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are included. Heatmaps of yi are shown for sample 1 in (b) and
sample 2 in (d). Cells are ordered by posterior point estimates of
their subpopulations, λ̂i,n. Cells are given in rows and markers are
given in columns. High and low expression levels are represented
by red and blue, respectively, and black represents missing values.
Yellow horizontal lines separate cells into five subpopulations. . . 139

A.7 [FlowSOM for Simulation 2] Heatmaps of yi for Simulation 2. Sam-
ples 1-3 are in (a)-(c), respectively. The cells are sorted by the
cluster labels λi,n for each sample, estimated by FlowSOM. . . . . 140

A.8 [ADVI for Simulation 2] In (a) and (c), the transpose Ẑ ′i of Ẑi and
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ŵi are shown for each of the samples in (d)-(f). We include only
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A.14 [CB NK cell data] Inference obtained by VI is illustrated. Ẑ ′i and
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tion estimates Ẑi for each sample, for pi fixed at 0.1 and 0.3, and
φ2 = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

xvi



B.18 Point estimates of NK cell subpopulations Z in cytometry samples
taken from 2 subjects, for each sample (i = 1, 2), with pi = 0.2 and
φ2 = 1, 10, 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.19 Posterior distribution of the number of selected subpopulations
within each sample, for φ = 1, 10, 100, and pi = 0.2. . . . . . . . . 187

B.20 Distribution of the pairwise-column distances between subpopula-
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Abstract

Bayesian Modeling for Heterogeneous Multivariate Data

by

Arthur Lui

This dissertation, comprising three projects, presents Bayesian statistical meth-

ods for analyzing heterogeneous multivariate data, with application to marker

expression data obtained from cytometry at time-of-flight (CyTOF). In the first

project, a Bayesian feature allocation model (FAM) is presented for identifying cell

subpopulations based on multiple samples of cell surface or intracellular marker

expression level data obtained by CyTOF. Cell subpopulations are characterized

by differences in expression patterns of markers, and individual cells are clustered

into the subpopulations based on the patterns of their observed expression levels.

A finite Indian buffet process is used to model subpopulations as latent features,

and a model-based method based on these latent feature subpopulations is used

to construct cell clusters within each sample. Non-ignorable missing data due

to technical artifacts in mass cytometry instruments are accounted for by defin-

ing a static missingship mechanism. The second project builds upon the first by

introducing a repulsive FAM (rep-FAM) which restructures the probability distri-

bution of a traditional FAM to identify features more likely to be distinct from

each other. The problem that a conventional FAM has a positive probability of

repeating a feature is eliminated by the rep-FAM, which also increases the proba-

bility of larger differences between features. The rep-FAM thus yields clusters that

are more biologically interpretable than those identified by a conventional FAM.

The third project presents methods for differential distributions between two ex-

perimental conditions, in the context of CyTOF data. A zero-inflated mixture

xxi



of log-skew-t distributions is used to model the multi-modal, heavy tailed, and

often highly skewed distributions that arise from these marker expression levels.

A distance metric is proposed to quantify the degree of difference between distri-

butions under various experimental conditions. In each chapter, we explore the

performance and limitations of our proposed methodologies through simulation

studies and real data analyses.
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Chapter 1

Introduction

1.1 Motivation and Background

A critical step in analyzing heterogeneous data is identifying meaningful sub-

groups, or clusters, of data which can explain the structure of the heterogeneity.

Automating a clustering pipeline, however, is not trivial. Information about “true”

clusterings of heterogeneous data is typically not available. Therefore, for a given

application, domain experts are usually required to carefully inspect and validate

these clusterings. Consequently, iterating through the model development cycle

can be arduous for clustering applications, and good clustering strategies usually

exploit domain expertise about known or hypothesized latent structures of data

generating mechanisms per application. Yet, in many applications, clustering

algorithms used do not incorporate knowledge of these latent structures.

Challenges in clustering multivariate data are compounded by the increase

in dimensionality, such that visually inspecting data for clusterings is difficult

or impractical. For example, cytometry at time-of-flight (CyTOF) data, which

is used as a motivating example throughout this dissertation, typically contain

expression levels for dozens of cell surface or intracellular markers for each of
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the thousands of cells in a blood sample. Human cells are composed of many

subpopulations (clusters) of cells with various functionality. Thus, different cells

within a sample tend to have different marker expression patterns. To identify

known subpopulations, scientists investigating the composition and heterogeneity

of cells in samples frequently apply manual gating, in which homogeneous cell

subpopulations are sequentially identified and refined by visually inspecting two-

dimensional scatter plots of expression levels for a given set of markers. Manual

gating has several severe shortcomings, however, including its inherent subjectivity

due to the fact that it requires manual analysis, and being unscalable for high

dimensional data with large numbers of markers.

Dimensionality reduction techniques are sometimes used to aid visually in-

specting data for clusterings. The most well-known dimensionality reduction tech-

nique is perhaps principal components analysis (PCA) (Wold et al. 1987), in which

(multivariate) data are linearly projected into lower dimensions via a change of

basis. The t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten

and Hinton 2008, Van Der Maaten 2014) is another dimensionality reduction tech-

nique, which, unlike PCA, transforms high-dimensional data to lower dimensions

probabilistically and in a non-linear manner. After high-dimensional data are re-

duced in dimension (to usually 2 or 3), inspecting data for clusters can be much

easier. While this is convenient, the amount of information that is lost when

reducing the data can be great, and resulting clusterings can be coarse.

For CyTOF data, another task that requires special care is that of comparing

marker expression levels across different experimental conditions. Heterogeneous

data may not have unimodal or symmetric distributions. Thus, determining dif-

ferences between data arising from such distributions by shifts in means alone

may not be adequate. Again, in the context of cytometry data, heterogeneous
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cell samples occasionally yield marker expression levels that have multimodal dis-

tributions. Researchers are often interested in the effect of a treatment on cell

marker expressions. These effects may further complicate the shapes of the dis-

tributions. Statistical methods that comprehensively compare marker expressions

and quantify the differences in expression levels are in need to obtain a better

understanding of treatment effects.

1.2 Literature Review

1.2.1 Feature Allocation Models and Repulsive Clustering

Various clustering methods used for identifying cell subpopulations from

CyTOF data have been proposed and subsequently compared by Weber and

Robinson (2016). However, these existing methods cluster only on the observed

expression levels, and do not explicitly provide the structure of the cell subpop-

ulations. This dissertation considers a different approach of identifying cell sub-

populations for CyTOF data. Cell subpopulations are characterized by latent

binary marker “expression patterns”. For a set of J markers, a cell expresses a

subset of the analyzed markers. These expression patterns can be encoded in a

J-dimensional binary vector that indicates which markers are expressed within a

cell; 1 for expression of a marker, and 0 otherwise. The number of subpopulations

within a sample is rarely known, but due to the diversity of human cells, we ex-

pect K(≥ 1) cell subpopulations to exist within a sample. K binary vectors are

collected in a J × K binary matrix Z and a feature allocation model (FAM) is

used to model Z. The most widely used FAM is the Indian buffet process (IBP)

(Ghahramani and Griffiths 2006, Griffiths and Ghahramani 2011), which is the

result of an infinite beta-bernoulli model. The IBP is a prior for binary matrices
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having an infinite number of columns. In the following paragraphs, an overview

of FAMs including the IBP is provided.

In a finite FAM, each of J objects possess a subset of K features. In the culi-

nary analogy, objects and features are called customers and dishes, respectively.

A J ×K binary feature allocation matrix Z encodes the subset of features each

object possesses – if element zj,k = 1, then object j possess feature k; otherwise,

object j does not possess feature k. The precise generative process of the finite

FAM as presented by Ghahramani and Griffiths (2006) is given by

vk | α
ind∼ Beta(α/K, 1) and zj,k | vk

ind∼ Bernoulli(vk), (1.1)

for k ∈ {1, . . . , K} and j ∈ {1, . . . , J}. In Equation (1.1), α is a mass parameter

that determines the expected number of features each object possesses. As K

approaches infinity, an infinite FAM known as the Indian buffet process (IBP)

arises. The probability mass function (pmf) of the IBP is defined over an equiv-

alence class left-ordered binary matrices, after dropping columns of zeros. This

pmf is available in closed form given mass α. Under this equivalence class, though

K is infinite, the total number of non-zero columns K+ has a distribution of

Poisson(αHJ), where HJ = ∑J
j=1 1/j is the J-th harmonic number. The IBP can

be alternatively represented by a stick-breaking construction for the IBP (Teh

et al. 2007), similar to that of the Dirichlet process. Teh et al. (2007) exploited

the stick-breaking representation, and proposed an efficient variational inference

sampling scheme. The first two parts of this dissertation investigate how the IBP

can be utilized as a prior for cell subpopulations. In simple models, such as the

linear Gaussian latent factor model (LGLFM) (Griffiths and Ghahramani 2011),

efficient Gibbs sampling schemes can be developed for posterior inference of Z

and other model parameters even though the effective dimensions of Z (J ×K+)
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is random. In more complex models, where the use of transdimensional Markov

chain Monte Carlo (MCMC) schemes for posterior inference becomes computa-

tionally impractical, practitioners opt to use the simpler finite FAM with K set at

a reasonably large value as determined per application. When K is to be learned,

multiple models with various fixed K can be fit and then selected via a model

selection criterion.

The IBP prior and its extensions in FAMs have been applied to a range of appli-

cations. Hai-son and Bar-Joseph (2011) proposed and applied an extension to the

IBP that integrates prior information on interactions between objects to construct

interaction networks for microRNA data. Sengupta et al. (2014) and Lee et al.

(2015, 2016) proposed categorical IBP extensions to describe tumor heterogeneity

(TH) using next-generation sequencing (NGS) data. Xu et al. (2015) proposed an

efficient inference algorithm based on small-variance asymptotic approximations

for a class models of models using IBP priors and exponential-family likelihoods.

Their method was also applied to TH. Ni et al. (2019) analyzed electronic health

records by developing a categorical matrix factorization method based on the

IBP. Variants of the IBP that relax exchangeability assumptions have also been

proposed. Williamson et al. (2010) proposed the dependent IBP, which induces

dependence between observations through hierarchical Gaussian processes. Miller

et al. (2012) proposed the phylogenetic Indian buffet process, which introduces

dependencies between objects by conditioning on a dependency tree, and includes

the regular IBP as a special case when all branches meet at the root. This model

performs well for data which exhibit genealogical relationships and expresses prior

object similarity through a tree. Gershman et al. (2014) proposed a distance de-

pendent IBP in which objects that are similar in terms of some data-external

criteria are more inclined to share features. The Indian buffet Hawkes process
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(Tan et al. 2018) extended the IBP to capture latent temporal dynamics by in-

corporating ideas from the Hawkes process. Williamson et al. (2020) presented a

class of nonexchangeable dynamic models constructed by adapting the IBP. These

models are tailored to data that are assumed to be generated by latent features

exhibiting temporal persistence.

A shortcoming of the finite FAM is that identical columns can appear in the

feature allocation Z. This is a nuisance when interpreting the feature allocation is

of importance. In CyTOF applications, where columns of Z refer to cell subpop-

ulations, each column should distinctly encode a unique subpopulation. To this

end, a repulsive FAM (rep-FAM) is developed in Chapter 3. The idea of repulsive

clustering is not new. Petralia et al. (2012), Quinlan et al. (2017, 2018), and Xie

and Xu (2020) presented repulsive priors for mixtures of distributions. Concepts

of repulsion are also used in determinantal point processes (DPP) and Gibbs point

processes, which are able to describe spatial point patterns in data where nearby

points repel each other. Lavancier et al. (2015) provided a comprehensive review

of DPP for repulsion of spatial points and discussed computation methods for in-

ference. Xu et al. (2016) introduced repulsiveness into mixture models and FAMs

through determinantal point process priors as priors on latent mixture components

and feature-specific parameters, respectively. When repulsiveness is imposed on

components of a mixture model, the resulting mixture components are not only

more distinct and less redundant, but they are also more interpretable. In a clus-

tering application where mixture components are modeled independently, similar

and superfluous components can be formed. This causes difficulty in interpreting

the components as the superfluous components likely belong to the same group.

Petralia et al. (2012) presented the following general class of repulsive priors to
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smoothly repel components in mixture models:

π(θ) = C
K∏
k=1

g(θk)f(θ), (1.2)

where θ = {θ1, . . . , θK} are mixture model component parameters (e.g. mixture

component means in a Gaussian mixture model) for a mixture model with K

components, and C is a normalizing constant. f(θ) is a repulsion function that

may take, for instance, the form

f(θ) =
∏

(i,j)∈A
exp(−τ/d(θi, θj)), (1.3)

with A = {(i, j) : i = 1, . . . , K; j < i}, a temperature parameter τ > 0 which

can accentuate repulsiveness between components, and a distance metric d(·, ·).

Critically, as the distance d between a pair of components (θi, θj) approaches 0,

f(θ) approaches 0, thereby prohibiting identical components. Moreover, as d

approaches infinity, f approaches 1 such that no penalty is incurred when com-

ponents are infinitely far apart. Thus, the repulsive function smoothly repels

components based on their pairwise distance. Note that τ is doubly intractable as

it appears in the normalizing constant C. Estimating τ or any other hyperparam-

eter that may appear in the repulsive function will require special consideration

in order to craft efficient algorithms for posterior inference. Alternatively, these

hyperparameters are to be either carefully determined in light of expert knowledge

per application, or calibrated as in Petralia et al. (2012), Quinlan et al. (2017),

and Quinlan et al. (2018).
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1.2.2 Finite Mixture Models and Statistical Divergences

Finite mixture models are used throughout this dissertation. Due to their flex-

ibility in modeling various complex distributions, mixture models are often used

to model the probability distribution of continuous measurements that cannot be

easily represented by a single-component distribution. This makes them a suit-

able choice for modeling heterogeneous data. Mixture models with K components

have the form

p(y | w,θ) =
K∑
k=1

wk · f(y | θk), (1.4)

with mixture component parameters θk, mixture weights wk, and possibly mul-

tivariate data y. In many applications, the number of mixture components K is

not known in advanced but can be estimated as shown by Richardson and Green

(1997) using reversible-jumpMCMC (Green 1995), or selected via model selec-

tion criteria. A commonly used mixture model is the Gaussian mixture model

(GMM) in which f(· | θk) is the normal probability density function (pdf) with

θk = (µk,Σk), mean µk, and variance (or covariance) Σk. Oftentimes, the model

is augmented by introducing data {y1, . . . , yn}, component-membership indicators

λi ∈ {1, . . . , K} for observation i to facilitate posterior sampling of the parame-

ters µk,Σk, and wk. For GMMs, posterior sampling can be performed using Gibbs

sampling by sequentially sampling directly from the full conditional distributions

of each model parameter under certain priors. Through the indicators λi, cluster-

ings or partitions of the data are implicitly formed. Thus, GMMs and other finite

mixture models are also used in clustering applications.

Finite mixtures of distributions other than the Gaussian are used in practice

to achieve more flexibility. For example, (Peel and McLachlan 2000) presented
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the use of t distributions for robust mixture modeling when data contains groups

of observations with heavy tails. They demonstrated that in the presence of

atypical observations or background noise, clustering using a mixture of normal

distributions (even with an additional uniform component to model the atypical

observations) can drastically misfit the data, while using a mixture of t distri-

butions can lead to parsimonious and reasonable clusterings. Mixtures of skew-t

distributions have also been extensively studied by Frühwirth-Schnatter and Pyne

(2010) and reviewed by McLachlan et al. (2019), and demonstrated to be more

flexible than mixtures of t and normal distributions as they also accommodate

asymmetry in data. As demonstrated by Frühwirth-Schnatter and Pyne (2010),

the skew-t distribution contains as special cases the normal, skew-normal, and t

distributions and is governed by location, scale, degrees of freedom, and skewness

parameters (Azzalini and Capitanio 2003). By varying the parameters, one is able

to model skewed data with outliers where a GMM with several components may

be needed. The skew-t pdf has the form

p(y | µ, σ, ν, φ) = 2
σ
· tν(u) · Tν+1

φ · u
√
ν + 1
ν + u2

 , for y ∈ R, (1.5)

where u = (y − µ)/σ, tν(·) and Tν(·) denote, respectively, the pdf and cdf of a

standard Student’s t distribution with degrees of freedom ν, µ is the location,

σ is the scale, and φ is a skew parameter. McLachlan et al. (2019) provided

a review of some other non-normal mixture components for density estimation.

An important class of such components is the family of generalized hyperbolic

distributions (Barndorff-Nielsen 1977, Browne and McNicholas 2015), including

the normal inverse Gaussian (Karlis and Santourian 2009) and the asymmetric

Laplace distribution (Franczak et al. 2013). The generalized hyperbolic distribu-

tions contain the normal, t, and skew-t distributions as special or limiting cases,
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and thus offer more modeling flexibility and lead to better fit when compared to

their special or limiting cases. Inference algorithms for these generalized hyper-

bolic distributions, however, often are more complex to implement and require

more computation time to run.

While mixture models provide estimates of distributions having various shapes,

quantifying differences between distributions is not straightforward. One way to

approach this is to measure the statistical distance or divergence between the

distributions. A general of family statistical divergences is the f -divergences (Liese

and Vajda 2006, Rényi et al. 1961) which have the from

Df (P ||Q) =
∫

Ω
f

(
dP

dQ

)
dQ (1.6)

where P and Q are two probability distributions over a space Ω such that P is

absolutely continuous with respect to Q, and f is a convex function with f(1) = 0.

By changing the form of f , the Kullback-Leibler (KL) divergence (Kullback and

Leibler 1951), squared Hellinger distance (Beran et al. 1977), total variation dis-

tance, and many other divergences can be obtained. These divergences can be used

to measure differences between continuous parametric distributions. However, for

mixtures of discrete and continuous distributions, which are typically referred to

as “semicontinuous” distributions, computing these divergences is not appropri-

ate. In addition to positive continuous expression levels, CyTOF data contain

a substantial number of zeros due to experimental artifacts and weak levels of

marker expression. Fitting zero-inflated mixture models to these semicontinuous

data is possible, but computing KL divergence or Hellinger distance may not be

appropriate as they are not clearly defined for semicontinuous parametric distri-

butions. In addition, unlike the Hellinger distance, which is bounded between

0 and 1, the KL divergence is not bounded above, which makes interpreting it
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difficult.

1.3 Contribution and Organization

The contribution for this work is the development of Bayesian methods for

heterogeneous data with applications to CyTOF data. Specifically, CyTOF data

obtained from natural killer (NK) cell studies conducted by collaborators at MD

Anderson Cancer Center are used for illustrations of the developed methodologies.

In Chapter 2, a Bayesian FAM is presented for identifying cell subpopulations

based on multiple samples of cell surface or intracellular marker expression level

data obtained by CyTOF. Cell subpopulations are characterized by differences in

expression patterns of makers, and individual cells are clustered into the subpop-

ulations based on the patterns of their observed expression levels. A finite Indian

buffet process is used to model subpopulations as latent features, and a model-

based method based on these latent feature subpopulations is used to construct

cell clusters within each sample. Non-ignorable missing data due to technical

artifacts in mass cytometry instruments are accounted for by defining a static

missingship mechanism. In contrast with conventional cell clustering methods

based on observed marker expression levels that are applied separately to differ-

ent samples, the FAM based method can be applied simultaneously to multiple

samples, and also identify important cell subpopulations likely to be missed by

conventional clustering methods. The proposed FAM-based method is applied

to jointly analyze three datasets, generated by CyTOF, to study NK cells. Be-

cause the subpopulations identified by the FAM may define novel NK cell subsets,

this statistical analysis may provide useful information about the biology of NK

cells and their potential role in cancer immunotherapy which may lead, in turn,

to development of improved NK cell therapies. Simulation studies of the pro-
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posed method’s behavior under two cases of known subpopulations are presented,

followed by analysis of the CyTOF NK cell surface marker data.

Chapter 3 builds upon Chapter 2 by proposing a Bayesian repulsive feature al-

location model (rep-FAM) that modifies a conventional FAM by restructuring the

probability distribution to identify features more likely to be distinct from each

other. The identified features are used to construct cell clusters. The problem

that a conventional FAM has a positive probability of repeating features is elim-

inated by the rep-FAM, which also increases the probability of larger differences

between features. The rep-FAM thus yields clusters that are more biologically

interpretable than those identified by a FAM. The rep-FAM is applied to iden-

tify cell subpopulations based on CyTOF data. Binary features defined by cell

surface marker expression patterns are used to define latent cell subpopulations

that determine cell clusters, with each cluster characterized by a set of distinct

features. Performance of the rep-FAM is examined by simulation, and the model

is applied to analyze a CyTOF dataset. Comparisons to a conventional FAM and

other existing clustering methods are included.

Chapter 4 presents a Bayesian statistical model that quantifies differential dis-

tributions across experimental conditions in marker expression level data obtained

by CyTOF. As will be explained in Chapters 2 and 3, CyTOF data typically ex-

hibits excess zeros, outliers, multimodality, or skewness. Thus, a zero-inflated

mixture model is used to address excessive zeros and flexibly accommodate var-

ious patterns in data. Notably, skew-t distributions for the mixture components

are used. Individual mixture components capture skewness and provide robust-

ness to the presence of outliers. Mixture components are allowed to be shared

across samples to facilitate borrowing information. While mixture weights are

sample-specific, the number of mixture components is selected via calibration.
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Distributional differences are quantified and summarized with a distance mea-

sure. Model performance is demonstrated via simulation studies and compared

to zero-inflated mixture models of normal distributions. CyTOF NK cell surface

marker data are analyzed to infer differential expressions of markers across two

experimental conditions.

Chapter 5 provides a summary of main contributions from Chapters 2 to 4.

Discussions and possible extensions of the methods presented will also be summa-

rized.
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Chapter 2

A Bayesian Feature Allocation

Model for Identifying Cell

Subpopulations Using Cytometry

Data

2.1 Introduction

Mass cytometry data have been used for high-throughput characterization

of cell subpopulations based on unique combinations of surface or intracellular

markers that may be expressed by each cell. Cytometry by time-of-flight (CyTOF)

is a decade-old technology that can rapidly quantify a large number of biological,

phenotypic, or functional markers on single cells through use of metal-tagged

antibodies. For example, CyTOF can identify up to 40 cell surface or intracellular

markers in less time and at a higher resolution than previously available methods,

such as fluorescence cytometry (Cheung and Utz 2011). Because CyTOF can
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reveal cellular diversity and heterogeneity that could not be seen previously, it

has the potential to rapidly advance the study of cellular phenotype and function

in immunology.

Despite the potential of CyTOF, analysis of the data that it generates is com-

putationally expensive and challenging, and statistical tools for making inferences

about cell subpopulations identified by CyTOF are quite limited. Manual gating

is a traditional method in which homogeneous cell clusters are sequentially identi-

fied and refined based on a given set of surface markers. Manual gating has several

severe shortcomings, however, including its inherent subjectivity due to the fact

that it requires manual analysis, and being unscalable for high dimensional data

with large numbers of markers. While manual gating is commonly used in practice,

a variety of computational methods that automatically identify cell clusters have

been proposed to analyze high-dimensional cytometry data. Many existing auto-

mated methods use dimension reduction techniques and/or clustering methods,

such as density-based or model-based clustering. For example, FlowSOM, given

by Van Gassen et al. (2015), uses an unsupervised self-organizing map (SOM)

for clustering and dimension reduction. A low-dimensional representation of the

marker vectors is obtained by using unsupervised neural networks for easy vi-

sualization in a graph called a map. FlowSOM is fast and can be used either

as a starting point for manual gating, or as a visualization tool after gating has

been performed. Other common approaches are density-based clustering meth-

ods, including DBSCAN (Ester et al. 1996) and ClusterX (Chen et al. 2016a),

and model-based clustering methods, including flowClust (Lo et al. 2009) and

BayesFlow (Johnsson et al. 2016). More sophisticated clustering methods based

on Bayesian nonparametric models also have been proposed, see for example by

Soriano et al. (2019). Weber and Robinson (2016) performed a study to compare
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several clustering methods for high-dimensional cytometry data. They analyzed

six publicly available cytometry datasets and compared identified cell subpopula-

tions to cell population identities known from expert manual gating. They found

that, in many scenarios, FlowSOM had significantly shorter runtimes. Moreover,

in many studies where manual gating was performed, FlowSOM produced the

best clusterings, in terms of various clustering metrics, when compared to cell

clustering by manual gating.

0 1

0 0

0.60 0.40subpop. abundance

subpop. 1

subpop. 2

cells 1, 2

cell 3

Data (yi) cell clustering 
by the expression 
patterns of 
subpopulations
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Latent Structure
subpop. 1 subpop. 2
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marker 2
subpop. configurations

cell 1 cell 2 cell 3
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Figure 2.1: A stylized overview of the proposed feature allocation model. Z is
a binary matrix whose columns define latent subpopulations, and w is a vector of
cell subpopulation abundances. Two subpopulations are constructed in Z based
on their marker expression patterns. Cells are clustered into the subpopulations
based on their observed expression level patterns.

While conventional clustering methods identify subgroups of cells with sim-

ilar marker expression values, they often fail to provide direct inferences that

identify and characterize cell subpopulations. Clustering methods put cells in

the same cluster if their expression levels are similar, and they assume implicitly

that underlying cell subpopulations can be identified and constructed from clus-

ters estimated directly from the marker expression levels. The usefulness of such

conventional clustering approaches is limited by the fact that observed numerical

marker expression values may differ substantially due to between-sample variabil-
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ity, often due to technical variation in the cytometry measurement process, as

well as variability in the expression measurement process. Figure 2.1 illustrates a

toy example. Suppose that the respective log expression levels of markers 1 and

2 are -2 and -4 on a given cell, and that the corresponding values on a second

cell are -6 and -4. A negative (or positive) log expression level implies that it is

unlikely (or likely) that a surface marker is expressed. Although their expression

patterns are qualitatively similar and are from the same subpopulation, a conven-

tional clustering method is unlikely to include these two cells in the same cluster

because their marker 1 expression levels are very different. A deeper problem is

that cell clusters based on expression values may not serve as a useful surrogate

for identifying cell subpopulations. As a result, most existing clustering methods

are used to analyze different samples separately.

In this chapter, we propose a Bayesian feature allocation model (FAM) to

identify and place probabilities on cell subpopulations based on multiple cytom-

etry samples of a vector of cell surface marker expression values. Our proposed

FAM characterizes cell subpopulations as latent features defined in terms of their

expression patterns, and clusters individual cells to one of the identified subpopu-

lations. We will refer to each latent feature as a “subpopulation.” With this FAM,

a given marker may be expressed in more than one cell subpopulation, and each

subpopulation is characterized by a unique marker expression pattern. To charac-

terize subpopulation configurations, we introduce a random matrix Z with rows

corresponding to markers and columns to subpopulations, with entry 1 denoting

expression and 0 denoting non-expression of a marker in a subpopulation. Unlike

traditional clustering methods, the FAM constructs latent subpopulations based

on marker expression patterns, as illustrated by the Z matrix in the top figure in

Figure 2.1. It assigns cells 1 and 2 to subpopulation 1, where neither marker is
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expressed, and it assigns cell 3 to subpopulation 2, where marker 1 is expressed

and marker 2 is not expressed. We assume a finite Indian buffet process (IBP)

as the prior distribution for Z. The IBP is a popular model for latent binary

features, and it may be obtained as the infinite limit of a Beta-Bernoulli process

(Ghahramani and Griffiths 2006). Applications of the IBP prior in FAMs for a

range of biological applications are given by Hai-son and Bar-Joseph (2011), Chen

et al. (2013), Xu et al. (2013), Sengupta et al. (2014), Xu et al. (2015), Lee et al.

(2015, 2016), Ni et al. (2019). Griffiths and Ghahramani (2011) reviews some ear-

lier applications of the IBP. Furthermore, we introduce a vector of subpopulation

abundances wi for each sample (i). This approach provides a framework for the

joint analysis of multiple samples to yield subpopulations that are characterized

by binary indicators denoting subsets of expressed markers, and includes struc-

tures to account for large sample-to-sample variation and abnormalities, such as

missing values due to technical artifacts in the cytometry data, while quantifying

uncertainty in posterior inferences.

The model and analyses in this chapter are motivated by a dataset comprised of

three CyTOF samples of surface marker expression levels in umbilical cord blood

(UCB)–derived natural killer (NK) cells. NK cells play a critical role in cancer

immune surveillance, and are the body’s first line of defense against viruses and

transformed tumor cells. NK cells have the intrinsic ability to infiltrate cancer

tissues. Recently, NK cells have been used therapeutically to treat a variety of dis-

eases (Wu and Lanier 2003, Lanier 2008). In particular, NK cells have emerged as

a potentially powerful treatment modality for advanced cancers refractory to con-

ventional therapies (Rezvani and Rouce 2015, Suck et al. 2016, Shah et al. 2017,

Miller et al. 2005, Lupo and Matosevic 2019, Liu et al. 2020). Because cell-surface

protein expression levels are used as markers to describe the behavior of NK cells,
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accurate identification of diverse NK-cell subpopulations along with their com-

position is crucial to the process of obtaining more complete characterizations of

their biological processes and functions. The goal of our statistical analysis is to

identify and characterize NK cell subpopulations and functions across heteroge-

neous collections of these cells. This may provide critical information for guiding

selective ex vivo expansion of UCB-derived NK cells for treating specific cancers.

The remainder of this chapter is organized as follows. We present the proposed

statistical model in § 2.2, simulation studies in § 2.3, and an analysis of the NK

cell mass cytometry data in § 2.4. We close with concluding remarks in § 2.5.

2.2 Probability Model

2.2.1 Sampling Model

Index cell samples by i = 1, 2, ..., I. Suppose that Ni cells, indexed by

n = 1, . . . , Ni, are obtained from the ith sample, and the expression levels of

J markers on each cell within each sample are measured. Let ỹi,n,j ∈ R+ de-

note the raw measurement of the expression level of marker j on cell n in sam-

ple i. While raw measurement values reflect actual expression or non-expression

of markers on cells, they also vary between cells and between samples for sev-

eral reasons, including biological heterogeneity in the range of expression among

different populations, as well as experimental artifacts or batch effects, such as

instrument fluctuations or signal crosstalk among channels designed for different

markers. While, compared to conventional flow cytometry and the use of fluores-

cent antibodies, the use of pure metal isotopes minimizes spectral overlap among

measurement channels in CyTOF, crosstalk still may be observed due to the pres-

ence of isotopic impurity, oxide formation, and properties related to the mass
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cytometer. Raw measurements are normalized using cutoff values computed by

a flow (rather than mass) cytometry algorithm called flowDensity (Malek et al.

2014), which aims to gate predefined cell populations of interest, in settings where

the gating strategy is known. This frees practitioners from the need to manually

gate analysis results, but it relies substantially on user-provided information to

produce good results. Consequently, cutoffs obtained from such algorithms are

crude, but useful as a starting point for our analysis. Let ci,j denote the cutoff for

marker j in sample i obtained by flowDensity. A marker of a cell is likely to be

expressed if its observed expression level ỹi,n,j > ci,j, while a value ỹi,n,j < ci,j may

imply that marker j is not expressed on cell n in sample i. To reduce skewness

of the marker distributions, we will base our model on the log transformed val-

ues yi,n,j = log (ỹi,n,j/ci,j) ∈ R. This transformation makes 0 the reference point

for dichotomizing marker expression and non-expression. To account for the fact

that some yi,n,j may be missing due to experimental artifacts, we define the bi-

nary indicator mi,n,j = 1 if yi,n,j is observed, and mi,n,j = 0 if missing. Denote

the probability that yi,n,j is missing by Pr(mi,n,j = 0 | yi,n,j) = ρi,n,j(yi,n,j), so

1 − ρi,n,j(yi,n,j) is the probability that yi,n,j is observed. Below, we will define

the latent subpopulation membership indicator, λi,n, of cell n in sample i. For

each cell in the ith sample, we assume conditional independence of the cell’s J

marker values given its latent subpopulation, formally yi,n,1, · · · , yi,n,J | λi,n are

independent, and we write the joint model for (yi,n,j,mi,n.j) as follows;

yi,n,j | µi,n,j, s2
i,n, λi,n

ind∼ Normal(µi,n,j, s2
i,n), and (2.1)

mi,n,j | ρi,n,j(yi,n,j), λi,n ind∼ Bernoulli(1− ρi,n,j(yi,n,j)). (2.2)

This joint model provides a basis for imputing missing expression levels by drawing

yi,n,j from p(yi,n,j | mi,n,j) if mi,n,j = 0, and it also facilitates posterior simulation.
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Below, we will relate the mean expression µi,n,j to the configuration of cell subpop-

ulation λi,n. To reflect expert biological knowledge of the investigators, a model

for ρi,n,j as a function of yi,n,j will be given in the following section.

2.2.2 Priors

Priors for latent cell subpopulation We assume that each sample consists

of a heterogeneous cell population, and denote the number of different latent

subpopulations by K. The cell subpopulations are defined by the columns of

the J × K (marker, subpopulation) stochastic binary matrix Z. The element

zj,k ∈ {0, 1} of Z determines marker expression by subpopulation, with zj,k = 0

if marker j is not expressed and zj,k = 1 if it is expressed for subpopulation k.

We construct a feature allocation prior for Z as follows: For j = 1, . . . J and

k = 1, . . . , K,

zj,k | vk
ind∼ Bernoulli (vk) and vk | α

iid∼ Beta(α/K, 1). (2.3)

As K → ∞, the limiting distribution of Z in (2.3) is the IBP (Ghahramani and

Griffiths 2006) with parameter α, after removing all columns that contain only

zeros. We assume hyperprior α ∼ Gamma(aα, bα) with mean aα/bα. The IBP,

which is one of the most popular FAMs, thus defines a distribution over binary

matrices having an unbounded number of columns (features). For our purposes,

the simpler version of the IBP with finite K provides a very useful statistical tool

for identifying marker expression patterns to define latent cell subpopulations from

CyTOF surface marker data.

We assume that each of the K cell subpopulations may potentially appear in

each sample, but allow their cellular fractions to differ between samples. In addi-

tion, we include a special, (K+1)st “noisy” cell type, indexed by k = 0, to address
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the problem that some cells do not belong to any of the K cell subpopulations.

In sample i, let 0 < εi < 1 denote the proportion of noisy cells and (1 − εi)wik

the proportion of cells belonging to subpopulation k, where wi =(wi,1, . . . , wi,K)

with ∑K
k=1wi,k = 1 and wi,k > 0, is a probability distribution on {1, · · · , K}.

We assume priors εi iid∼ Beta(aε, bε) with fixed hyperparameters aε and bε, and

wi | K
iid∼ DirichletK(d/K) with fixed hyperparameter d. For cell n = 1, . . . , Ni

in sample i = 1, . . . , I, we introduce stochastic latent subpopulation indicators

(equivalently, cell cluster membership labels) λi,n ∈ {0, 1, . . . , K}. We set λi,n = 0

if cell n in sample i does not belong to any of the cell subpopulations in Z, and

set λi,n = k > 0 if cell n in sample i belongs to subpopulation k. For the latent

subpopulation indicators, we assume Pr(λi,n = 0 | εi) = εi to account for noisy

cells, and Pr(λi,n = k | λi,n 6= 0,wi) = wik. Within each sample i = 1, · · · , I,

assigning cells to subpopulations using {λi,n, i = 1, · · · , Ni} induces cell clus-

ters. Thus, in contrast with clustering methods that infer only cell clusters in

the ith sample based on {yi,n,j}, our proposed method produces direct inferences

on both characterization of cell subpopulations and cell clusters simultaneously

for all samples. This is highly desirable because a primary aim is to identify and

make inferences about cell subpopulations.

Since the number of columns containing non-zero entries under the IBP is

random, the dimensions of Z and wi may vary during posterior computation.

Because this dimension change may cause a high computational cost, especially

for big datasets such as those obtained by CyTOF, we use a finite version of the

IBP with fixed K. Because the number of latent subpopulations is not known a

priori, we consider a set of different values for K, from which we select one value

of K using Bayesian model selection criteria. We will discuss this selection process

below.
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Priors for mean expression level The mean expression level µi,n,j of marker

j for cell n in sample i in (2.2) is determined by the cell’s latent subpopulation.

For cells in the noisy cell subpopulation where λi,n = 0, we fix µi,n,j = 0 for all

j and s2
i,n = s2

ε , where s2
ε is a large constant. For a cell with λi,n ∈ {1, · · · , K},

if the marker is not expressed in cell subpopulation λi,n (i.e., zj,λi,n = 0), we

restrict its mean expression level to be a negative value, µi,n,j < 0. Specifically,

for (i, n, j) with zj,λi,n = 0, we introduce a set of means for expression levels of

markers not expressed, µ?0,` = ∑`
r=1 δ0,r, where δ0,`

iid∼ TN−(ψ0, τ
2
0 ), ` = 1, . . . , L0

with fixed L0. Here TN−(ψ, τ 2) denotes the normal distribution with mean ψ

and variance τ 2 truncated above at zero. This construction induces the ordering

0 > µ?0,1 > . . . > µ?0,L0 . We then let µi,n,j = µ?0,` with probability η0
i,j,`. Note that

even for a marker not expressed, positive yi,n,j can be observed due to measurement

error or estimation error in the cutoff ci,j, and the model accounts for such cases

through s2
i,n. Similarly, we assume that the mean expression level of marker j takes

a positive value (µi,n,j > 0) if the marker is expressed (zj,λi,n = 1). For cases with

zj,λi,n = 1, we construct another set of δ, with distribution δ1,`
iid∼ TN+(ψ1, τ

2
1 ),

` = 1, . . . , L1 for fixed L1, where TN+(ψ, τ 2) denotes the normal distribution

truncated below at zero with mean ψ and variance τ 2. We let µ?1,` = ∑`
r=1 δ1,r,

so 0 < µ?1,1 < . . . < µ?1,L1 . We then let µi,n,j = µ?1,` with probability η1
i,j,`, and

let s2
i,n = σ2

i for λi,n > 0 and assume σ2
i
ind∼ InverseGamma(aσ, bσ). This leads to

a mixture of normals for yi,n,j whose location parameters are determined by the

cell’s latent subpopulation,

yi,n,j | zj,λi,n = z,µ?z ,η
z
i,j, σ

2
i

ind∼ F z
i,j, where

F z
i,j =

Lz∑
`=1

ηzi,j,` · Normal(µ?z,`, σ2
i ),

for z ∈ {0, 1}, k > 0. (2.4)
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Finally, we let ηzi,j
iid∼ DirichletLz(aηz/Lz), for z = 0, 1, i = 1, . . . , I, and j =

1, . . . , J .

The mixture model in (2.4) encompasses a wide class of distributions, which

may be multi-modal or skewed. It captures virtually any departure from a con-

ventional distribution, such as a parametric exponential family model, that may

appear to give a good fit to the log-transformed expression values. A key property

of (2.4) is that it allows cells with very different numerical expression values to

have the same subpopulation if their marker expression/non-expression pattern is

the same. This provides a basis for obtaining a succinct representation of cell sub-

populations. Because the locations µ?z in (2.4) are shared for all (i, n, j), the model

borrows strength across both samples and markers, while ηzi,j = (ηzi,j,1, . . . , ηzi,j,Lz)

allows the distribution of yi,n,j to vary across both samples and markers. The

construction of µ?z,` through δz,` also ensures ordering in µ?z,` and circumvents

potential identifiability and label-switching issues that may be present in conven-

tional Bayesian mixture models (Celeux et al. 2000, Stephens 2000, Jasra et al.

2005, Frühwirth-Schnatter 2006).

Model for the data missingship mechanism We next build a model for the

data missingship distribution. To do this, we incorporate information provided by

a subject area expert, that a marker expression level is recorded as “missing” in

a cell (mi,n,j = 0) when the marker’s signal is very weak, which strongly implies

that the marker is not expressed on that cell. In (2.2), we model missingship

mi,n,j conditional on yi,n,j, i.e., mi,n,j | ρi,n,j(yi,n,j) ind∼ Bernoulli(1 − ρi,n,j(yi,n,j)).

We assume a logit regression model for the probability ρi,n,j that mi,n,j = 0,

logit(ρi,n,j) = β0i + β1iyi,n,j + β2iy
2
i,n,j. (2.5)
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We take an empirical approach to specify values of βi = (β0i, β1i, β1i) in (2.5) for

each sample i = 1, · · · , I by using the minimum, first quartile, and median of

negative observed expression levels, setting their ρi,n,j values to .05, .80 and .50,

respectively, and solving for βi. The proposed specification of βi reflects the key

fact that when mi,n,j = 0, its potentially observed numerical value is very likely

negative. The dataset does not contain information for inferring the missingness

mechanism, and it cannot be anticipated that the imputed values are close to

their potentially observed values. However, our construction of subpopulations

is based on patterns of expression levels, not actual expression levels, and the

task of recovering Z, w and λ, which is the primary aim of the analyses, is not

affected by particular imputed values. We performed sensitivity analyses to the

specification of the βi’s to examine robustness of the estimation of Z, w, and

λ. Additionally, in our simulation studies, missing values were generated under a

mechanism different from that in (2.5) to further examine robustness. § 2.3 and

§ 2.4 provide details of the sensitivity analyses. There is an extensive literature

on analyzing data with observations missing not at random, including methods

for Bayesian data imputation and frequentist multiple imputation (Rubin (1974,

1976), Allison (2001), Schafer and Graham (2002), Franks et al. (2016)). We refer

to them for alternative models for the missingship mechanism.

Selection of K Instead of estimating K, we cast the problem of selecting a

value for K as a model comparison problem. This reduces computational bur-

den, especially for large datasets. To identify a value of K that optimizes model

fit while penalizing for high model complexity, we choose K using the deviance

criterion information (DIC, Spiegelhalter et al. (2002)) and log pseudo marginal

likelihood (LPML, Geisser and Eddy (1979), Gelfand and Dey (1994)). The DIC

and LPML are commonly used to quantify goodness-of-fit for comparing Bayesian
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models. The DIC measures posterior prediction error based on deviance penal-

ized by model complexity, with lower values corresponding to a better fit. The

LPML is a metric based on cross-validated posterior predictive probability, and is

defined as the sum of the logarithms of conditional predictive ordinates (CPOs),

with larger LPML corresponding to a better fit. Details of the computation of

DIC and LPML are given in Appendix §A.3. In addition, we count the number

of subpopulations having negligible weights, ∑i,k I(wi,k < 1%), for each value of

K and plot the LPML against the number of such subpopulations. A model with

larger K may produce cell subpopulations with very small wi,k that only make

subtle contributions to model fit in terms of LPML. We thus search for a value

of K, where the change rate of the increase in LPML drops. Miller and Dunson

(2018) used a similar calibration method to tune a model hyperparameter that

determines how much coarsening is required to obtain a model that maximizes

model fit while maintaining low model complexity.

2.2.3 Posterior Computation

Let θ = {Z,w, δ0, δ1,σ
2,η0,η1,λ,v, ε, α} denote all model parameters. Let

y andm denote the vectors of yi,n,j and mi,n,j values for all (i, n, j). The posterior

distribution of θ is

p(θ | y,m, K)

∝ p(θ | K)
∏
i,n,j

p(mi,n,j | yi,n,j,θ, K)p(yi,n,j | θ, K)

∝ p(θ | K)
∏
i,n

∏
j

ρ
1−mi,n,j
i,n,j

Lzj,λi,n∑
`=1

η
zj,λi,n
i,j,` φ(yi,n,j | µ?zj,λi,n ,`, σ

2
i )


1(λi,n>0)

×

∏
j

ρ
1−mi,n,j
i,n,j × φ(yi,n,j | 0, s2

ε)
1(λi,n=0)

, (2.6)
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where φ(y | µ, σ2) denotes the density of a normal distribution with mean µ and

variance σ2 evaluated at y. Since ρi,n,j is a constant for a given y with fixed

β’s, the terms p(mi,n,j = 1) = (1 − ρi,n,j)mi,n,j for observed yi,n,j do not appear

in (2.6). Posterior simulation can be done via standard Markov chain Monte

Carlo (MCMC) methods with Gibbs and Metropolis steps. Each parameter is

updated sequentially by sampling from its full conditional distribution. Details of

the posterior simulation are described in Appendix §A.1.

Summarizing the joint posterior distribution p(θ | y,m, K) is challenging,

especially for Z, which may be susceptible to label-switching problems common

in mixture models. Moreover, the distributions of wi and λi depend on Z. To

summarize the posterior distribution of (Z,wi,λi) with point estimates, we ex-

tend the sequentially-allocated latent structure optimization (SALSO) method in

Dahl and Müller (2017) to incorporate wi. To summarize random feature alloca-

tion matrices, we first construct Ai = {Ai,(j,j′)(Z)}, the J × J pairwise allocation

matrix corresponding to a binary matrix Z, where

Ai,(j,j′)(Z) =
K∑
k=1

wi,k × 1(zj,k = 1)× 1(zj′,k = 1), for 1 ≤ j, j′ ≤ J, (2.7)

is the number of active features that markers j and j′ have in common in sample

i, weighted by wi,k. The form of (2.7) encourages selection of entries in Z based

on subpopulations that are prevalent in the samples. We find a point estimate Ẑi

for sample i that minimizes the sum of the element-wise squared distances,

argminZ
J∑
j=1

J∑
j′=1

(A(Z)i,(j,j′) − Āi,(j,j′))2

where Āi,(j,j′) is the pairwise allocation matrix averaged by the posterior distri-

bution of Z and wi. We use posterior Monte Carlo samples to obtain posterior
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point estimates Ẑi as follows. Suppose that we obtain B posterior samples sim-

ulated from the posterior distribution of θ. For the bth posterior sample of Z

and wi, we compute the J × J adjacency matrix, A(b)
i = {A(b)

i,(j,j′)}, b = 1, . . . , B

and then the mean adjacency matrix Āi = ∑B
b=1A

(b)
i /B. We determine a poste-

rior point estimate of Z for sample i by minimizing the mean squared deviation,

Ẑi = argminZ
∑
j,j′(A

(b)
i,j,j′ − Āi,j,j′)2, where Ẑi ∈

{
Z(1) . . .Z(B)

}
. For Ẑi = Z(b),

we report the posterior point estimates ŵi = w
(b)
i and λ̂i,n = λ

(b)
i,n.

Because the model is complex and the dataset is large, as an alternative method

for posterior computation we explored the use of variational inference (VI), which

approximates the posterior distribution of θ through optimization (Wainwright

et al. 2008, Blei et al. 2017, Zhang et al. 2018). Because VI tends to be faster than

MCMC, it is a popular emerging alternative, especially for complex models and/or

large datasets. We used automatic differentiation variational inference (ADVI)

(Kucukelbir et al. 2017) to simplify the process of implementing variational infer-

ence for differentiable models. ADVI requires no model-specific analytical deriva-

tions of derivatives, and it is relatively simple to implement using an automatic dif-

ferentiation library such as PyTorch (Paszke et al. 2017), TensorFlow (Abadi et al.

2015), and Flux (Innes 2018). Details of the VI implementation using ADVI are in-

cluded in Appendix § A.1.2. A Julia package CytofResearch for implementing this

methodology is available at https://github.com/luiarthur/CytofResearch.

2.3 Simulation Studies

In this section, we present simulation studies to assess the performance of the

proposed FAM based method for identifying features and clustering cells within

each sample, and we compare the FAM to an alternative model and method. We

simulated data for I = 3 samples, each with 20 markers, consisting of Ni = 4000,
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(a) ZTR

Cell Subpopulations
k = 1 k = 2 k = 3 k = 4 k = 5

sample 1 0.068 0.163 0.351 0.297 0.118
sample 2 0.194 0.282 0.066 0.257 0.199
sample 3 0.112 0.141 0.224 0.119 0.402

(b) wTR

Table 2.1: Design of Simulation 1. ZTR and wTR are illustrated in (a) and
(b), respectively. KTR = 5, J = 20, and I = 3 are assumed. In (a), black
represents zTR

j,k = 1 (marker expression) and white represents zTR
j,k = 0 (marker

non-expression).

500, and 1000 cells, for i = 1, 2, and 3, respectively. We set the true number

of latent features (subpopulations) to be KTR = 5 and specified a J × 5 binary

feature-allocation matrix ZTR and 5-dimensional vectors wTR
i as follows: We first

simulated ZTR by setting zTR
j,k = 1 with probability 0.6. If any column or row in

ZTR consisted of all 0’s, the entire matrix was re-sampled. We then simulated

wTR
i from a Dirichlet distribution with parameters being random permutations of

(1, . . . , 5) for each i. This was done so that the resulting elements of wTR
i would be

likely to contain both large and small values. The assumed ZTR and wTR
i are given

in Table 2.1. We set εTR
i = 5% of the cells to be noisy for all i. We specified the

mixture models for the expression levels by setting µ?,TR
0 = (−1,−2.3,−3.5) and

µ?,TR
1 = (1, 2, 3) with L0,TR = L1,TR = 3, and simulating mixture weights ηz,TR

i,j from

a Dirichlet distribution with parameters a random permutation of (1, . . . , Lz,TR),

for z ∈ {0, 1} and each (i, j). The values of σ2,TR
i were set to 0.2, 0.1, and 0.3

for samples 1, 2, and 3, respectively. We then simulated latent subpopulation

indicators λTR
i,n with probabilities Pr(λTR

i,n = 0) = εTR
i and Pr(λTR

i,n = k | λTR
i,n 6= 0) =

wTR
i,k . We generated yi,n,j iid∼ Normal(0, 9) for all (i, n, j) with λTR

i,n = 0. Otherwise,
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we generated yi,n,j from a mixture of normals, ∑Lz,TR

`=1 ηz,TR
i,j · Normal(µ?,TR

z` , σ2,TR
i )

given zTR
jλTR
i,n

= z for each (i, n, j). To simulate the missingship indicators, mi,n,j,

we first generated the proportions pi,j of missing values for each (i, j) from a

Uniform
(
0, 0.7 ·∑k w

TR
i,k (1− zTR

j,k)
)
and sampled pi,j×Ni cells without replacement

with probability proportional to {1 + exp (−9.2− 2.3yi,n,j)}−1. We let yi,n,j=NA

if mi,n,j = 0. Under the true missingness mechanism, a marker having a lower

expression level has a higher chance of being recorded as missing. Note that

the true mechanism is different from that assumed in (2.5). Heatmaps of the

simulated y are shown in Figure 2.3(b), (d) and (f). The yi,n,j’s are sorted within

a sample according to their posterior subpopulation indicator estimates λ̂i,n, which

we explain below. The colors red, blue, and black represent high expression levels,

low expression levels, and missing values, respectively.

We fit a separate model for each K = 2, 3, . . . , 10, fixing L0 = L1 = 5 and

s2
ε = 10 for each K. We specified the remaining fixed hyper-parameters as follows:

aα = bα = 0.1 for α; ψz = 1 and τ 2
z = 1 for δz,`; aσ = 3 and bσ = 2 for σ2

i ; aηz = 1

for ηi,j; d = 1 for wi; aε = 1 and bε = 99 for εi. We used the empirical approach

described in § 2.2 to obtain values of β for the missingship mechanism. For each i,

we initialized the missing values at −β2i/(2β1i), which corresponds to the largest

missing probabilities a priori. To initialize λi,n, wi, Z, α and ηzi,j, we applied

density-based clustering via finite Gaussian mixture models using the MClust

package (Scrucca et al. 2016), and used the resulting clustering of yi,n,j. We then

drew samples of θ and imputed missing values of yi,n,j using MCMC simulation

based on 16,000 iterations, discarding the first 10,000 iterations as burn-in for each

model, and then thinned by keeping every other draw. We diagnosed convergence

and mixing of the posterior MCMC simulations using trace plots, and found no

evidence of convergence problems. Posterior inference for a model with K = 5
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took 38 minutes per 1000 iterations on an interactive Linux server with four Intel

Xeon E5-4650 processors and 512 GB of random access memory.
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Figure 2.2: Results of Simulation 1. Plots of (a) LPML = log pseudo marginal
likelihood, (b) DIC = deviance information criterion , and (c) calibration metric,
for K = 2, . . . , 10.

For each value of K, we computed the LPML and DIC, and obtained point

estimates Ẑi, ŵi and λ̂i using the method described in § 2.2.3. Figures 2.2(a) and

(b) respectively show plots of LPML and DIC as functions of K. Figure 2.2(c)

plots LPML against the number of subpopulations with ŵi,k < 1%. The increase

in LPML is very minimal, while negligible subpopulations are added for values of

K > 5. The plots clearly indicate that K̂ = 5 yields a parsimonious model with

good fit. Figure 2.3 illustrates Ẑi, ŵi and λ̂i,n for K̂ = 5. Panels (a), (c) and

(e) show Ẑi and ŵi for samples 1, 2, and 3, respectively. The subpopulations

with ŵik > 1% are included in the plots of Ẑi. The estimates Ẑi and ŵi are

close to their truth values in Table 2.1 for all samples, implying that the true cell

population structure is well recovered. We compared the resulting clustering of

the cells by λ̂i,n,j to the truth. We used the adjusted Rand index (ARI) (Hubert

and Arabie 1985), which measures the agreement between two sets of clusterings.

A larger value implies greater agreement, and in the case of random clusterings,

ARI is expected to be 0. ARI can be negative in cases where the agreement

between clusters is less than what is expected from random clusterings. The
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obtained ARIs are above 0.99 for all samples, indicating that the model recovers

the true cell clusters very well. The heatmaps of y rearranged by cell clustering

membership estimates λ̂i,n are shown in panels (b), (d), and (f) of Figure 2.3,

where the colors, red, blue, and black represent high, low, and missing expression

levels, respectively. The horizontal yellow lines separate cells by λ̂i,n. The figures

also show that the cell clustering based on the estimated subpopulations captures

the true clustering of y quite well.

We also fit the model to the simulated data using ADVI, with a mini-batch

size of 2000, K = 30, and 20000 iterations. The time required to fit the model was

approximately 18 minutes per 1000 iterations, which is substantially faster than

that of the analogous MCMC method. Appendix Fig A.2 shows the posterior

estimates of Z, w and λi,n obtained via ADVI. Inferences for model parameters

using ADVI are similar to those using MCMC. The simulation truth for the model

parameters θ are well recovered, as in the MCMC implementation.

We assessed sensitivity of the model to the data missingship mechanism by

fitting the FAM using different specifications of β with K = K̂, and compar-

ing the inferences. The two different specifications of β are given in Appendix

Table A.1. The estimates of θ do not change significantly across different specifi-

cations of β. Point estimates of Z, wi, and λi,n are shown in Appendix Figures

A.3 and A.4. The estimates Ẑ remain the same for all specifications of β, and the

ŵi values also are very similar. Appendix Table A.1 shows that LPML and DIC

are slightly better for the data missingship mechanisms that encourage imputing

smaller missing values yi,n,j. This results in µ?0,L0 , the smallest of the mixture

component locations for non-expressed markers, being smaller than that obtained

under the other specifications, accidentally more closely resembling the simulation

truth. Details of the sensitivity analysis are in Appendix §A.4.
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Figure 2.3: Results of Simulation 1. In (a) and (c), the transpose Ẑ ′i of Ẑi and
ŵi are shown for samples 1 and 2, respectively, with markers that are expressed
denoted by black and not expressed by white. Only subpopulations with ŵi,k > 1%
are included. Heatmaps of yi are shown for sample 1 in (b) and sample 2 in (d).
Cells are given in rows and markers are given in columns, with cells ordered
by posterior point estimates of their subpopulation indicators, λ̂i,n. High and low
expression levels are represented by red and blue, respectively, and black represents
missing values. Yellow horizontal lines separate cells into five subpopulations.

We compared our model via simulation to FlowSOM in (Van Gassen et al.

2015), which is implemented in the R package FlowSOM (Van Gassen et al. 2017).
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Figure 2.3 (continued): Results of Simulation 1 (continued). In (e), the trans-
pose Ẑ ′i of Ẑi and ŵi are shown for sample 3, with markers that are expressed
denoted by black and not expressed by white. Only subpopulations with ŵik > 1%
are included. Heatmaps of yi for sample 3 is shown in (f). Cells are given in rows
and markers are given in columns, with cells ordered by posterior point estimates
of their subpopulation indicators, λ̂i,n. High and low expression levels are repre-
sented by red and blue, respectively, and black represents missing values. Yellow
horizontal lines separate cells into five subpopulations.

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 2.4: Results of Simulation 1 (continued). Heatmaps of yi for clusters
estimated by FlowSOM, with cells ordered by the cluster labels λi,n. Cells are in
rows and markers are in columns. High, low, and missing expression levels are in
red, blue, and black, respectively. Yellow horizontal lines separate the identified
cell clusters.
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FlowSOM fits a model with a varying number of clusters and selects a value of

K that minimizes the within-cluster variance while also minimizing the number

of clusters via an “elbow”criterion, an ad hoc graphical method that chooses K

such that K + 1 does not substantially increase the percentage of variation ex-

plained. FlowSOM does not impute missing values, so we used all y assuming

that there is no missing y. In practice, missing values could be pre-imputed, or

multiple imputation could be employed. Note that FlowSOM does not account

for variability between samples. We combined the samples for analysis to avoid

a further ad-hoc process of finding common clusters among the samples. If de-

sired, one might do separate analyses for each of the samples. FlowSOM was

considerably faster than our model, with a computation time of 11 seconds on

the simulated dataset. FlowSOM identified four cell clusters, as summarized in

Figure 2.4, where the cells are rearranged by their cluster membership estimates

in each sample. The fourth cluster (shown near the top of the heatmaps) is a mix

of the cells having the true subpopulations 1 and 2 that differ only by markers 4

and 17, and its performance of cell clustering deteriorates. We again computed

the ARI to compare the clustering estimates obtained by FlowSOM to the truth.

The ARIs obtained under FlowSOM are 0.945, 0.738, and 0.935 for samples 1, 2,

and 3, respectively. The ARI in sample 2 is especially low for FlowSOM because

the two cell subpopulations combined by FlowSOM have large abundances in the

sample. Table 2.2 summarizes the ARIs from FAM with K = 5 and FlowSOM,

and shows that our FAM outperforms FlowSOM in estimation of cell clustering.

More importantly, FlowSOM does not provide a model or inferences for the latent

structure of cell subpopulations. For this simulation scenario, the FAM easily

recovers the truth, but a clustering-based method such as FlowSOM may perform

poorly in cell clustering.
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Method Sample 1 Sample 2 Sample 3
FAM (K = 5) 0.999 0.993 0.999
FlowSOM 0.945 0.738 0.935

Table 2.2: Adjusted Rand index (ARI) for FAM and FlowSOM by sample for
Simulation 1. Higher ARI is better, and values closer to 1 indicate that estimated
clusters are closer to the truth.

We further examined the performance of our FAM in an additional simula-

tion study, Simulation 2, in which we kept most of the set-up used in Simulation

1, but assumed a more complex subpopulation structure with much larger num-

bers of cells, by assuming KTR = 10 and N = (40000, 5000, 10000). ZTR and

wTR
i are illustrated in Appendix Figure A.2. We considered ten models with

K = 2, 4, · · · , 20. For the fixed hyperparameters, we let L0 = L1 = 5, and the

remaining specifications for hyperparameters were the same as those in Simula-

tion 1. The model comparison metrics strongly suggest K̂ = 10, for which the

posterior point estimates of the underlying structure including Z, w and λi,n

recover the simulation truth quite well, as shown in Appendix Figure A.6. In

contrast, in this case FlowSOM groups cells into two subpopulations that have

similar configurations, similarly to Simulation 1, and estimates nine cell clusters.

The FAM provides direct inference on cell subpopulations, and the cell clustering

by subpopulations is superior to that obtained by FlowSOM. Details of Simula-

tion 2, including a sensitivity analysis for the data missingship mechanism and

fast computation using ADVI, are given in Appendix § A.4.2.
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2.4 Analysis of Cord Blood Derived NK Cell

Data

We next report an analysis of the CyTOF dataset of surface marker expression

levels on UCB-derived NK cells. Identifying and characterizing NK cell subpop-

ulations in terms of marker expression may serve as a critical step to identifying

NK cell subpopulations to develop disease-specific therapies for a variety of se-

vere hematologic malignancies. To gain insight into the phenotype of cord blood

derived NK cells, CyTOF was used with a customized panel including 32 an-

tibodies against well-established inhibitory and activating receptors, as well as

differentiation, homing, and cytotoxicity markers relevant to NK cell biology and

function. Our NK cell dataset consists of three samples collected from different

cord blood donors, containing 41,474, 10,454, and 5,177 cells, respectively. We

first obtained the cutoff values ci,j using flowDensity and computed the trans-

formed raw expression levels, yi,n,j = log(ỹi,n,j/ci,j) if mi,n,j = 1 as explained in

§ 2.2.1. We let yi,n,j =NA if mi,n,j = 0. Because markers that are either expressed

or not expressed in most of cells are not informative for constructing subpopula-

tions under our FAM, we removed markers having positive values in more than

90% of the cells in all samples, or with missing or negative values in over 90%

of the cells in all samples. We also removed all cells with an expression level

yi,n,j < −6 for any marker. This accounted for only a very small number of cells,

and it encourages imputed marker expression levels to be in a reasonable range.

Thus, we recommend removing outliers in this fashion. After this preprocessing,

J = 20 markers remained and the numbers of cells in the samples were Ni =

38,636, 9,555, and 4,827 for subsequent analysis. Appendix Table A.5 lists the

markers included in the analysis. Figures 2.6(b), (d) and (e) show heatmaps of y
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after rearranging the cells by posterior estimates λ̂in of the cell clusterings for each

sample. Using a threshold of 90% to remove some markers yields a reasonable

set of markers, but may seem arbitrary. We performed the analyses with differ-

ent choices of the threshold, such as 0.85 and 0.95. The results are presented in

Appendix A.5. We also plotted the data using the data visualization technique “t-

SNE (t-Distributed Stochastic Neighbor Embedding)” in Appendix Figure A.11.

t-SNE is a popular method for visualization of high-dimensional data in a two-

or three-dimensional map through stochastic neighbor embedding (Maaten and

Hinton 2008, Van Der Maaten 2014). It also is used for detecting clusters in data.

We used Barnes-Hut-SNE implemented in the Python library sklearn to obtain

two-dimensional t-SNE embeddings separately for each sample. We fit our FAM

over a grid for K from 3 to 33 in increments of 3, as opposed to increments of

1, due to constraints on computational resources available to us. We set L0 = 5

and L1 = 3. We set priors and the data missingship mechanism as outlined in

§ 2.3. Random parameters θ also were initialized in a similar manner. 6000 sam-

ples from the posterior distribution of the model parameters were obtained after

a burn-in of 10000 iterations. The posterior samples were thinned by selecting

every other sample to yield a total of 3000 samples.

Figures 2.5 (a) and (b) display LPML and DIC as functions of K. The LPML

changes sharply for small values of K, and tapers at K = 21, indicating that K̂ =

21. A similar pattern is seen for DIC. As depicted in Figure 2.5 (c), our additional

calibration method also indicates that the models with K > 21 include more cell

subpopulations comprising less than one percent of a sample (i.e. ∑i,k ŵi,k < 1%

is larger), and improve fit only minimally.

Figure 2.6 summarizes posterior inference on the latent cell population struc-

ture with K̂ = 21. The cells are grouped by their estimated cell subpopulation
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Figure 2.5: Analysis of UCB-derived NK cell data. Plots of (a) LPML, (b) DIC,
and (c) calibration metric, for K = 3, 6, . . . , 33.

indicators λ̂i,n. The figure shows the estimated cell subpopulations Ẑi (in the left

column) and clustered marker expression levels yi (in the right column) for the

samples. Cells having subpopulations with larger ŵi,k are shown at the bottom

of the heatmaps. The subpopulations with the two largest ŵi,k are different in

the samples. The resulting inference indicates that the composition of the NK

cell population varies across the samples, pointing to variations in the phenotype

of NK cells among different cord blood donors. We observe similarities in the

phenotypes of NK cells from samples 2 and 3, however, while sample 1 displays a

different phenotype and a distinct distribution of cell subsets. NK cells from all

three samples express 2B4, CD94, DNAM-1, NKG2A, NKG2D, Siglec-7, NKp30

and Zap70 in the majority of their identified subpopulations. These markers dic-

tate NK cell functional status. While their interactions are very complicated,

taken together they provide a basis for determining whether NK cells have a nor-

mal function, and whether they are mature or not.

Despite great variability between cord blood sample 1 and the other two cord

blood samples, all three had a significant subset of cells with an immature phe-

notype. Cord blood 1 Cluster 7, cord blood 2 Cluster 17 and cord blood 3 Clus-

ter 6 comprise the largest population of immature cells, defined as EOMES (-),

TBET (-), and KIR (-). Markers KIR2DL3 and KIR3DL1 belong to killer-cell
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(c) Ẑ ′2 and ŵ2 (d) Clustering of y2nj

Figure 2.6: Analysis of the UCB-derived NK cell data. Ẑ ′i and ŵi of samples
i = 1 and 2 are illustrated in panels (a) and (c), respectively, with markers that
are expressed denoted by black and not expressed by white. Only subpopulations
with ŵik > 1% are included. Heatmaps of expression level yi are shown in pan-
els (b) and (d) for samples 1 and 2, respectively, with cells in rows and markers
columns. Each column thus contains the expression levels of one marker for all
cells in a sample. High, low, and missing expression levels are red, blue, and black,
respectively. Cells are ordered by the posterior estimates of their clustering mem-
berships, λ̂i,n. Yellow horizontal lines separate cells by different subpopulations.

40



1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

markers

5 (1.0%)
14 (1.3%)
16 (1.3%)
11 (1.5%)

1 (1.6%)
3 (1.6%)

19 (1.9%)
9 (2.2%)
8 (2.2%)

10 (2.3%)
12 (2.7%)
17 (3.3%)

2 (3.7%)
7 (5.7%)

18 (6.5%)
20 (6.7%)
15 (6.7%)

21 (11.2%)
13 (15.6%)

6 (20.3%)

c
e
ll
 p

h
e
n
o
ty

p
e
 (

a
b
u
n
d
a
n
c
e
)

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

ce
ll 

su
bp

op
ul

at
io

ns
 (a

bu
nd

an
ce

) 

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

(e) Ẑ ′3 and ŵ3 (f) Clustering of y3nj

Figure 2.6 (continued): Analysis of the UCB-derived NK cell data (continued)
Ẑ ′i and ŵi of sample 3 are illustrated in panel (e), with markers that are expressed
dented by black and not expressed by white. Only subpopulations with ŵik > 1%
are included. Heatmaps of yi are shown in panel (f) for sample 3. Cells are in
rows and markers in columns. Each column contains the expression levels of a
marker for all cells in the sample. High, low, and missing expression levels are red,
blue, and black, respectively. Cells are ordered by the posterior estimates of their
clustering memberships, λ̂i,n. Yellow horizontal lines separate cells by different
subpopulations.

immunoglobulin-like receptors (KIRs). These immature clusters of NK cells still

retain expression of 2B4, NKG2A, NKG2D, CD94 and NKp30. In particular,

NKp30 is a natural cytotoxicity receptor, while KIR is not. This implies that,

despite great variability between sample 1 and the other two samples, all three

have a significant subset of cells with an immature phenotype. Markers EOMES,

TBET, Zap70 and KIR are not expressed in the largest subpopulation of each

sample, indicating that those are subsets of immature cells. An immature pheno-

type of NK cells usually is associated with low diversity and low effector function

in the absence of exogenous cytokines, (Li et al. 2019, Sarvaria et al. 2017), while

a mature NK cell phenotype has been linked to superior cytotoxicity and better
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clinical outcomes in cancer patients (Ilander et al. 2017, Carlsten and Jaras 2019).

These immature clusters of NK cells still retain expression of 2B4, CD94, NKG2A,

NKG2D, and NKp30.

In addition, we identified three subpopulations (12, 15, and 21) that are con-

served among the three samples, although at lower percentages in sample 1. In

these subpopulations, EOMES and TBET are expressed, indicating that they are

a more mature phenotype. The subset with expression of EOMES and TBET

could be further divided into three subpopulations based on the expressions of

markers CD8, CD16, TIGIT, and KIR. Subpopulations 12 and 21 are very simi-

lar, sharing positivity for CD16, CD8 and TIGIT, and are differentiated by KIR

expression, which are negative in subpopulation 21 and positive in subpopulation

12. Subpopulation 15, however, is negative for CD16, CD8, TIGIT and KIR,

making EOMES and TBET its only differentiation markers. These novel subsets

of cord blood NK cells have not been described in the literature previously, and

may need to be further validated. We also identified cluster 3 as an important

conserved cluster among all 3 samples, which is positive for NKG2C, CD62L and

CD27, which could indicate a memory subset in cord blood NK cells which has

not been well described previously. Taken together, these data indicate that the

FAM allows not only the definition of biologically recognized subsets of NK cells,

but also may be applied for the discovery of novel NK cell subpopulations.

Model sensitivity to the specification of the data missingship mechanism in

the NK cell data analysis was assessed by fitting the FAM under two additional

specifications of β, which we call data missingship mechanisms (MM) I and II. We

will refer to the previous (default) missingship mechanism as MM-0. Appendix

Tables A.6 and A.7 list the different data missingship mechanism specifications

and the corresponding β values, respectively. Under the different specifications
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of β, the estimates Ẑi and ŵi are similar, as shown in Appendix Figures A.12

and A.13. The subpopulations estimated under MM-I and MM-II are identical

to or differ by no more than three markers, when compared to those under MM-

0. We also fit the model to the UCB-derived NK cell data computing posteriors

using ADVI with a mini-batch size of 2000 and K = 30 for 20000 iterations.

The runtime was 6 hours on the previously described machine. Appendix Figure

A.14 summarizes the posterior distribution of Z and the posterior mode of cell

clusterings λ̂i,n. The cell subpopulations inferred by ADVI are similar to those

obtained by MCMC, but the cell clustering estimates are quite different. Notably,

subpopulations with large ŵik can be found in the estimates obtained by both

methods, e.g., the subpopulations with the largest abundances in sample 1. For

subpopulations with smaller ŵik, we do not find clear matches. The cluster sizes

obtained by ADVI are larger than those obtained from MCMC and cells in the

clusters are less homogeneous. It thus appears that ADVI should be used very

cautiously in this type of setting, and that its shorter runtime compared to MCMC

may be a false economy.

For comparison, we also applied FlowSOM to the UCB data. We fixed the

missing values of yi,n,j at the minimum of the negative observed values of y for

each (i, j) prior to analysis. FlowSOM identified 13 cell clusters in the samples.

Heatmaps of yi,n,j rearranged by cell clustering estimates by FlowSOM are given

in Figure 2.7 (a)-(c). Heterogeneity between cells within clusters estimated under

FlowSOM is noticeably greater than that under the proposed FAM shown in

Figure 2.6. For example, marker 10 shows a mix of red, blue, and black colors for

cluster 1, the largest cluster. The proportions of cells assigned to the clusters are

summarized in Figure 2.7(d). The clusters obtained by FlowSOM are much larger

than those obtained by the FAM. In particular, cluster 1 under FlowSOM contains
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Clusters	 Sample	1	 Sample	2	 Sample	3	
1	 0.367	 0.538	 0.541	
2	 0.320	 0.154	 0.112	
3	 0.102	 0.152	 0.089	
4	 0.068	 0.055	 0.058	
5	 0.035	 0.030	 0.044	
6	 0.031	 0.027	 0.043	
7	 0.030	 0.011	 0.027	
8	 0.029	 0.008	 0.026	
9	 0.011	 0.008	 0.023	
10	 0.004	 0.006	 0.012	
11	 0.002	 0.004	 0.011	
12	 0.001	 0.003	 0.010	
13	 0.000	 0.003	 0.005	

(c) Clustering of y3nj (d) Proportions

Figure 2.7: [CB Data: Comparison to FlowSOM] Heatmaps of cells in (a)-(c) for
samples 1-3, respectively. Cells are arranged by the cluster membership estimates
by FlowSOM. The clusters are separated by yellow horizontal lines, with the most
abundant clusters in each sample closer to the bottom. High, low, and missing
expression levels are red, blue, and black, respectively. The proportions of the
cells in the estimated clusters are shown in (d).

36.7%, 53.8% and 54.1% of the cells in samples 1-3, respectively. Lastly, FlowSOM

does not produce an explicit inference on the characterization of subpopulations.
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2.5 Discussion

We have proposed a Bayesian FAM to identify and estimate cell subpopula-

tions using CyTOF data. Our FAM identifies latent subpopulations, defined as

functions of the marker expression levels, and fits the data in multiple samples

simultaneously. The model accounts formally for missing values and between-

sample variability. The fitted FAM assigns each cell in each sample to exactly one

subpopulation, but each surface marker can belong to more than one subpopula-

tion. The method also yields cell clusters within each sample that are defined in

terms of the inferred subpopulations. We constructed a data missingship mecha-

nism based on expert knowledge, and we examined the robustness of the model to

the specification of the missingship mechanism through simulation. This showed

that inferences were not sensitive to changes in the specification of the missingship

mechanism. Compared to established clustering methods, including FlowSOM,

the proposed FAM is more effective at discovering latent subpopulations when

the underlying cell subpopulations are similar.

Our proposed FAM can be extended to accommodate similar but more com-

plex data structures, in particular data including covariates. For example, samples

with similar covariates may also have similar cell subpopulation structures. The

model can incorporate such information by incorporating appropriate regression

submodels, to enhance inferences and study how the structures may change with

covariates. One also may introduce the concept of “ repulsiveness” to latent fea-

tures and obtain a more parsimonious representation of the latent subpopulations

by discouraging the creation of redundant subpopulations. Repulsive models,

which are more likely to produce features that differ from each other substan-

tially, have been developed mostly in the context of mixture models (e.g., see

Petralia et al. (2012), Quinlan et al. (2018), Xie and Xu (2020)). Xu et al. (2016)
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used the detrimental point process (DPP) for a repulsive FAM that uses the de-

terminant of a matrix as a repulsiveness metric. A model that explicitly penalizes

the inclusion of similar features also can be developed to replace the IBP in our

model.
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Chapter 3

A Bayesian Model for Identifying

Distinct Features that Define Cell

Subpopulations from Cytometry

Data

3.1 Introduction

Feature allocation models (FAMs) have been used in many different settings

to identify underlying latent structures, including a wide variety of biomedical

applications given by Hai-son and Bar-Joseph (2011), Chen et al. (2013), Sen-

gupta et al. (2014), Lee et al. (2015), Xu et al. (2016), Ni et al. (2019), Lui et al.

(2020). In a FAM, a feature consists of a subset of experimental objects, such as

biomarkers, and each object may belong to a finite number of features. A feature

allocation is represented by a J × K binary matrix, Z = [z1, · · · , zK ], with the

rows corresponding to objects and the columns to features. In Z, the feature
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membership indicator zj,k = 1 if object j belongs to feature k, and zj,k = 0 other-

wise. Thus, the kth column zk of Z represents the set of objects having feature k.

The FAM consists of independent priors p(z1), · · · , p(zK) on the features. Due to

the assumption of independence, the objects are grouped into features without the

restrictions that the features are either mutually exclusive or exhaustive subsets.

The assumptions underlying a conventional FAM may be at odds with the goal

of obtaining features that have meaningful interpretations, however. In biomedical

applications involving objects such as single nucleotide polymorphisms, messenger

RNA (mRNA) strands, cell surface markers, or tumors, a major goal is to obtain

features that can be interpreted as components of a meaningful biological struc-

ture. For example, Xu et al. (2016) applied a FAM to mRNA expression data

consisting of tumor samples collected from breast cancer patients, with the goal

to identify cancer subtypes. They assumed that a sample was composed of cells

taking different latent cancer subtypes, and used features obtained from a FAM to

represent the subtypes. In such applications, obtaining a parsimonious representa-

tion of the underlying structure, with fewer and more distinctive features, is crit-

ical for obtaining a biologically meaningful interpretation. A commonly assumed

distribution for Z, p(Z), is the Indian buffet process (IBP) given by Griffiths and

Ghahramani (2011), which can be defined as follows. Let [vk | α] ∼ Beta(α/K, 1)

and zj,k | vk ind∼ Bernoulli(vk), for j = 1, . . . , J , and k = 1, . . . , K. By taking the

limit as K → ∞, and dropping any column having all entries 0, the remaining

columns of Z can be rearranged into a left-ordered form (lof). A lof for Z is

obtained by re-ordering the columns from left to right using the magnitudes of

the binary number of units expressed in the columns. The resulting left-ordered

Z has an IBP distribution. Under the IBP, the number of features K is random,

and the columns of Z are independent. The IBP and its finite variants that fix
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or place a prior on K instead of taking the limit are very commonly used as a

prior distribution in Bayesian FAMs. Although these models are mathematically

convenient, a potential drawback is that assuming independence across columns

allows duplicated or very similar features, which make interpretation of the in-

ferred features difficult.

In this chapter, we propose a repulsive-FAM (rep-FAM) that encourages

distinct features a priori by parametrizing repulsion among features explicitly

through a function, fφ, incorporated into the prior, that controls the degree of

dissimilarity between features. Under our rep-FAM, features are no longer in-

dependent, and are encouraged to be different. The shape of fφ is determined

by hyperparameters φ. We study how φ changes the shape of fφ, and present a

method for calibrating fφ. Various approaches for using a repulsion function to

model locations in a mixture model have been explored in the context of den-

sity estimation and clustering problems. For example, see Petralia et al. (2012),

Quinlan et al. (2017, 2018), Xie and Xu (2020). Those papers showed that a repul-

sion function encourages well-separated mixture components, and that a mixture

model with a repulsion function produces a parsimonious representation of the

underlying structure that can be more scientifically meaningful. It can also yield

better model fit and improved clustering. Other approaches for inducing depen-

dence in FAMs have been proposed. For example, the distance-dependent IBP

(Gershman et al. 2014) accounts for dissimilarities between rows, with experimen-

tal units tending to possess similar sets of features if their covariate vectors are

close to each other. Williamson et al. (2010, 2019) developed a dependent IBP in

which the elements of Z are allowed to persist or vary over time.

We build upon the FAM of Lui et al. (2020), and apply the proposed rep-FAM

to construct a model that infers a latent population structure of cells in samples
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using cytometry by time-of-flight (CyTOF) data.

CyTOFmeasures expression levels of cell surface biomarkers for individual cells

in the data. Natural killer (NK) cells serve a critical role in cancer immune surveil-

lance, and they have the intrinsic ability to infiltrate cancer tissues. A discussion

of NK cell therapy for hematologic malignancies is given by Lui et al. (2020).

CyTOF cell surface marker data obtained from one blood sample, typically from

either patients or umbilical cord blood, are recorded for thousands of cells. High

numerical values for a particular marker indicate high expression levels of the

marker, and low numerical values indicate low expression levels. While marker

expression levels obtained via CyTOF are non-negative real numbers, investiga-

tors who desire to identify subpopulations of cells in a sample often characterize

expression using latent binary variables. This is done by defining marker expres-

sion vectors in each subpopulation, with entries 1 or 0 for each marker indicating

expression or non-expression.

As done with a conventional FAM, we will characterize cell subpopulations

using latent features that represent subpopulation-specific cell surface marker ex-

pression patterns. Using the posterior distributions of the features, the model

clusters individual cells from one or more samples into subpopulations based on

their markers’ expression patterns. The rep-FAM obtains subpopulations that are

more likely to be dissimilar. We fix K, but let each sample have its own set of

features and abundance levels over the selected features. Thus, the kth subpopu-

lation, characterized by zk, may be present in only some of the samples, and its

feature abundance levels may differ between samples. Unlike Lui et al. (2020),

where a finite IBP with fixed K is used, the proposed model obtains a parsimo-

nious and more clinically interpretable summary of the cell subpopulations. Also,

the rep-FAM performs feature selection and enables inferences more tailored for
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each of the samples. We conduct simulation studies and real data analyses and

compare the rep-FAM to a FAM that assumes independent features (ind-FAM),

and also to usual methods that cluster cells based on expression levels.

The remainder of this chapter proceeds as follows. In Section 3.2 we introduce

the cytometry at time-of-flight (CyTOF) application and present our rep-FAM.

Then, in Section 3.3, we compare the performance of the rep-FAM to those of the

ind-FAM, and some existing clustering methods. Section 3.4 presents results of

CyTOF data obtained from patients 30 days after cell infusion. We offer some

concluding remarks in Section 3.5.

3.2 Probability Model

3.2.1 Repulsive Feature Allocation Model

In general, consider a dataset with I samples indexed i = 1, . . . , I, and cells in

the ith sample indexed by n = 1, . . . , Ni. Raw expression level measurements for

marker j = 1, · · · , J on cell n in sample i are denoted by ỹi,n,j. Let ci,j represent

a threshold, calculated via a flow cytometry algorithm called flowDensity (Malek

et al. 2014), which is used to normalize the raw measurements for marker j in

sample i. These thresholds account for instrument fluctuations or signal crosstalk

among channels designed for different markers. Though crude, these thresholds are

needed as a starting point for our analyses. Let the normalized expression levels

be yi,n,j = log (ỹi,n,j/ci,j) , so that raw measurements that are above (below) their

respective thresholds yield positive (negative) normalized expression levels. In

CyTOF analyses, marker expression levels are recorded as 0 due to experimental

artifacts and weak levels of expression. When this is the case, the normalized

values will be undefined. Thus, we treat zeros as missing values and impute them
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to facilitate posterior computation.

We propose a rep-FAM with a prior on Z formulated to favor features that

are more distinct from each other, as follows. Let fφ(d) denote a repulsion func-

tion increasing in a distance metric, d = d(zk1 , zk2) that quantifies the dissimi-

larity between columns k1 and k2 of Z, and takes on non-negative values, with

d(zk1 , zk2) = 0 when zk1 = zk2 . We require that the repulsion function has the

properties fφ(0) = 0 and limd→∞ fφ(d) = 1, where φ is a hyperparameter. An

example of a function with these properties is fφ(d) = {1 − exp (−φ1d)}φ2 , with

hyperparameters φ1, φ2 > 0 that control the shape of fφ. The function fφ(d) will

be incorporated into the prior to put probability mass on the columns of Z in such

a way that more distinct columns are more likely. For our rep-FAM, we assume

that the feature membership matrix Z follows the prior

p(Z | v, fφ) ∝


K∏
k=1

J∏
j=1

v
zj,k
k (1− vk)1−zj,k

×

K−1∏
k1=1

K∏
k2=k1+1

fφ (d(zk1 , zk2))

 , (3.1)
where vk ∈ (0, 1) for k ∈ {1, . . . , K}. As in the IBP, we assume the independent

level 2 priors [vk | α] iid∼ Beta(α/K, 1), for k = 1, . . . , K, and assume the level

3 prior α ∼ Gamma(aα, bα), which has mean aα/bα. For a distance metric, we

use the L1 norm, d(zk1 , zk2) = ∑J
j=1 |zj,k1 − zj,k2|, so for Z with binary entries

d(zk1 , zk2) is the number of discordances between columns zk1 and zk2 , and it takes

on values in {0, 1, · · · , J}. If Z has any duplicated columns then p(Z | v, fφ) = 0,

and fφ(·) smoothly penalizes Z having similar columns by making it less likely a

priori. Figure 3.1 illustrates fφ(d) as a function of d for different values of (φ1, φ2).

In panel (a), we fix φ1 = 1 and vary the value of φ2. Note that as φ1 →∞ or when

φ2 = 0, fφ(d) = 1 for any d ≥ 0, and the regular FAM is recovered. Figure 3.1(b)

illustrates fφ(d) as a function of φ1 and φ2, with d fixed at 1. For fixed (d, φ2),

as φ1 increases, fφ(d) increases and p(Z) penalizes Z with similar features less.
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Figure 3.1: (a) Illustration of a repulsion function fφ(d) = {1− exp (−φ1d)}φ2

with φ1 = 1, φ2 ∈ {0, 1, 10, 25, 50, 100, 1000}. (b) Heatmap of f(d;φ1, φ2) with
φ1 ∈ (0, 5), φ2 ∈ (0, 5), and d = 1.

As φ2 increases, fφ(d) decreases and p(Z) penalizes Z with similar features more

heavily. Under the rep-FAM given in (3.1), the support of pZ has 2JPK values for

any J > 0 and K ≤ 2J , and the normalizing constant is finite. Placing hyper-

priors on φ = (φ1, φ2) is possible, but it complicates posterior computation since

the normalizing constant in (3.1) depends on φ, making posterior inference for φ

doubly intractable. Instead, we calibrate φ using an apriori chosen separation level

between features, similarly to the calibration method used by Petralia et al. (2012).

We use the prior expected number of marker expression discordances between

features to calibrate φ. For the simulation studies in § 3.3 and the data analysis

in § 3.4, we impose the constraint Pr(min1≤k1<k2≤K d(zk1 , zk2) ≥ d | φ) > p, where

d is a lower threshold for the minimum difference between a pair of features and

p is a fixed lower probability cut-off. Given pre-specified values of d and p, we

solve numerically for values of φ. Additional details of the calibration of φ are

given in Appendix B.1. When no prior information is available, one may choose

φ using a model comparison statistic, such as the deviance information criterion
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(DIC). For alternative choices of d and fφ, see Petralia et al. (2012), Quinlan et al.

(2017), Xie and Xu (2020). Since the IBP of (Ghahramani and Griffiths 2006)

assumes independence across columns, it has a positive probability of allowing

some columns to appear more than once in Z. A key difference between the

rep-FAM in (3.1) and the IBP is that the rep-FAM ensures that all features

are distinct. This enhances interpretability, which is especially critical in our

application since the features represent distinct subpopulations defined by unique

subsets of expressed cell surface markers.

A possible alternative to our rep-FAM is the determinantal point process

(DPP)-based FAM, which is a repulsive FAM given by Xu et al. (2016). Like

our proposed rep-FAM, the DPP-based FAM defines a probability distribution

over a J ×K binary matrix, Z. Xu et al. (2016) construct a K ×K symmetric

kernel matrix, C, having elements in [0, 1], quantifying closeness of feature pairs,

with C(k1, k2) = 1 if the features (k1, k2) are identical. The prior p(Z) is defined

to be proportional to det(C). In the extreme case where Z has some identical

columns, det(C) = 0, so the DDP-based FAM prior p(Z) = 0. More distinct

feature pairs have off-diagonal elements of C close to 0, and make det(C) closer

to 1. Thus, both the DDP-based FAM and our rep-FAM do not allow Z to have

identical columns. However, because the DPP-based FAM first constructs C and

uses det(C) to define p(Z), it may be difficult to understand how repulsion is

reflected in p(Z), and posterior computation also is more difficult. In contrast,

our rep-FAM explicitly parameterizes repulsion between features via the penalty

function fφ(d) and incorporates this directly into the prior, so it is straightforward

to understand how fφ(d) affects p(Z).

The assumption that all features in Z may be present in all samples may

be overly restrictive when each sample is composed of two or more subpopu-
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lations. In our application, and in many other settings, a subpopulation may

be present in one sample but not another. We thus construct the probability

model to facilitate feature selection by identifying sample-specific feature con-

figurations from the data. To do this, we introduce latent feature selection in-

dicators, {ri,k, i = 1, . . . , I, k = 1, . . . , K}, with ri,k = 1 if sample i includes

feature k, and ri,k = 0 if not, and denote ri = (ri,1, · · · , ri,K). We assume that

[ri,k | pi] ind∼ Bernoulli(pi) with each pi fixed. Sample-specific feature selec-

tion using ri,k facilitates a joint analysis of multiple samples, possibly obtained

from different sources. We denote the set of features selected in sample i by

Ri = {k : ri,k = 1, for k = 1, . . . , K}, which is the feature subpopulation for that

cell sample. Because the latent feature selection indicators are random, each Ri

and its cardinality, |Ri|, also are random. This implies that some features may not

be chosen by any sample, in which case ∪Ii=1Ri is a proper subset of {1, . . . , K}.

We fixK to be a reasonably large value and, through feature selection, samples are

allowed to select a subset of the K features, so the numbers of selected features,

|R1|, · · · , |RI |, vary randomly across samples.

3.2.2 Clustering by Latent Features

Recall that expression levels of J markers are recorded on each cell. The rep-

FAM model sample i into |Ri| cell subpopulations, with the kth subpopulation

characterized by the features in Ri. We next extend the probability model by

introducing cluster membership indicators, λi,n ∈ Ri for cell n in sample i. The

event (λi,n = k) implies that the marker expression pattern of cell n in sample i is

the same as the pattern described by zk, so cells are clustered into subpopulations

according to their marker expression patterns. This induces more biologically

meaningful clustering of cells than cell clusterings based on their marker expression
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levels alone (Lui et al. 2020). We let p(λi,n = k | wi) = wi,k, for k = 1, . . . , K,

where wi,k = 0 for k /∈ Ri, wi,k > 0 for k ∈ Ri, and
∑K
k=1 wi,k = 1. We construct

a Dirichlet distribution for the vector wi = (wi,1, · · · , wi,K) using the random

parameters w?
i and ri. We first assume w?i,k

iid∼ Gamma(aw, 1), and define wi,k =

(w?i,kri,k)/
∑K
h=1(w?i,hri,h), which implies that, wi | ri ∼ Dirichlet (awri).

We assume conditional independence between the nth cell’s J marker values

given λi,n, and we relate the distribution of yi,n,j to the marker expression con-

figuration of cluster λi,n, i.e., zλi,n , as follows. Assume that each yi,n,j follows a

mixture of normal distributions,

[
yi,n,j | zj,λi,n = z,µ?z ,η

z
i,j, σ

2
i

]
ind∼ F z

i,j =
Lz∑
`=1

ηzi,j,` · Normal(µ?z,`, σ2
i ), z ∈ {0, 1} ,(3.2)

where N(µ, σ2) denotes a normal distribution with mean µ and variance σ2. Recall

that, if marker j is (is not) expressed in subpopulation k, with zj,λi,n = 1 (0),

then yi,n,j tends to be positive (negative). When a marker is not expressed, i.e.,

zj,λi,n = 0, we let the mixture locations take negative values, µ?0,` < 0 with ordering

constraint 0 > µ?0,1 > · · · > µ?0,L0 to avoid potential identifiability problems; we

assume µ?0,` = −∑`
r=1 δ0,r, where δ0,`

iid∼ TN+(ψ0, s
2
0), ` = 1, . . . , L0 with fixed L0.

Here TN+(ψ0, s
2
0) denotes the normal distribution with mean ψ0 and variance s2

0

truncated below at zero. Similarly, we assume that the mixture locations take

positive values, µ?1,` > 0, if the marker is expressed, zj,λi,n = 1. We assume

δ1,`
iid∼ TN+(ψ1, s

2
1), ` = 1, . . . , L1 with fixed L1, and let µ?1,` = ∑`

r=1 δ1,r, so we

have 0 < µ?1,1 < · · · < µ?1,L1 . Finally, in (3.2) we let ηzi,j
iid∼ DirichletLz(aη), for

z = 0, 1, i = 1, . . . , I, and j = 1, . . . , J , and σ2
i
iid∼ InverseGamma(aσ, bσ), where

DirichletL(a) denotes a Dirichlet distribution with L entries that all equal a. That

is, we assume equal weights for the mixture components a priori. The mixture

model in (3.2) is very flexible, and encompasses a wide class of distributions,
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which may be multi-modal or skewed. The mixture locations µ?z are shared by all

(i, j), and the model facilitates borrowing information across markers and samples.

Thus, even when a marker is mostly expressed or not expressed, the model can

obtain reliable estimates of F z
i,j for both cases of z = 0 and 1.

Expression levels that are missing are imputed using the same technique out-

lined in Lui et al. (2020). Subject experts provided information that expression

levels of a marker are likely to be missing when the marker is not expressed. We

build a joint model of expression levels and missingness indicators, and impute

missing values of y during posterior simulation. Our approach is to craft a cali-

brated static missingship mechanism with a quadratic trend based on the experts’

information, in order to limit imputed data to a range of negative expression lev-

els consistent with the data. Our subpopulations are constructed by a pattern of

expression or non-expression of the markers, but not directly by their expression

level values, and our model is robust to the specification of the missingness mech-

anism. Appendix B.2.1 demonstrates how to specify a missing data mechanism

for this model.

3.2.3 Posterior Computation

Posteriors for the rep-FAM can be computed via Gibbs sampling and other

standard Markov chain Monte Carlo (MCMC) algorithms. Denote the vector of all

random parameters and missing values by θ = (δ,σ2,η,w?, r,λ,Z,v, α,ymiss) ,

where δ = {δz,`, z = 0, 1, and ` = 1, . . . , Lz}, σ2 = {σ2
i , i = 1, . . . , I}, w? =

{w?i,k, i = 1, . . . , I, and k = 1, . . . , K}, r = {ri,k, i = 1, . . . , I, and k = 1, . . . , K},

λ = {λi,n, i = 1, . . . , I, and n = 1, . . . , Ni}, v = {vk, k = 1, . . . , K}, and ymiss

denotes missing values. For the priors described in § 3.2.1 and § 3.2.2 that are

conjugate, their parameters can be updated easily. Due to the complexity of the
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model and the size of the dataset, however, posterior simulation is computationally

expensive and the Markov chain may converge slowly. Updating Z can be very

slow, and involves several computational difficulties.

To make our algorithm more scalable, we exploit the idea of the intrinsic Bayes

factor given by Berger and Pericchi (1996) and use a “minimally trained” prior,

p?(θ) ∝ p(θ)p(y′ | θ), where y′ is a small subsample of the data, to replace the

prior p(θ) and to generate proposals of Z in a Metropolis step. Because Bayes

factors cannot be computed with improper priors, Berger and Pericchi (1996) first

partitioned the data into a small, randomly chosen subset y′(1) and its complement,

y′′(1), computed p?1(θ) using y′(1), and computed the posterior p?(1)(θ | y′′(1)). To avoid

dependence on the particular partition, they repeated this process for a sequence of

partitions {y′(h),y
′′
(h)} for h = 1, · · · , H, then for each model being considered they

computed the Bayes Factors, BF1(model), · · · ,BFH(model) and then averaged.

In the context of our posterior computations, we used this idea to facilitate

updating Z in the MCMC. We did this by generating a prior p?(h)(θ) from the

hth partition to replace the prior p(θ) and as a proposal distribution of Z in the

MCMC. We updated Z by accepting Z ′ with probability min(1, ζ), where ζ =

p(y′′(h) | Z ′,θ−Z)/p(y′′(h) | Z,θ−Z) after some algebraic cancellations. Here, θ−Z

denotes all the subvector of θ obtained by deleting Z. This produces reasonable

proposals of Z, simplifies evaluation of the acceptance probability, and greatly

speeds up the update for Z. Because the posterior given the remainder of the

data p(θ | y′′(h)) ∝ p?(h)(θ)p(y′′(h) | θ) ∝ p(θ)p(y | θ), it follows that our sample is

from the posterior based on the full data. For simulation studies and the CyTOF

data analysis, for each partition, we used randomly chosen subsets comprising

10% of the data for the simulations and 5% for the Cytof data analysis as the

training samples. We also modified this process by running the H Markov chains
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in sequence, and using the final draw of θ of the hth chain as the initial value for

the (h + 1)th chain. We then pooled the H posterior samples of θ obtained from

p(θ | y′′(h)), h = 1, · · · , H, to obtain a final posterior for inferences.

A similar approach of using the fractional Bayes factor is used in Lee et al.

(2015, 2016). Our approach is different from mini-batch tempered MCMC (Li

and Wong 2017), which uses a subset of the data to compute a tempered likeli-

hood. Our method is also different from Chen et al. (2016b), where the Metropolis

acceptance probability is computed based on a small subset of the data for com-

putational efficiency; whereas we generate proposals from p?(h)(Z) and use the test

set y′′(h) to evaluate the Metropolis acceptance probability.

In addition, we improve mixing by using weight-preserving parallel tempering

(WPPT) (Tawn et al. 2020). Parallel tempering (PT) (Earl and Deem 2005) is a

general MCMC technique to increase the mixing rate of a model that suffers from

poor mixing. For PT, multiple MCMC chains are run at various “temperatures”

and updated in parallel for a given model. At regular iteration intervals, the entire

states of pairs of chains are swapped with a positive probability, and different

modes of the target distribution can be explored. Notably, we use a weight-

stabilizing tempering scheme developed in Tawn et al. (2020). Tawn et al. (2020)

showed that when tempering (simulated or parallel) is applied to mixture models,

mixture components originally with smaller weights can have dominantly large

mixture weights at high temperatures, and preserving the component weights can

lead to inferences that are more sensible. Following their approach, we preserve

the original weights ηzi,j,` of the mixture model for y by tempering only the kernels

of the mixture components. Appendix B.2 provides details of PT, minimally

trained priors, and posterior simulation.

As is common in most mixture models, Z suffers from label-switching issues
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(Celeux et al. 2000, Stephens 2000, Jasra et al. 2005, Frühwirth-Schnatter 2006),

and summarizing the posterior inference is challenging. Similar to the approach in

Lui et al. (2020), we use a sequentially-allocated optimization (SALSO) method

(Dahl and Müller 2017) with some modification to provide meaningful posterior

point estimates of θ, especially Z, w and λ. For each sample i, we find point

estimates, Ẑi, ŵi, and λ̂i,n as follows; we first construct a J×J pairwise allocation

matrix of Z for sample i, A(Z)i whose elements are A(Z)i,(j,j′) = ∑K
k=1wi,k ×

1(zj,k = 1) × 1(zj′,k = 1), for 1 ≤ j, j′ ≤ J , i.e., the number of the features that

markers j and j′ have in common, weighted by wi,k. Since wi,k can be exactly

zero for some features, A(Z)i only accounts for selected features. We then find a

point estimate Ẑi that minimizes the sum-of-squared differences

D(A(Z)i, Āi) =
J∑
j=1

J∑
j′=1

(A(Z)i,(j,j′) − Āi,(j,j′))2,

where Āi,(j,j′) is the posterior mean of Ai,(j,j′) over Z and wi. Since we compute

Ẑi for each sample separately, inferred features can vary significantly between

different samples. We use posterior Monte Carlo samples to obtain posterior

point estimates Ẑi as

Ẑi = argmin
Z

∫
D(A(Z)i, Āi)dp(Z,wi | y) ≈ argmin

Z(b)
D(A(Z(b))i, Āi),

for posterior samples {Z(b),w
(b)
i , b = 1, . . . , B}. We report posterior point esti-

mates, ŵi and λ̂i,n conditional on Ẑi. Additional details for implementing poste-

rior inference are in Appendix B.2.
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(a) Z1,TR (b) Z2,TR (c) Z3,TR

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
Sample 1 0.04 0.05 0.39 0.00 0.06 0.43 0.03
Sample 2 0.00 0.05 0.54 0.20 0.14 0.07 0.00

(d) wTR
i

Figure 3.2: Simulation truth: The true Z under three simulation scenarios are in
(a)-(c). Each Z has J = 21 rows (markers) and K = 7 features (subpopulations).
The true proportions of clusters wTR

i are in (d). The same wTR
i is used for all

three scenarios.

3.3 Simulation Study

In this section, we examine the performance of the rep-FAM in § 3.2 through

extensive simulation studies, and compare the model to a FAM that assumes

independence between features (called the ind-FAM) and also to two existing

clustering methods. We study three simulation scenarios (scenarios 1-3), each

with different specifications of ZTR, and evaluate the performance of the model

for estimation of latent features and cell clustering. The specifications of ZTR are

given in Figure 3.2(a)-(c). In all three scenarios, we assume J = 21 markers and

KTR = 7 features. A superscript is used to denote the scenarios. In scenario 1, all

features are similar to each other, and each pair of features differs by 2 markers

in terms of whether a marker is expressed or not. In scenario 2, each pair of the

features differs by 6 markers, and all features are fairly distinct. Scenario 3 has
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groups of similar features and relatively dissimilar features. Features 1-3 are a

group, differing by only one or two markers. Features 4 and 5 also are a group

of similar features that differ by one marker, but they are very different from the

features in the first group. The last two features 6 and 7 are each distinct from

the rest of the features. We assume I = 2 samples, each with Ni = 2000 cells.

The true proportions of cell clusters wTR
i are given in Figure 3.2(d). The same

wTR
i is used for all scenarios. Each scenario contains features that are (1) rare in

both samples, (2) very abundant in both samples, or (3) abundant in only one

sample. Furthermore, features 1, 3, and 7 are present in one sample only, and

|RTR
i | = 6 and 5 for i = 1, 2, respectively. To simulate yi,n, we first sampled cell

cluster membership labels λTR
i,n according towTR

i . For each (i, j), we simulated µTR
0,i,j

from Uniform(−1.1,−0.5) and µTR
1,i,j from Uniform(0.7, 1.3). Given zj,λTR

i,n
= z ∈

{0, 1}, we generated yi,n,j from skewed normal distributions (Frühwirth-Schnatter

and Pyne 2010) with location parameter µTR
z,i,j, scale parameter σTR

i = 1.0, and

skewness parameter ζ = −0.9. The true distribution of yi,n,j is left skewed. When

a marker is expressed, yi,n,j tends to have a value smaller than µTR
1,i,j, and can

be even negative with probability 0.475 when µTR
1,i,j is 0.7. Our ζ corresponds to

δ ∈ (−1, 1) in Frühwirth-Schnatter and Pyne (2010). To make the simulated data

more closely resemble our motivating CyTOF data, we randomly set 20% of the

yi,n,j values to be missing when their corresponding zj,λTR
i,n

= 0. We imputed those

missing values during inference, using the techniques outlined in § 3.2.3. We also

did simulation studies without missing data and obtained similar inferences. We

only report the results for the simulation studies with missing values.

Posterior samples were obtained via MCMC with a 6000-iteration burn-in

period, and the subsequent 3000 samples kept for inference. We used weight-

preserving parallel tempering with 4 chains and temperatures (1, 1.003, 1.006,
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1.01) to accelerate mixing. To speed up the update of Z, we constructed

p?(Z) using 200 cells for each sample and a thinning factor of M = 5 as de-

scried in § 3.2.3. We fixed K = 15 and calibrated values of φ as described

in § 3.2.1; we fixed φ1 = 1 and selected the smallest value of φ2 such that

Pr(min1≤k1<k2≤K d(zk1 , zk2) ≥ d | φ) > p with d = 4 and p = 0.95. d = 4

implies 20% of the markers are different between features in expression/no ex-

pression. We searched for such a value of φ2 on a grid and chose φ2 = 10. In

the Appendix, Figure B.1(a) illustrates Pr(min1≤k1<k2≤K d(zk1 , zk2) ≥ d | φ) for

different values of d and φ2. In addition, we performed sensitivity analyses to

assess model sensitivity to the specification of φ2. All computations were done on

the Hummingbird Linux compute cluster at UC Santa Cruz, and the computation

took approximately 0.78 hours per 1000 iterations.

Posterior inference under the rep-FAM with φ = (1, 10) is illustrated in Figures

3.3(a)-(f), 3.4(a)-(c) and 3.5(a)-(f). In Figure 3.3(a)-(f), posterior point estimates,

Ẑi (after transposing) are shown with ŵi in parentheses for each of the simulation

scenarios. If inferred features are identical to a feature in the true Z, they are

labeled with the corresponding feature number in the true Z; otherwise, they

are given new feature labels, starting from KTR + 1. In scenario 1, Z1,TR and

wTR
i are well recovered for both samples. In scenario 2, two additional features,

features 8 and 9, are included in Ẑ2
i . Those additional features are close to true

feature 3 of Z2,TR, and markers 8 and 9 which are expressed in true feature 3

are inferred as not expressed for them, potentially due to the left skewness of the

true distribution of y. We further checked yi,n,j of those markers for the cells with

λ̂i,n = 8 or 9, and found that their observed expression levels are close to zero

or negative. For scenario 3, almost all the true features in Z3,TR are recovered

for both samples, except for true feature 2 in sample 1. True feature 2 is similar
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to true features 1 and 3, but is not abundant in the samples. Instead, true

feature 1 is recovered and included in both Ẑ2
i , i = 1, 2, although the feature

does not appear in sample 2 in the truth. On the other hand, true feature 7 is

rare and present in sample 1 only, but it is well recovered in Ẑ3
1 and ŵ1 since

it is very different from the other features. Figures 3.4(a)-(c) show the posterior

distributions of the number of selected features, |Ri| for each of the three scenarios.

The red dashed vertical lines denote the simulation truth of |Ri|. The posterior

distributions are highly peaked at their modes in all scenarios. As shown in the

figures, the simulation truth is well recovered in both samples under scenario 1.

For scenario 2, due to the presence of superfluous small clusters, the posterior

mode differs from the truth by 2. For scenario 3, the posterior mode of |R2| is

the same as its truth, but the posterior mode of |R1| is smaller than its truth

by 1 since two similar features are merged. Figure 3.5(a)-(f) shows heatmaps of

yi,n, where cells are in rows and markers in columns. The cells are rearranged

by their cluster membership estimates λ̂i,n within each sample. Red and blue

colors represent positive and negative expression levels, respectively; while black

represents missing values. The yellow horizontal lines divide inferred cell clusters.

Cells within a cluster, characterized by ẑi,k, tend to have homogeneous expression

patterns, indicating good model fit. When the expression level of a marker is

missing in a cell, the cell tends to be clustered with cells that have low expression

levels for the same marker. We also compare clustering estimates λ̂i,n to the truth

by using the adjusted Rand index (ARI) (Hubert and Arabie 1985). An ARI of

1 indicates perfect clustering, the expected ARI of independent clusterings is 0,

and clusterings that are worse than independent clusterings can yield a negative

ARI. Table 3.1 shows that the ARI under the rep-FAM are large, indicating that

the rep-FAM produces reasonable estimates of cell clustering.
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Method Sc. 1 Sc. 2 Sc. 3 Sc. 1 Sc. 2 Sc. 3
Sample 1 Sample 1 Sample 1 Sample 2 Sample 2 Sample 2

rep-FAM 0.811 0.946 0.935 0.790 0.877 0.834
ind-FAM 0.816 0.914 0.930 0.781 0.842 0.846
FlowSOM 0.239 0.928 0.801 0.466 0.853 0.751
MClust 0.562 0.839 0.865 0.616 0.750 0.540

Table 3.1: ARI (adjusted Rand index) for different methods under each of the
three simulation scenarios. Each simulated data includes two samples. A larger
value of ARI is better. The method with the highest ARI for each sample is in
bold.

For comparison, we applied the ind-FAM to the simulated datasets. The ind-

FAM assumes independence between features with fixed K similar to a conven-

tional FAM based on the IBP. We built the ind-FAM by assuming zj,k | vk ind∼

Bernoulli(vk) instead of (3.1), and preserved the other model components in the

rep-FAM, such as feature selection by random ri,k. The results under the ind-FAM

are shown in Figures 3.3(g)-(`), 3.4(d)-(f), and 3.5(g)-(`). Overall, the ind-FAM

recovers the simulation truth well for scenario 1, similar to the rep-FAM. However,

it tends to yield more features in scenarios 2 and 3, as shown in Figures 3.3 (h), (k)

and (`), than the rep-FAM. Particularly, in scenario 2, true feature 3 is repeated in

sample 1 (see panel (h) of the figure), and duplicate columns appear in Ẑ2
1 . Fea-

tures 8 and 9 also resemble true feature 3. That is, the ind-FAM uses four features

to infer true feature 3. Figure 3.4(d)-(f) illustrates the posterior distributions of

|Ri|. In contrast to those under the rep-FAM, the posterior distributions of the

ind-FAM tend to be more disperse, especially in scenario 2. Figures 3.5(g)-(`)

illustrate clusterings of yi,n by λ̂i,n under the ind-FAM. Similar to the clustering

under the rep-FAM, the ind-FAM clusters cells based on expression patterns by

ẑk. Since the ind-FAM tends to produce more redundant features, it produces

some trivial cell clusters. Also, the ARI in Table 3.1 indicates that the ind-FAM

produces reasonable estimates of cell clustering, and its performance is close to
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that of the rep-FAM. However, clustering by the ind-FAM is worse than that by

the rep-FAM in scenario 2 possibly because the ind-FAM produces duplicated

features.

As additional comparators, we applied some commonly used clustering meth-

ods to the simulated datasets. We combined all cells from the samples to obtain

a joint clustering of the samples, and used MClust (Scrucca et al. 2016) and

FlowSOM (Van Gassen et al. 2017). MClust performs model-based clustering by

fitting Gaussian mixture models. It provides various options of estimating the co-

variance matrix, and estimates its parameters via the EM algorithm. FlowSOM

is a common clustering method using self-organizing maps (SOM) for cytome-

try data. Weber and Robinson (2016) reported that FlowSOM outperforms its

competing clustering methods in terms of providing fast and quality clustering of

cytometry data. MClust and FlowSOM cluster cells based on marker expression

values. They do not handle missing values; while we imputed the missing values

by specifying the missing mechanism as outlined in Appendix B.2.1 prior to anal-

ysis. Thus, prior to analyzing the data via FlowSOM and MClust, we replaced the

missing data with random samples of the negative portion of the observed data.

Appendix Figures B.8-B.10 provide heatmaps of the data with cells arranged by

clusters obtained by FlowSOM and MClust. Overall, FlowSOM collapses similar

true clusters and produces a smaller number of large clusters. On the other hand,

MClust tends to produce more clusters of smaller sizes. We also computed ARI to

compare their clustering estimates to the truth. Table 3.1 shows that the perfor-

mance of MClust and FlowSOM is poor in clustering cells, especially for scenarios

1 and 3, where the truth includes similar features. We also used t-SNE (Maaten

and Hinton 2008), a stochastic non-linear dimensionality-reduction technique, to

inspect a lower-dimensional summary of the simulated data. The t-SNE plots are
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included in Appendix Figure B.11. Some subpopulations are well separated in the

lower-dimensional space, but the populations having similar maker expression pat-

terns are greatly overlapped, especially for scenario 1, where subpopulations differ

by only two markers. A more detailed comparison is included in Appendix B.3.

In addition, we conducted a sensitivity analysis of the rep-FAM to the spec-

ification of φ. While increasing φ2 encourages features to be more distinct, φ2

cannot be made arbitrarily large. Figure 3.6 displays the posterior inference un-

der the rep-FAM with φ = (1, 100). The rep-FAM with φ = (1, 100) implies

Pr(min1≤k1≤k2≤K d(zk1 , zk2) ≥ 5 | φ) ≈ 0.95 a priori. Due to the strong repulsion

implied in the prior, the inference under the rep-FAM suffers in scenarios 1 and

3 which include similar features in the truth. On the other hand, the inference in

scenario 2 is significantly improved since the true features are very distinct. We

also tried φ = (1, 1) and (1, 25). Appendix B.3 includes details of the sensitivity

analyses.

1: 2B4 2: 3DL1 3: CD158B 4: CD8
5: CD94 6: CKIT 7: DNAM1 8: EOMES
9: NKG2A 10: NKG2D 11: NKP30 12: SIGLEC7
13: SYK 14: TBET 15: ZAP70

Table 3.2: Index for markers referenced in data analysis.

3.4 Analysis of the CyTOF Data

We next report application of the proposed rep-FAM to analyze the CyTOF

dataset, which consists of two samples taken from leukemia patients 30 days after

natural killer cell infusion. As articulated in Chapter 2, identifying and character-

izing NK cell subpopulations in terms of marker expression may serve as a critical

step to identifying NK cell subpopulations to develop disease-specific therapies
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for a variety of severe hematologic malignancies. To promote identifying NK cell

subpopulations that are more distinct in terms of marker expression levels, we

apply rep-FAM to the samples analyzed by CyTOF. The samples contain expres-

sion levels for 32 surface markers from 4677 and 1367 individual cells, respectively.

We removed having markers whose transformed expression levels that were nearly

all above zero or all below zero, because they do not contribute to differentiating

cell subpopulations. After this preprocessing, 15 markers were included for anal-

ysis, and are listed in Table 3.2. Cells with extreme expression values also were

removed, after which 4556 and 1308 cells remained in the samples.

Posterior inference was performed via MCMC, as outlined in § 3.2.3. A

burn-in of 10000 was used and the subsequent 5000 posterior samples were kept

for inference. To facilitate better mixing, we used WPPT with temperatures

(1, 1.003, 1.006, 1.01) and proposed swaps between every pair of chains at each

MCMC step. For the intrinsic MCMC, we used 5% of the data for a minimal

training sample and a thinning factor M of 5. We used cell clustering estimates

obtained by MClust to initialize θ and specify some fixed hyperparameters. For

example, we obtained a crude preliminary estimate of the number of clusters,

which was 5, and set K = 25 to accommodate potentially more clusters. We also

used the calibration approach in § 3.2 to specify φ. We used u = 3 and p = 0.95

with J = 15 and K = 25, and chose φ1 = 1 and φ2 = 25 through the calibration

process described in § 3.2. This reflects the prior belief that subpopulations are

expected to differ in their expression pattern for 20% of the markers. For the re-

maining hyperparameters, we let L0 = 6 and L1 = 3 to accommodate left-skewness

observed from empirical distributions of observed yi,n,j, and set α ∼ Gamma(1, 1),

δz,`
iid∼ TN+(1, 0.1), ηz,i,j,` ∼ DirichletLz(1), and σ2

i ∼ InverseGamma(3, 1). The

computations took approximately 3.3 hours per 1000 iterations.
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Figures 3.7(a)-(b) show posterior point estimates of Z and wi. Since features

(cell subpopulations) can appear in both samples, features that appear in Ẑ1 first

were ordered by ŵ1,k, and labeled using integers starting from 1. Features in Ẑ2

that did not appear in Ẑ1 again were ordered and labeled by ŵ2,k, starting from

|R1|+ 1. Features included in both samples thus have the same labels. Together,

the two Ẑi’s have a total of 22 features, most of which are shared. Features 15

and 18 are unique in sample 1, and features 23 and 24 unique in sample 2. The

abundances of those features are small, however. Although most features are

shared by the samples, their abundances are very different between the samples.

In particular, features 1 and 2 are very abundant in sample 1 and make up 23.6%

and 16.6% of the sample, respectively, but they make up only 10.5% and 2.0%

of sample 2. The most abundant feature in sample 2 is feature 13, which makes

up about 22.6% of the sample feature 13 accounts for only 1.2% of sample 1.

The posterior distributions of |Ri| are shown in Figure 3.8(a). The number of

selected features for each sample is centered around 22 for both samples, with

Pr(|Ri| = 22 | y) > 0.5. Figures 3.9 (a) and (b) show heatmaps of the expression

levels of cells after rearrangement by clustering estimates in each sample, with the

most abundant clusters at the bottom. The yellow horizontal lines separate cell

clusters by λ̂i,n. The heatmaps show that expression levels within a cluster are

homogeneous.

For comparison, we also applied the ind-FAM to the CyTOF data. Figures

3.7(c)-(d) show posterior point estimates of Z andwi. Compared to the rep-FAM,

the ind-FAM tends to produce more features with smaller abundances. Unlike the

rep-FAM, the ind-FAM infers 24 features for each sample. Using the ind-FAM,

the two samples share eight features, and together have a total of 35 features. Ẑi

minimizes the sum-of-squared differences separately for each sample, and the total
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number of features in {Ẑi, i = 1, . . . , I} may exceed K. The features common

in both samples account for 68.3% of the cells in sample 2, and the remaining

features are specific to sample 2 and include 31.7% of the cells. Figure 3.8(b)

shows the posterior distributions of the number of selected features in each of

the samples, |Ri|. Compared to the figure in (a), they are concentrated at very

large values, such as 24 and 25. Notably, K may need to be set at a larger

value. We also compared pairwise distances between the inferred features in Ẑi

under the two models, d(ẑk1 , ẑk2). The histograms of the pairwise distances in

Figure 3.8(c) and (d) show that overall the features inferred under the rep-FAM

are more distinctive than those under the ind-FAM. For instance, in sample 1

(Figure 3.8(c)), feature-pairs with pairwise distances less than 4 are appear much

less frequent in the rep-FAM; whereas pairwise distances of 5 to 9 appear with

much greater frequency.

For comparison, we applied MClust and FlowSOM to the dataset to obtain

clusterings of the samples, combining the two samples for these analyses. The

number of clusters was chosen to be 7 for MClust based on BIC and 12 by Flow-

SOM. Figure B.23 has heatmaps of y after rearrangement by cluster membership

estimates. These clustering methods appear to yield clusters that are less homo-

geneous. Particularly in (c), cells which having high and low expressions of the

same markers are included in the bottom cluster.

We also performed sensitivity analyses on the specification of the fixed hy-

perparameters by varying the values of φ2 and pi. Appendix Figures B.18-B.20

illustrate results for φ2 = 1, 10, and 100. Results for pi=0.2 and 0.3 are given in

the Appendix Figures B.14 - B.17.

70



3.5 Conclusions

We have proposed a repulsive FAM which encourages features that are dis-

tinct from each other by including a repulsion function to limit the degree to

which features in the (object, feature) identification matrix may be similar. The

repulsion function can be calibrated using prior simulations. We demonstrated

a way to calibrate hyperparameters of the repulsion function using prior infor-

mation. Compared to conventional FAMs that assume independence between

features, the rep-FAM yields more parsimonious results and potentially more bio-

logically more meaningful inferences on the underlying structure. We applied the

rep-FAM to the problem of inferring cell subpopulations using CyTOF data.

The proposed rep-FAM may replace conventional FAMs when it is desirable

to identify distinct features. The rep-FAM can be extended in several ways. For

example, when samples are recorded with covariates, x, we may develop a regres-

sion model p(Z | x) that allows Z to be indexed by x. Similarly to Williamson

et al. (2010, 2019), a Gaussian process may be assumed to induce explicit depen-

dence of Z on x. This creates more complexity, but may improve inferences on

sample-specific structures when heterogeneity between samples can be explained

by x.
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1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

markers

7 (2.2%)

2 (4.4%)

1 (4.5%)

5 (6.3%)

3 (39.7%)

6 (42.8%)

fe
at

ur
es

 (a
bu

nd
an

ce
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

markers

9 (1.3%)

8 (1.4%)

3 (2.0%)

7 (2.9%)

1 (4.3%)

2 (4.6%)

5 (6.6%)

3 (33.0%)

6 (43.8%)

fe
at

ur
es

 (a
bu

nd
an

ce
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

markers

7 (3.0%)

1 (5.6%)

5 (6.5%)

3 (41.0%)

6 (44.0%)

fe
at

ur
es

 (a
bu

nd
an

ce
)

(j) ind-FAM, Ẑ1
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Figure 3.3: Posterior point estimates for transpose of Z and w for each sample
(i = 1, 2) under the three scenarios. Panels (a)-(f) show Ẑ ′i and ŵi under the rep-
FAM with φ = (1, 10), and panels (g)-(`) show Ẑ ′i and ŵi under the ind-FAM.
The results under scenarios 1-3 are in columns 1-3, respectively. In Ẑi, colors
white and black represent 0 and 1, respectively, and ŵi is shown on the left.
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Figure 3.4: Posterior distributions of number of selected features, |Ri| for each
sample under the three simulation scenarios. Simulation truth for |Ri are repre-
sented by the dashed vertical lines. The results under the rep-FAM and ind-FAM
are in the top and bottom rows, respectively.
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Figure 3.5: Clustering of yi,n. Heatmaps of yi,n are shown in each panel after
rearranged by posterior point estimate of clustering membership λ̂i,n for each
sample (i = 1, 2) under scenarios 1-3. Panels (a)-(f) show Ẑ ′i and ŵi under the
rep-FAM with φ = (1, 10), and panels (g)-(`) show Ẑ ′i and ŵi under the ind-FAM.
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Figure 3.6: [Sensitivity Analysis for the Simulation Studies] Posterior point
estimates under the rep-FAM with φ = (1, 100) are illustrated. Transpose of Ẑi

and ŵi for samples 1 and 2 under the three simulation scenarios are shown.
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Figure 3.7: [CyTOF Data] Posterior point estimates, Ẑi and ŵi under the rep-
FAM are shown in panels (a) and (b) for samples 1 and 2, respectively, and those
under the ind-FAM are shown in (c) and (d).
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(a) rep-FAM, |Ri| (b) ind-FAM, |Ri|
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Figure 3.8: [CyTOF Data] Panels (a) and (b) have posterior distributions of
the number of selected features within each sample |Ri| under the rep-FAM and
ind-FAM, respectively. Panels (c) and (d) shows histograms of d(ẑk1 , ẑk2) for every
pair of features in Ẑi under the two models.
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(a) rep-FAM, Sample 1 (b) rep-FAM, Sample 2
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Figure 3.9: Marker expression levels yi for each cell subpopulation, sorted by
row according to posterior estimate of subpopulation membership labels λi,n, with
the most abundant subpopulations at the bottom, for each sample (i = 1, 2), with
pi = 0.2 and φ2 = 0, 25.
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Chapter 4

A Bayesian Differential

Distribution Approach for

Zero-inflated Data with

Applications to Cytometry Data

4.1 Introduction

In clinical applications, practitioners often attempt to compare the effects of

various treatments. When responses are real values, testing for shifts in mean re-

sponses under various experimental conditions may be plausible if measurements

fluctuate, due to biological and technical variabilities, around some latent (aver-

age) value. However, in many cases, tests of mean-shifts alone may not sufficiently

describe meaningful distributional differences. For example, if the responses un-

der a particular treatment are multimodal, then computing differences in mean

responses under a treatment and control group can be misleading, as noted by
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Korthauer et al. (2016) in single-cell RNA-seq experiments.

As a specific example, we consider cytometry by time-of-flight (CyTOF) data

to evaluate changes in marker expression levels of natural killer (NK) cells by

transforming growth factor beta (TGF-β). NK cells are lymphocytes of the in-

nate immune system which are able to recognize and kill virally infected cells.

They play a critical role in cancer immune surveillance. The use of NK cells

for cancer therapy has been demonstrated by Wu and Lanier (2003) and Lanier

(2008) and has the potential to become a powerful modality in cancer treatment.

TGF-β is an immunosuppressive cytokine that severely affects the function of NK

cells (Regis et al. 2020) and can be produced by tumor cells to attack NK cells.

However, the way in which TGF-β alters the activity of NK cells has not been

fully investigated. Understanding how TGF-β impacts the activities of NK cells is

thus important in order to develop NK cell-based immunotherapies (Slattery and

Gardiner 2019). In NK cell studies, expression levels for several NK cell markers

are measured for each cell in a sample by CyTOF. In CyTOF data, multiple cell

surface marker expression levels are recorded simultaneously on several thousand

cells. Marker expression levels are non-negative values where small values rep-

resent low marker expression levels and larger values represent higher levels of

marker expression. A variety of NK cell subpopulations coexist within a given

sample and this heterogeneity is exhibited through different expression patterns

of the NK cell markers. These NK cell subpopulations also vary in biological func-

tion and are correlated with expression patterns. The distribution of the marker

expression levels are oftentimes multimodal because of the heterogeneous nature

of NK cells. They also tend to be skewed even after log transformation and oc-

casionally contain outliers. For example, Figure 4.1(a) shows the histograms of

logarithm transformed expressions of marker CD3z for non-zero expression levels
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Figure 4.1: Histogram of ỹi, for i ∈ {1, 2} and markers CD3z and CD103. (a)
Distribution of ỹ1 and ỹ2 in blue and red respectively for marker CD3z from a
donor, with N1 = 86915, N2 = 92468, Q1 = 1361, Q2 = 411. (b) Distribution
of ỹ1 and ỹ2 in blue and red respectively for marker CD103 from another donor,
with N1 = 90067, N2 = 92044, Q1 = 49461, Q2 = 9801.

in two samples, where the blue and red colors denote the conditions, before and af-

ter treatment TGF-β, respectively. In the figure, the empirical distribution is left

skewed and some outliers are present. Similarly, Figure 4.1(b) shows histograms

of logarithm transformed expression levels CD103 in different samples. The dis-

tribution is apparently bimodal and slightly left-skewed. Critically, stochastic

ordering constraints (Hanson et al. 2008, Kottas 2011) for these distributions can-

not in general be imposed due to the potential multimodality of expression levels

in a sample. Analyses of CyTOF data are further complicated by the presence

of exact zeros which, when present in large quantities, indicate that a particular

marker is likely not expressed. Papoutsoglou et al. (2019) recommend jittering

the zeros by adding arbitrarily generated random values to aid visualization in

manual gating tasks. While suitable for gating, jittering the zeros for modeling

purposes introduces biases into the analysis. Constructing a flexible model that

accommodates complexity in CyTOF data is critical to better understanding the
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mechanism in NK cells induced by TGF-β.

In this chapter, we propose a zero-inflated mixture of skew-t distributions to

quantify the effects of TFG-β on the distribution of NK marker expression levels,

to model data that exhibit excess zeros, outliers, skewness, or multimodality. The

skew-t distribution contains as special cases the skew-normal and t distributions

and is governed by location, scale, degrees of freedom, and skewness parame-

ters (Azzalini and Capitanio 2003). By varying the parameters, one is able to

model skewed data with outliers where a Gaussian mixture model with several

components may be needed. A skew-t mixture additionally allows us to model

multimodality and shifts in distributions across samples (Frühwirth-Schnatter and

Pyne 2010). We demonstrate how in the presence of outliers and highly skewed

data, mixtures of skew-t distributions are able to more efficiently model complex

distributions as seen in CyTOF data using fewer mixture components than their

Gaussian counterparts. To avoid introducing biases by adding noise to the zeros,

we model zeros by a zero-inflated mixture component. The resulting model en-

ables coherent comparisons of distributions from various experimental conditions.

We also propose a metric to quantify the difference between a pair of distributions.

This metric computes a normalized area between estimated cumulative distribu-

tion functions over a majority of the support of the data to give an indication of

the degree to which distributions are different. While CyTOF is able to produce

analyses for multiple markers simultaneously, our proposed methods are applied

to markers one at a time for computational savings.

This project will proceed as follows. In Section 4.2, we propose our probability

model for this work. In Section 4.3 we demonstrate the effectiveness of our model

via a simulation study intended to mimic real data which we will then analyze in

Section 4.4. We present concluding remarks in Section 4.5.
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4.2 Probability Model

Sampling Model We will proceed by establishing model notation. For a marker

in samples from a particular donor, let yi,n ≥ 0 be the expression level of a marker

in cell n ∈ {1, . . . , Ni} for sample i ∈ {1, . . . , I}, where I denotes the number

of samples, and Ni denotes the number of cells in sample i. In the simulation

studies and the data analyses in sections 4.3 and 4.4, respectively, we have I = 2,

where i = 1 and 2 denote control and treatment groups, respectively. Marker

expression levels yi,n are recorded as non-negative real values. When the signals

from the CyTOF instrument are weak for the marker in a cell, expression levels

are recorded as 0. Throughout the real CyTOF data, 0’s are observed frequently,

and thus need to be accounted for in the modeling. We let yi,n | Fi ind∼ Fi, and

assume that Fi is a zero-inflated mixture model

Fi(y) = γi · δ0(y) + (1− γi) ·Gi(y), (4.1)

with δA(·) denoting the Dirac measure at A, γi the probability of yi,n being zero,

and Gi a probability distribution on R+. The model in (4.1) assumes that an

observed expression level in sample i takes the value of zero with probability γi,

and with the remaining probability (1 − γi), yi,n follows Gi. We use a mixture

model of log-skew-t distributions for Gi to capture various patterns including

multi-modality and skewness,

Gi =
K∑
k=1

ηi,k · log-skew-t(µk, σk, νk, φk), (4.2)

where K is a pre-specified number of mixture components and ηi are probability

vectors of length K. In Equation (4.2), the samples share the mixture compo-

nents, while the mixture weights ηi are indexed by i, as is the case with γi in
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Equation (4.1). log-skew-t(µk, σk, νk, φk) denotes the log-skew-t distribution with

location µk, scale σk, degrees of freedom νk, and shape φk, and the distributions

is defined as follows; we first let ỹi,n = log(yi,n) for yi,n > 0 and assume that ỹi,n

follows a skew-t mixture distribution (Frühwirth-Schnatter and Pyne 2010), that

has a pdf of the form

p(ỹ | µ, σ, ν, φ) = 2
σ
· tν(u) · Tν+1

φ · u
√
ν + 1
ν + u2

 , for ỹ ∈ R, (4.3)

where u = (ỹ − µ)/σ, and tν(·) and Tν(·) denote, respectively, the pdf and cdf

of a standard Student’s t distribution with degrees of freedom ν. We will write

ỹi,n ∼ G̃i, where G̃i = ∑K
k=1 ηi,k · skew-t(µk, σk, νk, φk) for brevity where appli-

cable, as this is equivalent to the model in (4.2). We let the parameters of the

log-skew-t components be random, and will later discuss the prior specification of

the parameters. In practice, a Gaussian mixture model is a common choice for Gi.

However, skew-t mixture distributions more efficiently model complex data with

multi-modality, skewness, or outliers than their Gaussian counterparts as the in-

dividual skew-t components are able to capture skewness and outliers (Frühwirth-

Schnatter and Pyne 2010). Figures 4.2 and 4.3 compare the performance of a

skew-t mixture model to those for mixtures of t, normal, and skew-normal distri-

butions for skew data with outliers. Figure 4.2(a) shows a histogram of 1000 data

points simulated from a skew-t(2, 1, 7,−7) distribution, where the black dotted

line represents the true density. Mixtures of normal, t, skew-normal, and skew-t

were fit to the skew-t data, with K = 1, . . . , 5, and the deviance information crite-

rion (DIC) was computed (Spiegelhalter et al. 2002). DIC is a model comparison

metric which penalizes for model complexity, commonly used for Bayesian model
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selection problems. Models with lower DIC are favored. DIC can be computed as

DIC = D(θ) + var(D(θ)). (4.4)

D(θ) = −2 log p(data | θ) + C is the deviance with log-likelihood log p(data | θ)

and model parameters θ, and a constant C that cancels out in computations that

compare models; D(θ) is the deviance averaged over posterior samples of θ; and

var(D(θ)) is the variance of the deviance evaluated at posterior samples θ. The

variance term is guaranteed to be positive and increases with model complex-

ity. Figure 4.2(b) shows the deviance information criterion (DIC) for the various

models. According to the figure, the skew-t mixture model yields the best model

fit overall, followed by the skew-normal. More importantly, the DIC indicates

that the model with K = 1 is the best among the skew-t mixture distributions.

However, more than one component is needed to adequately model the data for

the other mixtures. Figure 4.3 illustrates estimates with 95% pointwise credible

intervals in blue under each model, with the pointwise posterior mean denoted

by dotted lines, and the true underlying density in solid blue. The skew-t model

captures the true density most closely with one component; whereas the other

models show misfits, even with up to K = 5 mixture components.

Alternatively, the Gi’s can be modeled using Bayesian nonparametric (BNP)

approaches. The Dirichlet process (DP) (Ferguson 1973, Ferguson et al. 1974,

Antoniak 1974, Sethuraman 1994) is a popular BNP prior for probability mea-

sures. In the context of mixture modeling and density estimation, DP mixture

models (Escobar and West 1995, Gasparini 1996) elegantly provide the flexibility

to model complex distributions without requiring the pre-specification of a fixed

number of mixture components, as it can be estimated from the data when ap-

propriate priors are specified (Escobar and West 1995, Lo 1984, Rasmussen et al.
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(a) Data (b) DIC

Figure 4.2: (a) Probability density of skew-t(location=2, scale=1, df=7, skew=-
10) (dotted line) and histogram of 1000 realizations. (b) DIC of various mixture
models (mixtures of Normal, skew-Normal, t, and skew-t) at different K.

1999, MacEachern 1994, Müller et al. 1996). A natural replacement for the model

used in Equation (4.2) can be a model that uses dependent DP (DDP) (MacEach-

ern 1999, 2000) priors for the Gi’s. In general, dependent DPs are used to model

a collection of distributions, where distributions are indexed by covariates such

as sample, time, and spatial region. Jointly modeling the distributions through

a BNP approach facilitates borrowing of information between groups of distri-

butions more efficiently. Specifically, hierarchical DPs (HDPs) (Teh et al. 2006,

Teh and Jordan 2010), which are a type of DDP where multiple DP mixtures are

fit simultaneously to different samples with separate sets of weights for the mix-

tures in each sample, and common atoms for the mixture components across the

samples, can be used to model the Gi’s. Despite their greater flexibility and abil-

ity to estimate the number of required mixture components, the computational

complexity for (dependent) DP models can be much greater, especially for large

datasets that are commonly encountered in cytometry.
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(a) skew-t (K=1) (b) skew-normal mixture (K = 5)

(c) t mixture (K = 5) (d) normal mixture (K = 5)

Figure 4.3: 95% pointwise credible intervals for density estimates of simulated
skew-t data, under various models. The solid line is the true density. Dotted lines
are the pointwise posterior mean density.

Prior Specification As proposed in Frühwirth-Schnatter and Pyne (2010), we

introduce auxiliary variables to represent the mixture of skew-t distributions as
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follows;

λi,n | ηi ∼ Categorical(ηi)

vi,n | νλi,n ∼ Gamma(νλi,n/2, νλi,n/2)

ζi,n | vi,n ∼ TruncatedNormal[0,∞)(0, 1/vi,n)

yi,n | µλi,n , ψλi,n , ωλi,n , ζi,n, vi,n ∼ Normal(µλi,n + ψλi,n · ζi,n, ωλi,n/vi,n),

where Gamma(s, r) denotes the gamma distribution with shape s and rate r,

TruncatedNormal[0,∞](m, v) denotes the truncated normal distribution with mean

m and variance v before truncation, and Normal(m, v) denotes the normal dis-

tribution with mean m and variance v. After marginalizing over vi,n and ζi,n,

[yi,n | λi,n = k, µk, σk, νk, φk] ∼ skew-t(µk, σk, νk, φk), where φk = ψk/
√
ωk and

σ2
k = ψ2

k +ωk under the hierarchical representation. For each mixture component,

we place priors on (µk, ωk, νk, ψk) instead of (µk, σk, νk, φk). We first let, µk(ι) =∑k
`=1 ι` with ι1 ∼ Normal(mι1 , s

2
ι ) and ιk

iid∼ TruncatedNormal[0,∞](mιk , s
2
ι ) for

k = 2, . . . , K for the location. This induces an ordered prior for the µk such

that µ1 ≤ · · · ≤ µK so as to avoid identifiability issues common in mixture mod-

els. (Celeux et al. 2000, Stephens 2000, Jasra et al. 2005, Frühwirth-Schnatter

2006). We let ωk iid∼ InverseGamma(aσ, bσ) for the transformed squared scale, ψk iid∼

Normal(mφ, s
2
φ) for the transformed skew parameter, and νk iid∼ LogNormal(mν , sν)

for the degrees of freedom. To complete the model specification, we place the pri-

ors γi ∼ Beta(aγ, bγ) and ηi ∼ DirichletK(1/K), for i ∈ {1, . . . , I}. Note that γi

and ηi are indexed by i, whereas (µk, ωk, ψk, νk) are indexed only by k, making

mixture components shared across samples. This facilitates borrowing of infor-

mation across samples and yields a smaller number of used mixture components

overall.
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Selection of K Thus far, we have assumed a fixed K, which may be difficult to

pre-specify. A value of K that is too small will lead to poor model fit, and a value

that is too large will lead to high computational cost and unnecessary model com-

plexity. We fit the model with different K within a reasonable range, and select a

value for K via model selection. In particular, we select a “best value” for K using

a calibration technique that considers the model fit and model complexity. The

metric we use for model fit is the DIC; and the metric we use for complexity is

the posterior mean number of superfluous mixture components with ∑I
i=1 ηi,k < r,

where r ∈ (0, 1). That is, Rr = E
[∑K

k=1 1
{∑I

i=1 ηi,k < r
}
| data

]
, which can be

estimated from posterior samples of ηi,k. We choose K̂ to be the K that achieves

the lowest estimated Rr (i.e. R̂r) among the models with the lowest DIC and will

demonstrate how to do this graphically in Section 4.3. Often in practical appli-

cations of mixture models, small components continue to form as the number of

mixture components K increases, while their contributions to model fit decreases.

Thus, Rr, which represents the number of superfluous components, is used as a

metric for model complexity. For the simulation studies and real data analyses,

we use the threshold of r = 0.01, which is admittedly arbitrary. Other reasonable

thresholds can be used subject to the study of interest. This calibration technique

is similarly used by Miller and Dunson (2018) to tune a model hyperparameter

that determines how much coarsening is required to obtain a model that maxi-

mizes model fit while maintaining low model complexity. Instead of selecting K

via this calibration technique, K can be modeled as a random quantity by placing

a prior on K. However, modeling K usually adds computational burden to the

problem because the model dimension changes with K. A common transdimen-

sional method is reversible jump Markov chain Monte Carlo (RJMCMC) (Green

1995). Alternatively, the unnormalized posterior probabilities p(y | K)p(K) can
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be used as illustrated in Frühwirth-Schnatter and Pyne (2010) to select K. But

evaluating the marginal likelihood p(y | K) is unstable for large K, even with the

assistance of techniques such as bridge sampling (Meng and Wong 1996). To avoid

the added computational burdens of RJMCMC and the numerical instabilities in

methods that compute marginal likelihoods in order to compute model posterior

probabilities, we opt to select K via calibration.

Posterior Computation Posterior inference for model parameters can be

performed by a Metropolis-within-Gibbs algorithm. Each νk is updated via a

Metropolis step as its full conditional is not available in closed form; while all

other model parameters can be updated sequentially by sampling directly from

their respective full conditional distributions. Appendix C.1 provides details for

posterior simulation, including the full conditional distributions for all model pa-

rameters.

Computing Distance between Distributions When two distributions Fi

and Fi′ are not symmetric and/or unimodal, a naive comparison of their means

can be misleading (Korthauer et al. 2016). We quantify differential distribution

functions Fi and Fi′ , using the distance measure

∆i,i′ =
∫ ȳ
y |Fi(y)− Fi′(y)| dy

ȳ − y
, for i, i′ ∈ {1, . . . , I} , (4.5)

where the interval (y, ȳ) is chosen to cover ranges of y which make up a high prob-

ability region within the support. ∆i,i′ takes a value between 0 and 1. A value

of ∆i,i′ close to 0 implies that Fi and Fi′ are similar; similarly if the distribution

functions are different, ∆i,i′ has a value close to 1. In our CyTOF data application,

∆i,i′ can be used to identify markers that investigators need to investigate further.

90



To estimate ∆i,i′ , we use pointwise posterior estimates, F̂i and F̂i′ , and compute

∆̂i,i′ =
(∫ ȳ
y

∣∣∣F̂i(y)− F̂i′(y)
∣∣∣ dy) /(ȳ − y). We let y = 0 and ȳ be the maximum

of the 99-th percentiles of F̂i and F̂i′ . This metric provides a one-number sum-

mary of the differences between two univariate distributions, while accounting

for distributions that may not be unimodal. Other types of statistical diver-

gences were considered instead of ∆. For example, the family of f -divergences

(Liese and Vajda 2006, Rényi et al. 1961) which include the Kullback Leibler

(KL) divergence (Kullback and Leibler 1951), squared Hellinger distance (Beran

et al. 1977), and total variation distance. KL divergence is asymmetric. That is,

DKL(P || Q) 6= DKL(Q || P ). More importantly, it has no upper bound, making

it difficult to interpret. The squared Hellinger distance is defined only for discrete

distributions and absolutely continuous distributions. In our zero-inflated mixture

model, the mixture model Gi is chosen to be absolutely continuous. However, the

zero-inflated mixture component in Fi is a singular measure. Thus, using it to

compare Fi’s would be inappropriate. The total variation distance measures the

largest possible difference between probabilities that two probability distributions

can assign to the same event. Therefore, differences throughout two distributions

may be undermined by large differences in probabilities within a particular region

of the support of the distributions. For example, if the differences in the γi’s are

sufficiently large, then differences in the Gi’s may be seemingly ignored in the total

variation statistic. For these reasons, we propose ∆ for quantifying distributional

differences.

4.3 Simulation Study

Simulation Setup We assessed the performance of our model through the fol-

lowing simulation study. We assumed four different simulation scenarios, scenarios

91



I-IV, and generated a dataset from each scenario. Table 4.1 contains the simu-

lation truth of the model parameters under the four scenarios. Figure 4.4 shows

histograms of the simulated data and their true densities. In scenarios I and II,

the true densities GTR
i are visibly different across i, while the true proportions

of zeros γTR
i , are the same in both samples. In scenario III, the GTR

i ’s are the

same, but the γTR
i ’s differ. In scenario IV, both the GTR

i ’s and γTR
i ’s are identical

in the simulation truth, resulting in the same F TR
i . In each scenario, we assume

I = 2 and Ni = 100000. We also assume KTR = 3 for scenario I and KTR = 4 for

scenarios II-IV. For scenarios I and II, one sample has fewer components than the

other. These scenarios were crafted to imitate the real data in section 4.4.

To fit the model, the priors were specified as follows. For a given K ∈

{2, . . . , 9}, γi
iid∼ Beta(1, 1), ηi iid∼ DirichletK(1/K), ι1 ∼ Normal(mι1 , s

2
ι ),

ιk
ind∼ TruncatedNormal[0,∞)(mιk , s

2
ι ) for k > 1, τ ∼ Gamma(0.5, 1), ωk | τ iid∼

InverseGamma(2.5, τ), νk iid∼ LogNormal(3, 0.5), and ψk
iid∼ Normal(−1, 9). Note

that the prior specifications for τ and ωk follow recommendations offered by

Frühwirth-Schnatter and Pyne (2010). They note that posterior inference for

ωk can be substantially affected by the choice of prior ωk (without τ) and thus

recommend that ωk be conditioned on τ for added flexibility and improved infer-

ence. We empirically specify the hyperparameters for ιk (mιk and s2
ι ) as follows.

Let ỹ be the logarithm transformed values of the positive values of yi,n, and let

qp denote the p-th percentile of ỹ. Then, mι1 = q10, mιk = (q90 − q10)/(K − 1),

and sι is the empirical standard deviation of ỹ divided by K. This prior speci-

fication strategy allows ι1 to have prior mean at the lower quantiles of the data

and encourages mixture component centers µk to be evenly spaced a priori. Pos-

terior simulation is done by MCMC, with a 30000-iteration burn-in, and the next

8000 samples thinned by every other sample collected to yield 4000 samples for
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Scenario I Scenario II Scenario III Scenario IV
K 3 4 4 4
γC 0.1 0.1 0.1 0.15
γT 0.1 0.1 0.2 0.15
ηC (0.25,0.75,0) (0.1,0.1,0.5,0.3) (0.05,0.05,0.5,0.4) (0.05,0.05,0.5,0.4)
ηT (0.1,0.1,0.8) (0.1,0.1,0.8,0) (0.05,0.05,0.5,0.4) (0.05,0.05,0.5,0.4)
µ (-1.5,3.5,5.1,5) (-1.5,3.5,1.5,4.3) (-1.5,3.5,5.1,4.3) (-1.5,3.5,5.1,4.3)
σ (1.6,1.76,1.76,1.6) (1.6,1.76,1.76,1.6) (1.6,1.76,1.76,1.6) (1.6,1.76,1.76,1.6)
ν (12,10,10,15) (12,10,10,15) (12,10,10,15) (12,10,10,15)
φ (0,-10,-10,0) (12,10,10,-11) (0,-10,-10,-11) (0,-10,-10,-11)

Table 4.1: Simulation truth of model parameters under four simulated scenarios.

posterior inference. For K = 2, the inference speed was approximately 1 iteration

per second; while for K = 9, the inference speed was approximately 0.5 iterations

per second. All computations for this chapter were done on an interactive Linux

server with four Intel Xeon E5-4650 processors (64 cores total) and 512 GB of

random access memory. Algorithms for posterior inference were implemented1 in

the Julia programming language (Bezanson et al. 2017).

Comparison to Normal Mixture Models For comparison, we also used nor-

mal mixture models for G̃i to yield a zero-inflated mixture of normal distributions;

yi,n | γi, Gi ∼ γi · δ0(yi,n) + (1− γi) ·Gi(yi,n),

where Gi = ∑K
k=1 ηi,k ·Normal(µk, ωk). Prior specifications for model parameters,

including γi,ηi, µk, and ωk, remain unchanged from the inflated skew-t mixture

model.

Simulation Results We obtained K̂ for each scenario under the normal and

skew-t mixture models using the calibration technique from Section 4.2. K̂ is
1Source code for this project can be found at https://github.com/luiarthur/

CytofDiffDensity.jl.
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(a) Scenario I (b) Scenario II

(c) Scenario III (d) Scenario IV

Figure 4.4: Histograms of logarithm of non-zero values of yi,n in the simulated
data where blue and red represent samples 1 and 2, respectively. The density of
the simulation truths are depicted by solid lines.

listed in Table 4.2. Figure 4.5 plots the DIC against R̂1% for K = 2, . . . , 9. Among

models with the lowest DIC, we select the model with the lowest R̂1% (which is

usually where R̂1% = 0). Thus, models that appear in the left bottom corner of

each graph are chosen. Under the skew-t mixture, K̂ for scenario I is equal to the

simulation truth (KTR = 3). For scenario II, K̂ = 5 is greater than KTR = 4 by

one. For scenarios III and IV, K̂ = 6 is greater than KTR = 4 by two. Despite
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skew-t mixture Normal mixture
Scenario K̂ DIC ∆̂ K̂ DIC ∆̂

I 3 672720 0.162 8 673176 0.161
II 5 660863 0.036 8 660942 0.036
III 6 578299 0.02 6 578051 0.02
IV 6 578486 0.0 6 578439 0.0

Table 4.2: [Simulation study] ∆̂, and DIC for best models (selected by the cali-
bration method discussed) under various scenarios and models (skew-t or normal
mixture).

the discrepancies, fewer components are required to adequately model the data

using skew-t mixtures, as opposed to Gaussian mixtures in scenarios I and II, as

shown in the Table 4.2. Under normal mixtures, 8 components are required to

adequately model the data. Also, the normal mixture model with K̂ = 8 yields

a greater DIC than the skew-t mixture with K̂ = 3 for scenario I and K̂ = 5 for

scenario II. For scenarios III and IV, K̂ = 6 for the two mixture models and the

normal mixture model yields smaller DIC. This may be due to the presence of

fewer outliers and modes in the simulated data. From these results, we see that

occasionally, normal mixtures can fit data as well as skew-t counterparts. However,

for skewed data with outliers, normal mixtures may require more components to

rival skew-t mixtures.

Figures 4.6-4.7 compare posterior estimates of the density g̃i (of G̃i) to their

truth under the model with K = K̂. Figure 4.6 contains the results for the skew-t

mixture model, while Figure 4.7 contains the results for the normal mixture model.

From Figure 4.6(a) and Figure 4.7(a), better model fit under the skew-t model

can be observed for scenario I, where the estimate of g̃i more closely follows the

simulation truth in Figure 4.6(a). Table 4.3 includes posterior summaries of γi for

each scenario. Posterior means and 95% credible intervals for γi are include for

each i. The intervals contain the simulation truth in all cases. To quantify the
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(a) Scenario I (b) Scenario II

(c) Scenario III (d) Scenario IV

Figure 4.5: [Simulation Study] Plot of DIC against the number of small compo-
nents, R̂1%. The values that have low DIC and R̂1% are chosen. Each panel has
two plots; the top for the zero-inflated skew-t mixture models, and the bottom for
the zero-inflated normal mixture models.

difference between distributions across the two samples, we estimated ∆ for each

scenario. Table 4.2 lists ∆̂ under both models. In each scenario, ∆̂ is similar under

the skew-t and normal mixtures. For scenario IV, where the two Fi’s are identical

in the simulation truth, ∆̂ is less than 0.001; whereas in scenario I, where the g̃i

are visibly different, ∆̂ is 0.162. Scenario III is similar to scenario IV, except that
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(a) Scenario I, K̂ = 3, skew-t mixture (b) Scenario II, K̂ = 5, skew-t mixture

(c) Scenario III, K̂ = 6, skew-t mixture (d) Scenario IV, K̂ = 6, skew-t mixture

Figure 4.6: Posterior estimates of g̃i under the skew-t mixture model for K = K̂
in the simulation study. The blue and red curves are the posterior densities of
i = 1 and i = 2, respectively. The solid and dashed lines are the posterior means
and simulation truths, respectively. The shaded regions are 95% credible intervals.

the γi’s are different. Thus, ∆̂ is 0.02. In scenario II, the g̃i’s are again visibly

different, but much less so than in scenario I. This is manifested in ∆̂ for scenario

II being 0.036, which is smaller than that in scenario I.
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(a) Scenario I, K = 8, Normal mixture (b) Scenario II, K = 8, Normal mixture

(c) Scenario III, K = 6, Normal mixture (d) Scenario IV, K = 6, Normal mixture

Figure 4.7: Posterior estimates of g̃i under the normal mixture model for K = K̂
in the simulation study. The blue and red curves are the posterior densities of
i = 1 and i = 2, respectively. The solid and dashed lines are the posterior means
and simulation truths, respectively. The shaded regions are 95% credible intervals.

4.4 Analysis of CyTOF Data

In this section, we present real data analyses of marker expression data pro-

duced by CyTOF. NK cells harnessed from a healthy individual were expanded ex

vivo and exposed to the immunosuppressive, TGF-β. CyTOF was then used to

profile the impact of TGF-β on NK cell functions. In particular, the dataset con-
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Scenario γTR
1 γ̂1 (95% CI) γTR

2 γ̂2 (95% CI)
I 0.10 0.1004 (0.0986, 0.1023) 0.10 0.0987 (0.0968, 0.1005)
II 0.10 0.1004 (0.0986, 0.1023) 0.10 0.0987 (0.0968, 0.1005)
III 0.10 0.1004 (0.0986, 0.1023) 0.20 0.1996 (0.1971, 0.2021)
IV 0.15 0.1508 (0.1486, 0.1530) 0.15 0.1482 (0.1460, 0.1504)

Table 4.3: Posterior summary of γi for the various simulated scenarios. Second
and fourth columns contain simulation truth for γi. Third and fifth columns
contain posterior mean (γ̂i) (and 95% credible intervals) for i = 1 and i = 2,
respectively.

sists of the two samples of NK cells – one before and one after TGF-β exposure.

We let i = 1 and 2 denote the samples before and after the exposure, respectively.

Expression levels of cell surface markers were measured from individual cells in

the samples by CyTOF. TGF-β may alter expression levels for some of the mark-

ers. Furthermore, the population of NK cells is heterogeneous, and TGF-β may

influence only some subsets of NK cells. Those changes may yield differential dis-

tributions in the expression levels. The data includes expression levels of a total

of 38 markers. Also, the samples contain Ni = 86915 and N2 = 92468 cells. For

the illustrations of the model, we present results for four selected markers, CD3z,

EOMES, Granzyme A, and Siglec7. As previously described, CyTOF data occa-

sionally includes a substantial number of zeros due to some experimental artifacts.

For example, marker EOMES expression levels are zero in 9.63% and 7.97% of

the cells in samples 1 and 2, respectively; while that of marker Granzyme A are

less than 0.1% for each sample. The fractions of zeros (Zi) in each sample (i)

for each marker are listed in Table 4.4. The effects of TGF-β on the distribu-

tion of marker expression is of primary interest in this study. Thus, our distance

metric for marker expression distributions will be used to quantify differences in

distribution before and after treatment. Zero-inflated skew-t and normal mixtures

were fit for each marker, for each K ∈ {2, 3, . . . , 9}. Prior distributions for model
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Marker Z1 γ̂1 (95% CI) Z2 γ̂2 (95% CI)
CD3z 0.0157 0.0157 (0.0149, 0.0165) 0.0044 0.0045 (0.0040, 0.0049)

EOMES 0.0963 0.0964 (0.0944, 0.0983) 0.0797 0.0797 (0.0780, 0.0815)
Granzyme A 0.0003 0.0003 (0.0002, 0.0005) 0.0009 0.0009 (0.0007, 0.0011)

Siglec7 0.0663 0.0663 (0.0646, 0.0679) 0.0498 0.0498 (0.0484, 0.0512)

Table 4.4: Posterior summary of γi for four NK cell markers. Second and fourth
columns contain empirical fractions of zeros, Zi, in sample (i). Third and fifth
columns contain posterior mean (γ̂i) (and 95% credible intervals) for i = 1 and
i = 2, respectively. Number of cells in donor sample before (NC) and after (NT )
treatment are 86915 and 92468, respectively.

skew-t mixture Normal mixture
Marker K̂ DIC ∆̂ K̂ DIC ∆̂
CD3z 5 488192 0.121 8 488198 0.12

EOMES 3 510144 0.103 8 510111 0.103
Granzyme A 4 438170 0.015 7 438176 0.015

Siglec7 5 527162 0.028 7 527151 0.028

Table 4.5: ∆̂, and DIC for best models (selected by the calibration method
discussed) for various markers and models (skew-t or normal mixture), for the
CyTOF data analysis.

parameters were specified in a manner similar to that in section 4.3, except that

τ ∼ Gamma(1, 1), to encourage σ to be further away from 0. Posterior infer-

ence was made via MCMC, with the first 40000 iterations discarded as burn in.

The subsequent 8000 samples were thinned by every other sample to yield 4000

samples for inference.

Table 4.4 additionally shows posterior summaries for γi, including the posterior

means γ̂i and 95% credible intervals. For each marker, with the exception of

marker Granzyme A, the estimated proportion of zeros (γ̂i) is substantially greater

in the sample prior to treatment (i = 1). Figure 4.8 shows, for each marker, the

DIC against R̂1% for K = 2, . . . , 9 under the skew-t and normal mixture models.

For each marker and model, K̂ was selected using the calibration method in

section 4.2, and are included in Table 4.5, along with the DIC for those models.
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Under both mixture models, the DICs are similar for the model with K = K̂.

The selected values of K are noticeably smaller for the skew-t mixture model.

For markers CD3z and Granzyme A, K̂ is smaller by 3 components under the

skew-t model; for marker EOMES, K̂ is smaller by 5 components; and for marker

Siglec7, K̂ is smaller by 2 components. This indicates that in a normal mixture

model with large K, many potentially superfluous components tend to form. ∆̂

is also illustrated in Table 4.5 and is similar for the skew-t and normal mixtures.

∆̂ for markers Granzyme A and Siglec7 is less than 0.03, indicating that the

impact on the expression levels’ distribution by TGF-β is small. ∆̂ for markers

CD3z and EOMES are between 0.10 and 0.15, indicating that expression levels are

more affected by TGF-β. This suggests further investigation on those markers.

Figures 4.9 and 4.10 show the posterior estimates of g̃i for each marker under

skew-t and normal mixtures, for their K̂. The blue and red curves are for i = 1

and i = 2 respectively. The histograms of the data are overlaid in grey. As can be

seen from the figures, the model fits the data well for the selected K. Of note, a

moderate proportion of cells have higher expression levels for markers CD3z and

EOMES after TGB-β exposure; whereas for markers Granzyme A and Siglec7,

a small proportion of cells have lower expression levels after treatment. The fit

between the two mixture models is similar. But, as an important illustration, K̂

tends to be greater under the normal mixture models. For example, K = 3 under

the normal mixture would lead to poor fit for EOMES due to the skewness in

both samples and the bimodality in sample 2.

4.5 Discussion

We have proposed a method for modeling marker expression levels obtained

from CyTOF via a zero-inflated skew-t mixture model. The skew-t mixture is
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(a) CD3z (b) EOMES

(c) Granzyme A (d) Siglec7

Figure 4.8: Plots of DIC against the R̂1% for various markers and various K,
used for selecting K, for the CyTOF data analysis. Plots for the skew-t and
normal mixtures are included.

able to model skewed distributions with outliers using fewer mixture components

than Gaussian mixtures. We provide a calibration method to select the number of

mixture components, and a metric for quantifying the difference between distri-

butions due to experimental conditions. We demonstrated the performance of our

method through simulation studies and applied our method to CyTOF data for

four NK cell markers. While our examples include two experimental conditions

102



(a) CD3z, skew-t mixture, K = 5 (b) EOMES, skew-t mixture, K = 3

(c) Granzyme A, skew-t mixture, K = 4 (d) Siglec7, skew-t mixture, K = 5

Figure 4.9: Estimates of density of G̃i (blue for G̃1 and red for G̃2) for skew-t
mixtures, for the CyTOF data analysis. Histogram of data in grey.

at a time, it can be applied to data with multiple condition.

In this chapter, we considered one marker at a time. A natural extension is

to analyze multiple markers jointly using a multivariate zero-inflated mixture of

skew-t distributions and quantifying differences between the multivariate distri-

butions. For example, a multivariate skew-t distribution can be used as a mixture

component; assume zi,n,j | γi,j ind∼ Bernoulli(γi,j) with λi,n | ηi ∼ Categorical(ηi),

where zi,n,j = 1 {yi,n,j = 0} indicates whether the expression level is 0 in cell n of
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(a) CD3z, normal mixture, K = 8 (b) EOMES, normal mixture, K = 8

(c) Granzyme A, normal mixture, K = 7 (d) Siglec7, normal mixture, K = 7

Figure 4.10: Estimates of density of G̃i (blue for G̃1 and red for G̃2) for normal
mixtures, for the CyTOF data analysis. Histogram of data in grey.

sample i for marker j. Given λi,n = k, we let yi,n,j = exp(µj,k + ψj,k · ζi,n + εi,n,j),

if zi,n,j = 1, and otherwise yi,n,j = 0, where yi,n,j is the expression level in

cell n for marker j (of J markers) in sample i, and εi,n | Ωk, vi,n, λi,n = k ∼

Normal(0,Ωk/vi,n), where Ωk is a J × J covariance matrix which captures the

correlation in expression levels between markers. Under this approach, mixture

components are shared across samples to facilitate borrowing of information across

all markers. Frühwirth-Schnatter and Pyne (2010) have discussed in depth how
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to implement a posterior simulation scheme for multivariate skew-t mixture mod-

els but without zero-inflation. However, in the above zero-inflated model, zeros

and positive values may occur in yi,n, which complicates posterior computation.

Careful considerations will be required to develop an efficient sampling scheme.

Differences between distributions from different experimental conditions may be

quantified for each marker or for a subset of the markers using an estimate of

the joint cdf and an appropriate scaling factor to ensure the metric is between

0 and 1.
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Chapter 5

Conclusion

This work presented Bayesian methods for the analysis of NK cell marker

expression data obtained from CyTOF. Novel strategies for identifying (in partic-

ular, NK) cell subpopulations from CyTOF data were proposed. A zero-inflated

mixture model was introduced to model zero-inflated, semicontinuous CyTOF

data and a method to quantify differences between distributions that result from

various experimental conditions was presented.

Chapter 2 presented a novel method for identifying cell subpopulations from

multiple samples of CyTOF marker expression level data. Subpopulations were

characterized by latent expression patterns which were modeled via a FAM, which

induces clusterings that form subpopulations. Zeros throughout the marker ex-

pression data represent unlikely expression of certain markers within cells. They

were treated as missing and imputed via a static data missingship mechanism to

account for uncertainty and facilitate inference. Compared to established cluster-

ing methods, the proposed FAM is more effective at discovering latent subpopu-

lations when the underlying subpopulations are similar. Biologically recognized

NK cell subpopulations were identified by the FAM and identification of novel

subpopulations is possible.
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Chapter 3 built upon the work of Chapter 2 and presents a novel rep-FAM

which encourages latent subpopulations, i.e. columns of the feature allocation

matrix, to be distinct. The degree to which columns are different can be calibrated

via hyperparameters in the repulsive function and expert knowledge. WPPT and

intrinsic MCMC were used to more efficiently sample from the joint posterior

distribution of the model parameters. Feature allocations resulting from the rep-

FAM were more parsimonious than those resulting form the regular FAM.

Chapter 4 presented methods for jointly modeling marker expression CyTOF

data due to multiple experimental conditions. A zero-inflated mixture of log-

skew-t distributions were used to model the expressions levels. A metric was

proposed to quantify distributional differences between pairs of experimental con-

ditions.

A calibration technique for selecting the number of features in the FAMs and

the number of skew-t mixture components was presented and used throughout

Chapters 2-4. This was done to circumvent learning the number of components

via transdimensional MCMC methods, such as RJMCMC, which would add com-

putational complexity to an already complex problem. The core idea common

to each chapter is to select the model with the least complexity (according the

number of superfluous or negligible components) among models with the best fit

(according to some goodness-of-fit metric).

One way to extend the FAMs is to include covariate information into the mod-

els. Samples with similar covariates may have similar subpopulation structures.

The proposed FAMs can incorporate such information by incorporating appropri-

ate regression submodels to enhance inferences and study how the structures may

change with covariates.

In Chapter 4, analysis of multiple markers simultaneously is a possible exten-

107



sion using a multivariate zero-inflated mixture of skew-t distributions. Compu-

tational challenges are likely to arise as a result of the added complexity. Thus,

careful considerations will be required to ensure computational tractability since

CyTOF datasets tend to be large, with up to 40 markers and marker expression

levels for tens of thousands of cells.
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Appendix A

A Bayesian Feature Allocation

Model for Identifying Cell

Subpopulations Using Cytometry

Data

A.1 Posterior Computation

A.1.1 MCMC Simulation

Recall that θ = {Z,w, δ0, δ1,σ
2,η0,η1,λ,v, ε, α} denotes all random parame-

ters. We let expression levels y and binary indicatorsm denote yi,n,j andmi,n,j, re-

spectively, for all (i, n, j). To facilitate the posterior sampling of δz,`, we introduce

auxiliary indicators for normal mixture components γi,n,j ∈ {1, . . . , Lzj,λi,n} for

each yi,n,j when λi,n 6= 0. That is, Pr(γi,n,j = ` | zj,λi,n = z, ηzi,j,`, λi,n 6= 0) = ηzi,j,`,

where ` ∈ {1, . . . , Lzj,λi,n}, and let µi,n,j = µ?zj,λi,n ,γi,n,j
. We extend the vector of

119



random parameters, θ̃ = (θ, {γi,n,j}) by including γi,n,j for more convenient pos-

terior simulation. Similar to the joint posterior distribution of θ in (2.6) of the

main text, the joint posterior probability model of θ̃ under our Bayesian FAM

model is

p(θ̃ | y,m, K) ∝ p(θ̃ | K)×
∏
i,n

∏
j

ρ
1−mi,n,j
i,n,j

1√
2πσ2

i

exp
{
−(yi,n,j − µi,n,j)2

2σ2
i

}1(λi,n 6=0)

×

∏
j

ρ
1−mi,n,j
i,n,j

1√
2πs2

ε

exp
{
−
y2
i,n,j

2s2
ε

}1(λi,n=0)

. (A.1)

Posterior samples of θ̃ are obtained by iteratively drawing samples from each of the

full conditionals using the most recent estimate of the parameters and the data.

For the parameters whose conditional distributions are known and are easy to

sample from, we used Gibbs sampling. To sample from full conditionals which are

otherwise difficult to sample from, the Metropolis-Hastings algorithm was used.

1. Full Conditional for vk

Recall that the prior distribution for vk is vk | α ind∼ Beta(α/K, 1), for

k = 1, ..., K, that is, p(vk | α) = α
K
v
α/K−1
k .

p(vk | y, rest) ∝ p(vk)
J∏
j=1

p(zj,k | vk)

∝ α

K
v
α/K−1
k

J∏
j=1

v
zj,k
k (1− vk)1−zj,k

∝ v
α/K+

∑J

j=1 zj,k−1
k (1− vk)J−

∑J

j=1 zj,k

⇒ vk | y, rest ∼ Be
α/K +

J∑
j=1

zj,k, J + 1−
J∑
j=1

zj,k

 .
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We use “rest” to denote all parameters except the parameter(s) that we

sample. For example, “rest” implies θ̃\{vk} for updating vk.

2. Full Conditional for zj,k

Let Sk = {(i, n) : λi,n = k}, the set of cells in samples taking cell subpopu-

lation k.

p(zj,k = 1 | y, rest) ∝ p(zj,k = 1 | vk)
∏

(i,n)∈Sk

p(yi,n,j | µ?1,η1
i,j, σ

2
i )

∝ vk
∏

(i,n)∈Sk

L∑
`=1

η1
i,j,` · φ(yi,n,j | µ?1,`, σ2

i ),

p(zj,k = 0 | y, rest) ∝ p(zj,k = 0 | vk)
∏

(i,n)∈Sk

p(yi,n,j | µ?0,η0
i,j, σ

2
i )

∝ (1− vk)
∏

(i,n)∈Sk

L∑
`=1

η0
i,j,` · φ(yi,n,j | µ?0,`, σ2

i ),

where φ(y | m, s2) denotes the probability density function of the normal

distribution with mean m and variance s2, evaluated at y.

⇒ zj,k | y, rest ∼ Bernoulli(pj,k), where

pj,k =
[
1 +

(1− vk)
∏

(i,n)∈Sk
∑L
`=1 η

0
i,j,` · φ(yi,n,j | µ?0,`, σ2

i )
vk
∏

(i,n)∈Sk
∑L
`=1 η

1
i,j,` · φ(yi,n,j | µ?1,`, σ2

i )

]−1

.

3. Full Conditional for α

p(α | y, rest) ∝ p(α)×
K∏
k=1

p(vk | α)

∝ αaα−1 exp {−bαα} ×
K∏
k=1

α v
α/K
k

∝ αaα+K−1 exp
{
−α

(
bα −

K∑
k=1

log vk/K
)}
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⇒ α | y, rest ∼ Gamma
(
aα +K, bα −

K∑
k=1

log vk/K
)
.

4. Full Conditional for λi,n

The prior for λi,n is

p(λi,n = k | wi, εi) =


εi, if k = 0

(1− εi) · wi,k, if k ∈ {1, . . . , K} .

We thus have

p(λi,n = 0 | y, rest) ∝ p(λi,n = 0) p(y | λi,n = 0, rest)

∝ εi
J∏
j=1

φ(yi,n,j | 0, s2
ε),

p(λi,n = k | y, rest) ∝ p(λi,n = k) p(y | λi,n = k, rest)

∝ (1− εi)wik
J∏
j=1

(
L∑
`=1

η
zj,k
i,j,` · φ(yi,n,j | µ?zj,k,`, σ

2
i )
)
,

for k = 1, . . . , K.

We sample λi,n with probabilities proportional to p(λi,n = k | y, rest) for

k ∈ {0, . . . , K}.

5. Full Conditional for wi

The prior for wi = (wi,1, . . . , wi,K) is wi ∼ Dirichlet(d/K, · · · , d/K). The
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full conditional for wi is:

p(wi | rest) ∝ p(wi)×
Ni∏
n=1

p(λi,n | wi)

∝
K∏
k=1

w
(d/K+

∑Ni
n=1 1(λi,n=k))−1

ik .

Therefore,

wi | y, rest ∼ Dirichlet
d/K +

Ni∑
n=1

1(λi,n = 1), . . . , d/K +
Ni∑
n=1

1(λi,n = K)


6. Full Conditional for γi,n,j

For the cells with λi,n > 0,

p(γi,n,j = ` | y, zjλi,n = z, rest) ∝ p(γi,n,j = `)× p(yi,n,j | γi,n,j = `, rest)

= ηzij` × φ(yi,n,j | µ?z`, σ2
i ).

Therefore, sample γi,n,j with probabilities proportional to p(γi,n,j = ` |

y, rest) for ` = 1, ..., Lzj,λi,n .

7. Full Conditional for δz,`

For δ1,`, let S1,i,` =
{

(i, n, j) :
(
zj,λi,n = 1 ∩ γi,n,j ≥ `

)}
and |S1,i,`| the car-
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dinality of S1,i,`.

p(δ1,` | y, rest) ∝ p(δ1,` | ψ1, τ
2
1 )× p(y | δ1,`, rest)

∝ 1(δ1,` ≥ 0)× exp
{
−(δ1,` − ψ1)2

2τ2
1

}

×
I∏
i=1

∏
(i,n,j)∈S1i`

exp

−
(
yi,n,j −

γi,n,j∑
r=1

δ1r

)2/
2σ2

i


∝ exp

−(δ1,`)2

2

(
1
τ2

1
+

I∑
i=1

|S1,i,`|
σ2
i

)
+ δ1,`

ψ1
τ2

1
+

I∑
i=1

∑
S1,i,`

gi,n,j
σ2
i


× 1(δ1,i,` ≥ 0),

where gi,n,j = yi,n,j −
γi,n,j∑
r=1

(δ1,r)1(r 6=`).

⇒ δ1,` | y, rest
ind∼ TN+

ψ1 + τ2
1
∑I
i=1

∑
S1,i,`

(gi,n,j/σ2
i )

1 + τ2
1
∑I
i=1(|S1,i,`|/σ2

i )
,

τ2
1

1 + τ2
1
∑I
i=1(|S1,i,`|/σ2

i )

 .

Similarly, for δ0,`, let S0,i,` =
{

(i, n, j) :
(
Zj,λi,n = 0 ∩ γi,n,j ≥ `

)}
and |S0,i,`|

be the cardinality of S0,i,`.

⇒ δ0,l | y, rest
ind∼ TN+

ψ0 + τ2
0
∑I
i=1

∑
S1,i,`

(gi,n,j/σ2
i )

1 + τ2
0
∑I
i=1(|S0,i,`|/σ2

i )
,

τ2
0

1 + τ2
0
∑I
i=1(|S0,i,`|/σ2

i )

 ,

where gi,n,j = −yi,n,j −
γi,n,j∑
r=1

(δ0,r)1(r 6=`).

8. Full Conditional for σ2
i
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Let ri,n,j = 1(λi,n > 0), and let Ri = ∑Ni
n=1

∑J
j=1 ri,n,j. We then have

p(σ2
i | y, rest) ∝ p(σ2

i )× p(y | σ2
i , rest)

∝ (σ2
i )−aσ−1 exp

{
− bσ
σ2
i

}
J∏
j=1

Ni∏
n=1

 1√
2σ2

i

exp
{
−(yi,n,j − µi,n,j)2

2σ2
i

}
∝ (σ2

i )
−
(
aσ+Ri

2

)
−1 exp

− 1
σ2
i

bσ +
J∑
j=1

Ni∑
n=1

ri,n,j ·
(yi,n,j − µi,n,j)2

2

 .

⇒ σ2
i | y, rest

ind∼ InverseGamma

aσ + Ri
2 , bσ +

J∑
j=1

Ni∑
n=1

ri,n,j ·
(yi,n,j − µi,n,j)2

2

 .

9. Full Conditional for ηzi,j

The prior for ηzi,j is ηzi,j ∼ DirichletLz(aηz), for z ∈ {0, 1}. So the full

conditional for ηzi,j is:

p(ηzi,j | rest) ∝ p(ηzi,j)×
Ni∏
n=1

p(γi,n,j | ηzi,j)

∝
Lz∏
`=1

(
ηzi,j,`

)aηz−1
×

Lz∏
`=1

Ni∏
n=1

(
ηzi,j,`

)1{(γi,n,j=`) & (zj,λi,n=z) & (λi,n>0)}

∝
Lz∏
`=1

(
ηzi,j,`

)(aηz+
∑Ni

n=1 1{(γi,n,j=`) & (zj,λi,n=z) & (λi,n>0)})−1
.

⇒ ηzi,j | y, rest ∼ DirichletLz
(
a∗1, ..., a

∗
Lz

)
,

where a∗` = aηz +∑Ni
n=1 1{(γi,n,j = `) & (zj,λi,n = z) & (λi,n > 0)}.
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10. Full Conditional for εi

p(εi | y, rest) ∝ p(εi)
Ni∏
n=1

ε
1(λi,n=0)
i (1− εi)1(λi,n>0)

∝ εaε−1
i (1− εi)bε−1ε

∑Ni
n=1 1(λi,n=0)

i (1− εi)
∑Ni

n=1 1(λi,n>0)

∝ ε
aε+
∑Ni

n=1 1(λi,n=0)−1
i (1− εi)bε+

∑Ni
n=1 1(λi,n>0)−1.

⇒ εi | y, rest ∼ Beta
aε +

Ni∑
n=1

1(λi,n = 0), bε +
Ni∑
n=1

1(λi,n > 0)
 .

11. Full Conditional for Missing yi,n,j

p(yi,n,j | mi,n,j = 1, rest) ∝ p(mi,n,j = 1 | yi,n,j, rest) p(yi,n,j | rest)

∝ ρi,n,j
L∑
`=1

η
zj,λi,n
i,j,` · φ(yi,n,j | µ?zj,k,`, σ

2
i ).

Direct sampling from the full conditional of yi,n,j is difficult, so we use a

Metropolis step with a normal proposal distribution to sample from the full

conditional instead.

A.1.2 Variational Inference Implementation Details

Variational inference (VI) is a popular alternative for fitting Bayesian models

(Jordan et al. 1999, Beal et al. 2003, Wainwright et al. 2008, Blei et al. 2017). VI

tends to be faster and more scalable with data size than the traditional MCMC

method. In particular, we utilize automatic differentiation variational inference

(ADVI), (Kucukelbir et al. 2017), a derivation-free method. It is a gradient-based

stochastic optimization method and is amenable to common machine learning

techniques, such as stochastic gradient descent, which makes inference for large
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datasets more tractable. For a comprehensive review of recent advances in VI, see

Blei et al. (2017) and Zhang et al. (2018).

In VI, parameters of a tractable approximating “variational” distribution are

iteratively optimized until it “sufficiently” resembles the target (posterior) dis-

tribution. The most common metric for measuring the “closeness” of the target

distribution to the variational distribution is the Kullback-Leibler (KL) divergence

(Kullback and Leibler 1951). For our Bayesian feature allocation model (FAM),

minimizing the KL divergence between the variational distribution and the poste-

rior distribution is equivalent to maximizing the following evidence lower bound

(ELBO)

ELBO = EQ
[
log p(m,y | θ) + log p(θ)− log q(θ)− log q(ymissing)

]
= EQ

[
log p(m | y,θ) + log p(y | θ) + log p(θ)− log q(θ)− log q(ymissing)

]
= EQ

[
log p(m | y) + log p(y | θ) + log p(θ)− log q(θ)− log q(ymissing)

]
.

(A.2)

p(m | y) and p(y | θ) are the sampling distributions ofmi,n,j and yi,n,j, and p(θ) is

the prior distribution for all model parameters. q(θ) is the mean-field variational

distribution for model parameters. For q(θ), each model parameter is transformed

to the unconstrained space (Kucukelbir et al. 2017) and is assumed to have a

normal distribution (Kucukelbir et al. 2017). q(ymissing) = ∏
i,n,j q(yi,n,j)1−mi,n,j is

an amortized variational distribution for the missing values(Kingma and Welling

2013). Specifically, q(ymissing
i,n,j ) is a normal probability density function with mean

ri,j and standard deviation si,j. This simplification for the missing yi,n,j will

produce imputed values different from those under our Bayesian FAM, but yields

acceptable performance in our simulation studies at greatly reduced computational
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cost. Computing the gradient (in gradient descent) requires the computation of

the ELBO using the entire dataset. This can be computationally prohibitive for

large datasets. Instead, stochastic gradient descent (SGD) is used. A mini-batch

of size B (much less than the size of the full data set N) can be sampled at each

iteration of the SGD to compute the ELBO. The ELBO should be appropriately

scaled by N/B. This works well in practice provided that the size of the mini-

batch is sufficiently large.

In our model, parameters of primary interest Z and λ are discrete. Since

ADVI is only valid for continuous parameters in differentiable models, we let

zj,k = 1(vk > hj,k), where vk | α ∼ Beta(α/K, 1), and hj,k ∼ Uniform(0, 1),

similar to the construction of the dependent IBP in Williamson et al. (2010).

We approximate the gradient of the indicator function with the gradient of

logistic ((logit(vk)− logit(hj,k)) · 1000), which is smooth. We marginalize over λ

for VI, and then sample from their full conditionals using the parameters estimated

from the variational distributions.

For completeness, we have included key terms in the computation of the ELBO

using SGD. p(m | y) is defined as

p(m | y) =
I∏
i=1

Ni∏
n=1

p(mi,n | yi,n)

=
I∏
i=1

Ni∏
n=1

J∏
j=1

ρ
1−mi,n,j
i,n,j (1− ρi,n,j)mi,n,j

=
I∏
i=1

Ni∏
n=1

J∏
j=1

ρ
1−mi,n,j
i,n,j ci,n,j

=
I∏
i=1

Ni∏
n=1

J∏
j=1

ρ
1−mi,n,j
i,n,j

I∏
i=1

Ni∏
n=1

J∏
j=1

ci,n,j

= C
I∏
i=1

Ni∏
n=1

J∏
j=1

ρ
1−mi,n,j
i,n,j ,
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where ρi,n,j = logistic(β0,i + β1,iyi,n,j + β2,iy
2
i,n,j), and C =

I∏
i=1

Ni∏
n=1

J∏
j=1

ci,n,j is a

constant. Evaluating p(m | y) is computationally expensive when Ni is large.

Hence, we can approximate it by only iterating through a subset of the data, and

scaling the relevant terms. The log of the resulting expression is:

log p(m | y) = logC +
I∑
i=1

Ni∑
n=1

J∑
j=1

(1−mi,n,j) log ρi,n,j

≈ logC +
I∑
i=1

Ni

|Si|
∑
n∈Si

J∑
j=1

(1−mi,n,j) log ρi,n,j

where Si is a subset of {1, . . . , Ni}.

The likelihood term p(y | θ) is defined as

p(y | θ) =
I∏
i=1

Ni∏
n=1

Ai,n, where

Ai,n = εi
J∏
j=1

Normal(0, s2
ε) +

(1− εi)
K∑
k=1

wi,k
J∏
j=1

Lzj,k∑
`=1

η
zj,k
i,j,` · Normal(yi,n,j | µ?zj,k,`, σ

2
i ).

We thus have

log p(y | θ) =
I∑
i=1

Ni∑
n=1

logAi,n

≈
I∑
i=1

Ni

|Si|
∑
n∈Si

logAi,n (if using mini-batches)
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Finally, the variational distribution for the missing values in y is defined as

q(y) =
I∏
i=1

Ni∏
n=1

J∏
j=1

q(yi,n,j | ri,j, si,j)mi,n,j

⇒ log q(y) =
I∑
i=1

Ni∑
n=1

J∑
j=1

mi,n,j log q(yi,n,j | ri,j, si,j)

≈
I∑
i=1

Ni

|Si|
∑
n∈Si

J∑
j=1

mi,n,j log q(yi,n,j | ri,j, si,j) (if using mini-batches)

As previously noted, independent Gaussian variational distributions were placed

on all other model parameters θ after they were transformed to have support on

Rdim(θ). Notably, the parameters with support on simplexes (i.e. η and w) were

transformed using the stick breaking transformation (Team et al. 2016).
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Figure A.1: A quadratic data missingship mechanism for imputing missing data
that passes through the points (y1 = −6.0, p1 = 0.2), (y2 = −4.0, p2 = 0.8), and
(y3 = −2.0, p3 = 0.05).
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A.2 Specification of Data Missingship Mecha-

nism

We now discuss the approach used to specify the data missingship mechanism.

Recall that we assume a logit regression model for the probability ρi,n,j for the

missing yi,n,j in (2.5) of the main text, logit(ρi,n,j) = β0,i + β1,iyi,n,j + β2,iy
2
i,n,j,

with βp,i ∈ R, p ∈ {0, 1, 2}. To specify values of βp,i, we first select three points

of (ỹ, ρ̃) for each sample, (ỹ1, ρ̃1), (ỹ2, ρ̃2), and (ỹ3, ρ̃3). We let logit(ρ̃) = β0,i +

β1,iỹ + β2,iỹ
2 and solve for βi,p. We accommodate the subject knowledge that

missing yi,n,j strongly indicates that the marker is not expressed in the selection

of three points of (ỹ, ρ̃), and the mechanism encourages imputed values to take on

negative values. For instance, Figure A.1 shows an example of data missingship

mechanism specified by selecting (−6.0, 0.2), (−4.0, 0.8), and (−2.0, 0.05) of (ỹ, ρ̃).

This specification imputes values between -2 and -6 with large probability. The

mechanism thus strongly implies that the marker is not expressed. We used

empirical quantiles of negative values of observed y to specify ỹ.

A.3 Computation of LPML and DIC

We used the log pseudo marginal likelihood (LPML) and deviance criterion

information (DIC) to select the number of cell subpopulations (K) as discussed

in §2.2 of the main text. LPML (Gelfand and Dey 1994, Gelfand et al. 1992))

is defined as LPML = ∑n
i=1 log CPOi, where CPOi =

∫
f(datai | data−i, θ)p(θ |

data−i)dθ ≈
[

1
B

∑B
b=1

1
f(datai|θ(b))

]−1
, where f(datai | θ(b)) is the likelihood evalu-

ated at Monte Carlo sample b of B samples for observation i, and CPOi is the
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conditional predictive ordinates. The likelihood of cell n in sample i is

f(mi,n,yi,n | θ) =
J∏
j=1

ρ
1−mi,n,j
i,n,j (1− ρi,n,j)mi,n,j · φ(yi,n,j | µi,n,j, σ2

i )

∝
J∏
j=1

ρ
1−mi,n,j
i,n,j · φ(yi,n,j | µi,n,j, σ2

i ), (A.3)

where φ(y | m, s2) denotes the probability density function of the normal distri-

bution with mean m and variance s2, evaluated at y. Note that (1− ρi,n,j)mi,n,j in

(A.3) is dropped since it remains constant for observed yi,n,j. We then compute

LPML as

LPML =
I∑
i=1

Ni∑
n=1

log CPOi,n

≈
I∑
i=1

Ni∑
n=1

log
{

1
B

B∑
b=1

1
f(mi,n,yi,n | θ(b))

}−1

∝
I∑
i=1

Ni∑
n=1

log

 1
B

B∑
b=1

1∏J
j=1(ρ(b)

i,n,j)minj · φ(yi,n,j | µ(b)
i,n,j, σ

2,(b)
i )


−1

.

Deviance is defined as as D = −2 log f(m,y | θ), where f(m,y | θ) is the

likelihood. The deviance criterion information (DIC) (Spiegelhalter et al. 2002)

is computed as DIC = D̄ −D(θ̄), where D̄ = E [D] is the posterior mean of the

deviance, and θ̄ is the posterior mean of the parameters θ. We compute the

likelihood as

f(m,y | θ) =
I∏
i=1

Ni∏
n=1

J∏
j=1

ρ
1−mi,n,j
i,n,j · φ(yi,n,j | µi,n,j, σ2

i ). (A.4)

The parameters that appear in the likelihood include µi,n,j, σ2
i , and the missing

values y?i,n,j. So θ̄ can be obtained by computing the posterior means of µi,n,j, σ2
i ,

and y?i,n,j.
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A.4 Simulation Study

A.4.1 Additional Results for Simulation 1

Here we present additional figures and tables for Simulation 1. Figure A.2

summarizes the results from the analysis of Simulation 1 via ADVI. It contains

the element-wise posterior means of Z and the posterior means of wi (panels (a),

(c), and (e)), and heatmaps of the simulated data yi,n,j sorted according to the

posterior mode of the cell subpopulation indicators λ̂i,n (panels (b), (d), and (f)).

Table A.1 contains the three data missingship mechanisms (MM) used in Simu-

lation 1. MM0 is the default mechanism. Recall that we used empirical q̃-quantiles

to specify ỹ. Different q̃ yields different values of β. Three different sets of q̃ are

used for the sensitivity analysis, while fixing ρ̃. For each mechanism, the LPML

and DIC are shown in the last two columns of the table.

MM q̃ Probability of Missing (ρ̃) LPML DIC
0 (0%, 25%, 50%) (5%, 80%, 5%) -16.728 172989
I (0%, 20%, 40%) (5%, 80%, 5%) -16.681 172914
II (0%, 15%, 30%) (5%, 80%, 5%) -16.462 170971

Table A.1: Data missingship mechanisms (MM) used for Simulation 1. q̃-
quantiles of the negative observed values in each sample are used to specify ỹ,
and ρ̃ are the probability of missing at those ỹ. Three different sets of q̃ and ρ̃
are used to examine the sensitivity to the missingship mechanism specification.
LPML and DIC are shown in the last two columns under each of the specification.

Figures A.3 and A.4 respectively summarize the results for the analysis of

Simulation 1 under data missingship mechanism I and II, done via MCMC. The

figures contain the posterior estimate of Z and w in panels (a), (c), and (e), and

heatmaps of the simulated data yi,n,j sorted according to the posterior estimate

of the cell subpopulation indicator λ̂i,n in panels (b), (d), and (f).
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(c) Ẑ ′2 and ŵ2 (d) y2,n,j

Figure A.2: [ADVI for Simulation 1] In (a) and (c), the transpose Ẑ ′i of Ẑi and
ŵi are shown for samples 1 and 2, respectively, with markers that are expressed
dented by black and not expressed by white. Only subpopulations with ŵi,k > 1%
are included. Heatmaps of yi are shown for sample 1 in (b) and sample 2 in (d).
Cells are ordered by posterior point estimates of their subpopulations, λ̂i,n. Cells
are given in rows and markers are given in columns. High and low expression
levels are represented by red and blue, respectively, and black represents missing
values. Yellow horizontal lines separate cells into five subpopulations. Posterior
estimates are obtained via ADVI.
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(e) Ẑ ′3 and ŵ3 (f) y3,n,j

Figure A.2 (continued): In (e), the transpose Ẑ ′i of Ẑi and ŵi are shown for
sample 3, with markers that are expressed dented by black and not expressed by
white. Only subpopulations with ŵi,k > 1% are included. Heatmaps of yi for
sample 3 is shown in (f). Cells are ordered by posterior point estimates of their
subpopulations, λ̂i,n. Cells are given in rows and markers are given in columns.
High and low expression levels are represented by red and blue, respectively, and
black represents missing values. Yellow horizontal lines separate cells into five
subpopulations. Posterior estimates are obtained via ADVI.

A.4.2 Simulation 2

An additional simulation study, Simulation 2, that assumes a larger simulated

dataset and a more complex cell subpopulation structure, was performed. The

dataset was simulated in a manner similar to Simulation 1 in § 2.3 of the main

text, but the data size is larger with N = (40000, 5000, 10000), and has more

cell subpopulations with KTR = 10. We first specify ZTR and simulated wTR
i

from a Dirichlet distribution with parameters being some random permutation

of (1, . . . , K). Table A.2 illustrates ZTR and wTR. Parameters µ?,TR
0 , µ?,TR

1 , and

σ2,TR
i are set in the same way as Simulation 1. We fit the model over a grid for

K, for K from 2 to 20 in increments of 2. For all models, we fixed L0 = 5 and

L1 = 5. Recall that LTR
0 = LTR

1 = 3. All other parameter specifications, MCMC
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Figure A.3: Data missingship mechanism sensitivity analysis for Simulation 1.
Specification I is used for β. Heatmaps of yi are shown in (a)-(c) for samples 1-3,
respectively. Cells are rearranged by the posterior point estimate of cell clustering,
λ̂i,n. Cells and markers are in rows and columns, respectively. High and low
expression levels are in red and blue, respectively, and black is used for missing
values. Yellow horizontal lines separate cells by different subpopulations. Ẑ ′i and
ŵi are shown for each of the samples in (d)-(f). We include only subpopulations
with ŵi,k > 1%.

initialization, and MCMC specifications were done in the same way as Simulation

1.

The LPML, DIC, and calibration metric for K are presented in Figure A.5.

The metrics indicate that the model with K̂ = 10 fits the data best and achieves a

balance between good model fit and low model complexity. Figure A.6 shows pos-

terior estimates of the clusterings for each sample for the large simulated dataset,

along with posterior estimates of the subpopulations present (Ẑi) and their abun-
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(a) heatmap of y1,n,j (b) heatmap of y2,n,j (c) heatmap of y3,n,j
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Figure A.4: Data missingship mechanism sensitivity analysis for Simulation 1.
Specification II is used for β. Heatmaps of yi are shown in (a)-(c) for samples 1-3,
respectively. Cells are rearranged by the posterior point estimate of cell clustering,
λ̂i,n. Cells and markers are in rows and columns, respectively. High and low
expression levels are in red and blue, respectively, and black is used for missing
values. Yellow horizontal lines separate cells by different subpopulations. Ẑ ′i and
ŵi are shown for each of the samples in (d)-(f).We include only subpopulations
with ŵi,k > 1%.

dances (ŵi) in each sample. The red, blue, and black cells represent high, low,

and non-observed expression levels, respectively. Horizontal yellow lines separate

cells into clusters. The simulation truth for the cell subpopulations in ZTR is

recovered by Ẑ, and ŵi is close to wTR.

Figure A.7 shows estimated clusterings for each sample yi using FlowSOM.

The largest cluster in sample 1 shown in panel (a) contains a mixture of high and

low expression levels for marker 9, resulting in poor performance of clustering cells.
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(a) ZTR

subpopulations sample 1 sample 2 sample 3
k = 1 0.136 0.160 0.033
k = 2 0.132 0.021 0.128
k = 3 0.111 0.037 0.257
k = 4 0.157 0.084 0.110
k = 5 0.044 0.183 0.049
k = 6 0.046 0.111 0.142
k = 7 0.215 0.045 0.142
k = 8 0.072 0.109 0.001
k = 9 0.018 0.109 0.099
k = 10 0.065 0.135 0.035

(b) wTR

Table A.2: [Simulation 2] ZTR and wTR are illustrated in (a) and (b), respec-
tively. KTR = 10, J = 20, I = 3 and N = (40000, 5000, 10000) are assumed.
Black and white in (a) represents zTR

j,k = 1 and 0, respectively.
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Figure A.5: [Simulation 2] Plots of (a) LPML, (b) DIC, and (c) calibration
metric, for K = 2, 4, . . . , 20, for large simulated data suggest that K̂ = 10 is
sufficient to explain the latent cell subpopulations.

This undesired behavior is not observed in the FAM. We again used the adjusted

Rand index (ARI) to assess the accuracy of cluster assignments produced by the

FAM and FlowSOM by comparing them to the true clustering. Table A.3 shows

the ARI by sample for each method. Our method produced higher ARIs for all

samples. The ARI in sample 1 is especially low for FlowSOM, as the two similar
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(c) Ẑ2 & ŵ2 (d) y2,n,j

Figure A.6: [Simulation 2]. In (a) and (c), Ẑ ′i and ŵi are shown for samples
1 and 2, respectively, with markers that are expressed dented by black and not
expressed by white. Only subpopulations with ŵi,k > 1% are included. Heatmaps
of yi are shown for sample 1 in (b) and sample 2 in (d). Cells are ordered by
posterior point estimates of their subpopulations, λ̂i,n. Cells are given in rows and
markers are given in columns. High and low expression levels are represented by
red and blue, respectively, and black represents missing values. Yellow horizontal
lines separate cells into five subpopulations.

subpopulations that were grouped together make up a large portion of the cells

in that sample.

Figure A.8 summarizes the posterior inference obtained via ADVI. The poste-
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(e) Ẑ3 & ŵ3 (f) y3,n,j

Figure A.6 (continued): Results of Simulation 2. In (e), Ẑ ′i and ŵi are shown
for sample 3, with markers that are expressed dented by black and not expressed
by white. Only subpopulations with ŵi,k > 1% are included. Heatmaps of yi for
sample 3 is shown in (f). Cells are ordered by posterior point estimates of their
subpopulations, λ̂i,n. Cells are given in rows and markers are given in columns.
High and low expression levels are represented by red and blue, respectively, and
black represents missing values. Yellow horizontal lines separate cells into five
subpopulations.

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure A.7: [FlowSOM for Simulation 2] Heatmaps of yi for Simulation 2. Sam-
ples 1-3 are in (a)-(c), respectively. The cells are sorted by the cluster labels λi,n
for each sample, estimated by FlowSOM.

rior mean of Z and the posterior mean of wi are in panels (a), (c), and (e), and

heatmaps of the simulated data yi,n,j sorted according to the posterior mode of
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Method Sample 1 ARI Sample 2 ARI Sample 3 ARI
FAM (K = 10) 0.999 0.996 0.999

FlowSOM 0.858 0.940 0.959

Table A.3: Adjusted Rand index (ARI) for FAM and FlowSOM by sample for
Simulation 2. Higher ARI is better, and values closer to 1 indicate that estimated
clusters are closer to the truth.

the cell subpopulations λ̂i,n in panels (b), (d), and (f). The posterior inference

covers the simulation truth well.

We performed a sensitivity analysis to the specification of the data missing-

ship mechanism after selecting K = 10 via DIC and LPML. Table A.4 summarizes

the missingship mechanisms used in the sensitivity analysis. Again, we note that

inference on Z and w do not change significantly across the various missing mech-

anisms. However, the fit (in terms of LPML and DIC) on the observed data was

highest for missingship mechanism II, which encourages imputing values that are

more negative, as it best matched the simulation truth.

Figures A.9 and A.10 respectively summarize the results for the analysis of

Simulation 1 under data missingship mechanism I and II, done via MCMC. The

figures contain the posterior estimate of Z and w in panels (a), (c), and (e), and

heatmaps of the simulated data yi,n,j sorted according to the posterior estimate

of the cell subpopulation indicators λ̂i,n in panels (b), (d), and (f).
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(c) Ẑ ′2 and ŵ2 (d) y2,n,j

Figure A.8: [ADVI for Simulation 2] In (a) and (c), the transpose Ẑ ′i of Ẑi and
ŵi are shown for samples 1 and 2, respectively, with markers that are expressed
dented by black and not expressed by white. Only subpopulations with ŵi,k > 1%
are included. Heatmaps of yi are shown for sample 1 in (b) and sample 2 in (d).
Cells are ordered by posterior point estimates of their subpopulations, λ̂i,n. Cells
are given in rows and markers are given in columns. High and low expression
levels are represented by red and blue, respectively, and black represents missing
values. Yellow horizontal lines separate cells into five subpopulations. Posterior
estimates are obtained via ADVI.
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(e) Ẑ ′3 and ŵ3 (f) y3,n,j

Figure A.8 (continued): [ADVI for Simulation 2] In (e), the transpose Ẑ ′i of Ẑi

and ŵi are shown for sample 3, with markers that are expressed dented by black
and not expressed by white. Only subpopulations with ŵi,k > 1% are included.
Heatmaps of yi for sample 3 is shown in (f). Cells are ordered by posterior point
estimates of their subpopulations, λ̂i,n. Cells are given in rows and markers are
given in columns. High and low expression levels are represented by red and blue,
respectively, and black represents missing values. Yellow horizontal lines separate
cells into five subpopulations. Posterior estimates are obtained via ADVI.

MM q̃ Probability of Missing (ρ) LPML DIC
0 (0%, 25%, 50%) (5%, 80%, 5%) -16.215 1675117
I (0%, 20%, 40%) (5%, 80%, 5%) -16.052 1662834
II (0%, 15%, 30%) (5%, 80%, 5%) -15.771 1640255

Table A.4: Missingness mechanisms used for Simulation 2. q̃-quantiles of the
negative observed values in each sample are used to specify ỹ, and ρ are the
probability of missing at ỹ. Three different sets of q̃ and ρ̃ are used to examine
the sensitivity to the missingship mechanism specification. LPML and DIC are
shown in the last two columns under each of the specification.

A.5 Additional Results for Analysis of Cord

Blood Derived NK Cell Data

This section contains additional figures and tables for the CB NK cell data

analysis presented in § 2.4 of the main text. Table A.5 lists the marker names
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Figure A.9: Data missingship mechanism sensitivity analysis for Simulation 2.
Specification I is used for β. Heatmaps of yi are shown in (a)-(c) for samples 1-3,
respectively. Cells are rearranged by the posterior point estimate of cell clustering,
λ̂i,n. Cells and markers are in rows and columns, respectively. High and low
expression levels are in red and blue, respectively, and black is used for missing
values. Yellow horizontal lines separate cells by different subpopulations. Ẑ ′i and
ŵi are shown for each of the samples in (d)-(f). We include only subpopulations
with ŵi,k > 1%.

and numbers for each marker included in the CB derived NK data analysis. Fig-

ure A.11 visualizes the CB NK cell data in a two-dimensional space using a data

visualization technique “t-SNE (t-Distributed Stochastic Neighbor Embedding)”

(Maaten and Hinton 2008, Van Der Maaten 2014). The two dimensional embed-

dings are learned separately for each sample. Cells are represented with different

symbols and colors by their posterior estimate λ̂in of the cell clustering. All cells

in the samples are used to obtain the embeddings, but only cells in the subpopu-
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(a) heatmap of y1,n,j (b) heatmap of y2,n,j (c) heatmap of y3,n,j
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Figure A.10: Data missingship mechanism sensitivity analysis for Simulation 2.
Specification II is used for β. Heatmaps of yi are shown in (a)-(c) for samples 1-3,
respectively. Cells are rearranged by the posterior point estimate of cell clustering,
λ̂i,n. Cells and markers are in rows and columns, respectively. High and low
expression levels are in red and blue, respectively, and black is used for missing
values. Yellow horizontal lines separate cells by different subpopulations. Ẑ ′i and
ŵi are shown for each of the samples in (d)-(f). We include only subpopulations
with ŵi,k > 1%.

lations with ŵik ≥ 0.05 are included in the plots for better illustration.

Table A.6 contains the three data missingship mechanisms (MM) used in ana-

lyzing the CB derived NK data. MM0 is the default mechanism. Each mechanism

is defines the parameters β through the quantiles of the negative observed values

in each sample q̃, and probability that a record is missing at those quantiles ρ̃.

For each mechanism, the LPML and DIC are shown. Table A.7 list the implied

β for each data missingship mechanism.
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Marker Marker
Number Name

1 2B4
2 KIR2DL3
3 KIR3DL1
4 CD158B
5 CD16
6 CD27
7 CD62L
8 CD8
9 CD94
10 DNAM1
11 EOMES
12 KLRG1
13 NKG2A
14 NKG2C
15 NKG2D
16 NKP30
17 SIGLEC7
18 TBET
19 TIGIT
20 ZAP70

Table A.5: Marker names and numbers for each marker referenced in the CB
NK cell data.

MM q̃ Probability of Missing (ρ) LPML DIC
0 (0%, 25%, 50%) (5%, 80%, 5%) -24.90 2569097
I (0%, 20%, 40%) (5%, 80%, 5%) -24.93 2569098
II (0%, 15%, 30%) (5%, 80%, 5%) -24.98 2569098

Table A.6: q̃-quantiles of the negative observed values in each sample are used to
specify ỹ, and ρ are the probability of missing at ỹ. Three different sets of q̃ and
ρ̃ are used to examine the sensitivity to the missingship mechanism specification.
LPML and DIC are shown in the last two columns under each of the specification.

Figures A.12 and A.13 respectively summarize the results for the analysis of the

CB NK cell data under data missingship mechanism I and II, done via MCMC.

The posterior estimate of Z and w are shown in panels (a), (c), and (e), and

heatmaps of the simulated data yi,n,j sorted according to the posterior estimate
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Figure A.11: [Plots of t-SNE’s for the CB data] The CB data is visualized using
two-dimensional t-SNE’s that are learned separately on each sample, where each
point represents a cell. Cells in different subpopluations estimated by the FAM
are marked by different symbols and colors. On the top of the scatterplots, the
subpopulation numbers are listed with their corresponding symbols and colors. All
cells are used to obtain t-SNE embeddings, but only cell subpopulations belonging
to subpopluations with ŵik ≥ 0.05 are included in the plots for better illustration.

of the cell subpopulations λ̂i,n in panels (b), (d), and (f)).

Figure A.14 summarizes the results from the analysis of the UCB NK cell data

via ADVI. The posterior mean of Z and the posterior mean of wi are in panels

(a), (c), and (e)), and heatmaps of the simulated data yi,n,j sorted according to

the posterior mode of the cell subpopulations λ̂i,n in panels (b), (d), and (f).
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Data Missingship Mechanism β Sample 1 Sample 2 Sample 3
0 β0 -15.35 -15.73 -13.66

β1 -10.39 -10.20 -9.60
β2 -1.38 -1.34 -1.30

I β0 -20.40 -21.50 -18.21
β1 -12.60 -12.76 -11.62
β2 -1.61 -1.61 -1.51

II β0 -27.43 -29.21 -25.26
β1 -15.52 -15.86 -14.62
β2 -1.90 -1.91 -1.81

Table A.7: Values for β used for the sensitivity analysis to the missingship
mechanism in CB NK cell data analysis.

We repeated the analysis with different preprocessing rules for removing mark-

ers. We removed makers that have either negative or positive expression levels in

more than p×100% cells, and we varied p ∈ {0.85, 0.90, 0.95}. Different thresholds

yield different sets of markers. The markers included for analysis with p = 0.9 is

listed in Tab A.5. Table A.8 additionally lists, for the various p, markers included

in the analysis and the reasons for their exclusions, if applicable. Figures A.15-

A.16, respectively, provide the estimates for Zi and the heatmaps of yi with cells

sorted by subpopulation membership. We demonstrate that the choice of p does

not heavily affect the estimation of Zi for large subpopulations. See, for example,

Figure A.15 where the middle column are the results from ADVI with p = 0.9.

For sample 1 (first row of images), the largest subpopulations in (a) and (b) are

the same for markers that are common between the two datasets. Between (b)

and (c) the largest subpopulations are nearly the same, differing by only mark-

ers CD62L and SIGLEC7. Minor differences likewise appear in the other larger

subpopulations.

148



2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

(a) heatmap of y1,n,j (b) heatmap of y2,n,j (c) heatmap of y3,n,j

markers

ce
llt
yp
es

16.67%
11.56%
8.17%
7.33%
7.26%
6.03%
4.97%
4.44%
4.41%
3.87%
3.7%
3.51%
3.39%
2.72%
2.7%
2.6%
2.48%
2.15%
1.02%

8
10
7
2
1
15
19
4
17
21
9
20
3
12
11
16
18
14
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

ce
ll 

su
bp

op
ul

at
io

ns
 (a

bu
nd

an
ce

) 

markers

ce
llt
yp
es

14.0%
13.92%
9.93%
9.28%
8.68%
5.88%
5.14%
4.92%
4.47%
4.28%
4.07%
3.93%
2.9%
2.55%
2.17%
2.03%

6
16
12
20
7
2
10
14
8
13
19
5
15
4
9
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

ce
ll 

su
bp

op
ul

at
io

ns
 (a

bu
nd

an
ce

) 

markers

ce
llt
yp
es

19.35%
18.34%
8.87%
8.62%
5.73%
5.42%
5.1%
4.74%
3.83%
2.69%
2.31%
2.28%
2.03%
1.9%
1.87%
1.81%
1.71%
1.21%
1.13%
1.04%

20
13
12
16
19
2
8
7
4
5
6
10
1
17
9
11
14
3
21
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

ce
ll 

su
bp

op
ul

at
io

ns
 (a

bu
nd

an
ce

) 

(d) Ẑ ′1 & ŵ1 (e) Ẑ ′2 & ŵ2 (f) Ẑ ′3 & ŵ3

Figure A.12: Data missingship mechanism sensitivity analysis for CB NK cell
data analysis. Specification I is used for β. Heatmaps of yu are shown in (a)-
(c) for samples 1-3, respectively. Cells are rearranged by the posterior point
estimate of the cell clusterings λ̂i,n. Cells and markers are in rows and columns,
respectively. High and low expression levels are in red and blue, respectively, and
black is used for missing values. Yellow horizontal lines separate cells by different
subpopulations. Ẑ ′i and ŵi are shown for each of the samples in (d)-(f). We
include only subpopulations with ŵi,k > 1%.

149



2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

(a) heatmap of y1,n,j (b) heatmap of y2,n,j (c) heatmap of y3,n,j

markers

ce
llt
yp
es

14.96%
11.57%
10.75%
7.11%
6.58%
6.41%
5.82%
4.13%
3.81%
3.77%
3.56%
3.48%
2.99%
2.26%
2.25%
2.23%
2.23%
2.18%
2.14%
1.74%

5
11
20
18
12
4
6
16
13
1
9
19
3
21
2
17
14
7
15
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

ce
ll 

su
bp

op
ul

at
io

ns
 (a

bu
nd

an
ce

) 

markers

ce
llt
yp
es

14.08%
13.22%
13.18%
9.99%
8.99%
6.38%
5.97%
4.74%
4.61%
4.06%
3.85%
2.59%
2.2%
1.71%
1.61%
1.14%

10
15
11
7
8
18
4
17
20
13
21
2
9
5
6
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

ce
ll 

su
bp

op
ul

at
io

ns
 (a

bu
nd

an
ce

) 

markers

ce
llt
yp
es

20.04%
12.7%
8.77%
7.9%
7.16%
6.66%
6.24%
5.5%
5.35%
2.81%
2.79%
2.67%
2.53%
2.28%
2.08%
1.52%
1.18%

7
18
15
8
6
4
11
16
5
12
10
21
2
9
17
3
20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 202B
4 

 
K

IR
2D

L3
  

K
IR

3D
L1

  
C

D
15

8B
 

C
D

16
 

C
D

27
  

C
D

62
L 

 
C

D
8 

C
D

94
  

D
N

A
M

1 
 

E
O

M
E

S
  

K
LR

G
1 

N
K

G
2A

  
N

K
G

2C
  

N
K

G
2D

  
N

K
P

30
 

S
IG

LE
C

7 
 

TB
E

T 
 

TI
G

IT
  

ZA
P

70
 

markers 

ce
ll 

su
bp

op
ul

at
io

ns
 (a

bu
nd

an
ce

) 
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Figure A.13: Data missingship mechanism sensitivity analysis for CB NK cell
data analysis. Specification II is used for β. Heatmaps of yi are shown in (a)-
(c) for samples 1-3, respectively. Cells are rearranged by the posterior point
estimate of the cell clusterings λ̂i,n. Cells and markers are in rows and columns,
respectively. High and low expression levels are in red and blue, respectively, and
black is used for missing values. Yellow horizontal lines separate cells by different
subpopulations. Ẑ ′i and ŵi are shown for each of the samples in (d)-(f). We
include only subpopulations with ŵi,k > 1%.
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(c) Ẑ ′2 and ŵ2 (d) y2,n,j

Figure A.14: [CB NK cell data] Inference obtained by VI is illustrated. Ẑ ′i
and ŵi of samples 1 and 2 are illustrated in panels (a) and (c), respectively,
with markers that are expressed dented by black and not expressed by white.
Only subpopulations with ŵi,k > 1% are included. Heatmaps of yi are shown in
panels (b) and (d) for samples 1 and 2, respectively. Cells and markers are in
rows and columns, respectively. Each column contains the expression levels of a
marker for all cells in the sample. High and low expression levels are red are blue,
respectively. Missing values are black. Cells are rearranged by the corresponding
posterior estimate of their subpopulation indicator, λ̂i,n. Yellow horizontal lines
separate cells by different subpopulations.
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Figure A.14 (continued): [CB NK cell data] Inference obtained by VI is illus-
trated. Ẑ ′i and ŵi of sample 3 illustrated in panel (e), with markers that are
expressed dented by black and not expressed by white. Only subpopulations with
ŵi,k > 1% are included. Heatmaps of yi are shown in panels (b) and (d) for
samples 1 and 2, respectively. Cells and markers are in rows and columns, re-
spectively. Each column contains the expression levels of a marker for all cells in
the sample. High and low expression levels are red are blue, respectively. Missing
values are black. Cells are rearranged by the corresponding posterior estimate
of their subpopulation indicator, λ̂i,n. Yellow horizontal lines separate cells by
different subpopulations.
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Marker p=0.85 p=0.90 p=0.95 Reason for exclusion
2B4 included included included NA
2DL1 excluded excluded included (-)
2DL3 excluded included included (-)
2DS4 excluded excluded excluded (-)
3DL1 excluded included included (-)
CCR7 excluded excluded included (-)

CD158B included included included NA
CD16 included included included NA
CD25 excluded excluded excluded (-)
CD27 included included included NA
CD57 excluded excluded excluded (-)
CD62L included included included NA
CD8 included included included NA
CD94 included included included NA
CKIT excluded excluded excluded (-)

DNAM1 included included included NA
EOMES included included included NA
GRA excluded excluded excluded (0)
GRB excluded excluded excluded (0)

KLRG1 included included included NA
LFA1 excluded excluded excluded (-)

NKG2A included included included NA
NKG2C excluded included included (-)
NKG2D included included included NA
NKP30 included included included NA

PERFORIN excluded excluded excluded (0)
SIGLEC7 included included included NA

SYK excluded excluded excluded (+)
TBET included included included NA
TIGIT included included included NA
TRAIL excluded excluded excluded (-)
ZAP70 included included included NA

Table A.8: Inclusion of markers in the analysis for various preprocessing thresh-
old p, and the reasons for exclusion, if applicable. (-) denotes that expression
levels were mostly negative or missing and (+) denotes that expression levels
were mostly positive, (0) denotes that expressions were mostly around 0.

153



(a) Ẑ1, p = 0.85 (b) Ẑ1, p = 0.90 (c) Ẑ1, p = 0.95
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Figure A.15: Sensitivity of estimates Ẑi to specification of p in preprocessing,
for i = 1, 2, 3 and p = 0.85, 0.90, 0.95, using ADVI.
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(a) y1, p = 0.85 (b) y1, p = 0.90 (c) y1, p = 0.95
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Figure A.16: Heatmaps of yi with cells sorted by subpopulation membership
for each specification of p in preprocessing, for i = 1, 2, 3 and p = 0.85, 0.90, 0.95,
using ADVI.
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Appendix B

A Bayesian Model for Identifying

Distinct Features that Define Cell

Subpopulations from Cytometry

Data

B.1 Prior Calibration

Recall that φ = (φ1, φ2) are the hyperparameters of the repulsion function

fφ(d). We establish numerical values of φ as follows; we find the values of φ such

that

Pr
(

min
1≤k1<k2≤K

d(zk1 , zk2) ≥ d | φ
)
> p, (B.1)

where d and p are thresholds of the minimum difference of a pair of features and

the probability, respectively. To simplify the search, we fix φ1 and find the smallest
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value of φ2 that satisfies (B.1). Since it is very hard to analytically evaluate (B.1),

we used the importance sampling scheme and numerically evaluate it for different

values of φ and d as follows.

1. Simulate a sample of Z of size B, {Z(b), b = 1, . . . , B}, from the distribution

p′(Z | v) = ∏J
j=1

∏K
k=1 v

zj,k
k (1 − vk)1−zj,k , where B is a sufficiently large

number.

2. Let g(Z) = I(min1≤k1<k2≤K d(zk1 , zk2) ≥ d), where I(A) is a binary indicator

function, and approximate (B.1) using {Z(b), b = 1, . . . , B};

Pr
(

min
1≤k1<k2≤K

d(zk1 , zk2) ≥ d | φ
)

=E [g(Z) | v,φ]

=
∑
Z∈Z

g(Z) · p(Z | v,φ)

≈
∑B
b=1 g(Z(b)) ·∏K

k2=2
∏k2−1
k1=1 fφ(d(z(b)

k1 , z
(b)
k2 ))∑B

b=1
∏K
k2=2

∏k2−1
k1=1 fφ(d(z(b)

k1 , z
(b)
k2 ))

.

For our calibration, we used vk = 0.5 for all k. The plots in Figure B.1 illustrate

Pr(min1≤k1<k2≤K d(zk1 , zk2) ≥ d | φ) as a function of d. We also vary the value of

φ2, while fixing φ1 = 1 for simplicity. For the simulation studies, we used K = 15,

d = 4 and p = 0.95. As shown in panel (a) of the figure, we let φ1 = 1 and set

φ2 = 10, the smallest value of φ2 satisfying (B.1). Similarly, for the real data

analysis, we used K = 25, d = 3 and p = 0.95. As shown in panel (b) of the

figure, we let φ1 = 1 and chose φ2 = 25 for the real data analysis. d = 4 and 3

implies that any pair of features are expected to differ in approximately 20% of

the markers.
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Figure B.1: Plot of Pr(min1≤k1<k2≤K d(zk1 , zk2) ≥ d | φ) as a function of d. φ2
is also varied while fixing φ1 = 1. K = 15 and 25 are in panels (a) and (b),
respectively.

B.2 Supplementary Posterior Computation

B.2.1 Supplementary Material for Missing Data Mecha-

nism

When the expression level of a marker is very weak, its expression level is not

recorded in a cytometry experiment due to some experimental artifacts. Missing

values in CyTOF data are missing not at random. Following the expert knowledge

that the expression value is not recorded when its potentially observable value

is low, we build a missingness mechanism and impute missing expression levels

during the posterior simulation to accurately account for uncertainty. Similar to

the missingness mechanism used in Lui et al. (2020), we consider a static logistic

regression model as follows; Let oi,n,j = 1 if yi,n,j is observed; and 0, otherwise.

Then, let ρi,n,j(yi,n,j) be the probability that the expression level of marker j in cell

n of sample i is missing given its potentially observed numerical value, yi,n,j, i.e.,

Pr(oi,n,j = 0 | yi,n,j) = ρi,n,j(yi,n,j), and assume a Bernoulli distribution for oi,n,j,
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oi,n,j | ρi,n,j(yi,n,j ind∼ Bernoulli(1 − ρi,n,j(yi,n,j)). Combining with the marginal

distribution of yi,n,j in (2) of the main text, we have a joint model of yi,n,j and

oi,n,j. We assume the following quadratic model for ρyi,n,j ;

ρi,n,j(yi,n,j) = logistic
(
β0,i + β1,i · yi,n,j + β2,i · y2

i,n,j

)
,

where (β0,i, β1,i, β2,i) are fixed. We calibrate βi using the expert knowledge such

that imputed values of the missing expression levels take negative values with large

probabilities. Specifically, we (empirically) used the minimum, first quantile, and

median of negative yi,n,j values, and set their ρi,n,j values to 0.05, 0.80, and 0.50

respectively, to solve for βi. For more details, see Lui et al. (2020). We let θ

represents all model parameters and write the joint distribution of y and o

p (y,o | θ) =
I∏
i=1

Ni∏
n=1

K∑
k=1

wi,k
J∏
j=1

Lzj,k∑
`=1

η
zj,k
i,j,` ·

 1√
2πσ2

i

exp


−
(
yi,n,j − µ?zj,k,`

)2

2σ2
i




×
I∏
i=1

Ni∏
n=1

J∏
j=1

ρ
1−oi,n,j
i,n,j (1− ρi,n,j)oi,n,j , (B.2)

Since ρi,n,j is a constant, it can be dropped for observed yi,n,j from (B.2). Thus,

we have

p (y,o | θ) ∝
I∏
i=1

Ni∏
n=1

K∑
k=1

wi,k
J∏
j=1

Lzj,k∑
`=1

η
zj,k
i,j,` ·

 1√
2πσ2

i

exp


−
(
yi,n,j − µ?zj,k,`

)2

2σ2
i




×
I∏
i=1

Ni∏
n=1

J∏
j=1

ρ
1−oi,n,j
i,n,j . (B.3)
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B.2.2 Supplementary Material for Parallel Tempering

Parallel tempering (PT) (Earl and Deem 2005) is a general MCMC technique

to increase the mixing rate of a model that suffers from poor mixing. In posterior

inference using PT, multiple MCMC chains of various “temperatures” are modeled

and updated in parallel for a given model. Typically, each chain samples from the

posterior distribution πτ (θ) ∝ L(θ)1/τp(θ), where τ ≥ 1 is called the temperature,

θ are model parameters, p(θ) is the prior, L(θ) is the likelihood, and πτ (θ) is the

posterior of θ under temperature τ . At higher temperatures, a greater area of the

sample space can be explored. When the temperature is 1, the original distribution

is recovered. T chains are run in parallel, for a sequence of increasing temperatures

τ1, τ2, . . . , τT where T ∈ N. At regular intervals, the entire states in pairs of chains

are swapped with some probability. For example, a possible swapping scheme

is that at every M iterations of the MCMC, starting from the hottest (highest-

temperature) chain, the states θt and θt−1 at adjacent temperatures τt and τt−1

are swapped with probability

αij = min
{

1, πτt(θt−1) · πτt−1(θt)
πτt(θt) · πτt−1(θt−1)

}

= min
{

1, L(θt−1)1/τtp(θt−1) · L(θt)1/τt−1p(θt)
L(θt)1/τtp(θt) · L(θt−1)1/τt−1p(θt−1)

}

= min
{

1, L(θt−1)1/τt · L(θt)1/τt−1

L(θt)1/τt · L(θt−1)1/τt−1

}
.

Swapping with this probability preserves the detailed balance of the underlying

simulation.

Tawn et al. (2020) showed that when tempering (simulated or parallel) is

applied to mixture models, it is conceivable that mixture components originally

with substantially smaller weights can have an dominantly large mixture weight at
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high temperatures. To preserve the original weights of these mixture components,

they proposed a weight-stabilizing tempering scheme in which only the kernels

of the mixture components are tempered. Applied to our model, accounting for

possibly missing data, the likelihood Lτ (θ) at temperature τ is

Lτ (θ) =
I∏
i=1

Ni∏
n=1

K∑
k=1

wi,k
J∏
j=1

Lzj,k∑
`=1

η
zj,k
i,j,` ·

 1√
2πσ2

i

exp


−
(
yi,n,j − µ?zj,k,`

)2

2σ2
i




1/τ

×
I∏
i=1

Ni∏
n=1

J∏
j=1

ρ
1−oi,n,j
i,n,j . (B.4)

B.2.3 Full Conditional Distributions of Model Parameters

This section presents detailed derivations of full conditional distributions for

each model parameter.

• Full Conditional for zj,k

Each zj,k can be updated sequentially, as follows:

pτ (zj,k = z | λ,Z−(j,k), rest)

∝ p(zj,k = z | v, fφ) · pτ (y | Z, λ, rest)

∝ p(zj,k = z | v, fφ) ·
I∏
i=1

Ni∏
n=1

(
Lz∑
`=1

ηzi,j,` · p(yi,n,j | µ?z,`, σ2
i )1/τ

)1{λi,n=k}

∝ p(zj,k = z | v, fφ) ·
I∏
i=1

Ni∏
n=1

(
Lz∑
`=1

ηzi,j,` · p(yi,n,j | µ?z,`, σ2
i τ)

)1{λi,n=k}

where Z−(j,k) refers to all elements in Z except element zj,k, and z ∈ {0, 1}.

Note that γ is marginalized over because proposing a new value value of zj,k

is not sensible when conditioned on γ.
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We can further marginalize over λi,n to achieve better mixing. Hence,

pτ (zj,k = z | Z−(j,k), rest) ∝ p(zj,k = z | v, fφ) · pτ (y | Z, rest)

∝ v
zj,k
k (1− vk)1−zj,k ·

∏
h6=k

fφ(d(zh, zk))×

I∏
i=1

Ni∏
n=1

K∑
h=1

Wi,h

J∏
j=1

Lzj,h∑
`=1

η
zj,h
i,j,` · p(yi,n,j | µ?z,`, σ2

i )1/τ

∝ v
zj,k
k (1− vk)1−zj,k ·

∏
h6=k

fφ(d(zh, zk))×

I∏
i=1

Ni∏
n=1

K∑
h=1

Wi,h

J∏
j=1

Lzj,h∑
`=1

η
zj,h
i,j,` · p(yi,n,j | µ?z,`, σ2

i τ).

Thus, (Zj,k | Z−(j,k), rest) can be updated using a Gibbs step. The normaliz-

ing constant is simply the sum of the (un-normalized) term above evaluated

at z = {0, 1}.

• Full Conditional for vk

Recall that the prior distribution for vk is vk | α ind∼ Beta(α/K, 1), for

k = 1, . . . , K. Thus, p(vk | α) = α
K
v
α/K−1
k .

p(vk | y, rest) ∝ p(vk)
J∏
j=1

p(zj,k | vk, fφ)

∝ α

K
v
α/K−1
k

J∏
j=1

v
zj,k
k (1− vk)1−zj,k

∝ v
α/K+

∑J

j=1 zj,k−1
k (1− vk)J−

∑J

j=1 zj,k

∴ vk | y, rest ∼ Beta
α/K +

J∑
j=1

zj,k, J + 1−
J∑
j=1

zj,k

 .
• Full Conditional for ri,k (marginalized over (λ, γ))

Recall that ri,k | pi ∼ Bernoulli(pi). Since λi,n and ri,k are highly dependent,
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we will marginalize over λi,n and use a Metropolis step to update ri,k, where

the proposal step flips ri,k (from 0 to 1 and vice versa).

pτ (ri,k | rest) ∝ p(ri,k | pi) · pτ (y | rest)

∝ p
ri,k
i (1− pi)1−ri,k ·

Ni∏
n=1

K∑
h=1

wi,h · pτ (yi,n | zh, rest)

where

pτ (yi,n | zh, rest) ∝
J∏
j=1

Lzj,h∑
`=1

η
zj,h
i,j,` ·

 1√
2πσ2

i

exp


−
(
yi,n,j − µ?zj,h,`

)2

2σ2
i




1/τ

.

∝
J∏
j=1

Lzj,h∑
`=1

η
zj,h
i,j,` ·

1√
2πσ2

i τ
exp


−
(
yi,n,j − µ?zj,h,`

)2

2σ2
i τ

 .

Note that since {Z,µ?,σ2,η} are held constant throughout the updates of

each ri,k, the computation of p(yi,n | zh, rest) needs to be computed (and

then cached) only once per update of the entire r matrix.

Let w(z)
i,k be computed as wi,k with the current ri but replacing ri,k with

z ∈ {0, 1}. Then for a current ri,k, the acceptance ratio can be computed as

min

1,
(

pi
1− pi

)1−ri,k (1− pi
pi

)ri,k
·
∏Ni
n=1

∑K
h=1w

(1−ri,k)
i,h · pτ (yi,n | zh, rest)∏Ni

n=1
∑K
h=1w

(ri,k)
i,h · pτ (yi,n | zk′ , rest)

 .

• Full Conditional for pi
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p(pi | rest) ∝ p(pi) ·
K∏
k=1

p(ri,k | pi)

∝ p
ap−1
i (1− pi)bp−1 · p

∑K

k=1 ri,k
i (1− pi)K−

∑K

k=1 ri,k

∴ pi | r ∼ Beta
(
ap +

K∑
k=1

ri,k, bp +K −
K∑
k=1

ri,k

)
.

• Full Conditional for w?i,k (conditioned on λ)

Recall that w?i,k ∼ Gamma(aw, 1), where aW = K−1. And wi,k =
w?i,k · ri,k∑K
`=1w

?
i,` · ri,`

.

p(w?i,k | rest) ∝ p(w?i,k) · p(λi | wi)

∝ (w?i,k)aw−1 exp(−w?i,k) ·
 Ni∏
n=1

p(λi,n | wi)


∝ (w?i,k)aw−1 exp(−w?i,k) ·
 Ni∏
n=1

wi,λi,n

ri,k

Note that if ri,k = 0, then w?i,k is independent of the data. So w?i,k will simply

be sampled from the prior. If ri,k = 1,

p(w?i,k | rest) ∝ (w?i,k)aw−1 exp(−w?i,k) ·
 Ni∏
n=1

w?i,λi,n · ri,λi,n
w?i,k · ri,k +∑

` 6=k w
?
i,` · ri,`


∝

(w?i,k)aW−1 exp(−w?i,k)(
w?i,k · ri,k +∑

`6=k w
?
i,` · ri,`

)Ni · Ni∏
n=1

(w?i,k)1{λi,n=k}

∝
(w?i,k)aW+(

∑Ni
n=1 1{λi,n=k})−1 exp(−w?i,k)(

w?i,k +∑
`6=k w

?
i,` · ri,`

)Ni .

Since the full conditional distribution for w?i,k cannot be directly sampled
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from, it may be sampled from by a Metropolis step with a Normal proposal

distribution. The parameter first needs to be log-transformed. Let the full

conditional of the transformed parameter be p(φ | y, rest) = pw?
i,k

(exp(φ) |

y, rest) exp(φ). Then, the proposed state of the transformed parameter (φ)

is accepted with probability

min
{

1, p(φ̃ | y, rest)
p(φ | y, rest)

}
.

Exponentiating the updated value for φ returns the updated value for w?i,k.

• Full Conditional for α

Recall that vk | α ∼ Beta(α/K, 1) and α ∼ Gamma(aα, bα) where

Gamma(a, b) denotes a Gamma distribution with mean a/b. Thus, the full

conditional for α can be computed as:

p(α | y, rest) ∝ p(α)×
K∏
k=1

p(vk | α)

∝ αaα−1 exp {−bαα} ×
K∏
k=1

α v
α/K
k

∝ αaα+K−1 exp
{
−α

(
bα −

∑K
k=1 log vk
K

)}

∴ α | y, rest ∼ Gamma
(
aα +K, bα −

∑K
k=1 log vk
K

)
.

• Full Conditional for λi,n (marginalized over γ)
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Recall that P (λi,n = k | wi) = wi,k, for k ∈ {1, . . . , K}.

Pτ (λi,n = k | y, rest)

∝ p(λi,n = k) · pτ (y | λi,n = k, rest)

∝ wi,k ·

 J∏
j=1

Lzj,k∑
`=1

η
zj,k
i,j,` ·

 1√
2πσ2

i

exp


−
(
yi,n,j − µ?zj,k,`

)2

2σ2
i




1/τ
∝ Wi,k ·

 J∏
j=1

Lzj,k∑
`=1

η
zj,k
i,j,` ·

1√
2πσ2

i τ
exp


−
(
yi,n,j − µ?zj,k,`

)2

2σ2
i τ


 .

Thus, Pτ (λi,n = k | y, rest) = Pτ (λi,n = k | y, rest)∑K
h=1 Pτ (λi,n = h | y, rest)

, for k ∈

{1, . . . , K} .

• Full Conditional for δz,` (conditioned on (λ,γ))

For δ1,`, let S1,i,` =
{

(i, n, j) :
(
zj,λi,n = 1 ∩ γi,n,j ≥ `

)}
and |S1,i,`| the car-

dinality of S1,i,`.

pτ (δ1,` | y, rest)

∝ p(δ1,` | ψ1, κ
2
1)× pτ (y | δ1,`, rest)

∝ 1(δ1,` ≥ 0)× exp
{
−(δ1,` − ψ1)2

2κ2
1

}
× I∏

i=1

∏
(i,n,j)∈S1,i,`

exp

−
(
yi,n,j −

γi,n,j∑
r=1

δ1,r

)2/
2σ2

i τ




∝ exp

−(δ1,`)2

2

(
1
κ2

1
+

I∑
i=1

|S1,i,`|
σ2
i τ

)
+ δ1,`

ψ1

κ2
1

+
I∑
i=1

∑
S1,i,`

gi,n,j
σ2
i τ

×
1(δ1i` ≥ 0),
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where gi,n,j = yi,n,j −
γi,n,j∑
r=1

(δ1r)1(r 6=`). Therefore, δ1,` | y, rest ind∼

TN+

ψ1 + κ2
1
∑I
i=1

∑
S1,i,`(gi,n,j/(σ2

i τ))
1 + κ2

1
∑I
i=1(|S1,i,`|/(σ2

i τ))
,

κ2
1

1 + κ2
1
∑I
i=1(|S1,i,`|/(σ2

i τ))

 .

Similarly for δ0,`, let S0,i,` =
{

(i, n, j) :
(
zj,λi,n = 0 ∩ γi,n,j ≥ `

)}
and |S0,i,`|

be the cardinality of S0,i,`. Therefore, δ0l | y, rest ind∼

TN+

ψ0 + κ2
0
∑I
i=1

∑
S0,i,`(gi,n,j/(σ2

i τ))
1 + κ2

0
∑I
i=1(|S0,i,`|/(σ2

i τ))
,

κ2
0

1 + κ2
0
∑I
i=1(|S0,i,`|/(σ2

i τ))

 ,

where gi,n,j = −yi,n,j −
γi,n,j∑
r=1

(δ0r)1(r 6=`).

• Full Conditional for σ2
i (conditioned on (λ,γ))

pτ (σ2
i | y, rest)

∝p(σ2
i )× pτ (y | σ2

i , rest)

∝(σ2
i )−aσ−1 exp

{
− bσ
σ2
i

} J∏
j=1

Ni∏
n=1

 1√
2σ2

i

exp
{
−(yi,n,j − µi,n,j)2

2σ2
i

}
1/τ

∝(σ2
i )−aσ−1 exp

{
− bσ
σ2
i

} J∏
j=1

Ni∏
n=1

{
(σ2

i )−1/2τ exp
{
−(yi,n,j − µi,n,j)2

2σ2
i τ

}}
∝(σ2

i )−(aσ+NiJ

2τ )−1 exp

−
(

1
σ2
i

)bσ +
J∑
j=1

Ni∑
n=1

(yi,n,j − µi,n,j)2

2τ

 .

∴ σ2
i | y, rest

ind∼ InverseGamma
aσ + NiJ

2τ , bσ +
J∑
j=1

Ni∑
n=1

(yi,n,j − µi,n,j)2

2τ

 ,
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where µi,n,j = µ?zj,λi,n ,γi,n,j
.

• Full Conditional for γ (conditioned on λ) The prior for γi,n,j is p(γi,n,j = ` |

zj,λi,n = z, ηzi,j,`) = ηzi,j,`, where ` ∈ {1, ..., L}.

pτ (γi,n,j = ` | y, zj,λi,n = z, rest) ∝ p(γi,n,j = `) · p(yi,n,j | γi,n,j = `, rest)1/τ

∝ p(γi,n,j = `) · p(yi,n,j | µ?z,`, σ2
i , rest)1/τ

∝ ηzi,j,` ·

 1√
2πσ2

i

exp


−
(
yi,n,j − µ?z,`

)2

2σ2
i




1/τ

∝ ηzi,j,` · exp
{
−

(yi,n,j − µ?z,`)2

2σ2
i τ

}

The normalizing constant is obtained by summing the last expression over

` = 1, ..., Lzj,λi,n . Moreover, since ` is discrete, a Gibbs update can be done

on γi,n,j.

• Full Conditional for ηzi,j (conditioned on (λ,γ))

The prior for ηzi,j is ηzi,j ∼ DirichletLz(aηz), for z ∈ {0, 1}. Thus, the full

conditional for ηzi,j is:

p(ηzi,j | rest) ∝ p(ηzi,j)×
Ni∏
n=1

p(γi,n,j | ηzi,j)

∝ p(ηzi,j)×
Ni∏
n=1

Lz∏
`=1

(
ηzi,j,`

)
1{γi,n,j=` ∩ zj,λi,n=z}

∝
Lz∏
`=1

(
ηzi,j,`

)aηz−1
×

Ni∏
n=1

Lz∏
`=1

(
ηzi,j,`

)
1{γi,n,j=` ∩ zj,λi,n=z}

∝
Lz∏
`=1

(
ηzi,j,`

)(aηz+
∑Ni

n=1 1{γi,n,j=` ∩ zj,λi,n=z})−1
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Therefore,

ηzi,j | y, rest ∼ DirichletLz
(
a?1, ..., a

?
Lz

)
where a?` = aηz +∑Ni

n=1 1
{
γi,n,j = ` ∩ zj,λi,n = z

}
.

• Full Conditional for missing yi,n,j (conditioned on (λ, γ))

pτ (yi,n,j | oi,n,j = 0, rest) ∝ p(oi,n,j = 0 | yi,n,j, rest)× 1√
2πσ2

i

exp


−
(
yi,n,j − µ?zj,λi,n ,γi,n,j

)2

2σ2
i




1/τ

∝ ρi,n,j × exp


−
(
yi,n,j − µ?zj,λi,n ,γi,n,j

)2

2σ2
i τ


Since the full conditional distribution cannot be directly sampled from, it may

be sampled from by a Metropolis step with a Normal proposal distribution. The

proposed state is accepted with probability

min
{

1, pτ (ỹi,n,j | y, rest)
pτ (yi,n,j | y, rest)

}
.

B.2.4 Intrinsic MCMC

Posterior simulation is computationally expensive when Ni is large. Particu-

larly, updating Z takes substantially longer than updating other parameters. To

speed up our posterior simulation, we exploit the idea of “intrinsic Bayes factor”

(Berger and Pericchi 1996), and propose a sampling scheme that uses a minimal

subsample of data to generate a proposal of Z and replace the prior of θ. Specif-

ically, we partition the data y (which includes the current imputed missing data)
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into y′ and y′′ , where y′ is a “small” training sample of y, and y′′ is the comple-

ment of y′, and build a “minimally” trained prior using y′, p?(θ) ∝ p(θ)p(y′ | θ).

We replace the prior with p?(θ), and execute the posterior simulation with the

remainder of the data, i.e., sample θ from p?(θ | y′′) ∝ p?(θ)p(y′′ | θ). Also, we

use p?(θ) to generate a proposal of Z in updating Z as follows;

1. Simulate a proposal of Z from p?(Z), say Z ′. Specifically, we use the full

conditional of zj,k given above and sample Z from p?(Z) via MCMC using

the current Z as an initial value, while fixing the other parameters at their

current value. We repeat this for a small number of times (M) and generate

a proposal of Z approximately independent of the current Z.

2. Compute the metropolis acceptance ratio for the proposal, Z ′ as

ζ = π(Z ′ | y,θ−Z)
π(Z | y,θ−Z) ·

q(Z)
q(Z ′) = p(y′′ | Z ′,θ−Z) · p?(Z ′)

p(y′′ | Z,θ−Z) · p?(Z) ·
p?(Z)
p?(Z ′)

= p(y′′ | Z ′,θ−Z)
p(y′′ | Z,θ−Z) ,

where θ−Z denotes all random parameters except Z. We accept Z ′ with

probability min {1, ζ}.

3. Update all other parameters in θ by sequentially sampling from their full

conditionals.

Since p?(θ | y′′) ∝ p(θ)p(y | θ), updating all other parameters in θ remains the

same. Samples of Z under our current method can be highly correlated whenM is

too small. AsM increases, the correlation will decrease, but the computation time

will increase. Similarly, a small size for y′ will increase the speed of sampling, but

at the expense of obtaining highly variable proposals for Z ′, which may lower the

170



acceptance rate for Z. In our simulation studies and data analysis, we consider

hardware and time constraints, and select M and the size of y′ primarily through

preliminary simulation studies.

B.3 Additional Results for Simulation Studies

We conducted sensitivity analyses of the model by changing values of φ2. We

fitted the rep-FAM with different values of φ2, φ2 ∈ {1, 10, 25, 100} while fixing

φ1 = 1. The results with φ2 = 10 and 100 are presented in the main text.

Figures B.2 and B.3 show the transpose of the posterior estimates of Z and w

with φ2 = 1 and 25, respectively. For a larger value of φ2, Ẑi includes features that

are more distinctive. Figures B.4-B.6 show heatmaps of the simulated expression

levels of a sample for each of the three scenarios. For the three plots, we vary

the value of φ2 by letting φ2 ∈ {1, 25, 100}. The cells (rows) are rearranged

according to their posterior cluster membership estimates, λ̂i,n. High expression

levels (in red) are likely to correspond to marker expressions in the corresponding

features in Ẑi; and low expression levels (in blue) to non-expression of markers in

corresponding features in Ẑi. Missing values, artificially included to emulate real

data, are indicated by black cells. Figure B.7 presents the posterior distribution

for the number of selected features |Ri| for each sample (i = 1, 2), scenario (1,2,3),

and φ2 ∈ {1, 25, 100}. The red line indicates the true value of |Ri|. As φ2 increases,

Ri tends to decrease as well.

Figures B.8-B.10 show heatmaps of y, where cells in rows are arranged by

cluster membership labels estimated from FlowSOM and MClust. The figures are

for each of the three simulation scenarios. Expression levels are more heteroge-

neous within some clusters. For example, as shown in Figures B.8 (a) and (c),
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(a) Sc. 1, i = 1 (b) Sc. 2, i = 1 (c) Sc. 3, i = 1
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(d) Sc. 1, i = 1 (e) Sc. 2, i = 1 (f) Sc. 3, i = 1
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Figure B.2: [Simulation Study] Posterior estimate for transpose of Z and w in
simulation studies for each sample (i = 1, 2) and scenarios (1,2,3). φ2 = 1 is used.
The binary matrices are the estimates of Z and the numbers on the left axes are
the feature number, and their abundance in parentheses.

FlowSOM and MClust collapsed some true clusters into a cluster and the most

abundant (bottom) cluster contains a mix of high and low expression for marker

6

Figures B.11- B.13 show 2-dimensional t-SNE of the simulated data from each

scenario. In each scenario, the embeddings were computed jointly for both sam-

ples. Points are color-coded by their true cluster labels. When a feature is very

different from the others, the cells in the corresponding cluster have embeddings

well separated from the other embeddings, e.g., Scenario 2 shown in Figure B.12.

However, when a feature is similar to some other features, the embeddings of the

cells in the corresponding cluster are greatly overlapped with those of the cells in

other clusters, as in Scenarios 1 and 3.
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(a) Sc. 1, i = 1 (b) Sc. 2, i = 1 (c) Sc. 3, i = 1
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(d) Sc. 1, i = 1 (e) Sc. 2, i = 1 (f) Sc. 3, i = 1
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Figure B.3: [Simulation Study] Posterior estimate for transpose of Z and w in
simulation studies for each sample (i = 1, 2) and scenarios (1,2,3). φ2 = 25 is
used. The binary matrices are the estimates of Z and the numbers on the left
axes are the feature number, and their abundance in parentheses.

B.4 Additional Results for Data Analysis

Here we provide additional results from the sensitivity analyses to the spec-

ification of φ and pi. As mentioned in the main text, we calibrated the model

such that, a priori, 5 subpopulations on average are selected for each sample. For

K = 25, pi = 0.2 corresponds to a prior mean of 5 subpopulations per sample. We

additionally fit the model with different values of pi, pi = 0.1 or 0.3 to assess model

sensitivity to the specification of pi. Figures B.14-B.16 show that the specification

of pi ∈ {0.1, 0.3} only weakly influence the inference. From Figures B.14, we ob-

serve that the most abundant subpopulation in the estimated Ẑi for sample 1 is

the same, with similar abundances for the different values of pi. In addition, the

four most abundant features for the different pi are similar for a given sample. For
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(a) Sc. 1, i = 1, φ2 = 1 (b) Sc. 2, i = 1, φ2 = 1 (c) Sc. 3, i = 1, φ2 = 1
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(d) Sc. 1, i = 2, φ2 = 1 (e) Sc. 2, i = 2, φ2 = 1 (f) Sc. 3, i = 2, φ2 = 1
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Figure B.4: Marker expression levels yi sorted by row according to posterior
estimate of feature membership labels λi,n, for each sample (i = 1, 2), scenario
(1,2,3). φ2 = 1 is used.

reference, heatmaps of the data with cells (rows) sorted according to the estimated

subpopulation (λ̂i,n) are included in Figure B.15. Figure B.16 shows the posterior

distribution of |Ri| for φ2 = 25, each sample, and pi = 0.1 and 0.3. Note that

with pi = 0.1, the number of selected subpopulations is smaller as subpopulations

with smaller abundances are not selected. Figure B.17 shows the distribution of

the pairwise-column distances between subpopulation estimates Ẑi.

The calibration of φ2 was discussed in the main document. Here, we pro-

vide supporting figures to assess model sensitivity to the specification of φ2 ∈

{1, 10, 100}. Figure B.18 show the estimates Ẑi for the various φ2. Note that

larger subpopulations have a tendency to be recovered for the various φ2. For

example, subpopulations 1 for φ2 = 1, 100 and subpopulation 3 for φ2 = 2 are
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(a) Sc. 1, i = 1, φ2 = 25 (b) Sc. 2, i = 1, φ2 = 25 (c) Sc. 3, i = 1, φ2 = 25
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(d) Sc. 1, i = 2, φ2 = 25 (e) Sc. 2, i = 2, φ2 = 25 (f) Sc. 3, i = 2, φ2 = 25
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Figure B.5: Marker expression levels yi sorted by row according to posterior
estimate of feature membership labels λi,n, for each sample (i = 1, 2), scenario
(1,2,3). φ2 = 25 is used.

identical. Figure B.19 also shows that the number of selected subpopulations de-

creases as φ2 increases. Figure B.20 shows the distribution of pairwise-column

distances between subpopulation estimates Ẑi for each sample and the various

φ2. Note the tendency for subpopulations to be more varied as φ2 increases. For

example, when φ2 = 100, we see that all subpopulations are different (from other

subpopulations) by at least 3 markers; whereas at φ2 = 1, about 5% and 4% of the

subpopulations are different by 1 marker in samples 1 and 2, respectively. Thus,

φ2 should not be made arbitrarily large, but should be reasonably calibrated as

suggested in the main text. For reference, Figure B.21 presents heatmaps of the

data with cells (rows) sorted according to the estimated subpopulation (λ̂i,n).

Figure B.22 shows plots of 2-dimensional t-SNE embeddings for our CyTOF
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(a) Sc. 1, i = 1, φ2 = 100 (b) Sc. 2, i = 1, φ2 = 100 (c) Sc. 3, i = 1, φ2 = 100
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(d) Sc. 1, i = 2, φ2 = 100 (e) Sc. 2, i = 2, φ2 = 100 (f) Sc. 3, i = 2, φ2 = 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

markers

0

250

500

750

1000

1250

1500

1750

4 2 0 2 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
markers

0

250

500

750

1000

1250

1500

1750

4 2 0 2 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

markers

0

250

500

750

1000

1250

1500

1750

4 2 0 2 4

Figure B.6: Marker expression levels yi sorted by row according to posterior
estimate of feature membership labels λi,n, for each sample (i = 1, 2), scenario
(1,2,3). φ2 = 100 is used.

data. The embeddings are colored by subgroup label estimates from the rep-FAM

and from the ind-FAM. For both, pi = 0.2 is assumed, and for the rep-FAM,

φ2 = 25 is set.

Figure B.23 shows heatmaps of the patients dataset with cells (rows) arranged

by cluster memberships estimates by FlowSOM and MClust. The expression levels

in clusters estimated by those methods are more different than those in the clusters

estimated by our rep-FAM. The clusters by FlowSOM and MClust includes both

high and low expression levels, e.g., see the second largest subpopulation in sample

2 in panel (b) and the largest subpopulation in sample 2 in panel (d).
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(a) |Ri|, Sc. 1, φ2 = 1 (b) |Ri|, Sc. 2, φ2 = 1 (c) |Ri|, Sc. 3, φ2 = 1
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(d) |Ri|, Sc. 1, φ2 = 25 (e) |Ri|, Sc. 2, φ2 = 25 (f) |Ri|, Sc. 3, φ2 = 25
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(g) |Ri|, Sc. 1, φ2 = 100 (h) |Ri|, Sc. 2, φ2 = 100 (i) |Ri|, Sc. 3, φ2 = 100
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Figure B.7: Posterior distribution of number of selected features |Ri| for each
sample (i =1,2), scenario (1,2,3), and φ2 ∈ (1, 25, 100).
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(a) Sample 1 (FlowSOM) (b) Sample 2 (FlowSOM)
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(c) Sample 1 (MClust) (d) Sample 2 (MClust)
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Figure B.8: [Simulation Scenario 1] Heatmap of the data yi in simulation sce-
nario 1 for each sample (i = 1, 2). Cells in rows are arranged by their cluster
membership estimates. Clustering method, FlowSOM are used for (a) and (b),
and MClust for (c) and (d).
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(a) Sample 1 (FlowSOM) (b) Sample 2 (FlowSOM)
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(c) Sample 1 (MClust) (d) Sample 2 (MClust)
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Figure B.9: [Simulation Scenario 2] Heatmap of the data yi in simulation sce-
nario 2 for each sample (i = 1, 2). Cells in rows are arranged by their cluster
membership estimates. Clustering method, FlowSOM are used for (a) and (b),
and MClust for (c) and (d).
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(a) Sample 1 (FlowSOM) (b) Sample 2 (FlowSOM)
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(c) Sample 1 (MClust) (d) Sample 2 (MClust)
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Figure B.10: [Simulation Scenario 3] Heatmap of the data yi in simulation
scenario 3 for each sample (i = 1, 2). Cells in rows are arranged by their cluster
membership estimates. Clustering method, FlowSOM are used for (a) and (b),
and MClust for (c) and (d).
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(a) Sample 1 (b) Sample 2
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Figure B.11: t-SNE for Scenario 1. The embeddings of the cells are colored by
their true cluster labels.

(c) Sample 1 (d) Sample 2
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Figure B.12: Plots of t-SNE for Scenario 2. The embeddings of the cells are
colored by their true cluster labels.
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(e) Sample 1 (f) Sample 2
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Figure B.13: Plots of t-SNE for Scenario 3. In this dataset, distinct and similar
features are present. TheThe embeddings of the cells are colored by their true
cluster labels.
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(a) Sample 1, pi = 0.1 (b) Sample 2, pi = 0.1
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(c) Sample 1, pi = 0.3 (d) Sample 2, pi = 0.3
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Figure B.14: Point estimates of NK cell subpopulations Z in cytometry samples
taken from 2 subjects, for each sample (i = 1, 2), with pi fixed at 0.1 and 0.3, and
φ2 = 25
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(a) Sample 1, pi = 0.1 (b) Sample 2, pi = 0.1
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(c) Sample 1, pi = 0.3 (d) Sample 2, pi = 0.3
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Figure B.15: Marker expression levels yi for each cell subpopulation, sorted by
row according to posterior estimate of subpopulation membership labels λi,n, with
the most abundant subpopulations at the bottom, for each sample (i = 1, 2), with
pi = 0.1, 0.3 and φ2 = 0, 25.
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(a) φ2 = 25, pi = 0.1 (b) φ2 = 25, pi = 0.3
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Figure B.16: Posterior distribution of the number of selected subpopulations
within each sample, for pi fixed at 0.1 and 0.3, and φ2 = 25.
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Figure B.17: Distribution of the pairwise-column distances between subpopula-
tion estimates Ẑi for each sample, for pi fixed at 0.1 and 0.3, and φ2 = 25.
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(a) Sample 1, φ2 = 1 (b) Sample 1, φ2 = 10 (c) Sample 1, φ2 = 100
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(d) Sample 2, φ2 = 1 (e) Sample 2, φ2 = 10 (f) Sample 2, φ2 = 100
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Figure B.18: Point estimates of NK cell subpopulations Z in cytometry samples
taken from 2 subjects, for each sample (i = 1, 2), with pi = 0.2 and φ2 = 1, 10, 100.
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(a) φ2 = 1, pi = 0.2 (b) φ2 = 10, pi = 0.2
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(c) φ2 = 100, pi = 0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y 
(s

am
pl

e 
1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

# of selected subpopulations

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y 
(s

am
pl

e 
2)

Figure B.19: Posterior distribution of the number of selected subpopulations
within each sample, for φ = 1, 10, 100, and pi = 0.2.
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(a) Sample 1 (b) Sample 2
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Figure B.20: Distribution of the pairwise-column distances between subpopula-
tion estimates Ẑi for each sample, for φ = 1, 10, 100, and pi = 0.2.

(a) Sample 1, φ2 = 1 (b) Sample 1, φ2 = 10 (c) Sample 1, φ2 = 100
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(d) Sample 2, φ2 = 1 (e) Sample 2, φ2 = 10 (f) Sample 2, φ2 = 100
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Figure B.21: Marker expression levels yi for each cell subpopulation, sorted by
row according to posterior estimate of subpopulation membership labels λi,n, with
the most abundant subpopulations at the bottom, for each sample (i = 1, 2), with
pi = 0.2 and φ2 = 1, 10, 100.
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(a) rep-FAM, Sample 1 (b) rep-FAM, Sample 2
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(c) ind-FAM, Sample 1 (d) ind-FAM, Sample 2
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Figure B.22: t-SNE of patients data set computed jointly for both samples.
t-SNE are color-coded according to the induced clusterings in rep-FAM (φ2 = 25)
and ind-FAM.
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(a) FlowSOM, Sample 1 (b) FlowSOM, Sample 2
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(c) MClust, Sample 1 (d) MClust, Sample 2
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Figure B.23: Heatmap of patients dataset with cells arranged by cluster mem-
bership for FlowSOM and MClust.
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Appendix C

A Bayesian Differential

Distribution Approach for

Zero-inflated Data with

Applications to Cytometry Data

C.1 Full Conditionals for Model Parameters

To better facilitate posterior sampling from a mixture model, we introduce

an auxiliary parameter λi,n ∈ {1, . . . , K} such that λi,n | ηi ∼ Categorical(ηi)

represents the mixture component taken by cell n in sample i, if yi,n > 0. With
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λi,n, the joint posterior for this model is

p(γ,η,µ,ψ,ν,ω, τ, ζ,v,λ | y) ∝
I∏
i=1

Ni∏
n=1

py(ỹi,n | µ(ι)λi,n + ψλi,nζi,n, var = ωλi,n/vi,n)1−zi,n

×{
I∏
i=1

γQii (1− γi)Ni−Qi × pγ(γi)× pη(ηi)
}
×

I∏
i=1

Ni∏
n=1

pζ(ζi,n | vi,n)pv(vi,n | νλi,n)pλ(λi,n | ηi)

×{
K∏
k=1

pψ(ψk)pω(ωk | τ)pν(νk)pι(ιk)
}
× pτ (τ)

The model parameters can be updated sequentially via Gibbs sampling. Ex-

cept for νk, the full conditional distributions for all model parameters are available

in closed form. For convenience, let N+
i denote n ∈ {n : yi,n > 0}.

γi | data, rest ∼ Beta(aγ +Qi, bγ +Ni −Qi), for i ∈ {1, . . . , I}

ηi | data, rest ∼ Dirichlet(a?i ), for i ∈ {1, . . . , I} , where

a?i,k = aη,k +
∑
n∈N+

i

1 {λi,n = k}

Pr(λi,n = k | data, rest) ∝ ηi,k · normal(ỹi,n | µk + ψk · ζi,n, var = ωk/vi,n) ·

gamma(vi,n | νk/2, νk/2)

ι1 | data, rest ∼ Normal(m?
ι1 , v

?
ι1)

ιk | data, rest ∼ TruncatedNormal(0,∞)(m?
ιk
, v?ιk), for k = 2, . . . ,K, where

v?ιk =

 1
s2
µ

+ 1
ωk

I∑
i=1

∑
n∈N+

i

vi,n · 1 {λi,n ≥ k}


−1

m?
ιk

= v?µk ·

mµ

s2
µ

+ 1
ωk

I∑
i=1

∑
n∈N+

i

gi,n · vi,n · 1 {λi,n ≥ k}

 , with
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gi,n = ỹi,n − ψk · ζi,n −
λi,n∑
`=1

ι` · 1 {` 6= k}

p(νk | data, rest) ∝ normal(log νk | mν , s
2
ν)×

I∏
i=1

∏
n∈N+

i

gamma(vi,n | νk/2, rate = νk/2)1{λi,n=k}

(update log(νk) with a Metropolis step.)

ωk | data, rest ∼ InverseGamma(a?ωk , b
?
ωk

),where

a?ωk = aω + 1
2

I∑
i=1

∑
n∈N+

i

1 {λi,n = k}

b?ωk = τ + 1
2

I∑
i=1

∑
n∈N+

i

1 {λi,n = k} vi,n(ỹi,n − µk − ψk · ζi,n)2

τ | data, rest ∼ Gamma(aτ +K · aω, rate = bτ +
K∑
k=1

ω−1
k )

vi,n | data, λi,n = k, rest ∼ Gamma
(
νk
2 + 1,

νk + ζ2
i,n + ω−1

k (ỹi,n − µk − ψk · ζi,n)2

2

)
,

if yi,n > 0

ζi,n | data, λi,n = k, rest ∼ TruncatedNormal[0,∞)(m?, v?), if yi,n > 0, where

v?ζi,n =
(
vi,n + vi,nψ

2
k

ωk

)−1

m?
ζi,n = v?ζi,n ·

(
vi,nψk(ỹi,n − µk)

ωk

)
ψk | data, rest ∼ Normal(m?

ψk
, v?ψk), where

v?ψk =

 1
s2
ψ

+
I∑
i=1

∑
n∈N+

i

1 {λi,n = k} ·
ζ2
i,n · vi,n
ωk


−1

m?
ψk

= v?ψk ·

mψ

s2
ψ

+
I∑
i=1

∑
n∈N+

i

1 {λi,n = k} · ζi,n(yi,n − µk) · vi,n
ωk



193


	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Motivation and Background
	Literature Review
	Feature Allocation Models and Repulsive Clustering
	Finite Mixture Models and Statistical Divergences

	Contribution and Organization

	 A Bayesian Feature Allocation Model for Identifying Cell Subpopulations Using Cytometry Data 
	Introduction
	Probability Model
	Sampling Model
	Priors
	Posterior Computation

	Simulation Studies
	Analysis of Cord Blood Derived NK Cell Data
	Discussion

	 A Bayesian Model for Identifying Distinct Features that Define Cell Subpopulations from Cytometry Data 
	Introduction
	Probability Model
	Repulsive Feature Allocation Model
	Clustering by Latent Features
	Posterior Computation

	Simulation Study
	Analysis of the CyTOF Data
	Conclusions

	 A Bayesian Differential Distribution Approach for Zero-inflated Data with Applications to Cytometry Data 
	Introduction
	Probability Model
	Simulation Study
	Analysis of CyTOF Data
	Discussion

	Conclusion
	Bibliography
	Appendix  A Bayesian Feature Allocation Model for Identifying Cell Subpopulations Using Cytometry Data 
	Posterior Computation
	MCMC Simulation
	Variational Inference Implementation Details

	Specification of Data Missingship Mechanism
	Computation of LPML and DIC
	Simulation Study
	Additional Results for Simulation 1
	Simulation 2

	Additional Results for Analysis of Cord Blood Derived NK Cell Data

	Appendix  A Bayesian Model for Identifying Distinct Features that Define Cell Subpopulations from Cytometry Data 
	Prior Calibration
	Supplementary Posterior Computation
	Supplementary Material for Missing Data Mechanism
	Supplementary Material for Parallel Tempering
	Full Conditional Distributions of Model Parameters
	Intrinsic MCMC

	Additional Results for Simulation Studies
	Additional Results for Data Analysis

	Appendix  A Bayesian Differential Distribution Approach for Zero-inflated Data with Applications to Cytometry Data 
	Full Conditionals for Model Parameters




