
UC San Diego
Technical Reports

Title
A Modular Framework for Adaptive Scheduling in Grid Application

Permalink
https://escholarship.org/uc/item/6h18n29x

Author
Dail, Holly

Publication Date
2002-01-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6h18n29x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Modular Framework for Adaptive Sheduling in

Grid Appliation Development Environments

A thesis submitted in partial satisfation of the

requirements for the degree Master of Siene in

Computer Siene

by

Holly Janine Dail

Committee in harge:

Professor Franine Berman, Chair

Professor Jeanne Ferrante

Professor Keith Marzullo

2002

Copyright

Holly Janine Dail, 2002

All rights reserved.

The thesis of Holly Janine Dail is approved:

Chair

University of California, San Diego

2002

iii

To my parents.

iv

TABLE OF CONTENTS

Signature Page . iii

Dediation . iv

Table of Contents . v

List of Tables . vii

List of Figures . viii

Aknowledgements . ix

Abstrat . x

I Introdution . 1

II Bakground . 4

A. GrADSoft . 5

B. GrADSoft sheduler spei�ation . 7

1. Inputs . 7

2. Sheduler output . 10

C. Current status . 11

D. Chapter summary . 11

III Sheduling methodology . 13

A. Sope and de�nitions . 14

1. Sheduling assumptions . 14

2. Sheduling de�nitions . 17

B. Sheduler design . 18

1. Searh Proedure . 18

2. Searh methods . 22

C. Grid information . 24

1. Information soures . 26

2. Sheduler Grid information requirements . 27

D. Sheduling poliies . 28

E. Chapter summary . 29

IV Iterative, mesh-based appliations . 30

A. Appliation harateristis . 30

1. Game of Life . 31

2. Jaobi . 34

B. Appliation performane modeling . 35

1. Memory usage model . 37

2. Exeution time model . 39

C. Mapper . 44

1. Equal alloation mapper . 45

2. Time balane Mapper . 46

v

D. Chapter summary . 49

V Experiments . 50

A. Experimental methodology . 51

1. Testbeds . 51

2. Software requirements . 52

3. Grid information servies . 52

4. Timing methodology . 53

B. Performane model validation . 54

1. Experimental design . 55

2. Results . 56

3. Summary . 65

C. Mapper validation . 65

1. Experimental design . 66

2. Results . 67

3. Summary . 73

D. Sheduler validation . 73

1. Experimental design . 74

2. Results . 78

3. Summary . 88

E. Sheduling overhead . 89

1. Experimental design . 89

2. Results . 90

3. Summary . 93

F. Chapter summary . 95

VI Disussion . 96

A. Summary and �ndings . 96

B. Related work . 97

C. Future work . 99

Bibliography . 100

vi

LIST OF TABLES

III.1 Con�gurable sheduling poliies. 28

IV.1 Summary of Game of Life variables . 34

IV.2 Summary of Jaobi variables . 35

V.1 Testbed resoure harateristis . 51

V.2 Predition error summary for Game of Life, one-site testbed 59

V.3 Predition error summary for Game of Life, three-site testbed 61

V.4 Predition error summary for Jaobi, one-site testbed 63

V.5 Predition error summary for Jaobi, three-site testbed 63

V.6 Mapper omparison for Game of Life, one-site testbed 68

V.7 Mapper omparison for Game of Life, three-site testbed 69

V.8 Mapper omparison for Jaobi, one-site testbed . 72

V.9 Mapper omparison for Jaobi, three-site testbed . 72

V.10 Summary degradation from best statistis for eah sheduling strategy 82

V.11 Sheduling strategy performane, Game of Life, one-site testbed 83

V.12 Sheduling strategy performane, Game of Life, three-site testbed 83

V.13 Sheduling strategy performane, Jaobi, one-site testbed 86

V.14 Sheduling strategy performane, Jaobi, three-site testbed 86

V.15 Sheduling overhead times for the one-site testbed, N = 4800. 92

V.16 Sheduling overhead times for the three-site testbed, N = 14400. 93

vii

LIST OF FIGURES

II.1 GrADSoft Arhiteture . 5

III.1 Computational Grid example . 16

III.2 Sheduler design . 19

III.3 Shedule searh proedure . 21

III.4 Shedule omparison without an exeution time model 25

IV.1 Game of Life . 32

IV.2 Game of Life appliation pseudo-ode . 33

IV.3 Jaobi appliation pseudo-ode . 36

IV.4 Game of Life ommuniation ost alulation. 42

IV.5 Binomial tree example . 43

V.1 Game of Life exeution time model validation, one-site testbed 57

V.2 Game of Life exeution time model validation, three-site testbed 60

V.3 Jaobi exeution time model validation, one-site testbed 62

V.4 Jaobi exeution time model validation, three-site testbed 64

V.5 Game of Life mapper experiments, three-site, N = 4500 67

V.6 Jaobi mapper experiments, one-site, N = 4800 . 71

V.7 Summary of sheduling strategies . 77

V.8 Average ranks for eah sheduling strategy . 79

V.9 Average perent degradation from best for eah sheduling strategy 79

V.10 Game of Life sheduling strategy omparisons, one-site testbed 81

V.11 Game of Life sheduling strategy omparisons, three-site testbed 84

V.12 Jaobi sheduling strategy omparisons, one-site testbed 85

V.13 Jaobi sheduling strategy omparisons, three-site testbed 87

V.14 Sheduling ost, one-site testbed, N = 4800 . 91

V.15 Sheduling overheads, three-site testbed, N = 14400 . 94

viii

ACKNOWLEDGEMENTS

This work has provided me with the opportunity to interat with and learn from many wonderful

people. I would like to make speial mention of the following people and institutions, without whom

this work would not have been possible.

Fran Berman, my advisor, for her guidane and enouragement. She has been a wonderful role

model and I have learned muh from her.

Henri Casanova, my o-advisor, who provided the perfet ombination of insight, inspiration, and

enouragement. He has been exeptionally generous.

Jeanne Ferrante and Keith Marzullo, my ommittee members, for their guidane throughout my

time at UCSD, and for providing insightful feedbak on the thesis itself.

Alan Su and Shava Smallen for their support when things were most frustrating, willingness to

answer any and all questions, and for areful reviews of the thesis.

Otto Sievert and Graziano Obertelli who worked with me on the GrADS projet. Our disussions

taught me many things and led to the formulation of this thesis.

Jim Hayes for software engineering advie and for developing pratially unbreakable software tools

to assist researh e�orts suh as this one and Renata Teixeira for sharing her networking expertise with

me.

All those responsible for maintaining the GrADS testbed environment, on whih the experiments in

this thesis were performed. I am espeially grateful to the Innovative Computing Laboratory at UTK

for usage of the tor mahines, the Pablo group at UIUC for usage of the opus and major mahines,

Martin Swany for assistane with NWS-related questions, and Sridhar Gullapalli for assistane with

MDS-related questions.

Finally, I would like to thank all members of the GrADS researh ommunity. I would espeially like

to thank Mark Mazina and John Mellor-Crummey for, among other things, their interest in exploring

ompiler / sheduler interations. I would also like to thank Ruth Aydt, who has provided many

insightful omments at every stage.

This material is based upon work supported by the National Siene Foundation under Grant No.

9975020. Any opinions, �ndings, and onlusions or reommendations expressed in this material are

those of the author and do not neessarily reet the views of the National Siene Foundation.

ix

ABSTRACT OF THE THESIS

A Modular Framework for Adaptive Sheduling in

Grid Appliation Development Environments

by

Holly Janine Dail

Master of Siene in Computer Siene

University of California, San Diego, 2002

Professor Franine Berman, Chair

To ahieve improved performane, appliation shedulers are typially designed to satisfy the re-

soure requirements of spei� appliations. Consequently, appliation harateristis and models are

often embedded in the sheduler itself. Results have shown that this strategy is e�etive for ahieving

improved appliation performane. However, appliation-spei� shedulers may not be easily retar-

geted for other appliations. In this thesis, we propose a modular appliation sheduler design that

employs detailed appliation performane models and mapping strategies that promote appliation

performane, but does not embed suh omponents within the sheduler itself.

Our sheduler is both environment-sensitive and on�gurable. To ensure that shedules are properly

targeted for onditions of the target exeution environment at run-time, the sheduler an inorporate

dynami resoure availability in sheduling deisions. The sheduler also supports a set of on�gurable

sheduling poliies that are easily tuned to ontrol sheduler behavior.

We implement a prototype sheduler and use the lass of iterative, mesh-based appliations to

test the prototype. We implement two test appliations, Jaobi and the Game of Life, and develop

performane models and mapping strategies for eah appliation. We present experimental results we

obtained by applying our sheduling methodology to Jaobi and the Game of Life in Computational

Grid environments. Our testbeds inluded up to 20 mahines organized in 4 lusters at 3 geographially

distributed sites. In these experiments, our approah onsistently outperforms onventional sheduling

approahes.

x

Chapter I

Introdution

With vast improvements in wide-area network performane and the pervasiveness of ommodity

resoures, distributed parallel omputing an bene�t from an inreasingly rih omputational platform.

Foused development e�orts have been suessful in targeting important sienti� appliations for dis-

tributed groups of resoures. The majority of these projets have involved large time investments and

have required extensive support by distributed omputing experts.

In reent years, several large-sale software infrastruture projets [18, 25, 34℄ have foused on sim-

plifying the usage of distributed, heterogeneous omputational platforms, or Computational Grids [19,

20℄. Suh Grid omputing software helps redue programmer e�ort, and an improve appliation per-

formane. However, these e�orts generally do not fous on the spei� needs of appliations; to ahieve

aeptable performane on the Grid, users must onsider the needs of their appliation and adapt

their usage of Grid omputing software aordingly. For example, in a typial appliation development

senario, users are urrently obliged to disover available resoures, selet an appliation-appropriate

subset of these resoures, perform staging of binaries on seleted mahines, and may even need to

perform some appliation monitoring to determine if the appliation is making progress. For these

reasons, Grid appliation development remains a daunting proposition for the majority of users who

ould bene�t from the extensive resoures o�ered by Computational Grids.

The obvious alternative is to develop software that frees the user of these responsibilities. Appli-

ation sheduling is one area in whih signi�ant progress has been made towards the simpli�ation

of appliation development for the Grid; see [8℄ for a survey of progress in this area. Appliation

shedulers typially manage disovery of available resoures, seletion of an appliation-appropriate

resoure group, and mapping of appliation tasks or data to those resoures. To e�etively provide

1

2

these servies, shedulers must evaluate the target Grid resoure environment in terms of the require-

ments of the appliation itself. Many projets have suessfully developed sheduling strategies for the

Grid [1, 2, 12, 42, 48, 49, 50, 52, 53℄ While these shedulers do onsider appliation requirements, the

majority of suh e�orts embed appliation-spei� details in the sheduling software itself; omponents

that are ommonly embedded inlude appliation-spei� performane models and strategies for map-

ping appliation data or tasks to seleted resoures. This strategy an result in e�etive servie for

spei� appliations, but the sheduler design may not be easily retargeted for other appliations.

In this thesis, we present a modular sheduling framework that allows the sheduler to utilize de-

tailed appliation performane models and mapping strategies, but does not embed these omponents

in the sheduler itself. Our approah is based on an appliation-independent sheduler framework that

is oupled with an appliation-spei� performane model and mapping strategy to reate a servie that

e�etively develops shedules appropriate to the needs of the target appliation. This approah provides

a exible sheduler that an be easily targeted to a variety of appliations. Note that we do not expet

to ahieve the performane of a sheduler that has been highly-tuned for a spei� appliation; instead,

our goal is to provide onsistently improved performane as ompared to onventional sheduling strate-

gies. To develop shedules that appropriately utilize available resoures, the sheduler onsiders the

harateristis of the target Grid environment. To do this, Grid resoure harateristis are retrieved

at run-time and automatially inorporated in sheduling deisions. We fous on the lass of itera-

tive, mesh-based appliations as a hallenging, yet tratable test ase for Grid appliation sheduling.

In partiular, this lass of appliations demonstrates relatively preditable performane, making the

sheduling problem tratable, yet these appliations typially involve interesting ommuniation pat-

terns, thus making the sheduling problem hallenging. Furthermore, this lass is an important lass

of appliations for siene and engineering odes. In summary,

In this thesis we propose and prototype a modular, adaptive sheduling methodology designed

to promote appliation performane in Computational Grid environments. We use the lass

of iterative, mesh-based appliations as a test ase, and demonstrate the eÆay of our

sheduling approah in prodution Grid environments for realisti usage senarios.

This work was performed in the ontext of the larger Grid appliation development framework pro-

posed by the Grid Appliation Development Software Projet (GrADS) [7℄. The GrADS projet seeks

to simplify all aspets of Grid appliation development, and is building software designed to provide

an end-to-end appliation development system for the Grid. These e�orts provide new hallenges and

opportunities for the development of Grid appliation sheduling strategies, and thus is an interest-

3

ing framework for this thesis. The sheduler desribed in this thesis is the �rst prototype sheduling

omponent developed for the GrADS software infrastruture.

This thesis is organized as follows. We desribe the appliation development software arhiteture

proposed by the GrADS projet in Chapter II. We also detail the sheduler spei�ation proposed

as part of this software arhiteture. In Chapter III we present the design of our appliation-generi

sheduling framework. In Chapter IV we desribe the harateristis of iterative, mesh-based applia-

tions; we then detail two spei� test appliations from this lass; and �nally we develop an appliation-

spei� performane model and mapping strategy that an be paired with our sheduler framework to

provide sheduling for our test appliations. In Chapter V, we present experimental results we obtained

when applying our sheduling methodology to real appliations and real Computational Grid environ-

ments. Finally, in Chapter VI we desribe related work in the �eld of appliation sheduling, onsider

diretions for interesting future work, and we present �nal onlusions.

Chapter II

Bakground

One of the largest roadbloks to everyday usage of Computational Grids is the extensive expertise

and development time that must be invested in eah appliation before aeptable performane an be

ahieved. Development of a distributed, Grid-enabled appliation typially requires a omplex and time-

onsuming proess of appliation reation (or modi�ation), ompilation, resoure disovery, seletion

of resoures, staging of binaries and data �les, exeution, and post-mortem analysis. When appliation

performane is ritial, many yles of the development proess may be required.

The Grid Appliation Development Software Projet (GrADS) [7, 23℄ has proposed an ambitious

alternative: replae the disrete, user-ontrolled stages of appliation preparation and exeution with

an end-to-end software-ontrolled proess. Our goal is to provide tools that enable the user to fous

only on high-level appliation design without sari�ing appliation performane. Existing Grid mid-

dleware produts [18, 25, 34℄ provide some servies required by this system, but are not suÆient.

Thus, a primary goal of the GrADS projet is to develop new tehnologies for Grid appliation

development and exeution. For example, members of the GrADS projet are developing software

omponents to provide

� disovery and ommuniation of Grid resoure harateristis;

� disovery and ommuniation of appliation harateristis and run-time requirements;

� run-time appliation monitoring and proessing of appliation performane data; and

� automati deision proesses to provide adaption to appliation requirements, Grid harateristis,

and user poliies.

4

5

These new tehnologies an be used in onjuntion with existing solutions to provide the individual

servies needed to simplify appliation development for the Grid. However, to enable adaptive and

performane-oriented Grid omputing, these individual tools must be able to ommuniate and, more

importantly, ollaborate. Therefore, another primary goal of the GrADS projet is to develop a unify-

ing system arhiteture that provides the user with a omprehensive software solution to appliation

preparation and exeution.

In Setion II.A, we desribe GrADSoft, the �rst version of the GrADS system arhiteture. Se-

tion II.B, details the GrADSoft sheduler omponent spei�ation. In Setion II.C we desribe the

urrent status of the GrADSoft arhiteture and in Setion II.D we summarize the hapter.

II.A GrADSoft

Figure II.1 provides a high-level view of the GrADSoft system arhiteture [30℄. The goal in this

system design is to learly speify the servies provided by eah omponent as well as the interfaes

that omponents should support. The omponent design provides the exibility neessary to support

a variety of appliation preparation and exeution senarios.

Whole
Program
Compiler

Software
Components

System (PES)

Program Execution

System (PPS)

Program Preparation

Resource
Negotiatior

C
o

n
fi
g

u
ra

b
le

O
b

je
c
t

P
ro

g
ra

m

Performance
Problem

Feedback
Performance

Grid
Runtime
System

P
ro

b
le

m
 S

o
lv

in
g

E
n

v
ir
o

n
m

e
n

t

S
o

u
rc

e
A

p
p

lic
a

ti
o

n

Real−time
Performance

Monitor

Scheduler

Negotiation

Libraries
Binder

Figure II.1: GrADSoft Arhiteture.

Sine our fous in this thesis is on Grid appliation sheduling, we are interested primarily in

6

desribing the sheduling omponent of GrADSoft. To understand the role played by the GrADSoft

sheduler, it is useful to understand how all of the omponents diagrammed in Figure II.1 might

oordinate to provide a ontinuous program preparation and exeution system. We therefore desribe

one proposed GrADSoft omponent interation senario. Additional omponent details and alternative

senarios are desribed in [30℄.

As shown in Figure II.1, there are two lear subsystems to the GrADSoft arhiteture:

� The Program Preparation System (PPS) handles o�-line appliation-development, omposition,

and ompilation.

� The Program Exeution System (PES) provides on-line resoure disovery, sheduling, binding,

and appliation performane monitoring.

We disuss eah of these subsystems in turn.

PPS

To begin the development proess, the user interats with a high-level interfae alled a problem

solving environment (PSE) to assemble a Grid appliation. Our approah is to develop a olletion

of libraries that provide not only the base algorithms, but also information and models that desribe

the resoure requirements and performane behavior of eah library all. The system will support

more general software omponents in addition to these speialized libraries; however, use of GrADS

libraries will provide other GrADSoft omponents with important appliation exeution performane

lues and is therefore likely to provide a run-time performane advantage for the user.

The resulting appliation andGrADS libraries are passed to the ompiler. The ompiler then

performs program analysis and partial ompilation, generates appliation-wide performane models and

mapping strategies, and generates a onfigurable objet program (COP). The COP enapsulates

an intermediate representation ode (IR ode) for the appliation, an assembly of appliation

behavior models, a mapper, and an appliation resoure requirement speifiation (refer to

Setion II.B for details on eah COP omponent). The PPS phase may be performed o�-line and

sometimes need only be ompleted one per appliation; for this reason the COP is a long-lived objet

that may be re-used for multiple program exeution phases.

PES

When the user deides to exeute the appliation, the appliation COP is retrieved and the PES

is invoked by the GrADSoft system. At this stage the sheduler interats with the Grid run-time

system to determine whih resoures are available and what performane an be expeted of those

7

resoures. The sheduler then uses the performane model and mapper to selet an appliation-

appropriate resoure subset and a mapping of the problem data or tasks onto those resoures. In a

seond ompilation phase, the binder is invoked to perform a �nal, resoure-spei� ompilation of

the intermediate representation ode (reall that this is one of the omponents of the COP).

Next, the exeutable is launhed on the seleted Grid resoures and a real-time monitor is used to

trak program performane and detet violation of performane guarantees. Performane guarantees

are formalized in a performane ontrat.

1

In the ase of a performane ontrat violation,

either the binder is invoked to reon�gure the program in the urrent exeution environment or the

resheduler is invoked to evaluate alternative resoure sets. After program exeution is omplete,

post-mortem performane information will be stored in a repository; this information may then be

retrieved by any GrADSoft omponent to improve appliation results in future runs.

II.B GrADSoft sheduler spei�ation

The GrADSoft senario presented in Setion II.A provided a brief overview of a spei� GrADSoft

omponent interation senario. In this setion, we desribe in greater detail the spei�ation for the

GrADSoft sheduler. This spei�ation de�nes the servie the sheduler is to provide as well as

the interfaes it should support; it does not rely on any partiular interation senario.

The role of the sheduler is to selet Grid resoures appropriate for a partiular problem run,

where problem run is de�ned by the appliation itself and by problem on�guration parameters suh

as problem size or input data �le. The sheduler should transparently provide servie for arbitrary

appliations and Grid environments. For this reason, harateristis of the appliation and Grid envi-

ronment must be available as inputs to the sheduler. Similarly, the seleted shedule and assoiated

information must be ommuniated in a well-de�ned manner for onsumers of the sheduler output.

II.B.1 Inputs

Sine the sheduling proess is dependent on available appliation and environment information,

we desribe in greater detail the format of these sheduler inputs.

1

When the user interats with a PSE to develop their appliation, they also speify what their performane

expetations are. For example, they might speify a exible desired turnaround time or a hard deadline for

appliation ompletion. These spei�ations are used to reate a performane ontrat, whih formally spei�es

program performane expetations. More details are available in [30, 51℄.

8

Grid information retrieval is neessary in order for the sheduler to develop shedules appro-

priate for the urrent Grid environment. Currently, GrADSoft utilizes the popular Grid information ser-

vies of the Metaomputing Diretory Servie (MDS) [11, 13℄ and the Network Weather Servie [57, 58℄.

The NWS and MDS are entralized information servers that provide dynami and stati information

about the urrent state of Grid resoures. Sine these interfaes are well-known standards for Grid

researhers, we do not desribe them in detail here.

Appliation harateristis and models are ommuniated to the sheduler by way of the

COP. Reall that this omponent enapsulates four distint sub-omponents: IR ode, mapper, one

or more appliation behavior models, and an appliation resoure requirement spei�ation alled

an abstrat appliation resoure and topology model (AART). The IR Code objet is

used for �nal program ompilation and is not utilized during the sheduling proess. The other three

omponents are needed by the sheduler and require further disussion.

Mapper

Given a hosen set of ompute resoures, the mapper determines a performane-eÆient assignment

of appliation tasks and/or data for exeution on those resoures. For example, suppose we have a

mapper developed for master-slave appliations and an input list onsisting of two fast mahines and

two slow ones. Further suppose that we expet the master's workload to be quite high for a ertain

appliation. In this ase, an appropriate assignment of tasks might plae the master on one of the fast

mahines and a slave on eah of the three other mahines. To provide load-balaning, the mapper

might also plae extra work on the fastest of the three slaves.

Appliation behavior models

This group enapsulates any models of appliation behavior that are required by GrADSoft om-

ponents. For sheduling purposes, the most useful models are those that provide some measure of

desirability for possible resoure sets and data mappings. There are many types of behavior models

that might be of interest for GrADS in the long-term; for example, models ould be equation-based,

simulation-based, or history-based and the desirability metri ould be predited exeution time, re-

soure usage ost, or throughput. In this thesis, we will onsider the metri of predited exeution time

as provided by an equational performane model. This is the most ommon appliation exeution

performane metri for run-time shedulers [2, 10, 12, 8, 43, 45, 50, 53℄.

AART Model

This model provides a strutured method for spei�ation of appliation resoure requirements.

The need to onsider appliation resoure requirements for e�etive appliation sheduling on the Grid

9

is lear [8℄; however, sine many Grid appliation shedulers are designed for a partiular appliation

or appliation-lass, appliation resoure requirements are often embedded in the sheduler design

itself [12, 47, 49, 50℄. By omparison, a primary GrADSoft design goal is smooth adaptation to a variety

of appliations. For these reasons, we have developed the AART to support formal spei�ation of

resoure requirements to the sheduler.

The AART model onsists of a olletion of resoure requirements plus a desription of the pro-

essor topology required by the appliation. Examples of suh topologies inlude a one-to-many om-

muniation arrangement (star), an all-to-all ommuniation arrangement (fully-onneted graph), or a

topology where only neighboring proessors need to ommuniate (a mesh). Resoure requirements are

the mehanism by whih spei� resoure needs are spei�ed. Examples of resoure requirements in-

lude the minimum aggregate memory needed for the appliation, the minimum aeptable bandwidth

between any two proessors, and required software installations. While requirements suh as software

are desriptive, requirements suh as aggregate memory requirements an be spei�ed as parametri

models; to be useful these models must be provided with additional information suh as problem size.

Sine appliations frequently require more than one type of resoure, any number of resoure subsets

an be de�ned in the AART model. In the ase that more than one type of resoure set is de�ned,

resoure requirements an be spei�ed that apply to all resoures needed for the appliation, or they

an apply to only a subset of resoures needed by the appliation. In addition, requirements an be

applied to a pair of resoure subsets; for example, if two resoure subsets were de�ned, A and B, one

might also want to speify a minimum bandwidth for any onnetion between resoures in subset A

and resoures in subset B.

Note that the AART model framework itself is designed to be appliation generi so that it an

be useful for a variety of appliation types. To instantiate the framework for a spei� appliation, the

appliation's resoure needs are grouped into resoure subsets and assoiated resoure requirements.

To larify, we give an example appliation and show what the AART spei�ation might be for

this appliation. We onsider a master-slave appliation where the master appliation work must be

assigned to a single resoure but the slave work an be assigned to any number of resoures. Let us

assume that the master requires 1 GB of loal memory and a CPU speed of 1000 MHz. Additionally, the

slaves must ontain an aggregate memory amount of 3 GB, though it does not matter how the memory

is spread amongst the mahines. In this example appliation, the only ommuniation is between the

master and the slaves and more data is sent from the master to the slaves than vie versa. Spei�ally,

the appliation needs bandwidth apability of 10 megabits per seond (Mbps) from the master to the

10

slaves and 3 Mbps from the slaves to the master.

An AART for this appliation would likely speify a \star" ommuniation topology with the

master at the enter of the star. The AART would also likely speify that the appliation requires

two distint subsets of resoures, labeled in the AART as Subset 0 for the master and subset 1 for the

slaves. Given the above requirements, the resoure requirements might be spei�ed formally as:

� Subset 0:

{ Number of resoures = 1

{ Loal memory requirement � 1 GB

{ CPU speed � 1000 MHz

� Subset 1:

{ Number of resoures � 1

{ Aggregate memory requirement � 3 GB

� Subset 0 ! 1:

{ Bandwidth � 10 Mbps

� Subset 1 ! 0:

{ Bandwidth � 3 Mbps

In this example we provided numeri spei�ations for resoure requirements suh as minimum

available loal memory. For some appliations the AART may ontain suh values. To ensure system

generality, the AART struture itself must remain independent of any partiular problem run or Grid

environment; for this reason, resoure requirements will typially be spei�ed as parametri models

that aept problem run or resoure environment harateristis as input.

II.B.2 Sheduler output

One the sheduler has seleted a �nal resoure set and mapping (a shedule), this information

is ommuniated in a well-de�ned manner to other GrADSoft omponents. The sheduler output is

alled a virtual mahine. The virtual mahine is made up of one or more resoure objets, a

network objet, and a topology desription.

11

Resoure An objet that represents a physial devie that an be used to perform work.

Network An objet that enapsulates information about eah link between members of a given group

of resoures. Any number of harateristis an be attahed to eah "resoure to resoure"

link.

Topology A high-level desription of the \appliation to resoure" task or data mapping. For

example, given our master slave example, the topology might speify whih resoure had

been seleted for the master and whih ones for the slaves.

Virtual mahine An objet that enapsulates the seleted shedule and shedule-time Grid harater-

istis. The virtual mahine ontains a network, topology, and any number of resoures.

II.C Current status

The GrADSoft system arhiteture desribed in Setion II.A is an ongoing design e�ort that is

ontinually evolving as the GrADS projet evolves. E�orts are underway to develop eah of the new

omponent tehnologies that will be required to realize the GrADSoft design [7, 23, 51, 3, 29, 56, 37℄.

While the individual GrADSoft omponents suh as the ompiler and the performane monitor

are fundamental to the suess of the GrADSoft system, these omponents must be able to interat and

oordinate information ow and deision proedures. To this end, there is also an e�ort to prototype

a unifying software system to provide the neessary information ow and oordination for individual

GrADSoft omponents. At the time of this writing, this system, alled the GrADSoft Prototype,

inludes over ten thousand lines of integrated C++ ode [24℄. Initial prototypes are omplete for all of

the PPS / PES interfaes.

II.D Chapter summary

In this hapter we have desribed GrADSoft, a modular software arhiteture for Grid appliation

development and exeution. We also detailed the basi funtionalities and interfaes that should be

provided by a GrADSoft sheduler.

The GrADSoft arhiteture introdues new hallenges and opportunities for the development of

Grid appliation sheduling strategies. This thesis proposes a sheduler design that utilizes and extends

the GrADS framework to provide an adaptive sheduling servie for Computational Grid environments.

12

As part of this work, we developed a prototype sheduler that is integrated into the urrent

GrADSoft prototype. The suess of this design in validation experiments demonstrates the eÆay of

the GrADS goals. Furthermore, this design is the �rst instantiation of a major GrADSoft omponent

and is therefore an important proof of onept for the GrADSoft framework itself.

Chapter III

Sheduling methodology

In the previous hapter we presented the GrADSoft arhiteture and desribed the spei�ation for

the GrADSoft sheduler. In this hapter, we present an adaptive sheduling methodology that is the

�rst instantiation of the GrADSoft sheduler spei�ation. Key hallenges of this environment and the

approah taken by our methodology are as follows.

� The sheduler should graefully adapt to a variety of appliations. We have designed a highly

modular framework that an be easily instantiated for spei� appliations.

� The quality and quantity of Grid information varies widely and somewhat unpreditably over

time and from testbed to testbed. Our approah is to provide best-e�ort servie by adapting to

information availability. That is, while the sheduler will likely provide the best servie when

Grid information is highly available, it should ontinue to funtion when information availability

is lower.

� Similarly, the quality and quantity of appliation information and models in GrADSoft will vary

widely from appliation to appliation. Our goal is again best-e�ort; that is we seek to provide

sheduling servie that is ommensurate with available information.

We begin in Setion III.A with the sope of the sheduler design and de�nitions of key onepts

needed in the rest of the hapter. In Setion III.B we desribe the sheduler design, in Setion III.C we

desribe the olletion and usage of Grid information by the sheduler, and in Setion III.D we detail

the di�erent sheduling poliies supported by the sheduler. Finally, Setion III.E provides a hapter

summary.

13

14

III.A Sope and de�nitions

III.A.1 Sheduling assumptions

Our methodology is based on a number of assumptions about the target sheduling senario and

environment. Most importantly, the sheduler is designed to support the GrADSoft arhiteture and

to utilize the GrADS Computational Grid environment. Additionally, the methodology is based on a

number of assumptions about the target sheduling senario, appliation model, and Grid environment.

We desribe eah of these assumptions below.

Sheduling senario

We assume that the sheduler will be alled just before run-time, and that the hosen resoure set

will be utilized for the entire problem run. Our methodology is adaptive to the dynami onditions

of the Grid at run-time; however, it is not adaptive in the sense that the shedule is modi�ed during

appliation exeution to adapt to hanging Grid onditions.

Our �rst sheduling goal is to ensure that hard appliation resoure requirements are met; for

example, for an appliation with signi�ant and inexible memory requirements, our foremost onern

would be to ensure that those memory requirements are met by the seleted resoure set. Our seond

sheduling goal is to minimize appliation exeution time. This an be done by optimizing shedule

performane based on an appliation performane model. When a performane model is not available,

the sheduler an still make progress in shedule seletion by evaluating the quality of eah shedule

based on heuristi de�nitions of resoure set desirability.

Appliation model

We assume the target appliation is parallel and that many problem sizes of interest will require

more than one mahine for aeptable performane. We also assume a single program, multiple data

(SPMD) appliation model.

Appliation resoure requirements

In Setion II.B we introdued the AART model as a formal method for the spei�ation of the

type of resoure set, or platform, that is likely to be performane-eÆient for a partiular appliation.

Ideally, the GrADSoft sheduler will handle smoothly any appliation by automatially parsing the

appliation's AART and thereby understanding the appliation's resoure needs. However, to ahieve

this ambitious goal, we need to gain experiene with simpler versions of this problem. For this thesis,

we fous on appliations that share the following general harateristis.

15

i. All proesses are able to ommuniate with all other proesses, and the amount of ommuniation

performed by the appliation is signi�ant. An appropriate resoure set will therefore provide all-

to-all onnetivity. Resoure sets onneted by low-delay networks will provide better performane

than those onneted by high-delay networks and are therefore preferable.

ii. Appliation performane is sensitive to the aggregate omputational and memory apaity of the

target resoure set, as well as to the individual apaities of seleted mahines.

iii. The de�nition of an appropriate resoure set for the appliation is highly dependent on problem

size, environmental harateristis, and other fators. The seletion of an appropriate resoure

set size is therefore not a simple maximize or minimize funtion.

Appliation information and models

Reall that the GrADSoft arhiteture is designed to handle a wide variety of appliations; we

envision that appliation harateristis and models will often be derived from library annotations,

ompiler analysis, and reords of historial behavior. Clearly, the sophistiation of the resulting appli-

ation information and models will vary greatly; the sheduler will have to adapt to varying degrees

of sophistiation of AARTs, performane models, and mappers. We propose a sheduler design that

supports two types of appliation performane model.

� Memory usage model: At the oarser level, we assume that only an appliation memory usage

model is available. Provided with problem run information suh as problem size, this type of

model returns a predition of the aggregate amount of memory required for the appliation. We

fous on a memory usage model in part beause basi ompiler analysis of appliation soure ode

ould fairly easily produe suh a model. In partiular, given some integration, we envision that

suh a model ould be automatially produed by the GrADSoft ompiler in the near future.

� Exeution time + memory usage model: At the more sophistiated level, we assume that a

full performane model is available. Provided with problem run information, the seleted resoure

set, and a mapping of appliation tasks or data onto those resoures, this type of model returns

the predited exeution time in addition to a memory usage predition. We seleted this model

as an investigation of how the GrADSoft system ould funtion in the future. While urrent

GrADS PPS tehnologies are not sophistiated enough to automatially generate an exeution

time model, this topi is a primary fous of other GrADS researhers [7, 29℄.

16

Note that we only speify here the type of models that are supported by the sheduler; the exat

implementation of suh a model is highly appliation-dependent and therefore an not be embedded

in the sheduler design. In the next hapter, we develop an instantiation of the memory usage and

exeution time models for spei� appliations.

Grid environment

In this thesis we target Computational Grids onsisting of heterogeneous, distributed networks of

workstations. Workstations may have di�erent proessor types and speeds, di�erent amounts of loal

memory, or di�erent operating systems. While target workstations may have more than one CPU,

the sheduler design urrently targets only one CPU per resoure. Targeted networks inlude both

loal-area networks (LANs) and wide-area networks (WANs). Figure III.1 provides an example of a

small Grid of this type.

UTK LAN
83.8 Mbps

UIUC LAN
88.6 Mbps

UCSD LAN
90.8 Mbps

4.4 Mbps

2.7 Mbps

3.0 Mbps

1.5 Mbps

6.0 Mbps

5.9 Mbps

WAN

Figure III.1: A heterogeneous, distributed network of workstations. Network links are labeled with

available bandwidth in megabits per seond; these values were olleted by Network Weather Servie

network monitoring sensors on November 1, 2001 at around 5:30 pm.

17

III.A.2 Sheduling de�nitions

The following de�nitions are used throughout the rest of this hapter to desribe our sheduling

methodology.

Base mahine list The sheduling proess begins with a list of all mahines available for the urrent

problem run. Available an have diverse meanings for di�erent users and appliations; in this

thesis we de�ne available as mahines on whih the user has an aount, that are on-line and

aessible, and that have ertain Grid middleware servies needed for job launhing.

Resoure pool The resoure pool inludes all of the mahines in the base mahine list as well as

ompute, storage, and network apability harateristis for these mahines.

Site A site is a olletion of well-onneted resoures and typially orresponds to a LAN. In pratie,

intra-site network delays are lower than inter-site delays. For example, Figure III.1 inludes three

distint sites: fUCSD, UIUC, UTKg.

Topology-based olletions A topology-based olletion is a set of mahines seleted based on their

loality. Spei�ally, given a set of sites, the orresponding topology-based olletions an be

found by taking the power set of the set of sites.

1

For the example given in Figure III.1, there

are seven topology-based olletions: fUCSD, UIUC, UTK, UCSD [UIUC, UCSD [UTK, UIUC

[UTK, UCSD [UIUC [UTKg. While the power set operation is exponential in the number of

sites, Grid users often target a small number of sites.

Candidate resoure group (CRG) A group of mahines that have been identi�ed as a possible

resoure set for the urrent problem run.

Shedule A list of resoures and a mapping of data or tasks onto those resoures.

Candidate shedule A partiular andidate resoure group and a mapping of data or tasks onto

those resoures onstitute a andidate shedule.

Final shedule During the sheduling proess a spei� andidate shedule is eventually seleted as

the \best" hoie, this shedule is then seleted as the �nal shedule. The method by whih

shedules are ompared to �nd the best one will be desribed in Setion III.B.2.

1

Note that we exlude the null set.

18

Virtual mahine One a �nal shedule is seleted, information about the seleted ompute resoures,

network resoures and data or task mapping is enapsulated in a virtual mahine objet.

III.B Sheduler design

The sheduler design is based on a ore shedule searh framework that supports a variety of

pluggable omponents (Figure III.2). A base mahine list is input to the Grid Info Colletor whih

then retrieves harateristis of the mahines and of the networks onneting them. The resulting

resoure pool is then input to the searh proedure along with appliation harateristis and models

in the COP. The sheduling poliies objet allows automati on�guration of a number of sheduling

behaviors. For example, one supported sheduling poliy de�nes whether the sheduler should inlude

ross-site shedules in the searh. By default, the sheduler onsiders ross-site solutions, but this

poliy ould be inappropriate for appliations that require a shared �le system. After the sheduler has

seleted a �nal shedule, the virtual mahine is reated and returned.

In this setion we desribe the omponents of the shedule searh proedure. In Setion III.C we

disuss the Grid info olletor, and in Setion III.D we enumerate the sheduling behaviors whih an

be on�gured via input sheduling poliies.

III.B.1 Searh Proedure

The sheduler searh proedure is at the ore of the sheduling methodology; the proedure examines

the set of available resoures, generates a number of andidate shedules, evaluates the andidate

shedules to selet a �nal shedule, and ommuniates the searh results. The proedure takes as input

the resoure pool, the COP, and the sheduling poliies. It outputs the seleted shedule in the form

of a virtual mahine. To �nd reasonable andidate shedules, the searh proedure identi�es andidate

resoure groups (CRGs) and generates a shedule for eah. The �nal shedule is the best of these

andidate shedules. In Setion III.B.2 we detail many of the individual omponents of this proess.

In this setion, we examine only the proess of generating andidate resoure groups (CRGs) from the

resoure pool.

To guarantee that the optimal CRG will be identi�ed, an exhaustive searh over all possible unique

resoure ombinations would be required. However, as we demonstrate momentarily, the ost of suh

a searh is prohibitive. First, note that from the perspetive of the sheduler, permutations of the

same resoure group do not onstitute unique CRGs. A performane eÆient resoure ordering or

19

Grid Info
Collector

Base Resource
List

COP

Perf
Model

Mapper

AART

Search
Procedure

Virtual
Machine

ResourceI
+ Mapping

Resource II
+ Mapping

Resource III
+ Mapping

Topology

Scheduling
Policies

Figure III.2: Sheduler design.

20

topology is identi�ed during the mapping proess and is independent of initial resoure ordering; thus,

permutations typially result in equivalent shedules. For an exhaustive searh, all subsets of size one

to the size of the entire resoure set must be inluded in the searh. For a resoure pool of size n, the

number of distint CRGs that must be inluded is:

numCRGs =

n

X

k=1

n!

k!(n� k)!

(III.1)

For example, to perform a shedule searh in a resoure set of 30 mahines would require evaluation

of

P

30

k=0

30!

k!(30�k)!

� 10

9

CRGs. For even a reasonably sized resoure pool and/or when the mapping

proess is time intensive the enormous size of the searh spae makes an exhaustive searh simply

infeasible.

The searh proedure must therefore inorporate extensive pruning of the searh spae while en-

suring that the optimal or near-optimal CRGs are not exluded from the searh. Sine performane

models annot be used until a andidate CRG has been identi�ed, these models annot be used to

prune the spae of possible CRGs. Reall that we address only appliations that share ertain broad

resoure requirements (see Setion III.A). Our searh approah is to prune resoure groups that are

unlikely to satisfy these requirements. The goal of the searh is to ensure that the �nal list of andidate

CRGs inludes those CRGs whih are likely to be performane eÆient platforms for the appliation.

Pseudo-ode for the shedule searh proedure is given in Figure III.3. In eah for loop we re�ne

the list of target CRGs based on a di�erent resoure set harateristi: onnetivity in the outer-most

loop, omputational and memory apaity of individual mahines in the seond loop, and seletion of

an appropriate resoure set size in the inner-most loop.

In the outer-most loop, we identify resoure groups that are likely to be more tightly-oupled.

We do this by expliitly de�ning olletions of resoures based on site topology in the FindSites and

ComputeSiteCombos method alls. We disuss in detail our implementation of the FindSites and

ComputeSiteCombos method alls in Setion III.B.2; however, it is worth mentioning here why these

resoure groups are likely to provide better onnetivity than other possible resoure subsets. Sine

intra-site network delays are typially lower than inter-site delays, it is lear that resoures within one

site are likely to be more tightly-oupled that resoures from multiple sites. However, it is also true

that resoure groups formed by ombining the resoures of individual sites are likely to exhibit better

onnetivity harateristis than randomly seleted resoure groups of the same size. The primary

21

Algorithm : SheduleSearh(resourePool)

sites FindSites(resourePool)

topologyColletions ComputeSiteCombos(sites)

for eah olletion (topologyColletions)

for eah fous (omputation;memory; dual)

for targetSize 1 to size(olletion)

CRG FindBest(olletion; fous; targetSize)

urrShed GenerateShedule(CRG)

if SheduleCompare(urrShed; bestShed) == FirstIsBetter

bestShed urrShed

return (bestShedule)

Figure III.3: Shedule searh proedure. We disuss the overall searh design in Setion III.B.1 and the

implementation of individual method alls in Setion III.B.2

advantage posed by resoure groups formed in this way is that suh a resoure group will typially span

less sites than randomly seleted resoure groups ontaining the same number of resoures.

In the middle loop of the searh proedure we seek to loate resoures that exhibit high loal memory

and omputational apaities. Sine we annot know in advane whih aspet will be more important

for appliation performane, we de�ne three di�erent searh foi : the omputation fous emphasizes

the omputational apaity of mahines, the memory fous emphasizes the loal memory apaity of

mahines, and the dual fous plaes equal weight on eah fator. The searh for mahines that satisfy

these foi ours in the FindBest method all; the implementation of this method all is disussed in

Setion III.B.2.

Finally, in the inner-most loop of our searh proedure, we fous on the seletion of an appropriately-

sized resoure group. It is diÆult to determine what an appropriate resoure set size will be for

an appliation sine it depends on appliation harateristis as well as resoure harateristis. For

example, for appliations with substantial omputation and ommuniation, there is no way to know a

priori whether a smaller, better onneted resoure group or a larger, poorly onneted resoure group

will be more performane-eÆient. Rather than attempt suh a predition, we inlude all resoure set

sizes in the searh spae. In this way, the seletion of an appropriate resoure set size is the responsibility

22

of the SheduleCompare method all; when an exeution time model is available, SheduleCompare an

use this model to determine whih CRG is most appropriate for appliation needs (see Setion III.B.2

for details). Note that an exhaustive searh at this level of the proedure is only feasible due to the

extensive pruning performed at the �rst two levels.

This nested set of re�nement methods greatly redues the searh spae of CRGs. To demonstrate

this we develop an upper bound on the number of CRGs onsidered by the searh heuristi.

Assuming we have s sites in the resoure set under onsideration, the proess of de�ning site ombi-

nations reates 2

s

topology-based olletions.

2

We onsider three resoure orderings for eah olletion

(omputation, memory, and dual). Given these 3 � 2

s

ordered olletions, we exhaustively searh all

possible subset sizes for eah. Sine the number of resoures in eah site, and therefore in eah topology-

based olletion, is dependent on the harateristis of eah Grid environment, we an not predit a

priori the number of resoures in eah of the 3 � 2

s

ordered olletions. Instead, we develop an upper

bound by assuming eah olletion is of size n, the size of the entire resoure pool. For eah ordered

olletion, we assume n distint subsets will be inluded. The upper bound on the total number of

CRGs identi�ed by the searh proedure is therefore 3n2

s

. In ontrast to an exhaustive searh of the

resoure set spae, the algorithmi omplexity of our heuristi is exponential in the number of sites,

not the number of omputational resoures. In the vast majority of senarios, the number of sites is

muh smaller than the number of resoures so that our heuristi an be expeted to signi�antly redue

searh ost.

Consider again the example presented earlier of 30 mahines arranged in 3 sites with 10 mahines

in eah site. Reall that the exhaustive searh proedure produes 10

9

CRGs for this topology. The

upper bound on the number of CRGs produed by our searh proedure is 3 � 30 � 8 = 720; a diret

alulation of the number of CRGs generated for this senario reveals that only 360 are generated.

III.B.2 Searh methods

We now desribe the algorithms used for eah method all in Figure III.3. We disuss the methods

in order of their usage in the shedule searh proedure.

The FindSites method takes the list of available mahines and organizes the mahines into disjoint

subsets suh that the network delays within eah subset are lower than the network delays between

subsets. As a �rst approximation, our FindSites implementation utilizes a heuristi based on the ma-

2

In fat, we exlude the null-set leaving 2

s

� 1 suh olletions.

23

hine domain names. Domain names are typially assigned to organizations and organizations are often

geographially entralized. Additionally, the networks within an organization typially exhibit lower

delays than networks between organizations. While these generalities are not true of every organization,

they do hold for the GrADS Computational Grid environment and also for most Computational Grids

we know of. Based on these assumptions, we group mahines into a single site if they share the same

domain name and into di�erent sites if they have di�erent domain names. Previous work in web lient

lustering [31℄ and ontent routing [26℄ have also utilized this heuristi approah to group mahines in a

similar way. Note that the method fails to distinguish hierarhies of mahines within the same domain

name. More sophistiated methods of network topology disovery exist [44, 36℄ and an be used to

improve the ability of the FindSites method to disover true network topologies.

The ComputeSiteCombos method all takes as input the list of sites disovered via FindSites

and builds a list of all possible topology-based olletions. We exlude the null set so there are 2

s

� 1

suh olletions for a set of s sites.

The FindBest method takes as input a list of mahines (olletion), a mahine type fous (fous),

and a target resoure set size (targetSize) and returns the best targetSize mahines from the olletion

based on a mahine preferene of fous. For example, suppose the input olletion ontained two fast

mahines and two slow mahines, that the fous is omputation, and that the targetSize is three. In

this ase, the returned CRG will ontain the two fast mahines and the faster of the two slow mahines.

The GenerateShedule method all takes as input a list of mahines and returns a shedule for

those mahines. Reall that a shedule onsists of a list of mahines and a data or task mapping onto

those mahines. Sine the mapping proess is appliation-spei�, GenerateShedule retrieves and uses

the mapper from the COP. Note that due to onstraints suh as loal mahine memory apaities it is

not always possible to �nd a feasible mapping; when this ours, GenerateShedule fails and the searh

for andidate CRGs ontinues. In the next hapter we present an example of an appliation-spei�

mapping strategy that lari�es the onept of GenerateShedule and the mapper.

The SheduleCompare method takes as input two andidate shedules and returns FirstIsBetter

if the �rst shedule is better than the seond and returns SeondIsBetter otherwise. Reall from

Setion III.A that we are investigating two sophistiation levels for appliation information and models:

a memory usage model and an exeution time + memory usage model. The SheduleCompare method

uses di�erent omparison metris, desribed below, depending on whih type of model is available.

Memory usage model without an exeution time model

When only a memory usage model is available, a series of heuristis are used to ompare andidate

24

shedules. These heuristis are designed to evaluate how well the given shedules satisfy the broad

appliation resoure requirements de�ned in Setion III.A. Figure III.4 provides an overview of the

series of shedule omparisons used to selet the better of two shedules.

Exeution time model + memory usage model

When an exeution time is available in addition to the memory usage model, SheduleCompare

uses the model to alulate a predited exeution time for eah shedule. An obvious and straight-

forward approah is to selet the shedule with the minimum predited exeution time and return it.

A drawbak to this absolute best seletion methodology is that the seleted shedule sometimes tar-

gets many more resoures than are neessary to ahieve aeptable performane. For example, many

appliations have poor speedup at larger resoure set sizes; in these ases the performane advantage

of adding more resoures an be almost zero, yet an absolute best seletion methodology will selet

larger and larger resoure sets until performane atually degrades. In a shared-resoure setting suh

as a Computational Grid, a better hoie that balanes the performane of individual appliations with

overall system throughput is to target a smaller number of resoures that provide a similar performane

level. Performane ontrats, introdued in Chapter II, provide a formal spei�ation of aeptable

appliation performane levels; suh a ontrat ould be used to determine what target resoure set

sizes will provide aeptable appliation performane. Unfortunately, sine performane ontrats are

still under development, we ould not easily experiment with this onept.

As an alternative strategy that does not require spei�ation of an absolute performane require-

ment, we introdue a performane improvement threshold. In a shared-resoure environment suh as

the Grid, onservative resoure usage should be enouraged to improve the overall system throughput;

therefore when a smaller resoure set provides equivalent performane to a larger set, a \good itizen"

approah would target the smaller set. Sine eah user may have a personal de�nition of equivalent,

we provide the threshold as a tunable sheduler option. We inorporate this strategy at the inner-most

loop of the sheduler searh proedure (Figure III.3); the loop is exeuted one to �nd the absolute

best target resoure set size and is then exeuted a seond time to �nd the smallest resoure set that

provides a predited exeution time within the on�gurable performane improvement threshold.

III.C Grid information

Computational Grids are highly dynami environments where ompute and network resoure avail-

ability an be unstable. When resoure performane patterns are not well understood, appliation

25

Do we have more complete resource
info for one of the schedules?

Yes, S2Yes, S1

Equivalent

Return
Second

Is Better

Return
First
Is Better

Is effective bandwidth higher
for one of the schedules?

(BW = min BW of any link in the schedule)

Yes, S1

Equivalent

Does one schedule require
fewer resources?

Yes, S2

Is effective computational capacity
higher for one of the schedules?

(power = min comp. capacity of any
resource in the schedule)

Equivalent

Yes, S1 Yes, S2

Yes, S1 Yes, S2

Equivalent

ScheduleCompare(s1,s2)

Figure III.4: Shedule omparison methodology when a memory usage model is available but an exe-

ution time model is not.

26

performane su�ers. To avoid these problems, a sheduler should make deisions based on up-to-date

information about the urrent Grid environment. Unfortunately, urrently available Grid informa-

tion soures an be periodially unstable or altogether unavailable, thereby preluding the use of any

sheduler that depends solely on that information soure. Our goal is to provide best-e�ort servie by

supporting bakup soures, when possible, for eah type of information required by the sheduler.

The Grid Information Colletor is the sheduler omponent responsible for the olletion of resoure

and network information for sheduling. In III.C.1 we disuss several Grid information soures that an

be utilized by the Grid Information Colletor. In III.C.2 we desribe the types of information required

by our sheduling strategy and identify whih information soures an be used to satisfy eah of these

requirements.

III.C.1 Information soures

There are a variety of Grid information olletion and dissemination mehanisms and eah Com-

putational Grid varies somewhat in its information infrastruture. We provide an overview here of

two of the most widely utilized systems, the Metaomputing Diretory Servie (MDS) [13, 11℄ and the

Network Weather Servie (NWS) [57, 58℄. See Setion V.A for the on�guration and usage of these two

systems in the GrADS Computational Grid.

The MDS is a exible Grid information management system that is used to ollet and publish

system on�guration, apability, and status information. Essentially, any non-sensitive information that

an be retrieved from an operating system ould be published in the MDS for retrieval by distributed

lients. Grid harateristis that an typially be retrieved from the MDS inlude

� the set of potentially available resoures;

� mahine harateristis suh as operating system, proessor type, proessor speed, number of

CPUs available, and physial memory size; and

� software availability and installation loation.

The NWS is a distributed monitoring system designed to trak urrent resoure and network

onditions [57, 58℄. In addition to providing near real-time estimates of deliverable performane, the

system supports very short-term (10 seonds ahead) foreasting of future availability. The system

supports monitoring of the following system harateristis:

� availableCpu: the fration of CPU available to a newly-started proess,

27

� urrentCpu: the fration of CPU available to a proess that is already running,

� freeMemory : the amount of spae unused in memory,

� freeDisk : the amount of spae unused on disk,

� onnetTimeTp: the amount of time required to establish a TCP onnetion to a remote host,

� bandwidthTp: the speed with whih data an be sent to a remote host, and

� latenyTp: the amount of time required to transmit an empty TCP message to a remote host.

III.C.2 Sheduler Grid information requirements

There are several types of Grid information required for the sheduling proess: a list of mahines

available for the run, loal omputational and memory apaity estimates for eah resoure, and on-

netivity estimates for the networks between resoures. Wherever possible we support all available

types of information.

The base mahine list is a list of the mahines to be onsidered in the sheduling proess and is

the most important information requirement. On some testbeds a list of all mahines in the testbed an

be retrieved from an MDS, but unfortunately this list typially inludes mahines on whih the user does

not have aounts. The urrently deployed MDS tehnology provides no support for seure publishing

of aount information, whih is generally too sensitive to publish in an inseure way. However, seure

MDS mehanisms are urrently in the beta stage and should be available in the near-term. Until

that tehnology is available, we obtain the list of available mahines from the user diretly.

Loal memory apaity information is utilized by the sheduler in two ways. First, the infor-

mation is used by the FindBest method all to sort mahines when the fous parameter is memory

or dual. Seond, most reasonable mappers will require loal apaity information to ensure that the

loal appliation requirements do not exeed loal apaities. The sheduler supports usage of either

total physial memory values, whih an be retrieved from the MDS, or free memory values, whih an

be retrieved from the NWS. In future disussions we abbreviate these information types by TOTAL

and FREE, respetively. Note that only mahines for whih loal memory information is available are

inluded in the �nal shedule.

Loal omputational apaity information is also utilized by the sheduler in two ways. As

with loal memory, the FindBest method uses omputational apaity information to sort mahines

28

Component Parameter Options Default

Grid Info Colletor usergrid fMACHINE LISTg no default

memType FREE, TOTAL FREE

ompType AVAIL, MHZ, AVAIL MHZ AVAIL MHZ

nwsDataType LAST VALUE, PRED PRED

Searh Proedure perfModel MEMORY, EX TIME EX TIME

resConserve [0.0, 1) 0.05

rossSiteOK YES, NO YES

Table III.1: Con�gurable sheduling poliies.

when the fous parameter is omputation or dual. In addition, many mappers and performane models

will inorporate performane preditions requiring omputational apaity estimates. The sheduler

supports usage of three information types: proessor speed (available from the MDS), available CPU

estimates (available from the NWS), or available proessor speed (omputed by the Grid Information

Colletor as a multipliative ombination of available CPU and proessor speed). Reall that the

sheduler design urrently only targets one CPU per resoure; NWS CPU availability values an be

well over 100% for multi-proessor resoures so we therefore ap all NWS CPU availability estimates

at 100%. Hereafter we abbreviate these three information types by MHZ, AVAIL, and AVAIL MHZ.

Network performane information is used primarily by the sheduler to provide input to the

mapper and performane model. For example, many mappers will inorporate performane preditions

that require network harateristis. The sheduler supports usage of bandwidth and lateny data,

both of whih are available from the NWS. In future disussions, these will be abbreviated as BAND

and LAT.

III.D Sheduling poliies

In this hapter we have disussed many on�gurable sheduler harateristis. For eah of these

harateristis a default value is de�ned; to support exibility in sheduler usage the sheduler also

supports the spei�ation of alternative on�gurations via the sheduling poliies sheduler input. A

summary of sheduler on�guration harateristis, available options, and default values is given in

Table III.1.

Only one of the sheduling poliies must be spei�ed: the user must provide a list of Grid resoures

on whih he or she has an aount, hereafter alled usergrid. As the seurity of Grid information servies

improves this requirement will be lifted.

29

III.E Chapter summary

In this hapter we have desribed a modular, adaptable sheduler design that an be applied to many

types of appliations. This sheduler must be paired with an appliation-spei� performane model

and mapper. In the next hapter we develop these important omponents for a spei� appliation

lass.

Chapter IV

Iterative, mesh-based appliations

In Chapter III we desribed an adaptable sheduling framework that, when ombined with an

appliation-spei� performane model and mapper, provides automati mathing of appliation re-

quirements with available Grid resoures. In this hapter we desribe two spei� appliations and

detail an implementation of the mapper and performane model for eah. The performane models,

mappers, and appliations themselves will be used in the next hapter to demonstrate our sheduling

methodology in validation experiments.

For our test appliations we have hosen two examples from the lass of iterative, mesh-based

appliations. In Setion IV.A, we desribe the harateristis of this appliation lass and detail the

test appliations. Setion IV.B desribes our performane model design, and Setion IV.C desribes

our mapper design. Finally, in Setion IV.D we provide a hapter summary.

IV.A Appliation harateristis

The lass of iterative, mesh-based appliations is ritial to many �elds of siene and engineering,

inluding for instane partile simulations, partial di�erential equation solvers, and iruit simula-

tions [21℄. We have hosen to fous on appliations in this lass both beause the lass is important

and beause this lass typially exhibits relatively preditable performane.

Iterative appliations are haraterized by a single sequene of operations that is repeated many

times over the ourse of exeution. Many iterative appliations an be lassi�ed as loosely synhronous,

meaning that in eah iteration the partiipating proessors are synhronized in some way before on-

tinuing to the next iteration [21℄. We fous on loosely synhronous iterative appliations where the

30

31

data domain an be represented by a one, two, or three-dimensional mesh. We also assume that the

workload per iteration and the workload per unit of the data mesh are both onstant (traditionally

labeled a regular iterative model).

Many iterative, mesh-based appliations are disrete approximations to ontinuous spae-time prob-

lems; examples inlude binary ellular automatons [14℄, atmospheri simulations [15℄, and heat transfer

in a solid. For these appliations, eah iteration represents a small, �xed period of time and the

data mesh represents the physial spae for the problem. Linear system solvers are another applia-

tion domain with many iterative, mesh-based solutions [6℄; examples inlude Gauss-Seidel, Suessive

Over-relaxation, and Conjugate Gradient.

We fous on two of these appliations for development and testing purposes: Game of Life and

Jaobi. We have seleted these appliations as our initial test ases beause they are well-known,

straightforward to desribe, and share many performane harateristis with other iterative, mesh-

based appliations. We implemented eah test appliation as a SPMD-style omputation using C and

the Message Passing Interfae (MPI) [38℄. Traditionally, MPI programs are restrited to groups of

mahines that share a �le system and have similar arhitetures. However, the MPICH implementation

of MPI [27, 28℄ provides support for exeution of unmodi�ed MPI programs aross heterogeneous

arhitetures and wide-area networks; spei�ally, this support is provided through a Globus-enabled

version of MPICH alled MPICH-G [16, 17℄. We use MPICH-G for eah of our appliations to allow

experimentation aross Computational Grids.

IV.A.1 Game of Life

Conway's Game of Life is a well-known binary ellular automaton whereby �xed rules are applied to

determine a next generation of ells based on the state of the urrent generation [14℄. A two-dimensional

mesh of pixels is used to represent the environment, eah pixel represents a ell, and values of 0 and 1

indiate a dead and living ell, respetively. In eah iteration, the state of every ell is updated based

on the urrent status of the ell itself and of its eight nearest neighbors (a 9-point stenil); a dead ell

with exatly three live neighbors omes alive and living ells survive only if they have two or three

living neighbors.

Game of Life is a straightforward appliation to implement in parallel beause the update of eah

pixel depends only on the values of the ell's immediate neighbors. Data an be partitioned in numerous

ways inluding blok, blok-yli, row-based strip, and olumn-based strip. Eah proessor manages a

32

portion of the array and de�nes a 1-pixel wide set of ghost-ells along data grid edges. Eah iteration

onsists of a omputational phase in whih eah proessor updates their portion of the data array and a

ommuniation phase in whih eah proessor re-initializes their ghost ell data with information from

its neighbors.

N

N

Parallel
Mapping

N

np-1 Pp-1

n0

n1 P1

P0

Ghost Cell Exchange

Boundary Cells

Generation Data

Ghost Cells

9-pt update stencil

Legend

1

2

3

12
3

Figure IV.1: Game of Life appliation struture.

Key features of our Game of Life implementation are diagrammed in Figure IV.1, a listing of vari-

ables and their de�nitions is given in Table IV.1, and pseudo-ode for the iterative portion of our

implementation is presented in Figure IV.2. We seleted a row-based strip data partitioning strategy

beause this strategy typially exhibits lower ommuniation osts than other partitioning shemes, an

important onsideration for Grid omputing. To allow experimentation with load-balaning work allo-

ation strategies, we inorporated support for irregularly-sized data partitions. The ghost ell exhange

phase is implemented with non-bloking sends (MPI Isend), non-bloking reeives (MPI Irev), and �nal

wait method alls to ensure the return of all ommuniation alls (MPI Wait). Our implementation does

not inlude termination detetion, and it exeutes for a on�gurable, but �xed number of iterations.

33

Algorithm : GameOfLife(proID; p;N; nLoal; numIts)

de�ne DEAD 0; ALIV E 1

de�ne FIRST ID 0; LAST ID p� 1

// Arrays must inlude spae for boundary and ghost ells

loal urrGen[nLoal+ 2℄[N ℄; nextGen[nLoal+ 2℄[N ℄

urrGen GetInitialGeneration(i; nLoal)

for k 0 to numIts� 1

// COMPUTATION PHASE

// We exlude boundary values from update

// i.e. row 0, row nLoal+1, ol 0, and ol N+1

for r 1 to nLoal

for 1 to N

ount urrGen[r � 1℄[� 1℄ + urrGen[r � 1℄[℄ +

urrGen[r � 1℄[+ 1℄ + urrGen[r℄[� 1℄ +

urrGen[r℄[+ 1℄ + urrGen[r + 1℄[� 1℄ +

urrGen[r + 1℄[℄ + urrGen[r + 1℄[+ 1℄

if urrGen[r℄[℄ == ALIV E and ount 2 f2; 3g

nextGen[r℄[℄ = ALIV E

else if urrGen[r; ℄ == ALIV E

nextGen[r℄[℄ = DEAD

else if urrGen[r; ℄ == DEAD and ount == 3

nextGen[r℄[℄ = ALIV E

else

nextGen[r℄[℄ = DEAD

// COMMUNICATION PHASE

if proID 6= FIRST ID

// Re-initialize ghost ell data with lower-indexed pro

AsynSend(nextGen[1℄[:℄; proID � 1)

AsynRev(nextGen[0℄[:℄; proID � 1)

WaitAll()

if proID 6= LAST ID

// Re-initialize ghost ell data with higher-indexed pro

AsynSend(nextGen[nLoal℄[:℄; proID + 1)

AsynRev(nextGen[nLoal + 1℄[:℄; proID + 1)

WaitAll()

// Swap data array pointers [no mem opy℄

SwapDataP trs(urrGen; nextGen)

return (urrGen)

Figure IV.2: Game of Life appliation pseudo-ode.

34

Name Type De�nition

p int total number of proessors

P

i

NA proessor i where 0 � i < p

N int number of rows & olumns in the global data matrix

n

i

int number of rows in the loal data matrix of P

i

numIts int total number of iterations to perform

proID int MPI proessor ID where 0 � proID < p

FIRST ID int ID of the top-most proessor (usually 0)

LAST ID int ID of the bottom-most proessor (usually p� 1)

urrGen int[℄[℄ 2-dim matrix for initial data in eah iteration

nextGen int[℄[℄ 2-dim matrix for result data in eah iteration

Table IV.1: Summary of variables used in Game of Life desription.

IV.A.2 Jaobi

The Jaobi method is a simple algorithm for the solution of a system of linear equations by itera-

tion [6, 41℄. Jaobi is often explained in the ontext of solving Laplae's equation. We instead desribe

the general linear system solver version; note that the Jaobi method involves more ommuniation for

this ase than in the solution to Laplae's equation (whih requires only neighbor-based ommunia-

tion). A linear system of equations an be represented as ax = b where a is a square N x N matrix of

oeÆients, x = (x

0

; x

1

; :::; x

r

; :::; x

N�1

)

T

is a vetor of unknowns, and b = (b

0

; b

1

; :::; b

r

; :::; b

N�1

)

T

is a

vetor ontaining the onstant oeÆients. To avoid onfusion with the notation we use for proessors

(P

i

), in this disussion we use r as a shorthand for row number and as a shorthand for olumn num-

ber. The method begins with an initial guess for the solution vetor x

0

and in eah iteration suessive

approximations x

k

, k = 1; 2; :::; numIts � 1 to the solution are alulated. The value of x

r

in iteration

number k + 1 is given by:

x

k+1

r

=

1

a

rr

(b

r

�

X

6=r

a

r

x

k

) (IV.1)

This solution method is guaranteed to onverge only if the system is diagonally dominant. That is,

onvergene is guaranteed if:

8r 2 f0 : N � 1g; ja

rr

j >

X

6=r

ja

r

j (IV.2)

35

Name Type De�nition

p int total number of proessors

P

i

NA proessor i where 0 � i < p

N int number of rows (unknowns) in the vetor x

n

i

int number of rows of x assigned to P

i

numIts int total number of iterations to perform

loalA double[℄[℄ 2-dim matrix with n

i

xN sized loal portion of a

loalB double[℄ vetor with n

i

sized loal portion of b

r0 int global loation of the �rst row of this pro's unknowns

urrX double[℄ initial values for x in eah iteration

nextX double[℄ result values for x in eah iteration

loalX double[℄ result values for loal portion of x

distane double a metri for onvergene detetion

Table IV.2: Summary of variables used in Jaobi desription.

We have hosen Jaobi beause it is straightforward to desribe and shares many performane hara-

teristis with other, more popular algorithms.

An eÆient parallel data deomposition for the Jaobi method is to assign a portion of the un-

knowns to eah proessor. The vetor x is then deomposed into an assignment of work (map =

(n

0

; n

1

; :::; n

i

; :::; n

p�1

)) to proessors (proList = (P

0

; P

1

; :::; P

i

; :::; P

p�1

)). Eah proessor need only

store a retangular sub-matrix of a of size n

i

x N . Eah iteration begins with every proessor omput-

ing new results for their n

i

-sized portion of the unknowns. Next, eah proessor must distribute their

updated portion of x to every other proessor so that at the end of the ommuniation phase every

proessor has a fully updated x vetor. The �nal phase in eah iteration is a termination detetion

phase. The method is stationary, meaning that the matrix a is �xed throughout the appliation; for

this reason, eah proessor need only know the values in its sub-matrix of a. The Jaobi method does

not require ghost ells or updates for the matrix a.

Pseudo-ode for our implementation of the Jaobi method is given in Figure IV.3, and Table IV.2

provides de�nitions for variables referened in the pseudo-ode.

IV.B Appliation performane modeling

As disussed in Chapter III, the sheduler is dependent on the availability of a performane model in

the form of either a memory usage model or an exeution time + memory usage model. In this setion

we develop an instantiation of eah of these performane models for our test appliations, Jaobi and

36

Algorithm : Jaobi(loalA; loalB; p;N; nLoal; r0; numIts)

loal urrX[N ℄; nextX[N ℄; loalX[nLoal℄

loal distane

// Initialize urrX with b values

urrX[r0 : r0 + nLoal℄ bLoal

for i 0 to p� 1

Broadast(urrX; i)

for k 0 to numIts� 1

// COMPUTATION PHASE

for r 0 to nLoal � 1

loalX[r℄ loalB[r℄

for 0 to N � 1

if 6= r + r0

loalX[r℄ loalX[r℄� loalA[r℄[℄ � urrX[r + r0℄

loalX[r℄ loalX[r℄ = loalA[r℄[r + r0℄

// COMMUNICATION PHASE

nextX[r0 : r0 + nLoal℄ loalX

for i 0 to p� 1

Broadast(nextX; i)

// TERMINATION DETECTION

// Appliation runs for fixed numIts, but we inlude

// ode to ensure realisti performane results

distane 0

for r 0 to N � 1

distane distane+ (nextX[r℄� urrX[r℄)

2

distane

p

distane

// Swap data pointers [no mem opy℄

SwapDataP trs(urrX; nextX)

return (urrX)

Figure IV.3: Jaobi appliation pseudo-ode.

37

the Game of Life.

IV.B.1 Memory usage model

When the ative, loal data set of an appliation does not �t in the physial memory of eah

partiipating proessor, appliation progress an grind nearly to a halt due to paging of memory to

disk. Sine the performane e�ets of memory usage an be quite severe, it is very important that

shedulers not alloate more work to eah proessor than will �t in loal memory. However, it is

diÆult to predit the performane e�ets of appliation memory usage. For these reasons, we do

not inlude memory usage as part of a performane metri, but rather as a shedule onstraint : for a

shedule to be onsidered feasible the work alloated to every proessor must be predited to �t within

the loal memory apaity of that proessor.

Based on examination of data strutures alloated in eah appliation, we predit the memUnit

bytes of storage that will be alloated per pixel of the data mesh. The aggregate memory requirement,

aggMemReq, is then dependent on the problem size, memUnit, and on d, the number of dimensions

in the data mesh. In megabytes, the aggregate memory requirement an be written:

aggMemReq =

memUnit �N

d

2

2

0

: (IV.3)

To predit an appliation memory requirement for proessor P

i

, we inorporate the size of the loal

data partition, n

i

:

memReq

i

=

memUnit � n

i

�N

d�1

2

2

0

: (IV.4)

Reall that data for loal proessor memory availability, mem

i

, an be supplied by total physial

memory values from the MDS or free memory values from the NWS. Theoretially, a simple omparison

of memReq

i

to mem

i

should be suÆient to determine if the appliation's memory requirements are

satis�ed by a mahine's loal memory. In pratie, a lose math of the two fators provides an overly

\tight" �t and the appliation's memory demand will frequently exeed loal memory apaity. There

are several reasons for this e�et:

� While most memory alloation by these appliations is for the data arrays, every appliation

requires some additional stati memory alloation. These memory requirements are not onsidered

expliitly in our memory usage model.

38

� The operating system and other bakground proesses require a signi�ant portion of the avail-

able physial memory. When mem

i

is based on total physial memory, this ontention is not

onsidered.

� All of our target mahines are time-shared. If we run a job that requires all of the loal memory,

then when another user runs even a small job our job will be swapped out to disk.

To avoid this problem, we propose an alternative: a given work alloation should only be onsidered

feasible if eah proessor provides some additional memory over the amount spei�ed by the memory

usage model. We inorporate a tunable parameter in the memory usage model alled the memFator ;

this fator spei�es the perentage of additional memory that should be available on eah proessor

and in aggregate. The user of the model must selet a value that provides a reasonable tradeo� given

the target resoure set; lower values will improve the hane of �nding a reasonable resoure set while

higher values will redue the hane of the appliation's resoure demands exeeding the apaity of the

targeted resoures. Based on early experimental results and memory usage benhmarks, we identi�ed

20% as a value that provides a reasonable tradeo� for the GrADS Computational Grid environment;

for all experimental studies presented in Chapter V the memory usage model is on�gured with this

value.

To fully instantiate this memory model, we need to determine appropriate memUnit and d pa-

rameters for eah test appliation. In the Game of Life appliation, a two-dimensional integer array

of size n

i

x N is alloated for both the urrGen matrix and the nextGen matrix. For all disussions

in this thesis we assume that four bytes of storage are required for eah integer and eight bytes of

storage are required for eah double; while this assumption is aurate for all mahines urrently in

the GrADS testbed, to aurately handle a broader variety of arhitetures the storage requirements

should be treated as inputs to the memory model. Overall, the Game of Life parameters are d = 2

and memUnit = 2 ints=pixel � 4 bytes=int = 8 bytes=pixel. For the Jaobi method, the primary

data alloation for eah proessor is the 2-dimensional array of doubles of size n

i

x N for the loal

omponent of a. Eah proessor also alloates a size N vetor for urrX and nextX and a size n

i

vetor for loalX and loalB. Sine the size of these vetors will be muh smaller than the a ma-

trix, we fous only on the matrix memory alloation. Therefore, for the Jaobi method, d = 2 and

memUnit = 1 double=pixel � 8 bytes=int = 8 bytes=pixel.

39

IV.B.2 Exeution time model

Iterative, mesh-based appliations share a number of harateristis that enable relatively straight-

forward performane modeling. Reall that we assume a regular, synhronous iteration model. This

model allows us to make a number of additional assumptions:

1. The iterative phase dominates exeution time.

2. The omputational ost per iteration is onstant for eah proessor.

3. The progress of the slowest mahine de�nes the progress of all partiipating mahines.

Based on these assumptions, the exeution time of the appliation will be proportional to the appliation

iteration time. Furthermore, due to the synhronization of proessors in eah iteration, the appliation

iteration time will be equal to the time of the slowest partiipating proessor. If we represent the

predited iteration time on proessor i as itT ime

i

and the overall predited appliation iteration time

as itT ime

app

this metri an be formalized as:

itT ime

app

= maxfitT ime

0

; itT ime

1

; :::; itT ime

p�1

g: (IV.5)

Sine iteration time is independent of the number of iterations performed it is slightly simpler to model

and disuss than exeution time; for this reason, we ompare shedules based on the following shedule

evaluation metri: the most desirable shedule is the shedule with the lowest predited iteration time.

Note that for a shedule to be onsidered feasible, it must still satisfy the memory usage model shedule

onstraint.

For iterative, mesh-based appliations, iteration time is typially dominated by one or more phases.

For example, the Game of Life is dominated by a omputation phase (updating the value of eah ell)

and a ommuniation phase (sharing of ghost ells with neighbors). For eah of our test appliations,

these phases are serialized for eah proessor (i.e. we have not implemented overlap of ommuniation

and omputation). We an therefore model the iteration time on proessor i (itT ime

i

), as a ombination

of that proessor's omputation time (ompT ime

i

) and ommuniation time (ommTime

i

):

itT ime

i

= ompT ime

i

+ ommTime

i

: (IV.6)

40

Sine we assume a regular iterative appliation model, we an expet that iteration time is relatively

onstant during appliation exeution. Furthermore, sine we assume that exeution time is dominated

by the iterative phase, the full exeution time is proportional to the iteration time.

Note that our implementation of Jaobi inludes a termination detetion phase, but this phase

involves only omputation and thus an be inluded diretly in the ompT ime

i

model. In the following

paragraphs we desribe a model for the omputation time and ommuniation time for eah proessor.

Unless otherwise noted, the units of time are seonds.

Computation

The omputation phase for our test appliations primarily onsists of the pixel update proess in eah

iteration. For the Jaobi implementation, the termination detetion phase is purely omputational and

so we onsider it part of the omputation phase as well.

As we did in the memory model, we introdue a base unit of omputation: ompUnit. The

ompUnit is the number of proessor yles performed by the appliation per pixel of the mesh per

iteration. Reall that the omputational apaity of a proessor, omp

i

, an be represented by the CPU

speed (MHZ) or by the available CPU speed (AVAILMHZ), eah of whih has units of 10

6

yles per

seond. The omputation time per iteration on proessor i an then be modeled as

ompT ime

i

=

ompUnit � n

i

�N

d�1

10

6

� omp

i

: (IV.7)

To fully instantiate this model we need to determine an appropriate ompUnit value for eah

test appliation. Unfortunately, obtaining an aurate ount of the number of yles required for

a ode segment is non-trivial. One simple method is to examine the soure ode and manually ount

operations; this method typially over-predits operation ounts beause it does not aount for ompiler

optimizations or the e�et of ahing. Another option is to base the operations ount estimate on

assembly ode; this method aounts for ompiler optimizations but is also inaurate beause (1) it

assumes the proessor is able to sustain a �xed rate in yles per operation throughout exeution and

(2) it fails to identify variations in operation ounts by arhiteture. We instead utilize an empirial

approah to determine a ompUnit value for eah appliation. We seleted a range of problem sizes

and ran the omputational portion of the appliation on eah proessor on�guration inluded in our

testbed. These tests were run in unloaded onditions and 100 iterations were performed per run. We

alulate an average iteration time, itT imeAv, and use the proessor speed (MHZ) to onvert to yles

per pixel per iteration: ompUnit =MHZ � itT imeAv � 10

6

. Finally, for eah appliation we average

41

the ompUnit values determined for eah problem size and generate a �nal appliation ompUnit value.

For the proessor on�gurations targeted in this thesis, the ompUnit values determined in this manner

were relatively similar; for example, the Game of Life benhmarks resulted in average ompUnit values

ranging from 68.7 to 74.8. We therefore seleted a single value and used it in all experiments; for the

Game of Life we seleted ompUnit = 72, and for Jaobi we seleted ompUnit = 36. For a testbed

with greater proessor on�guration heterogeneity, the sheduler should utilize a di�erent value for eah

proessor on�guration.

Communiation

In this setion we desribe a model of the ommuniation behavior for the Game of Life and Jaobi.

Our model is based primarily on the ost of message transfers; we do not model additional overheads

suh as synhronization.

The Game of Life ommuniation phase onsists of a swap of ghost ells between proessors. For

all proessors exept the lowest indexed proessor in the data deomposition (i.e. P

0

), a message is

sent to and reeived from the i � 1 proessor. Similarly, for all proessors exept the highest indexed

proessor in the data deomposition (i.e. P

p�1

), a message is sent to and reeived from the i+1 proessor

(see Figure IV.1). These messages eah inlude N pixels of information, eah pixel is represented by an

integer, and we assume eah integer requires four bytes of storage. The size of eah message, msgSize,

is therefore 4 �N . Sine our Game of Life implementation uses non-bloking sends and reeives, all of

the messages in eah iteration ould theoretially be overlapped. In pratie, however, proessors an

not simultaneously partiipate in four message transfers at one without a redution in performane for

eah message and, more importantly, proessors do not reah the ommuniation phase of eah iteration

at the same moment. As an initial approximation, we assume that messages with a partiular neighbor

an be overlapped, but that ommuniation with di�erent neighbors ours in distint phases whih

are serialized. Sine we assume that ommuniations with a partiular neighbor an be overlapped, we

assume that the ost of eah suh ommuniation is determined by the maximum predited delay of

the two involved message transfers. Note that while these messages are between the same two hosts,

the delay of eah message must be determined independently beause network performane for sending

and reeiving to and from the same host an be asymmetri. If we represent the time to send a message

from proessor a to proessor b as msgT ime

a;b

, then the ommuniation ost for eah proessor an be

alulated as shown in Figure IV.4.

In the Jaobi ommuniation phase, eah proessor broadasts their n

i

sized portion of the vetor

x to every other proessor. For MPICH, the MPI implementation used in this thesis, a broadast is

42

Algorithm : CalulateCommGOL(proID; p)

de�ne FIRST ID 0

de�ne LAST ID p� 1

ommTime

i

= 0

if proID 6= FIRST ID

ommTime

i

= max(msgT ime

i;i�1

;msgT ime

i�1;i

)

if proID 6= LAST ID

ommTime

i

+ = max(msgT ime

i;i+1

;msgT ime

i+1;i

)

return (ommTime

i

)

Figure IV.4: Game of Life ommuniation ost alulation.

omposed of individual MPI Send and MPI Rev alls. The broadast begins at the root node (the

root is whihever proessor is the initiator of the broadast), and is sent to all other proessors via a

binomial tree [5℄. The binomial tree broadast struture is designed to minimize the number of serialized

messages that must proeed before the broadast is omplete; theoretially at most log

2

(p) messages

are serialized in eah broadast. Figure IV.5 illustrates a binomial tree broadast struture for seven

proessors with P

0

as the root node.

Sine there are p broadasts per iteration we assume that p� log

2

(p) messages are sent per iteration.

Due to the (possibly) irregular data partitions, eah proessor's broadast ould be of a di�erent size.

Additionally, sine the root node will be di�erent for eah broadast in an iteration, the onnetions

involved in the broadast will vary from broadast to broadast. One modeling approah is presented

in [5℄; in this work the authors propose diretly alulating the ost of eah path in the binomial

broadast tree to determine the longest path, whih is then taken to be the predited broadast time.

This methodology has not been tested on heterogeneous, wide-area resoures sets and it does not address

many fators that an impat broadast time (e.g. wait times, message overlaps, network ontention).

As a �rst approah, we deided to use a more eÆient and simpler ommuniation model. We alulate

an average message ost, msgT ime

avg

, and then approximate the ommuniation ost as:

ommTime

i

= p � log

2

(p) �msgT ime

avg

: (IV.8)

43

Proc 0
[000]

Proc 6
[111]

Proc 5
[110]

Proc 4
[100]

Proc 3
[011]

Proc 2
[010]

Proc 1
[001]

Time 2

Time 2

Time 2

Time 1

Time 0

Time 1

Figure IV.5: Example of a binomial tree as used in the MPICH broadast implementation. Cirles

represent proessors and arrows represent messages. Proessor IDs are also listed in binary to illustrate

the way in whih the tree is built.

44

To develop a value for msgT ime

avg

, we �rst assume messages will all ontain an average number of

mesh pixels, N=p. Eah pixel ontains a double and we assume that eah double requires eight bytes of

storage; therefore, we assume all messages will be of size 8N=p. We also assume that within the seleted

resoure set, the usage of any proessor to proessor link is equally likely. Then, we individually alulate

the ost of sending a size 8N=p message from eah proessor to every other proessor and, �nally, we

take the average. We believe that this methodology provides a good tradeo� between model omplexity

and model auray.

It still remains to develop a model for the ost of sending a message between two proessors.

Suppose the startup time for sending a message from a to b is �

a;b

and the available network bandwidth

is given by �

a;b

. A ommon and simple model for the time to send a message from a to b is

msgT ime

a;b

= �

a;b

+msgSize=�

a;b

: (IV.9)

In our target environment, the GrADS Computational Grid, near real-time measurements are provided

by the Network Weather Servie (NWS) for network lateny (�) and bandwidth (�). We disuss

the on�guration of this measurement infrastruture in Setion V.A; in essene, network performane

measurements and preditions are based on the ost of transferring a �xed amount of data in a TCP/IP

ommuniation stream [55℄. Note that these measurements inlude the overhead neessary to initiate

a TCP/IP ommuniation stream, whih an be signi�ant [55℄. In initial benhmarking experiments

we tested the predition auray of the above message time model parameterized by NWS network

performane preditions. In these experiments we observed that the message-passing osts experiened

by our test appliations were signi�antly lower than those predited by the model for msgT ime

a;b

. We

also experimented with other message time models, and found that a bandwidth only model provided

better message time predition auray. We therefore seleted the bandwidth only model and the

revised message time model is:

msgT ime

0

a;b

= msgSize=�

a;b

: (IV.10)

IV.C Mapper

The funtion of the mapper is to determine an appropriate mapping of work onto proessors for

a given andidate resoure group, or CRG. For our test appliations, the resulting map onsists of an

45

alloation of mesh rows n

0

; n

1

; :::; n

p�1

to proessors P

0

; P

1

; :::; P

p�1

. In order to �nd suh a mapping,

two distint subproblems must be solved: what topologial arrangement of proessors should be

used (e.g. whih physial proessor should be assigned to logial proessor position P

0

) and what

alloation of work to those proessors is appropriate (e.g. exatly how many rows of the data mesh

should be assigned to proess P

0

).

Our primary goal in �nding a topologial arrangement of proessors is to order the proessors

suh that ommuniation osts are minimized. There are a variety of ways to solve this problem. It is

possible to perform an exhaustive searh and try eah proessor arrangement (using an exeution time

model, when available, to selet the best one), but sine the mapper is alled frequently we do not wish

to inur the large ost of suh a searh proess. We instead opted for a simple and omputationally

inexpensive methodology: we group resoures by site and then arrange proessors in the topology suh

that mahines from the same site are plaed next to eah other. For an appliation suh as Game

of Life that involves primarily neighbor-based ommuniation, this topologial arrangement tends to

redue the number of messages transferred over the wide-area when ompared to a random proessor

arrangement. A simple improvement to this approah whih we have not implemented would arrange

the sites based on network delays in order to avoid the use of poorly performing links.

Our primary goal in �nding an alloation of work onto proessors is to ensure appliation resoure-

requirements are met. A seondary goal is to redue appliation exeution time by evenly balaning

the workload on eah proessor. Determination of an appliation-appropriate work alloation is highly

dependent on appliation performane harateristis. Sine our sheduler design supports two levels of

appliation performane models, we have designed two work-alloation strategies that take advantage

of available information in eah performane modeling ontext. The equal alloation mapper utilizes the

appliation information available in the memory usage model ontext; the time-balane mapper utilizes

the appliation information available in the exeution time + memory usage model ontext.

IV.C.1 Equal alloation mapper

When only memory usage appliation information is available, a sophistiated mapping strategy

annot be employed. Our equal alloation mapping strategy is to simply alloate work to proessors

uniformly. Eah proessor is assigned n

i

= N=p rows of the mesh and the total number of pixels

assigned to eah proessor is n

i

� N . To ensure that appliation resoure requirements are met, the

mapper veri�es that loal memory availability is suÆient to support appliation memory requirements;

46

in the ase that loal memory apaities are not suÆient for appliation needs, the mapper simply

returns with failure to �nd a map. In the sheduling ontext desribed in Chapter III, the urrent CRG

is removed from the list of andidate CRGs and the searh proess ontinues.

Note that not every problem size will evenly deompose on every resoure set size. In the ase that

the target appliation supports unequal partitions, we simply ensure that partitions are as similar as

possible, but do not require exatly equal partitions; this is the approah taken for our test appliations.

In the ase that the target appliation does not support unequal work partitions, andidate CRGs are

restrited to those resoure sets for whih work an be divided into identially-sized partitions.

IV.C.2 Time balane Mapper

When an appliation exeution time model is available, it is possible to utilize more performane-

eÆient mapping strategies. Our approah is to formalize important resoure requirements and perfor-

mane onsiderations as a series of onstraints. Work-alloation an then be framed as a onstrained

optimization problem. A solution onsists of an alloation of work onto resoures; the goal of the op-

timization problem is to �nd a work-alloation that minimizes appliation iteration time. Reall that

for this appliation lass, iteration time is determined by the slowest proessor. A work alloation that

perfetly balanes load among partiipating proessors assigns less work to slower proessors and more

work to faster proessors in a way that minimizes overall iteration time.

The variables in this onstrained optimization problem onstitute the mapping of rows to proessors.

Sine eah of the variables is onstrained to an integer value, the system of onstraints an be framed as

an integer programming problem [54℄. Unfortunately, the integer programming problem is NP-omplete,

rendering the solution omputationally expensive to ompute. During the sheduling proess, a mapping

is alulated for eah andidate resoure group; sine the sheduler onsiders a relatively large number

of CRGs (see Setion III.B), a omputationally expensive mapper will result in high overheads for

sheduling. A muh more eÆient alternative is provided by linear programming solvers [54℄; in this

ase the solution is real-valued and an only provide an approximate solution for an integer problem.

However, even for small iterative, mesh-based appliations of interest for the Grid, the maximum

error that an be aused by the usage of a real-valued solution is quite small. For example, onsider

a Jaobi problem size of 1000 x 1000, whih very easily runs on a single proessor. Suppose this

problem is deomposed on 2 proessors. In this ase, the maximum error that an be introdued by

using a real-valued solution is 1=1000, or 0.1%. Sine the introdued error is small and the solver

47

eÆieny is muh higher, we frame the mapping problem as a linear programming problem. Many

linear programming solvers are freely available [33℄; we seleted the lp solve pakage [35℄, a freely

available linear programming solver whih is based on the simplex method.

The problem formulation begins with the spei�ation of an objetive funtion. For this problem,

an ideal objetive funtion is the iteration time of the slowest proessor. Unfortunately, there is no way

to speify this objetive in a linear formulation. Instead, our formulation minimizes the omputation

time on the �rst proessor in the topology, P

0

, and utilizes a series of onstraints to ensure load-balane

among proessors (we will disuss these onstraints momentarily). We use the exeution time model to

formally speify the objetive funtion:

minimize(

N

d�1

� ompUnit

omp

0

� n

0

): (IV.11)

The seond omponent of problem formulation is a spei�ation of bounds on the variables. In this

ase, eah proessor must be assigned a non-negative amount of work not to exeed the total problem

size, N . Formally:

8i 2 f0 : p� 1g; 0 � n

i

� N: (IV.12)

The rest of the problem formulation onsists of a series of onstraints. Unlike some pakages,

the lp solve pakage supports spei�ation of onstraints as equalities or inequalities. We therefore

formalize eah onstraint in whihever format is the most natural. First, the total amount of work

alloated must be equal to the total number of rows, N :

p�1

X

i=0

n

i

= N: (IV.13)

Next, we use the spei�ation of memory requirements from the memory usage model to ensure that

the data alloated to eah proessor �ts within that proessor's loal memory:

8i 2 f0 : p� 1g; N

d�1

�memUnit � n

i

� mem

i

: (IV.14)

48

Finally, we need to formally speify that proessor iteration times should be balaned. To do this,

one an selet a referene proessor and speify that the iteration time on every other proessor must be

equal to the iteration time on the referene proessor. Sine the objetive funtion involves minimizing

omputation time on proessor 0 we selet P

0

as the referene proessor; the onstraints an then be

written: 8i 2 f1 : p � 1g; jitT ime

i

� itT ime

0

j = 0. When loal memory apaities are suÆient,

this onstraint spei�ation will result in a perfetly balaned mapping. However, when loal memory

apaities are more limited, the solver may fail to �nd a solution. In some of these ases, loal memory

availabilities are suÆient to support appliation requirements, but only if the data mapping is not

perfetly balaned. Clearly, an unbalaned solution is preferable to no solution at all; we therefore

introdue a relaxation fator, R in the time balaning onstraints. The revised onstraints speify that

the iteration time on every proessor must be within some relaxation fator of the iteration time on P

0

:

8i 2 f1 : p�1g; jitT ime

i

� itT ime

0

j � R� itT ime

0

. To speify this onstraint in a linear form, we again

refer to the full performane model. Reall that ommuniation requirements are independent of the

data mapping for our test appliations; ommuniation osts an therefore be spei�ed as a onstant

and moved to the right hand side of the linear onstraint spei�ation. Sine absolute values an not

be spei�ed in a linear formulation, we use two inequalities. The formal onstraint spei�ation is:

8i 2 f1 : p� 1g; � (1 +R) � ompT ime

0

+ ompT ime

i

� (1 +R) � ommTime

0

� ommTime

i

(IV.15)

8i 2 f1 : p� 1g;(1�R) � ompT ime

0

� ompT ime

i

� (�1 +R) � ommTime

0

+ ommTime

i

(IV.16)

Sine the optimal mapping solution is found for an R fator of zero, we �rst formulate the problem

with R = 0 and use lp solve to try to �nd a solution. If a solution is found, the mapping is returned.

When a perfetly balaned solution is not found, we want to �nd the mapping that satis�es loal

memory requirements while providing the best possible load-balane. To �nd this mapping we have to

�nd the minimum R fator for whih a solution is possible. We utilize a binary searh method that

begins with a minimum value of R = 0 and a on�gurable maximum value (for this thesis we use a

maximum of 10). If a solution is impossible for the maximum R value, the mapper returns with failure

to �nd a map. If a solution is found, a binary searh is used to searh for a R value that is lose to

optimal. The searh ends when the di�erene between two suessive R fators in the searh is smaller

than some tolerane (for this thesis we use a tolerane of 0.01).

49

IV.D Chapter summary

This hapter has foused on the general harateristis of iterative, mesh-based appliations and

on the spei�s of two appliations from this lass, the Jaobi method and the Game of Life. We

desribed in detail our implementation of eah of these appliations, and disussed the performane

impats of our implementation hoies. We also presented an appliation-spei� performane model

design for memory usage predition and exeution time predition. Finally, we desribed the funtion

of the mapper and presented our implementation of an equal alloation mapper and a time balane

mapper.

In the next hapter we present experimental results demonstrating the eÆay of our performane

model and mapper designs as well as the sheduling methodology itself.

Chapter V

Experiments

In this hapter, we desribe experimental results we obtained when applying our methodology

in realisti sheduling runs of Jaobi and the Game of Life. Our validation approah is two-fold.

First, we present a suite of experiments that test the appliation-spei� exeution time model and

mapping strategies we developed in Chapter IV. Seond, we present a suite of experiments designed to

diretly test our sheduling methodology itself. This two-phase approah is useful beause we expet

the performane of the sheduling methodology to be highly dependent on the type of appliation

performane model and mapping strategy provided to it. It is therefore useful to understand the

performane impat of eah appliation-spei� omponent before examining sheduler performane

results.

This hapter is organized as follows. In Setion V.A we desribe the arhiteture and software

on�gurations of the resoures used in our validation experiments. We also desribe the on�guration

of the Grid information servies used to obtain information about these resoures. In Setion V.B, we

present validation results for the appliation-spei� performane models developed in Setion IV.B.

Likewise, in Setion V.C, we present validation results for the mapping strategies developed in Se-

tion IV.C. Setion V.D desribes experimental results we obtained when applying our methodology in

realisti sheduling runs of our two test appliations. Setion V.E explores the osts inurred in the

proess of sheduling. Finally, in Setion V.F we summarize our �ndings.

50

51

Cirus Tor Opus Major

luster luster luster luster

(UCSD) (UTK) (UIUC) (UIUC)

Size 6 8 4 6

Domain usd.edu s.utk.edu s.uiu.edu s.uiu.edu

Names dralion tor1, tor2 opus13-m amajor

mystere tor3, tor4 opus14-m bmajor

soleil tor5, tor6 opus15-m major

quidam tor7, tor8 opus16-m fmajor

saltimbano gmajor

nouba hmajor

CPU 450 MHz PIII 550 MHz PIII 450 MHz PII 266 PII

dralion

nouba

400 MHz PII

others

CPU Count 1 2 1 1

Memory 256 MB 512 MB 256 MB 128 MB

OS Debian Red Hat Red Hat Red Hat

Linux Linux Linux Linux

Kernel 2.2.19 2.2.15 SMP 2.2.16 2.2.19

Network 100 Mbps 100 Mbps 100 Mbps 100 Mbps

shared swithed swithed shared

ethernet ethernet ethernet ethernet

Table V.1: Summary of testbed resoure harateristis.

V.A Experimental methodology

V.A.1 Testbeds

At the date of this writing, there are approximately 40 mahines in the GrADS testbed; resoures

inlude mahines loated at Indiana University (IU), University of California at Santa Barbara (UCSB),

University of Tennessee at Knoxville (UTK), Rie University (Rie), University of Illinois at Urbana-

Champaign (UIUC), and University of California at San Diego (UCSD). For the thesis, we fous on a

subset of the GrADS testbed inluding resoures at UTK, UIUC, and UCSD. At UIUC the resoures

that we target are in two distint lusters; we target a single luster at eah of the other sites. A snapshot

of the network bandwidth within and between these sites is shown in Figure III.1. Charateristis of

the targeted testbed resoures are summarized in Table V.1.

We have seleted two target resoure groups, or testbeds, from this group of mahines: a one-

site testbed onsisting of the UCSD subset of the target resoure group and a three-site testbed

52

onsisting of all target resoures. The one-site testbed serves as an example of a small testbed with

relatively homogeneous workstations and a low-delay network. The three-site testbed serves as an

example of a larger testbed with greater resoure heterogeneity and larger network delays.

V.A.2 Software requirements

Our experimental methodology uses a variety of software pakages; we disuss in turn those needed

to launh and run the appliation itself, those needed only by the resoure on whih the sheduler will

run, and those needed to support Grid information olletion and dissemination.

In order to launh and run the appliation, every ompute resoure must be running Globus [22℄

and MPICH-G [39℄ and all of the required sub-pakages. All of the resoures targeted in this thesis are

urrently running Globus V1.1.3 (with threads enabled) and MPICH-G V1.1.2.

The sheduler itself requires a larger number of pakages. The sheduler is implemented in C++;

we used GNU autoonf and GNU make to on�gure and build the sheduler. To support the require-

ments of the time balane mapper, the lp solve pakage [35℄ must be installed; we used version 3.2.

The sheduler ode also uses many building bloks from the AppleSeeds library [4℄ and the GrADSoft

prototype [24℄. NWS V2.0 [40℄ is used to query an on-line NWS nameserver for Grid information (we

disuss the NWS on�guration in the next setion). LDAP is used by the sheduler to query an on-line

MDS server for Grid information.

V.A.3 Grid information servies

The NWS resoure measurement infrastruture [40℄ inludes measurement sensors on every resoure

of interest and a entralized nameserver that provides a single point of ontat for onsumers of NWS

information. Measured resoure attributes an be retrieved diretly, or a next step predition an

be generated from measurement series [58℄; in all experiments presented in this hapter NWS values

are based on a next step predition. The GrADS NWS nameserver is urrently running on host

fender.s.utk.edu. For most testbed mahines, measurements of loal resoure harateristis suh

as available CPU and free memory are olleted every 10 seonds. The GrADS NWS infrastruture

is also on�gured to ollet network performane information (e.g. bandwidth and lateny) between

hosts. To avoid the large number of network measurements required for olletion of all-to-all values,

network measurements are gathered in a hierarhial fashion. Within eah site (e.g. the UCSD Cirus

mahines), measurements are olleted in an all-to-all manner between all hosts. For wide-area network

53

information, a partiular workstation is seleted at eah site to at as a site representative; measure-

ments are then olleted in an all-to-all manner between site representatives. On the GrADS testbed,

network performane measurements are based on the transfer of a TCP message of 1 MB in size, and

measurements are repeated every 5 minutes. This measurement frequeny is relatively low; use of a low

measurement frequeny is one way to mitigate the intrusiveness of the network measurement tehnique

and to redue interferene between network measurements.

For the purposes of this thesis, we also maintained a loally-ontrolled NWS nameserver and

measurement infrastruture. The loal NWS nameserver is running on host dralion.usd.edu

and is used only for NWS series needed for this thesis. We deided to use a loally-ontrolled NWS

infrastruture beause we found that we were able to maintain a more onsistent level of information

availability. To ensure that our results diretly map to the general testbed infrastruture, wherever

possible we have on�gured the measurement methodology in a similar way to the GrADS infrastruture.

In Setion V.E we disuss the overhead assoiated with retrieval of information from both the GrADS

NWS nameserver and the loally-ontrolled nameserver.

To support retrieval of information from the MDS, there are dupliate GrADS MDS servers

running at grads.isi.edu, port 3890 and astanet.s.uiu.edu, port 4444. As we disuss later in

this hapter (Setion V.E), the time required to retrieve information from either of these MDS servers

an be high; additionally, the servers an be quite unstable. An upoming release of the MDS will

likely solve many of these problems. As a short-term workaround, we have implemented a loal ahing

mehanism for MDS data; if MDS ahing is enabled in the sheduler (this is a on�gurable option), then

newly retrieved data values are stored in the loal ahe �le. With ahing enabled, later information

requests will hek the ahe before aessing the MDS server. Loal ahing would be unaeptable

if the information we retrieve were hanging frequently; fortunately, the resoure attributes we retrieve

from the MDS, suh as proessor speed and physial memory, hange very slowly.

V.A.4 Timing methodology

In the rest of this hapter, we present a variety of experimental results, most of whih involve

appliation performane results. For all suh appliation performane results, we use a onsistent timing

methodology. The MPI funtion MPI Wtime is used to reord urrent time at various ode loations.

The resolution of this timing funtion (as reported by the MPI funtion MPI Wtik) on the systems we

targeted was 1 �se. We use MPI Wtime alls at the beginning and ending of eah iteration to measure

54

the time of eah iteration. We reord the omputation and ommuniation time per iteration in the

same way. In order to exlude initial synhronization osts from average iteration times, the appliation

is on�gured to run for four iterations before olleted timings are inorporated into the average; after

these warmup iterations, the appliation exeutes 100 iterations. At the end of this iterative phase,

eah proessor alulates an average iteration time, an average omputation time per iteration, and an

average ommuniation time per iteration. The overall average appliation iteration time is given by the

maximum average iteration time reported by any proessor. The proedure is the same for determining

average appliation omputation and ommuniation times. Sine proessors are synhronized at eah

iteration, reorded iteration times are typially very similar. However, omputation and ommuniation

times reorded on eah proessor an vary widely. The measurement of ommuniation time is diÆult

beause there is no simple way to di�erentiate between time atually spent ommuniating and time

spent waiting for a ommuniation peer to reah the ommuniation phase. For this reason, we report

timings only for the iteration time and the omputation time. The di�erene between the iteration time

and omputation time an be interpreted as the ommuniation time plus time for overheads suh as

waiting for ommuniation peers. Iteration time results do not inlude the osts of sheduling. Instead,

we address sheduling lateny in Setion V.E. With the exeption of Setion V.E, all timings reported

in this hapter are in seonds per iteration.

V.B Performane model validation

Our sheduling methodology depends on a performane model to ompare andidate shedules; the

suess of the sheduler in seleting performane-eÆient shedules is therefore dependent on the ability

of the performane model to orretly predit appliation resoure usage. Reall that the sheduler

design supports two levels of performane model: a memory usage model and an exeution-time +

memory usage model. The goal of this setion is to evaluate the predition apability of the appliation-

spei� exeution time model that we presented in Setion IV.B. While the predition apability of the

memory usage model is also important for sheduler performane, we feel that the appliation-spei�

memory usage model desribed in Setion IV.B is straightforward. We have performed simple sanity

heks on the validity of this model and are on�dent that it predits the memory usage of our test

appliations well.

1

1

Spei�ally, we ompared predited appliation memory requirements with atual memory usage as reported

by the UNIX ommand ps.

55

V.B.1 Experimental design

Approah

To evaluate the preditive apability of our exeution time model we ompare predited performane

to atual performane for a variety of onditions. For eah suh omparison we (1) selet an appliation,

testbed, problem size, an exat target resoure set (a mahine list), and a data mapping onto the

seleted resoures; (2) use the exeution time model to predit appliation performane; and (3) run

the appliation and measure atual performane.

The exeution time model supports a variety of on�gurations (see Setion III.C.2 for details).

For testing purposes we have seleted a single model on�guration. The seleted on�guration uses

available proessor speed (ompType = AVAIL MHZ) for the omputational apaity of eah mahine

and predited values for all NWS information inputs (nwsType = PRED).

Testbeds

We inlude experiments performed on the one-site and three-site testbeds desribed in Setion V.A,

with one modi�ation. For this set of experiments we wanted roughly equal numbers of resoures from

eah site so we did not inlude the Opus luster at UIUC in the three-site testbed.

Experimental proedure

For eah testbed, we de�ne an experiment series onsisting of a reasonable seletion of problem

sizes and resoure set sizes for that testbed. For the one-site testbed, an experiment series onsists of

problem sizes of N = f600, 1200, 2400, 4800, 7200, 9600g and resoure set sizes of p = f1, 2, 3, 4, 5, 6g.

For the three-site testbed, an experiment series onsists of problem sizes of N = f630, 1260, 2448, 4500,

7200, 9000g and resoure set sizes of p = f3, 6, 9, 12, 15, 18g. We seleted a di�erent set of problem

sizes for eah testbed to inrease the frequeny with whih the problem size ould be deomposed into

identially sized partitions on the target resoure set sizes.

To begin eah experiment series, we ran the preditor and appliation for the smallest problem size

on the smallest resoure set size. We then ran inreasingly larger resoure set sizes for that problem size,

and eventually ontinued on to the next larger problem size. For eah appliation-testbed ombination

we ompleted three repetitions of the experiment series.

Runs of the appliation in an experiment series were performed within roughly the same period of

time (e.g. within 4-12 hours) while repetitions of the experiment series were sometimes separated by a

relatively long interval (e.g. 2 weeks). We therefore expet the Grid environment to be more similar

within an experiment series than between experiment series. Note that if we exeuted appliation runs

56

in an immediately bak-to-bak fashion, NWS resoure availability preditions would be biased by the

resoure utilization of the previous run; this bias is due to the fat that, as with all measurement

systems, there is a slight delay between hanges in atual behavior and the reording of those hanges.

To avoid this undesirable interation we inluded a three minute sleep phase between appliation runs;

we seleted three minutes beause in pratie it typially proved suÆient.

The on�guration of an appliation run requires more than seletion of a testbed, appliation, prob-

lem size, and resoure set size; we also needed to selet a spei� resoure set (a mahine list) and a

mapping of work onto those resoures. Sine the goal of these experiments was to evaluate only the

exeution time model, we favored a straightforward evaluation environment; we therefore prede�ned the

target resoure sets and data mappings for eah on�guration. In Setion V.D we desribe sheduling

experiments in whih the resoure set and mapping were determined at run-time. For the one-site

testbed, the ompute and network resoures were fairly homogeneous; we therefore simply seleted a

random resoure ordering and used it for all runs. For the three-site testbed, the resoures and networks

were more heterogeneous; in this ase, for eah target resoure set size we randomly seleted an equal

number of resoures from eah site and arranged them by site in the ommuniation topology. For ex-

ample, for the six-proessor, three-site ase, the proessor arrangement we used was ftor3.s.utk.edu,

tor7.s.utk.edu, fmajor.s.uiu.edu, hmajor.s.uiu.edu, dralion.usd.edu, soleil.usd.edug. For the se-

letion of a mapping of work onto the seleted resoures, we again favored a straightforward validation

environment by using the equal alloation mapping strategy desribed in the previous hapter (Se-

tion IV.C). In Setion V.C we desribe experiments that ompare the performane ahieved with the

equal alloation mapper and the time balane mapper.

V.B.2 Results

Sine the exeution time model is di�erent for both appliations, we present results for the Game

of Life and Jaobi separately. Additionally, sine the resoure harateristis of the two target testbeds

are quite di�erent we also present results for eah testbed separately. In the following setions we

present results for eah of the four resulting appliation-testbed ombinations. Refer to Setion V.A.4

for details on the timing methodology used for these experiments.

Game of Life, one-site testbed

Reall that for the one-site testbed, an experiment series onsists of problem sizes of N = f600,

1200, 2400, 4800, 7200, 9600g and resoure set sizes of p = f1, 2, 3, 4, 5, 6g. Figure V.1 presents

57

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08
It

e
ra

ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =600

MeasComp
MeasOther
PredComp
PredComm

1 2 3 4 5 6
0

0.5

1

1.5

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =2400

1 2 3 4 5 6
0

1

2

3

4

5

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =7200

Figure V.1: Results of exeution time model validation experiments for the Game of Life appliation

on the one-site testbed, problem sizes of 600, 2400, and 7200.

58

results for three of the six problem sizes for the Game of Life experiment series on the one-site testbed;

for the three sizes shown, N = f600,2400,7200g, all repetitions are shown for all target resoure set

sizes. For eah resoure set size, the three independent repetition results are presented as three pairs of

vertial bars; eah pair of bars represents one exeution time predition and appliation run pair. The

full left-hand bar represents measured appliation iteration time; the darker, lower portion of the bar

(MeasComp) is the measured omputation time per iteration; and the lighter, upper portion of the bar

(MeasOther) is the di�erene between the average iteration time and the average omputation time.

In this set of runs, iteration time is learly dominated by omputation time; omputation is dominant

here beause the Game of Life does not involve very ostly ommuniations, and the one-site testbed

provides relatively low-ost ommuniation sine all messages are transferred aross the loal area 100

Mbps Ethernet.

The right-hand bar of eah bar pair represents predited appliation iteration time; the darker, lower

portion of the bar represents the predited omputation time and the lighter, upper portion of the bar is

the di�erene between the predited iteration time and the predited omputation time. A omparison

of the overall bar heights for eah bar pair indiates the predition auray of the exeution time

model. Similarly, a omparison of the appliation omputation time with the predited omputation

time indiates the predition auray of our omputation time model. Finally, a omparison of the

MeasOther time with the PredComm time indiates how well the ommuniation time model (whih only

predits the ost of message transfer) ompares with the appliation time spent for message transfers,

synhronization, and other overheads.

Notie that in Figure V.1 there are no results for a problem size of 7200 and resoure set sizes

of 1, 2, and 3. We exluded appliation runs from a series if the physial memory availability of the

targeted proessors is not large enough to support appliation needs; for this testbed, a problem size

of 7200 requires at minimum four proessors. One result is striking in this set: the predited iteration

time for N = 7200, p = 4, rep = 1 is more than twie as large as the measured iteration time. For

this run, the predited CPU availability retrieved from the NWS was less than 47% for one of the

targeted proessors; our methodology therefore predited that the omputation time on this proessor

would be more than twie as long as if the proessor were unloaded. The atual results indiate that

our appliation reeived nearly 100% of the CPU during exeution; we hypothesize that either the load

onditions hanged during the short time from predition to atual run, or the original CPU availability

measurements were inaurate.

Overall, the results shown in Figure V.1 indiate that the predition auray of our exeution time

59

600 1200 2400 4800 7200 9000

Attempted Runs 18 18 18 18 18 18

Completed Runs 18 18 18 15 9 3

Median % Error 4.4 4.6 1.5 10.9 13.4 25.1

Mean % Error 6.7 6.7 5.8 15.4 25.2 25.0

StdDev % Error 8.7 5.9 7.1 19.3 35.6 6.1

Table V.2: Summary of exeution time model predition errors for the Game of Life on the one-site

testbed.

model is fairly high for this appliation-testbed ombination. This is not surprising sine (1) the target

resoure set is relatively homogeneous, and (2) the appliation is dominated by omputation time whih

is traditionally easier to model than ommuniation time. To obtain a more quantitative analysis, we

use the following method to alulate the relative perent predition error for eah run:

predError = 100 �

�

�

�

�

predT ime� atualT ime

atualT ime

�

�

�

�

: (V.1)

In Table V.2, summary results are provided for all six of the tested problem sizes. For eah

problem size, the experiment series inluded six resoure set sizes and three repetitions; aordingly,

the attempted row shows that 18 runs were attempted for eah problem size. The ompleted row

indiates how many of these runs were atually ompleted. The most ommon reason for an inomplete

run is that the run was simply skipped due to limited memory availability during the experimental

period; for this set of results, all of the inomplete runs an be attributed to this ause. More typially,

some number of runs will fail due to other auses as well; inomplete runs an usually be attributed to

an o�-line target mahine, a ommuniation time-out in Globus, or insuÆient memory availability on

one or more of the target resoures. Table V.2 also gives the median, mean, and standard deviation of

all predition error results for eah problem size.

In summary, the mean predition error of our exeution time model is low for the three smaller

problem sizes (error < 7%) and moderate for the larger problem sizes (error values were between 15%

and 25%).

Game of Life, three-site testbed

For the three-site testbed, eah experiment series onsists of problem sizes of N = f630, 1260, 2448,

4500, 7200, 9000g and target resoure set sizes of p = f3, 6, 9, 12, 15, 18g. In Figure V.2 we show

results for problem sizes of N = f630, 4500, 9000g.

60

3 6 9 12 15 18
0

0.1

0.2
It

e
ra

ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =630

3 6 9 12 15 18
0

1

2

3

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =4500

3 6 9 12 15 18
0

1

2

3

4

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =9000

MeasComp
MeasOther
PredComp
PredComm

Figure V.2: Results of exeution time model validation experiments for the Game of Life appliation

on the three-site testbed, problem sizes of 630, 4500, and 9000.

61

630 1260 2448 4500 7200 9000

Attempted Runs 18 18 18 18 18 18

Completed Runs 17 17 17 17 15 12

Median % Error 65.0 36.8 15.9 11.3 4.8 7.9

Mean % Error 60.9 34.6 24.3 15.1 7.6 9.0

StdDev % Error 17.8 19.9 32.1 13.5 8.5 8.1

Table V.3: Summary of exeution time model predition errors for the Game of Life on the three-site

testbed.

Upon omparison of these results with those from the one-site testbed (Figure V.1), two di�erenes

are immediately obvious: ommuniation osts are higher for the three-site testbed, and the model

predition auray is lower. The omputation time preditions are generally fairly aurate for both sets

of runs; the inreased predition errors are primarily attributable to ommuniation time mispredition.

Reall that the ommuniation model we use is a bandwidth-only model and notie that om-

muniation time mispredition is most severe for the smallest problem sizes (Figure V.1). For the

transfer of smaller message sizes in the wide-area, ommuniation ost is often dominated by message

lateny; it is therefore likely that mispredition for smaller problem sizes is attributable to our usage of

a bandwidth-only model. However, in initial tests we found that the bandwidth-only model performed

better in general than a model inluding both lateny and bandwidth (see Setion IV.B). Regardless,

for the purposes of omparing andidate shedules, the most important harateristi of a model is

that it orretly trak trends in appliation performane. While the ommuniation model is not par-

tiularly aurate, it does suessfully trak hanging network performane; for example, for all target

resoure set sizes run for a problem size of N = 4500 the network bandwidth during repetition one was

signi�antly higher than the bandwidth during repetition two. The ommuniation model orretly

predits inreased ommuniation osts for repetition two.

Table V.3 summarizes predition error statistis for all problem sizes. On average, the mean model

predition error is muh higher for the smaller sizes than for the larger sizes (e.g. 60% for N = 630

versus 9% for N = 9000, respetively). Overall, average predition errors are moderate for the Game

of Life on the three-site testbed.

Jaobi, one-site testbed

Figure V.3 shows the results of the Jaobi experiment series for problem sizes of N = f600, 2400,

7200g using the one-site testbed. Comparison of Figure V.3 with Figure V.1 reveals that even in the

more tightly-oupled one-site testbed, ommuniation osts are signi�ant for the Jaobi appliation,

62

1 2 3 4 5 6
0

0.01

0.02

0.03

0.04
It

e
ra

ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =600

MeasComp
MeasOther
PredComp
PredComm

1 2 3 4 5 6
0

0.2

0.4

0.6

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =2400

1 2 3 4 5 6
0

0.5

1

1.5

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =7200

Figure V.3: Results of exeution time model validation experiments for the Jaobi appliation on the

one-site testbed, problem sizes of 600, 2400, and 7200.

63

600 1200 2400 4800 7200 9000

Attempted Runs 18 18 18 18 18 18

Completed Runs 18 18 18 15 9 3

Median % Error 11.5 6.5 9.1 2.7 16.6 14.4

Mean % Error 17.0 12.5 11.1 9.4 15.3 16.3

StdDev % Error 14.6 20.2 9.7 12.1 11.0 13.1

Table V.4: Summary of exeution time model predition errors for Jaobi on the one-site testbed.

630 1260 2448 4500 7200 9000

Attempted Runs 18 18 18 18 18 18

Completed Runs 17 13 18 16 13 10

Median % Error 74.9 52.8 36.5 31.7 18.0 16.5

Mean % Error 72.2 52.2 44.6 33.4 25.6 25.8

StdDev % Error 11.5 7.8 37.6 17.4 18.7 19.8

Table V.5: Summary of exeution time model predition errors for Jaobi on the three-site testbed.

whih was not the ase for the Game of Life. Reall that in our exeution time model development

(Setion IV.B) we predited that Jaobi would involve about half as muh omputation per iteration

as the Game of Life, but that Jaobi's ommuniation requirements would be muh higher. Another

notieable di�erene between Figure V.3 and Figure V.1 is that the omputation time predition error

seems to be higher for this data series. This degradation in predition auray ould be aused by a

number of fators. The two most plausible are as follows.

1. We have inluded the purely omputational termination detetion phase in omputation time

measurements and preditions. However, for Jaobi the omputational ost of termination de-

tetion grows as the size of N while our omputation model assumes that all omputation time

grows as the size of N

2

.

2. The inreased ommuniation ativity in Jaobi might have a�eted omputation times.

Table V.4 gives summary predition error statistis for all problem sizes for Jaobi on the one-site

testbed. The mean model predition error is generally low for this testbed-appliation ombination

with values ranging from 9% to 17%.

Jaobi, three-site testbed

The �nal appliation-testbed ombination is the Jaobi appliation on the three-site testbed. Ex-

perimental results for problem sizes of N = f630, 4500, 9000g are shown in Figure V.4, and summary

predition error statistis are shown in Table V.5. Communiation time is learly a larger fration

64

3 6 9 12 15 18
0

0.1

0.2
It

e
ra

ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =630

3 6 9 12 15 18
0

2

4

6

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =4500

3 6 9 12 15 18
0

5

10

15

20

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Processors

N =9000

MeasComp
MeasOther
PredComp
PredComm

Figure V.4: Results of exeution time model validation experiments for the Jaobi appliation on the

three-site testbed, problem sizes of 630, 4500, and 9000.

65

of iteration time for this testbed-appliation ombination than for the other three. This is to be ex-

peted for two reasons: (1) eah Jaobi iteration inludes a ommuniation-intensive broadast phase,

and (2) for this testbed, eah of those broadasts inludes a number of high-delay wide-area message

transfers. As was the ase for the Game of Life, the ommuniation model typially under-predits

ommuniation time and is espeially inaurate for smaller problem sizes. As disussed for the Game

of Life, this under-predition is likely attributable to our usage of a bandwidth-only model. Notie

that the ommuniation model does orretly trak the inrease in ommuniation ost with inreasing

numbers of proessors; this trend is espeially apparent for repetition 1, problem sizes of 4500 and 9000.

Measured iteration times indiate that network performane was degraded in repetition 1 as ompared

to the other 2 repetitions; the exeution time model learly distinguishes between these onditions and

orretly traks the improvement in network performane.

V.B.3 Summary

The experiments presented in this setion were designed to evaluate the predition auray of

our exeution time model in a wide variety of realisti Grid onditions and for an array of reasonable

appliation on�gurations. For the one-site testbed, average performane predition errors were less

than 26% for both appliations; average predition errors were more typially 5% to 15%. For the

three-site testbed, average performane predition errors were less than 75% for both appliations; more

typially, average predition errors were 10% to 50%. Given the highly dynami nature of realisti Grid

environments and the simpliity of our exeution time model, predition errors in these ranges are not

unreasonable, nor are they unexpeted.

V.C Mapper validation

Our ore shedule searh proedure, presented in Setion III.B.1, is dependent on the availability

of a reasonable mapping strategy for the development of feasible andidate shedules. The quality of

generated shedules, as measured by the resulting appliation iteration time, an therefore be expeted

to be related to the exeution time impat of the hosen mapping strategy.

In Setion IV.C we presented two appliation-spei� mapper designs, the equal alloation mapper

and the time balane mapper. In Setion V.B we utilized the equal alloation mapper in exeution time

model validation experiments. In this setion we present experiments that investigate the performane

harateristis of both the equal alloation mapper and the time balane mapper. We also examine the

66

impat of mapper hoie on appliation iteration times.

V.C.1 Experimental design

Approah

To evaluate the two mapping strategies we ompared appliation iteration times ahieved with

eah mapper under a variety of realisti Grid onditions. For eah suh omparison we (1) seleted an

appliation, testbed, problem size, and exat target resoure set (a mahine list); (2) used the equal

alloation mapping strategy to �nd an equal alloation data map; (3) ran the appliation with the equal

alloation data map on the resoure set de�ned in step 1; (4) used the time balane mapper to �nd a

time balane data map; and (5) ran the appliation with the load-balaned data map on the resoure

set de�ned in step 1.

Reall that the mappers support a variety of information inputs (see Setion III.D). For testing

purposes, we seleted a single set of information inputs. Both mappers require loal memory apaity

information for all targeted resoures; in these experiments the mappers utilized free memory values

(memType = FREE). The time balane mapper also requires loal omputational apaity information;

for these tests we seleted available proessor speed (AVAIL MHZ). Finally, all NWS information inputs

were next step preditions (nwsType = PRED).

Testbeds

For these experiments, we targeted the same real testbeds used for the performane model validation

experiments.

Experimental proedure

To inlude a variety of problem sizes and target resoure set sizes in our experiments, we used the

same experiment series de�ned for eah testbed in Setion V.B. For the one-site testbed, we exluded

the one-proessor test ases sine both mappers would develop exatly the same mapping, preluding

interesting omparison. Sine the goal of these experiments was to investigate the performane impat

of the mapping strategies, and not to test resoure seletion, we targeted the same prede�ned resoure

sets as were used in Setion V.B. As before, we inluded a sleep interval of three minutes between eah

appliation run. We again performed three repetitions of eah experiment series for eah appliation-

testbed ombination.

67

V.C.2 Results

Rather than present a large number of experimental runs as in Setion V.B, we instead present

summary results and desribe in greater detail only the most signi�ant results. In order to examine

the impat of mapper hoie on appliation iteration times, we onsider the relative perent improvement

of the time balane mapper over the equal alloation mapper:

perentImp = 100 �

itT ime

equal

� itT ime

balaned

itT ime

equal

: (V.2)

When the time balane data map generates a shorter iteration time than the equal alloation map,

the perent improvement metri will be positive; similarly, when appliation iteration time is shorter

with the equal alloation map than with the time balane map, the perent improvement metri will

be negative.

3 6 9 12 15 18
0

1

2

3

It
e
ra

ti
o
n
 T

im
e
 (

s
e
c
)

Processors

Mapper

Equal alloc.

Time balance

Time Failure

Figure V.5: Experimental results for the equal alloation and time balane mappers for the Game of

Life appliation on the three-site testbed, problem size 4500.

Game of Life

Figure V.5 presents results for the Game of Life with a problem size of N = 4500 on the three-site

testbed; results are shown for all target resoure set sizes and for all three repetitions. This set of results

is representative of the results for the other problem sizes tested. For eah bar pair in this �gure, the

left-hand bar represents the appliation iteration time ahieved with the equal alloation map, and

the right-hand bar represents the appliation iteration time ahieved with the load-balaned map. For

the results presented in this �gure, the time balane mapper generally results in better (i.e. shorter)

exeution times when ompared with the equal alloation mapper.

68

600 1200 2400 4800 7200 9600

Attempted runs 15 15 15 15 15 15

Completed equal allo. 13 13 12 7 4 1

Completed time balane 13 13 13 11 7 3

Comparable runs 13 13 12 7 3 1

Median % improve 3.6 5.4 9.3 14.2 9.7 -19.1

Mean % improve 8.7 18.8 18.0 21.7 13.3 -19.1

StdDev % improve 10.6 21.8 18.8 18.7 67.7 0

Table V.6: Summary of perent improvement of the time balane mapper as ompared to the equal

alloation mapper for Game of Life on the one-site testbed.

The triangles in Figure V.5 mark plaes where there was either a mapper failure (e.g. the mapper

found that loal proessor memory apaities were insuÆient or an appliation failure (e.g. a Globus

ommuniation error aused the appliation itself to atually fail). For this series of runs, the failure

auses were as follows.

� The equal alloation mapper failure at p = 12, rep = 3 was aused by an appliation failure of

unknown origin.

� In the ase of the balaned failure at p = 18, rep = 1, one of the target mahines was so heavily

loaded that NWS predited CPU availability was zero and the load-balaned mapper ould not

�nd a valid mapping.

� For p = 18, rep = 3 both mappers failed to �nd a map beause memory availability information

was unavailable for one of the target mahines (most likely the mahine was o�-line).

Note that the last two failures ourred beause the list of target resoure sets is prede�ned for these

experiments. When the sheduler is allowed to selet target resoure sets, suh resoures are simply

avoided and the mappers will not exhibit this type of failure.

Table V.6 and Table V.7 present summary information for all Game of Life mapper omparison

runs on the one-site and three-site testbeds, respetively. The �rst row, Attempted runs, indiates the

number of attempted appliation runs; the Completed equal allo. and Completed time balane rows

indiate how many of those runs were suessfully ompleted for eah mapper. Reall that failures

an be related to either a mapper failure or an appliation failure. Row Comparable runs reords how

many of the attempted runs inluded a suessful equal alloation mapper run and a suessful time

balane mapper run. We an only determine a perent improvement metri for those runs in whih

69

630 1260 2448 4500 7200 9000

Attempted runs 18 18 18 18 18 18

Completed equal allo. 15 17 17 16 12 9

Completed time balane 16 16 17 16 16 16

Comparable runs 14 16 17 15 11 8

Median % improve 9.2 14.0 22.0 30.1 31.1 35.6

Mean % improve 15.8 13.6 24.8 26.3 29.1 30.6

StdDev % improve 26.8 13.5 14.6 13.4 18.5 22.3

Table V.7: Summary of perent improvement of the time balane mapper as ompared to the equal

alloation mapper for Game of Life on the three-site testbed.

both mappers ran suessfully; for this reason the statistis in the rest of the table are based only on

the number of runs listed in the omparable runs row. The last rows of the tables, Median % improve,

Mean % improve, and StdDev % improve, present the median, mean, and standard deviation of the

perent improvement of the time balane mapper as ompared to the equal alloation mapper. For the

majority of problem sizes on eah testbed, the time balane mapper provides a substantial improvement

over the equal alloation mapper; the one exeption, N = 9600 on the one-site testbed, is based on only

one omparable set of mapper runs and the appliation happened to perform very badly with the time

balane map in this run. Notie that the performane advantage provided by the time balane mapper

is more signi�ant for the three-site testbed.

For the Game of Life appliation there are two primary fators that ontribute to the suess of the

time balane mapper in improving appliation exeution time: (1) the mapper balanes omputational

load based on the omputational apaities of the targeted resoures and (2) the mapper overlaps

ommuniation on some proessors with omputation on others. In the following paragraphs we desribe

in greater detail how eah fator improves appliation exeution time.

Computational load-balaning. The omputational speed of the resoures in eah testbed are

heterogeneous and sine the resoures are shared, the load on targeted CPUs an be quite di�erent.

When the equal alloation mapper is used, the slower or more highly-loaded mahines slow the entire

omputation down. When the time balane mapper is used, the load is redued on the slower and/or

heavily-loaded mahines and inreased on the faster and/or more lightly-loaded mahines. Assuming

that NWS CPU availability preditions are aurate, this load adjustment tends to minimize over-

all appliation exeution time by assigning appropriate workloads to eah proessor. Previous work

in appliation-spei� shedulers [9, 12℄ has demonstrated similar suess with omputational load-

balaning for iterative, mesh-based appliations.

70

Overlapping ommuniation and omputation. For the Game of Life, the ommuniation

phase for eah proessor involves only ommuniation with neighboring proessors. Reall that during

the mapping proess we arrange the proessor topology to minimize the amount of data sent over

slow, wide-area links; we do this by plaing resoures from the same site adjaent to eah other in

the topology. When a work alloation is found for this proessor topology, proessors in the same

site reeive ontiguous strips of data. Only proessors that share a strip edge with a proessor from a

remote site must partiipate in time-onsuming wide-area message transfers; we all these proessors

site edges in the proessor topology. Sine we use a strip deomposition, at most two proessors

from eah site an be site edges. Our implementation of the Game of Life ommuniation phase uses

non-bloking alls; proessors that are not side edges an therefore ontinue omputation while site

edge proessors are involved in wide-area transfers. The time balane mapper orretly handles this

ommuniation heterogeneity by alloating less work to site edge proessors. For example, the time

balane mapper ahieved a large performane improvement over the equal alloation mapper for all

three repetitions of p = 3 in Figure V.5. In this ase, there are three resoures, ftor3.s.utk.edu,

major.s.uiu.edu, quidam.usd.edug, and three sites; every proessor must therefore partiipate in

wide-area ommuniations. However, major.s.uiu.edu will spend more time ommuniating sine it

must ommuniate with both tor3.s.utk.edu and quidam.usd.edu. The mapper orretly alloates

less work to this resoure. Consider repetition three, in whih the resoures were assigned roughly 42%,

22%, and 35% of the total work. The middle proessor, major.s.uiu.edu, was alloated the least

work due to higher ommuniation osts and the �rst proessor, tor3.s.utk.edu, was assigned a larger

portion of the work than the third proessor, quidam.usd.edu, beause of di�erenes in proessor speed

(550 MHz versus 400 MHz).

There is another advantage to the time balane mapper that is not immediately obvious in the

summary statistis: for larger problem sizes, the time balane mapper runs are signi�antly more likely

to omplete than the equal alloation mapper runs (ompare the Completed equal allo. and Completed

time balane rows in Tables V.6 and V.7). As shown in Table V.1, the physial memory sizes vary widely

for the three-site testbed. Additionally, sine resoures are shared, the free memory available on targeted

resoures an vary widely for both testbeds. The time balane mapper an adapt to this heterogeneity

by adjusting the load assigned to eah proessor, thus ensuring appliation memory requirements are

met. By omparison, the equal alloation mapper will fail when any one of the targeted resoures does

not have the loal memory apaity to handle an equal share of the appliation workload.

71

2 3 4 5 6
0

0.5

1

1.5

2

It
e
ra

ti
o
n
 T

im
e
 (

s
e
c
)

Processors

Mapper

Equal alloc.

Time balance

Time Failure

Figure V.6: Experimental results for the equal alloation and time balane mappers for the Jaobi

appliation on the one-site testbed, problem size 4800.

Figure V.6 presents mapper validation results for Jaobi with a problem size of N = 4800 on the

one-site testbed; results are shown for all three repetitions on all target resoure set sizes. The relative

performane of the two mappers seen in this set of results is fairly representative of the results for other

problem sizes and for the three-set testbed. For most appliation runs shown in this graph, appliation

performane was omparable with the equal alloation and time balane mappers; for some runs the

performane was better with the equal alloation mapper, although never dramatially. Note that in

this set of runs, the number of failures was muh lower for the time balane mapper than for the equal

alloation mapper.

Table V.8 and Table V.9 present summary information for all Jaobi mapper omparison runs on the

one-site and three-site testbeds, respetively. For the one-site testbed, use of the time balane mapper

generally resulted in a modest degradation of performane as ompared to use of the equal alloation

mapper, but the time balane mapper runs were signi�antly more likely to omplete suessfully.

Suprisingly, the performane and ompletion patterns were reversed for the three-site testbed: in these

experiments, the time balane mapper resulted in a modest performane improvement but was less likely

to omplete suessfully. The higher failure rate for the load balane mapper is notable, partiularly

sine the load balane mapper typially sueeds in �nding a suitable data map when the equal alloation

mapper annot. During these experiments, one or more resoures were heavily loaded and the NWS

reported memory availability preditions of 0%. The load balane mapper was unable to �nd a suitable

mapping in whih appliation memory requirements were met by the target resoure group and so failed.

When the sheduler is allowed to selet resoures, dynami NWS memory availability preditions allow

72

600 1200 2400 4800 7200 9600

Attempted runs 15 15 15 15 15 15

Completed equal allo. 15 15 15 10 4 2

Completed time balane 15 15 15 14 10 5

Comparable runs 15 15 15 10 4 2

Median % improve -1.9 -4.5 -6.4 -3.5 13.1 -5.1

Mean % improve -1.2 -7.3 -14.1 -5.3 12.9 -5.1

StdDev % improve 8.7 11.1 29.9 15.4 12.1 17.1

Table V.8: Summary of perent improvement of the time balane mapper as ompared to the equal

alloation mapper for Jaobi on the one-site testbed.

630 1260 2448 4500 7200 9000

Attempted runs 18 18 18 18 18 18

Completed equal allo. 18 18 16 15 11 10

Completed time balane 16 17 13 12 12 15

Comparable runs 16 17 11 10 7 7

Median % improve -1.6 -2.1 4.3 7.7 13.9 11.5

Mean % improve -0.2 5.3 8.8 -10.5 16.3 7.9

StdDev % improve 11.5 23.5 18.2 57.2 9.2 13.9

Table V.9: Summary of perent improvement of the time balane mapper as ompared to the equal

alloation mapper for Jaobi on the three-site testbed.

the sheduler to avoid heavily loaded mahines altogether.

It is also notable that the time balane mapper provided more of a performane advantage for the

Game of Life than for Jaobi. Reall that the time balane mapper improved performane for the Game

of Life by overlapping ommuniation on some proessors with omputation on others and by balaning

omputational load on partiipating proessors. Sine our implementation of the Jaobi ommuniation

phase uses a series of broadasts, all proessors must partiipate in the entire ommuniation phase, and

the time spent ommuniating per proessor is essentially independent of the work alloation. For these

reasons, the time balane mapper annot improve performane by overlapping omputation on some

proessors with ommuniation on others. Nonetheless, the mapper should be able to take advantage of

omputational load balaning to improve Jaobi performane. An important limitation of this apability

is that the omputation phase is sometimes a relatively minor portion of appliation iteration time (see

Figure V.4); in these ases balaning omputational load a�ets only a small portion of the iteration

time. It is surprising that the time balane mapper does not provide a signi�ant performane advantage

for the Jaobi appliation in those ases where omputation time does onstitute a signi�ant portion

73

of appliation exeution time (see Figure V.3).

V.C.3 Summary

In this setion we have demonstrated the utility of both the time balane and the equal alloation

mappers, thereby enouraging us to onsider both mappers for sheduling experiments. Additionally,

for the Game of Life we demonstrated that the time balane mapper ahieved a signi�ant performane

advantage as ompared to the equal alloation mapper; the performane advantage was more moderate

for the Jaobi appliation. The time balane mapper requires more sophistiated appliation informa-

tion than the equal alloation mapper; the performane advantage shown for the time balane mapper

therefore demonstrates that we an take advantage of more sophistiated appliation information to

improve appliation performane. We also found that, overall, the time balane mapper found a suitable

data map more often than the equal alloation mapper.

V.D Sheduler validation

The fous of this thesis is the development of a exible, appliation-targetable sheduling method-

ology for Grid environments. In this setion we present experiments that explore the eÆay of our

methodology. In partiular, we investigate the following questions.

i. What is the impat of our sheduling methodology on appliation exeution times as ompared

to onventional sheduling approahes? We hope that our methodology redues exeution times.

ii. What is the impat of appliation information availability on sheduler performane? Spei�ally,

(a) an this methodology develop reasonable shedules despite limited appliation information

and models, and (b) an this methodology take advantage of more sophistiated information and

models to promote appliation performane? We hope that the answer to both questions is yes.

iii. How is appliation performane a�eted when dynami resoure information is available to our

sheduling methodology? Can the methodology develop reasonable shedules when only stati

resoure information is available? We hope that the sheduler an take advantage of dynami

resoure information, and that it an ontinue to funtion when suh information is not available.

To investigate these questions we developed four sheduling strategies that we desribe in the next

setion. We then studied the performane of eah strategy in a wide span of usage senarios inluding

74

a variety of problem sizes, appliations, testbeds, and ambient load onditions; the design of these

experiments is also desribed in the next setion. In Setion V.D.2 we desribe the results of these

experiments and in Setion V.D.3 we summarize our �ndings.

V.D.1 Experimental design

Approah

To help us investigate the questions listed above, we developed four sheduling strategies based on

realisti Grid sheduling senarios: user, basi, stati, and dynami. We developed the user strategy to

emulate the sheduling proess that a typial user might employ. The remaining three strategies are

variations of our sheduling methodology based on resoure and appliation information availability

senarios. In the following paragraphs we desribe the motivation behind, and the design of, eah

sheduling strategy.

To answer question (i), we needed to ompare the performane ahieved with our methodology with

that ahieved by a onventional approah. Unfortunately there is no standard Grid sheduler that is

e�etive for the appliations and environments that we target. In fat, the onventional approah for the

majority of Grid users is to develop a simple sheduling strategy based on basi information about their

appliation's performane harateristis and the Grid they wish to run it on. We therefore developed a

user strategy to emulate the deision making proess that a user might employ. First, we had to deide

what appliation performane metri a user would be likely to employ. For the appliations targeted in

this thesis, the easiest appliation performane metri to obtain is an estimate of appliation memory

usage; to estimate memory usage one need only �nd the memory alloation ommands in the appliation

and determine how problem size, problem dimensions, and data type will a�et appliation memory

requirements. We believe that the development of a full appliation performane model, inluding

parameterization for the target Grid of interest, would be too large of an investment for most Grid

users. For these reasons, our user strategy predits appliation resoure requirements based solely on

our memory usage model developed in Setion IV.B.1. To use this model the user requires aess to

memory apaity information for the resoures she wishes to target. The memory apaity of Grid

resoures is based on physial memory sizes; this is a pratial strategy for users as the information

an be obtained diretly by logging in to the mahines of interest or by requesting the information

from the resoure manager (i.e. a systems administrator). Finally, we assume that eah Grid user

has a loal resoure set that she preferentially aesses, typially beause she is more familiar with the

75

omputational environment or beause she is more omfortable as a resident on her home resoures

than as a guest on remote resoures. The preferential resoure ordering that is assumed by our user

strategy is fUCSD, UTK, UIUCg.

So how do all of these assumptions ombine to form the user sheduling strategy? Our user strategy

(1) predits appliation memory requirements for the appliation and problem size of interest; (2) selets

the minimum number of target resoures that will satisfy appliation memory requirements (resoures

are seleted in order from the preferential resoure ordering); (3) determines an equal, or nearly equal,

alloation of work onto the seleted resoures; and (4) runs the target appliation with the seleted

shedule. Note that our user strategy uses the same memFator of 20% that is used by our memory

usage model; inlusion of this fator emulates the fat that most Grid users are aware of the performane

problems inherent in alloating all of the physial memory on a shared resoure.

In order to answer questions (i), (ii), and (iii), we developed a number of strategies based on the

sheduling methodology presented in this thesis. First, we wanted to study how our methodology

performed with full appliation and Grid resoure information. In this strategy, alled the dynami

strategy, the sheduler is provided with the full exeution time + memory usage model desribed in

Setion IV.B.2; this model is the more sophistiated of the two performane models developed for our

test appliations. Furthermore, the sheduler utilizes dynami Grid resoure information, whih we

ategorize as a more sophistiated level of resoure information utilization than stati information. In

keeping with the availability of sophistiated appliation information, the sheduler utilizes the time

balane mapper (desribed in Setion IV.C.2) for the alloation of work to proessors. In this strategy,

shedules are developed at run-time to take advantage of dynami resoure performane information.

To address question (ii), we study a strategy in whih full Grid resoure information is available,

but appliation information is limited. In this strategy, alled the basi strategy, our sheduling

methodology is provided with only the memory usage model, but is given aess to dynami resoure

availability information. Sine this strategy assumes that appliation information is limited, the shed-

uler employs the equal alloation mapper, desribed in Setion IV.C.1. Free memory preditions are

used in onjuntion with the equal alloation mapper to ensure that the appliation data is mapped in

a way that does not overow loal proessor memory apabilities. Reall from Setion III.B that we

reate andidate resoure groups (CRGs) based in part on three resoure-oriented sorting foi: om-

putation, memory, and dual. Preditions of dynami CPU availability and free memory apaity are

used by this sorting method to selet desirable resoures. Shedules are developed at run-time to take

advantage of dynami resoure performane information.

76

Finally, to address question (iii) we study a strategy in whih full appliation performane infor-

mation is available, but Grid resoure information is more limited. In this strategy, alled the stati

strategy, the sheduler is provided with the exeution time + memory usage model and the time

balane mapper, but is provided with only stati resoure information. Spei�ally, the omputational

apaity of resoures is given by the full proessor speed and the memory apaity of resoures is given

by the full physial memory; these harateristis are retrieved from the MDS. The NWS provides

the only network performane estimates that an be retrieved from GrADS information soures; the

sheduler is therefore on�gured to utilize NWS bandwidth estimates, but the sheduler is run o�-line

so that it annot take advantage of run-time performane estimates.

Figure V.7 summarizes the appliation and Grid information usage by eah of the four sheduling

strategies. In addition to the on�guration options we detailed above for eah of the three variations on

our sheduler, there are other sheduler on�guration options whih we did not vary in these experiments

but whih a�et sheduler behavior. In partiular, we seleted a performane improvement threshold

of 5% for these experiments (the threshold is de�ned in Setion III.B.2). The predited performane

of seleted shedules will therefore always fall within 5% of the predited performane of the best

shedule examined. We believe that 5% is a onservative estimate of what a typial user would de�ne

as equivalent performane in Computational Grid environments.

Testbeds

For these experiments, we ran experiments on the one-site and three-site testbeds desribed in

Setion V.A. Note that, as desribed in Setion V.A, the three-site testbed inluded the Opus luster

at UIUC.

Experimental proedure

The fous of these experiments is to ompare appliation iteration times ahieved by eah shedul-

ing strategy in a variety of appliation, testbed, problem size, and ambient load onditions. For the

basi and dynami strategies, whih utilize dynami resoure information, shedule development was

performed at run-time. For the user and stati strategies, whih utilize only stati resoure information,

shedule development was performed o�-line and shedules were retrieved at run-time. To omplete a

sheduling strategy omparison experiment, the four strategies were run in a bak-to-bak manner in

the following order: user, basi, stati, and dynami. To avoid eah appliation run from a�eting the

deisions of the following sheduling strategy (due to the a�et on NWS dynami resoure preditions)

we inluded a three minute sleep between appliation runs.

Eah sheduling strategy omparison experiment is de�ned by a seletion of a test appliation, a

77

Sophistication of
Application Information

Sophistication
of Resource
Information

User

Basic

Static

Dynamic
Memory usage
model, dynamic
resource info

Full performance
model, dynamic
resource info

Memory usage
model, static
resource info

Full performance
model, static
resource info

Figure V.7: Summary of user, basi, stati, and dynami sheduling strategies. For eah strategy we

note the availability of sophistiated appliation and resoure information. Bars orrespond to the

olors used for eah strategy in our sheduling results graphs.

testbed, and a problem size. We performed these experiments for eah of the test appliation on eah

of the testbeds (four appliation-testbed pairs). For eah testbed, we seleted six test problem sizes to

span a broad range of appliation senarios. For the one-site testbed we use the same problem sizes

as in the performane model and mapper validation experiments, N = f600, 1200, 2400, 4800, 7200,

9600g. For the three-site testbed, we wanted to explore a broader range of problem sizes than we

used for the performane model and mapper validation experiments. On this testbed we used N =

f600, 4800, 9600, 14400, 16800, 19200g. We performed experiment series for eah appliation-testbed

ombination; eah experiment series onsisted of a sheduling strategy omparison for eah problem

size, or 6 omparison experiments where eah omparison experiment involved the testing of eah of the

4 sheduling strategies. We ompleted 10 repetitions of eah experiment series. Overall, we ompleted

60 omparison experiments for eah of the 4 appliation-testbed senarios. Sine eah of these 240

omparison experiments inluded the testing of 4 sheduling strategies, we ompleted a total of 960

sheduling strategy tests.

Performane metris

To provide a quantitative omparison of the appliation performane ahieved by eah sheduling

strategy, we utilize two omparison metris: the rank and the perent degradation from best. Both of

78

these metris are ommonly used for the omparison of sheduling strategies [32℄. A rank is an integer

value between 1 and 4 indiating the relative performane of eah strategy in a sheduling strategy

omparison experiment; the strategy that ahieved the best appliation iteration time was assigned a 1

while the strategy that ahieved the worst appliation exeution time was assigned a 4. If a sheduling

strategy failed to �nd a suitable shedule, or the appliation itself failed, the worst rank, a 4, was

assigned to that strategy.

To alulate the perent degradation from best we �rst �nd the lowest iteration time ahieved by

any of the strategies, itT ime

min

. For eah sheduling strategy we then alulate the perent degradation

from best as:

degFromBest = 100 �

itT ime� itT ime

best

itT ime

best

: (V.3)

The strategy whih ahieved the minimum iteration time will be assigned a perent degradation from

best value of zero. Note that if we ould inlude an optimal sheduler in the experiments it would

onsistently ahieve a 0% degradation from best. When one of the sheduling strategies failed to

�nd a shedule or its orresponding appliation run failed, that sheduler was not assigned a perent

degradation from best value.

V.D.2 Results

The �rst set of results we present is a summary omparison of the appliation performane ahieved

by the four sheduling strategies outlined in the previous setion. Later in this setion, we present

individual sheduling strategy omparison experiments to highlight sign�ant points.

To report summary results, we aggregated all 6 problem sizes and 10 repetitions into a single group

of results for eah appliation-testbed senario; for eah appliation-testbed senario we ran a total of

60 sheduling strategy omparison experiments. Figure V.8 presents the average rank assigned to the

sheduling strategies for eah senario. For all but one of the senarios, the dynami strategy ahieved

the best (i.e. lowest) average rank; the exeption was the Jaobi appliation on the three-site testbed

where the stati strategy ahieved a better rank by a slight margin. Compare the sophistiation of

available Grid information and appliation performane models (see Figure V.7) with the average rank

for eah sheduling strategy. Several important points are revealed.

� The two strategies that ahieved the best average ranks were the stati and dynami strategies.

These strategies utilize a more sophistiated appliation performane model than the other two

79

0

1

2

3

4
A

v
e
ra

g
e
 R

a
n
k

Game of Life Game of Life Jacobi Jacobi

One−site One−siteThree−site Three−site

User
Basic
Static
Dynamic

Figure V.8: Average rank of eah sheduling strategy for all appliation-testbed senarios. The best

possible average rank is 1 and the worst is 4.

0

100

200

300

400

500

P
e

rc
e

n
t

d
e

g
ra

d
a

ti
o

n
 f

ro
m

 b
e

s
t

Game of Life Game of Life Jacobi Jacobi
One−site One−siteThree−site Three−site

User
Basic
Static
Dynamic

Figure V.9: Average degradation from best for eah sheduling strategy for all appliation-testbed

senarios. For referene, an optimal sheduling strategy would average 0% degradation from best.

80

strategies. This trend demonstrates the importane of aurate appliation performane models

in developing performane-eÆient shedules.

� The dynami strategy outperformed the stati strategy in three out of four appliation-testbed

senarios, and the basi strategy outperformed the user strategy in all four senarios. The dynami

and basi strategies utilize more sophistiated Grid information than the other strategies. This

trend is suggestive of the importane of dynami Grid information in developing performane-

eÆient shedules.

� The stati strategy onsistently outperformed the basi strategy. The stati strategy utilizes a

more sophistiated appliation performane model, but less sophistiated Grid information. For

these experiments, we onlude that availability of an aurate appliation performane model

had a more signi�ant impat on the development of performane eÆient shedules than did the

availability of dynami Grid information.

Figure V.9 reports the average perent degradation from best for eah sheduling strategy in all

appliation-testbed senarios and Table V.10 reports summary statistis for the same data set. With

one exeption, we see the same ordering of the strategies as we saw for average ranks in Figure V.8;

the exeption is for the Jaobi appliation on the three-site testbed where the relative ordering of the

dynami and stati strategies are reversed from Figure V.8 to Figure V.9. While the order of the

strategies is quite similar between the two sets of results, Figure V.9 provides more information about

the performane impat of eah sheduling strategy.

For example, the average perent degradation for the user model is higher for the three-site testbed

ases than for the one-site ases. Reall that our user strategy assumes a partiular preferene ordering

of target resoures; this ordering is designed to emulate the preferene a user typially shows for

mahines in their own administrative domain. Spei�ally, the ordering assumed in our user strategy is

fUCSD, UTK, UIUCg. In reality, the UTK resoures have the fastest proessors and largest memories.

The basi, stati, and dynami sheduling strategies automatially identify resoures with the fastest

proessor speeds and largest physial memories, and, assuming the UTK resoures are not overly loaded,

often selet mahines in the UTK set �rst. Sine the one-site testbed is more homogeneous than the

three-site testbed, the e�et is not as notieable.

Summary statistis are useful for demonstrating overall trends, but an only provide a partial

piture of the behavior of the four sheduling strategies. In the following setions we present a detailed

examination of results for eah appliation-testbed senario.

81

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15
N =600

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

User
Basic
Static
Dynamic

1 2 3 4 5 6 7 8 9 10
0

0.4

0.8

1.2
N =2400

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8
N =7200

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

Figure V.10: Game of Life iteration times for the user, basi, stati, and dynami sheduling strategies.

Experiments targeted the one-site testbed with problem sizes of 600, 2400, and 7200.

82

Appliation Testbed Statisti User Basi Stati Dynami

Game of Life 1-site Average 240.0 204.4 37.3 5.1

StdDev 152.0 135.6 40.4 12.9

Min 7.7 15.2 0 0

Max 507.7 433.5 156.9 69.3

Game of Life 3-site Average 381.9 219.8 30.8 3.8

StdDev 466.6 268.2 63.3 10.7

Min 45.3 6.6 0 0

Max 2748.0 1109.2 421.8 68.5

Jaobi 1-site Average 210.3 186.9 17.2 5.7

StdDev 130.6 139.8 28.2 12.6

Min 16.4 7.9 0 0

Max 466.4 487.7 90.5 69.7

Jaobi 3-site Average 410.3 200.4 61.3 12.7

StdDev 212.7 203.4 145.8 40.6

Min 0 0 0 0

Max 862.9 629.6 739.2 215.1

Table V.10: Summary statistis for perent degradation from best for eah sheduling strategy over all

appliation-testbed senarios.

Game of Life

A subset of the sheduling strategy omparison experiments we ran for the Game of Life on the

one-site testbed are shown in Figure V.10; all repetitions are shown for N = f600, 2400, 7200g, three

of the six problem sizes tested for this testbed. For N = 600, performane of the user and basi

strategies are relatively similar as are the performane of the stati and dynami strategies; the stati

and dynami strategies ahieved signi�antly improved performane as ompared to the user and basi

strategies. These results indiate that for this senario and problem size, the availability of more

sophistiated appliation information had a more signi�ant performane impat than the availability

of sophistiated Grid resoure information. By omparison, for several of the repetitions for N = 7200

(spei�ally repetitions 1, 4, and 5), the basi and dynami strategies perform signi�antly better than

the user and stati strategies; for these omparison runs, the availability of dynami Grid information

had a more signi�ant performane impat than did more sophistiated appliation information.

Table V.11 reports the average rank and degradation from best for eah sheduling strategy; results

are reported for eah problem size. In eah series, 10 repetitions are performed; typially no more than

1 or 2 repetitions per series failed. Failures are oasionally aused by a sheduling strategy's inability

to satisfy appliation memory requirements. More often, the appliation itself fails due to an error in

alloating memory, an authentiation error, or a Globus ommuniation error. Reall that ranks are

83

User Basi Stati Dynami

Rank Deg. Rank Deg. Rank Deg. Rank Deg.

N = 600 3.8 326.4% 3.2 286.7% 1.7 31.2% 1.3 3.7%

N = 1200 3.9 309.7% 3.1 277.4% 1.8 35.6% 1.2 11.8%

N = 2400 3.9 296.3% 3.1 251.5% 1.8 49.2% 1.2 5.6%

N = 4800 3.9 308.4% 3.1 273.6% 1.7 23.1% 1.3 2.0%

N = 7200 3.6 126.5% 2.9 59.5% 2.2 41.3% 1.3 3.3%

N = 9600 3.0 54.2% 3.0 63.7% 2.7 44.0% 1.3 4.4%

Table V.11: Average rank and perent degradation from best for eah sheduling strategy for the Game

of Life on the one-site testbed.

User Basi Stati Dynami

Rank Deg. Rank Deg. Rank Deg. Rank Deg.

N = 600 3.8 143.1% 2.6 70.1% 1.8 49.6% 1.8 10.9%

N = 4800 3.8 1036.6% 3.0 660.5% 1.9 31.5% 1.3 2.2%

N = 9600 3.6 454.0% 3.2 325.3% 1.9 44.6% 1.3 1.9%

N = 14400 3.7 352.0% 3.1 134.1% 1.6 23.9% 1.6 0.7%

N = 16800 3.6 131.4% 3.3 89.5% 1.8 21.7% 1.3 4.5%

N = 19200 3.9 141.3% 3.0 44.3% 1.8 16.5% 1.3 3.2%

Table V.12: Average rank and perent degradation from best for eah sheduling strategy for the Game

of Life on the three-site testbed.

assigned to failed runs (a failure reeives the lowest ranking); average ranks are therefore omputed

over 10 runs. Perent degradation from best values are not omputed for failed runs; average values for

degradation from best are therefore averages over suessful runs only.

In Figure V.11 we present sheduler omparison runs for the Game of Life on the three-site testbed;

three of the six problem sizes tested are shown: N = f600, 9600, 16800g. In these results it is striking

that the relative performane of the four sheduling strategies is quite variable aross repetitions and

problem sizes. Nonetheless, the general trend is an improvement in appliation performane from the

user strategy to the dynami strategy. Table V.12 reports average rank and average degradation from

best for all six problem sizes tested for this senario.

Jaobi

In Figure V.12 we present a subset of the sheduling strategy omparison experiments we ran for the

Jaobi appliation on the one-site testbed. As was the ase for the results presented in Figure V.10, these

results suggest that the availability of more sophistiated Grid information did not have a signi�ant

performane impat at the smaller problem sizes. Table V.13 summarizes the average rank and average

84

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15
N =600

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

User
Basic
Static
Dynamic

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10
N =9600

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

1 2 3 4 5 6 7 8 9 10
0

5

10

15
N =16800

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

Figure V.11: Game of Life iteration times for the user, basi, stati, and dynami sheduling strategies.

Experiments targeted the three-site testbed with problem sizes of 600, 9600, and 16800.

85

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06
N =600

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

User
Basic
Static
Dynamic

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6
N =2400

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

1 2 3 4 5 6 7 8 9 10
0

1

2

3
N =7200

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

Figure V.12: Jaobi iteration times for the user, basi, stati, and dynami sheduling strategies.

Experiments targeted the one-site testbed with problem sizes of 600, 2400, and 7200.

86

User Basi Stati Dynami

Rank Deg. Rank Deg. Rank Deg. Rank Deg.

N = 600 3.6 137.5% 3.2 150.5% 1.5 4.8% 1.7 5.0%

N = 1200 3.9 238.6% 3.1 214.9% 1.7 20.9% 1.3 4.9%

N = 2400 3.8 303.2% 3.2 292.3% 1.5 11.8% 1.5 9.4%

N = 4800 3.8 355.7% 3.2 342.1% 1.6 14.2% 1.4 5.0%

N = 7200 3.9 140.5% 2.8 74.1% 1.9 26.3% 1.4 3.9%

N = 9600 3.6 55.5% 3.1 47.3% 1.8 25.0% 1.5 6.1%

Table V.13: Average rank and perent degradation from best for eah sheduling strategy for Jaobi

on the one-site testbed.

User Basi Stati Dynami

Rank Deg. Rank Deg. Rank Deg. Rank Deg.

N = 600 3.7 249.3% 2.7 159.4% 1.9 100.5% 1.7 23.3%

N = 4800 3.9 706.2% 3.1 577.4% 1.3 17.5% 1.7 5.8%

N = 9600 3.3 238.9% 3.2 174.1% 1.8 16.7% 1.7 16.8%

N = 14400 3.9 441.0% 2.8 93.7% 1.5 22.6% 1.8 8.3%

N = 16800 3.7 401.2% 2.5 26.4% 2.7 204.3% 1.1 0.6%

N = 19200 3.4 | 2.6 188.3% 1.3 0.1% 2.7 22.9%

Table V.14: Average rank and perent degradation from best for eah sheduling strategy for Jaobi

on the three-site testbed.

degradation from best for eah sheduling strategy and eah problem size for Jaobi on the one-site

testbed.

Figure V.13 presents a subset of the sheduling strategy omparison experiments performed for the

Jaobi appliation on the three-site testbed. In this set of experiments, appliation performane with

the user, basi, and stati strategies was highly variable as ompared to the results for the other three

appliation-testbed senarios. With the exeption of the �rst repetition, the dynami strategy resulted

in onsistent appliation iteration times. In Setion V.B we demonstrated that a greater fration of

iteration time was typially dediated to ommuniation for the Jaobi appliation on the three-site

testbed than for any other appliation-testbed senario. Variations in wide-area network performane

ould explain the appliation iteration time behavior of the user, basi, and stati strategies. This

explanation would suggest that the dynami strategy e�etively avoided wide-area links with degraded

performane. More experiments are needed to fully substantiate this hypothesis. Table V.14 reports

average rank and average degradation from best values for eah sheduling strategy for Jaobi on the

three-site testbed.

87

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15
N =600

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

User
Basic
Static
Dynamic

1 2 3 4 5 6 7 8 9 10
0

2

4

6
N =9600

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20
N =16800

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

Figure V.13: Jaobi iteration times for the user, basi, stati, and dynami sheduling strategies.

Experiments targeted the three-site testbed, problem sizes of 600, 9600, and 16800.

88

V.D.3 Summary

Our goal in this setion was to evaluate the eÆay of our sheduling methodology. In partiular,

we asked the following three questions in the beginning of the setion, repeated here for referene.

i. What is the impat of our sheduling methodology on appliation exeution times as ompared

to onventional sheduling approahes?

ii. What is the impat of appliation information availability on sheduler performane? Spei�ally,

(a) an this methodology develop reasonable shedules despite limited appliation information

and models, and (b) an this methodology take advantage of more sophistiated information and

models to promote appliation performane?

iii. How is appliation performane a�eted when dynami resoure information is available to our

sheduling methodology? Can the methodology develop reasonable shedules when only stati

resoure information is available?

To answer question (i), we introdued a user sheduling strategy and ompared its performane

to the basi, stati, and dynami strategies, eah of whih was based on a di�erent on�guration of

our sheduler design. We presented experimental results showing that the basi, stati, and dynami

strategies all onsistently outperformed the user strategy.

To answer question (ii), we ompared the performane of strategies that used our exeution time

+ memory usage model (the stati and dynami strategies) against the performane of strategies that

used only the memory usage model (user and basi strategies). On average, the stati and dynami

strategies outperformed the user and basi strategies for all appliation-testbed senarios, showing that

sheduler was able to utilize more sophistiated appliation performane models to promote appliation

performane. The onsistent performane advantage provided by the basi strategy as ompared to the

user strategy suggests that our sheduling methdology is able to develop reasonable shedules despite

limited appliation information and models.

To answer question (iii), we ompared the performane of strategies that used dynami resoure

availability information (the basi and dynami strategies) against strategies that used only stati

resoure information (the user and stati strategies). We found that, on average, the basi strategy

outperformed the user strategy and the dynami strategy outperformed the stati strategy, showing

that availability of dynami resoure availability information improved sheduler peroformane. Sine

the stati strategy onsistently outperformed the basi strategy, we onlude that performane model

89

sophistiation had a larger impat on appliation performane than did availability of dynami resoure

information.

V.E Sheduling overhead

A sheduler design is pratial only if the overhead of the sheduling proess is reasonable when

ompared to appliation exeution times. In previous setions of this hapter we have used appliation

iteration time as a performane metri and have therefore not investigated the overheads introdued

by the sheduler itself. In this setion we desribe results that quantify sheduler overhead. Reall

that our sheduler design onsists of two distint ativities: the olletion of Grid resoure information

(desribed in Setion III.C) and the searh for andidate shedules (desribed in Setion III.B). We

examine the ost of eah of these ativities as well as the total ost of sheduling. To quantify the ost

of Grid information olletion under di�erent information soure senarios, we inlude test senarios in

whih information is retrieved from the GrADS NWS, the GrADS MDS, the loal NWS nameserver,

and the loal MDS ahe; eah of these olletion mehanisms is desribed in Setion V.A.

Note that the ost of sheduling is not �xed; instead, it is dependent on a wide variety of fators

inluding, for example, problem run on�guration, the seleted testbed, the target appliation, the

omplexity of the hosen performane model and maper, and variable load on the GrADS MDS server

and NWS nameserver. For example, the ost of retrieving resoure information grows as the number

of resoures in the testbed and the ost of retrieving network information grows as the square of the

number of sites in the testbed. For the shedule searh proedure, the ost of sheduling inreases with

the number of resoures and the number of sites (beause the number of andidate shedules that must

be onsidered inreases) but it dereases as the amount of information about eah resoure dereases

(beause resoure sets with insuÆient resoure information are pruned from the searh spae).

V.E.1 Experimental design

Approah

We fous on two representative senarios whih provide a broad piture of sheduling overhead and

also demonstrate the general patterns that would be seen for other on�gurations. For both senarios

we use the Jaobi appliation and the sheduler is on�gured to use the exeution time + memory usage

model (see Setion IV.B). The testbed and problem size assumptions for eah senario are as follows.

90

� In senario 1 we target the one-site testbed and use a problem size of N = 4800.

� In senario 2 we target the three-site testbed and use a problem size of N = 14400.

To examine the ost of retrieving information from a variety of soures, we test eah of the following

Grid information soure modes for eah of senarios 1 and 2.

� In mode A Grid information is retrieved from the GrADS NWS nameserver and the GrADS MDS

server.

� In mode B Grid information is retrieved from the GrADS NWS nameserver and a loal MDS

ahe. For these experiments, the loal MDS ahe ontained all needed information (i.e. it was

fully warmed).

� In mode C Grid information is retrieved from the loal NWS nameserver and a fully warmed loal

MDS ahe.

Experimental Proedure

Experiments for eah sheduling senario (i.e. testbed - problem size ombination) were performed

independently. For eah senario, we ran the sheduler with eah of the three information soure modes

in a bak-to-bak manner; we ompleted 10 suh triplets. For eah run, we measured the time required

for the entire sheduling exeution (TotalT ime) and the time required for Grid information olletion

(ColletT ime); we onsider the ost for the shedule searh (SearhT ime) to be all sheduling time

that is not spent in information olletion: SearhT ime = TotalT ime� ColletT ime.

V.E.2 Results

One-site testbed, N = 4800

In this senario, the sheduler selets amongst mahines in the one-site testbed and the target

problem size is N = 4800. For referene, in our sheduling experiments for this testbed and problem

size, appliation iteration times were typially between 0.4 seonds and 2 seonds (0.4 seonds for the

dynami and stati mode shedulers, 2 seonds for the basi mode and user sheduling strategies). Sine

we ran 100 iterations in those experiments the appliation's iterative phase typially took between 40

and 200 seonds.

Figure V.14 presents all 10 repetitions of the experiments performed for this senario. The lower

hart presents the same dataset as the upper hart, but with an expanded y-axis to provide detail

91

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400
T

im
e
 (

s
e
c
)

Repetitions

Mode A Search
Mode A Collect
Mode B Search
Mode B Collect
Mode C Search
Mode C Collect

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

T
im

e
 (

s
e
c
)

Repetitions

Figure V.14: Summary of Grid information olletion and shedule searh times for the one-site testbed,

N = 4800. The upper graph shows the full y-sale; the lower graph shows the same data set with an

expanded y-sale.

92

Mode A Mode B Mode C

Collet Time, Average 186.6 13.8 0.27

Collet Time, StdDev. 54.5 4.0 0.01

Searh Time, Average 0.021 0.024 0.027

Searh Time, StdDev. 0.003 0.005 0.007

Total Time, Average 186.6 13.8 0.30

Total Time, StdDev. 54.5 4.0 0.01

Table V.15: Sheduling overhead times for the one-site testbed, N = 4800.

of smaller sheduling overheads. The full height of eah bar is the total sheduling overhead for that

information olletion mode; the lower, darker portion of eah bar (visible only in the lower hart) is

the searh time and the upper portion of eah bar is the ost of Grid information olletion. Table V.15

presents summary results over all 10 repetitions for the mean and standard deviation of the olletion

times, the shedule searh times, and the total sheduling time.

The ost of Grid information olletion is learly the primary sheduling overhead for all three

olletion modes. For an appliation that is expeted to run for roughly 40-200 seonds, the ost

of Grid information olletion in mode A is prohibitive and, in pratie, would likely prevent usage

of this sheduling methodology. The ost is also signi�ant for mode B, but is aeptable given the

performane advantages one ould expet to ahieve with our sheduling methodology. Notie that

information olletion times vary signi�antly aross repetitions for modes A and B; this is probably

due to (1) variations in wide-area network performane between the sheduler and the remote servers

and (2) variations in the load on the servers themselves. Finally, the overhead of information olletion

in mode C is very low. Overall, these results indiate that until retrieval times are redued for the

MDS, loal ahing of MDS information will be neessary. For this thesis, the information we retrieve

from the MDS hanges on the order of weeks or months so loal ahing is an aeptable solution. Sine

Grid information olletion times are reasonable for mode B, whih inludes aess to the GrADS NWS

nameserver, we onlude that usage of a remote NWS nameserver is a reasonable information olletion

strategy.

The ost of the shedule searh proess is quite low and it is less than 0.05 seonds for all

three olletion modes. This low searh time overhead is due to (1) the low omputational omplexity

of our exeution time model and mapping strategy and (2) the extensive searh pruning performed

during the searh proess. Notie that shedule searh times do vary somewhat aross repetitions and

information retrieval modes; this is likely due to the e�et that missing information has on the shedule

93

Mode A Mode B Mode C

Collet Time, Average 1087.5 59.6 2.0

Collet Time, StdDev. 303.3 3.9 0.7

Searh Time, Average 0.8 2.4 2.5

Searh Time, StdDev. 0.3 0.4 0.3

Total Time, Average 1088.4 62.1 4.5

Total Time, StdDev. 303.3 3.9 0.9

Table V.16: Sheduling overhead times for the three-site testbed, N = 14400.

searh proedure; eah information olletion mehanism an have di�erent information availabilities

and shedule searh spae pruning is partially based on information availability. When less resoure

information is available, the shedule searh proess an generally be expeted to take less time.

Three-site testbed, N = 14400

In this senario, the sheduler selets amongst mahines in the three-site testbed and the target

problem size is N = 14400. For referene, in our sheduling experiments for this testbed and problem

size, the four sheduling strategies typially ahieved appliation iteration times between 1.8 and 11

seonds. Sine we ran 100 iterations in those experiments the appliation's iterative phase oupied

180 to 1100 seonds.

Figure V.15 and Table V.16 present the results of experiments performed for this senario. Notie

that all sheduling overheads have inreased for this senario when ompared with the one-site senario.

Both Grid information olletion times and shedule searh times inreased in part beause this testbed

ontains over three times as many resoures and three times as many sites. Also notie that shedule

searh times are muh lower for mode A than for the other modes; this is beause the sheduler was

unable to retrieve some resoure harateristis from the GrADSMDS, thus leading to extensive pruning

of the searh spae. Overall, we see that the overhead for the searh proess is still quite low but that

the overhead of Grid information olletion is prohibitive for mode A. These results substantiate our

earlier laim that usage of a loal MDS ahe is neessary to provide sheduling with reasonably low

overhead.

V.E.3 Summary

In this setion we presented a quantitive evaluation of the overheads assoiated with our sheduling

methodology. We spei�ally examined the overhead of Grid information olletion and the shedule

searh proess itself. We found that the ost of the shedule searh proess is insigni�ant when

94

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500
T

im
e
 (

s
e
c
)

Repetitions

Mode A Search
Mode A Collect
Mode B Search
Mode B Collect
Mode C Search
Mode C Collect

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

T
im

e
 (

s
e
c
)

Repetitions

Figure V.15: Summary of Grid information olletion and shedule searh times for the three-site

testbed, N = 14400. The upper graph shows the full y-sale; the lower graph shows the same data set

with an expanded y-sale.

95

ompared with appliation exeution times. We also showed that the ost of resoure information

retrieval is reasonable when the information soure is the GrADS NWS, the loal NWS, or the loal

MDS ahe. On the other hand, Grid information olletion times are on the same order as appliation

exeution times when the remote GrADS MDS is utilized. Sine these overheads are unaeptable and

the information we retrieve from the MDS is relatively stati, we onlude that usage of a loal MDS

ahing mehanism is an appropriate alternative in the urrent GrADS testbed environment.

V.F Chapter summary

Our primary goal in this hapter was to investigate the impat of our sheduling methodology on

appliation performane. Sine our sheduling methodology is highly dependent on the availability of

an appliation performane model and mapping strategy, we presented a suite of experiments designed

to spei�ally test the appliation-spei� exeution time model and mapping strategies we developed

in Chapter IV. We onluded that our exeution time model provided reasonable predition auray,

and was able to orretly trak appliation performane trends. We also presented experiments that

veri�ed the utility of eah of our mapping strategies and showed that, on average, the time balane

mapper provided an appliation performane advantage when ompared to the equal alloation mapper.

After validating our appliation spei� exeution time model and mappers, we presented experi-

ments to test our sheduling strategy itself. In these experiments, we demonstrated that our sheduling

methodology provides a signi�ant performane advantage over a more onventional sheduling strat-

egy. We also showed that the sheduler is able to develop adequate shedules despite limited appliation

or resoure information, but that it is also able to take advantage of more sophistiated information to

promote appliation performane.

The last set of results that we presented tested the overhead assoiated with the sheduling proess

itself. We found that the overheads assoiated with the shedule searh proess and Grid information

olletion from the GrADS NWS, loal NWS, and loal MDS ahe are reasonable, while the ost of

information retrieval from a remote GrADS MDS server is unaeptable given typial run-times for our

appliations. We onluded that usage of a loal MDS ahing mehanism is an appropriate alternative

for the purposes of this thesis.

Chapter VI

Disussion

In this thesis we propose an adaptive, run-time sheduling methodology designed to promote the

performane of iterative, mesh-based appliations in Computational Grid environments. In this hapter

we present a �nal disussion of the thesis. Spei�ally, in Setion VI.A we summarize the thesis and

reiterate our �ndings. In Setion VI.B we desribe related work in the �eld of appliation sheduling.

Finally, in Setion VI.C we desribe possible extensions to our work.

VI.A Summary and �ndings

The sheduling design proposed in this thesis was developed in the ontext of the larger Grid

Appliation Development Software projet (GrADS). In Chapter II we desribed the design of the Grid

appliation development infrastruture, termed GrADSoft, proposed by the GrADS projet. We also

presented the spei�ation for the GrADSoft sheduler.

In Chapter III we presented a design for a sheduler framework that satis�es the GrADSoft sheduler

spei�ation and is the �rst prototype of a sheduler for the GrADSoft infrastruture. Our sheduler

design inorporates an \intelligent" shedule searh proedure that onsiderably prunes the searh spae

of possible resoure groups while ensuring that desirable resoure groups are not exluded. The sheduler

utilizes dynami and stati Grid resoure information to target shedules to the onditions of Grid

resoures at run-time. We also desribed a number of sheduling poliies that enable straightforward

on�guration of sheduler behavior. The sheduler framework presented in this hapter is appliation-

generi; it is designed to be oupled with an appliation-spei� performane model and mapping

strategy.

96

97

In the beginning of Chapter IV we desribed the general harateristis of iterative, mesh-based

appliations. Next, we desribed two suh appliations in detail (Jaobi and Game of Life) and pre-

sented a detailed performane analysis of eah appliation. We then developed two appliation-spei�

performane models, a memory usage model and an exeution time + memory usage model. We also

detailed two appliation-spei� mapping strategies, an equal alloation mapper and a time balane

mapper.

In Chapter V we presented experiments that demonstrated the eÆay of our sheduling method-

ology for realisti appliations, testbeds, and usage senarios. We took a two-fold validation approah.

First, we presented experiments that demonstrated the predition auray of our exeution time model

and the utility of eah of our mapping strategies. Seond, we de�ned four reasonable sheduling strate-

gies for our target appliations and environments, and then presented experiments that ompared the

appliation performane ahieved with eah sheduling strategy. We showed that our sheduler de-

sign provided signi�antly enhaned appliation performane as ompared to a onventional sheduling

strategy. We also demonstrated that our methodology was able to (1) take advantage of sophistiated

appliation and resoure information to promote appliation performane, and still (2) provide a reason-

able sheduling servie when only limited appliation and resoure information was available. Finally,

we presented experiments to examine the overheads assoiated with the sheduling proess itself. We

found that the overhead of our shedule searh proess was nominal, and that overheads assoiated with

Grid information olletion were, for the most part, also aeptable. We found the overheads assoiated

with the retrieval of data from a remote MDS to be unaeptable for the needs of run-time appliation

sheduling; we observed that usage of a loal MDS ahe was a reasonable solution for our purposes.

VI.B Related work

Many of the strategies utilized by our sheduling design are based upon experiene gained in pre-

vious Appliation-Level Sheduling (AppLeS) e�orts [9, 10, 12, 48, 50℄. Two of these e�orts targeted

struturally similar appliations and are therefore partiularly relevant [9, 12℄. The �rst foused on

the sheduling of a Jaobi solver for the �nite-di�erene approximation to Poisson's equation [9℄. The

seond e�ort foused on sheduling of a parallel magnetohydrodynamis simulation (PMHD3D), whih

is also lassi�ed as an iterative, mesh-based appliation [12℄. Eah of these e�orts demonstrated signi�-

ant improvements in appliation performane as ompared to onventional sheduling e�orts. For the

design presented in this thesis, we drew on the experienes gained in these e�orts. There are a number

98

of novel aspets to the urrent work.

� Our sheduler design provides a separation of the appliation-generi sheduling mehanisms from

appliation-spei� performane models and mappers; we expet the sheduler will be more easily

targeted to new appliations that the Jaobi and PMHD3D shedulers.

� Our shedule searh proedure is based on a more general heuristi that we believe is more likely

to disover all desirable resoure sets.

� Our design has been thoroughly tested on both a loal-area network of workstations and a het-

erogeneous Computational Grid inluding wide-area links; eah of the previous e�orts targeted

resoures at a single site.

Another related e�ort is Prophet, a run-time sheduling system designed for parallel appliations

written in the Mentat programming language [53, 52℄. This sheduling system is similar to our work in

that it exploits appliation struture and system resoure information to promote appliation perfor-

mane. Prophet was demonstrated for both SPMD appliations and appliations based on task-parallel

pipelines; the sheduler design was tested in heterogeneous, loal-area environments. If possible, we

would like to ompare the performane of our strategies to those of Prophet, though it may be diÆult

to �nd a suitable senario for omparison that satis�es the requirements of eah sheduling strategy.

For example, Prophet requires the target appliation be written in Mentat and we have not used Mentat

in our e�orts.

There are a number of additional sheduling projets that are notable for targeting a variety of

appliations or an entire appliation lass [10, 42, 52, 1, 46℄. Many of these e�orts fous on embarrass-

ingly parallel or master-slave appliations whih do not have signi�ant ommuniation osts [10, 1, 46℄.

We desribe seleted projets that fous on appliation lasses that involve signi�ant ommuniation

osts.

The Prophet sheduling system is also a notable example of a sheduler design that targets a variety

of appliations [53, 52℄. Prophet requires modi�ation of appliation soure ode and has not been tested

in the wide-area. As mentioned earlier, a performane omparison of the two strategies would be quite

interesting.

Another projet of interest is the Condor mathmaking system [42℄. In the mathmaking system,

users speify the resoure requirements of their appliation to the system, resoure providers similarly

speify the apabilities of their resoures, and a entralized mathmaker is used to math appliation

99

resoure requirements with appropriate resoures. This design is quite general and an therefore be

applied to many di�erent types of appliations. The mathmaking strategy, while more general that

the sheduler presented in this thesis, di�ers in that it is primarily a resoure disovery mehanism and

is not able to provide detailed shedule development.

VI.C Future work

We plan to extend our work to support other appliations and other appliation lasses. For

appliations that share the broad appliation resoure requirements desribed in Chapter III.A, our

design should be diretly appliable. We plan to verify this assertion by testing our methodology for

additional appliations; for eah appliation, an appliation-spei� performane model and mapping

strategy will be required. To support ases where appliation performane is heavily dependent on the

seletion of several distint resoure groups, our design must be extended. In partiular, we will modify

the searh proedure to independently searh for resoures to satisfy eah resoure group requirement.

In this modi�ation we will need to ensure that resoures seleted to satisfy one group requirement are

exluded from the searh for other group requirements.

Another diretion in whih our work ould be extended involves the type of appliation information

and models used by our sheduling methodology. For the purposes of this thesis, we designed and built

the appliation performane models and mapping strategies. However, if Grid appliation development

is to be aessible to a larger number of users, then we annot expet suh users to provide detailed

performane models and mapping strategies. Reognizing this, other members of the GrADS researh

ommunity are investigating the feasibility of ompiler generation of appliation information and per-

formane models [29℄ as well as the inlusion of suh models in Grid-enabled libraries [29, 37℄. As this

work matures we are interested in experimenting with the usage of suh models for appliation shedul-

ing. These models may not be equational in form; in this ase we will need to extend our methodology

to support additional performane model types.

Bibliography

[1℄ David Abramson, Jon Giddy, and Lew Kotler. High performane parametri modeling with Nim-

rod/G: Killer appliation for the global Grid? In International Parallel and Distributed Proessing

Symposium, May 2000.

[2℄ Ammar H. Alhusaini, Vitor K. Prasanna, and C.S. Raghavendra. A uni�ed resoure sheduling

framework for heterogeneous omputing environments. In Proeedings of the 8th Heterogeneous

Computing Workshop, April 1999.

[3℄ Gabrielle Allen, David Angulo, Ian Foster, Gerd Lanfermann, Chuang Liu, Thomas Radke, Ed Sei-

del, and John Shalf. The Catus Worm: Experiments with dynami resoure disovery and alloa-

tion in a grid environment. International Journal of High Performane Computing Appliations,

15(4):345{358, 2001.

[4℄ AppleSeeds website at http://gridlab.usd.edu/appleseeds.

[5℄ Mohammad Banikazemi, Jayanthi Sampathkumar, Sandeep Prabhu, Dhabaleswar K. Panda, and

P. Sadayappan. Communiation modeling of heterogeneous networks of workstations for perfor-

mane haraterization of olletive operations. In Proeedings of the 8th Heterogeneous Computing

Workshop, April 1999.

[6℄ Rihard Barrett, Mihael W. Berry, Tony F. Chan, James Demmel, June Donato, Jak Dongarra,

Vitor Eijkhout, Roldan Pozo, Charles Romine, and Henk van der Vorst. Templates for the Solution

of Linear Systems: Building Bloks for Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA,

1994.

[7℄ Fran Berman, Andrew Chien, Keith Cooper, Jak Dongarra, Ian Foster, Dennis Gannon, Lennart

Johnsson, Ken Kennedy, Carl Kesselman, John Mellor-Crummey, Dan Reed, Linda Torzon, and

Rih Wolski. The GrADS Projet: Software support for high-level Grid appliation development.

International Journal of Superomputer Appliations, 15(4):327{344, 2001.

[8℄ Franine Berman. The Grid: Blueprint for a New Computing Infrastruture, hapter 12: High-

Performane Shedulers, pages 279{309. Morgan Kaufmann Publishers, In., 1999.

[9℄ Franine Berman, Rihard Wolski, Silvia Figueira, Jennifer Shopf, and Gary Shao. Appliation

level sheduling on distributed heterogeneous networks. In Proeedings of Superomputing, Novem-

ber 1996.

[10℄ Henri Casanova, Graziano Obertelli, Franine Berman, and Rih Wolski. The AppLeS Parameter

Sweep Template: User-level middleware for the Grid. In Proeedings of Superomputing, November

2000.

100

101

[11℄ Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. Grid information servies for

distributed resoure sharing. In Proeedings of the 10th IEEE Symposium on High-Performane

Distributed Computing, August 2001.

[12℄ Holly Dail, Graziano Obertelli, Franine Berman, Rih Wolski, and Andrew Grimshaw.

Appliation-aware sheduling of a magnetohydrodynamis appliation in the Legion Metasystem.

In Proeedings of the 9th Heterogenous Computing Workshop, May 2000.

[13℄ Steven Fitzgerald, Ian Foster, Carl Kesselman, Gregor von Laszewski, Warren Smith, and Steven

Tueke. A diretory servie for on�guring high{performane distributed omputations. In Pro-

edings of the 6th IEEE Symposium on High-Performane Distributed Computing, August 1997.

[14℄ Gary W. Flake. The Computational Beauty of Nature: Computer Explorations of Fratals, Chaos,

Complex Systems, and Adaptation. MIT Press, Cambridge, MA, 1998.

[15℄ Ian Foster. Designing and Building Parallel Programs, hapter 2. Addison-Wesley, 1995. Available

at http://www-unix.ms.anl.gov/dbpp.

[16℄ Ian Foster, Jonathan Geisler, William Gropp, Niholas Karonis, Ewing Lusk, George Thiru-

vathukal, and Steven Tueke. Wide-area implementation of the Message Passing Interfae. Parallel

Computing, 24(12):1735{1749, 1998.

[17℄ Ian Foster and Niholas T. Karonis. A Grid-enabled MPI: Message passing in heterogeneous

disributed omputing systems. In Proeedings of Superomputing Conferene, November 1998.

[18℄ Ian Foster and Carl Kesselman. The Globus Projet: A status report. In Proeedings of the 7th

Heterogeneous Computing Workshop, 1998.

[19℄ Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing Infrastruture.

Morgan Kaufmann Publishers, In., 1999.

[20℄ Ian Foster, Carl Kesselman, and Steven Tueke. The Anatomy of the Grid: Enabling salable

virtual organizations. International Journal of Superomputer Appliations, 15(3):200{222, 2001.

[21℄ Geo�rey C. Fox, Roy D. Williams, and Paul C. Messina. Parallel Computing Works! Morgan

Kaufmann, San Franiso, CA, 1994. Available at http://www.npa.syr.edu/pw.

[22℄ Globus webpage at http://www.globus.org.

[23℄ Grid Appliation Development Software Projet webpage at http://hipersoft.s.rie.edu/

grads.

[24℄ GrADSoft Prototype webpage at http://gridlab.usd.edu/~grads/GrADSoft_htmldo.

[25℄ Andrew Grimshaw, Adam Ferrari, Frederik Knabe, and Marty Humphrey. Wide-Area Computing:

Resoure sharing on a large sale. IEEE Computer, 32(5):29{37, May 1999.

[26℄ Mark Gritter and David R. Cheriton. An arhiteture for ontent routing support in the internet.

In Proeedings of USENIX USITS, Marh 2001.

[27℄ William Gropp, Ewing Lusk, N. Doss, and A. Skjellum. A high-performane, portable imple-

mentation of the MPI message passing interfae standard. Parallel Computing, 22(6):789{828,

1996.

102

[28℄ William D. Gropp and Ewing Lusk. User's guide for MPICH, a portable implementation of MPI.

Mathematis and Computer Siene Division, Argonne National Laboratory, 1996. ANL-96/6.

[29℄ Ken Kennedy, Bradley Broom, Keith Cooper, Jak Dongarra, Rob Fowler, Dennis Gannon, Lennart

Johnsson, John Mellor-Crummey, and Linda Torzon. Telesoping languages: A strategy for

automati generation of sienti� problem-solving systems from annotated libraries. Journal of

Parallel and Distributed Computing. Aepted for Publiation.

[30℄ Ken Kennedy, Mark Mazina, Ruth Aydt, Celso Mendes, Holly Dail, and Otto Sievert. GrADSoft

and its Appliation Manager: An exeution mehanism for Grid appliations. GrADS Projet

Working Doument V, available at http://hipersoft.s.rie.edu/grads/publiations_

reports.htm, Ot 2001.

[31℄ Balahander Krishnamurthy and Jia Wang. On network-aware lustering of web lients. In Pro-

eedings of ACM SIGCOMM, August 2000.

[32℄ Yu-Kwong Kwok and Ishfaq Ahmad. Benhmarking and omparison of the task graph sheduling

algorithms. Journal of Parallel and Distributed Computing, 59(3):381{422, 1999.

[33℄ Linear Programming FAQ webpage at http://www-unix.ms.anl.gov/ot/Guide/faq/

linear-programming-faq.html.

[34℄ Mihael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor|a hunter of idle workstations. In

Proeedings of the 8th International Conferene on Distributed Computing Systems, June 1988.

[35℄ lp solve FTP site at ftp://ftp.es.ele.tue.nl/pub/lp_solve.

[36℄ Nany Miller and Peter Steenkiste. Colleting network status information for network-aware ap-

pliations. In INFOCOM'00, Marh 2000.

[37℄ Dragan Mirkovi, Rishad Mahasoom, and Lennart Johnsson. An adaptive software library for fast

fourier transforms. In Proeedings of the 2000 International Conferene on Superomputing, 2000.

[38℄ MPI Forum webpage at http://www.mpi-forum.org.

[39℄ MPICH-G webpage at http://www.niu.edu/mpi.

[40℄ Network Weather Servie webpage at http://nws.s.utk.edu.

[41℄ Peter S. Paheo. Parallel Programming With MPI, hapter 10, pages 218{225. Morgan Kaufmann

Publishers, In., San Franiso, CA, seond edition, 1997.

[42℄ Rajesh Raman, Miron Livny, and Marvin Solomon. Mathmaking: Distributed resoure man-

agement for high throughput omputing. In Proeedings of the 7th IEEE Symposium on High-

Performane Distributed Computing, July 1998.

[43℄ Jennifer M. Shopf and Franine Berman. Performane predition in prodution environments.

In Proeedings of the 12th International Parallel Proessing Symposium and 9th Symposium on

Parallel and Distributed Proessing, 1998.

[44℄ Gary Shao, Fran Berman, and Rih Wolski. Using E�etive Network Views to promote distributed

appliation performane. In Proeedings of the 1999 International Conferene on Parallel and

Distributed Proessing Tehniques and Appliations, 1999.

103

[45℄ Gary Shao, Rih Wolski, and Fran Berman. Prediting the ost of redistribution in sheduling. In

Proeedings of the 8th SIAM Conferene on Parallel Proessing for Sienti� Computing, 1997.

[46℄ Gary Shao, Rih Wolski, and Franine Berman. Master/slave omputing on the Grid. In Proeed-

ings of the 9th Heterogenous Computing Workshop, May 2000.

[47℄ Shava Smallen, Henri Casanova, and Franine Berman. Applying sheduling and tuning to on-line

parallel tomography. In Proeedings of Superomputing Conferene, November 2001.

[48℄ Shava Smallen, Walfredo Cirne, Jaime Frey, Franine Berman, Rih Wolski, Mei-Hui Su, Carl

Kesselman, Steve Young, and Mark Ellisman. Combining workstations and superomputers to

support Grid appliations: The parallel tomography experiene. In Proeedings of the 9th Het-

erogenous Computing Workshop, May 2000.

[49℄ Neil Spring and Rih Wolski. Appliation level sheduling of gene sequene omparison on meta-

omputers. Proeedings of the 12th ACM International Conferene on Superomputing, July 1998.

[50℄ Alan Su, Franine Berman, Rihard Wolski, and Mihelle Mills Strout. Using AppLeS to shedule

simple SARA on the Computational Grid. International Journal of High Performane Computing

Appliations, 13(3):253{262, 1999.

[51℄ Frederik Vraalsen, Ruth A. Aydt, Celso L. Mendes, and Daniel A. Reed. Performane Contrats:

Prediting and monitoring grid appliation behavior. In Proeedings of the 2nd International

Workshop on Grid Computing, Nov 2001.

[52℄ Jon Weissman. Prophet: Automated sheduling of SPMD programs in workstation networks.

Conurreny: Pratie and Experiene, 11(6), 1999.

[53℄ Jon Weissman and Xin Zhao. Sheduling parallel appliations in distributed networks. Journal of

Cluster Computing, 1(1):109{118, 1998.

[54℄ H.P. Williams. Model Building in Mathematial Programming. Wiley, Chihester, New York,

seond edition, 1995.

[55℄ Rih Wolski. Dynamially foreasting network performane using the Network Weather Servie.

Journal of Cluster Computing, 1:119{132, January 1998.

[56℄ Rih Wolski, James S. Plank, John Brevik, and Todd Bryan. Analyzing market-based resoure

alloation strategies for the omputational Grid. International Journal of High Performane Com-

puting Appliations, 15(3):258{281, 2001.

[57℄ Rih Wolski, Neil Spring, and Chris Peterson. Implementing a performane foreasting system

for metaomputing: The Network Weather Servie. In Proeedings of Superomputing Conferene,

November 1997.

[58℄ Rih Wolski, Neil T. Spring, and Jim Hayes. The Network Weather Servie: A distributed resoure

performane foreasting servie for metaomputing. The Journal of Future Generation Computing

Systems, 15(5-6):757{768, 1999.

