residences in total for the 315 study participants.  There were 134 participants who 
completed the GPS sub-study during October 2006 to October 2007.  Children wore a GPS 
armband and accelerometer (activity motion detector) for 5-days (with weekend span) during a 
14-day panel (see Methods “Study Population”).   

I limited the GPS time-activity data just to those points (n=920,259) that were within 1 
mile of each participant’s home to minimize time spent inside a car.  I wanted to capture more 
immediate neighborhoods and areas where a child could be on foot or on a bike.  The traffic 
exposures are represented as an area-weighted sum and maximum value within each 
neighborhood.  The distribution of the traffic exposures by neighborhood is displayed in Table 3.  
The distributions are skewed and will be used as a binary variable (low/high) in the analysis.  In 
general, the GPS neighborhoods were smaller (median standard distance radius=524 ft) than the 
½ mile (radius=2640 ft) walking distance neighborhoods, and the distributions reflect this.  The 
walking distance neighborhoods have greater traffic exposures than the GPS neighborhoods.  In 
the causal inference analysis, the different neighborhoods are considered with a variable marking 
the type of neighborhood in all modeling steps.  Figures 6 and 7 show plots of the distributions.  
After considering where the distributions of traffic by neighborhood start to become skewed, I 
choose a cutpoint of low traffic as less than 15 vehicles/cubic feet for the area weighted 
neighborhood traffic exposures and less than 50 vehicles/cubic feet for the maximum traffic 
neighborhood traffic density.  These low/high measurements will be used for the remainder of 
the analysis for the environmental justice assessment and the causal inference analysis.  
 
Table 3.  Distribution of traffic exposures (vehicles/ft3) based on neighborhood 

 Mean 5% 25%      50%      75%      95% Min  Max Std. 
Dev 

Area Weighted 
Traffic Density 
for GPS 
neighborhoods 
(n=134) 

9.23 0 2.00 7.83 12.46 29.25 0 51.93 8.89 

Maximum Traffic 
Density in GPS 
neighborhoods 
(n=134) 

17.67 0 5.00 14.5 24.00 50.00 0 91.00 16.16 

Area Weighted 
Traffic Density 
for ½ mile 
walking distance 
neighborhoods 

12.11 0.60 4.48 9.26 16.02 33.93 0 81.88 11.33 
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(n=518) 

Maximum Traffic 
Density for ½ 
mile walking 
distance 
neighborhoods 
(n=518) 

40.50 4.00 19.00 29.00 51.00 106.00 0 188.00 37.51 

 
Figure 6.  Histogram of exposure distribution of the area-weighted traffic within the GPS and the 
½ walking distance neighborhoods (n=652) 
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Figure 7.  Histogram of the exposure distribution of the maximum density of traffic found within 
GPS and the ½ mile walking distance neighborhoods (n=652) 

137

167

128

68

49

19
28

21
15

5
1

5 2 1 1 2 1 2

0
20

40
60

80
10

0
12

0
14

0
16

0
Fr

eq
ue

nc
y

0 50 100 150 200 250 300
Maximum Neighborhood Traffic Density (vehicles/ft3)



 

34 
 

Neighborhood Deprivation 
 Item response scores were calculated for each neighborhood and neighborhood type.  
Figure 8 shows the distribution of IRT scores--with full residential history for 315 study subjects 
(n=518 residences), the median IRT score is 0.049 with a range from -5 to 5, SD=2.38.  The 
median IRT score is near zero, which means that most neighborhoods are not extremely well off 
nor disadvantaged—most neighborhoods can be classified as in between.  The item characteristic 
curve plotted in Figure 9 displays how each item or deprivation factor tracks with the final IRT 
score.  Most of the neighborhoods had scores around 0, which means that these neighborhoods 
have a high probability of  having a daycare, a grocery store, or a busstop (Figure 9).  When the 
IRT score is equal to the estimated difficulties for each item, there is a 0.5 probability of having a 
positive neighborhood attribute.  Cigarette permits and alcohol outlets are the “most difficult” 
items in this analysis.  This means that the probability of having a positive neighborhood 
attribute is low for most participants on these items. For instance, the probability of having a 
positive attribute (with regard to the items, cigarette permits and alcohol outlets) is 0.5 when the 
IRT score is approximately 4.  For items with lower “difficultly,” such as daycares, the 
probability is 0.5 when the IRT score is slightly less than 0.  Figure 10 shows that the scores 
correlate somewhat to US Census level poverty with a Spearman’s Rho = 0.58.  There are very 
low IRT scores (which mark high deprivation) where there are neighborhoods with low levels of 
poverty—we would expect to see the opposite.  The IRT scores do not track with poverty either.  
For an IRT score of 3, the percent of poverty varies from low to high. 
 
Figure 8. Boxplot of distribution of IRT scores (n=518) 
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Figure 9.  Item characteristic curve of IRT scores and probability of participants with a positive 
attribute* 
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* When the IRT score (theta) is equal to the estimated difficulties for each item, there is a 0.5 probability of having a 
positive neighborhood attribute. 
 
Figure 10. Scatterplot of Item Response Theory scores (n=518) and US Census 2000 blockgroup 
level percent of residents below the Federal Poverty Level 

 
 
Environmental Justice Assessment 

Table 4a displays the results of the index of inequity based on children in the FACES 
study group who have an annual family income of less than $15k and the exposure to low or high 
traffic.  This measure of low-income (<$15k) was a priori selected by the FACES investigators 
for previous analyses.  Based on the FACES study population residences, there is some 
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disproportanality of the low-income study participants with respect to high traffic exposures, 
because the index score is positive.  Given that the index is on the log scale, when index values 
are at and near zero, there is no disproportionate clustering in space.  The subgroup population is 
not situated near the exposure more so than other areas of Fresno, CA.  The index of inequity 
(Table 4a) is positive for both high traffic definitions; this means that more low income study 
participants live near high traffic density than outside of the high density as compared to the 
entire FACES study population.  Hence, there is some environmental injustice occurring within 
our study population when I use low income and high traffic exposure as my identification 
factors (Figure 11).  The indices are small, so there is slight environmental injustice in the 
FACES study population.   

The difference between Tables 4a and 4b relates to the characteristic used to define a 
subgroup for an environmental justice analysis.  In Table 4a, low income is the feature that 
defines the subgroup.  In Table 4b, I use the neighborhood deprivation score from the previous 
analysis to define a subgroup.  With high neighborhood deprivation as the defining subgroup 
characteristic instead of low income, there is no inequity as measured by the index (Table 4b).  
On the contrary, the negative scores reveal that more FACES participants who are in high 
deprivation neighborhoods live farther away from high traffic areas.  This could be due to the 
fact that many of the variables that describe deprivation in this analysis are situated in areas 
where we have more cars (e.g. convenient marts and liquor stores are often in busier areas, while 
parks may not be as frequent in such areas).  The interpretation of these results is furthered in the 
discussion. 
 
Table 4a.  Environmental justice index of inequity† results for FACES participants with income 
and residential data (n=302) at baseline 

Traffic Exposure Low Income FACES 
Participants, n=62(%) 

95% Confidence 
Interval‡ 

Index of inequity 

Exposed to High 
Traffic (> 15 
vehicles/ft3 with area 
weighted method) 

26  (41.9%)  (18.38, 33.62) 0.31 

Exposed to High 
Traffic (> 50 
vehicles/ft3 with 
maximum 
neighborhood 
method) 

18 (29%) (10.99, 25.01) 0.15 

† Fi = log(Zi/Ti) where F is the inequity experienced by low income FACES participants i and Z is the fraction of the 
total low income FACES population near high traffic pollution and T is the fraction of the total subgroup FACES 
population within Fresno   
‡Based on a binomial distribution 
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Table 4b.  Environmental justice index of inequity† results for FACES participants based on 
deprivation scores, where high neighborhood deprivation is defined by an IRT score < -1 

Traffic Exposure FACES Participants 
living in high 
deprivation 
neighborhoods, n=103 

95% Confidence 
Interval‡ 

Index of inequity 

Exposed to High 
Traffic (> 15 
vehicles/ft3 with area 
weighted method) 

15 (14.6%) (7.98, 22.02) -0.119 

Exposed to High 
Traffic (> 50 
vehicles/ft3 with 
maximum 
neighborhood 
method) 

9 (8.7%) (3.38, 14.62) -0.341 

† Fi = log(Zi/Ti) where F is the inequity experienced by FACES participants i living in high deprivation 
neighborhoods and Z is the fraction of the total FACES population in high deprivation neighborhoods near high 
traffic pollution and T is the fraction of the total subgroup of FACES population within Fresno   
‡Based on a binomial distribution 
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Figure 11 Map of Fresno County, CA with 2005 kernel traffic density and study participants 
exposed to high traffic densities with less than a $15k household income 

 
Causal Inference Analysis 
 The FACES study population consists of children who were on average 8 ½ years old 
when they began the study (Table 5).  One fifth of the study participants came from low income 
families.  About 40% were Hispanic.  Half of our participants had mild persistent asthma, and 
one quarter had moderate to severe asthma. 
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Table 5.  Descriptive statistics for FACES participants  
Characteristic Full cohort (n=315) 

Mean Age at baseline [S.D.]  8.5[1.7] 

Male (%) 56.5 

Income Less than $15,000 (%) 20.4 

Home Ownership (%) 56.5 

Health Insurance (%) 95.9 

Hispanic (%) 39.7 

Non-hispanic white (%)  41.9 

African American (%)  16 

Mean # of Panel Visits Completed [s.d.] 8.4 [5.0] 

Skin-test positive to at least one antigen (%)a      62.7 

Mild intermittent asthma (%)b  28.2 

Mild persistent asthma (%)b  47.6 

Moderate or severe asthma (%)b  24.1 

Use inhaled steroids (%)  73.0 

Oral prednisone, last 12 months (%)  37.5 

%FEV1 < 80 % predictedd   17.5 

%FEF25-75  < 70 % predictedd  26.2 

 
 For the causal inference analysis, I considered variables that were related to both traffic 
exposure and lung function as confounders.  I also considered variables that were known to be 
strong associated with the outcome (lung function), but maybe had proxy pathways or worked 
through an unmeasured variable to be related to traffic exposure.  The variables in Table 6 were 
selected a priori to have a relation with lung function based on the literature and previous 
analyses with the FACES cohort.  The bivariate associations with these variables and FEV1 are 
displayed in the Table 6 by order of significance. 
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Table 6.  Candidate variables considered for analysis shown with Chi-squared p-values for 
bivariate associations by ID with the outcome for annual mean FEV1 of panel visits 

Variable Description Chi-squared Z-value P-value 

height_c Annual mean height cubed (cm) 16.15 0.000 

mheight Annual mean height (cm) 15.50 0.000 

mage Mean age 14.35 0.000 

Race4 0=other race, 1=Asian -13.69 0.000 

mweight Mean weight (lbs) 9.14 0.000 

Year08 Panel test in 2008 8.57 0.000 

Year04 Panel test in 2004 -6.66 0.000 

junip_p skin test positive to juniper -5.49 0.000 

Year01 Panel test in 2001 -5.39 0.000 

Year03 Panel test in 2003 -4.93 0.000 

Year02 Panel test in 2002 -4.26 0.000 

ncoh8 Child entered study after 7/1/2004 -4.18 0.000 

Gps_hood 0=traffic exposure data from ½ mile walking 
distance neighborhood, 1=traffic exposure data 
from GPS based neighborhood 

3.87 0.000 

race2 0=other race, 1=black -3.67 0.000 

cedar_p skin test positive to cedar -3.39 0.001 

ncoh6 Child entered the study between 7/1/2003 and 
12/31/2003 

-3.24 0.001 

Year05 Panel test in 2005 -2.92 0.003 

asthle2 Diagnosed with asthma before the age of 2 -2.64 0.008 

Year07 Panel test in 2007 2.63 0.008 

mosmk_pr 1=mother smoked during pregnancy -2.46 0.014 

atopy skin test positive to at least one allergen 2.35 0.019 

ncoh1 Child entered study before 6/30/2001 2.31 0.021 

ncoh3 0=other 1=baseline visit was between 1/1/2002 and 
6/30/2002 

2.30 0.022 

atopy2 Skin test positive to at least one allergen or had a 2.25 0.024 



 

41 
 

severe reaction 

ncoh7 child entered study between 1/1/2004 and 
6/30/2004 

-2.22 0.026 

olive_p Skin test positive to olive 1.95 0.051 

income1 1=inclome below $15K, 0=otherwise -1.94 0.053 

income4 income > $50K 1.93 0.054 

gina3 0=other GINA score, 1=Moderate/Severe severity -1.82 0.068 

everhosp was ever hospitalized for asthma at baseline -1.79 0.073 

cat_p skin test positive to cat dander 1.73 0.084 

inccat 0= income> $30k, 1=Income <$30k -1.53 0.127 

race1 0=other, 1=hispanic 1.47 0.142 

evericu 0=no, 1= ever spent time in ICU for asthma 
assessed at baseline 

-1.46 0.145 

male 0=girl, 1=boy 1.38 0.169 

alt_p 0=negative, 1=positive for alternaria allergy 1.30 0.195 

grass_p skin test positive to grass 1.28 0.202 

rye_p Skin test positive to rye 1.24 0.216 

brstfed 0=not breastfed, 1=breastfed 1.13 0.261 

penc_p  skin test positive to penicillin -0.99 0.322 

clado_p skin test positive to cladosporium 0.85 0.395 

gina2 0=other GINA classification 1=GINA classified 
mild persistent asthma 

0.84 0.398 

mite_p skin test positive to mites 0.81 0.419 

numhosp number of hospitalizations at baseline -0.68 0.496 

gina1 0=other GINA score, 1=Mild intermittent severity 
(lowest severity level) 

0.68 0.499 

asth_fa 0=father does not have asthma 1=father has asthma 
(baseline) 

-0.56 0.576 

race3 0=other 1=white 0.53 0.596 

privet_p skin test positive to privet -0.45 0.650 
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ncoh5 0=other 1=baseline visit was between 1/1/2003 and 
6/30/2003 

-0.36 0.721 

mug_p skin test positive to mug worm 0.34 0.736 

income2 0=income<$15k or >$30k, 1=income between $15 
and $30K 

0.33 0.738 

lbw 0=not low birthweight, 1=lowbirthweight 0.22 0.822 

lbwprm low birth weight or born prematurely -0.22 0.828 

dog_p skin test positive to dog dander 0.18 0.855 

income3 1=income between $31 and $50K, 0=otherwise -0.18 0.858 

asth_mo 0=mother does not have asthma 1=mother has 
asthma (baseline) 

0.17 0.868 

prem 0=not premature, 1=born prematurely (>3 weeks 
early) 

-0.13 0.893 

ncoh2 child entered study between 7/1/2001 and 
12/31/2001 

-0.13 0.896 

ncoh4 child entered the study between 7/1 and 12/31/2002 -0.10 0.917 

Year06  Panel test in 2006 0.07 0.942 

oak_p 0=negative, 1=positive for oak allergy 0.02 0.987 

 
 To understand if neighborhood deprivation modifies the relation between traffic exposure 
and lung function, I ran three different analyses. Analysis 1 does not take neighborhood 
deprivation into account in the modeling.  Analyses 2 and 3 are based on subsets of the data.  
Analysis 2 is only performed on those study participants who lived in areas of high 
neighborhood deprivation (IRT score < -1).  Analysis 3 is only performed on those study 
participants who do not live in high deprivation or an IRT score > -1.  The candidate variables 
(Table 6) were entered into the DSA for model selection for the Q model, the g or treatment 
model and the censoring or missingness model for all analyses.  The DSA arguments were set to 
a maximum model size of 12 variables, a maximum sum of power of two, and a maximum set on 
interactions of two variables.  The exposure, high traffic as defined by 15 or more vehicles per 
cubic foot, was forced into the Q model.  The DSA results are listed in Table 7.  Each model was 
run 10 times with 10 different user seeds.  The most frequently selected models (displayed in 
Table 7) were used in the final analyses, except for Analysis 3 where the most frequently 
selected model resulted in small cells.  For Analysis 3, the model selected 6 out of 10 times had 
only 3 study participants in one of the combinations, so I used the next best model, which was 
selected by the DSA 2 out of 10 times and is displayed in Table 7.  For all of the analyses, the 
DSA did not select a model for the data missing an outcome, which means that there were no 
variables in the data that predicted missingness.  All Q models contained height, but the Q 
models in Analysis 1 and 3 contained age x height in the final models to best predict FEV1.  The 
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treatment or g models all had different combinations of variables to predict the treatment or high 
traffic exposure. 
 
Table 7.  Models selected for analysis by the DSA 

Analysis Q model g model Censoring model 

1) Exposure = 
neighborhood traffic 
area-weighted 
average Outcome = 
average panel lung 
function (FEV1)  

(n=538) 

(High traffic) +  

(mean age x height3) 

(Father asthma 
diagnosis) + (skin test 
positive for 
cladosporium) + 
(mother smoked 
during pregnancy) + 
(income >50k) 

No model selected 

2)  Exposure = 
neighborhood traffic 
area-weighted 
average Outcome = 
average panel lung 
function (FEV1) 

Modifier = High 
Neighborhood 
Deprivation 

(IRT score < -1) 

(n=103) 

(High traffic) +  

(height3) 

(Father asthma 
diagnosis) 

No model selected 

3)  Exposure = 
neighborhood traffic 
area-weighted 
average Outcome = 
average panel lung 
function (FEV1) 

Modifier = Low 
Neighborhood 
Deprivation 

(n=435) 

(High traffic) +  

(mean age x height3) 

(skin test positive for 
cladosporium )+ 
(mother smoked 
during 
pregnancy)+(Hispanic 
race) + (Father asthma 
diagnosis) 

No model selected 

 
 I plotted each g model to test for ETA violations.  In general, the g models all had low 
predicted probabilities for high traffic exposure.  The g model for Analysis 1 had the most 
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observations and also the most variables in the DSA selected model, so the plot (Figure 12) 
shows the greatest variability of values as compared to Analyses 2 and 3.  Figure 13 shows that 
Analysis 2 has fewer observations and also fewer terms selected by the DSA for the g model.  
The predicted probabilities are low, but the values do not always predict 0, or have no probability 
of having a high traffic exposure.  Analysis 3 has a similar ETA plot to Analysis 1 (Figure 14)—
likely because Analysis 3 is only missing 103 study participants from stratification and the g-
models for both analyses are similar. 
 
Figure 12.  Plot of the Experimental Treatment Assignment with the predicted probability of 
high traffic exposure and log odds of high traffic exposure for analysis 1 (labels=n) 
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Figure 13.  Plot of the Experimental Treatment Assignment with the predicted probability of 
high traffic exposure and log odds of high traffic exposure for analysis 2 (labels=n) 
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Figure 14. Plot of the Experimental Treatment Assignment with the predicted probability of high 
traffic exposure and log odds of high traffic exposure for analysis 3 (labels=n) 
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 The final TMLE estimates are presented in Table 8.  The risk difference for Analysis 1 
without stratification for neighborhood deprivation is -0.233 (95% CI -0.338, -0.129), which 
means that the mean lung function change from low traffic to high traffic is an average decrease 
of 0.233 L in FEV1.  This says that children who are exposed to lower neighborhood traffic have 
greater lung function than children who are exposed to higher neighborhood traffic.  When I 
compare the TMLE results by neighborhood deprivation (high deprivation is an IRT score < -1), 
there is not enough data to estimate the mean population lung function based on exposure and 
stratified by neighborhood deprivation.  The estimate is imprecise, but the trend when compared 
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to Analysis 1 and 3 is that the reduction in lung function is lessened for the FACES group that 
lives in highly deprived neighborhoods.  The rest of the FACES group (Analysis 3) has a result 
similar to the full group.  The risk difference is -0.198 (95% CI: -0.344, -0.053), which means 
that the mean lung function change from low to high traffic among those participants not living 
in highly deprived neighborhoods is an average decrease of 0.198 L.   Traffic appears to be 
separate from neighborhood deprivation and a more important factor to consider.  The exposure 
profiles of the stratified groups are quite similar (Figure 15a and b).  Furthermore, with regard to 
the IRT results, high traffic exposure is not that different by income (Figure 16a and b).   
The expected percent reduction in lung function (the risk difference divided by the average 
expected lung function when high traffic exposure is zero) for Analysis 1 is 12%.  Therefore, the 
marginal decrease in lung function is 12% from exposure to high traffic among FACES study 
participants. 
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Table 8.  Risk differences for each analysis 
 

Analysis Risk Difference 
from High traffic (> 
15 vehicles/ft3) to 
Low traffic (< 15 
vehicles/ft3) 

95% Confidence 
Interval 

[Estimated 
Variance] P-value 

1) Exposure = 
neighborhood traffic 
area-weighted average  

Outcome = average panel 
lung function (FEV1) 

(n=538) 

-0.23323 (-0.338, -0.129) [0.003] p<0.0001 

2)  Exposure = 
neighborhood traffic 
area-weighted average  

Outcome = average panel 
lung function (FEV1) 

Modifier = High 
Neighborhood 
Deprivation (IRT score < 
-1) 

(n=103) 

-0.11355 (-0.433, 0.206) [0.027] 0.486 

3)  Exposure = 
neighborhood traffic 
area-weighted average  

Outcome = average panel 
lung function (FEV1) 

Modifier = Low 
Neighborhood 
Deprivation 

(IRT score > -1) 

(n=435) 

-0.19826 (-0.344, -0.053) [0.006] 0.008 
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Figure 15a.  Distribution of traffic exposure among FACES participants who do not reside in 
highly deprived neighborhoods 
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Figure 15b.  Distribution of traffic exposure among FACES participants who reside in highly 
deprived neighborhoods 
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Figure 16a.  Distribution of traffic exposure among FACES participants who are low income 
(family annual income of <$15k) 

10

16

11

18

13

10 10
11

7
8

3

1

5

1
2

1
2 2

1

3

1

0
5

10
15

20
Fr

eq
ue

nc
y 

A
m

on
g 

Lo
w

 In
co

m
e 

G
ro

up

0 10 20 30 40 50 60
Area-weighted Traffic Density (vehicles/ft3)

 
Figure 16b.  Distribution of traffic exposure among FACES participants who are not low income 
(family annual income of $15k or greater) 
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Chapter 4:  Conclusion 
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Traffic Exposure Assessment 
The traffic data that I collected for this analysis are the most comprehensive that this 

study area of Fresno, CA has to date.  Previous health-related work in the FACES project have 
used sparse traffic data from one source (e.g. CalTrans freeway data where n~200 data points per 
year for Fresno County) to approximate: 1) traffic exposure for the FACES study population;106 
and 2) traffic density for a land use regression model to estimate polycyclic aromatic 
hydrocarbon exposure.127 The CalTrans data account for traffic on freeways, highways, arterials 
and some major collector roads; thus, most local roadways are not part of the data.  While 
heavier traveled highways are the most important contributors to ambient air pollution, the 
secondary and local roads may be more important to classify immediate exposures near 
residences and to gain more complete coverage for larger study areas.  Recent studies that model 
traffic for sprawled metropolitan areas, such as Los Angeles, CA, have traffic data from local 
roadways (n~8000) contribute almost half of the data points to a traffic model for land use 
regression analyses.118,128  Other studies are vague with regard to or do not disclose how many 
data points were used to estimate traffic density exposures over large study areas.80,113  
Moreover, these studies sometimes use traffic data that were collected during years different 
from their health study.113  

I aimed to get the best available data for Fresno County for all years of our study.  The 
data span different seasons, years, roadway types, and agencies; they also provide an annual 
snapshot of traffic for local roadways.  However, the data are not without their limitations.  Since 
both traffic exposure and lung function are annual averages, there could be some exposure 
misclassification.  For instance, the traffic exposure estimate might not always represent the 
exposure that preceded the outcome.  While this is a problem and ought to be considered in the 
interpretation of the results, this misclassification would be worse if I used annual traffic data to 
look at short term effects, such as acute, daily changes in lung function from annual averages of 
traffic.  The analysis was meant to match the data—a comparison of annual averages.  There are 
likely traffic measurements that were collected after lung function spirometry tests, but both 
measurements are the result of means.  The data are the best estimate of a mean exposure that a 
person has related to pulmonary function measurements.  Since I do use averages for both 
measurements, the misclassification of temporality is lessened with the inclusion of multiple data 
points.  For the county and city agency data, I use 24 hour counts within a study year to 
approximate an annual average.  A one-day count is most likely not indicative of the traffic 
experienced at that location for the whole year.  However, the one-day count is an unbiased but 
highly imprecise estimate.  Also, the county and city agency data do not have traffic information 
on all roadways in their jurisdiction--the data are incomplete.  Of the data that I collected, I had 
excellent geocode matches.  Less than 5% of the data were unable to be matched (Table 2).  
Finally, most of our study subjects lived within the city of Fresno, where we had the best road 
network coverage (Results Figure 1b and 2b). 
 
Neighborhood, Item Response Theory Model and Environmental Justice 

Single aggregate variables are inadequate to describe the degree to which people live in 
advantaged or disadvantaged neighborhood.7  Using the area-weighted neighborhood method to 
classify neighborhood characteristics and with Item Response Theory, I allow for consideration 
of this complexity.  I can look at a number of factors and summarize them quantitatively to 
capture deprivation/advantage with varying definitions of neighborhood in terms of quality and 
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characteristics.  This classification is based on a pseudo-individual neighborhood, not grouped 
data.  The individual neighborhoods partially solve the problem of non-identifiability or small 
cells without overlapping covariate structure among exposure groups.  While the deprivation 
measures and IRT scores do not track completely with census level poverty, there is no gold 
standard measurement for neighborhood deprivation.  Each agency or research group ought to 
use the measures most appropriate for their analysis though.  In the case of health analyses, we 
have found that deprivation is something complex that can affect health outcomes via individual 
and aggregate mechanisms.  Thus, sometimes the easiest data to obtain that describe a 
neighborhood, such as US Census data, might not be the most appropriate to use in a health 
analysis.  In my analysis, I was interested in both the contextual and integral factors in 
neighborhoods of our study participants in Fresno, CA.  The US Census only provides 
aggregated contextual factors, which would portray part of the picture of neighborhood 
deprivation.  The additional factors that I collected along with the IRT analysis helped provide a 
composite factor and wider view of neighborhood deprivation.  This is more powerful and 
inclusive than say, the use of US Census measured poverty to describe neighborhood 
deprivation.  The field of public health benefits from a wider lens when we do not have a go-to 
measure for a latent variable such as deprivation. 

With environmental justice assessments of the impact of traffic on health, we often must 
choose a characteristic that identifies collectively a social group or a sensitive population though. 
However, the dilemma is to identify which characteristics best describe populations in need of 
environmental protection?  For my environmental justice analysis, I chose neighborhood 
deprivation and low income.  Deprivation describes a population living in an environment that is 
in need of positive amenities and possibly has more negative influences (e.g. liquor stores) and, 
perhaps lacks, the power to change their exposure to traffic.  Individual-level low income 
describes a population that may have financial difficulty needed to make a change to their 
exposure to traffic (e.g. property can be cheaper near busy freeways and low income families 
may not be able to afford to move).  With deprivation as the criterion to define a sub-group, there 
was no environmental injustice occurring; I see the opposite.  The index is negative, which 
shows that study participants who live in areas with high neighborhood deprivation have lower 
traffic exposures.  This could be due to the location of amenities; there are more positive 
neighborhood influences (e.g. grocery stores, daycares, busstops, etc.) in areas that have denser 
traffic.  This analysis could be problematic, because area-level attributes were used to define the 
subgroup and also define the exposure.  We know that nearby spatial attributes can be 
autocorrelated, so it is possible that the index is depicting area level correlations.  With low 
income as the definition, I use an individual characteristic to make a comparison to an area-level 
attribute.  Individual income is a more common factor to define a disenfranchised sub-group, and 
with this definition there is slight environmental injustice in the study population.  The index of 
inequity shows a positive score, which means that study participants in the low-income group are 
disproportionately located near high traffic densities.   

The results of the environmental justice analysis tell two parts to the same story.  First, 
living in what I define as a deprived area in Fresno, CA likely means being away from services 
and the associated higher traffic.  Second, deprivation does not track well with poverty, and the 
environmental justice results with income reveal that poorer families reside in areas with heavier 
traffic.  Thus, in Fresno, CA, wealthier families in our study population live in more rural areas 
with lower traffic density and fewer amenities and services. 
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There are several limitations to this work.  The IRT for deprivation might not be a good 
model for what we consider neighborhood deprivation in rural areas and items that reflect 
contrary deprivation definitions might be found in the same place (e.g. grocery stores are positive 
neighborhood influences, but off-sale alcohol outlets might be found at the same or a nearby 
location).  Also, with any modeling, the IRT could be missing unmeasured data that better reflect 
deprivation.  Spatial positional accuracy could affect the IRT scores as well.  If the spatial inputs, 
such as parks and daycare locations, are grossly wrong, then the IRT score will be biased.  
However, since the spatial variables were transformed to a binary indicator (i.e. geographic 
attribute present or not present), the error will likely only cause bias around the smaller values to 
the extent that values cluster around the cut point.   

The GPS data I use to define a neighborhood is only a snapshot of how a study 
participant spends his or her time, so, as with the walking distance defined neighborhoods, the 
data might not be representative of a study participant’s actual neighborhood.  However, this 
measurement might not be yield a precise estimate of where a study participant roams near his or 
her home, but it is an unbiased estimate of where a study participant goes nearby.  My approach 
is the first neighborhood study in the literature that uses GPS to define neighborhood boundaries 
for individual study subjects.  Most of epidemiology relies on aggregated data with boundaries 
from the US Census.  The census does not track people to see objectively where they go near 
their residence.  Rather, the census neighborhoods are based on population size and physical 
boundaries. 

The GPS data are not without their limitations.  They do contain error; the accuracy of 
the device is that 95% of the time the indicated location will be within 6 m or 20 ft.  Most of the 
neighborhoods were much larger than 20 ft—the median GPS neighborhood had a radius of 524 
ft.  Again, the error in the device will likely bias the results at very small values and very few 
observations.  Since I use minute-by-minute GPS points over a period of 5 days, the error is 
likely minimized.   

I am limited in this analysis in that I cannot make any individual level inferences about 
traffic, deprivation and lung function, because this model does not look at how deprivation and 
traffic directly affects children in our study.  To calculate deprivation and traffic more precisely, 
individual questionnaires could be administered along with backpacks that monitor air quality 
around the individual--our model cannot capture a study participant’s perceptions of their 
neighborhood deprivation, individual traffic-related air pollution and exposures inside of the 
home.  Other limitations to this work are that we assume the US Census 2000 measures to be 
constant over our study time period 2000-2008, children lived at their reported residence, and the 
other GIS deprivation variables are constant from 2000-2008.  Since the US endured an 
economic recession from December 2007-June 2009, the geographic variables must be 
interpreted with caution.  The housing downturn and unemployment increases likely changed US 
Census characteristics and many of the other geographic factors collected for this analysis.  
However, the FACES group ended data collection in September 2008; therefore, the US 
recession coincides with less than a year of the study.  The US Census describes the difference 
between many years of data and just one year as a trade-off of accuracy and currency.129  The 
multiyear estimates will have smaller errors, but they can miss relevant demographic and 
geographic changes that occur over short time periods or before the latest census data are 
available. 
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Data and relationships between data can be influenced by the size and/or shape of the 
units from which the data are reported. 94  This issue, known as the “modifiable areal unit 
problem” (MAUP) 95,96 is critical in the use of spatial analysis to inform community level 
policies and interventions.  The identification of an adequate neighborhood area should be 
considered vis-à-vis the disciplinary framework in which the issue is approached.  For example, 
the American Institute of Architects Architectural Graphic Standards, as well as city and regional 
planners continue to use the neighborhood definition developed by Perry in the 1920s 97 as a 
planning unit with a five-minute walking radius.92 The MAUP has no definitive solution but 
remains a challenge to spatial research that should not be overlooked.  Researchers need to 
consider both the appropriate scale and aggregation options when using spatial boundaries.  My 
previous work98 illustrates the MAUP—as I changed neighborhoods from the census defined 
areas to the neighborhoods with walking distances, I saw significant differences in exposures 
(crime rate, alcohol outlet rate, etc.) and in general, the differences wane as the buffer sizes 
decrease.  This is expected and should highlight the need for researchers to carefully consider 
neighborhood definition and ask: what is the most appropriate size and shape of neighborhoods 
for this research?    
Although much of the literature on neighborhoods and health has shown associations between 
the built environment, social factors, and health, scant attention has focused on neighborhood 
definition.  My method could be used in other locations to understand how features of the built 
environment are associated with health outcomes or the differences in harmful exposures 
between those who reside in neighborhoods where deprivation is high and those who do not.  
 
Causal Inference 

My hypothesis that children with asthma who are exposed to high levels of traffic 
experience worse lung function than children with asthma who are exposed to lower levels of 
traffic was correct.  The findings indicate that neighborhood exposure to traffic adversely affects 
lung function among the FACES cohort of children with asthma.  The magnitude of the 
estimated effects changed when the data were stratified by neighborhood deprivation as defined 
by the IRT scores.  However, the results were no longer significant for the high deprivation 
group (Analysis 2).  The estimated effects for the stratified analyses both show reductions in lung 
function, although the estimates are less than the full group in Analysis 1.  The estimates are 
derived from different models (Table 7) and cannot be interpreted as part of the whole group in 
Analysis 1.  Interpretation of the reduction in lung function for the stratified analyses is that there 
is not enough data to understand if neighborhood deprivation modifies the effect of traffic on 
lung function.  There may be a true difference between strata of deprivation, but I would need 
more power to be able to distinguish a significant difference.  The results for the unstratified 
analysis do show an effect estimate of reduced lung function (12%) among children exposed to 
high levels of neighborhood traffic.  A 12% reduction in lung function is a considerable adverse 
affect for a child, especially a child with asthma.  The reduction is relevant to other studies of 
chronic exposures and the effect of chronic exposure to a pollutant on lung function.  The 
potential importance of this reduction can be seen via a comparision with long-term exposure to 
ozone.  Lifetime exposure to ambient ozone is shown to reduce lung function among adults as 
much as 38% and 37% with a comparison of FEF25-75/FVC in the highest and lowest quartiles 
among men and women respectively.130 (Lung function decreases in children with asthma who 



 

55 
 

are exposed to secondhand smoke have been documented at -4.7% (95% CI: -9.9, 0.5)) for FEV1,  
-8.5% (95% CI: -15.2, -1.9), and -3.0% (95% CI: -4.9, -1.1) for FEV1/FVC.131 
In the model selection procedure, the type of neighborhood, GPS based or walking-distance, was 
not selected by the DSA as a confounder for the effect of traffic on lung function.  Because I did 
not measure how children are individually affected by traffic, these findings only pertain to the 
population of children with asthma who live in neighborhoods with high levels of traffic.  The 
traffic could be a marker or proxy for something else occurring in the neighborhood or it could 
be a proxy for higher ambient air pollution due to traffic.   

Few confounders affected the outcome and exposure in the DSA model selection for the 
Q, g and censoring models.  Most notably, age and height were strong predictors of lung function 
in this analysis and myriad other studies have documented a similar relation.132-134  The effect 
estimates in this study can be interpreted as population-level effects rather than effects 
conditional on many confounders.  Conditioning on “nuisance” confounders limits the 
interpretation of traditional models, which can only provide an effect estimate whose validity is 
dependent on adjustment for confounders.  One strength of this analysis is the use of the 
machine-learning DSA algorithm to determine which covariates, among those associated with 
lung function, should be retained in the model.  This algorithm requires no a priori model form 
and uses cross-validation to identify the optimal model across the entire model space of a linear 
polynomial whose parameters can be set by the user.  Moreover, I report only models that gave 
the ideal request in at least four of 10 independent runs of the data.  This approach reduces the 
probability of over-fitting the model. 

Several caveats need to be considered in the interpretation of these data.  We did not 
estimate individual-level exposures for traffic or traffic-related pollutants. Thus, we cannot 
estimate the degree to which the effects I report here are independent of actual exposure to traffic 
or other pollutants.  Though previous work with the FACES cohort and traffic related air 
pollution indicate strong correlations with polycyclic aromatic hydrocarbons (PAHs), PM2.5, CO, 
NO2 and elemental carbon, which reflects a strong contribution of the pollutants from traffic.135 
My finding of reduced lung function among children with asthma who are exposed to high levels 
of neighborhood traffic is similar to other studies on health and traffic.  Recently, researchers in 
Windsor, Ontario found a trend among children with asthma for decreasing lung function 
associated with exposure to traffic density within 200m from a residence.136  This study used 
refined traffic counts to approximate a surface of exposures.  Short-term exposure to primary 
traffic pollutants in ambient air (as measured by a network of ambient monitors) in Atlanta, GA 
were shown to increase emergency department visits for asthma.137  A log-unit change in 
residential traffic counts (based on a detailed group of sites that collected data over 20 years and 
validated by video monitoring) in Perth, Austraila was responsible for a 24% increase in 
emergency department contacts among adults with asthma.138  A sister study to FACES in the 
San Joaquin Valley of California shows that prenatal exposure to higher traffic density (based on 
CalTrans freeway and major roadway traffic counts) results in an increased risk for term low 
birth weight also with a TMLE analysis.139   

In short, this dissertation aimed to provide a more comprehensive assessment of 
neighborhood characteristics and exposure to traffic and to investigate the relation that those 
factors had with lung function.  Neighborhood deprivation was not an effect modifier of traffic 
on lung function in this study, which could be true or I did not have enough data to know.  When 
evaluating environmental justice, children in areas with higher deprivation were located near 
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lower levels of traffic density.  Neighborhood traffic density though, in this cohort of children 
with asthma, was causally associated with a reduction in lung function, when I compared the 
effect of high traffic density to lower traffic density.  While neighborhood deprivation did not 
change the estimates of traffic on lung function, I found that there is likely to be a complex 
relation between deprivation factors that are not classically defined as poverty.  Asthma can be 
worsened by the environment, as illustrated via traffic density, but it can also be improved by 
environmental factors.  There is still work to be done in the arena of area-level effects on asthma; 
however, this dissertation contributed an important piece to our understanding of local traffic on 
lung function among children with asthma. 

 
Recommendations 

Future work ought to include further investigation on traffic and other measurements of 
lung function, such as the ratio of FEV1 to FVC, FEF25-75, and FEV75 to understand if the results 
were specific to FEV1.  This analysis could be extended to use the entire residential history of the 
FACES cohort.  Each year a child spent in the study could be assigned a traffic exposure, instead 
of just the last year spent at the residence.  Also, the IRT analysis could be expanded to use more 
measures of deprivation, and the IRT analysis could undergo more extensive model exploration 
with the addition of extra variables and fine tuning the IRT analysis techniques.   
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