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EPIGRAPH

It is pointless to do with more
what can be done with fewer.

Occam

Ithaka gave you the marvelous journey.
Without her you would not have set out.

She has nothing left to give you now.

Constantinos P. Cavafy

Never give up control.
Live life on your own terms.

W. White
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ABSTRACT OF THE DISSERTATION

Preventing Multiple Comparisons Problems in Data Exploration and Machine Learning

by

Nikolaos Koulouris

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Yannis Papakonstantinou, Chair

More data means more opportunity for a researcher to test more hypotheses until he

discovers an interesting finding. This increases the probability of arriving at a false conclusion

purely by chance and is known as the multiple comparisons problem. Data exploration systems

facilitate exploring big data by automatically testing thousands of hypotheses in order to find

the most interesting ones. In machine learning analysts repeatedly test a model’s performance

on a holdout dataset until they find the one with the best performance. Auto-ML systems try to

automate this model selection process. In both cases, testing for more things means a higher

probability of making a statement purely by chance.

This dissertation examines how the multiple comparisons problem appears in the field

xiv



of data exploration and machine learning. In both cases we propose techniques that exploit

some structure that appears in the field to improve upon existing techniques and reduce the

consequences of multiple comparisons.

We present VigilaDE, the first data exploration system that utilizes the hierarchical

structure of the data in order to control false discoveries. A plethora of real-world datasets already

have domain-specific hierarchies that describe the relationship between variables. VigilaDE

utilizes these hierarchies to guide the exploration towards interesting discoveries while controlling

false discoveries and, as a result, increasing statistical power. Through extensive experiments

with real-world data, simulations and theoretical analysis we show that our data exploration

algorithms can find up to 2.7x more true discoveries in the data against the baseline while

controlling the number of false discoveries.

In machine learning, testing multiple different models can lead to overfitting. We present

an experimental analysis of ThresholdOut, the state of the art algorithm for avoiding overfitting

to a holdout dataset in an adaptive setting. The main limitation of ThresholdOut is setting its

parameters. We present AUTO-SET, an automated way to set its parameters specifically for

feature selection. Specifically in feature selection the order of the models that we test on a

holdout dataset has a very specific structure. We utilize this structure in Auto Adjust Threshold,

a novel feature selection algorithm that avoids overfitting a holdout dataset and show that it

outperforms existing algorithms.
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Chapter 1

Introduction

1.1 Multiple Comparisons Problem

The recent explosion of data has created the opportunity to transition from hypothesis-

driven [48] to data-driven discoveries and studies [63, 69]. In hypothesis-driven studies, re-

searchers start by formulating a very specific hypothesis and then collect data to try and prove

their initial hypothesis. In data-driven studies, researchers start by collecting as much data as

possible and then they try to find any kind of relationship in the data that could be considered a

new “discovery”. This paradigm shift can be seen in Figure 1.1. For example, one prominent

professor congratulated a student for turning a dataset with no statistically important results

into four published papers by testing multiple plausible hypotheses until some of them could be

supported by the data [83]. One wonders how many of these hypotheses are true discoveries and

not just spurious results based on randomness [81].

The multiple comparisons problem, also known as multiplicity or multiple hypotheses

testing problem, appears very often in data-driven analyses where one considers multiple statis-

tical hypotheses simultaneously [57]. The more hypotheses that one tests simultaneously, the

higher the probability of at least one of them appearing to be correct due to randomness. As a

result, users of data-driven analyses have to adhere to the correct statistical methods in order to

avoid arriving to conclusions that appear to be true purely by chance. This is the reason why

many data-driven studies can be questionable [45].
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(a) Hypothesis-driven

(b) Data-driven

Figure 1.1. Paradigm shift from hypothesis-driven to data-driven studies.

In the medical field, all published research results have to report the statistical methods

that were used to analyze the data [50]. This includes the number of hypotheses that were tested

before arriving to a discovery and how they controlled for the problem of multiple hypothesis

testing. Still, in the highly cited [45] Ioannidis observed that one of the key reasons why most

research findings are false is the problem of multiple hypothesis testing and how scientists fail

to adhere to acceptable ways of controlling random discoveries [59]. This problem has been

identified in many other fields, such as ecology [89] and public health [47].

1.1.1 Multiple Comparisons Problem in Data Exploration Systems

New data exploration tools aim to automate and facilitate data exploration and analysis.

Many recent works [49, 82] have proposed novel user interfaces for data exploration systems that

facilitate creating visualizations and finding the most appropriate ones. Visualizations are just a
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Figure 1.2. How data exploration systems create multiple hypotheses

descriptive statistic of a dataset. As a result, each visualization a user sees at a data exploration

system is a different hypothesis test. Some systems [23, 25] make query recommendations to the

user during interactive data exploration by extensively searching the query space. Each query

is a hypothesis and this search corresponds to testing multiple hypotheses to find the ones that

are the most interesting based some criteria. Novel interfaces [24, 43, 60] allow users to explore

their data in new ways. New ways that allow users to perform hypothesis testing with just a

simple touch on the UI. It is apparent that data exploration systems facilitate data exploration

by creating and automatically testing multiple different hypotheses. Figure 1.2 shows how they

can test for a lot of hypotheses under the hood to show some results to the user. In addition,

when the number of possible discoveries, including false positives, that such a system makes is

large, it is hard to follow up on all of them. Even if the system suggests only the most interesting

ones, in some research areas it is extremely time consuming to further investigate these probable

discoveries. As a result, it is imperative to minimize false discoveries.

Not only do data exploration systems magnify the problem of multiple hypotheses

testing, but they also usually ignore its statistical consequences. Unlike traditional DBMSs, data

exploration, which is statistics-oriented, operates in a form of the open world assumption, where

the data is a mere sample from an underlying unknown distribution, the ground truth. However,

most data exploration systems do not use any of the existing statistical methods to make their
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discoveries; even when they test for thousands of hypotheses simultaneously. This only makes

the problem of false discoveries worse. Systems, such as zenvisage [74], or Polaris [77], attract

citizen data scientists and novel users due to their ease of use. Such users have limited statistical

knowledge. As a result, they can be lead to honest mistakes of false discoveries due to naivete.

In all these cases, controlling for spurious discoveries is imperative.

The problem of multiple hypotheses testing has been studied extensively in the statistics

community. Many techniques, such as the Bonferonni correction [16] and controlling the False

Discovery Rate (FDR) [12], try to solve the problem. These techniques attempt a trade-off

between false positives and true positives in the results. Controlling the FDR has been identified

as the most appropriate way of controlling false positives when the number of hypothesis tests is

large and in interactive data exploration systems [88]. However, most techniques that control the

FDR can still be viewed as conservative for big data applications. Statistical power is used to

measure the effectiveness of a testing procedure and is defined as the percentage of discoveries a

test finds. Because controlling for false positives can lead to decreased statistical power, current

data exploration systems avoid addressing the problem.

1.1.2 Multiple Comparisons Problem in Machine Learning

The multiple comparisons problem has a different flavor in Machine Learning (ML).

The goal of ML is to produce models that capture the underlying unknown distribution of the

data. These models must generalize well to new data. Each model is a hypothesis that describes

the underlying data distribution. Testing a lot of different models can lead to finding one that

performs well to the known part of the dataset, but fails to generalize to unseen data. This is

a result of the multiple comparisons problem. In ML it is called overfitting and it is a serious

hurdle [38].

Overfitting can occur in many different ML processes, when data is used repeatedly, and

many of these cases are subtle [53]. To construct a model part of the data is used repeatedly. In
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Figure 1.3. How autoML systems create multiple hypotheses

other words, we are testing a lot of hypotheses on the same data. For example, during feature

selection the holdout validation dataset is used repeatedly many times to evaluate different

models until a good enough is found. The same happens during hyperparameter tuning and

generation of base learners for boosting. All these can lead to overfitting the validation dataset

[27].

AutoML systems, such as Google Cloud AutoML [2] or Amazon SageMaker Autopilot

[1], only make this problem worse. These systems target users who want results with “minimal

effort and minimal machine learning expertise” [2]. To achieve that they automate the model

selection process, as it can be seen on Figure 1.3. In addition, most non-ML experts usually

do not have access to huge datasets, that can help avoid overfitting. For example, at the UCI

repository for machine learning datasets, over the past ten years one in three datasets has less

than 1000 instances [6]. Most such datasets come from the health sciences. Lastly, lack of

machine learning knowledge can lead users to misconceive the results and underestimate the

problem of overfitting. For example, when a user sees an accuracy of 95% after putting his

data on an autoML system, they might not realize that the system has tested multiple different

algorithms, sets of features and hyperparameters and, thus, this high accuracy might be due to

overfitting.

Big data might not always help reduce this problem [38]. The abundance of data can
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come in the form of more features but not necessarily more sample points for the model to

learn from. More features means more models for the feature selection algorithm to test, and

with few instances it can easily lead to overfitting [56]. Another very common scenario where

big data doesn’t necessarily help reduce overfitting is personalized recommender systems [54].

Even though a dataset might have millions of data points of past purchases, only a very small

portion (even as little as a few hundred) might be used when learning a recommender model for

a particular user. In all these ML cases avoiding overfitting is imperative.

1.2 VigilaDE: Avoiding False Discoveries with Hierarchical
Data

A lot of real world datasets have a lot of structure. For example, a lot of medical data

have well structured ontologies created by experts [26]. These ontologies have hierarchies that,

for example, group together similar diseases or pharmaceutical products. This structure of

hierarchical data can be used to achieve increased statistical power when controlling for false

discoveries.

In this thesis we present VigilaDE (pronounced “vigilante”), a system for Vigilant Data

Exploration in the era of big data and citizen data scientists. Data often have some hierarchy

that describes the input variables and places them in groups. VigilaDE is the first DE system

to exploit hierarchical data in order to guide the data exploration and avoid testing all possible

hypotheses. VigilaDE’s approach is orthogonal to existing controlling techniques. We show that

controlling false discoveries is feasible in data exploration systems without loosing too much

statistical power. VigilaDE achieves up to 2.7x improvement in statistical power against existing

controlling techniques.
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Contributions. This thesis makes the following contributions:

• Section 3.3 formally defines data exploration of hierarchical data, and how statistical power

and false positives are measured in this setting.

• In Section 3.4.1, we present a novel data exploration algorithm for VigilaDE that tries to

detect Simpson’s paradox in hierarchical data.

• In Section 3.4.2, we present a novel data exploration algorithm for VigilaDE that guides

the exploration by approximating the quality of the input hierarchy.

• In Section 3.5, we present how our algorithms work orthogonal with existing controlling

techniques.

• In Section 3.6, we present under which conditions we can create and use a data-driven

hierarchy in VigilaDE. We experimentally confirm our findings in Section 3.8.4.

• In Section 3.7, we show through mathematical analysis why and under what conditions

VigilaDE leads to increased statistical power.

• In Section 3.8, we experimentally show we can achieve up to 2.7x increase in statistical

power with a real-world public health dataset and in simulations.

1.3 AAT: Avoiding Validation Overfitting during Feature
Selection

Although there exist many ways in statistics to avoid false discoveries, they cannot

be applied in scenarios where hypotheses are chosen adaptively. This scenario was recently

identified as being very prominent in ML [27]. Hyperparameter tuning [30], machine learning
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competitions [14], generation of base models in boosting or bagging techniques, analyst-in-the-

loop systems or fully automated autoML systems and feature selection [67] are all scenarios

where the model is chosen in an adaptive way.

In their recent work, the authors of [27] provided some bounds for overfitting and

generalization error in this setting. However, their work was theoretical and for a generic setting.

They presented ThresholdOut, an algorithm that can answer adaptively chosen queries about

a hypothesis and avoid overfitting. However, it requires setting certain parameters that aren’t

intuitive to the users. In addition, ThresholdOut doesn’t take advantage of the structure of the

problem in specific scenarios, like feature selection. As we show in our work this can lead to

significant improvement in performance.

In this thesis we present a novel and superior way to avoid overfitting during feature

selection. First, we start by presenting an analysis of the state of the art algorithm that avoids

overfitting the holdout dataset in an adaptive setting, called ThresholdOut. Next, we offer an

automated way to set its parameters that make it practical and show that it outperforms most

manually picked parameter values. Based on what we learn, we present Auto Adjust Threshold

(AAT), a novel feature selection algorithm that is inspired by ThresholdOut. AAT takes advantage

of the structure of the problem of feature selection, where hypotheses arrive adaptively but in

a very specific way. It utilizes the bias-variance trade-off to automatically adjust a threshold

throughout the feature selection process, thus, achieving a lower test error.

Contributions. This thesis makes the following contributions:

• In Section 4.3, we present an experimental analysis of ThresholdOut, the theoretical state

of the art algorithm.

• In Section 4.3, we give intuitive guidelines for setting the parameters of ThresholdOut.

• In Section 4.4, we present AUTO-SET, a novel and automated way to set ThresholdOut’s

parameters and we experimentally show that ThresholdOut with AUTO-SET outperforms

most manually picked parameters for ThresholdOut.
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• In Section 4.5, we present Auto Adjust Threshold (AAT), a novel feature selection algo-

rithm that avoids overfitting the holdout dataset in adaptive scenarios.

• In Section 4.6, we show experimentally that AAT outperforms both ThresholdOut, and

ThresholdOut with AUTO-SET.
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Chapter 2

Background

In this chapter we give some background knowledge on the topic of statistical hypothesis

testing and the existing approaches for controlling for the problem of false discoveries.

2.1 Statistical Hypothesis Testing

A statistical hypothesis test is a procedure that takes as input samples from a population

and makes a statement about the parameters that describe the whole population, such as the

population mean or the correlation between two variables [18]. That statement comes in the

form of rejecting (or failing to reject) the null hypothesis H0, a hypothesis associated with a

contradiction of what one would like to prove. The possible outcomes of a hypothesis test can be

seen on Table 2.1.

For example, if we would like to prove that there is a correlation between two variables,

then, we would set the null hypothesis H0 as the fact that there is no correlation between the two

variables, as measured by the Pearson correlation (r = 0). The alternative hypothesis H1 is that

r 6= 0.

More specifically, to test whether the sample data comes from a population in which the

null hypothesis H0 is true, or from a population in which the alternate hypothesis H1 is true, we
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Table 2.1. Possible outcomes in hypothesis testing.

Alternate Hypothesis Null Hypothesis
is True is True

Test is
True Positive False Positive

significant
Test is

False Negative True Negative
non-significant

use a statistical test, which is a real-valued function T (x1, ...,xk) of the sample data x1, ...,xk.

The test statistic is a random variable and we want to calculate the probability of coming from a

distribution fH0 , where the null hypothesis is true, or from a distribution fH1 , where the alternate

hypothesis is true. fH0 and fH1 are the ground truth that we do not know about our data. We

approximate them through the statistical test T and the sample data points we have. In order

to make a decision about our hypothesis we need to calculate T ’s p-value pT . pT tells us how

likely it is to observe a result at least as extreme as the test statistic if the null hypothesis is true.

The p-value is then used to determine if we can confidently reject or not the null hypothesis.

Continuing our example, for each pair 〈factor, outcome〉 of variables we have some example

data points. We then calculate the correlation, its t-test as our test statistic and the t-test’s p-value

pT for each pair.

We reject the null hypothesis and say that a discovery is statistically significant if pT is

smaller than the significance value α . α is determined before the test and signifies the maximum

probability of having a false positive. In other words, a test T is a mapping of the values of the

test statistic into {1,0}, where 0 implies that we fail to reject the null hypothesis and 1 implies

that the null hypothesis H0 is rejected.

Test(T ) =


1 if pT ≤ α

0 if pT > α

In Figure 2.1, we visualize all that we previously described about how hypothesis testing
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Figure 2.1. Visualizing events and probabilities in hypothesis testing.

works. fH0 is the probability distribution if the null hypothesis were true and fH0 is the probability

distribution if the alternative hypothesis were true. Both fH0 and fH1 constitute the ground truth

that we approximate through the t-test. More specifically, t-test approximates fH0 and based on

pT (the probability of having a false positive) and the input α we can make a decision if we

can reject the null hypothesis, i.e. our sample data do not come from fH0 , or fail to reject the

null hypothesis, i.e. we cannot decide if our sample data comes from fH0 or not in a statistically

significant way. If we knew the distributions fH0 and fH1 , we could also calculate the probabilities

that our decision was correct (true positive/true negative) or not (false positive/false negative).

There are two types of errors that can occur when testing a hypothesis, the type I and

type II errors (Table 2.1). A type I error (also known as a false positive) is the incorrect rejection

of a true null hypothesis. A type II error (also known as a false negative) is the failure to reject a

false null hypothesis. A testing method can minimize the number of false positives by being very

conservative in accepting hypotheses, and, thus, having a high type II error.
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2.1.1 Multiple hypothesis testing

Multiple hypotheses testing refers to the problem of testing more than one hypothesis at

a time. As we test more hypotheses, the chance of spurious discoveries increases. If we use the

same α value to reject a null hypotheses for each test, then the probability of making at least one

false positive discovery increases.

For example, if we tested 100 different hypotheses simultaneously, for a significance

value of α = 0.05, under the common assumption that the tests are independent, the probability

of having at least one false positive is:

p(at least one FP) = 1− p(no FP)

= 1− (1−0.05)100 ' 0.99

Even though we do not know the ground truth, we can be almost certain, with a probability

of 0.99, that at least one out of a hundred is a false positive. It is obvious that we need to adjust

the value of α of each hypothesis to get equivalent guarantees when we test many hypotheses

simultaneously.

In order to provide similar guarantees in the case of multiple hypotheses testing, the

previous hypotheses testing methods need to be adjusted. The first step in controlling false

discoveries in this case is to group hypotheses in families. A family is a set of hypotheses for

which significance statements will be treated together and the errors will be controlled jointly for

the whole family. There are many issues involved with selecting the families, like the fact that

the results of an experiment can be manipulated by the selection of the families or the fact that

different purposes may require different families of the same data [72].

When testing multiple hypotheses, there are four different probabilistic guarantees that

we might want to control. These are:

• Error Rate per Hypothesis (ERH). The ERH is defined as the probability of type I error, or
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the expected value of false positives among all the results.

• Error Rate per Family (ERF). The ERF is defined as the expected number of false positives

in the family.

• Familywise Error Rate (FWER). The FWER is defined as the probability of having at least

one false positive in the family.

• False Discovery Rate (FDR). The FDR is the expected proportion of false positives among

the rejected hypotheses.

The last two metrics are the ones that are mostly used in practise.

2.1.2 Statistical power

Statistical power is used to measure the performance of a statistical test when we know

the true probability distributions. It is the probability of the test correctly rejecting a false null

hypothesis given the alternate hypothesis is true.

Power = p(reject H0|H1is true)

=
p(TP)

p(TP)+ p(FN)
= p(TP)

Empirically, we can measure statistical power as:

Power =
TP

TP+FN
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2.2 Controlling Multiple Hypotheses

2.2.1 Family-wise Error Rate (FWER)

In multiple hypotheses testing, the chance of occurring a type I error, i.e. a false positive

discovery, increases as the number of hypotheses that are being testes increases.

The Bonferonni inequality states that for a set of events A1,A2, ..An with probabilities

p1, p2, ..., pn the probability of their union is smaller or equal to the sum of their probabilities.

There exist a number of techniques that are based on the Bonferonni inequality and they

try to control the number of false positives in a family. These techniques try to control the level

of FWER by testing each individual hypothesis at a much smaller significant level, so that the

sum of the smaller significance level of the individual inequalities is smaller or equal to the

desired FWER.

Given a set of n hypotheses H1,H2, ...,Hn and their p-values p1, p2, ..., pn, the most

common way to control the FWER based on the Bonferonni inequality is the following: To

control the FWER at a , reject the null hypothesis for each pi ≤ a/n [16]. This technique can be

generalized so that we control any single hypothesis at any significant level as long as the sum of

all the singificant levels we use is smaller or equal than a.

Holm, Simes and Hochberg provided some extensions to the basic Bonferonni control

procedure which improve the power of the technique under certain conditions while controlling

the FWER. However, these methods are still only a minor improvement and are not powerful

enough for cases with large number of hypotheses.

Holm provided a sequential rejective method for controlling the FWER based on

the Boferonni inequality [41]. Given a set of n hypotheses H1,H2, ...,Hn and their p-values

p1, p2, ..., pn ordered from smaller p-value to the larger one, at each stage i of the procedure

reject Hi if and only if all previous hypotheses have been rejected and pi ≤ a/(n− i+1). This

method increases the significant value we use for each individual hypothesis as their p-value

increases and accepts the the first k hypotheses. It can be shown that this method controls the
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FWER at level a.

Hochberg’s procedure is a simple modification of Holm’s procedure for controlling the

FWER at level a [40]. Given a set of n hypotheses H1,H2, ...,Hn and their p-values p1, p2, ..., pn

ordered from smaller p-value to the larger one, find the hypothesis pi where pi ≤ a/(n− i+1)

for any i = 1, ...,n and reject all hypotheses H j with j ≤ i.

Lastly, Simes proved a theorem that applied to independent hypotheses and he claimed,

through simulation results, that it applied in a few other cases [75]. He suggested that this result

could be used in multiple hypotheses testing without providing a formal way to do so. He showed

that given a set of n hypotheses H1,H2, ...,Hn that are all true and their p-values p1, p2, ..., pn

ordered, when the test statistics used are independent then pi > ia/n for i = 1, ...,n holds with

probability 1−a.

There are two main disadvantages of the techniques that control the FWER. First, all the

methods described here require knowledge of the number of hypotheses that are being tested

before hand. This makes all these methods not suitable for interactive data exploration scenarios

were the total number of hypotheses is not known until the end of the data exploration. Second,

and most importantly, these techniques are too conservative for all data exploration scenarios.

The p-value used to reject the null hypothesis gets too small too fast when the number n of

hypotheses tests grows large. For example, if we want to control the FWER at a significance

level of 0.05, a typical value, for 10 hypotheses we’d test each hypothesis with a singificance

level of 0.005, for 100 hypotheses we’d use a significance level of 0.0005. It’s obvious that this

technique is not practical for the case of data exploration where we test hundreds or thousands of

hypotheses at a time. Even though Holm, Hochberg and Simes improved the statistical power of

the Bonferonni correction, their improvements were minor.
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2.2.2 False Discovery Rate

Benjamini and Hochberg proposed controlling the False Discovery Rate (FDR) [11].

The FDR is the expected number of false discoveries among all the discoveries made by a

procedure [8]. For example, controlling the FDR at a significance level α = 0.05 and if we had

100 significant hypotheses in the result then according to the FDR on average at most 5 of them

would be false positives. They proposed this controlling schema as an alternative to controlling

the FWER which is too conservative. They showed that controlling the FDR results in significant

gain in power of the testing procedure.

The FDR then can be defined as the proportion of false positives as of the total number

of significant discoveries. In other words, the FDR is the proportion of true null hypotheses we

wrongly reject.

There exists a plethora of ways to control the FDR in different scenarios and with different

data [39, 78, 68, 12, 42]. Benjamini and Hochberg proposed a procedure to control the FDR

based on a simple derivative of Sime’s procedure [75] that was presented earlier.

Given H1,H2, ...,Hn hypotheses and their p-values p1, p2, ..., pn that are ordered, they

defined the following rule for the controlling procedure:

if k is the largest i for which pi ≤
i
n

a,

Reject all null hypotheses Hi, i = 1,2, ...,k

They showed that for any test statistic that is independent, the above procedure controls

the FDR at level a.

When the tests are dependent the previous threshold is modified to the following:

pi ≤
i

nc(n)
a
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When the tests are independent or positively correlated, c(n) = 1 and the threshold is

equal to the previous one. However, on all other cases c(n) = ∑
n
i=1

1
i . In [12], they showed that

this adjusted threshold controls the FDR when the tests are dependent.

Controlling the FDR is less conservative and it is more appropriate when n is large. As

a result it is widely used when there is a large number of hypotheses being tested in many dif-

ferent fields [46, 66, 70]. However, it still has lower statistical power compared to not controlling.

2.2.3 mFDR and α-investing

α-investing is a family of testing procedures that controls the marginal False Discovery

Rate mFDR, a derivative of the FDR [31]. mFDR is the ratio of the expected number of false

positives to the expected number of discoveries. The main advantage of α-investing techniques

is that they are adaptive and sequential. The key idea behind α-investing is that when the testing

procedure makes a discovery, the procedure earns additional wealth (i.e. probability to make a

false positive in the future) towards the next tests.

α-investing is a set of sequential techniques that can be used for testing multiple hypothe-

ses. These techniques work when tests arrive in batches or sequentially in a stream.

An a-investing rule I is a function that in a sequence of hypothesis tests, it determines

the α-level for the next hypothesis test. The initial wealth of the testing procedure is denoted

by W (0), and the wealth at step k of the procedure is W (k)≥ 0. Common values for the initial

wealth are 0.05 and 0.10. At each step i, the α-investing rule I sets the ai level that the hypothesis

Hi will be tested, and ai could be between 0 and the maximum available wealth W (i).

The outcome of testing all the previous hypotheses determines the available α-wealth

W ( j) that will be available for testing the hypothesis H j+1. At each step there are two possible

scenarios:

• p j ≤ a j. The null hypothesis H j is rejected and the investing procedure will earn back

some α-wealth that is called pay-out, ω < 1.
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• p j > a j. The null hypothesis is accepted and as a result the α-wealth has to decrease by

a j/(1−a j).

These two possible scenarios can be summarized in the following equation:

W ( j)−W ( j−1) =


ω if p j ≤ a j

−a j/(1−a j) if p j > a j

So, at each step of the procedure the wealth is either increased when a null hypthesis

is rejected, or it is reduced. When the α-wealth of the rule reaches 0, then no further tests are

allowed.

This is only one of the many possible payment systems in the family of α-investing rules.

Any investing rule with W (0) = α , ω = α that follows the previously described rule controls the

mFDR at level α ∈ [0,1] [31]. The main difference between different α-investing rules is how

to pick the different values for ai, so as to account for domain knowledge and tailor the testing

procedure to some specific task or scenarios.

One advantage of α-investing over all previous techniques is that it is adaptive and

sequential. This makes it suitable for interactive scenarios where the number of hypotheses that

are tested is unknown. Another advantage of the sequential nature of α-investing is that it allows

for more fine tuned control of mFDR. What this means is that the testing procedure will do well

even if stopped earlier than the initial scenario. α-investing controls mFDR uniformly. Suppose

that we want to stop after testing only 100 hypotheses, instead of n. The uniform control and

the sequential nature of α-investing lets us guarantee the average number of false positives that

will appear in the result in either case. Lastly, the possibility of picking different investing rules

allows the user to capture different application needs. By picking the right investing rule one

can account for domain knowledge and tailor the testing procedure to some specific task or

scenarios.
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Chapter 3

VigilaDE: Avoiding False Discoveries with
Hierarchical Data in Data Exploration
Systems

In this chapter we present VigilaDE, a system for vigilant data exploration. Hierarchical

data appear in many different everyday applications and have a structure that can be used to

improve performance. We show how VigilaDE takes advantage of this hierarchical structure to

guide the data exploration and reduce false discoveries during data exploration.

3.1 Motivating Example

In Figure 3.1 we see the results of the data exploration of a real-world public health data

set in three different scenarios. Each row represents a factor variable, each column an outcome

variable and each square is the visualization of the result of the hypothesis test between the

〈factor, outcome〉 pair that corresponds to that row/column. The blue (or orange respectively)

color of a square indicates a negative (or positive) statistically significant correlation. A grey

square indicates a non-statistically significant result. This is a common visualization that exists

in most data exploration systems, such as in Tableau [79].

In Figure 3.1(a), we see the results of all the hypotheses tests when there is no controlling
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Figure 3.1. Visualizing data exploration results of a public health data set. Only part of the data
set is visualized for presentation purposes. Blue/orange squares represent a negative/positive
statistically significant hypothesis test between the factor and outcome in the corresponding
column and row. The opacity of the colors is defined by a user-specified interestingness function.

for the problem of false discoveries. This is what most data exploration systems currently do.

In this example, more than a third of the discoveries are spurious; there are 10 false positives

among the 26 discoveries. A novice data scientist can easily fall into the trap of thinking that all

these discoveries are statistically significant. Without deep understanding of statistics and how

the system works, this is an honest mistake.

In Figure 3.1(b), we see the results of exploring the same data set as before, but with

applying one of the most widely accepted controlling technique for data exploration [88]. We

control the FDR at level αFDR = 0.05. To have an expected proportion of false discoveries

among all discoveries smaller than αFDR, we accept less hypothesis testing results as discoveries.

In our example, this translates to an expected number of false discoveries that is smaller than
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0.05∗7 = 0.35. In Figure 3.1(b), there are no false positives. However, we get less than half of

the discoveries that actually exist in the data (7/16). This translates to a statistical power of only

43% and it exhibits why current controlling techniques can be conservative.

Both scenarios have pitfalls. The first one has too many false discoveries in the results.

The second one has low statistical power. We will show that VigilaDE can control false discover-

ies and have an increased statistical power by taking advantage of the hierarchical structure of

the data.

3.2 Overview of VigilaDE

In this Section, we give an overview of VigilaDE. We describe the input hierarchical data,

the intuition for VigilaDE’ s data exploration algorithms, how it fits in with existing controlling

techniques and, finally, our experimental results.

Hierarchical Data. Many real-world data sets have some hierarchy that places input

variables together in groups. These hierarchies are usually defined before collecting the data

and capture semantic knowledge of field experts. For instance, a lot of medical data have

well structured ontologies created by experts [26]. CDC uses questionnaires with hierarchical

structure to collect information about individuals [22]. In our example, in Figure 3.1(a), if we

examine the rows, we can see some semantic structure; most of the rows describe similar factors.

This is captured by a hierarchy that was created by scientists and is used in VigilaDE.

VigilaDE’s Approach. These groups are not created randomly. Variables that appear in

a group together are expected to behave similarly. For example, people who have problems with

their sleep (1st variable) also do not feel refreshed after sleeping (2nd variable). We can expect

these two variables to be correlated with the same outcomes as a group variable that summarizes

them (low sleep quality; 3rd variable). As a result, the discovery that the child variables (1st and
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2nd variables) are associated with an outcome does not provide much new information over the

discovery that the group variable is associated with the same outcome. Intuitively, we can exploit

the input hierarchies to avoid testing some variable pairs altogether. This can lead to finding less

spurious discoveries.

VigilaDE’ s novelty lies in being the first data exploration system that formally exploits

this intuition for hierarchical data. Its goal is to avoid testing all possible pairs of input variables.

Testing a larger number of such pairs can lead to more spurious discoveries. To achieve that,

it uses the a priori knowledge provided by hierarchies to guide the data exploration in a top-

down approach. As finding the optimal solution is not possible, VigilaDE has two different data

exploration algorithms that try to determine which pairs are less likely to provide new information

based on heuristics. One heuristic captures the previously described intuition; variables in the

same group are expected to behave similarly. It quantifies this by approximating the quality

of the hierarchy and then uses it to guide the exploration of the hierarchical data. Both data

exploration algorithms are described in Section 3.4.

There is a plethora of ways to control false discoveries in the statistics community even

by utilizing the hierarchical structure of data in some ways. In Section 3.5, we discuss why

the chosen controlling technique is orthogonal to the data exploration algorithms that avoid

performing all hypothesis tests. We demonstrate this experimentally as well, by comparing

against an existing technique that utilizes hierarchies.

It is important to note here that these input hierarchies that VigilaDE utilizes are a priori

created hierarchies, and not data-driven. Input hierarchies are usually preferred over data-driven

ones as they already exist in many fields and have semantic structure that is necessary for

interpretability. On the other hand, data-driven hierarchies have limitations, such as that variables

have to be of the same data type to be aggregated in any possible grouping. In Section 3.6 and

3.8.4, we present and experimentally evaluate the limitations and the conditions under which

data-driven hierarchies can be beneficial.
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Example. In Figure 3.1(c), we see the results of our public health data set in VigilaDE.

It uses the input hierarchy that was created by the scientists before collecting the data to guide

the data exploration in a top-down way. We see that all the previous factors are now represented

by just 3 group factors (rows 1, 5 and 6). VigilaDE’s algorithm decided to expand and test

all the child variables in the first group only. It avoided testing the hypotheses between the

child variables of the second and third group with all outcomes. The FDR was controlled at

αFDR = 0.05 and in this example we have 0 false discoveries. Most importantly, VigilaDE marks

as significant all 8 out of 8 true discoveries that exist among the pairs that it chose to test and

show in the UI. This results in a significant increase in statistical power.

Experimental Evaluation. Simulations are a very common and statistically sound way

to evaluate methods for controlling false positives [8, 12]. First, we use various simulations to

show that our techniques achieve a gain in statistical power in most cases, in some cases up to

2.7x. We compare our approach against two existing controlling techniques, one agnostic of

any hierarchical structures and another one that utilizes hierarchical data. Next, we validate our

approach against a real-world public health data set and show that there exist real-world data

sets that exhibits the characteristics we describe in our work. In this particular data set we can

achieve up to 1.8x improvement in power.

3.3 Problem Definition

Input variables. Given a set of variables I = {v1, ...,vn} that describe some underlying

population, the input data set consists of values for the variables in I that describe a sample

population. We will call factor variables, or simply factors, the subset of k variables F =

{ f1, ..., fk} that affect the l outcome variables, or simply referred to as outcomes, O = {o1, ...,ol}

. The union of the factors and the outcomes consists the input set of variables I = {v1, ...,vn}=
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{ f1, .., fk}
⋃
{o1, ...,ol}.

In our motivating example, the sample is elderly people who took part in the study.

Factors describe individual characteristics, such as level of weekly activity, and are represented

as rows in Figure 3.1. Outcomes describe health-related characteristics and are represented as

columns.

Hierarchy. As part of the analysis process, experts already capture the semantic structure

that appears in data in many fields. In our running example, public health experts created

questionnaires with hierarchical structure to collect information about individuals, as it can be

see in in Figure 3.1. In general both factor and outcome variables can have such a hierarchical

structure. This hierarchical structure in our problem is formally captured by a hierarchy D that is

part of the input. Formally,

Definition 3.3.1 Hierarchy. A hierarchy is a graph D = (I,E), and more specifically a set of

rooted trees. Input variables I (factors and outcomes) are vertices in D. E edges represent how

the input variables connect to each other.

Based on the definition of a hierarchy D as a graph, we give a few more definitions that

we use to reason about.

Dleaf (v) is the set of variables of vertex degree 1 in the graph with root v, except for the

root. parent(v) is a neighbor of v along an edge that is on the path to the root. child(v) is a

vertex of which v is the parent. descendants(v) is the set of vertices which are either the children

of v or are (recursively) the descendants of any of the children of v.

Internal variables are an aggregate of leaf variables, that is why we also call them

aggregate variables in our setting. This aggregate is not the same for every internal variable.

First, it is best to be decided by domain experts as in different scenarios different aggregates

could have more semantic meaning (i.e., average time spend in sedentary activities and maximum

time exposed to any toxic chemicals). In addition, for all variables to have the same aggregate

function, they would have to be of the same type which is a big limitation. For example, in
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Table 3.1. Notation used in this paper.

Symbol Meaning
H0/H1 Null/Alternative hypothesis
fH0/ fH1 True probability distributions of H0/H1

pT p-value of statistical test T
α Input significance level

αFDR Significance level when controlling FDR
F/O Factor/Outcome input variables

D = (I,E) Input hierarchy D as graph
Dleaf (v) Leaves of hierarchical graph with root v

R = R f
⋃

Ro Output set of factors/outcomes

our public health data set there are binary variables for yes/no answers and different kind of

categorical variables (i.e., how often in a week with 0-7 values, or how much do you agree with

a statement with 1-5 values).

Output. The output R = R f
⋃

Ro consists of two sets R f = {r1, ...,rk|ri ∈ F}, Ro =

{r1, ...,rl|ri ∈ O}, which are subsets of the input variable sets R f ⊆ F,Ro ⊆ O. These sets need

to satisfy the following two constrains:

• Any variable in the output cannot be a descendent of another variable in the output:

∀ri,r j ∈ R : ri /∈ descendents(r j).

• The set of all descendents of all variables in the outcome is equal to the set of leaf-level

input variables:
⋃

ri∈R descendents(ri) =
⋃

ri∈roots(G)Dleaf (ri).

The output sets are what is visualized in a data exploration system, as in Figure 3.1(c).

R f is visualized as rows and Ro as columns, respectively.

It is important to clarify what we mean by controlling the number of false positives in

hierarchical data. We are concerned by the number of false positives that appear in the result

R f ,Ro, whether it is between input leaf or aggregate variables. Even though aggregate variables

summarize a number of leaf variables, when we control false positives at a level α , aggregate and

leaf variables are treated the same. Thus, a true discovery might associate an aggregate variable
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Figure 3.2. Small part of input hierarchy presented in Figure 3.1. We see the results of the
true probability distribution between each factor shown and one outcome. OC: Off campus
activities. OC1: Do you walk off campus? OC2: Do you attend exercise classes off campus?
PF: Difficulty with basic physical functioning. PF1: Difficulty with getting up from the floor
PF2: Difficulty with walking.

with an outcome even when not all child variables are associated with the outcome. In Figure 3.2

for the output set R f = {OC,PF1,PF2}, if our testing procedure declared significant either OC

or PF2, either one would count as one false discovery in the result set. However, in this case, we

might lose some facts about the child variables of OC. This is captured by the extended statistical

power we define next.

Statistical Power for Hierarchical Data. We need to extend the definition of statistical

power for when we utilize hierarchical data. For example, in Figure 3.1(c) statistical power

is 100%, even though we lose some information by selecting to show only part of the input

variables and not performing all hypothesis tests. That is because the definition of power does

not distinguish between leaf and aggregate variables.

Definition 3.3.2 Extended Statistical Power. Extended statistical power is the fraction of true

positives divided by true positives and false negatives between the leaf child variables of the

variables that appear in the result sets R f ,Ro.
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∑ui∈Dleaf (vi),u j∈Dleaf (v j) p(T P(ui,u j))

∑ui∈Dleaf (vi),u j∈Dleaf (v j)(p(T P(ui,u j))+ p(FN(ui,u j)))

where p(T P(ui,u j)) is the probability of having a true positive for the hypothesis test

between ui ∈ R f and u j ∈ Ro.

When we know the underlying true probability distributions, the probability of having a

TP or FN is simply either 0 or 1. Whenever we mention statistical power for hierarchical data in

the rest of our work, we will mean this extended definition of statistical power.

Using this definition, statistical power in Figure 3.1(c) is 15/16 = 93.75%, not 100%.

In general, this extended definition of statistical power is necessary to compare our technique

against techniques that do not utilize the hierarchical structure of the input data, as in Figures

3.1(a), 3.1(b) and 3.1(c).

Extended statistical power tries to capture the information loss we incur by not performing

all hypothesis tests. There are two kinds of information loss we can have when we pick an

aggregate variable vag over some child variables vi, i = 1, ...,n. Either vag is not a significant

discovery and a child variable vi is, or the other way around. The first case is captured by

the extended definition of statistical power. For example, in Figure 3.2, for an output set

R f = {OC,PF} let’s assume that our testing procedure correctly identifies as significant only PF.

Then, we are losing the information that OC1 is a discovery. Statistical power is 100%, whereas

extended statistical power is 50%. In the latter case, even though some child variable vi might

not be a discovery, the effect of the aggregate variable vag is strong enough so that it is an actual

true discovery. This can be seen in PF aggregate variable in the previous example. What we are

losing in this case is that some sub-population of the group might not be associated with the

outcome (PF2) and some other sub-population might be associated more strongly (PF1). The net

outcome is that on the group level, vag is still associated with the outcome. If the user is more

interested in a specific group level discovery, they can pick to explore it further.

28



Heuristics. Given two outputs R1 and R2, where the false discoveries are controlled at a

given level α , we want to pick the output set which has the highest extended statistical power.

Finding an optimal solution has a caveat. Knowing the statistical power of a solution

requires performing every possible hypothesis test, which is what we are trying to avoid. It also

requires knowing the true probability distributions of these hypotheses. To solve this problem

we present different heuristics in our data exploration algorithms. These heuristics try to approx-

imate the quality of the hierarchies.

3.4 Data Exploration Algorithms

In this section we present VigilaDE’s data exploration algorithms. Specifically, we

present two algorithms that pick R f ,Ro, the variables that appear on Figure 3.1(c).

3.4.1 Data Overview Algorithm

Data Overview Algorithm picks to expand groups whose aggregate variables are closest

to being a discovery with the hope that many tests with child variables will be discoveries.

Intuition. Users want to get the most information when they first visualize their data sets

in a data exploration system. That is why we want to pick R f and Ro that maximize statistical

power. The first heuristic tries to detect discoveries that disappear when dissimilar variables,

with respect to certain outcomes, are grouped together. In particular, several variables in a group

might be correlated with an outcome, but when these variables are combined, the group variable

might no longer be correlated with the outcome. This is known as Simpson’s paradox [15] and

appears often when the groups do not contain variables that behave similarly (i.e., we have a

hierarchy of low quality). Our heuristic tries to approximate this by picking the group variable
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with the smallest non-significant p-value as most likely to be a result of Simpson’s paradox. For

example, between two group variables with p-values 0.06 and 0.5, it is more likely that some

of the variables in the first group are discoveries and, thus, bring the group ‘closer’ to being a

discovery. So, we expect to find more discoveries and gain more power by expanding the first

group variable. In our case, each such group variable is associated with many other variables, so

we use as a heuristic the smallest average p-value of non significant tests.

Example. In Figure 3.2 we see one case where some child variable is associated with

the outcome but that is lost on the group level. We can see that OC1 is correlated with O but OC

is not. This can happen because the effect of OC1 is not strong enough to make OC a discovery

when OC2 is not a discovery. In other cases, this could happen when not all child variables are

correlated with the outcome in a significant way.

Algorithm. The algorithm starts with all factors F , outcomes O, the hierarchies D f ,Do

and k f ,ko the maximum number of factors and outcomes that will appear on the initial UI of

VigilaDE. k f ,ko are the stopping criteria for our algorithms and are picked by the user. They

should be set between the number of all leaf-level variables and the number of the root-level

variables in the input.

This algorithm requires to have a sequential technique for controlling false positives

because at each step the heuristic needs to pick the non-significant tests.

The output of this algorithm is two sets of variables R f ,Ro and the result of the hypothesis

test for each pair 〈factor, outcome〉, f actor ∈ R f ,outcome ∈ Ro.

The algorithm starts with the top level group variables from D f ,Do. It places these in

a candidate set C. Then it performs the hypothesis tests for all pairs of 〈factor, outcome〉 for

factors and outcomes in C and adds them to R f ,Ro. Next, it finds the group factor or outcome

with the smallest average p-value of non statistically significant tests and it expands it, if by

expanding it we don’t get more than k f or ko variables in the results. It expands that variable and

adds its child variables in the candidate set C and the result set R f or Ro. The algorithm ends
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Figure 3.3. Visualizing the correlation between child variables of two different group factors
between which the Group Quality algorithm has to pick.

when it can no longer expand any variables, either because it has reached the limits of k f ,ko or

because all variables are leaf-level variables. Then it returns R f , Ro.

3.4.2 Group Quality Algorithm

Group Quality Algorithm tries to approximate group quality. It does that without per-

forming the actual hypothesis tests between child variables but by just seeing how correlated

with each other these child variables are. We expect this heuristic to perform best when the

quality of the hierarchy is not ideal, which is most real world scenarios.

Intuition. The quality of the hierarchy affects the gain we can get from testing all the

child variables over the parent variable. The quality of the hierarchy describes how similar is

the relationship between the group variable and the outcomes and the relationship between the

child variables and the outcomes. A group with low quality can offer a substantial increase in

power. As a result, when the quality of the hierarchy is low, we expect to gain a lot of power
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by using this quality heuristic. When child variables in a group are not similar, we get different

discoveries in the child variables that are lost on the parent level. As calculating the actual quality

of the hierarchy requires performing all hypothesis tests, we use a heuristic to approximate it.

Example. Intuitively, if two factors in the same group behave similarly, then they might

behave similarly when it comes to outcomes as well. People who have problems with their sleep

(first child factor) usually do not feel refreshed after sleeping (second child factor). So, we would

expect that they would be associated with the same outcomes as people with low sleep quality

(group factor). In this case, our hierarchy has good quality and we expect not to gain statistical

power by testing the child variables. We visualize this in Figure 3.3. We see 2 group factors,

sleep quality and exercise frequency. We see the correlation between one pair of child factors in

each group. We chose the correlation as a metric of similarity in our data set. The first group

has an average correlation 0.95 between all child variables, whereas the second one 0.56. As

a result, we expect to gain more information by expanding the second group variable. We can

see on the figure that in the second group there are more factors that are correlated with only a

few outcomes in contrast to the first group where all the factors are correlated with mostly the

same outcomes. In this example our heuristic achieves its goal. There are many cases where

it would fail. For example, if feeling unrefreshed after sleeping (child variable) was caused

by a condition such as chronic fatigue syndrome (outcome) that does not cause problems in

general with sleep (child variable), our heuristic would fail to detect this. The child variables

are correlated with each other, so our heuristic would think that the group quality is high. But,

because some outcomes might be associated with only one specific child variable, we would lose

power by not selecting to explore this group.

Algorithm. Formally, group quality is the metric we use to capture the similarity between

variables in a group. We define it as the average of the pairwise Pearson correlation:

Group quality(G) =
∑vi,v j∈G simvi,v j

nch(nch−1)/2
=

∑vi,v j∈G |ρvi,v j |
nch(nch−1)/2
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where G is the group of which we are measuring the quality, nch the number of child variables

in the group, simvi,v j a similarity metric between two sample variables, and ρ is the Pearson

correlation coefficient, the metric we picked for our problem. We chose the Pearson correlation

to measure the similarity as it is invariant to scaling and adding of constant factors. This choice

does not relate to using correlation as part of the hypothesis tests we perform in this data. A

group quality of 1, means that all child variables are perfectly correlated with each other and is

the ideal quality. The lower the quality gets the more potential to gain statistical power.

The group quality can be used as criteria for picking which group variable to expand in

the data exploration algorithm we previously described. In each step of the algorithm, we expand

the candidate that has the lowest quality.

3.5 Controlling in VigilaDE

Our proposed algorithms are orthogonal to existing controlling techniques and offer the

versatility of picking the most appropriate controlling technique in each scenario. However there

are certain factors that might affect the performance or that pose restrictions on which method to

pick to control false discoveries. In this section we examine these factors.

3.5.1 Orthogonality

Group structures. Group structures have been used to control false discoveries in

different ways. Input groups can be used to weigh the significance value αFDR among different

groups based on some estimate of true discoveries [42]. This results in increased statistical power

when true discoveries appear together in groups. This method is orthogonal to our algorithms. We

used it as one of our baselines in the experiments and noticed that our algorithms can significantly

improve power when the quality of the groups is low, i.e. when true discoveries do not appear
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together in groups.

Two-stage and stratified approaches control the FDR separately within each group as

some groups might have a much larger number of discoveries and this can lead to increased

power [78, 87]. Such techniques can be easily applied in VigilaDE and can possible lead to an

increase in power.

Heller et al identified that performing hypothesis tests on clusters of data can result in

fewer tests with larger populations [39]. They suggested creating groups based on an external

data set with field specific features, such as time and space properties of FMRI data, and then

performing hypothesis testing with some existing technique that uses these groups. In the next

section we discuss that data-driven hierarchies have certain limitations in our setting. In our

approach we do not even need an external data set with features to perform clustering because

we are utilizing the group quality metric we define in this paper.

Data Dependence. Controlling correctly the FDR depends on the chosen method and

the assumptions of the method about the data dependence between all hypothesis tests. There

are many different approaches to controlling the FDR when there is some kind of dependence in

the data [68]. The original FDR procedure proposed by Benjamini and Hochberg was shown

to still control the FDR when there is a positive regression dependency (PRD) among the test

statistics [12]. However, when there is no positive dependence or the dependence is unknown,

Benjamini and Yekutieli proposed a more conservative way to control the FDR [12].

Under PRD, an increased expected p value for a group true null hypothesis must not

lead to a decrease in the expected p value of any of the children true null hypotheses. The input

hierarchical structure of our data implies such dependence among the group variable and its child

variables. As a result, we argue that using the original FDR procedure, and any other controlling

method that utilize the PRD to ensure the controlling guarantees (i.e., [42]), controls the FDR

correctly in our algorithms. When there is an unknown dependence in the data the technique

proposed in [12] controls the FDR correctly. Our algorithm will still yield a significant benefit in
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statistical power even with such conservative approaches.

3.5.2 Interactive Data Exploration

After the user is presented the initial results of the data exploration algorithms, she can

choose to further explore the data in an interactive way. In order to support interactive data

exploration we need a sequential controlling technique. In such cases, we can chose to control

the mFDR using α-investing and adjust the investing rules proposed in [88].

α-investing controls the mFDR, a variation of the FDR. In VigilaDE, we need to adjust

the proposed investing rules. When we expand a group variable vg, we perform nchildm tests,

where nchild is the number of child variables that vg has in the hierarchy D and m is the number

of factors/outcomes we currently have in Ro/R f and we have to test vg against. To adjust the

investing rules, we batch all nchildm together and divide the significance level α j of each step of

the α-investing rules uniformly over the nchildm tests.

3.6 Data-driven Hierarchies

So far we have focused our work in exploring how to use hierarchies that already exist in

many fields to improve data exploration. In certain fields, such hierarchies do not exist. In this

section, we explore under what conditions such a hierarchy could be created and used from the

input data.

To create a data-driven hierarchy, we can use any clustering algorithm and combine

variables based on a similarity function, such as their correlation. As a result, this groups will

have a high group quality for our algorithms. However, selecting the right clustering algorithm

and setting its hyperparameters, like the number of clusters we want, might affect the quality of

the final data-driven hierarchy. More importantly, for the data-driven approach to work the same
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aggregate function has to be used to create all aggregate variables automatically. For different

variables in the input, different aggregate variables might make more sense. For example, the

two functions: AV G and MAX cannot be used at the same time in a data-driven hierarchy, even

though there might be some groups where the first one is more appropriate and groups where the

later is more appropriate. One such example is the average time spend in sedentary activities and

the maximum time exposed to any toxic chemicals.

Another advantage of utilizing existing hierarchies is interpretability, which is very

important for DE systems. These existing hierarchies usually come with group variable names

that summarize semantically the child variables in each group. These are the names that

would be used on a DE system, such as in Figure 3.1(c). On the other hand, for clustering

algorithms it is hard to generate such a semantically meaningful name. Furthermore, they can

group together seemingly unrelated variables (which can be argued that is of interest to the

user in other applications). For example, for our example data set we run k-means clustering

algorithm on the input factors (with k = 27, as many clusters are there exist in the human created

hierarchy). Variables such as “During the past week, I felt fearful.” and “Do you attend exercise

classes off-campus? (days/week)” appeared in the same cluster. Such a grouping isn’t easily

interpretable.

Data-driven hierarchies are an alternative to using preexisting hierarchies under the

following conditions:

• There is no preexisting hierarchy, or its quality is low, or we are unsure of its quality.

• We are not interested in using different aggregate functions for the same type of input

variables.

• We are not interested in interpretability of the groups for application purposes.

In Section 3.8.4, we explore experimentally when data-driven hierarchies can be used in

a beneficial way with our approach for data exploration.
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3.7 Analysis of Gain in Power

In this section, we use principled mathematical analysis to show formally the reasons that

affect the potential gain in statistical power. We show that the effect of a factor on the outcome, a

higher sample size and the quality of a hierarchy affect the possible gain in statistical power.

We assume that all input variables are discrete. Without loss of generality, we assume that

we have boolean variables. Non-boolean discrete variables can be easily converted to multiple

boolean variables. All the following conclusions and intuitions that we prove hold for continuous

variables as well. However, do to space limitations we have omitted our proofs for continuous

variables as they are almost identical. However, with discrete boolean variables the probabilistic

part of the analysis is easier to follow and more intuitive.

Analysis for Hierarchical Data. In hierarchical data, given a group factor fg and its ng

child variables fi, we want to examine when testing only the pair 〈 fg, o〉 over testing all ng pairs

〈 fi, o〉 provides more statistical power.

Powerg ≥ Powerchildren

Where Powerg is the power of the procedure that tests only the group factor with the

outcome and Powerchildren is the power of the procedure that tests all ng children.

From the definition of statistical power we get:

Powerchildren =
∑ng pi(TP)

∑ng[pi(TP)+ pi(FN)]
=

Poweri

ng
⇐⇒

Powerg ≥
Poweri

ng
(3.1)
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where pi(TP)/pi(FN) is the probability of the test on the i− th child variable to be a

TP/FN, Poweri is the power of a procedure that tests only child i and p(FN) = 1− p(TP).

The hypothesis H1 that we want to test is whether when one has a factor variable f ,

they are more (or less) likely to have the outcome o. In other words, we want to see if f is

correlated with o. The statistic that we are interested in is the probability p(o| f ). The null

hypothesis H0 that we try to reject is that having f does not affect the probability of having o,

i.e., p(o| f ) = p(o).

The appropriate test statistic for this case is the z-test [76]:

z =
p(o| f )− p(o)

e
=

p(o| f )− p(o)√
p(o)(1− p(o))/ns

where e is the standard error of p(o) from ns sample objects.

It is preferable to test 〈 f1, o〉 over 〈 f2, o〉 when the first hypothesis is more likely to result

in a true positive. This is measured by the statistical power. The alternate hypothesis is that the

correlation is not zero, ρ 6= 0, so we need a two tailed z-test. The null hypothesis is rejected

when the |z| value of the test is bigger than zcritical , which is determined by the significance level

α . As a result in equation 3.1:

Powerg ≥
Poweri

ng
⇐⇒ |zg| ≥

∑ng |zi|
ng

By replacing the z values from the previous definitions:

⇐⇒
|p(o| fg)− p(o)|

eg
≥

∑ng
|p(o| fi)−p(o)|

ei

ng

⇐⇒
|p(o| fg)− p(o)|√
p(o)(1− p(o))/ng

≥
∑ng

|p(o| fi)−p(o)|√
p(o)(1−p(o))/nsi

ng
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⇐⇒
|p(o| fg)− p(o)|√ng√

p(o)(1− p(o))
≥

∑ng |p(o| fi)− p(o)|√nsi

ng
√

p(o)(1− p(o))

⇐⇒ |p(o| fg)− p(o)|√ng ≥
∑ng |p(o| fi)− p(o)|√nsi

ng
(3.2)

Takeaway. From equation 3.2, we see that picking the best option is affected by two

factors: the square root of the sample size that supports each factor and the (average) effect a

factor has on the outcome. The fraction of the effect of the group factor to the average effect of

its child factors is the quality of the hierarchy. In a perfect hierarchy, all child factors would have

the same effect on the outcome as the group factor. In that case, there would be no benefit in

testing the child variables. We could gain power because we would perform less hypothesis tests,

and we would have a bigger sample size. Expanding a group with high power doesn’t provide us

with much new information. However, as the quality of a hierarchy becomes lower we can gain

power by testing the child variables. As a result, if all other factors were the same, between two

groups we would pick to expand the one with the lowest quality to gain the most power. This is

the main intuition behind our algorithm in Section 3.4.2.

3.8 Experimental Evaluation

In this section, we show experimentally with real world data and simulations that our

techniques can achieve a significant gain in statistical power in various data exploration scenarios

while controlling false discoveries.
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3.8.1 Experimental Design

Simulations are a very common and statistically sound way to evaluate methods for

controlling false positives [8, 12]. For our simulations, we created m factor and n outcome

random variables. Each variable is a sample of observations from a normal distribution N (µ,σ),

where µ is either µ1 = 0 or µ2 = 5/4 with probabilities p1 and p2 respectively. Each variable

has a sample size s, that unless stated it is the same for all the variables in each experiment.

The hypothesis that we are testing is whether a pair of 〈 f actor, outcome〉 variables comes from

a different probability distribution. The null hypothesis we are trying to reject is that the two

variables come from the same normal distribution. Probabilities p1, p2 and n,m determine the

number of true null hypotheses that exist in the data (p2
1nm+ p2

2nm). We used a two-sided t-test

to test our hypotheses at a significance level α = 0.05, which is a common value. For a number

nc of child variables and quality q, we place qnc variables that come from the same distribution

in each group in the hierarchy. All simulations are repeated 100 times and we report averages

and standard deviation.

Baselines. For our experiments we used two different baselines, depending on the con-

trolling technique that we used. The first one is independent of the input hierarchy and its quality,

whereas the second one takes advantage of the input hierarchy and, as a result, its performance

depends on its quality. First, we controlled for the FDR using the Benjamini-Hochberg procedure.

In this case, the baseline is to perform all possible hypothesis tests and control the FDR. We

compare this baseline against the performance of our algorithms when we control the FDR with

the Benjamini-Hochberg procedure. Second, we controlled the FDR with the Group Benjamini-

Hochberg (GBH) procedure proposed in [42] which takes advantage of the hierarchy. In this

case, the baseline is to perform all possible hypothesis tests and control the FDR with GBH

procedure. We compare this baseline against the performance of our algorithms when we control

the FDR with the GBH procedure as well.
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3.8.2 Statistical Power Gain Against Baselines

In this experiment we show that for different controlling techniques, our approach can

achieve a significant increase in statistical power that can be up to 2.7x. We created different

data sets and we tested our approach against both baselines. For m = 1000, n = 1000 we varied

p1 and p2 so that we get a different number of discoveries. We also varied the quality of the

hierarchy to examine how it affects statistical power. We picked k to be 10% of the number of

factors and the number of outcomes, k = k f + ko = 100+100 = 200. We see all our results in

Figure 3.4.

In Figure 3.4(a), we see that in all cases we achieve some improvement in statistical

power. This improvement can be up to 2.7x (from 0.23 on average to 0.86). In certain cases, the

power of the baseline is low, and the data favor our approach to achieve a very high statistical

power. We see that when the number of true alternative hypotheses is higher, the first baseline

detects more of these hypotheses and has a higher power. So, in those cases the potential increase

in statistical power is lower. We also see that, as expected, when the quality of the hierarchy gets

lower then so does the gain in statistical power. Last, we see that the Data Overview algorithm

performs best when the quality of the hierarchy is high as it assumes that the hierarchies are of

high quality and then tries to find which groups to expand. When the quality gets lower Data

Quality algorithm starts to outperform it as it tries to identify the groups that have low quality,

and it pays off.

In Figure 3.4(b), we see the results of the second baseline and our algorithms with

controlling the GBH. We can still that our approaches still achieve a big gain in statistical power

and our previous observations about when each algorithms performs best still hold. What is

interesting to note is that the performance of GBH depends on the data quality, as it needs to

predict how many true alternative hypotheses exist in each group. On the other hand, controlling

the FDR with the BH procedure is independent of data quality. As a result, even though it might

seem that it is always beneficial to use the GBH procedure to control for false discoveries (with or
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without our algorithms), when we are not aware if there exists any locality among the alternative

hypotheses (i.e., if the quality of the hierarchy is not very low), it can be beneficial to control the

FDR with the simple BH procedure.

3.8.3 Real Public Health Data Set

In this experiment we validate our approach against a real-world public health data set.

We show that there exist real data sets with the set of properties we describe in this paper that

can lead to a gain in statistical power. Our running experiments throughout this paper have been

based on this data set [80]. Scientists collected 169 factor variables from a questionnaire about

the level of physical activity of older individuals. They also collected 36 outcome variables about

various health-related metrics (such as blood pressure).

It is interesting to note here a methodological difference between the statistics and the

database field. In statistics, the prevalent experimental methodology when studying a new

technique is to create synthetic data according to a known probability distribution. Then the

statistics researchers investigate the ability of their algorithms to correctly uncover hypotheses

about the hidden from the algorithm probability distribution, in different settings [12]. In contrast,

the database community prefers to read meaningful real-world examples. The problem with

this mindset is that the hidden probability distribution is never known in practise. In real-world

examples, only a finite sample is known: in the example, 350 individuals with their factor and

outcome values. Given an infinitely large sample, the distribution would be fully revealed.

In the interest of bridging the two mindsets, we follow the technique of [88] in deter-

mining a plausible distribution: first, we treat our sample of 350 individuals as a good enough

approximation of the underlying probability distributions. To determine the underlying dis-

tribution, we found the significant correlations in this population while controlling with the

Bonferonni correction, the most conservative approach of controlling multiple hypotheses. We

then used only a random s part of the initial sample as our “experiment sample” to introduce
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randomness. We performed our experiments for various values of s. Also, our ground truth is

likely to be biased towards approaches that are similar to Bonferonni.

Figure 3.6 shows the results in the real public health data set for different sample sizes and

for two different controlling techniques. We see similar results for both controlling techniques.

First, we see that we achieve up to 1.8x improvement in statistical power. We see that as the

sample size increases, all approaches achieve higher power. This is because a bigger sample

size means less randomness and, as a result, it is easier to identify the discoveries that exist in

the data. We also see that we have a smaller gain in statistical power compared to most cases

of the simulations. This can be due to multiple reasons. First, as the initial population is quite

small, we cannot introduce a high degree of randomness and still have a big enough sample size.

Second, this data set has only one level in the hierarchy and it describes the factor variables only.

3.8.4 Data driven Hierarchy

In this experiment we investigate the effect of data driven hierarchies on the gain of

statistical power of VigilaDE’s data exploration algorithms. We have already discussed that data-

driven groups have interpretability problems that make them a poor choice for applications and,

more importantly, they are limiting to the kinds of input variables. As a result, it is meaningless

to investigate the effect of a data driven hierarchy in the application scenario of this work. We

run our experiments for the synthetic data of our simulations.

We used k-means clustering algorithm to create a data-driven hierarchy for factors and

outcomes. We set k = 100, which is the same number of groups that we have in the a priori

hierarchy we create. As k-means clustering creates groups of different sizes, we could not create

a hierarchy with more than one level of grouping. In order to make a fair comparison, we run our

algorithms with an a priori hierarchy that had only one level of grouping as well. We controlled

false discoveries with the GBH procedure in all cases.

Figure 3.5 shows the results with the synthetic data for a data-driven hierarchy and the
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input a-priori hierarchy. The performance of the data-driven approach is independent of the

quality of the hierarchy that appears on the plots. The performance of the data-driven approaches

is the same across all four plots in Figure 3.5. In the Figure we see that the a priori hierarchies

outperform the data-driven ones when the quality of the a priori hierarchy is high. As the quality

gets lower, then the data-driven approach starts to perform best. For specific applications, where

the limitations of data-driven hierarchies explained earlier are not important, creating data-driven

hierarchies for our proposed data exploration techniques is an alternative solution. It can even be

a preferred solution when we are not confident in the quality of the input hierarchy.

3.8.5 Isolating Effects on Power

In this section, we isolate the different conditions that affect the gain in statistical power.

We motivated these conditions in Section 3.7 and here we validate them experimentally. We

show that a higher sample size always results in better results, when all other conditions are

equal. In addition, we show how the effect of a factor on the outcome is related to power and

how this effect appears in hierarchical data.

Sample size. We examine how different sample sizes affect statistical power when we

have hierarchical data. As we cannot explicitly vary the sample sizes, we vary the number of

variables that belong to a group, and as a result the sample size of the group variable against

the child variables. We created pairs of 〈 f actor, outcome〉 for 10 outcomes and 20 group factor

variables. We measured power for different ratios of sample size of group/AVG(sample size of

children). A ratio of 2 means that the group factor has 2 child factor variables and as a result

double the sample size. All child factors in a group come from the same population. In each

scenario, we tested all child factors and all outcome pairs against all group factors with all

outcome pairs. We see the results in Figure 3.7(a),(b). There is a higher gain in statistical power

when the group variables have a larger sample size (higher ratio), whether we control for the

FDR or not.
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Effect on outcome. We examine how the effect on the outcome affects power in hierar-

chical data. In this experiment we validate our intuition of equation (2). We measure power for

different cases of the quality of a hierarchy, a metric that measures the percentage of the child

variables in a group that come from the same distribution. We created pairs of 〈 f actor, outcome〉

for 10 outcomes and 20 group factor variables. We measured the statistical power for different

qualities of the hierarchy. A quality of 90% means that in each group, 90% of child factors come

from the same distribution. In each scenario, we tested all child factors and all outcome pairs

against all group factors with all outcome pairs. We see the results in Figure 3.7(c),(d). When we

do not control for false discoveries, there is a certain threshold where it stops being beneficial to

test the group variables. Interestingly, this is not the case when we control the FDR. We can still

see that as quality lowers we have a smaller gain in power. However, in all cases it is beneficial

to test the group variables. In this scenario, controlling lowers the power of testing the children

enough (to around 0.25) that even when the quality of the hierarchy is low the power of testing

the group variables doesn’t become lower than that.

3.9 Related Work

In Section 2.2 and 3.5 we examined a lot of related work from statistics about the problem

of controlling false discoveries. Next, we will discuss recent work about data exploration systems

and bayesian models.

Data Exploration. A lot of work recently in the data management community focuses

on different data exploration systems and techniques [49, 74, 77, 82, 85]. Idreos et al provide

an overview of recent data exploration systems [44]. OLAP graphical tools utilize hierarchical

data to provide drilling and slicing; Polaris is a common example [77]. Sellam et al focus on

clustering data as a way of providing an overview in the exploratory process [71]. Bernard
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et al describe a system that provides visual summaries and drilling of time series data [13].

In contrast to our work, these systems create data-driven clusters with the goal of providing

a summarization of results and improve the user interaction. However, they do not take into

account false discoveries, and as data driven approaches to creating a hierarchy they still have

limitations for our scenario as we discuss in this paper.

Some systems allow hierarchical data, described by an ontology, to be visualized by a

graph and drill down to explore certain parts of the ontology [10]. However, these system focus

only on improving the user interaction.

The authors of [88] proposed new α-investing rules to control false discoveries in

interactive data exploration. During interactive data exploration hypotheses appear in an adaptive

and streaming way. As a result, most previous techniques could not be applied. α-investing is

a sequential technique. The authors come up with a few novel investing techniques in order to

achieve the best results in different interactive data exploration scenarios. If ai invested is too

high, the entire wealth might be exhausted too fast and the procedure might need to stop. On the

other hand, if ai is too low, it can result in loosing a lot of statistical power.

Bayesian models. Bayesian models are an alternative to frequentist statistical methods

for inference [34]. One advantage of Bayesian models is that users usually do not have to worry

about false positives that come from multiple hypothesis testing [32]. However, these models

require additional effort in the form of modeling prior and posterior probabilities in order to

capture specific field knowledge. When incorporating such field knowledge in prior probabilities,

these models have been shown to perform very well [33]. The manual effort of selecting priors

can be alleviated by automated methods, but they still require some kind of field expertise [86].

VigilaDE, as a data exploration system, does not require users to have any kind of specific field

expertise. As a results, Bayesian methods for controlling false discoveries can be unsuitable in

our setting.
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3.10 Conclusion

In this chapter, we presented a novel way to explore hierarchical data that can increase

statistical power when we control for false discoveries. Our analysis and experimental evaluation

showed that we can achieve a significant increase in statistical power against existing controlling

techniques.
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(a) Controlling the FDR with Benjamini-Hochberg procedure.

(a) Controlling the FDR with Group Benjamini-Hochberg procedure (GBH).

Figure 3.4. Experiment of different data exploration algorithms for varying parameters of data
with two different controlling techniques.

48



Figure 3.5. Comparison of Statistical power of our algorithms with data-driven(DD) and a
priori(A-p) hierarchies. False discoveries were controlled with the Group Benjamini-Hochberg
procedure.

Figure 3.6. Experiment with real Public Health data set.
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(a) Sample size and power in hierarchical data
without controlling.

(b) Sample size and power in hierarchical data
when controlling FDR

(c) True quality of a hierarchy and power in hier-
archical data without controlling.

(d) True quality of a hierarchy and power in hier-
archical data when controlling FDR.

Figure 3.7. Experiment to show how the sample size and the effect of a factor on an outcome
affect statistical power.
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Chapter 4

Avoiding Validation Overfitting during
Feature Selection

In this Chapter, we present a novel algorithm for feature selection that avoids overfitting

the holdout validation dataset. First, we present an experimental analysis of the state of the art

algorithm for avoiding overfitting the hold out dataset in a generic setting and provide guidelines

for setting its parameters. Then we present AUTO-SET, a novel and automated way to set these

parameters. Lastly, we present Auto Adjust Threshold, a novel feature selection algorithm that

avoids overfitting a holdout dataset and we show that it outperforms existing algorithms.

4.1 Motivating Example & Overview

A user has a dataset consisting of 3000 samples and 3000 features. He wants to build

a classifier with a logistic regression to predict a binary outcome. As it is common practise he

splits the dataset into a training, holdout/validation and testing set. In the dataset of this example,

the output binary variable is just a random variable; i.e. no feature has any predicting power. To

avoid overfitting the training data he decides to select only 200 features from the dataset. To

achieve that he performs sequential feature selection, where at each step he chooses to add the

next feature that is most correlated with the response variable. To validate the feature selection
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Figure 4.1. Training, validation and test error during feature selection in four different scenarios.

process he uses the holdout set.

In Figure 4.1 we see the error of this classifier in four different scenarios as a function

of the number of features that were selected. In the top left plot, which is the scenario we just

described, we can clearly see that this ML model overfits the validation set. The validation error

curve’s trend follows the trend of the training error curve. They are both decreasing as the model

has more features. However, the test accuracy, which is not used throughout the feature selection
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process, stays constant at 50%. Obviously, the validation set error overfits the data and cannot be

used to estimate the generalization error.

In [27] the authors proposed a solution for this problem. Their proposed algorithm

ThresholdOut is a way of accessing a dataset. Its idea is simple. If the value of a metric that

we want to compute differs more than a predetermined value τ on the training and the holdout

datasets, then return to the user the value on the holdout dataset. Otherwise, when the values

are close enough the user does not need to know the actual value on the holdout dataset. In

formal description of the algorithm there is also some noise σ added. This process of accessing

a holdout dataset helps avoid overfitting.

However, to use ThresholdOut one first needs to set its parameters τ and σ which are not

very intuitive. In Figure 4.1, we see the results of feature selection with ThresholdOut for three

different pair of values for ita parameters. In the top right plot, the chosen parameters seem to

work very well as we avoid overfitting the validation dataset. When the threshold is too small

(bottom left plot), we still have less overfitting than when not using ThresholdOut, but more

than in the previous scenario. Lastly, if noise σ is too high (bottom right plot), this can lead to

having less stable results which can make our feature selection less stable in converging to the

best solution.

Overview. ThresholdOut can be very useful in reducing validation overfitting, however

all of its benefit can disappear when the wrong values for its parameters are chosen. In Section

4.3, we show the results of our experimental analysis of how setting these parameters affects

the performance of ThresholdOut during feature selection in many different settings. We also

provide intuitive guidelines for setting these parameters.

In Section 4.4 we automate the guidelines for setting the parameters of ThresholdOut.

We present AUTO-SET, an algorithm that automatically picks the values of the parameters τ and

σ depending on the setting. We experimentally show that AUTO-SET in most cases performs

very close to the optimally picked values for τ,σ .
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In Section 4.5, we present Auto Adjust Threshold(AAT). AAT is a novel approach to

feature selection that is based on the main idea of ThresholdOut and avoids overfitting the

holdout dataset. Feature selection is an adaptive process where the “queries” that we want to

evaluate on the dataset have a very specific structure. For example, in forward selection we start

from a very simple model and adaptively test more complex ones. AAT exploits this structure

to automatically adjust the value of τ in each step of the feature selection algorithm in order to

reduce overfitting and, as a consequence, reduce the error.

4.2 Background

In this section we explain intuitively the ML terms and concepts we use throughout this

paper and refer readers to the related textbooks for a more in-depth background [37, 58, 73]. We

also give a brief description of ThresholdOut algorithm [27].

4.2.1 ML Concepts

This work focuses on supervised learning. Supervised learning involves learning a

machine learning (ML) model from a training dataset of correctly labeled examples. The training

dataset is used to learn the parameters of the ML model and then the ML model can be used to

make predictions for new unseen examples. There are many different ML models for different

settings and problems. For example some ML models that we will use for classification tasks are

logistic regression, decision trees, Naive Bayes classifiers. To measure a model’s performance

and compare it against other models, we use the test error, the error of the model on a holdout

test dataset of previously unseen examples.
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Feature Selection. Feature selection (FS) is the process of selecting only a subset of

features (variables) to use in building the ML model. FS methods are almost always used along

with a ML model to help improve accuracy, among other reasons. At a high level there are three

types of feature selection methods: wrappers, filters and embedded methods [35]. In this work

we focus on wrapper methods.

Wrapper methods use a search algorithm to search the space of possible feature subsets

to obtain the most accurate one. Wrappers use the ML model as a “black-box” to score all these

different feature subsets. Sequential greedy search is one of the most popular search algorithms

for wrappers. It has two variants: forward stepwise selection and backward stepwise selection.

Given a feature set X, forward (resp. backward) stepwise selection adds (resp. deletes) the best

(resp. worst) feature at each step, starting with the empty set (resp. full set). To determine

the best (resp. worst) feature at each step it computes the error of an ML model with (resp.

without) the candidate feature. The error can be measured using a holdout dataset or using k-fold

cross-validation. For our purposes, we use the simpler holdout method commonly used [37]: the

input data is split 50% : 25% : 25% with the first part used for training, the second part used for

the validation error during greedy search, and the last part used for the holdout test error.

Overfitting. When a ML model describes a limited set of data points too closely, then

this model overfits the data and can fail to generalize to new unseen examples. This is a common

problem in ML that can appear easily when the ML model is too complex (i.e. decision trees) or

when the amount of data points is limited. Most of the existing techniques focus on fixing the

problem of overfitting the training data. There are many other more subtle ways to overfit data,

such as overfitting the validation dataset during procedures like feature selection [53].

Model complexity. Some ML models are simpler than others. For example, always

predicting the average value of the training data is a much simpler than fitting a linear regression

model which is simpler than a decision tree model. One common way to measure the complexity

of a ML model is its VC dimension.
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Intuitively, the VC dimension measures the maximum number of any data points that the

model can correctly classify; a capability known as shattering. For example, consider a binary

linear classifier in 2-D. It is easy to see that this model can correctly classify any set of 3 points

(distinct and noncollinear). But, it cannot shatter any set of 4 points. Thus, its VC dimension is 3.

The definition of VC dimension can be extended to regression ML models [37].

A higher VC dimension means probably a higher variance. The VC dimension usually

increases with the number of features. For example, it is linear in the number of features for

linear classifiers, such as logistic regression and Naive Bayes [61]. As a result, feature selection

usually produces simpler ML models.

Bias-variance trade-off. The test error can be decomposed into three components: bias

(a.k.a approximation error), variance (a.k.a. estimation error), and noise (a.k.a. irreducible error).

The noise is an inevitable component that is independent of the ML model. Bias is the error

that results from erroneous assumptions about the model. It measures how far is the best learner

in the model from the optimal one. Variance is the error that results from the the fact that the

training dataset is only a random finite sample from the underlying data distribution. It measures

how sensitive the model is in fluctuations in the training data.

Model complexity can be used to explain bias and variance. A model of low complexity

introduces some kind of assumption (bias) about the underlying data distribution. For example,

using a linear classifier assumes the data can be described with a linear model. A model of high

complexity can have high variance as it might “memorize” (overfit) the data rather than learn the

underlying distribution. It is obvious that there is a trade-off between bias and variance as we go

from simple to more complex ML models.

The feature selection process tries to improve performance by finding the feature set that

minimizes both bias and variance. We go more in depth about how this trade-off appears during

feature selection in later sections.
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4.2.2 ThresholdOut

ThresholdOut [27] is a method for reusing a holdout dataset to validate adaptively

chosen hypotheses while avoiding overfitting the holdout set. This method also provides some

generalization guarantees. The main idea is the following: the user can form a hypothesis (i.e.,

the best features for a ML model) with access to the training data. But, to access the holdout

data for validation he has to use the ThresholdOut method. This method checks whether the

hypothesis overfits the training data by comparing it with the holdout data. It returns the mean

value of the hypothesis on the holdout data only if the hypothesis overfits the training data. In

this way, the minimum information about the holdout data, that is needed to avoid overfitting the

training set, is leaked to the user. As a result, ThresholdOut also avoids overfitting the holdout

data.

In Algorithm 1 we see the pseudocode of Thresholdout as it is presented in [27].

ALGORITHM 1: ThresholdOut pseudocode
Input :Training set St , holdout set Sh, threshold τ , noise σ , budget B, multiple hypotheses φi

1 while B > 0 do
2 if |E[φi(St)]−E[φi(Sh)]|> τ +Lap(8σ) then
3 output: E[φi(Sh)]+Lap(σ)
4 B = B−1
5 else
6 output: E[φi(St)]
7 end
8 end

St and Sh are the training and holdout datasets respectively. τ,sigma are two input

parameters for the method. The threshold τ determines what difference between the training and

holdout average values is considered overfitting. The noise parameter σ , also called tolerance,

determines how much Laplacian noise (Lap()) to be added to the results and it affects the formal

guarantees given by the authors. It is also called tolerance, because it determines how much

“off” can be the average value of the hypothesis on the holdout set that the algorithm returns.

φi is i− th adaptively chosen hypothesis that the method takes as input. Lastly, the budget B,
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is determines how many queries the method can answer about different hypotheses without

overfitting the holdout data.

The main idea of the pseudocode is simple. If the difference of the average score of φi

on the training set and the holdout set is bigger than the threshold τ and some noise σ , then φi

overfits the training data, so the method returns the score on the holdout data. Otherwise, the

user doesn’t need to know the score of φi on the holdout data.

4.3 Analysis of ThresholdOut

In this section we examine how different values of the parameters of ThresholdOut affect

overfitting and test error. First, we observe the performance of ThresholdOut for different values

of τ and σ on a synthetic dataset, for different ML algorithms. Next, we validate these insights

on real datasets. In the next sections, we present these insights for wrapper feature selection

methods. We conclude by giving generic guidelines for setting these parameters.

4.3.1 Design of Experimental Analysis

We evaluated the performance of ThresholdOut on many different settings. We examined

the ML problem of feature selection for binary classification. We tested wrapper methods,

specifically stepwise wrapper methods. We trained many different ML models, a Naive Bayes

model, a Logistic Regression model and a Decision Tree model. We performed our analysis

for synthetic datasets as well as real ones. For each different setting (ML algorithm, dataset,

feature selection algorithm), we varied the parameters threshold τ ∈ [0.01− 0.2] and noise

σ ∈ [0.001−0.1]. More details about our experimental setup can be found in Section 3.8.

To evaluate ThresholdOut, we reported the test error et of the model when the feature

selection algorithm converged and the overfitting there. We measure overfitting as the difference
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Figure 4.2. Summary of results of analysis of ThresholdOut algorithm in Forward and Backward
Selection.

between the test error and the validation error |ev− et |. To get a better picture of overfitting

we also reported the overall oferfitting of the process, as the average overfitting at each step of

feature selection.

Next, we present our insights of this extended experimental analysis. We present these

results separately for forward and backward stepwise feature selection because even though the

high level insights are almost the same, the reasons for these results are different. The full results

of the experiments can be found in Section Section 3.8.

4.3.2 Forward Selection

We varied the threshold τ and noise σ parameters of ThresholdOut algorithm and ob-

served how they affected the results of forward selection. Because there are so many different

possible settings, we give some insights in relative terms, such as better or worse performance,

based on our observations from out experimental analysis. The experimental results are summa-

rized in Table 4.3 through Table 4.7 and our insights in Figure 4.2.

59



When τ and σ are low, we have the most overfitting. This is very similar to feature

selection without ThresholdOut. A small threshold allows the validation error to decrease faster

than the actual error and feature selection overfits to the validation set. This results in converging

faster to a solution as validation error decreases faster. Another result of this overfitting is that

the final performance on the test set is usually worse.

For higher values of τ and still low values of σ , we have less overfitting, both overall

during feature selection, and at the final solution. Convergence to the final solution is still fast,

and even faster than with small threshold τ values as the minimum validation error reached in

this case is not as small as when there is more overfitting. Lastly, lower overfitting results in

better performance than before.

For low values of τ and high values of σ , ThresholdOut has a lot more noise. First, σ

determines the noise added to the threshold τ . As a result, even if τ is small, a high σ value

can lead to sometimes having a high threshold. This results in less overfitting mostly due to

randomness introduced by a high σ . Moreover, σ determines the noise added to the validation

error that ThresholdOut returns. This can affect the feature that the algorithm picks at each step

when there is a lot of noise and, as a result, there is a more gradual decrease in the validation

after every step.

4.3.3 Backward Selection

Next, we repeated the previous experiments for backward selection. These results are

summarized in Table 4.3 through Table 4.7 and our conclusions are summarized in Figure 4.2.

When τ and σ are low, we have the most overfitting in backwards Selection as well. A

small threshold value allows to overfit the validation set and in backwards Feature selection that

means that convergence can be slow as the algorithm starts with a very low validation error and

stays that way longer. Slow convergence in backward selection means fewer features, which is a

positive. Lastly, the final performance on the test is good.
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For higher values of τ and still low values of σ , we have obviously lower the overfitting.

In backward Selection this doesn’t seem to affect the convergence speed and with the right τ

value it can even improve the final performance on the test set.

For low values of τ and high values of σ , we have more noise. As we explained before,

this means the threshold τ will be sometimes larger and thus we have less overfitting. However,

noise changes the convergence speed. With more noise the validation error slowly increases and

as a result the feature selection algorithm stops fast. As a result, the algorithm can return too

many features and overall its performance is worse.

Lastly, for high values of both τ and σ , we have a performance that is similar to low τ

and high σ . The difference is that the big threshold value results in a bit slower convergence

speed.

4.3.4 Guidelines for setting τ , σ

Based on the insights we described about τ and σ , we give some guidelines for setting

these parameters for wrapper feature selection algorithms.

• The noise parameter σ should always be an order of magnitude smaller than the threshold

parameter τ . Since noise is also added to the threshold τ itself, having a bigger σ than τ

results in a a lot of random variability in the threshold at each step.

• The noise parameter σ should be small. Large σ values can make the feature selection

algorithm unstable; it might pick the wrong features at each step because noise is added to

the validation error that ThresholdOut algorithm returns. As a result, large σ values can

make the feature selection algorithm converge to a solution that doesn’t perform that well.

A good rule of thumb based on our experiments is that σ should be at most τ/10.

• The threshold parameter τ should be large in order to prevent overfitting to the validation

set. A too small value will lead to a lot of validation overfitting. On the other hand, a too
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large value can have bad performance due to training overfitting.

How much smaller than τ should σ be? How small should σ be? And how large should

τ be to avoid overfitting both the validation and the training datasets? The exact values for σ

and τ that will give the best results depend on the problem setting. As a result, our guidelines

are generic and not very practical. We cannot quantify them without knowing the specific

dataset, ML algorithm and feature selection process. A threshold of τ = 0.1 might give the best

performance for one dataset, but might be too large and lead to training overfitting on another

dataset. To solve this problem in the next section we present an algorithm to automatically select

values for τ and σ based on the problem setting.

4.4 AUTO-SET

In this section we start by motivating the need for an automated way of picking the

parameters of ThresholdOut algorithm. Next, we present AUTO-SET, our proposed way of

automatically setting the parameters τ and σ for ThresholdOut algorithm for wrapper methods

of feature selection.

Motivation. In the previous section we gave some generic guidelines that help users

set the parameters of ThresholdOut, but they were generic because the optimal values depend

on the problem setting. For example, in our analysis we saw that on the synthetic data, for

logistic regression, for forward selection τ = 0.20, σ = 0.001 were the best performing values

in regards to the error among all the possible parameters we tried. In contrast, for the same

setting but for backward selection the best parameters were τ = 0.05, σ = 0.001. Backward

selection performed better for a relatively small value of τ whereas forward selection performed

best for the largest value of τ we tried. This example makes it obvious that there is not one

way to set these parameters to have the best performance across all different problem settings.
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We need to take into account the feature selection algorithm, the ML model and some initial

information about the data in order to select good values for τ and σ . In addition, as we have

already discussed, autoML systems make solving this problem a necessity. By their definitin

they have to automate ML processes because their users are not ML experts.

Intuition. Our intuition of how AUTO-SET picks the values for ThresholdOut algorithm

come from the bias-variance trade-off as it is illustrated on Fig 4.3. We use the bias-variance

trade-off to explain the different training and validation error we expect to see in feature selection.

The trade-off is not the same for forward selection, where we start with the simplest ML model,

and for backward selection, where we start with a very complex ML model. We explain how we

can leverage the bias-variance trade-off in these two different situations to pick values for the

parameters of ThresholdOut.

Forward selection algorithms start with an ML model with only one features (a very

simple model) and adds more features at each step until it can’t reduce the validation error of

the model any further. That means that FS algorithms start with a model with low variance and

high bias. Low variance means that the ML model does not overfit the training data. As we see

in Figure 4.3 as well, the training error(et) is a good approximation of the true error. This also

means that we do not need to use the validation error during the first steps of feature selection.

Backward selection algorithms start with an ML model with all the input features (a

complex model) and remove features at each step until it can’t reduce the validation error of the

model any further. That means that backward selection starts with a model with high variance

and low bias. High variance means that a complex ML model can easily overfit the training data.

This means the training error is not a reliable approximation of how well the model generalizes

in new unseen data. This can be seen in Figure 4.3, as the difference between the training and

the true error when a model is complex. As a result, when our model is too complex using the

training error to guide the feature selection is not helpful, and the validation data is necessary.
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Figure 4.3. Bias-variance trade-off.

4.4.1 Forward Selection

Simple ML models have the low variance. At the first steps of forward selection the

model is simple and does not overfit the training data. Also, due to low variance the training and

validation errors should be very close. AUTO-SET picks for τ (almost) the biggest difference

between the training error et and the validation error ev on the initial step of forward selection.

By doing this, ThresholdOut rarely returns the validation error, and forward selection picks

which feature to add based mostly on the training error. As the model gets more complex, the

variance increases, the model starts to overfit the training data, and there is a bigger difference

between et and ev. As this difference gets bigger, ThresholdOut returns the validation error ev

more often.
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Setting τ . AUTO-SET computes the differences between the training error et and the

validation error ev of all the possible initial feature sets FS1.

diff = {|ev− et ||∀FS1}

And then it picks as τ the value:

τ = max({xi ∈ diff |xi < x̃+3σx})

where x̄ is the mean of the diff set and σx its standard deviation. We do not set as τ the maximum

value in diff in order to avoid outlier values [].

Setting σ . From our analysis we saw that σ should be much smaller, and preferably an

order of magnitude smaller than τ . This makes intuitive sense as well, as noise is also added to

τ based on σ value. So picking a σ > τ results in a highly variable threshold τ . On the other

hand, a very small value of σ does not help prevent overfitting the validation data. From our

analysis we saw that picking for σ = τ/15 is a good rule of thumb that gives good results. In all

our methods we adopt this way of setting σ . When we do not mention how σ was set, we imply

that we used this method.

4.4.2 Backward Selection

Backward Selection works in the opposite way of forward selection. It starts with a

complex model (i.e., a model with all the input features). Complex models have a high variance.

High variance means that the model can overfit the training data and results in a big difference

between ev and et . AUTO-SET picks for τ the mean value of the differences between the

training error et and the validation error ev on the initial step of backward selection. By doing

this, backward selection picks which features to remove based both on the training set and the
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validation set on the first steps. As the model gets simpler, the variance decreases, the model

overfits less the training data, and the difference between ev and et becomes smaller. As this

difference gets smaller, ThresholdOut returns the training error et more often.

Setting τ . AUTO-SET computes the differences between the training error et and the

validation error ev of all the possible initial feature sets it tries FSk, where k is the number of all

input features.

diff = {|ev− et ||∀FSk}

And then it picks as τ the value:

τ = x̃

where x̄ is the mean of the diff .

We presented AUTO-SET, our method for automatically picking the values for the pa-

rameters τ and σ for ThesholdOut algorithm for wrapper methods of feature selection. The

bias-variance trade-off gives us more information during the feature selection process that we can

use to further optimize our method. As the model complexity changes during feature selection,

the initially picked threshold τ is not a good choice anymore. We use this information to further

improve upon ThresholdOut.

4.5 Auto-Adjust Threshold feature selection

In this section we present Auto Adjust Threshold(AAT). AAT is a novel method of access-

ing the holdout validation dataset during feature selection with wrapper methods. AAT allowes

reuse of the validation data during feature selection only when necessary to avoid overfitting

the validation data and, as a result, improve model performance. We start by motivating the

opportunity to exploit the structure of the feature selection process to improves the final model
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performance. Then, we give an overview of our procedure before we dive into the technical

parts.

4.5.1 AAT Overview

Auto Adjust Threshold is a novel approach to accessing a holdout dataset for validation

during feature selection with wrapper methods. AAT is based on the main idea of ThresholdOut

that access to the validation data is not needed to evaluate all models, but takes it one step

further. The models that are evaluated during feature selection have a structure when it come to

their complexity. Models get more complex during forward selection or less complex during

backward selection. As a result, as the complexity of the models changes, the threshold τ that

ThresholdOut initially picks is not appropriate anymore. AAT approximates the variance-bias

trade-off that is the result of the gradual change in model complexity. It then uses it to adjust the

threshold τ .

An example of the opportunity for improvement is the last step of forward selection when

we execute forward selection until we have all possible features in the model. This can also be

seen as the first step of backward selection. Both have to pick the best among the feature sets

FSk. We previously mentioned that forward selection needs a relatively large τ in its first steps

and backward selection needs a relatively small τ in its first steps. It is obvious that the large τ

that AUTO-SET picks on the first step of forward selection is not ideal at the end of that feature

selection algorithm, or in general, in later steps of the algorithm.

Auto Adjust Threshold uses the bias-variance trade-off to gradually adjust the initial

threshold throughout the feature selection process of any wrapper method. An overview of the

procedure can be seen in Figure 4.4. To know how much to adjust the threshold, we would need

to know ideally the point when the test error is minimum kmin. Because we cannot know the test

error curve, we approximate it with the holdout validation error curve. The error curve which

exhibits a characteristic U-shaped curve based on the bias-variance trade-off [58]. However,
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Figure 4.4. Overview of Auto Adjust Threshold feature selection process.

depending on the setting of the feature selection procedure, there can be a big variation in how

the error changes as the number of features changes. As a first step, Auto Adjust Threshold

builds a machine learning model fval during the feature selection process to approximate this

curve. AAT uses the model to predict the minimum point kmin of the error curve. In Section

4.5.2 we describe the details of how we build and update this model.As a next step, we use kmin

along with the minimum and maximum values of the threshold to adapt the threshold τ for the

next step of the feature selection algorithm. In Sections 4.5.3 - 4.5.5 we describe how we adapt τ

based on different wrapper feature selection algorithms.

4.5.2 Approximating validation error curve

In this section, we describe how AAT builds an ML model during the feature selection

process to estimate the validation error curve.

The validation error curve during feature selection has a U-shape because of the bias-

variance trade-off [58]. However, on different settings this U-shape form can be significantly
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different. For example, decision trees have very high variance but low model bias. As a result,

the validation error curve can be much steeper and it can decrease much faster. The minimum

point (or the bend point) kmin of the curve will be reached much faster than in other cases. The

ML task here is to predict the bend point of the validation curve k∗min.

ML model. We build an ML model for the validation error curve during the actual

feature selection process. Because we know that the distribution function for the validation error

curve is U-shaped we use polynomial regression with second degree polynomials. For our setting

we need to be able to update our model online, as more data becomes available at each step i

of the feature selection algorithm. At each step i we get a new training point (xnew,ynew) from

the feature set FSi and we update our ML model. To achieve this we used a stochastic gradient

descent optimizer which can update the regression model as more data becomes available.

In Algorithm 2 we see the pseudocode of the procedure of building and updating this

model. Our model starts only with the first and last points of the curve. We cannot update the

threshold τ until after the first iteration of the procedure, when we have at least three points. At

each step i of the feature selection algorithm we get a new training point (xnew,ynew). We use this

to update the ML model. The updated model is used in the next step to recompute the predicted

minimum point k∗min which is necessary to adjust the threshold τi for the next step of the feature

selection algorithm.

Initial training data. To approximate the U-shaped curve we use a polynomial of degree

2. To approximate such a polynomial we need at least 3 data points. The first point (x0,y0) can

be computed from the model with all the features (feature set FSk) independently of the feature

selection algorithm, as all algorithms will have the same feature set FSk. x0 is the number of

features in that model and y0 is the validation error of the FSk model.

In AAT, the first step of the feature selection algorithm has a preset threshold τ0, set by

AUTO-SET. So, we can get another training data point (x1,y1 in the pseudocode below) for our

model after the first step of the feature selection algorithm. In forward feature selection, this data
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point is the validation error of FS1 and in backward selection FSk−2.

We need one more training data point to make an initial prediction for k∗min. We start

updating the threshold one step later in the feature selection process to get another training data

point. However, in backward selection this results in having 3 consecutive (in terms of their

x-axis values) points. There can be many models that can fit these points. Some of these can be

very far from the validation error distribution function we are trying to estimate. To avoid this,

we use the average of the five best candidate feature sets FSc
2 for backward selection (or FSc

k−3

for forward selection) as an estimate data point. We use the average of the five best feature sets

to avoid outliers in the first step of feature selection while the model is volatile.

ALGORITHM 2: Approximating validation error curve

1 x0,y0 = k,validationError(FSk)
2 FS1 = runForwardSelectionStep(τ)
3 x1,y1 = 1,validationError(FS1)
4 x2,y2 = k−1,AVG(validationError(best5(FSc

2)))
5 X = x0,x1,x2
6 Y = y0,y1,y2
7 mlModel = polynomialRegression(degree = 2)
8 mlModel.fit(X ,Y )
9 for i← 2 to k do

10 τ = updateTh(mlModel)
11 FSi = runFeatureSelectionStep(τ)
12 xnew,ynew = i,validationError(FSi)
13 X = X

⋃
{xnew}

14 Y = Y
⋃
{ynew}

15 mlModel.updateFit(X ,Y )
16 end

4.5.3 Forward Selection

This section describes how AAT utilizes the ML model for estimating the validation error

curve during the feature selection process. This is the second step depicted in Figure 4.4. We

first give the intuition of how we use the ML model and then describe in detail our algorithm.
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Motivation. Depending on the setting of the feature selection procedure, there can be big

variations on how the test error curve changes when the number of features changes. The setting

of the procedure is the data, the ML model and the feature selection algorithm. For example,

the number of truly informative features in the dataset determines the maximum possible point

where the test error will stop decreasing. In addition, more complex relations between the

informative features and how they interact with each other determine how much they contribute

to reducing the test error and, as a result, the shape of the error curves. Another extreme example

of a different setting is Decision Trees. Decision trees are models with high variance and low

bias. Their model complexity is not linear to the number of feature; it is hard to quantify their

complexity. Their error curves still are U-shaped, however the U-shape can be very different

from other models. As a result of the high bias of the models, the minimum point can appear

much faster. This makes it crucial to have a way to identify how the error curves change based

on the number of features during the feature selection procedure in order to be able to improve it.

To solve this problem we use a learned model for the validation error curve. The test

error is not known during the feature selection process, that is why we use the validation error

as an approximation for the test error. Our algorithm tries to improve the performance of the

feature selection process while also solving the problem of validation overfitting. When there is

little validation overfitting, the validation error provides a good approximation of the test error.

A complex model has high variance. As a result, we want to use the validation dataset

more there. We can achieve that by having a small threshold τ . Forward selection will have the

its most complex model when it terminates, which is near the minimum point of the U-shaped

validation error curve. Given this ML model, we can adjust the threshold of the feature selection

algorithm.

Main Idea. Start with a threshold value τ0 set by AUTO-SET and reduce it gradually as

the model gets more complex. The minimum threshold value is τmin at the predicted kmin point,

which is the minimum point based on our ML learned validation curve.
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Algorithm. Given the ML model, we want to find the k value where the minimum point

is going to be. The model describes a second degree polynomial a2x2+a1x+a0, so the predicted

minimum point is going to be at k∗min =−a1/2a2.

Next, we check if we will update the threshold τ at this step of the feature selection

process. Because our ML model can be unstable, especially at first when it has very few training

points, we add the constrain that k∗min ∈ [0.1k,0.9k]. Also, if we are at a step kcur past kmin then

we should stop decreasing the threshold because we have passed the point where we want the

minimum τmin.

τmin is the minimum value of the threshold τ that we want during our feature selection

process. For forward selection, τmin is set to the initial value that AUTO-SET picks for backward

selection. Then, we reduce gradually τ over the next k∗min− kcur steps. As we update our ML

model after each step, we have a new k∗min after each step so the reduction of τ changes as well.

As we have previously mentioned in our analysis, we also adjust the noise parameter σ

and we set it to τ/15 at each step that we update τ .

The pseudocode for this update procedure for threshold τ can be see in Algorithm 3. This

procedure is executed at every iteration of AAT; it is the second step in Figure 4.4.

ALGORITHM 3: updateTh() procedure for Forward Selection
Input :mlModel

1 a1,a2 = mlModel.coefficient[0],mlModel.coefficient[1]
2 k∗min =−a1/2a2
3 if k∗min ∈ [0.1k,0.9k] and kcur < k∗min then
4 τ = τ− τ−τmin

k∗min−kcur

5 σ = τ/15
6 end

4.5.4 Backward Selection

For backward feature selection, the process of adjusting the threshold τ is very similar to

before with a few key differences.
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Backward selection starts with a complex model and simplifies it by removing features at

each step. At the end of backward selection we have a simpler model than initially. A simple

model has low variance. As a result, we do not need to use the validation set as much there as in

the beginning. We achieve that by starting with the minimum threshold and gradually increase it.

We want the largest threshold value τmax at the minimim error point kmin.

Main Idea. Similarly to before, start with a threshold value τ0 set by AUTO-SET and

increase it gradually as the model gets simpler. The maximum threshold value is τmax at the

predicted k∗min point, which is the point that we predict will have the minimum validation error.

Algorithm. Similarly to forward selection, we have the same minimum point k∗min and

we stop adjusting τ when we pass kmin.

However, the rule for updating the threshold τ is different. In this case, τmax is the

maximum value of τ that we want during the feature selection process. τmax is set to the initial

value that AUTO-SET picks for forward selection. The threshold increases at each step based on

the following update rule:

τ = τ +
τmax− τ

kcur− k∗min

4.5.5 Wrapper methods

Wrapper methods for feature selection conduct a search in the space of all possible

features. Forward and backward selection are two examples of wrapper methods. In general,

wrapper methods require a state space, an initial space, a termination condition and a search

engine [52].

Each state Q represents a set of features. The initial state Q0 can be either the empty or

the full feature set containing all k features. The search engine is a function that connect a state
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Qi to the next state Qi+1 by adding or deleting a feature. In our work we examine only stepwise

wrapper methods that add or delete a only single feature at each step.

All such stepwise wrapper methods are a combination of steps of forward and backward

selection. As a result, we can use AAT with all wrapper feature selection methods.

Main Idea. Start with a threshold value τ0 set by AUTO-SET . At kmin we will have the

minimum or maximum threshold value if the initial state Q0 is the empty or the full feature set.

At each step, decrease or increase the threshold if a feature gets added or deleted respectively.

ALGORITHM 4: updateTh() procedure for all Wrapper methods.
Input :mlModel

1 a1,a2 = mlModel.coefficient[0],mlModel.coefficient[1] k∗min =−a1/2a2
2 if k∗min ∈ [0.1k,0.9k] and kcur < k∗min then
3 if forward step then
4 τ = τ− |τ−τ0|

|kmin−kcur|
5 else
6 τ = τ + |τ−τ0|

|kmin−kcur|
7 end
8 σ = τ/15
9 end

Algorithm. In Algorithm 4 we can see the generalization of the updateTh procedure for

all wrapper methods. At each step the threshold is increased or decreased according to whether

the model got more or less complex, i.e. whether a feature is added or deleted from the feature

set. It is interesting to note that τ0 has the the minimum or the maximum value of the threshold

based on the initial state Q0.

4.6 Experiments

In this section we present our experiments. We begin by experimentally analyzing Thresh-

oldOut algorithm [27]. We show that its performance depends on the user selected parameters.
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Next, we show that AUTO-SET can pick these parameters automatically for the user and achieve

close to the optimal solution. Lastly, we show that our feature selection algorithm Auto-Adjust

Threshold can achieve an even lower test error in a lot of cases while reducing overfitting.

4.6.1 Experimental Design

We repeated our experiments for many different settings. To implement different machine

learning models, we used python’s sklearn library. We used a naive Bayes model, a decision

tree with the gini index and a minimum sample leaf of 10 and a logistic regression model with

Newton’s method and a tolerance of 0.001.

For the feature selection algorithms, we implemented sequential forward selection (SFS)

[51] and sequential backward selection (SBS) [51].

We used a synthetic dataset and multiple real datasets, as described below. We split each

dataset into a training, a holdout/validation and a testing set consisting 50%,25%,25% of the

whole dataset respectively.

For each different setting, consisting of a ML algorithm, a feature selection algorithm, a

dataset and a different algorithm to avoid overfitting, we repeated the experiment 100 times and

we report here average values for the results.

Synthetic Data. Initially, we created a synthetic dataset as a first step to verify exper-

imentally our findings. We created f = 60 discrete features Xi with values 0− 9. Of these f

features, only fp = 20 are predictive of the target variable Y , which is binary. All predictive

features are conditionally independent and follow the distribution described by the probabilities:

p(Xi = 0|Y = 0) = p(Xi = 1|Y = 1) = p(Xi = 2|Y = 1) = ...= p(Xi = 9|Y = 1) = 0.7. All the

other f − fp features are assigned values randomly. All features have a sample size of n = 300.

Real datasets. We used 4 different datasets from the UCI Machine Learning repository

[6]. We used the heart dataset [4], the breast cancer dataset [3], the Ionosphere dataset [5] and the
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Table 4.1. Characteristics of the datasets used.

Dataset Number of features Number of samples
Heart Disease dataset [4] 75 303

Z-Alizadeh Sani dataset [7] 56 303
Ionosphere dataset [5] 34 351

Breast Cancer Wisconsin [3] 32 569

Z-Alizadeh Sani dataset [7]. These datasets have 32-75 features and 300-550 examples. These

datasets have the characteristics that motivated the problem of overfitting; a small number of

samples and a large number of features for that number of samples. As we have mentioned these

kind of datasets appear very often in the sciences, as it can be seen from the field of the four

datasets we used. The characteristics of the datasets can be seen in Table 4.1.

Metrics. We capture a lot of different metrics to give a better picture of the performance

of the algorithms throughout the feature selection process.

eres is the test error of the process when the FS has converged.

ores is the overfitting at the converged result as measured by the difference between the

test and the validation error et− ev.

oavg is the average overfitting et−ev throughout the whole FS process, until we converge

at the result

Ibi
e measures the percentage of steps of the FS process that the algorithm that we are

comparing has a smaller test error than the baseline i we are comparing it against.

Dbi
e measures the average difference between the test errors of the algorithm we are

comparing against the baseline i. A positive number means our algorithm is performing better

on average.

Ibi
o is the percentage of steps of the FS process that our algorithm has less overfitting

compared against the baseline i.

Dbi
o is the average difference between the overfitting of our algorithm and the baseline i

over the whole FS process.
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Table 4.2. Notations of metrics.

Metric Meaning
eres Test error at converged result
ores Overfitting at converged result
oavg Average overfitting during FS
Ibi
e Percentage of times et < ebi

t

Dbi
e Average difference of ebi

t − et

Ibi
o Percentage of times o < obi

Dbi
o Average difference of obi−o

These metrics are summarized on Table 4.2.

4.6.2 Analysis of ThresholdOut

Experimental Setup. Our goal of this analysis is to examine how different values for the

parameters of ThresholdOut τ and σ affect its performance during feature selection in different

settings. For τ we examined the following values: [0.01,0.05,0.1,0.15,0.2]. For the noise σ we

tested the values: [0.001,0.01,0.1]. As we see below these values give us a good picture of how

they affect the results.

We performed our experiments for all the ML algorithms, feature selection algorithms

and datasets described earlier. We repeated everything 100 times and we report the average

values for eres,ores,oavg in each different setting. These results are in Tables 4.3 through Table

4.7.

Results. Tables 4.3 through Table 4.7 have all the results. In Figures 4.5, 4.6 and 4.7 we

see some visualization of the test error (eres) and the overfitting (ores) for all the different values

of τ and σ we tested in some different settings. Next, we point out our observations for all the

different settings.

Both for forward and backward selection, a low value for τ and σ results in a lot of

overfitting. This makes sense, as ThresholdOut with a value of τ = 0 and σ = 0 is the same as
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not using the algorithm. Small values for these parameters helped the problem of overfitting the

least. Interestingly, depending on the setting, we achieved a small amount of overfitting for very

different values. There was a big difference for forward and backward selection, but for different

datasets as well.

Larger values for τ and a small σ have better performance for both forward and backward

selection. However, for forward selection it is more obvious that a large value for τ gives the

best performance. However, for backward selection it depends on the setting. For example, a

value of τ = 0.05 has the best performance on the ion and heart dataset for backward selection

but on the synthetic dataset, a much larger value is required (τ = 0.15). This is our motivation

for AUTO-SET and AAT, to try and adapt based on the specific setting.

Large values for σ result in higher test error. Even though in this case there is very

little overfitting. This makes sense as adding a lot of noise in the results that we return through

ThresholdOut, results in making the wrong decisions a lot of the time and, as a result, getting a

model with poor performance. However, because the feature selection is made based on a lot

of randomness from the noise, there is little overfitting in the result. This can be seen in all the

heatmap visualizations.

In Figure 4.2 we saw earlier a summary of our findings about the behavior of error and

overfitting based on different values of τ and σ for ThresholdOut.

4.6.3 AUTO-SET

Experimental Setup. The goal of the following experiments is to show how AUTO-SET

performs against manually picking the parameters for ThresholdOut τ and σ . We executed

AUTO-SET in all the different settings that we executed the analysis of ThresholdOut in the

previous section and we compare the results. The results can be seen in Table 4.3 through Table

4.7.

Results. All the results can be seen in Table 4.3 through Table 4.7. Some of the results of
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AUTO-SET, along with the results of the previous analysis are visualized in Figure 4.8 through

Figure 4.11. In these figures we see the test error and the overfitting for AUTO-SET and for

ThresholdOut for different parameter values in different settings. For ThresholdOut, the size of

the circle is proportionate to the value of τ and the opacity is proportionate to the value of σ .

In the visualized results, but also in all the results in the tables, for forward selection

AUTO-SET is performing within 0.01 difference from the best test error of ThresholdOut. A lot

of the times it has a smaller test error than the different values of τ and σ we picked.

In backward selection, in all cases the test error of AUTO-SET is within 0.006 difference

of the best test error of ThresholdOut. However, we can see that in all backward selection cases

the test error is pretty low compared to forward selection. That leaves little space for improve-

ment. That is because backward selection starts with all features in the result set, including the

most predictive ones. In our datasets, only few features have the most predictive power. So,

backward selection cannot improve much by removing features with no predictive power and

converges very soon.

4.6.4 Auto-Adjust Threshold

Experimental Setup. In this section we show how Auto-Adjust Threshold performs

compared to the state-of-the-art algorithm, ThresholdOut, that tries to avoid overfitting a holdout

dataset. Similarly to our previous experiments, we execute our algorithms multiple times in many

different scenarios and report here the average results. Our results are summarized in Table 4.8.

Baselines. We compared our algorithm against two baselines. For the first baseline we

executed all the feature selection algorithms without any process to protect against overfitting

the holdout validation data. This baseline represents how most users implement their feature

selection algorithms. For our second baseline, we used ThresholdOut to avoid overfitting the

holdout dataset. For each different setting, we picked the values for τ and σ that performed best

during our analysis of Thresholdout in Section 4.6.2.
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Results. The full results of AAT can be seen in Table 4.8. In Figure 4.8 through Figure

4.11 we can also see the performance of AAT in comparison with AUTO-SET and ThresholdOut.

We can see that AAT performs significantly better than both in most cases or performs equally

well.

In Figures 4.12, 4.13, 4.14 and 4.15 we see Ie and Io for both baselines. For baseline 1,

in almost all cases there’s an at least 80% improvement in overfitting in all steps and settings.

This makes sense as baseline 1 does not control for overfitting. As a result, we can see that Ie is

improving in all cases in at least 50% of feature selection steps. Baseline 2 has already very little

overfitting because it uses ThresholdOut, so as expected we there isn’t much of an improvement

in overfitting as seen in Figure 4.15. However, because AAT adjusts the threshold throughout

the feature selection process, we see that Ie is improving in all cases in at least 50% of feature

selection steps.

The improvement we see in the error depends on the dateset. On the heart dataset, the

test error on Naive Bayes with ThresholdOut is 0.345 and with AAT it is 0.311, which is a 10%

improvement. And AAT has 60% less overfitting. Similarly, with logistic regression the error

with ThresholdOut is 0.315 and with AAT it is 0.293, which is a 7% improvement. AAT has

50% less overfitting in the result.

4.7 Related Work

The problem of overfitting the validation dataset has been identified before [65, 67]. The

authors showed that the more complex the wrapper feature selection algorithm is, the more the

potential for overfitting. They showed that even with cross-validation and only 50 features and

300 samples, there can be significant overfitting even in a simple feature selection algorithm,

such as sequential feature selection. This leads to decreased performance. It is a well know fact
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from statistics that the more hypotheses are tested against the same data, the higher the possibility

of having false discoveries. The equivalent statement for ML was shown in [56]. The authors

showed that the more feature sets an algorithm tests, the higher the possibility of overfitting the

holdout dataset. The problem of overfitting is not limited to feature selection, but it can occur in

any step of model selection, such as hyperparameter tuning [21].

Suggested solutions to the problem of overfitting the validation dataset are similar to the

solutions to the problem of avoiding overfitting the training dataset. Namely, regularisation [20],

early stopping [55, 64], model and hyperparameter averaging [19, 36]. In addition, it has been

recommended to avoid complex model selection processes when the datasets are small [21]. In

these cases Bayesian approaches [84] or ensemble approaches, like random forests [17], can be

used because they avoid model selection.

A novel approach to solving this problem was proposed in the ThresholdOut paper

[27, 28, 29]. We have discussed this paper extensively in Section 4.2.2. This work has been

strengthened qualitatively [9] and quantitatively [62]. These works make the algorithm applicable

to a broader range of queries and give tighter bounds for its guarantees. Regarding all these

approaches, he showed in Section 4.3 the main shortcoming of ThresholdOut that make it not

practical. In addition, as we have already talked about, our algorithm AAT is designed specifically

for feature selection and can take advantage of the structure of the queries to achieve better

results.

Another work based on [27], showed how to reuse a holdout dataset specifically for

accurate leaderboards in machine learning competitions, where users submit adaptively chosen

models in the process of a competition [14]. This work is similar to our in the way that it is

inspired by the ThresholdOut algorithm, and it improved it for a very specific case.

81



4.8 Conclusion

In this chapter, we presented our work on the problem of overfitting during feature selec-

tion. We experimentally analyzed the state of the art approach to solve the problem and showed

that its performance is dependent on its input parameters. Then, we presented AUTO-SET, an

automated way to set this parameters that achieves near optimal performance. Lastly, based

on our lessons we presented Auto Adjust Threshold, an algorithm for feature selection that

avoids overfitting the holdout dataset. Our experimental analysis showed that AAT can reduce

significantly both overfitting and the error.
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(a) Forward Selection

(b) Backward Selection

Figure 4.5. Heatmap of test error (eres) and overfitting (ores) for forward and backward selection
in the synthetic dataset.
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(a) Forward Selection

(b) Backward Selection

Figure 4.6. Heatmap of test error (eres) and overfitting (ores) for forward and backward selection
in the heart dataset.

84



(a) Forward Selection

(b) Backward Selection

Figure 4.7. Heatmap of test error (eres) and overfitting (ores) for forward and backward selection
in the ion dataset.
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(a) Forward Selection

(b) Backward Selection

Figure 4.8. Test error (eres) and overfitting (ores) at the result of Forward Selection for dif-
ferent parameters of ThresholdOut and our approaches on the synthetic dataset with Logistic
Regression.
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(a) Forward Selection

(b) Backward Selection

Figure 4.9. Test error (eres) and overfitting (ores) at the result of Forward Selection for different
parameters of ThresholdOut and our approaches on the heart dataset with Naive Bayes.
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(a) Forward Selection

(b) Backward Selection

Figure 4.10. Test error (eres) and overfitting (ores) at the result of Forward Selection for different
parameters of ThresholdOut and our approaches on the cancer dataset with Logistic Regression.
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(a) Forward Selection

(b) Backward Selection

Figure 4.11. Test error (eres) and overfitting (ores) at the result of Forward Selection for different
parameters of ThresholdOut and our approaches on the sani dataset with Logistic Regression.
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Table 4.3. Results of ThresholdOut analysis on synthetic data.

Forward Selection Backward Selection
ML Algorithm τ σ eres ores oavg eres ores oavg

Naive Bayes 0.01 0.01 0.287 0.145 0.110 0.227 0.024 0.066
Naive Bayes 0.01 0.1 0.288 0.040 0.020 0.227 0.001 0.014
Naive Bayes 0.1 0.01 0.280 0.102 0.070 0.229 0.012 0.025
Naive Bayes 0.1 0.1 0.305 0.041 0.021 0.226 0.001 0.013
Naive Bayes 0.2 0.01 0.276 0.031 0.018 0.223 0.005 0.001
Naive Bayes 0.2 0.1 0.309 0.050 0.021 0.227 0.001 0.008
Naive Bayes AUTO-SET 0.286 0.060 0.039 0.228 0.034 0.068

Decision Trees 0.01 0.01 0.249 0.108 0.084 0.375 0.047 0.078
Decision Trees 0.01 0.1 0.279 0.037 0.026 0.383 0.009 0.016
Decision Trees 0.1 0.01 0.245 0.065 0.035 0.374 0.023 0.049
Decision Trees 0.1 0.1 0.288 0.045 0.014 0.378 0.009 0.019
Decision Trees 0.2 0.01 0.227 0.003 0.001 0.375 0.016 0.019
Decision Trees 0.2 0.1 0.279 0.034 0.012 0.382 0.014 0.022
Decision Trees AUTO-SET 0.232 0.009 0.006 0.374 0.026 0.040

Logistic Regression 0.01 0.01 0.277 0.147 0.099 0.258 0.077 0.082
Logistic Regression 0.01 0.1 0.279 0.037 0.019 0.257 0.006 0.015
Logistic Regression 0.1 0.01 0.262 0.109 0.065 0.257 0.052 0.049
Logistic Regression 0.1 0.1 0.284 0.038 0.019 0.258 0.005 0.012
Logistic Regression 0.2 0.01 0.226 0.012 0.005 0.260 0.029 0.027
Logistic Regression 0.2 0.1 0.288 0.044 0.020 0.266 0.017 0.016
Logistic Regression AUTO-SET 0.248 0.060 0.033 0.254 0.015 0.019
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Table 4.4. Results of ThresholdOut analysis on sani dataset.

Forward Selection Backward Selection
ML Algorithm τ σ eres ores oavg eres ores oavg

Naive Bayes 0.01 0.01 0.211 0.078 0.061 0.251 0.041 0.046
Naive Bayes 0.01 0.1 0.258 0.022 0.016 0.273 0.016 0.021
Naive Bayes 0.1 0.01 0.201 0.044 0.034 0.240 0.024 0.023
Naive Bayes 0.1 0.1 0.273 0.021 0.016 0.277 0.021 0.017
Naive Bayes 0.2 0.01 0.192 0.017 0.008 0.234 0.013 0.009
Naive Bayes 0.2 0.1 0.275 0.032 0.017 0.270 0.012 0.019
Naive Bayes AUTO-SET 0.205 0.059 0.042 0.241 0.063 0.068

Decision Trees 0.01 0.01 0.212 0.056 0.036 0.188 0.012 0.022
Decision Trees 0.01 0.1 0.275 0.020 0.012 0.190 0.001 0.009
Decision Trees 0.1 0.01 0.195 0.0219 0.013 0.193 0.005 0.007
Decision Trees 0.1 0.1 0.273 0.014 0.010 0.192 0.002 0.002
Decision Trees 0.2 0.01 0.189 0.001 0.003 0.197 0.001 0.001
Decision Trees 0.2 0.1 0.276 0.023 0.008 0.192 0.001 0.006
Decision Trees AUTO-SET 0.190 0.016 0.008 0.182 0.016 0.021

Logistic Regression 0.01 0.01 0.204 0.075 0.058 0.178 0.016 0.024
Logistic Regression 0.01 0.1 0.261 0.023 0.014 0.206 0.001 0.009
Logistic Regression 0.1 0.01 0.191 0.058 0.040 0.177 0.015 0.016
Logistic Regression 0.1 0.1 0.264 0.036 0.016 0.207 0.002 0.013
Logistic Regression 0.2 0.01 0.185 0.025 0.010 0.169 0.005 0.004
Logistic Regression 0.2 0.1 0.265 0.034 0.018 0.194 0.001 0.006
Logistic Regression AUTO-SET 0.197 0.075 0.059 0.173 0.031 0.038
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Table 4.5. Results of ThresholdOut analysis on heart dataset.

Forward Selection Backward Selection
ML Algorithm τ σ eres ores oavg eres ores oavg

Naive Bayes 0.01 0.01 0.354 0.305 0.239 0.304 0.127 0.179
Naive Bayes 0.01 0.1 0.366 0.192 0.143 0.305 0.105 0.125
Naive Bayes 0.1 0.01 0.349 0.276 0.214 0.303 0.112 0.145
Naive Bayes 0.1 0.1 0.370 0.215 0.153 0.303 0.097 0.107
Naive Bayes 0.2 0.01 0.345 0.217 0.170 0.303 0.097 0.107
Naive Bayes 0.2 0.1 0.370 0.194 0.148 0.304 0.101 0.118
Naive Bayes AUTO-SET 0.336 0.183 0.143 0.306 0.123 0.165

Decision Trees 0.01 0.01 0.344 0.209 0.150 0.288 0.031 0.063
Decision Trees 0.01 0.1 0.353 0.115 0.058 0.289 0.038 0.017
Decision Trees 0.1 0.01 0.330 0.161 0.098 0.285 0.005 0.042
Decision Trees 0.1 0.1 0.344 0.109 0.043 0.290 0.025 0.022
Decision Trees 0.2 0.01 0.312 0.066 0.012 0.301 0.001 0.008
Decision Trees 0.2 0.1 0.340 0.101 0.024 0.290 0.025 0.011
Decision Trees AUTO-SET 0.300 0.011 0.005 0.292 0.040 0.042

Logistic Regression 0.01 0.01 0.328 0.254 0.223 0.385 0.178 0.196
Logistic Regression 0.01 0.1 0.329 0.138 0.088 0.382 0.064 0.079
Logistic Regression 0.1 0.01 0.332 0.244 0.197 0.385 0.171 0.162
Logistic Regression 0.1 0.1 0.327 0.136 0.088 0.386 0.069 0.070
Logistic Regression 0.2 0.01 0.315 0.162 0.135 0.383 0.128 0.118
Logistic Regression 0.2 0.1 0.324 0.132 0.081 0.387 0.054 0.058
Logistic Regression AUTO-SET 0.300 0.109 0.0825 0.383 0.077 0.084
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Table 4.6. Results of ThresholdOut analysis on ion dataset.

Forward Selection Backward Selection
ML Algorithm τ σ eres ores oavg eres ores oavg

Naive Bayes 0.01 0.01 0.115 0.039 0.028 0.116 0.014 0.020
Naive Bayes 0.01 0.1 0.168 0.016 0.013 0.130 0.011 0.012
Naive Bayes 0.1 0.01 0.114 0.024 0.014 0.118 0.012 0.015
Naive Bayes 0.1 0.1 0.167 0.025 0.015 0.120 0.008 0.009
Naive Bayes 0.2 0.01 0.105 0.007 0.004 0.121 0.010 0.006
Naive Bayes 0.2 0.1 0.163 0.018 0.011 0.124 0.005 0.009
Naive Bayes AUTO-SET 0.106 0.016 0.011 0.118 0.026 0.031

Decision Trees 0.01 0.01 0.142 0.0377 0.023 0.118 0.009 0.016
Decision Trees 0.01 0.1 0.175 0.026 0.012 0.121 0.005 0.009
Decision Trees 0.1 0.01 0.133 0.016 0.007 0.126 0.004 0.003
Decision Trees 0.1 0.1 0.156 0.021 0.008 0.119 0.003 0.004
Decision Trees 0.2 0.01 0.132 0.005 0.002 0.125 0.003 0.005
Decision Trees 0.2 0.1 0.151 0.144 0.103 0.121 0.002 0.008
Decision Trees AUTO-SET 0.134 0.013 0.007 0.111 0.011 0.015

Logistic Regression 0.01 0.01 0.144 0.032 0.030 0.139 0.018 0.024
Logistic Regression 0.01 0.1 0.186 0.021 0.011 0.138 0.006 0.010
Logistic Regression 0.1 0.01 0.142 0.018 0.014 0.136 0.005 0.009
Logistic Regression 0.1 0.1 0.184 0.020 0.010 0.134 0.005 0.008
Logistic Regression 0.2 0.01 0.131 0.002 0.002 0.137 0.002 0.001
Logistic Regression 0.2 0.1 0.169 0.016 0.009 0.136 0.005 0.008
Logistic Regression AUTO-SET 0.146 0.025 0.019 0.136 0.0313 0.031
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Table 4.7. Results of ThresholdOut analysis on cancer dataset.

Forward Selection Backward Selection
ML Algorithm τ σ eres ores oavg eres ores oavg

Naive Bayes 0.01 0.01 0.308 0.087 0.069 0.421 0.028 0.032
Naive Bayes 0.01 0.1 0.312 0.027 0.021 0.481 0.001 0.004
Naive Bayes 0.1 0.01 0.313 0.051 0.043 0.405 0.001 0.005
Naive Bayes 0.1 0.1 0.319 0.030 0.026 0.472 0.014 0.010
Naive Bayes 0.2 0.01 0.319 0.015 0.013 0.393 0.003 0.002
Naive Bayes 0.2 0.1 0.309 0.023 0.022 0.458 0.009 0.012
Naive Bayes AUTO-SET 0.310 0.052 0.045 0.394 0.029 0.034

Decision Trees 0.01 0.01 0.281 0.037 0.027 0.281 0.024 0.029
Decision Trees 0.01 0.1 0.289 0.011 0.008 0.278 0.012 0.014
Decision Trees 0.1 0.01 0.276 0.014 0.009 0.282 0.014 0.017
Decision Trees 0.1 0.1 0.287 0.012 0.009 0.280 0.011 0.014
Decision Trees 0.2 0.01 0.273 0.001 0.004 0.279 0.007 0.010
Decision Trees 0.2 0.1 0.294 0.014 0.004 0.278 0.009 0.011
Decision Trees AUTO-SET 0.272 0.027 0.023 0.277 0.026 0.030

Logistic Regression 0.01 0.01 0.279 0.039 0.034 0.285 0.015 0.030
Logistic Regression 0.01 0.1 0.289 0.005 0.001 0.286 0.006 0.010
Logistic Regression 0.1 0.01 0.282 0.027 0.018 0.286 0.008 0.015
Logistic Regression 0.1 0.1 0.282 0.002 0.002 0.287 0.004 0.013
Logistic Regression 0.2 0.01 0.283 0.006 0.002 0.285 0.001 0.004
Logistic Regression 0.2 0.1 0.289 0.004 0.001 0.287 0.005 0.009
Logistic Regression AUTO-SET 0.286 0.045 0.039 0.286 0.024 0.031
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Chapter 5

Conclusion

Data deluge has created the opportunity to transition to data-driven research in many

fields. This means more opportunities to test more hypotheses. However, this opportunity also

has the caveat of false discoveries because of the problem of multiple comparisons. In data

exploration, the more hypotheses we test the higher the chance of making a statement purely by

chance. In machine learning, the more models that we test during model selection the higher the

chance that we will have an overfitted model.

In this dissertation examined the multiple comparisons problem in data exploration and

machine learning. In both cases, we proposed novel techniques that exploit the structure that

each problem has in order to control false discoveries and achieve improved performance.

Hierarchical structure is very common in many different datasets. In Chapter 3 we

presented VigilaDE , a novel way to perform data exploration that exploits the hierarchical

structure of the input data. VigilaDE has two novel data exploration algorithms that use the

hierarchical structure to guide the data exploration in a top-down approach, exploring only part

of the input data. This results in avoiding testing all possible hypotheses. Testing less hypotheses

means increased statistical power. We showed with synthetic and real-world datasets that our

approach can lead in an increase of up to 2.7x in statistical power.

In many different machine learning scenarios models are chosen adaptively until the

best one is found. Some examples are feature selection, hyperparameter tuning and boosting.
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In such scenarios existing techniques from statistics cannot be used to avoid overfitting. In

Chapter 4 we analyzed ThresholdOut, the state-of-the-art solution for this problem and proposed

a novel technique for feature selection. We showed that a big shortcoming of ThresholdOut

is its requirement for the users to pick its parameters. These parameters can influence the

effectiveness of ThresholdOut a lot. We proposed AUTO-SET, an automated way to set these

parameters for feature selection. AUTO-SET tries to pick the best parameters for every different

setting. We showed that in most cases it performs as well or better than most manually picked

parameter values. The problem of feature selection has some structure. The models evaluated are

increasingly more or less complex. We proposed Auto Adjust Threshold (AAT), a novel way to

perform feature selection. AAT utilizes this structure as captured by the bias-variance trade-off

to automatically adjust a threshold throughout the feature selection process. We showed that

AAT can achieve a significant reduction in generalization error while reducing overfitting.
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