UC San Diego

Technical Reports

Title
A Modular Framework for Adaptive Scheduling in Grid Application

Permalink
https://escholarship.org/uc/item/6h18n29x

Author
Dail, Holly

Publication Date
2002-01-18

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6h18n29x
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Modular Framework for Adaptive Scheduling in

Grid Application Development Environments

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science in

Computer Science

Holly Janine Dail

Committee in charge:
Professor Francine Berman, Chair

Professor Jeanne Ferrante
Professor Keith Marzullo

2002



Copyright
Holly Janine Dail, 2002

All rights reserved.



The thesis of Holly Janine Dail is approved:

Chair

University of California, San Diego

2002

iii



To my parents.

v



II

ITI

v

TABLE OF CONTENTS

Signature Page . . . . . . . . iii
Dedication . . . . . . . . L e e e e e iv
Table of Contents . . . . . . . . . . . e e e e e e e %
List of Tables . . . . . . o . o L e vii
List of Figures . . . . . . . . o L e e viii
Acknowledgements . . . . . . .. L ix
Abstract . . . . . . e X
Introduction . . . . . . . oL e e e 1
Background . . . . . L oL 4
A. GrADSoft . . . e )
B. GrADSoft scheduler specification . . . . . . . ... ... .. ... e 7
1. Inputs . . . . . o e 7
2. Scheduler output . . . . ... 10
C. Current status . . . . . . . . . L e e e 11
D. Chapter summary . . . . . . . . . . o o e e e e e e e e e e 11
Scheduling methodology . . . . . . . . . . e 13
A. Scope and definitions . . . . . ... L 14
1. Scheduling assumptions . . . . . . . . . .. Lo e e 14
2. Scheduling definitions . . . . . . . . . ... L L 17
B. Scheduler design . . . . . . . ... 18
1. Search Procedure . . . . . . . . . . . . . . e 18
2. Search methods . . . . . . . . .. 22
C. Grid information . . . . . . . . . . e e e 24
1. Information sources . . . . . . . . . . . . e e e e 26
2. Scheduler Grid information requirements . . . . . . . . . ... L0000 27
D. Scheduling policies . . . . . . . . . L 28
E. Chapter summary . . . . . . . . . . o L e e e e e e e e 29
Iterative, mesh-based applications . . . . . . . . . . .. ... L o 30
A. Application characteristics . . . . . . . . .. 30
1. Gameof Life . . . . . . . o . o e 31
2. Jacobi ... e e e e e 34
B. Application performance modeling . . . . . . . ... ... L 35
1. Memory usage model . . . . . . . . . 37
2. Execution timemodel . . . . . ... 39
C. Mapper . . . . . . e 44
1. Equal allocation mapper . . . . . . . . . . . . e 45
2. Time balance Mapper . . . . . . . . . . L e e e 46



VI

D. Chapter summary . . . . . . . . . . L e e e e e e e 49

Experiments . . . . . . . .. e e e e e e 50
A. Experimental methodology . . . . . . . . . ... 51
1. Testbeds . . . . . . . L 51
2. Software requirements . . . . . .. ... L L e 52
3. Grid information services . . . . . . ... L e e 52
4. Timing methodology . . . . . . . . . . . . . 53
B. Performance model validation . . . . . .. .. ... 0 o o 54
1. Experimental design . . . . . . .. . ... .. 95
2. Results . . . . . o e e e 56
. SUmMmary . . ... . e 65
C. Mapper validation . . . . . . . . .. L e 65
1. Experimental design . . . . . . . . . .. L 66
2. Results . . . . . o 67
3. Summary . . ... e e 73
D. Scheduler validation . . . . . . . . . .. e 73
1. Experimental design . . . . . . . . . .. Lo 74
2. Results . . . . . o 78
3. Summary . . ... e e e 88
E. Scheduling overhead . . . . . . . . ... 89
1. Experimental design . . . . . . . . . .. L 89
2. Results . . . . . o 90
. SUmMmary . . . ... e e 93
F. Chapter summary . . . . . . . . . . L e e e e e e e 95
Discussion . . . . . . . . L e e e e e e e e e 96
A. Summary and findings . . . . ... 96
B. Related work . . . . . . . . . 97
C. Future work . . . . . . . L e 99
Bibliography . . . . . . . oL e e e 100

vi



III.1

Iv.i1
IvV.2

V.1
V.2
V.3
V.4
V.5
V.6
V.7
V.8
V.9
V.10
V.11
V.12
V.13
V.14
V.15
V.16

LIST OF TABLES

Configurable scheduling policies. . . . . . . . ... .. ... ... ... . ... 28
Summary of Game of Life variables . . . . . . . . .. .. oo oo 34
Summary of Jacobi variables . . . . . . ... oL Lo 35
Testbed resource characteristics . . . . . . . . . . .. L o Lo o1
Prediction error summary for Game of Life, one-site testbed . . . . . . .. ... .. .. 59
Prediction error summary for Game of Life, three-site testbed . . . . . . . ... .. .. 61
Prediction error summary for Jacobi, one-site testbed . . . . . ... ..o 63
Prediction error summary for Jacobi, three-site testbed . . . . . . . .. .. ... 63
Mapper comparison for Game of Life, one-site testbed . . . . . . . . .. ... 68
Mapper comparison for Game of Life, three-site testbed . . . . . . . .. .. .. ... .. 69
Mapper comparison for Jacobi, one-site testbed . . . . . ... ... ... ..., 72
Mapper comparison for Jacobi, three-site testbed . . . . . . . ... ... ... ..... 72
Summary degradation from best statistics for each scheduling strategy . . ... .. .. 82
Scheduling strategy performance, Game of Life, one-site testbed . . . . . . . .. .. .. 83
Scheduling strategy performance, Game of Life, three-site testbed . . . . . . .. .. .. 83
Scheduling strategy performance, Jacobi, one-site testbed . . . . . . . . .. ... 86
Scheduling strategy performance, Jacobi, three-site testbed . . . . . . . . . ... .. .. 86
Scheduling overhead times for the one-site testbed, N = 4800. . . . .. ... ... ... 92
Scheduling overhead times for the three-site testbed, N = 14400. . ... ... ... .. 93

vil



II.1

III.1
I11.2
IT1.3
I11.4

Iv.i1
IvV.2
IvV.3
IvV.4
IvV.5

V.1
V.2
V.3
V.4
V.5
V.6
V.7
V.8
V.9
V.10
V.11
V.12
V.13
V.14
V.15

LIST OF FIGURES

GrADSoft Architecture . . . . . . . ... L 5
Computational Grid example . . . . . . . . ... Lo oL 16
Scheduler design . . . . . . . . . L e 19
Schedule search procedure . . . . . . . . . . . . e e e e 21
Schedule comparison without an execution time model . . . . .. ... ... ... ... 25
Game of Life . . . . . . . . e 32
Game of Life application pseudo-code . . . . . . . . . .. ..o 33
Jacobi application pseudo-code . . . . . . . ... L 36
Game of Life communication cost calculation. . . . . .. .. ... ... ..., 42
Binomial tree example . . . . ... 43
Game of Life execution time model validation, one-site testbed . . . . . . . ... .. .. o7
Game of Life execution time model validation, three-site testbed . . . . . . . . . .. .. 60
Jacobi execution time model validation, one-site testbed . . . . . . .. ... ... ... 62
Jacobi execution time model validation, three-site testbed . . . . . .. .. .. ... .. 64
Game of Life mapper experiments, three-site, N =4500. . . . . . . .. ... ... ... 67
Jacobi mapper experiments, one-site, N =4800 . . . . .. . ... ... ... ... ... 71
Summary of scheduling strategies . . . . . . ... ... ... .. o oL 77
Average ranks for each scheduling strategy . . . . .. .. ... ... ... . ... 79
Average percent degradation from best for each scheduling strategy . . . . . . ... .. 79
Game of Life scheduling strategy comparisons, one-site testbed . . . . . . . ... .. .. 81
Game of Life scheduling strategy comparisons, three-site testbed . . . . . . . . . .. .. 84
Jacobi scheduling strategy comparisons, one-site testbed . . . . . . ... ... ... .. 85
Jacobi scheduling strategy comparisons, three-site testbed . . . . . ... ... ... .. 87
Scheduling cost, one-site testbed, N =4800 . . . ... ... ... ... ... 91
Scheduling overheads, three-site testbed, N = 14400 . . . . . . .. . .. ... ... ... 94

viii



ACKNOWLEDGEMENTS

This work has provided me with the opportunity to interact with and learn from many wonderful
people. I would like to make special mention of the following people and institutions, without whom
this work would not have been possible.

Fran Berman, my advisor, for her guidance and encouragement. She has been a wonderful role
model and I have learned much from her.

Henri Casanova, my co-advisor, who provided the perfect combination of insight, inspiration, and
encouragement. He has been exceptionally generous.

Jeanne Ferrante and Keith Marzullo, my committee members, for their guidance throughout my
time at UCSD, and for providing insightful feedback on the thesis itself.

Alan Su and Shava Smallen for their support when things were most frustrating, willingness to
answer any and all questions, and for careful reviews of the thesis.

Otto Sievert and Graziano Obertelli who worked with me on the GrADS project. Our discussions
taught me many things and led to the formulation of this thesis.

Jim Hayes for software engineering advice and for developing practically unbreakable software tools
to assist research efforts such as this one and Renata Teixeira for sharing her networking expertise with
me.

All those responsible for maintaining the GrADS testbed environment, on which the experiments in
this thesis were performed. I am especially grateful to the Innovative Computing Laboratory at UTK
for usage of the torc machines, the Pablo group at UTUC for usage of the opus and major machines,
Martin Swany for assistance with NWS-related questions, and Sridhar Gullapalli for assistance with
MDS-related questions.

Finally, I would like to thank all members of the GrADS research community. I would especially like
to thank Mark Mazina and John Mellor-Crummey for, among other things, their interest in exploring
compiler / scheduler interactions. I would also like to thank Ruth Aydt, who has provided many
insightful comments at every stage.

This material is based upon work supported by the National Science Foundation under Grant No.
9975020. Any opinions, findings, and conclusions or recommendations expressed in this material are

those of the author and do not necessarily reflect the views of the National Science Foundation.

1X



ABSTRACT OF THE THESIS

A Modular Framework for Adaptive Scheduling in

Grid Application Development Environments

by

Holly Janine Dail
Master of Science in Computer Science
University of California, San Diego, 2002

Professor Francine Berman, Chair

To achieve improved performance, application schedulers are typically designed to satisfy the re-
source requirements of specific applications. Consequently, application characteristics and models are
often embedded in the scheduler itself. Results have shown that this strategy is effective for achieving
improved application performance. However, application-specific schedulers may not be easily retar-
geted for other applications. In this thesis, we propose a modular application scheduler design that
employs detailed application performance models and mapping strategies that promote application
performance, but does not embed such components within the scheduler itself.

Our scheduler is both environment-sensitive and configurable. To ensure that schedules are properly
targeted for conditions of the target execution environment at run-time, the scheduler can incorporate
dynamic resource availability in scheduling decisions. The scheduler also supports a set of configurable
scheduling policies that are easily tuned to control scheduler behavior.

We implement a prototype scheduler and use the class of iterative, mesh-based applications to
test the prototype. We implement two test applications, Jacobi and the Game of Life, and develop
performance models and mapping strategies for each application. We present experimental results we
obtained by applying our scheduling methodology to Jacobi and the Game of Life in Computational
Grid environments. Our testbeds included up to 20 machines organized in 4 clusters at 3 geographically
distributed sites. In these experiments, our approach consistently outperforms conventional scheduling

approaches.



Chapter I

Introduction

With vast improvements in wide-area network performance and the pervasiveness of commodity
resources, distributed parallel computing can benefit from an increasingly rich computational platform.
Focused development efforts have been successful in targeting important scientific applications for dis-
tributed groups of resources. The majority of these projects have involved large time investments and
have required extensive support by distributed computing experts.

In recent years, several large-scale software infrastructure projects [18, 25, 34] have focused on sim-
plifying the usage of distributed, heterogeneous computational platforms, or Computational Grids [19,
20]. Such Grid computing software helps reduce programmer effort, and can improve application per-
formance. However, these efforts generally do not focus on the specific needs of applications; to achieve
acceptable performance on the Grid, users must consider the needs of their application and adapt
their usage of Grid computing software accordingly. For example, in a typical application development
scenario, users are currently obliged to discover available resources, select an application-appropriate
subset of these resources, perform staging of binaries on selected machines, and may even need to
perform some application monitoring to determine if the application is making progress. For these
reasons, Grid application development remains a daunting proposition for the majority of users who
could benefit from the extensive resources offered by Computational Grids.

The obvious alternative is to develop software that frees the user of these responsibilities. Appli-
cation scheduling is one area in which significant progress has been made towards the simplification
of application development for the Grid; see [8] for a survey of progress in this area. Application
schedulers typically manage discovery of available resources, selection of an application-appropriate

resource group, and mapping of application tasks or data to those resources. To effectively provide



these services, schedulers must evaluate the target Grid resource environment in terms of the require-
ments of the application itself. Many projects have successfully developed scheduling strategies for the
Grid [1, 2, 12, 42, 48, 49, 50, 52, 53] While these schedulers do consider application requirements, the
majority of such efforts embed application-specific details in the scheduling software itself; components
that are commonly embedded include application-specific performance models and strategies for map-
ping application data or tasks to selected resources. This strategy can result in effective service for
specific applications, but the scheduler design may not be easily retargeted for other applications.

In this thesis, we present a modular scheduling framework that allows the scheduler to utilize de-
tailed application performance models and mapping strategies, but does not embed these components
in the scheduler itself. Our approach is based on an application-independent scheduler framework that
is coupled with an application-specific performance model and mapping strategy to create a service that
effectively develops schedules appropriate to the needs of the target application. This approach provides
a flexible scheduler that can be easily targeted to a variety of applications. Note that we do not expect
to achieve the performance of a scheduler that has been highly-tuned for a specific application; instead,
our goal is to provide consistently improved performance as compared to conventional scheduling strate-
gies. To develop schedules that appropriately utilize available resources, the scheduler considers the
characteristics of the target Grid environment. To do this, Grid resource characteristics are retrieved
at run-time and automatically incorporated in scheduling decisions. We focus on the class of itera-
tive, mesh-based applications as a challenging, yet tractable test case for Grid application scheduling.
In particular, this class of applications demonstrates relatively predictable performance, making the
scheduling problem tractable, yet these applications typically involve interesting communication pat-
terns, thus making the scheduling problem challenging. Furthermore, this class is an important class
of applications for science and engineering codes. In summary,

In this thesis we propose and prototype a modular, adaptive scheduling methodology designed
to promote application performance in Computational Grid environments. We use the class

of iterative, mesh-based applications as a test case, and demonstrate the efficacy of our
scheduling approach in production Grid environments for realistic usage scenarios.

This work was performed in the context of the larger Grid application development framework pro-
posed by the Grid Application Development Software Project (GrADS) [7]. The GrADS project seeks
to simplify all aspects of Grid application development, and is building software designed to provide
an end-to-end application development system for the Grid. These efforts provide new challenges and

opportunities for the development of Grid application scheduling strategies, and thus is an interest-



ing framework for this thesis. The scheduler described in this thesis is the first prototype scheduling
component developed for the GrADS software infrastructure.

This thesis is organized as follows. We describe the application development software architecture
proposed by the GrADS project in Chapter II. We also detail the scheduler specification proposed
as part of this software architecture. In Chapter III we present the design of our application-generic
scheduling framework. In Chapter IV we describe the characteristics of iterative, mesh-based applica-
tions; we then detail two specific test applications from this class; and finally we develop an application-
specific performance model and mapping strategy that can be paired with our scheduler framework to
provide scheduling for our test applications. In Chapter V, we present experimental results we obtained
when applying our scheduling methodology to real applications and real Computational Grid environ-
ments. Finally, in Chapter VI we describe related work in the field of application scheduling, consider

directions for interesting future work, and we present final conclusions.



Chapter 11

Background

One of the largest roadblocks to everyday usage of Computational Grids is the extensive expertise
and development time that must be invested in each application before acceptable performance can be
achieved. Development of a distributed, Grid-enabled application typically requires a complex and time-
consuming process of application creation (or modification), compilation, resource discovery, selection
of resources, staging of binaries and data files, execution, and post-mortem analysis. When application
performance is critical, many cycles of the development process may be required.

The Grid Application Development Software Project (GrADS) [7, 23] has proposed an ambitious
alternative: replace the discrete, user-controlled stages of application preparation and execution with
an end-to-end software-controlled process. Our goal is to provide tools that enable the user to focus
only on high-level application design without sacrificing application performance. Existing Grid mid-
dleware products [18, 25, 34] provide some services required by this system, but are not sufficient.
Thus, a primary goal of the GrADS project is to develop new technologies for Grid application
development and execution. For example, members of the GrADS project are developing software

components to provide
e discovery and communication of Grid resource characteristics;
e discovery and communication of application characteristics and run-time requirements;
e run-time application monitoring and processing of application performance data; and

e automatic decision processes to provide adaption to application requirements, Grid characteristics,

and user policies.



These new technologies can be used in conjunction with existing solutions to provide the individual
services needed to simplify application development for the Grid. However, to enable adaptive and
performance-oriented Grid computing, these individual tools must be able to communicate and, more
importantly, collaborate. Therefore, another primary goal of the GrADS project is to develop a unify-
ing system architecture that provides the user with a comprehensive software solution to application
preparation and execution.

In Section II.A, we describe GrADSoft, the first version of the GrADS system architecture. Sec-
tion II.B, details the GrADSoft SCHEDULER component specification. In Section II.C we describe the

current status of the GrADSoft architecture and in Section II.D we summarize the chapter.

II.LA GrADSoft

Figure II.1 provides a high-level view of the GrADSoft system architecture [30]. The goal in this
system design is to clearly specify the services provided by each component as well as the interfaces
that components should support. The component design provides the flexibility necessary to support

a variety of application preparation and execution scenarios.

Performance
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Figure II.1: GrADSoft Architecture.

Since our focus in this thesis is on Grid application scheduling, we are interested primarily in



describing the scheduling component of GrADSoft. To understand the role played by the GRADSOFT
SCHEDULER, it is useful to understand how all of the components diagrammed in Figure II.1 might
coordinate to provide a continuous program preparation and execution system. We therefore describe
one proposed GrADSoft component interaction scenario. Additional component details and alternative
scenarios are described in [30].

As shown in Figure II.1, there are two clear subsystems to the GrADSoft architecture:

e The Program Preparation System (PPS) handles off-line application-development, composition,

and compilation.

e The Program Execution System (PES) provides on-line resource discovery, scheduling, binding,

and application performance monitoring.

We discuss each of these subsystems in turn.
PPS

To begin the development process, the user interacts with a high-level interface called a PROBLEM
SOLVING ENVIRONMENT (PSE) to assemble a Grid application. Our approach is to develop a collection
of LIBRARIES that provide not only the base algorithms, but also information and models that describe
the resource requirements and performance behavior of each library call. The system will support
more general software components in addition to these specialized libraries; however, use of GRADS
LIBRARIES will provide other GrADSoft components with important application execution performance
clues and is therefore likely to provide a run-time performance advantage for the user.

The resulting application and GRADS LIBRARIES are passed to the COMPILER. The COMPILER then
performs program analysis and partial compilation, generates application-wide performance models and
mapping strategies, and generates a CONFIGURABLE OBJECT PROGRAM (COP). The COP encapsulates
an INTERMEDIATE REPRESENTATION CODE (IR CODE) for the application, an assembly of APPLICATION
BEHAVIOR MODELS, a MAPPER, and an application RESOURCE REQUIREMENT SPECIFICATION (refer to
Section II.B for details on each COP component). The PPS phase may be performed off-line and
sometimes need only be completed once per application; for this reason the COP is a long-lived object
that may be re-used for multiple program execution phases.

PES

When the user decides to execute the application, the application COP is retrieved and the PES

is invoked by the GrADSoft system. At this stage the SCHEDULER interacts with the GRID RUN-TIME

SYSTEM to determine which resources are available and what performance can be expected of those



resources. The SCHEDULER then uses the PERFORMANCE MODEL and MAPPER. to select an application-
appropriate resource subset and a mapping of the problem data or tasks onto those resources. In a
second compilation phase, the BINDER is invoked to perform a final, resource-specific compilation of
the INTERMEDIATE REPRESENTATION CODE (recall that this is one of the components of the COP).
Next, the executable is launched on the selected Grid resources and a REAL-TIME MONITOR is used to
track program performance and detect violation of performance guarantees. Performance guarantees
are formalized in a PERFORMANCE CONTRACT.! In the case of a performance contract violation,
either the BINDER is invoked to reconfigure the program in the current execution environment or the
RESCHEDULER is invoked to evaluate alternative resource sets. After program execution is complete,
post-mortem performance information will be stored in a repository; this information may then be

retrieved by any GrADSoft component to improve application results in future runs.

II.B GrADSoft scheduler specification

The GrADSoft scenario presented in Section II.A provided a brief overview of a specific GrADSoft
component interaction scenario. In this section, we describe in greater detail the specification for the
GrADSoft SCHEDULER. This specification defines the service the SCHEDULER is to provide as well as
the interfaces it should support; it does not rely on any particular interaction scenario.

The role of the SCHEDULER is to select Grid resources appropriate for a particular problem run,
where problem run is defined by the application itself and by problem configuration parameters such
as problem size or input data file. The SCHEDULER should transparently provide service for arbitrary
applications and Grid environments. For this reason, characteristics of the application and Grid envi-
ronment must be available as inputs to the SCHEDULER. Similarly, the selected schedule and associated

information must be communicated in a well-defined manner for consumers of the SCHEDULER output.

II.B.1 Inputs

Since the scheduling process is dependent on available application and environment information,

we describe in greater detail the format of these SCHEDULER inputs.

'When the user interacts with a PSE to develop their application, they also specify what their performance
expectations are. For example, they might specify a flexible desired turnaround time or a hard deadline for
application completion. These specifications are used to create a performance contract, which formally specifies
program performance expectations. More details are available in [30, 51].



Grid information retrieval is necessary in order for the SCHEDULER to develop schedules appro-
priate for the current Grid environment. Currently, GrADSoft utilizes the popular Grid information ser-
vices of the Metacomputing Directory Service (MDS) [11, 13] and the Network Weather Service [57, 58].
The NWS and MDS are centralized information servers that provide dynamic and static information
about the current state of Grid resources. Since these interfaces are well-known standards for Grid
researchers, we do not describe them in detail here.

Application characteristics and models are communicated to the scheduler by way of the
COP. Recall that this component encapsulates four distinct sub-components: IR, CODE, MAPPER, one
or more APPLICATION BEHAVIOR MODELS, and an application resource requirement specification called
an ABSTRACT APPLICATION RESOURCE AND TOPOLOGY MODEL (AART). The IR CODE object is
used for final program compilation and is not utilized during the scheduling process. The other three
components are needed by the scheduler and require further discussion.

Mapper

Given a chosen set of compute resources, the MAPPER determines a performance-efficient assignment
of application tasks and/or data for execution on those resources. For example, suppose we have a
MAPPER developed for master-slave applications and an input list consisting of two fast machines and
two slow ones. Further suppose that we expect the master’s workload to be quite high for a certain
application. In this case, an appropriate assignment of tasks might place the master on one of the fast
machines and a slave on each of the three other machines. To provide load-balancing, the MAPPER
might also place extra work on the fastest of the three slaves.

Application behavior models

This group encapsulates any models of application behavior that are required by GrADSoft com-
ponents. For scheduling purposes, the most useful models are those that provide some measure of
desirability for possible resource sets and data mappings. There are many types of behavior models
that might be of interest for GrADS in the long-term; for example, models could be equation-based,
simulation-based, or history-based and the desirability metric could be predicted execution time, re-
source usage cost, or throughput. In this thesis, we will consider the metric of predicted execution time
as provided by an equational PERFORMANCE MODEL. This is the most common application execution
performance metric for run-time schedulers [2, 10, 12, 8, 43, 45, 50, 53].

AART Model
This model provides a structured method for specification of application resource requirements.

The need to consider application resource requirements for effective application scheduling on the Grid



is clear [8]; however, since many Grid application schedulers are designed for a particular application
or application-class, application resource requirements are often embedded in the scheduler design
itself [12, 47, 49, 50]. By comparison, a primary GrADSoft design goal is smooth adaptation to a variety
of applications. For these reasons, we have developed the AART to support formal specification of
resource requirements to the SCHEDULER.

The AART model consists of a collection of resource requirements plus a description of the pro-
cessor topology required by the application. Examples of such topologies include a one-to-many com-
munication arrangement (star), an all-to-all communication arrangement (fully-connected graph), or a
topology where only neighboring processors need to communicate (a mesh). Resource requirements are
the mechanism by which specific resource needs are specified. Examples of resource requirements in-
clude the minimum aggregate memory needed for the application, the minimum acceptable bandwidth
between any two processors, and required software installations. While requirements such as software
are descriptive, requirements such as aggregate memory requirements can be specified as parametric
models; to be useful these models must be provided with additional information such as problem size.

Since applications frequently require more than one type of resource, any number of resource subsets
can be defined in the AART model. In the case that more than one type of resource set is defined,
resource requirements can be specified that apply to all resources needed for the application, or they
can apply to only a subset of resources needed by the application. In addition, requirements can be
applied to a pair of resource subsets; for example, if two resource subsets were defined, A and B, one
might also want to specify a minimum bandwidth for any connection between resources in subset A
and resources in subset B.

Note that the AART MODEL framework itself is designed to be application generic so that it can
be useful for a variety of application types. To instantiate the framework for a specific application, the
application’s resource needs are grouped into resource subsets and associated resource requirements.

To clarify, we give an example application and show what the AART specification might be for
this application. We consider a master-slave application where the master application work must be
assigned to a single resource but the slave work can be assigned to any number of resources. Let us
assume that the master requires 1 GB of local memory and a CPU speed of 1000 MHz. Additionally, the
slaves must contain an aggregate memory amount of 3 GB, though it does not matter how the memory
is spread amongst the machines. In this example application, the only communication is between the
master and the slaves and more data is sent from the master to the slaves than vice versa. Specifically,

the application needs bandwidth capability of 10 megabits per second (Mbps) from the master to the
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slaves and 3 Mbps from the slaves to the master.

An AART for this application would likely specify a “star” communication topology with the
master at the center of the star. The AART would also likely specify that the application requires
two distinct subsets of resources, labeled in the AART as Subset 0 for the master and subset 1 for the

slaves. Given the above requirements, the resource requirements might be specified formally as:
e Subset 0:

— Number of resources = 1
— Local memory requirement > 1 GB

— CPU speed > 1000 MHz
e Subset 1:

— Number of resources > 1

— Aggregate memory requirement > 3 GB
e Subset 0 — 1:

— Bandwidth > 10 Mbps
e Subset 1 — 0:

— Bandwidth > 3 Mbps

In this example we provided numeric specifications for resource requirements such as minimum
available local memory. For some applications the AART may contain such values. To ensure system
generality, the AART structure itself must remain independent of any particular problem run or Grid
environment; for this reason, resource requirements will typically be specified as parametric models

that accept problem run or resource environment characteristics as input.

II.B.2 Scheduler output

Once the SCHEDULER has selected a final resource set and mapping (a schedule), this information
is communicated in a well-defined manner to other GrADSoft components. The SCHEDULER output is
called a VIRTUAL MACHINE. The VIRTUAL MACHINE is made up of one or more RESOURCE objects, a

NETWORK object, and a TOPOLOGY description.
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Resource An object that represents a physical device that can be used to perform work.

Network An object that encapsulates information about each link between members of a given group
of RESOURCES. Any number of characteristics can be attached to each ”RESOURCE to RESOURCE”

link.

Topology A high-level description of the “application to RESOURCE” task or data mapping. For
example, given our master slave example, the TOPOLOGY might specify which RESOURCE had

been selected for the master and which ones for the slaves.

Virtual machine An object that encapsulates the selected schedule and schedule-time Grid character-

istics. The VIRTUAL MACHINE contains a NETWORK, TOPOLOGY, and any number of RESOURCES.

II.C Current status

The GrADSoft system architecture described in Section II.A is an ongoing design effort that is
continually evolving as the GrADS project evolves. Efforts are underway to develop each of the new
component technologies that will be required to realize the GrADSoft design [7, 23, 51, 3, 29, 56, 37].
While the individual GrADSoft components such as the COMPILER and the PERFORMANCE MONITOR.
are fundamental to the success of the GrADSoft system, these components must be able to interact and
coordinate information flow and decision procedures. To this end, there is also an effort to prototype
a unifying software system to provide the necessary information flow and coordination for individual
GrADSoft components. At the time of this writing, this system, called the GrADSoft Prototype,
includes over ten thousand lines of integrated C++ code [24]. Initial prototypes are complete for all of

the PPS / PES interfaces.

II.D Chapter summary

In this chapter we have described GrADSoft, a modular software architecture for Grid application
development and execution. We also detailed the basic functionalities and interfaces that should be
provided by a GrADSoft SCHEDULER.

The GrADSoft architecture introduces new challenges and opportunities for the development of
Grid application scheduling strategies. This thesis proposes a scheduler design that utilizes and extends

the GrADS framework to provide an adaptive scheduling service for Computational Grid environments.
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As part of this work, we developed a prototype SCHEDULER that is integrated into the current
GrADSoft prototype. The success of this design in validation experiments demonstrates the efficacy of
the GrADS goals. Furthermore, this design is the first instantiation of a major GrADSoft component

and is therefore an important proof of concept for the GrADSoft framework itself.



Chapter I1I

Scheduling methodology

In the previous chapter we presented the GrADSoft architecture and described the specification for
the GrADSoft SCHEDULER. In this chapter, we present an adaptive scheduling methodology that is the
first instantiation of the GrADSoft scheduler specification. Key challenges of this environment and the

approach taken by our methodology are as follows.

e The scheduler should gracefully adapt to a variety of applications. We have designed a highly

modular framework that can be easily instantiated for specific applications.

e The quality and quantity of Grid information varies widely and somewhat unpredictably over
time and from testbed to testbed. Our approach is to provide best-effort service by adapting to
information availability. That is, while the scheduler will likely provide the best service when
Grid information is highly available, it should continue to function when information availability

is lower.

e Similarly, the quality and quantity of application information and models in GrADSoft will vary
widely from application to application. Our goal is again best-effort; that is we seek to provide

scheduling service that is commensurate with available information.

We begin in Section III.A with the scope of the scheduler design and definitions of key concepts
needed in the rest of the chapter. In Section III.B we describe the scheduler design, in Section 111.C we
describe the collection and usage of Grid information by the scheduler, and in Section III.D we detail
the different scheduling policies supported by the scheduler. Finally, Section III.E provides a chapter

suminary.

13
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III.A Scope and definitions

III.A.1 Scheduling assumptions

Our methodology is based on a number of assumptions about the target scheduling scenario and
environment. Most importantly, the scheduler is designed to support the GrADSoft architecture and
to utilize the GrADS Computational Grid environment. Additionally, the methodology is based on a
number of assumptions about the target scheduling scenario, application model, and Grid environment.
We describe each of these assumptions below.

Scheduling scenario

We assume that the scheduler will be called just before run-time, and that the chosen resource set
will be utilized for the entire problem run. Our methodology is adaptive to the dynamic conditions
of the Grid at run-time; however, it is not adaptive in the sense that the schedule is modified during
application execution to adapt to changing Grid conditions.

Our first scheduling goal is to ensure that hard application resource requirements are met; for
example, for an application with significant and inflexible memory requirements, our foremost concern
would be to ensure that those memory requirements are met by the selected resource set. Our second
scheduling goal is to minimize application execution time. This can be done by optimizing schedule
performance based on an application performance model. When a performance model is not available,
the scheduler can still make progress in schedule selection by evaluating the quality of each schedule
based on heuristic definitions of resource set desirability.

Application model

We assume the target application is parallel and that many problem sizes of interest will require
more than one machine for acceptable performance. We also assume a single program, multiple data
(SPMD) application model.

Application resource requirements

In Section II.B we introduced the AART MODEL as a formal method for the specification of the
type of resource set, or platform, that is likely to be performance-efficient for a particular application.
Ideally, the GrADSoft SCHEDULER will handle smoothly any application by automatically parsing the
application’s AART and thereby understanding the application’s resource needs. However, to achieve
this ambitious goal, we need to gain experience with simpler versions of this problem. For this thesis,

we focus on applications that share the following general characteristics.
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i. All processes are able to communicate with all other processes, and the amount of communication
performed by the application is significant. An appropriate resource set will therefore provide all-
to-all connectivity. Resource sets connected by low-delay networks will provide better performance

than those connected by high-delay networks and are therefore preferable.

ii. Application performance is sensitive to the aggregate computational and memory capacity of the

target resource set, as well as to the individual capacities of selected machines.

iii. The definition of an appropriate resource set for the application is highly dependent on problem
size, environmental characteristics, and other factors. The selection of an appropriate resource

set size is therefore not a simple maximize or minimize function.

Application information and models

Recall that the GrADSoft architecture is designed to handle a wide variety of applications; we
envision that application characteristics and models will often be derived from library annotations,
compiler analysis, and records of historical behavior. Clearly, the sophistication of the resulting appli-
cation information and models will vary greatly; the scheduler will have to adapt to varying degrees
of sophistication of AARTSs, performance models, and mappers. We propose a scheduler design that

supports two types of application performance model.

e Memory usage model: At the coarser level, we assume that only an application memory usage
model is available. Provided with problem run information such as problem size, this type of
model returns a prediction of the aggregate amount of memory required for the application. We
focus on a memory usage model in part because basic compiler analysis of application source code
could fairly easily produce such a model. In particular, given some integration, we envision that

such a model could be automatically produced by the GrADSoft COMPILER in the near future.

e Execution time + memory usage model: At the more sophisticated level, we assume that a
full performance model is available. Provided with problem run information, the selected resource
set, and a mapping of application tasks or data onto those resources, this type of model returns
the predicted execution time in addition to a memory usage prediction. We selected this model
as an investigation of how the GrADSoft system could function in the future. While current
GrADS PPS technologies are not sophisticated enough to automatically generate an execution

time model, this topic is a primary focus of other GrADS researchers [7, 29].
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Note that we only specify here the type of models that are supported by the scheduler; the exact
implementation of such a model is highly application-dependent and therefore can not be embedded
in the scheduler design. In the next chapter, we develop an instantiation of the memory usage and
execution time models for specific applications.
Grid environment

In this thesis we target Computational Grids consisting of heterogeneous, distributed networks of
workstations. Workstations may have different processor types and speeds, different amounts of local
memory, or different operating systems. While target workstations may have more than one CPU,
the scheduler design currently targets only one CPU per resource. Targeted networks include both

local-area networks (LANs) and wide-area networks (WANs). Figure III.1 provides an example of a

small Grid of this type.

4.4 Mbps UIUC LAN
= 5 5 2.7 Mbps 88.6 Mbps
5.9 Mbps

6.0 Mbps
UTK LAN

83.8 Mbps

UCSD LAN
90.8 Mbps

Figure II1.1: A heterogeneous, distributed network of workstations. Network links are labeled with
available bandwidth in megabits per second; these values were collected by Network Weather Service

network monitoring sensors on November 1, 2001 at around 5:30 pm.
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III.A.2 Scheduling definitions

The following definitions are used throughout the rest of this chapter to describe our scheduling

methodology.

Base machine list The scheduling process begins with a list of all machines available for the current
problem run. Awailable can have diverse meanings for different users and applications; in this
thesis we define available as machines on which the user has an account, that are on-line and

accessible, and that have certain Grid middleware services needed for job launching.

Resource pool The resource pool includes all of the machines in the base machine list as well as

compute, storage, and network capability characteristics for these machines.

Site A site is a collection of well-connected resources and typically corresponds to a LAN. In practice,
intra-site network delays are lower than inter-site delays. For example, Figure III.1 includes three

distinct sites: {UCSD, UIUC, UTK}.

Topology-based collections A topology-based collection is a set of machines selected based on their
locality. Specifically, given a set of sites, the corresponding topology-based collections can be
found by taking the power set of the set of sites. ! For the example given in Figure IIL.1, there
are seven topology-based collections: {UCSD, UIUC, UTK, UCSD U UIUC, UCSD U UTK, UIUC
U UTK, UCSD U UIUC U UTK}. While the power set operation is exponential in the number of

sites, Grid users often target a small number of sites.

Candidate resource group (CRG) A group of machines that have been identified as a possible

resource set for the current problem run.
Schedule A list of resources and a mapping of data or tasks onto those resources.

Candidate schedule A particular candidate resource group and a mapping of data or tasks onto

those resources constitute a candidate schedule.

Final schedule During the scheduling process a specific candidate schedule is eventually selected as
the “best” choice, this schedule is then selected as the final schedule. The method by which

schedules are compared to find the best one will be described in Section II1.B.2.

I'Note that we exclude the null set.
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Virtual machine Once a final schedule is selected, information about the selected compute resources,

network resources and data or task mapping is encapsulated in a virtual machine object.

III.B Scheduler design

The scheduler design is based on a core schedule search framework that supports a variety of
pluggable components (Figure II1.2). A base machine list is input to the Grid Info Collector which
then retrieves characteristics of the machines and of the networks connecting them. The resulting
resource pool is then input to the search procedure along with application characteristics and models
in the COP. The scheduling policies object allows automatic configuration of a number of scheduling
behaviors. For example, one supported scheduling policy defines whether the scheduler should include
cross-site schedules in the search. By default, the scheduler considers cross-site solutions, but this
policy could be inappropriate for applications that require a shared file system. After the scheduler has
selected a final schedule, the virtual machine is created and returned.

In this section we describe the components of the schedule search procedure. In Section III.C we
discuss the Grid info collector, and in Section III.D we enumerate the scheduling behaviors which can

be configured via input scheduling policies.

I11.B.1 Search Procedure

The scheduler search procedure is at the core of the scheduling methodology; the procedure examines
the set of available resources, generates a number of candidate schedules, evaluates the candidate
schedules to select a final schedule, and communicates the search results. The procedure takes as input
the resource pool, the COP, and the scheduling policies. It outputs the selected schedule in the form
of a virtual machine. To find reasonable candidate schedules, the search procedure identifies candidate
resource groups (CRGs) and generates a schedule for each. The final schedule is the best of these
candidate schedules. In Section II1I.B.2 we detail many of the individual components of this process.
In this section, we examine only the process of generating candidate resource groups (CRGs) from the
resource pool.

To guarantee that the optimal CRG will be identified, an exhaustive search over all possible unique
resource combinations would be required. However, as we demonstrate momentarily, the cost of such
a search is prohibitive. First, note that from the perspective of the scheduler, permutations of the

same resource group do not constitute unique CRGs. A performance efficient resource ordering or
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topology is identified during the mapping process and is independent of initial resource ordering; thus,
permutations typically result in equivalent schedules. For an exhaustive search, all subsets of size one
to the size of the entire resource set must be included in the search. For a resource pool of size n, the

number of distinct CRGs that must be included is:

n

numCRGs = Z
k=1

n!

P (ITL.1)

For example, to perform a schedule search in a resource set of 30 machines would require evaluation
of Zzozo k!(,o?’oi% ~ 10% CRGs. For even a reasonably sized resource pool and/or when the mapping
process is time intensive the enormous size of the search space makes an exhaustive search simply
infeasible.

The search procedure must therefore incorporate extensive pruning of the search space while en-
suring that the optimal or near-optimal CRGs are not excluded from the search. Since performance
models cannot be used until a candidate CRG has been identified, these models cannot be used to
prune the space of possible CRGs. Recall that we address only applications that share certain broad
resource requirements (see Section III.A). Our search approach is to prune resource groups that are
unlikely to satisfy these requirements. The goal of the search is to ensure that the final list of candidate
CRGs includes those CRGs which are likely to be performance efficient platforms for the application.

Pseudo-code for the schedule search procedure is given in Figure II1.3. In each for loop we refine
the list of target CRGs based on a different resource set characteristic: connectivity in the outer-most
loop, computational and memory capacity of individual machines in the second loop, and selection of
an appropriate resource set size in the inner-most loop.

In the outer-most loop, we identify resource groups that are likely to be more tightly-coupled.
We do this by explicitly defining collections of resources based on site topology in the FindSites and
ComputeSiteCombos method calls. We discuss in detail our implementation of the FindSites and
ComputeSiteCombos method calls in Section III.B.2; however, it is worth mentioning here why these
resource groups are likely to provide better connectivity than other possible resource subsets. Since
intra-site network delays are typically lower than inter-site delays, it is clear that resources within one
site are likely to be more tightly-coupled that resources from multiple sites. However, it is also true
that resource groups formed by combining the resources of individual sites are likely to exhibit better

connectivity characteristics than randomly selected resource groups of the same size. The primary
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Algorithm : SCHEDULESEARCH(resourcePool)

sites < FindSites(resourcePool)
topologyCollections < ComputeSiteCombos(sites)

for each collection (topologyCollections)
for each focus (computation, memory, dual)
for targetSize < 1 to size(collection)
CRG <+ FindBest(collection, focus,targetSize)
currSched < GenerateSchedule(CRG)

if ScheduleCompare(currSched, bestSched) == FirstlsBetter
bestSched < currSched

return (bestSchedule)

Figure I11.3: Schedule search procedure. We discuss the overall search design in Section III.B.1 and the
implementation of individual method calls in Section 111.B.2

advantage posed by resource groups formed in this way is that such a resource group will typically span
less sites than randomly selected resource groups containing the same number of resources.

In the middle loop of the search procedure we seek to locate resources that exhibit high local memory
and computational capacities. Since we cannot know in advance which aspect will be more important
for application performance, we define three different search foci: the computation focus emphasizes
the computational capacity of machines, the memory focus emphasizes the local memory capacity of
machines, and the dual focus places equal weight on each factor. The search for machines that satisfy
these foci occurs in the FindBest method call; the implementation of this method call is discussed in
Section II1.B.2.

Finally, in the inner-most loop of our search procedure, we focus on the selection of an appropriately-
sized resource group. It is difficult to determine what an appropriate resource set size will be for
an application since it depends on application characteristics as well as resource characteristics. For
example, for applications with substantial computation and communication, there is no way to know a
priori whether a smaller, better connected resource group or a larger, poorly connected resource group
will be more performance-efficient. Rather than attempt such a prediction, we include all resource set

sizes in the search space. In this way, the selection of an appropriate resource set size is the responsibility
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of the ScheduleCompare method call; when an execution time model is available, ScheduleCompare can
use this model to determine which CRG is most appropriate for application needs (see Section II1.B.2
for details). Note that an exhaustive search at this level of the procedure is only feasible due to the
extensive pruning performed at the first two levels.

This nested set of refinement methods greatly reduces the search space of CRGs. To demonstrate
this we develop an upper bound on the number of CRGs considered by the search heuristic.
Assuming we have s sites in the resource set under consideration, the process of defining site combi-
nations creates 2° topology-based collections.? We consider three resource orderings for each collection
(computation, memory, and dual). Given these 3 x 2% ordered collections, we exhaustively search all
possible subset sizes for each. Since the number of resources in each site, and therefore in each topology-
based collection, is dependent on the characteristics of each Grid environment, we can not predict a
priori the number of resources in each of the 3 x 2° ordered collections. Instead, we develop an upper
bound by assuming each collection is of size n, the size of the entire resource pool. For each ordered
collection, we assume n distinct subsets will be included. The upper bound on the total number of
CRGs identified by the search procedure is therefore 3n2°. In contrast to an exhaustive search of the
resource set space, the algorithmic complexity of our heuristic is exponential in the number of sites,
not the number of computational resources. In the vast majority of scenarios, the number of sites is
much smaller than the number of resources so that our heuristic can be expected to significantly reduce
search cost.

Consider again the example presented earlier of 30 machines arranged in 3 sites with 10 machines
in each site. Recall that the exhaustive search procedure produces 10° CRGs for this topology. The
upper bound on the number of CRGs produced by our search procedure is 3 * 30 * 8 = 720; a direct

calculation of the number of CRGs generated for this scenario reveals that only 360 are generated.

III.B.2 Search methods

We now describe the algorithms used for each method call in Figure II1.3. We discuss the methods
in order of their usage in the schedule search procedure.

The FindSites method takes the list of available machines and organizes the machines into disjoint
subsets such that the network delays within each subset are lower than the network delays between

subsets. As a first approximation, our FindSites implementation utilizes a heuristic based on the ma-

2In fact, we exclude the null-set leaving 2° — 1 such collections.
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chine domain names. Domain names are typically assigned to organizations and organizations are often
geographically centralized. Additionally, the networks within an organization typically exhibit lower
delays than networks between organizations. While these generalities are not true of every organization,
they do hold for the GrADS Computational Grid environment and also for most Computational Grids
we know of. Based on these assumptions, we group machines into a single site if they share the same
domain name and into different sites if they have different domain names. Previous work in web client
clustering [31] and content routing [26] have also utilized this heuristic approach to group machines in a
similar way. Note that the method fails to distinguish hierarchies of machines within the same domain
name. More sophisticated methods of network topology discovery exist [44, 36] and can be used to
improve the ability of the FindSites method to discover true network topologies.

The ComputeSiteCombos method call takes as input the list of sites discovered via FindSites
and builds a list of all possible topology-based collections. We exclude the null set so there are 2° — 1
such collections for a set of s sites.

The FindBest method takes as input a list of machines (collection), a machine type focus (focus),
and a target resource set size (targetSize) and returns the best targetSize machines from the collection
based on a machine preference of focus. For example, suppose the input collection contained two fast
machines and two slow machines, that the focus is computation, and that the targetSize is three. In
this case, the returned CRG will contain the two fast machines and the faster of the two slow machines.

The GenerateSchedule method call takes as input a list of machines and returns a schedule for
those machines. Recall that a schedule consists of a list of machines and a data or task mapping onto
those machines. Since the mapping process is application-specific, GenerateSchedule retrieves and uses
the mapper from the COP. Note that due to constraints such as local machine memory capacities it is
not always possible to find a feasible mapping; when this occurs, GenerateSchedule fails and the search
for candidate CRGs continues. In the next chapter we present an example of an application-specific
mapping strategy that clarifies the concept of GenerateSchedule and the mapper.

The ScheduleCompare method takes as input two candidate schedules and returns FirstlsBetter
if the first schedule is better than the second and returns SecondlsBetter otherwise. Recall from
Section III.A that we are investigating two sophistication levels for application information and models:
a memory usage model and an execution time 4+ memory usage model. The ScheduleCompare method
uses different comparison metrics, described below, depending on which type of model is available.
Memory usage model without an execution time model

When only a memory usage model is available, a series of heuristics are used to compare candidate



24

schedules. These heuristics are designed to evaluate how well the given schedules satisfy the broad
application resource requirements defined in Section IIL.A. Figure I11.4 provides an overview of the
series of schedule comparisons used to select the better of two schedules.

Execution time model + memory usage model

When an execution time is available in addition to the memory usage model, ScheduleCompare
uses the model to calculate a predicted execution time for each schedule. An obvious and straight-
forward approach is to select the schedule with the minimum predicted execution time and return it.
A drawback to this absolute best selection methodology is that the selected schedule sometimes tar-
gets many more resources than are necessary to achieve acceptable performance. For example, many
applications have poor speedup at larger resource set sizes; in these cases the performance advantage
of adding more resources can be almost zero, yet an absolute best selection methodology will select
larger and larger resource sets until performance actually degrades. In a shared-resource setting such
as a Computational Grid, a better choice that balances the performance of individual applications with
overall system throughput is to target a smaller number of resources that provide a similar performance
level. Performance contracts, introduced in Chapter II, provide a formal specification of acceptable
application performance levels; such a contract could be used to determine what target resource set
sizes will provide acceptable application performance. Unfortunately, since performance contracts are
still under development, we could not easily experiment with this concept.

As an alternative strategy that does not require specification of an absolute performance require-
ment, we introduce a performance improvement threshold. In a shared-resource environment such as
the Grid, conservative resource usage should be encouraged to improve the overall system throughput;
therefore when a smaller resource set provides equivalent performance to a larger set, a “good citizen”
approach would target the smaller set. Since each user may have a personal definition of equivalent,
we provide the threshold as a tunable scheduler option. We incorporate this strategy at the inner-most
loop of the scheduler search procedure (Figure II1.3); the loop is executed once to find the absolute
best target resource set size and is then executed a second time to find the smallest resource set that

provides a predicted execution time within the configurable performance improvement threshold.

II1.C Grid information

Computational Grids are highly dynamic environments where compute and network resource avail-

ability can be unstable. When resource performance patterns are not well understood, application
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Figure 111.4: Schedule comparison methodology when a memory usage model is available but an exe-

cution time model is not.
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performance suffers. To avoid these problems, a scheduler should make decisions based on up-to-date
information about the current Grid environment. Unfortunately, currently available Grid informa-
tion sources can be periodically unstable or altogether unavailable, thereby precluding the use of any
scheduler that depends solely on that information source. Our goal is to provide best-effort service by
supporting backup sources, when possible, for each type of information required by the scheduler.
The Grid Information Collector is the scheduler component responsible for the collection of resource
and network information for scheduling. In III.C.1 we discuss several Grid information sources that can
be utilized by the Grid Information Collector. In IT1.C.2 we describe the types of information required
by our scheduling strategy and identify which information sources can be used to satisfy each of these

requirements.

IT1.C.1 Information sources

There are a variety of Grid information collection and dissemination mechanisms and each Com-
putational Grid varies somewhat in its information infrastructure. We provide an overview here of
two of the most widely utilized systems, the Metacomputing Directory Service (MDS) [13, 11] and the
Network Weather Service (NWS) [57, 58]. See Section V.A for the configuration and usage of these two
systems in the GrADS Computational Grid.

The MDS is a flexible Grid information management system that is used to collect and publish
system configuration, capability, and status information. Essentially, any non-sensitive information that
can be retrieved from an operating system could be published in the MDS for retrieval by distributed

clients. Grid characteristics that can typically be retrieved from the MDS include

e the set of potentially available resources;

e machine characteristics such as operating system, processor type, processor speed, number of

CPUs available, and physical memory size; and

e software availability and installation location.

The NWS is a distributed monitoring system designed to track current resource and network
conditions [57, 58]. In addition to providing near real-time estimates of deliverable performance, the
system supports very short-term (10 seconds ahead) forecasting of future availability. The system

supports monitoring of the following system characteristics:

e availableCpu: the fraction of CPU available to a newly-started process,
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e currentCpu: the fraction of CPU available to a process that is already running,

e freeMemory: the amount of space unused in memory,

freeDisk: the amount of space unused on disk,

connectTimeTcp: the amount of time required to establish a TCP connection to a remote host,

bandwidthTcp: the speed with which data can be sent to a remote host, and

latencyTcp: the amount of time required to transmit an empty TCP message to a remote host.

III.C.2 Scheduler Grid information requirements

There are several types of Grid information required for the scheduling process: a list of machines
available for the run, local computational and memory capacity estimates for each resource, and con-
nectivity estimates for the networks between resources. Wherever possible we support all available
types of information.

The base machine list is a list of the machines to be considered in the scheduling process and is
the most important information requirement. On some testbeds a list of all machines in the testbed can
be retrieved from an MDS, but unfortunately this list typically includes machines on which the user does
not have accounts. The currently deployed MDS technology provides no support for secure publishing
of account information, which is generally too sensitive to publish in an insecure way. However, secure
MDS mechanisms are currently in the beta stage and should be available in the near-term. Until
that technology is available, we obtain the list of available machines from the user directly.

Local memory capacity information is utilized by the scheduler in two ways. First, the infor-
mation is used by the FindBest method call to sort machines when the focus parameter is memory
or dual. Second, most reasonable mappers will require local capacity information to ensure that the
local application requirements do not exceed local capacities. The scheduler supports usage of either
total physical memory values, which can be retrieved from the MDS, or free memory values, which can
be retrieved from the NWS. In future discussions we abbreviate these information types by TOTAL
and FREE, respectively. Note that only machines for which local memory information is available are
included in the final schedule.

Local computational capacity information is also utilized by the scheduler in two ways. As

with local memory, the FindBest method uses computational capacity information to sort machines
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‘ Component ‘ Parameter ‘ Options ‘ Default ‘

Grid Info Collector | usergrid {MACHINE_LIST} no default
memType FREE, TOTAL FREE
compType AVAIL, MHZ, AVAIL_MHZ | AVAIL_MHZ
nwsDataType | LAST _VALUE, PRED PRED

Search Procedure perfModel MEMORY, EX_TIME EX_TIME
resConserve [0.0, 00) 0.05
crossSiteOK YES, NO YES

Table III.1: Configurable scheduling policies.

when the focus parameter is computation or dual. In addition, many mappers and performance models
will incorporate performance predictions requiring computational capacity estimates. The scheduler
supports usage of three information types: processor speed (available from the MDS), available CPU
estimates (available from the NWS), or available processor speed (computed by the Grid Information
Collector as a multiplicative combination of available CPU and processor speed). Recall that the
scheduler design currently only targets one CPU per resource; NWS CPU availability values can be
well over 100% for multi-processor resources so we therefore cap all NWS CPU availability estimates
at 100%. Hereafter we abbreviate these three information types by MHZ, AVAIL, and AVAIL_MHZ.

Network performance information is used primarily by the scheduler to provide input to the
mapper and performance model. For example, many mappers will incorporate performance predictions
that require network characteristics. The scheduler supports usage of bandwidth and latency data,
both of which are available from the NWS. In future discussions, these will be abbreviated as BAND
and LAT.

III.D Scheduling policies

In this chapter we have discussed many configurable scheduler characteristics. For each of these
characteristics a default value is defined; to support flexibility in scheduler usage the scheduler also
supports the specification of alternative configurations via the scheduling policies scheduler input. A
summary of scheduler configuration characteristics, available options, and default values is given in
Table III.1.

Only one of the scheduling policies must be specified: the user must provide a list of Grid resources
on which he or she has an account, hereafter called usergrid. As the security of Grid information services

improves this requirement will be lifted.
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III.LE Chapter summary

In this chapter we have described a modular, adaptable scheduler design that can be applied to many
types of applications. This scheduler must be paired with an application-specific performance model
and mapper. In the next chapter we develop these important components for a specific application

class.



Chapter IV

Iterative, mesh-based applications

In Chapter III we described an adaptable scheduling framework that, when combined with an
application-specific performance model and mapper, provides automatic matching of application re-
quirements with available Grid resources. In this chapter we describe two specific applications and
detail an implementation of the mapper and performance model for each. The performance models,
mappers, and applications themselves will be used in the next chapter to demonstrate our scheduling
methodology in validation experiments.

For our test applications we have chosen two examples from the class of iterative, mesh-based
applications. In Section IV.A, we describe the characteristics of this application class and detail the
test applications. Section IV.B describes our performance model design, and Section IV.C describes

our mapper design. Finally, in Section IV.D we provide a chapter summary.

IV.A Application characteristics

The class of iterative, mesh-based applications is critical to many fields of science and engineering,
including for instance particle simulations, partial differential equation solvers, and circuit simula-
tions [21]. We have chosen to focus on applications in this class both because the class is important
and because this class typically exhibits relatively predictable performance.

Iterative applications are characterized by a single sequence of operations that is repeated many
times over the course of execution. Many iterative applications can be classified as loosely synchronous,
meaning that in each iteration the participating processors are synchronized in some way before con-

tinuing to the next iteration [21]. We focus on loosely synchronous iterative applications where the
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data domain can be represented by a one, two, or three-dimensional mesh. We also assume that the
workload per iteration and the workload per unit of the data mesh are both constant (traditionally
labeled a regular iterative model).

Many iterative, mesh-based applications are discrete approximations to continuous space-time prob-
lems; examples include binary cellular automatons [14], atmospheric simulations [15], and heat transfer
in a solid. For these applications, each iteration represents a small, fixed period of time and the
data mesh represents the physical space for the problem. Linear system solvers are another applica-
tion domain with many iterative, mesh-based solutions [6]; examples include Gauss-Seidel, Successive
Over-relaxation, and Conjugate Gradient.

We focus on two of these applications for development and testing purposes: Game of Life and
Jacobi. We have selected these applications as our initial test cases because they are well-known,
straightforward to describe, and share many performance characteristics with other iterative, mesh-
based applications. We implemented each test application as a SPMD-style computation using C and
the Message Passing Interface (MPI) [38]. Traditionally, MPI programs are restricted to groups of
machines that share a file system and have similar architectures. However, the MPICH implementation
of MPI [27, 28] provides support for execution of unmodified MPI programs across heterogeneous
architectures and wide-area networks; specifically, this support is provided through a Globus-enabled
version of MPICH called MPICH-G [16, 17]. We use MPICH-G for each of our applications to allow

experimentation across Computational Grids.

IV.A.1 Game of Life

Conway’s Game of Life is a well-known binary cellular automaton whereby fixed rules are applied to
determine a next generation of cells based on the state of the current generation [14]. A two-dimensional
mesh of pixels is used to represent the environment, each pixel represents a cell, and values of 0 and 1
indicate a dead and living cell, respectively. In each iteration, the state of every cell is updated based
on the current status of the cell itself and of its eight nearest neighbors (a 9-point stencil); a dead cell
with exactly three live neighbors comes alive and living cells survive only if they have two or three
living neighbors.

Game of Life is a straightforward application to implement in parallel because the update of each
pixel depends only on the values of the cell’s immediate neighbors. Data can be partitioned in numerous

ways including block, block-cyclic, row-based strip, and column-based strip. Each processor manages a
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portion of the array and defines a 1-pixel wide set of ghost-cells along data grid edges. Each iteration
consists of a computational phase in which each processor updates their portion of the data array and a
communication phase in which each processor re-initializes their ghost cell data with information from

its neighbors.
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Figure IV.1: Game of Life application structure.

Key features of our Game of Life implementation are diagrammed in Figure IV.1, a listing of vari-
ables and their definitions is given in Table IV.1, and pseudo-code for the iterative portion of our
implementation is presented in Figure IV.2. We selected a row-based strip data partitioning strategy
because this strategy typically exhibits lower communication costs than other partitioning schemes, an
important consideration for Grid computing. To allow experimentation with load-balancing work allo-
cation strategies, we incorporated support for irregularly-sized data partitions. The ghost cell exchange
phase is implemented with non-blocking sends (MPI_Isend), non-blocking receives (MPI_lrecv), and final
wait method calls to ensure the return of all communication calls (MPI_Wait). Our implementation does

not include termination detection, and it executes for a configurable, but fixed number of iterations.



Algorithm : GAMEOFLIFE(procID,p, N,nLocal,numlts)

define DEAD 0, ALIVE 1
define FIRST_ID 0, LAST_ID p—1

// Arrays must include space for boundary and ghost cells
local currGen[nLocal + 2|[N], nextGen[nLocal + 2][N]
currGen < GetInitial Generation(i,nLocal)

for k + 0 to numlits — 1

// COMPUTATION PHASE
// We exclude boundary values from update
// i.e. row 0, row nLocal+l, col 0, and col N+1
for r <+ 1 to nLocal
forc+—1to N

count < currGen|r — 1][c — 1] + currGen[r — 1][c] +
currGen|r — 1][c + 1] + currGen|r|[c — 1] +
currGenl[r|c + 1] + currGen[r + 1][c — 1] +
currGen|r + 1][¢] + currGen[r + 1][c + 1]

if currGen|r][c] == ALIV E and count € {2,3}
nextGen[r|lc] = ALIVE

else if currGen|r,c] == ALIVE
nextGen[r|lc] = DEAD

else if currGen|r,c] == DEAD and count ==
nextGen[r]lc] = ALIVE
else

nextGen[r]lc] = DEAD

// COMMUNICATION PHASE

if procID # FIRST_ID
// Re-initialize ghost cell data with lower-indexed proc
AsyncSend(nertGenl[l][:], procI D — 1)
AsyncRecv(nextGen|0][:], procID — 1)
WaitAll()

if procID # LAST_ID
// Re-initialize ghost cell data with higher-indexed proc
AsyncSend(nextGen|nLocal][:], procI D + 1)
AsyncRecv(nextGen[nLocal + 1][:], procID + 1)
WaitAll()

// Swap data array pointers [no mem copy]
SwapDataPtrs(currGen,nextGen)

return (currGen)

Figure IV.2: Game of Life application pseudo-code.
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Name ‘ Type ‘ Definition

p int total number of processors

P NA processor ¢ where 0 < i <p

N int number of rows & columns in the global data matrix
n; int number of rows in the local data matrix of P;
numlits int total number of iterations to perform

proclD int MPI processor ID where 0 < proclD < p
FIRST_ID | int ID of the top-most processor (usually 0)
LAST ID | int ID of the bottom-most processor (usually p — 1)
currGen int[ ][] | 2-dim matrix for initial data in each iteration
nextGen int[ ][] | 2-dim matrix for result data in each iteration

Table IV.1: Summary of variables used in Game of Life description.

IV.A.2 Jacobi

The Jacobi method is a simple algorithm for the solution of a system of linear equations by itera-
tion [6, 41]. Jacobi is often explained in the context of solving Laplace’s equation. We instead describe
the general linear system solver version; note that the Jacobi method involves more communication for
this case than in the solution to Laplace’s equation (which requires only neighbor-based communica-
tion). A linear system of equations can be represented as az = b where a is a square N x N matrix of
coefficients, © = (xg, 21, ..., Ty, ..., xny_1)" is a vector of unknowns, and b = (bg, b1, ..., by, ...,bn_1)7 is a
vector containing the constant coefficients. To avoid confusion with the notation we use for processors
(F;), in this discussion we use r as a shorthand for row number and ¢ as a shorthand for column num-
ber. The method begins with an initial guess for the solution vector z° and in each iteration successive

approximations z¥, k = 1,2, ...,numlts — 1 to the solution are calculated. The value of z, in iteration

number k£ + 1 is given by:

1
ghtl = a_rr(br - ; e (IV.1)

This solution method is guaranteed to converge only if the system is diagonally dominant. That is,

convergence is guaranteed if:

Vr e {0: N =1}, Jan| > larl (IV.2)
cEr
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Name ‘ Type ‘ Definition

P int total number of processors

P NA processor ¢ where 0 < ¢ <p

N int number of rows (unknowns) in the vector

7, int number of rows of x assigned to F;

numlts | int total number of iterations to perform

local A double[ ][] | 2-dim matrix with n;xN sized local portion of a
localB | double] ] vector with n; sized local portion of b

r0 int global location of the first row of this proc’s unknowns
currX double] ] initial values for z in each iteration

nextX double[ | result values for z in each iteration

localX | double] | result values for local portion of z

distance | double a metric for convergence detection

Table IV.2: Summary of variables used in Jacobi description.

We have chosen Jacobi because it is straightforward to describe and shares many performance charac-
teristics with other, more popular algorithms.

An efficient parallel data decomposition for the Jacobi method is to assign a portion of the un-
knowns to each processor. The vector z is then decomposed into an assignment of work (map =
(o, N1y eey Mgy ooy Mp—1)) to processors (procList = (P, Py, ..., P;, ..., P,_1)). Each processor need only
store a rectangular sub-matrix of a of size n; x N. Each iteration begins with every processor comput-
ing new results for their n;-sized portion of the unknowns. Next, each processor must distribute their
updated portion of = to every other processor so that at the end of the communication phase every
processor has a fully updated = vector. The final phase in each iteration is a termination detection
phase. The method is stationary, meaning that the matrix a is fixed throughout the application; for
this reason, each processor need only know the values in its sub-matrix of a. The Jacobi method does
not require ghost cells or updates for the matrix a.

Pseudo-code for our implementation of the Jacobi method is given in Figure IV.3, and Table IV.2

provides definitions for variables referenced in the pseudo-code.

IV.B Application performance modeling

As discussed in Chapter 111, the scheduler is dependent on the availability of a performance model in
the form of either a memory usage model or an execution time + memory usage model. In this section

we develop an instantiation of each of these performance models for our test applications, Jacobi and



Algorithm : JAacoBi(local A,local B, p, N,nLocal,r0, numlIts)

local currX|[N], nextX[N], local X [nLocal]
local distance

// Initialize currX with b values
currX[r0 : 70 + nLocal] < bLocal
for i+ 0top—1

Broadcast(currX i)

for k£ < 0 to numlits — 1

// COMPUTATION PHASE
for r < 0 to nLocal — 1
local X[r] < local B|r]
forc+0to N -1
ifc#r+r0
local X [r] < local X [r] — local A[r][c] * curr X[r + r0]
local X [r] < local X [r] / local A[r][r + r0]

// COMMUNICATION PHASE

nextX[r0 : r0 + nLocal] < local X

fori+ Otop—1
Broadcast(nextX, )

// TERMINATION DETECTION

// Application runs for fixed numIts, but we include

// code to ensure realistic performance results
distance < 0
for r<~0to N -1

distance « distance + (nextX|[r] — curr X[r])*

distance < v distance

// Swap data pointers [no mem copy]
SwapDataPtrs(curr X, nextX)

return (currX)

Figure IV.3: Jacobi application pseudo-code.
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the Game of Life.

IV.B.1 Memory usage model

When the active, local data set of an application does not fit in the physical memory of each
participating processor, application progress can grind nearly to a halt due to paging of memory to
disk. Since the performance effects of memory usage can be quite severe, it is very important that
schedulers not allocate more work to each processor than will fit in local memory. However, it is
difficult to predict the performance effects of application memory usage. For these reasons, we do
not include memory usage as part of a performance metric, but rather as a schedule constraint: for a
schedule to be considered feasible the work allocated to every processor must be predicted to fit within
the local memory capacity of that processor.

Based on examination of data structures allocated in each application, we predict the memUnit
bytes of storage that will be allocated per pixel of the data mesh. The aggregate memory requirement,
aggMemReq, is then dependent on the problem size, memUnit, and on d, the number of dimensions

in the data mesh. In megabytes, the aggregate memory requirement can be written:

memUnit x N¢
220 '

aggMemReq = (IV.3)

To predict an application memory requirement for processor P;, we incorporate the size of the local

data partition, n;:

memUnit  n; * N1

V.4

memReq; =

Recall that data for local processor memory availability, mem;, can be supplied by total physical
memory values from the MDS or free memory values from the NWS. Theoretically, a simple comparison
of memReq; to mem,; should be sufficient to determine if the application’s memory requirements are
satisfied by a machine’s local memory. In practice, a close match of the two factors provides an overly
“tight” fit and the application’s memory demand will frequently exceed local memory capacity. There

are several reasons for this effect:

e While most memory allocation by these applications is for the data arrays, every application
requires some additional static memory allocation. These memory requirements are not considered

explicitly in our memory usage model.
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e The operating system and other background processes require a significant portion of the avail-
able physical memory. When mem,; is based on total physical memory, this contention is not

considered.

e All of our target machines are time-shared. If we run a job that requires all of the local memory,

then when another user runs even a small job our job will be swapped out to disk.

To avoid this problem, we propose an alternative: a given work allocation should only be considered
feasible if each processor provides some additional memory over the amount specified by the memory
usage model. We incorporate a tunable parameter in the memory usage model called the memFactor;
this factor specifies the percentage of additional memory that should be available on each processor
and in aggregate. The user of the model must select a value that provides a reasonable tradeoff given
the target resource set; lower values will improve the chance of finding a reasonable resource set while
higher values will reduce the chance of the application’s resource demands exceeding the capacity of the
targeted resources. Based on early experimental results and memory usage benchmarks, we identified
20% as a value that provides a reasonable tradeoff for the GrADS Computational Grid environment;
for all experimental studies presented in Chapter V the memory usage model is configured with this
value.

To fully instantiate this memory model, we need to determine appropriate memUnit and d pa-
rameters for each test application. In the Game of Life application, a two-dimensional integer array
of size n; x N is allocated for both the currGen matrix and the nextGen matrix. For all discussions
in this thesis we assume that four bytes of storage are required for each integer and eight bytes of
storage are required for each double; while this assumption is accurate for all machines currently in
the GrADS testbed, to accurately handle a broader variety of architectures the storage requirements
should be treated as inputs to the memory model. Overall, the Game of Life parameters are d = 2
and memUnit = 2 ints/pizel x 4 bytes/int = 8 bytes/pizel. For the Jacobi method, the primary
data allocation for each processor is the 2-dimensional array of doubles of size n; x N for the local
component of a. Each processor also allocates a size N vector for currX and nextX and a size n;
vector for localX and localB. Since the size of these vectors will be much smaller than the a¢ ma-
trix, we focus only on the matrix memory allocation. Therefore, for the Jacobi method, d = 2 and

memUnit = 1 double/pizel x 8 bytes/int = 8 bytes/pixel.
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IV.B.2 Execution time model

Iterative, mesh-based applications share a number of characteristics that enable relatively straight-
forward performance modeling. Recall that we assume a regular, synchronous iteration model. This

model allows us to make a number of additional assumptions:
1. The iterative phase dominates execution time.
2. The computational cost per iteration is constant for each processor.
3. The progress of the slowest machine defines the progress of all participating machines.

Based on these assumptions, the execution time of the application will be proportional to the application
iteration time. Furthermore, due to the synchronization of processors in each iteration, the application
iteration time will be equal to the time of the slowest participating processor. If we represent the
predicted iteration time on processor ¢ as ¢t1T%me; and the overall predicted application iteration time

as 1tT'imegpp this metric can be formalized as:

itTimegp, = maz{itTimey,itTimey, ..., itTime, 1 }. (IV.5)

Since iteration time is independent of the number of iterations performed it is slightly simpler to model
and discuss than execution time; for this reason, we compare schedules based on the following schedule
evaluation metric: the most desirable schedule is the schedule with the lowest predicted iteration time.
Note that for a schedule to be considered feasible, it must still satisfy the memory usage model schedule
constraint.

For iterative, mesh-based applications, iteration time is typically dominated by one or more phases.
For example, the Game of Life is dominated by a computation phase (updating the value of each cell)
and a communication phase (sharing of ghost cells with neighbors). For each of our test applications,
these phases are serialized for each processor (i.e. we have not implemented overlap of communication
and computation). We can therefore model the iteration time on processor i (itT'ime;), as a combination

of that processor’s computation time (compTime;) and communication time (commTime;):

1tTime; = compTime; + commTime;. (IV.6)



40

Since we assume a regular iterative application model, we can expect that iteration time is relatively
constant during application execution. Furthermore, since we assume that execution time is dominated
by the iterative phase, the full execution time is proportional to the iteration time.

Note that our implementation of Jacobi includes a termination detection phase, but this phase
involves only computation and thus can be included directly in the compTime; model. In the following
paragraphs we describe a model for the computation time and communication time for each processor.
Unless otherwise noted, the units of time are seconds.

Computation

The computation phase for our test applications primarily consists of the pixel update process in each
iteration. For the Jacobi implementation, the termination detection phase is purely computational and
so we consider it part of the computation phase as well.

As we did in the memory model, we introduce a base unit of computation: compUnit. The
compUnit is the number of processor cycles performed by the application per pixel of the mesh per
iteration. Recall that the computational capacity of a processor, comp;, can be represented by the CPU
speed (MHZ) or by the available CPU speed (AVAILMHZ), each of which has units of 10° cycles per

second. The computation time per iteration on processor i can then be modeled as

compUnit x n; x N1 (IV.7)

compTime; = 105 = comp;

To fully instantiate this model we need to determine an appropriate compUnit value for each
test application. Unfortunately, obtaining an accurate count of the number of cycles required for
a code segment is non-trivial. One simple method is to examine the source code and manually count
operations; this method typically over-predicts operation counts because it does not account for compiler
optimizations or the effect of caching. Another option is to base the operations count estimate on
assembly code; this method accounts for compiler optimizations but is also inaccurate because (1) it
assumes the processor is able to sustain a fixed rate in cycles per operation throughout execution and
(2) it fails to identify variations in operation counts by architecture. We instead utilize an empirical
approach to determine a compUnit value for each application. We selected a range of problem sizes
and ran the computational portion of the application on each processor configuration included in our
testbed. These tests were run in unloaded conditions and 100 iterations were performed per run. We
calculate an average iteration time, it7TimeAv, and use the processor speed (MHZ) to convert to cycles

per pixel per iteration: compUnit = MHZ x itTimeAv * 10°. Finally, for each application we average
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the compUnit values determined for each problem size and generate a final application compUnit value.
For the processor configurations targeted in this thesis, the compUnit values determined in this manner
were relatively similar; for example, the Game of Life benchmarks resulted in average compUnit values
ranging from 68.7 to 74.8. We therefore selected a single value and used it in all experiments; for the
Game of Life we selected compUnit = 72, and for Jacobi we selected compUnit = 36. For a testbed
with greater processor configuration heterogeneity, the scheduler should utilize a different value for each
processor configuration.

Communication

In this section we describe a model of the communication behavior for the Game of Life and Jacobi.
Our model is based primarily on the cost of message transfers; we do not model additional overheads
such as synchronization.

The Game of Life communication phase consists of a swap of ghost cells between processors. For
all processors except the lowest indexed processor in the data decomposition (i.e. Fp), a message is
sent to and received from the ¢ — 1 processor. Similarly, for all processors except the highest indexed
processor in the data decomposition (i.e. P,_1), a message is sent to and received from the 41 processor
(see Figure IV.1). These messages each include N pixels of information, each pixel is represented by an
integer, and we assume each integer requires four bytes of storage. The size of each message, msgSize,
is therefore 4 * N. Since our Game of Life implementation uses non-blocking sends and receives, all of
the messages in each iteration could theoretically be overlapped. In practice, however, processors can
not simultaneously participate in four message transfers at once without a reduction in performance for
each message and, more importantly, processors do not reach the communication phase of each iteration
at the same moment. As an initial approximation, we assume that messages with a particular neighbor
can be overlapped, but that communication with different neighbors occurs in distinct phases which
are serialized. Since we assume that communications with a particular neighbor can be overlapped, we
assume that the cost of each such communication is determined by the maximum predicted delay of
the two involved message transfers. Note that while these messages are between the same two hosts,
the delay of each message must be determined independently because network performance for sending
and receiving to and from the same host can be asymmetric. If we represent the time to send a message
from processor a to processor b as msgT'ime,p, then the communication cost for each processor can be
calculated as shown in Figure IV .4.

In the Jacobi communication phase, each processor broadcasts their n; sized portion of the vector

x to every other processor. For MPICH, the MPI implementation used in this thesis, a broadcast is
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Algorithm : CALCULATECOMMGOL(procID, p)

define FIRST_ID 0
define LAST ID p—1

commTime; =0
if procID # FIRST_ID
commT'ime; = max(msgTime; ;—1, msgTime;_1 ;)
if procID # LAST_ID
commTime; + = max(msgTime; i1, msglime; 1)

return (commTime;)

Figure IV.4: Game of Life communication cost calculation.

composed of individual MPI_Send and MPI Recv calls. The broadcast begins at the root node (the
root is whichever processor is the initiator of the broadcast), and is sent to all other processors via a
binomial tree [5]. The binomial tree broadcast structure is designed to minimize the number of serialized
messages that must proceed before the broadcast is complete; theoretically at most logs(p) messages
are serialized in each broadcast. Figure IV.5 illustrates a binomial tree broadcast structure for seven
processors with Py as the root node.

Since there are p broadcasts per iteration we assume that pxlogs(p) messages are sent per iteration.
Due to the (possibly) irregular data partitions, each processor’s broadcast could be of a different size.
Additionally, since the root node will be different for each broadcast in an iteration, the connections
involved in the broadcast will vary from broadcast to broadcast. One modeling approach is presented
in [5]; in this work the authors propose directly calculating the cost of each path in the binomial
broadcast tree to determine the longest path, which is then taken to be the predicted broadcast time.
This methodology has not been tested on heterogeneous, wide-area resources sets and it does not address
many factors that can impact broadcast time (e.g. wait times, message overlaps, network contention).
As a first approach, we decided to use a more efficient and simpler communication model. We calculate

an average message cost, msgT'imegy,q, and then approximate the communication cost as:

commTime; = p * logz(p) * msgTimegyg. (IV.8)
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Figure IV.5: Example of a binomial tree as used in the MPICH broadcast implementation. Circles
represent processors and arrows represent messages. Processor IDs are also listed in binary to illustrate

the way in which the tree is built.
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To develop a value for msgT'imey,q, we first assume messages will all contain an average number of
mesh pixels, N/p. Each pixel contains a double and we assume that each double requires eight bytes of
storage; therefore, we assume all messages will be of size 8 N/p. We also assume that within the selected
resource set, the usage of any processor to processor link is equally likely. Then, we individually calculate
the cost of sending a size 8 N/p message from each processor to every other processor and, finally, we
take the average. We believe that this methodology provides a good tradeoff between model complexity
and model accuracy.

It still remains to develop a model for the cost of sending a message between two processors.
Suppose the startup time for sending a message from a to b is o, and the available network bandwidth

is given by ;5. A common and simple model for the time to send a message from a to b is

msgTime,p = o p + msgSize/Boy. (IV.9)

In our target environment, the GrADS Computational Grid, near real-time measurements are provided
by the Network Weather Service (NWS) for network latency («) and bandwidth (5). We discuss
the configuration of this measurement infrastructure in Section V.A; in essence, network performance
measurements and predictions are based on the cost of transferring a fixed amount of data in a TCP /IP
communication stream [55]. Note that these measurements include the overhead necessary to initiate
a TCP/IP communication stream, which can be significant [55]. In initial benchmarking experiments
we tested the prediction accuracy of the above message time model parameterized by NWS network
performance predictions. In these experiments we observed that the message-passing costs experienced
by our test applications were significantly lower than those predicted by the model for msgTime, ;. We
also experimented with other message time models, and found that a bandwidth only model provided
better message time prediction accuracy. We therefore selected the bandwidth only model and the

revised message time model is:

msgTime,, , = msgSize/fap. (IV.10)

IV.C Mapper

The function of the mapper is to determine an appropriate mapping of work onto processors for

a given candidate resource group, or CRG. For our test applications, the resulting map consists of an
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allocation of mesh rows ng,ni,...,n,_1 to processors Py, Py, ..., P,_1. In order to find such a mapping,
two distinct subproblems must be solved: what topological arrangement of processors should be
used (e.g. which physical processor should be assigned to logical processor position Py) and what
allocation of work to those processors is appropriate (e.g. exactly how many rows of the data mesh
should be assigned to process P).

Our primary goal in finding a topological arrangement of processors is to order the processors
such that communication costs are minimized. There are a variety of ways to solve this problem. It is
possible to perform an exhaustive search and try each processor arrangement (using an execution time
model, when available, to select the best one), but since the mapper is called frequently we do not wish
to incur the large cost of such a search process. We instead opted for a simple and computationally
inexpensive methodology: we group resources by site and then arrange processors in the topology such
that machines from the same site are placed next to each other. For an application such as Game
of Life that involves primarily neighbor-based communication, this topological arrangement tends to
reduce the number of messages transferred over the wide-area when compared to a random processor
arrangement. A simple improvement to this approach which we have not implemented would arrange
the sites based on network delays in order to avoid the use of poorly performing links.

Our primary goal in finding an allocation of work onto processors is to ensure application resource-
requirements are met. A secondary goal is to reduce application execution time by evenly balancing
the workload on each processor. Determination of an application-appropriate work allocation is highly
dependent on application performance characteristics. Since our scheduler design supports two levels of
application performance models, we have designed two work-allocation strategies that take advantage
of available information in each performance modeling context. The equal allocation mapper utilizes the
application information available in the memory usage model context; the time-balance mapper utilizes

the application information available in the execution time + memory usage model context.

IV.C.1 Equal allocation mapper

When only memory usage application information is available, a sophisticated mapping strategy
cannot be employed. Our equal allocation mapping strategy is to simply allocate work to processors
uniformly. Each processor is assigned n; = N/p rows of the mesh and the total number of pixels
assigned to each processor is n; * N. To ensure that application resource requirements are met, the

mapper verifies that local memory availability is sufficient to support application memory requirements;
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in the case that local memory capacities are not sufficient for application needs, the mapper simply
returns with failure to find a map. In the scheduling context described in Chapter 111, the current CRG
is removed from the list of candidate CRGs and the search process continues.

Note that not every problem size will evenly decompose on every resource set size. In the case that
the target application supports unequal partitions, we simply ensure that partitions are as similar as
possible, but do not require exactly equal partitions; this is the approach taken for our test applications.
In the case that the target application does not support unequal work partitions, candidate CRGs are

restricted to those resource sets for which work can be divided into identically-sized partitions.

IV.C.2 Time balance Mapper

When an application execution time model is available, it is possible to utilize more performance-
efficient mapping strategies. Our approach is to formalize important resource requirements and perfor-
mance considerations as a series of constraints. Work-allocation can then be framed as a constrained
optimization problem. A solution consists of an allocation of work onto resources; the goal of the op-
timization problem is to find a work-allocation that minimizes application iteration time. Recall that
for this application class, iteration time is determined by the slowest processor. A work allocation that
perfectly balances load among participating processors assigns less work to slower processors and more
work to faster processors in a way that minimizes overall iteration time.

The variables in this constrained optimization problem constitute the mapping of rows to processors.
Since each of the variables is constrained to an integer value, the system of constraints can be framed as
an integer programming problem [54]. Unfortunately, the integer programming problem is NP-complete,
rendering the solution computationally expensive to compute. During the scheduling process, a mapping
is calculated for each candidate resource group; since the scheduler considers a relatively large number
of CRGs (see Section III.B), a computationally expensive mapper will result in high overheads for
scheduling. A much more efficient alternative is provided by linear programming solvers [54]; in this
case the solution is real-valued and can only provide an approximate solution for an integer problem.
However, even for small iterative, mesh-based applications of interest for the Grid, the maximum
error that can be caused by the usage of a real-valued solution is quite small. For example, consider
a Jacobi problem size of 1000 x 1000, which very easily runs on a single processor. Suppose this
problem is decomposed on 2 processors. In this case, the maximum error that can be introduced by

using a real-valued solution is 1/1000, or 0.1%. Since the introduced error is small and the solver
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efficiency is much higher, we frame the mapping problem as a linear programming problem. Many
linear programming solvers are freely available [33]; we selected the lp_solve package [35], a freely
available linear programming solver which is based on the simplex method.

The problem formulation begins with the specification of an objective function. For this problem,
an ideal objective function is the iteration time of the slowest processor. Unfortunately, there is no way
to specify this objective in a linear formulation. Instead, our formulation minimizes the computation
time on the first processor in the topology, Py, and utilizes a series of constraints to ensure load-balance
among processors (we will discuss these constraints momentarily). We use the execution time model to

formally specify the objective function:

N1« compUnit
compg

£ 1p). (IV.11)

minimize(

The second component of problem formulation is a specification of bounds on the variables. In this
case, each processor must be assigned a non-negative amount of work not to exceed the total problem

size, N. Formally:

Vie{0:p—1},0<mn; <N. (IV.12)

The rest of the problem formulation consists of a series of constraints. Unlike some packages,
the 1p_solve package supports specification of constraints as equalities or inequalities. We therefore
formalize each constraint in whichever format is the most natural. First, the total amount of work

allocated must be equal to the total number of rows, N:

> ni=N. (IV.13)

Next, we use the specification of memory requirements from the memory usage model to ensure that

the data allocated to each processor fits within that processor’s local memory:

Vi€ {0:p—1}, N s« memUnit « n; < mem,. (IV.14)
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Finally, we need to formally specify that processor iteration times should be balanced. To do this,
one can select a reference processor and specify that the iteration time on every other processor must be
equal to the iteration time on the reference processor. Since the objective function involves minimizing
computation time on processor 0 we select Py as the reference processor; the constraints can then be
written: Vi € {1 : p — 1}, |itTime; — itTimeg| = 0. When local memory capacities are sufficient,
this constraint specification will result in a perfectly balanced mapping. However, when local memory
capacities are more limited, the solver may fail to find a solution. In some of these cases, local memory
availabilities are sufficient to support application requirements, but only if the data mapping is not
perfectly balanced. Clearly, an unbalanced solution is preferable to no solution at all; we therefore
introduce a relaxation factor, R in the time balancing constraints. The revised counstraints specify that
the iteration time on every processor must be within some relaxation factor of the iteration time on Py:
Vi e {1:p—1},|itTime; —itTimey| < RxitTimey. To specify this constraint in a linear form, we again
refer to the full performance model. Recall that communication requirements are independent of the
data mapping for our test applications; communication costs can therefore be specified as a constant
and moved to the right hand side of the linear constraint specification. Since absolute values can not

be specified in a linear formulation, we use two inequalities. The formal constraint specification is:

Vie{l:p—1}, — (1 + R) * compTimey + compTime;
(IV.15)
< (1 + R) x commTimey — commTime;

Vie {l:p—1},(1 — R) x compTimey — compTime;
(IV.16)
< (=14 R) * commTimey + commTime;

Since the optimal mapping solution is found for an R factor of zero, we first formulate the problem
with R = 0 and use lp_solve to try to find a solution. If a solution is found, the mapping is returned.
When a perfectly balanced solution is not found, we want to find the mapping that satisfies local
memory requirements while providing the best possible load-balance. To find this mapping we have to
find the minimum R factor for which a solution is possible. We utilize a binary search method that
begins with a minimum value of R = 0 and a configurable maximum value (for this thesis we use a
maximum of 10). If a solution is impossible for the maximum R value, the mapper returns with failure
to find a map. If a solution is found, a binary search is used to search for a R value that is close to

optimal. The search ends when the difference between two successive R factors in the search is smaller

than some tolerance (for this thesis we use a tolerance of 0.01).
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IV.D Chapter summary

This chapter has focused on the general characteristics of iterative, mesh-based applications and
on the specifics of two applications from this class, the Jacobi method and the Game of Life. We
described in detail our implementation of each of these applications, and discussed the performance
impacts of our implementation choices. We also presented an application-specific performance model
design for memory usage prediction and execution time prediction. Finally, we described the function
of the mapper and presented our implementation of an equal allocation mapper and a time balance
mapper.

In the next chapter we present experimental results demonstrating the efficacy of our performance

model and mapper designs as well as the scheduling methodology itself.



Chapter V

Experiments

In this chapter, we describe experimental results we obtained when applying our methodology
in realistic scheduling runs of Jacobi and the Game of Life. Our validation approach is two-fold.
First, we present a suite of experiments that test the application-specific execution time model and
mapping strategies we developed in Chapter IV. Second, we present a suite of experiments designed to
directly test our scheduling methodology itself. This two-phase approach is useful because we expect
the performance of the scheduling methodology to be highly dependent on the type of application
performance model and mapping strategy provided to it. It is therefore useful to understand the
performance impact of each application-specific component before examining scheduler performance
results.

This chapter is organized as follows. In Section V.A we describe the architecture and software
configurations of the resources used in our validation experiments. We also describe the configuration
of the Grid information services used to obtain information about these resources. In Section V.B, we
present validation results for the application-specific performance models developed in Section IV.B.
Likewise, in Section V.C, we present validation results for the mapping strategies developed in Sec-
tion IV.C. Section V.D describes experimental results we obtained when applying our methodology in
realistic scheduling runs of our two test applications. Section V.E explores the costs incurred in the

process of scheduling. Finally, in Section V.F we summarize our findings.
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Circus Torc Opus Major
cluster cluster cluster cluster
(UCSD) (UTK) (UIUC) (UIUC)
Size 6 8 4 6
Domain ucsd.edu cs.utk.edu cs.uiuc.edu cs.uiuc.edu
Names dralion torcl, torc2 opusl3-m amajor
mystere torc3, torc4 opusl4-m bmajor
soleil torch, torc6 opuslb-m cmajor
quidam torc7, torc8 opusl6-m fmajor
saltimbanco gmajor
nouba hmajor
CPU 450 MHz PIII | 550 MHz PIII | 450 MHz PII | 266 PII
dralion
nouba,
400 MHz PII
others
CPU Count || 1 2 1 1
Memory 256 MB 512 MB 256 MB 128 MB
0OS Debian Red Hat Red Hat Red Hat
Linux Linux Linux Linux
Kernel 2.2.19 2.2.15 SMP 2.2.16 2.2.19
Network 100 Mbps 100 Mbps 100 Mbps 100 Mbps
shared switched switched shared
ethernet ethernet ethernet ethernet
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Table V.1: Summary of testbed resource characteristics.

V.A Experimental methodology

V.A.1 Testbeds

At the date of this writing, there are approximately 40 machines in the GrADS testbed; resources
include machines located at Indiana University (IU), University of California at Santa Barbara (UCSB),
University of Tennessee at Knoxville (UTK), Rice University (Rice), University of Illinois at Urbana-
Champaign (UIUC), and University of California at San Diego (UCSD). For the thesis, we focus on a
subset of the GrADS testbed including resources at UTK, UIUC, and UCSD. At UIUC the resources
that we target are in two distinct clusters; we target a single cluster at each of the other sites. A snapshot
of the network bandwidth within and between these sites is shown in Figure III.1. Characteristics of
the targeted testbed resources are summarized in Table V.1.

We have selected two target resource groups, or testbeds, from this group of machines: a one-

site testbed consisting of the UCSD subset of the target resource group and a three-site testbed
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counsisting of all target resources. The one-site testbed serves as an example of a small testbed with
relatively homogeneous workstations and a low-delay network. The three-site testbed serves as an

example of a larger testbed with greater resource heterogeneity and larger network delays.

V.A.2 Software requirements

Our experimental methodology uses a variety of software packages; we discuss in turn those needed
to launch and run the application itself, those needed only by the resource on which the scheduler will
run, and those needed to support Grid information collection and dissemination.

In order to launch and run the application, every compute resource must be running Globus [22]
and MPICH-G [39] and all of the required sub-packages. All of the resources targeted in this thesis are
currently running Globus V1.1.3 (with threads enabled) and MPICH-G V1.1.2.

The scheduler itself requires a larger number of packages. The scheduler is implemented in C++;
we used GNU autoconf and GNU make to configure and build the scheduler. To support the require-
ments of the time balance mapper, the lp_solve package [35] must be installed; we used version 3.2.
The scheduler code also uses many building blocks from the AppleSeeds library [4] and the GrADSoft
prototype [24]. NWS V2.0 [40] is used to query an on-line NWS nameserver for Grid information (we
discuss the NWS configuration in the next section). LDAP is used by the scheduler to query an on-line

MDS server for Grid information.

V.A.3 Grid information services

The NWS resource measurement infrastructure [40] includes measurement sensors on every resource
of interest and a centralized nameserver that provides a single point of contact for consumers of NWS
information. Measured resource attributes can be retrieved directly, or a next step prediction can
be generated from measurement series [58]; in all experiments presented in this chapter NWS values
are based on a next step prediction. The GrADS NWS nameserver is currently running on host
fender.cs.utk.edu. For most testbed machines, measurements of local resource characteristics such
as available CPU and free memory are collected every 10 seconds. The GrADS NWS infrastructure
is also configured to collect network performance information (e.g. bandwidth and latency) between
hosts. To avoid the large number of network measurements required for collection of all-to-all values,
network measurements are gathered in a hierarchical fashion. Within each site (e.g. the UCSD Circus

machines), measurements are collected in an all-to-all manner between all hosts. For wide-area network
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information, a particular workstation is selected at each site to act as a site representative; measure-
ments are then collected in an all-to-all manner between site representatives. On the GrADS testbed,
network performance measurements are based on the transfer of a TCP message of 1 MB in size, and
measurements are repeated every b minutes. This measurement frequency is relatively low; use of a low
measurement frequency is one way to mitigate the intrusiveness of the network measurement technique
and to reduce interference between network measurements.

For the purposes of this thesis, we also maintained a locally-controlled NWS nameserver and
measurement infrastructure. The local NWS nameserver is running on host dralion.ucsd.edu
and is used only for NWS series needed for this thesis. We decided to use a locally-controlled NWS
infrastructure because we found that we were able to maintain a more consistent level of information
availability. To ensure that our results directly map to the general testbed infrastructure, wherever
possible we have configured the measurement methodology in a similar way to the GrADS infrastructure.
In Section V.E we discuss the overhead associated with retrieval of information from both the GrADS
NWS nameserver and the locally-controlled nameserver.

To support retrieval of information from the MDS, there are duplicate GrADS MDS servers
running at grads.isi.edu, port 3890 and castanet.cs.uiuc.edu, port 4444. As we discuss later in
this chapter (Section V.E), the time required to retrieve information from either of these MDS servers
can be high; additionally, the servers can be quite unstable. An upcoming release of the MDS will
likely solve many of these problems. As a short-term workaround, we have implemented a local caching
mechanism for MDS data; if MDS caching is enabled in the scheduler (this is a configurable option), then
newly retrieved data values are stored in the local cache file. With caching enabled, later information
requests will check the cache before accessing the MDS server. Local caching would be unacceptable
if the information we retrieve were changing frequently; fortunately, the resource attributes we retrieve

from the MDS, such as processor speed and physical memory, change very slowly.

V.A.4 Timing methodology

In the rest of this chapter, we present a variety of experimental results, most of which involve
application performance results. For all such application performance results, we use a consistent timing
methodology. The MPI function MPI_Wtime is used to record current time at various code locations.
The resolution of this timing function (as reported by the MPI function MPI_Wtick) on the systems we

targeted was 1 usec. We use MPI_Wtime calls at the beginning and ending of each iteration to measure
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the time of each iteration. We record the computation and communication time per iteration in the
same way. In order to exclude initial synchronization costs from average iteration times, the application
is configured to run for four iterations before collected timings are incorporated into the average; after
these warmup iterations, the application executes 100 iterations. At the end of this iterative phase,
each processor calculates an average iteration time, an average computation time per iteration, and an
average communication time per iteration. The overall average application iteration time is given by the
maximum average iteration time reported by any processor. The procedure is the same for determining
average application computation and communication times. Since processors are synchronized at each
iteration, recorded iteration times are typically very similar. However, computation and communication
times recorded on each processor can vary widely. The measurement of communication time is difficult
because there is no simple way to differentiate between time actually spent communicating and time
spent waiting for a communication peer to reach the communication phase. For this reason, we report
timings only for the iteration time and the computation time. The difference between the iteration time
and computation time can be interpreted as the communication time plus time for overheads such as
waiting for communication peers. Iteration time results do not include the costs of scheduling. Instead,
we address scheduling latency in Section V.E. With the exception of Section V.E, all timings reported

in this chapter are in seconds per iteration.

V.B Performance model validation

Our scheduling methodology depends on a performance model to compare candidate schedules; the
success of the scheduler in selecting performance-efficient schedules is therefore dependent on the ability
of the performance model to correctly predict application resource usage. Recall that the scheduler
design supports two levels of performance model: a memory usage model and an execution-time +
memory usage model. The goal of this section is to evaluate the prediction capability of the application-
specific execution time model that we presented in Section IV.B. While the prediction capability of the
memory usage model is also important for scheduler performance, we feel that the application-specific
memory usage model described in Section IV.B is straightforward. We have performed simple sanity
checks on the validity of this model and are confident that it predicts the memory usage of our test

applications well. !

1Specifically, we compared predicted application memory requirements with actual memory usage as reported
by the UNIX command ps.
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V.B.1 Experimental design

Approach

To evaluate the predictive capability of our execution time model we compare predicted performance
to actual performance for a variety of conditions. For each such comparison we (1) select an application,
testbed, problem size, an exact target resource set (a machine list), and a data mapping onto the
selected resources; (2) use the execution time model to predict application performance; and (3) run
the application and measure actual performance.

The execution time model supports a variety of configurations (see Section III.C.2 for details).
For testing purposes we have selected a single model configuration. The selected configuration uses
available processor speed (compType = AVAIL_MHZ) for the computational capacity of each machine
and predicted values for all NWS information inputs (nwsType = PRED).

Testbeds

We include experiments performed on the one-site and three-site testbeds described in Section V.A,
with one modification. For this set of experiments we wanted roughly equal numbers of resources from
each site so we did not include the Opus cluster at UTUC in the three-site testbed.

Experimental procedure

For each testbed, we define an experiment series consisting of a reasonable selection of problem
sizes and resource set sizes for that testbed. For the one-site testbed, an experiment series consists of
problem sizes of N = {600, 1200, 2400, 4800, 7200, 9600} and resource set sizes of p = {1, 2, 3, 4, 5, 6}.
For the three-site testbed, an experiment series consists of problem sizes of N = {630, 1260, 2448, 4500,
7200, 9000} and resource set sizes of p = {3, 6, 9, 12, 15, 18}. We selected a different set of problem
sizes for each testbed to increase the frequency with which the problem size could be decomposed into
identically sized partitions on the target resource set sizes.

To begin each experiment series, we ran the predictor and application for the smallest problem size
on the smallest resource set size. We then ran increasingly larger resource set sizes for that problem size,
and eventually continued on to the next larger problem size. For each application-testbed combination
we completed three repetitions of the experiment series.

Runs of the application in an experiment series were performed within roughly the same period of
time (e.g. within 4-12 hours) while repetitions of the experiment series were sometimes separated by a
relatively long interval (e.g. 2 weeks). We therefore expect the Grid environment to be more similar

within an experiment series than between experiment series. Note that if we executed application runs
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in an immediately back-to-back fashion, NWS resource availability predictions would be biased by the
resource utilization of the previous run; this bias is due to the fact that, as with all measurement
systems, there is a slight delay between changes in actual behavior and the recording of those changes.
To avoid this undesirable interaction we included a three minute sleep phase between application runs;
we selected three minutes because in practice it typically proved sufficient.

The configuration of an application run requires more than selection of a testbed, application, prob-
lem size, and resource set size; we also needed to select a specific resource set (a machine list) and a
mapping of work onto those resources. Since the goal of these experiments was to evaluate only the
execution time model, we favored a straightforward evaluation environment; we therefore predefined the
target resource sets and data mappings for each configuration. In Section V.D we describe scheduling
experiments in which the resource set and mapping were determined at run-time. For the one-site
testbed, the compute and network resources were fairly homogeneous; we therefore simply selected a
random resource ordering and used it for all runs. For the three-site testbed, the resources and networks
were more heterogeneous; in this case, for each target resource set size we randomly selected an equal
number of resources from each site and arranged them by site in the communication topology. For ex-
ample, for the six-processor, three-site case, the processor arrangement we used was {torc3.cs.utk.edu,
torc7.cs.utk.edu, fmajor.cs.uiuc.edu, hmajor.cs.uiuc.edu, dralion.ucsd.edu, soleil.ucsd.edu}. For the se-
lection of a mapping of work onto the selected resources, we again favored a straightforward validation
environment by using the equal allocation mapping strategy described in the previous chapter (Sec-
tion IV.C). In Section V.C we describe experiments that compare the performance achieved with the

equal allocation mapper and the time balance mapper.

V.B.2 Results

Since the execution time model is different for both applications, we present results for the Game
of Life and Jacobi separately. Additionally, since the resource characteristics of the two target testbeds
are quite different we also present results for each testbed separately. In the following sections we
present results for each of the four resulting application-testbed combinations. Refer to Section V.A .4
for details on the timing methodology used for these experiments.

Game of Life, one-site testbed
Recall that for the one-site testbed, an experiment series consists of problem sizes of N = {600,

1200, 2400, 4800, 7200, 9600} and resource set sizes of p = {1, 2, 3, 4, 5, 6}. Figure V.1 presents
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Figure V.1: Results of execution time model validation experiments for the Game of Life application

on the one-site testbed, problem sizes of 600, 2400, and 7200.
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results for three of the six problem sizes for the Game of Life experiment series on the one-site testbed;
for the three sizes shown, N = {600,2400,7200}, all repetitions are shown for all target resource set
sizes. For each resource set size, the three independent repetition results are presented as three pairs of
vertical bars; each pair of bars represents one execution time prediction and application run pair. The
full left-hand bar represents measured application iteration time; the darker, lower portion of the bar
(MeasComp) is the measured computation time per iteration; and the lighter, upper portion of the bar
(MeasOther) is the difference between the average iteration time and the average computation time.
In this set of runs, iteration time is clearly dominated by computation time; computation is dominant
here because the Game of Life does not involve very costly communications, and the one-site testbed
provides relatively low-cost communication since all messages are transferred across the local area 100
Mbps Ethernet.

The right-hand bar of each bar pair represents predicted application iteration time; the darker, lower
portion of the bar represents the predicted computation time and the lighter, upper portion of the bar is
the difference between the predicted iteration time and the predicted computation time. A comparison
of the overall bar heights for each bar pair indicates the prediction accuracy of the execution time
model. Similarly, a comparison of the application computation time with the predicted computation
time indicates the prediction accuracy of our computation time model. Finally, a comparison of the
MeasOther time with the PredComm time indicates how well the communication time model (which only
predicts the cost of message transfer) compares with the application time spent for message transfers,
synchronization, and other overheads.

Notice that in Figure V.1 there are no results for a problem size of 7200 and resource set sizes
of 1, 2, and 3. We excluded application runs from a series if the physical memory availability of the
targeted processors is not large enough to support application needs; for this testbed, a problem size
of 7200 requires at minimum four processors. One result is striking in this set: the predicted iteration
time for N = 7200, p = 4, rep = 1 is more than twice as large as the measured iteration time. For
this run, the predicted CPU availability retrieved from the NWS was less than 47% for one of the
targeted processors; our methodology therefore predicted that the computation time on this processor
would be more than twice as long as if the processor were unloaded. The actual results indicate that
our application received nearly 100% of the CPU during execution; we hypothesize that either the load
conditions changed during the short time from prediction to actual run, or the original CPU availability
measurements were inaccurate.

Overall, the results shown in Figure V.1 indicate that the prediction accuracy of our execution time
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\ [ 600 1200 2400 4800 7200 9000 |

Attempted Runs || 18 18 18 18 18 18
Completed Runs || 18 18 18 15 9 3
Median % Error || 4.4 4.6 1.5 109 134 25.1
Mean % Error 6.7 6.7 5.8 154 25.2 25.0
StdDev % Error || 8.7 5.9 7.1 19.3 35.6 6.1

Table V.2: Summary of execution time model prediction errors for the Game of Life on the one-site

testbed.

model is fairly high for this application-testbed combination. This is not surprising since (1) the target
resource set is relatively homogeneous, and (2) the application is dominated by computation time which
is traditionally easier to model than communication time. To obtain a more quantitative analysis, we

use the following method to calculate the relative percent prediction error for each run:

predI'ime — actualTime

predError = 100 * (V.1)

actualTime

In Table V.2, summary results are provided for all six of the tested problem sizes. For each
problem size, the experiment series included six resource set sizes and three repetitions; accordingly,
the attempted row shows that 18 runs were attempted for each problem size. The completed row
indicates how many of these runs were actually completed. The most common reason for an incomplete
run is that the run was simply skipped due to limited memory availability during the experimental
period; for this set of results, all of the incomplete runs can be attributed to this cause. More typically,
some number of runs will fail due to other causes as well; incomplete runs can usually be attributed to
an off-line target machine, a communication time-out in Globus, or insufficient memory availability on
one or more of the target resources. Table V.2 also gives the median, mean, and standard deviation of
all prediction error results for each problem size.

In summary, the mean prediction error of our execution time model is low for the three smaller
problem sizes (error < 7%) and moderate for the larger problem sizes (error values were between 15%
and 25%).

Game of Life, three-site testbed

For the three-site testbed, each experiment series consists of problem sizes of N = {630, 1260, 2448,
4500, 7200, 9000} and target resource set sizes of p = {3, 6, 9, 12, 15, 18}. In Figure V.2 we show
results for problem sizes of N = {630, 4500, 9000}.
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Figure V.2: Results of execution time model validation experiments for the Game of Life application

on the three-site testbed, problem sizes of 630, 4500, and 9000.
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\ [ 630 1260 2448 4500 7200 9000 |

Attempted Runs || 18 18 18 18 18 18
Completed Runs || 17 17 17 17 15 12
Median % Error || 65.0 36.8 159 11.3 4.8 7.9
Mean % Error 60.9 346 243 151 7.6 9.0
StdDev % Error || 17.8 19.9 32.1 13.5 8.5 8.1

Table V.3: Summary of execution time model prediction errors for the Game of Life on the three-site

testbed.

Upon comparison of these results with those from the one-site testbed (Figure V.1), two differences
are immediately obvious: communication costs are higher for the three-site testbed, and the model
prediction accuracy is lower. The computation time predictions are generally fairly accurate for both sets
of runs; the increased prediction errors are primarily attributable to communication time misprediction.

Recall that the communication model we use is a bandwidth-only model and notice that com-
munication time misprediction is most severe for the smallest problem sizes (Figure V.1). For the
transfer of smaller message sizes in the wide-area, communication cost is often dominated by message
latency; it is therefore likely that misprediction for smaller problem sizes is attributable to our usage of
a bandwidth-only model. However, in initial tests we found that the bandwidth-only model performed
better in general than a model including both latency and bandwidth (see Section IV.B). Regardless,
for the purposes of comparing candidate schedules, the most important characteristic of a model is
that it correctly track trends in application performance. While the communication model is not par-
ticularly accurate, it does successfully track changing network performance; for example, for all target
resource set sizes run for a problem size of N = 4500 the network bandwidth during repetition one was
significantly higher than the bandwidth during repetition two. The communication model correctly
predicts increased communication costs for repetition two.

Table V.3 summarizes prediction error statistics for all problem sizes. On average, the mean model
prediction error is much higher for the smaller sizes than for the larger sizes (e.g. 60% for N = 630
versus 9% for N = 9000, respectively). Overall, average prediction errors are moderate for the Game
of Life on the three-site testbed.

Jacobi, one-site testbed

Figure V.3 shows the results of the Jacobi experiment series for problem sizes of N = {600, 2400,

7200} using the one-site testbed. Comparison of Figure V.3 with Figure V.1 reveals that even in the

more tightly-coupled one-site testbed, communication costs are significant for the Jacobi application,
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one-site testbed, problem sizes of 600, 2400, and 7200.
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\ [ 600 1200 2400 4800 7200 9000 |

Attempted Runs || 18 18 18 18 18 18
Completed Runs || 18 18 18 15 9 3
Median % Error || 11.5 6.5 9.1 2.7 16.6 14.4
Mean % Error 17.0 12,5 11.1 94 15.3 16.3
StdDev % Error | 14.6 20.2 9.7 12.1  11.0 13.1

Table V.4: Summary of execution time model prediction errors for Jacobi on the one-site testbed.

\ [ 630 1260 2448 4500 7200 9000 |

Attempted Runs || 18 18 18 18 18 18
Completed Runs || 17 13 18 16 13 10
Median % Error || 74.9 52.8 36.5 31.7 18.0 16.5
Mean % Error 72.2 522 446 334 25.6 25.8
StdDev % Error || 11.5 7.8 37.6 174 18.7 19.8

Table V.5: Summary of execution time model prediction errors for Jacobi on the three-site testbed.

which was not the case for the Game of Life. Recall that in our execution time model development
(Section 1V.B) we predicted that Jacobi would involve about half as much computation per iteration
as the Game of Life, but that Jacobi’s communication requirements would be much higher. Another
noticeable difference between Figure V.3 and Figure V.1 is that the computation time prediction error
seems to be higher for this data series. This degradation in prediction accuracy could be caused by a

number of factors. The two most plausible are as follows.

1. We have included the purely computational termination detection phase in computation time
measurements and predictions. However, for Jacobi the computational cost of termination de-
tection grows as the size of N while our computation model assumes that all computation time

grows as the size of N2.

2. The increased communication activity in Jacobi might have affected computation times.

Table V.4 gives summary prediction error statistics for all problem sizes for Jacobi on the one-site
testbed. The mean model prediction error is generally low for this testbed-application combination
with values ranging from 9% to 17%.

Jacobi, three-site testbed

The final application-testbed combination is the Jacobi application on the three-site testbed. Ex-

perimental results for problem sizes of N = {630, 4500, 9000} are shown in Figure V.4, and summary

prediction error statistics are shown in Table V.5. Communication time is clearly a larger fraction
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Figure V.4: Results of execution time model validation experiments for the Jacobi application on the

three-site testbed, problem sizes of 630, 4500, and 9000.
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of iteration time for this testbed-application combination than for the other three. This is to be ex-
pected for two reasons: (1) each Jacobi iteration includes a communication-intensive broadcast phase,
and (2) for this testbed, each of those broadcasts includes a number of high-delay wide-area message
transfers. As was the case for the Game of Life, the communication model typically under-predicts
communication time and is especially inaccurate for smaller problem sizes. As discussed for the Game
of Life, this under-prediction is likely attributable to our usage of a bandwidth-only model. Notice
that the communication model does correctly track the increase in communication cost with increasing
numbers of processors; this trend is especially apparent for repetition 1, problem sizes of 4500 and 9000.
Measured iteration times indicate that network performance was degraded in repetition 1 as compared
to the other 2 repetitions; the execution time model clearly distinguishes between these conditions and

correctly tracks the improvement in network performance.

V.B.3 Summary

The experiments presented in this section were designed to evaluate the prediction accuracy of
our execution time model in a wide variety of realistic Grid conditions and for an array of reasonable
application configurations. For the one-site testbed, average performance prediction errors were less
than 26% for both applications; average prediction errors were more typically 5% to 15%. For the
three-site testbed, average performance prediction errors were less than 75% for both applications; more
typically, average prediction errors were 10% to 50%. Given the highly dynamic nature of realistic Grid
environments and the simplicity of our execution time model, prediction errors in these ranges are not

unreasonable, nor are they unexpected.

V.C Mapper validation

Our core schedule search procedure, presented in Section II1.B.1, is dependent on the availability
of a reasonable mapping strategy for the development of feasible candidate schedules. The quality of
generated schedules, as measured by the resulting application iteration time, can therefore be expected
to be related to the execution time impact of the chosen mapping strategy.

In Section IV.C we presented two application-specific mapper designs, the equal allocation mapper
and the time balance mapper. In Section V.B we utilized the equal allocation mapper in execution time
model validation experiments. In this section we present experiments that investigate the performance

characteristics of both the equal allocation mapper and the time balance mapper. We also examine the
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impact of mapper choice on application iteration times.

V.C.1 Experimental design

Approach

To evaluate the two mapping strategies we compared application iteration times achieved with
each mapper under a variety of realistic Grid conditions. For each such comparison we (1) selected an
application, testbed, problem size, and exact target resource set (a machine list); (2) used the equal
allocation mapping strategy to find an equal allocation data map; (3) ran the application with the equal
allocation data map on the resource set defined in step 1; (4) used the time balance mapper to find a
time balance data map; and (5) ran the application with the load-balanced data map on the resource
set defined in step 1.

Recall that the mappers support a variety of information inputs (see Section II1.D). For testing
purposes, we selected a single set of information inputs. Both mappers require local memory capacity
information for all targeted resources; in these experiments the mappers utilized free memory values
(memType = FREE). The time balance mapper also requires local computational capacity information;
for these tests we selected available processor speed (AVAIL_MHZ). Finally, all NWS information inputs
were next step predictions (nwsType = PRED).

Testbeds

For these experiments, we targeted the same real testbeds used for the performance model validation
experiments.
Experimental procedure

To include a variety of problem sizes and target resource set sizes in our experiments, we used the
same experiment series defined for each testbed in Section V.B. For the one-site testbed, we excluded
the one-processor test cases since both mappers would develop exactly the same mapping, precluding
interesting comparison. Since the goal of these experiments was to investigate the performance impact
of the mapping strategies, and not to test resource selection, we targeted the same predefined resource
sets as were used in Section V.B. As before, we included a sleep interval of three minutes between each
application run. We again performed three repetitions of each experiment series for each application-

testbed combination.



67

V.C.2 Results

Rather than present a large number of experimental runs as in Section V.B, we instead present
summary results and describe in greater detail only the most significant results. In order to examine
the impact of mapper choice on application iteration times, we consider the relative percent improvement

of the time balance mapper over the equal allocation mapper:

itTimeequal — itT'imepgianced (V 2)

percentImp = 100 * —
1T imecqual

When the time balance data map generates a shorter iteration time than the equal allocation map,
the percent improvement metric will be positive; similarly, when application iteration time is shorter
with the equal allocation map than with the time balance map, the percent improvement metric will

be negative.
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Figure V.5: Experimental results for the equal allocation and time balance mappers for the Game of

Life application on the three-site testbed, problem size 4500.

Game of Life

Figure V.5 presents results for the Game of Life with a problem size of N = 4500 on the three-site
testbed; results are shown for all target resource set sizes and for all three repetitions. This set of results
is representative of the results for the other problem sizes tested. For each bar pair in this figure, the
left-hand bar represents the application iteration time achieved with the equal allocation map, and
the right-hand bar represents the application iteration time achieved with the load-balanced map. For
the results presented in this figure, the time balance mapper generally results in better (i.e. shorter)

execution times when compared with the equal allocation mapper.
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| [ 600 1200 2400 4800 7200 9600

Attempted runs 15 15 15 15 15 15
Completed equal alloc. 13 13 12 7 4 1
Completed time balance || 13 13 13 11 7 3
Comparable runs 13 13 12 7 3 1
Median % improve 36 54 9.3 142 97 -19.1
Mean % improve 87 188 18.0 21.7 133 -19.1
StdDev % improve 10.6 21.8 188 187 677 0

Table V.6: Summary of percent improvement of the time balance mapper as compared to the equal

allocation mapper for Game of Life on the one-site testbed.

The triangles in Figure V.5 mark places where there was either a mapper failure (e.g. the mapper
found that local processor memory capacities were insufficient or an application failure (e.g. a Globus
communication error caused the application itself to actually fail). For this series of runs, the failure

causes were as follows.

e The equal allocation mapper failure at p = 12, rep = 3 was caused by an application failure of

unknown origin.

e In the case of the balanced failure at p = 18, rep = 1, one of the target machines was so heavily
loaded that NWS predicted CPU availability was zero and the load-balanced mapper could not
find a valid mapping.

e For p = 18, rep = 3 both mappers failed to find a map because memory availability information

was unavailable for one of the target machines (most likely the machine was off-line).

Note that the last two failures occurred because the list of target resource sets is predefined for these
experiments. When the scheduler is allowed to select target resource sets, such resources are simply
avoided and the mappers will not exhibit this type of failure.

Table V.6 and Table V.7 present summary information for all Game of Life mapper comparison
runs on the one-site and three-site testbeds, respectively. The first row, Attempted runs, indicates the
number of attempted application runs; the Completed equal alloc. and Completed time balance rows
indicate how many of those runs were successfully completed for each mapper. Recall that failures
can be related to either a mapper failure or an application failure. Row Comparable runs records how
many of the attempted runs included a successful equal allocation mapper run and a successful time

balance mapper run. We can only determine a percent improvement metric for those runs in which
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\ [ 630 1260 2448 4500 7200 9000 |
Attempted runs 18 18 18 18 18 18
Completed equal alloc. 15 17 17 16 12 9

Completed time balance || 16 16 17 16 16 16

Comparable runs 14 16 17 15 11 8

Median % improve 9.2 140 22.0 30.1 311 356
Mean % improve 15.8 13.6 248 26.3 29.1 30.6
StdDev % improve 26.8 13.5 146 134 185 223

Table V.7: Summary of percent improvement of the time balance mapper as compared to the equal

allocation mapper for Game of Life on the three-site testbed.

both mappers ran successfully; for this reason the statistics in the rest of the table are based only on
the number of runs listed in the comparable runs row. The last rows of the tables, Median % improve,
Mean % improve, and StdDev % improve, present the median, mean, and standard deviation of the
percent improvement of the time balance mapper as compared to the equal allocation mapper. For the
majority of problem sizes on each testbed, the time balance mapper provides a substantial improvement
over the equal allocation mapper; the one exception, N = 9600 on the one-site testbed, is based on only
one comparable set of mapper runs and the application happened to perform very badly with the time
balance map in this run. Notice that the performance advantage provided by the time balance mapper
is more significant for the three-site testbed.

For the Game of Life application there are two primary factors that contribute to the success of the
time balance mapper in improving application execution time: (1) the mapper balances computational
load based on the computational capacities of the targeted resources and (2) the mapper overlaps
communication on some processors with computation on others. In the following paragraphs we describe
in greater detail how each factor improves application execution time.

Computational load-balancing. The computational speed of the resources in each testbed are
heterogeneous and since the resources are shared, the load on targeted CPUs can be quite different.
When the equal allocation mapper is used, the slower or more highly-loaded machines slow the entire
computation down. When the time balance mapper is used, the load is reduced on the slower and/or
heavily-loaded machines and increased on the faster and/or more lightly-loaded machines. Assuming
that NWS CPU availability predictions are accurate, this load adjustment tends to minimize over-
all application execution time by assigning appropriate workloads to each processor. Previous work
in application-specific schedulers [9, 12] has demonstrated similar success with computational load-

balancing for iterative, mesh-based applications.



70

Overlapping communication and computation. For the Game of Life, the communication
phase for each processor involves only communication with neighboring processors. Recall that during
the mapping process we arrange the processor topology to minimize the amount of data sent over
slow, wide-area links; we do this by placing resources from the same site adjacent to each other in
the topology. When a work allocation is found for this processor topology, processors in the same
site receive contiguous strips of data. Ounly processors that share a strip edge with a processor from a
remote site must participate in time-consuming wide-area message transfers; we call these processors
site edges in the processor topology. Since we use a strip decomposition, at most two processors
from each site can be site edges. Our implementation of the Game of Life communication phase uses
non-blocking calls; processors that are not side edges can therefore continue computation while site
edge processors are involved in wide-area transfers. The time balance mapper correctly handles this
communication heterogeneity by allocating less work to site edge processors. For example, the time
balance mapper achieved a large performance improvement over the equal allocation mapper for all
three repetitions of p = 3 in Figure V.5. In this case, there are three resources, {torc3.cs.utk.edu,
cmajor.cs.uiuc.edu, quidam.ucsd.edu}, and three sites; every processor must therefore participate in
wide-area communications. However, cmajor.cs.uiuc.edu will spend more time communicating since it
must communicate with both torc3.cs.utk.edu and quidam.ucsd.edu. The mapper correctly allocates
less work to this resource. Consider repetition three, in which the resources were assigned roughly 42%,
22%, and 35% of the total work. The middle processor, cmajor.cs.uiuc.edu, was allocated the least
work due to higher communication costs and the first processor, torc3.cs.utk.edu, was assigned a larger
portion of the work than the third processor, quidam.ucsd.edu, because of differences in processor speed
(550 MHz versus 400 MHz).

There is another advantage to the time balance mapper that is not immediately obvious in the
summary statistics: for larger problem sizes, the time balance mapper runs are significantly more likely
to complete than the equal allocation mapper runs (compare the Completed equal alloc. and Completed
time balance rows in Tables V.6 and V.7). As shown in Table V.1, the physical memory sizes vary widely
for the three-site testbed. Additionally, since resources are shared, the free memory available on targeted
resources can vary widely for both testbeds. The time balance mapper can adapt to this heterogeneity
by adjusting the load assigned to each processor, thus ensuring application memory requirements are
met. By comparison, the equal allocation mapper will fail when any one of the targeted resources does

not have the local memory capacity to handle an equal share of the application workload.
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Figure V.6: Experimental results for the equal allocation and time balance mappers for the Jacobi

application on the one-site testbed, problem size 4800.

Figure V.6 presents mapper validation results for Jacobi with a problem size of N = 4800 on the
one-site testbed; results are shown for all three repetitions on all target resource set sizes. The relative
performance of the two mappers seen in this set of results is fairly representative of the results for other
problem sizes and for the three-set testbed. For most application runs shown in this graph, application
performance was comparable with the equal allocation and time balance mappers; for some runs the
performance was better with the equal allocation mapper, although never dramatically. Note that in
this set of runs, the number of failures was much lower for the time balance mapper than for the equal
allocation mapper.

Table V.8 and Table V.9 present summary information for all Jacobi mapper comparison runs on the
one-site and three-site testbeds, respectively. For the one-site testbed, use of the time balance mapper
generally resulted in a modest degradation of performance as compared to use of the equal allocation
mapper, but the time balance mapper runs were significantly more likely to complete successfully.
Suprisingly, the performance and completion patterns were reversed for the three-site testbed: in these
experiments, the time balance mapper resulted in a modest performance improvement but was less likely
to complete successfully. The higher failure rate for the load balance mapper is notable, particularly
since the load balance mapper typically succeeds in finding a suitable data map when the equal allocation
mapper cannot. During these experiments, one or more resources were heavily loaded and the NWS
reported memory availability predictions of 0%. The load balance mapper was unable to find a suitable
mapping in which application memory requirements were met by the target resource group and so failed.

When the scheduler is allowed to select resources, dynamic NWS memory availability predictions allow



72

\ [ 600 1200 2400 4800 7200 9600
Attempted runs 15 15 15 15 15 15
Completed equal alloc. 15 15 15 10 4 2
Completed time balance || 15 15 15 14 10 5

Comparable runs 15 15 15 10 4 2

Median % improve -1.9 45 -64 35 13.1 -5.1
Mean % improve -1.2 -73  -141 -53 129 -5.1
StdDev % improve 8.7 11.1 299 154 121 17.1

Table V.8: Summary of percent improvement of the time balance mapper as compared to the equal

allocation mapper for Jacobi on the one-site testbed.

\ [ 630 1260 2448 4500 7200 9000 |

Attempted runs 18 18 18 18 18 18
Completed equal alloc. 18 18 16 15 11 10
Completed time balance || 16 17 13 12 12 15

Comparable runs 16 17 11 10 7 7
Median % improve -6 -21 4.3 7.7 13.9 115
Mean % improve -0.2 5.3 88 -10.5 163 7.9
StdDev % improve 11.5 235 182 572 9.2 13.9

Table V.9: Summary of percent improvement of the time balance mapper as compared to the equal

allocation mapper for Jacobi on the three-site testbed.

the scheduler to avoid heavily loaded machines altogether.

It is also notable that the time balance mapper provided more of a performance advantage for the
Game of Life than for Jacobi. Recall that the time balance mapper improved performance for the Game
of Life by overlapping communication on some processors with computation on others and by balancing
computational load on participating processors. Since our implementation of the Jacobi communication
phase uses a series of broadcasts, all processors must participate in the entire communication phase, and
the time spent communicating per processor is essentially independent of the work allocation. For these
reasons, the time balance mapper cannot improve performance by overlapping computation on some
processors with communication on others. Nonetheless, the mapper should be able to take advantage of
computational load balancing to improve Jacobi performance. An important limitation of this capability
is that the computation phase is sometimes a relatively minor portion of application iteration time (see
Figure V.4); in these cases balancing computational load affects only a small portion of the iteration
time. It is surprising that the time balance mapper does not provide a significant performance advantage

for the Jacobi application in those cases where computation time does constitute a significant portion
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of application execution time (see Figure V.3).

V.C.3 Summary

In this section we have demonstrated the utility of both the time balance and the equal allocation
mappers, thereby encouraging us to consider both mappers for scheduling experiments. Additionally,
for the Game of Life we demonstrated that the time balance mapper achieved a significant performance
advantage as compared to the equal allocation mapper; the performance advantage was more moderate
for the Jacobi application. The time balance mapper requires more sophisticated application informa-
tion than the equal allocation mapper; the performance advantage shown for the time balance mapper
therefore demonstrates that we can take advantage of more sophisticated application information to
improve application performance. We also found that, overall, the time balance mapper found a suitable

data map more often than the equal allocation mapper.

V.D Scheduler validation

The focus of this thesis is the development of a flexible, application-targetable scheduling method-
ology for Grid environments. In this section we present experiments that explore the efficacy of our

methodology. In particular, we investigate the following questions.

i. What is the impact of our scheduling methodology on application execution times as compared

to conventional scheduling approaches? We hope that our methodology reduces execution times.

ii. What is the impact of application information availability on scheduler performance? Specifically,
(a) can this methodology develop reasonable schedules despite limited application information
and models, and (b) can this methodology take advantage of more sophisticated information and

models to promote application performance? We hope that the answer to both questions is yes.

iii. How is application performance affected when dynamic resource information is available to our
scheduling methodology? Can the methodology develop reasonable schedules when only static
resource information is available? We hope that the scheduler can take advantage of dynamic

resource information, and that it can continue to function when such information is not available.

To investigate these questions we developed four scheduling strategies that we describe in the next

section. We then studied the performance of each strategy in a wide span of usage scenarios including
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a variety of problem sizes, applications, testbeds, and ambient load conditions; the design of these
experiments is also described in the next section. In Section V.D.2 we describe the results of these

experiments and in Section V.D.3 we summarize our findings.

V.D.1 Experimental design

Approach

To help us investigate the questions listed above, we developed four scheduling strategies based on
realistic Grid scheduling scenarios: user, basic, static, and dynamic. We developed the user strategy to
emulate the scheduling process that a typical user might employ. The remaining three strategies are
variations of our scheduling methodology based on resource and application information availability
scenarios. In the following paragraphs we describe the motivation behind, and the design of, each
scheduling strategy.

To answer question (i), we needed to compare the performance achieved with our methodology with
that achieved by a conventional approach. Unfortunately there is no standard Grid scheduler that is
effective for the applications and environments that we target. In fact, the conventional approach for the
majority of Grid users is to develop a simple scheduling strategy based on basic information about their
application’s performance characteristics and the Grid they wish to run it on. We therefore developed a
user strategy to emulate the decision making process that a user might employ. First, we had to decide
what application performance metric a user would be likely to employ. For the applications targeted in
this thesis, the easiest application performance metric to obtain is an estimate of application memory
usage; to estimate memory usage one need only find the memory allocation commands in the application
and determine how problem size, problem dimensions, and data type will affect application memory
requirements. We believe that the development of a full application performance model, including
parameterization for the target Grid of interest, would be too large of an investment for most Grid
users. For these reasons, our user strategy predicts application resource requirements based solely on
our memory usage model developed in Section IV.B.1. To use this model the user requires access to
memory capacity information for the resources she wishes to target. The memory capacity of Grid
resources is based on physical memory sizes; this is a practical strategy for users as the information
can be obtained directly by logging in to the machines of interest or by requesting the information
from the resource manager (i.e. a systems administrator). Finally, we assume that each Grid user

has a local resource set that she preferentially accesses, typically because she is more familiar with the
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computational environment or because she is more comfortable as a resident on her home resources
than as a guest on remote resources. The preferential resource ordering that is assumed by our user
strategy is {UCSD, UTK, UIUC}.

So how do all of these assumptions combine to form the user scheduling strategy? Our user strategy
(1) predicts application memory requirements for the application and problem size of interest; (2) selects
the minimum number of target resources that will satisfy application memory requirements (resources
are selected in order from the preferential resource ordering); (3) determines an equal, or nearly equal,
allocation of work onto the selected resources; and (4) runs the target application with the selected
schedule. Note that our user strategy uses the same memFactor of 20% that is used by our memory
usage model; inclusion of this factor emulates the fact that most Grid users are aware of the performance
problems inherent in allocating all of the physical memory on a shared resource.

In order to answer questions (i), (ii), and (iii), we developed a number of strategies based on the
scheduling methodology presented in this thesis. First, we wanted to study how our methodology
performed with full application and Grid resource information. In this strategy, called the dynamic
strategy, the scheduler is provided with the full execution time + memory usage model described in
Section IV.B.2; this model is the more sophisticated of the two performance models developed for our
test applications. Furthermore, the scheduler utilizes dynamic Grid resource information, which we
categorize as a more sophisticated level of resource information utilization than static information. In
keeping with the availability of sophisticated application information, the scheduler utilizes the time
balance mapper (described in Section IV.C.2) for the allocation of work to processors. In this strategy,
schedules are developed at run-time to take advantage of dynamic resource performance information.

To address question (ii), we study a strategy in which full Grid resource information is available,
but application information is limited. In this strategy, called the basic strategy, our scheduling
methodology is provided with only the memory usage model, but is given access to dynamic resource
availability information. Since this strategy assumes that application information is limited, the sched-
uler employs the equal allocation mapper, described in Section IV.C.1. Free memory predictions are
used in conjunction with the equal allocation mapper to ensure that the application data is mapped in
a way that does not overflow local processor memory capabilities. Recall from Section III.B that we
create candidate resource groups (CRGs) based in part on three resource-oriented sorting foci: com-
putation, memory, and dual. Predictions of dynamic CPU availability and free memory capacity are
used by this sorting method to select desirable resources. Schedules are developed at run-time to take

advantage of dynamic resource performance information.
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Finally, to address question (iii) we study a strategy in which full application performance infor-
mation is available, but Grid resource information is more limited. In this strategy, called the static
strategy, the scheduler is provided with the execution time + memory usage model and the time
balance mapper, but is provided with only static resource information. Specifically, the computational
capacity of resources is given by the full processor speed and the memory capacity of resources is given
by the full physical memory; these characteristics are retrieved from the MDS. The NWS provides
the only network performance estimates that can be retrieved from GrADS information sources; the
scheduler is therefore configured to utilize NWS bandwidth estimates, but the scheduler is run off-line
so that it cannot take advantage of run-time performance estimates.

Figure V.7 summarizes the application and Grid information usage by each of the four scheduling
strategies. In addition to the configuration options we detailed above for each of the three variations on
our scheduler, there are other scheduler configuration options which we did not vary in these experiments
but which affect scheduler behavior. In particular, we selected a performance improvement threshold
of 5% for these experiments (the threshold is defined in Section III.B.2). The predicted performance
of selected schedules will therefore always fall within 5% of the predicted performance of the best
schedule examined. We believe that 5% is a conservative estimate of what a typical user would define
as equivalent performance in Computational Grid environments.

Testbeds

For these experiments, we ran experiments on the one-site and three-site testbeds described in
Section V.A. Note that, as described in Section V.A, the three-site testbed included the Opus cluster
at UIUC.

Experimental procedure

The focus of these experiments is to compare application iteration times achieved by each schedul-
ing strategy in a variety of application, testbed, problem size, and ambient load conditions. For the
basic and dynamic strategies, which utilize dynamic resource information, schedule development was
performed at run-time. For the user and static strategies, which utilize only static resource information,
schedule development was performed off-line and schedules were retrieved at run-time. To complete a
scheduling strategy comparison experiment, the four strategies were run in a back-to-back manner in
the following order: user, basic, static, and dynamic. To avoid each application run from affecting the
decisions of the following scheduling strategy (due to the affect on NWS dynamic resource predictions)
we included a three minute sleep between application runs.

Each scheduling strategy comparison experiment is defined by a selection of a test application, a
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testbed, and a problem size. We performed these experiments for each of the test application on each
of the testbeds (four application-testbed pairs). For each testbed, we selected six test problem sizes to
span a broad range of application scenarios. For the one-site testbed we use the same problem sizes
as in the performance model and mapper validation experiments, N = {600, 1200, 2400, 4800, 7200,
9600}. For the three-site testbed, we wanted to explore a broader range of problem sizes than we
used for the performance model and mapper validation experiments. On this testbed we used N =
{600, 4800, 9600, 14400, 16800, 19200}. We performed experiment series for each application-testbed
combination; each experiment series consisted of a scheduling strategy comparison for each problem
size, or 6 comparison experiments where each comparison experiment involved the testing of each of the
4 scheduling strategies. We completed 10 repetitions of each experiment series. Overall, we completed
60 comparison experiments for each of the 4 application-testbed scenarios. Since each of these 240
comparison experiments included the testing of 4 scheduling strategies, we completed a total of 960
scheduling strategy tests.
Performance metrics

To provide a quantitative comparison of the application performance achieved by each scheduling

strategy, we utilize two comparison metrics: the rank and the percent degradation from best. Both of
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these metrics are commonly used for the comparison of scheduling strategies [32]. A rank is an integer
value between 1 and 4 indicating the relative performance of each strategy in a scheduling strategy
comparison experiment; the strategy that achieved the best application iteration time was assigned a 1
while the strategy that achieved the worst application execution time was assigned a 4. If a scheduling
strategy failed to find a suitable schedule, or the application itself failed, the worst rank, a 4, was
assigned to that strategy.

To calculate the percent degradation from best we first find the lowest iteration time achieved by
any of the strategies, itTimen,;,. For each scheduling strategy we then calculate the percent degradation

from best as:

itTime — it
degFromBest = 100 * L Ve BT HChest,

V.3
1t imepest (V-3)

The strategy which achieved the minimum iteration time will be assigned a percent degradation from
best value of zero. Note that if we could include an optimal scheduler in the experiments it would
consistently achieve a 0% degradation from best. When one of the scheduling strategies failed to
find a schedule or its corresponding application run failed, that scheduler was not assigned a percent

degradation from best value.

V.D.2 Results

The first set of results we present is a summary comparison of the application performance achieved
by the four scheduling strategies outlined in the previous section. Later in this section, we present
individual scheduling strategy comparison experiments to highlight signficant points.

To report summary results, we aggregated all 6 problem sizes and 10 repetitions into a single group
of results for each application-testbed scenario; for each application-testbed scenario we ran a total of
60 scheduling strategy comparison experiments. Figure V.8 presents the average rank assigned to the
scheduling strategies for each scenario. For all but one of the scenarios, the dynamic strategy achieved
the best (i.e. lowest) average rank; the exception was the Jacobi application on the three-site testbed
where the static strategy achieved a better rank by a slight margin. Compare the sophistication of
available Grid information and application performance models (see Figure V.7) with the average rank

for each scheduling strategy. Several important points are revealed.

e The two strategies that achieved the best average ranks were the static and dynamic strategies.

These strategies utilize a more sophisticated application performance model than the other two
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strategies. This trend demonstrates the importance of accurate application performance models

in developing performance-efficient schedules.

e The dynamic strategy outperformed the static strategy in three out of four application-testbed
scenarios, and the basic strategy outperformed the user strategy in all four scenarios. The dynamic
and basic strategies utilize more sophisticated Grid information than the other strategies. This
trend is suggestive of the importance of dynamic Grid information in developing performance-

efficient schedules.

e The static strategy counsistently outperformed the basic strategy. The static strategy utilizes a
more sophisticated application performance model, but less sophisticated Grid information. For
these experiments, we conclude that availability of an accurate application performance model
had a more significant impact on the development of performance efficient schedules than did the

availability of dynamic Grid information.

Figure V.9 reports the average percent degradation from best for each scheduling strategy in all
application-testbed scenarios and Table V.10 reports summary statistics for the same data set. With
one exception, we see the same ordering of the strategies as we saw for average ranks in Figure V.8;
the exception is for the Jacobi application on the three-site testbed where the relative ordering of the
dynamic and static strategies are reversed from Figure V.8 to Figure V.9. While the order of the
strategies is quite similar between the two sets of results, Figure V.9 provides more information about
the performance impact of each scheduling strategy.

For example, the average percent degradation for the user model is higher for the three-site testbed
cases than for the one-site cases. Recall that our user strategy assumes a particular preference ordering
of target resources; this ordering is designed to emulate the preference a user typically shows for
machines in their own administrative domain. Specifically, the ordering assumed in our user strategy is
{UCSD, UTK, UIUC}. In reality, the UTK resources have the fastest processors and largest memories.
The basic, static, and dynamic scheduling strategies automatically identify resources with the fastest
processor speeds and largest physical memories, and, assuming the UTK resources are not overly loaded,
often select machines in the UTK set first. Since the one-site testbed is more homogeneous than the
three-site testbed, the effect is not as noticeable.

Summary statistics are useful for demonstrating overall trends, but can only provide a partial
picture of the behavior of the four scheduling strategies. In the following sections we present a detailed

examination of results for each application-testbed scenario.
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Figure V.10: Game of Life iteration times for the user, basic, static, and dynamic scheduling strategies.

Experiments targeted the one-site testbed with problem sizes of 600, 2400, and 7200.
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‘ Application ‘ Testbed ‘ Statistic H User ‘ Basic ‘ Static ‘ Dynamic ‘
Game of Life | 1-site Average || 240.0 | 204.4 | 37.3 5.1
StdDev | 152.0 | 135.6 | 40.4 12.9
Min 7.7 15.2 0 0
Max 507.7 | 433.5 | 156.9 | 69.3
Game of Life | 3-site Average || 381.9 | 219.8 | 30.8 3.8
StdDev | 466.6 | 268.2 | 63.3 10.7

Min 45.3 6.6 0 0
Max 2748.0 | 1109.2 | 421.8 | 68.5
Jacobi 1-site Average || 210.3 | 186.9 | 17.2 5.7
StdDev | 130.6 | 139.8 | 28.2 12.6
Min 16.4 7.9 0 0
Max 466.4 | 487.7 | 90.5 69.7
Jacobi 3-site Average || 410.3 | 200.4 | 61.3 12.7
StdDev 212.7 | 203.4 145.8 | 40.6
Min 0 0 0 0
Max 862.9 629.6 739.2 | 215.1

Table V.10: Summary statistics for percent degradation from best for each scheduling strategy over all

application-testbed scenarios.

Game of Life

A subset of the scheduling strategy comparison experiments we ran for the Game of Life on the
one-site testbed are shown in Figure V.10; all repetitions are shown for N = {600, 2400, 7200}, three
of the six problem sizes tested for this testbed. For N = 600, performance of the user and basic
strategies are relatively similar as are the performance of the static and dynamic strategies; the static
and dynamic strategies achieved significantly improved performance as compared to the user and basic
strategies. These results indicate that for this scenario and problem size, the availability of more
sophisticated application information had a more significant performance impact than the availability
of sophisticated Grid resource information. By comparison, for several of the repetitions for N = 7200
(specifically repetitions 1, 4, and 5), the basic and dynamic strategies perform significantly better than
the user and static strategies; for these comparison runs, the availability of dynamic Grid information
had a more significant performance impact than did more sophisticated application information.

Table V.11 reports the average rank and degradation from best for each scheduling strategy; results
are reported for each problem size. In each series, 10 repetitions are performed; typically no more than
1 or 2 repetitions per series failed. Failures are occasionally caused by a scheduling strategy’s inability
to satisfy application memory requirements. More often, the application itself fails due to an error in

allocating memory, an authentication error, or a Globus communication error. Recall that ranks are



User Basic Static Dynamic

Rank Deg. Rank Deg. Rank Deg. | Rank Deg.
N = 600 3.8  326.4% | 3.2 286.7% 1.7 31.2% 1.3 3.7%
N = 1200 3.9  309.7% | 3.1 277.4% 1.8  35.6% 1.2 11.8%
N = 2400 3.9  296.3% | 3.1 251.5% 1.8  49.2% 1.2 5.6%
N = 4800 3.9 308.4% | 3.1 273.6% 1.7 23.1% 1.3 2.0%
N = 7200 3.6 126.5% | 2.9 59.5% 2.2 41.3% 1.3 3.3%
N = 9600 3.0 54.2% 3.0 63.7% 2.7 44.0% 1.3 4.4%
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Table V.11: Average rank and percent degradation from best for each scheduling strategy for the Game

of Life on the one-site testbed.

User Basic Static Dynamic

Rank Deg. Rank Deg. Rank Deg. | Rank Deg.
N = 600 3.8 143.1% 2.6 70.1% 1.8  49.6% 1.8 10.9%
N = 4800 3.8 1036.6% 3.0 660.5% 1.9  31.5% 1.3 2.2%
N = 9600 3.6 454.0% 3.2  325.3% 1.9  44.6% 1.3 1.9%
N = 14400 3.7 352.0% 3.1 134.1% 1.6  23.9% 1.6 0.7%
N = 16800 3.6 131.4% 3.3 89.5% 1.8  21.7% 1.3 4.5%
N = 19200 3.9 141.3% 3.0 44.3% 1.8 16.5% 1.3 3.2%

Table V.12: Average rank and percent degradation from best for each scheduling strategy for the Game

of Life on the three-site testbed.

assigned to failed runs (a failure receives the lowest ranking); average ranks are therefore computed
over 10 runs. Percent degradation from best values are not computed for failed runs; average values for
degradation from best are therefore averages over successful runs only.

In Figure V.11 we present scheduler comparison runs for the Game of Life on the three-site testbed;
three of the six problem sizes tested are shown: N = {600, 9600, 16800}. In these results it is striking
that the relative performance of the four scheduling strategies is quite variable across repetitions and
problem sizes. Nonetheless, the general trend is an improvement in application performance from the
user strategy to the dynamic strategy. Table V.12 reports average rank and average degradation from
best for all six problem sizes tested for this scenario.

Jacobi

In Figure V.12 we present a subset of the scheduling strategy comparison experiments we ran for the
Jacobi application on the one-site testbed. As was the case for the results presented in Figure V.10, these
results suggest that the availability of more sophisticated Grid information did not have a significant

performance impact at the smaller problem sizes. Table V.13 summarizes the average rank and average
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Figure V.11: Game of Life iteration times for the user, basic, static, and dynamic scheduling strategies.

Experiments targeted the three-site testbed with problem sizes of 600, 9600, and 16800.
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Experiments targeted the one-site testbed with problem sizes of 600, 2400, and 7200.



User Basic Static Dynamic

Rank Deg. Rank Deg. Rank Deg. | Rank Deg.
N = 600 3.6 137.5% | 3.2 150.5% 1.5 4.8% 1.7 5.0%
N = 1200 3.9 238.6% | 3.1 214.9% 1.7 20.9% 1.3 4.9%
N = 2400 3.8 303.2% | 3.2 292.3% 1.5 11.8% 1.5 9.4%
N = 4800 3.8  355.7% | 3.2 342.1% 1.6 14.2% 1.4 5.0%
N = 7200 3.9 140.5% | 2.8 74.1% 1.9  26.3% 1.4 3.9%
N = 9600 3.6 55.5% 3.1 47.3% 1.8  25.0% 1.5 6.1%
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Table V.13: Average rank and percent degradation from best for each scheduling strategy for Jacobi

on the one-site testbed.

User Basic Static Dynamic

Rank Deg. Rank Deg. Rank Deg. Rank Deg.
N = 600 3.7 249.3% | 2.7 159.4% 1.9 100.5% 1.7 23.3%
N = 4800 3.9 706.2% | 3.1 577.4% 1.3 17.5% 1.7 5.8%
N = 9600 3.3 238.9% | 3.2 174.1% 1.8 16.7% 1.7 16.8%
N = 14400 3.9  441.0% | 2.8 93.7% 1.5 22.6% 1.8 8.3%
N = 16800 3.7  401.2% | 2.5 26.4% 2.7  204.3% 1.1 0.6%
N = 19200 3.4 — 2.6 188.3% 1.3 0.1% 2.7 22.9%

Table V.14: Average rank and percent degradation from best for each scheduling strategy for Jacobi

on the three-site testbed.

degradation from best for each scheduling strategy and each problem size for Jacobi on the one-site
testbed.

Figure V.13 presents a subset of the scheduling strategy comparison experiments performed for the
Jacobi application on the three-site testbed. In this set of experiments, application performance with
the user, basic, and static strategies was highly variable as compared to the results for the other three
application-testbed scenarios. With the exception of the first repetition, the dynamic strategy resulted
in consistent application iteration times. In Section V.B we demonstrated that a greater fraction of
iteration time was typically dedicated to communication for the Jacobi application on the three-site
testbed than for any other application-testbed scenario. Variations in wide-area network performance
could explain the application iteration time behavior of the user, basic, and static strategies. This
explanation would suggest that the dynamic strategy effectively avoided wide-area links with degraded
performance. More experiments are needed to fully substantiate this hypothesis. Table V.14 reports
average rank and average degradation from best values for each scheduling strategy for Jacobi on the

three-site testbed.
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Experiments targeted the three-site testbed, problem sizes of 600, 9600, and 16800.
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V.D.3 Summary

Our goal in this section was to evaluate the efficacy of our scheduling methodology. In particular,

we asked the following three questions in the beginning of the section, repeated here for reference.

i. What is the impact of our scheduling methodology on application execution times as compared

to conventional scheduling approaches?

ii. What is the impact of application information availability on scheduler performance? Specifically,
(a) can this methodology develop reasonable schedules despite limited application information
and models, and (b) can this methodology take advantage of more sophisticated information and

models to promote application performance?

iii. How is application performance affected when dynamic resource information is available to our
scheduling methodology? Can the methodology develop reasonable schedules when only static

resource information is available?

To answer question (i), we introduced a user scheduling strategy and compared its performance
to the basic, static, and dynamic strategies, each of which was based on a different configuration of
our scheduler design. We presented experimental results showing that the basic, static, and dynamic
strategies all consistently outperformed the user strategy.

To answer question (ii), we compared the performance of strategies that used our execution time
+ memory usage model (the static and dynamic strategies) against the performance of strategies that
used only the memory usage model (user and basic strategies). On average, the static and dynamic
strategies outperformed the user and basic strategies for all application-testbed scenarios, showing that
scheduler was able to utilize more sophisticated application performance models to promote application
performance. The consistent performance advantage provided by the basic strategy as compared to the
user strategy suggests that our scheduling methdology is able to develop reasonable schedules despite
limited application information and models.

To answer question (iii), we compared the performance of strategies that used dynamic resource
availability information (the basic and dynamic strategies) against strategies that used only static
resource information (the user and static strategies). We found that, on average, the basic strategy
outperformed the user strategy and the dynamic strategy outperformed the static strategy, showing
that availability of dynamic resource availability information improved scheduler peroformance. Since

the static strategy consistently outperformed the basic strategy, we conclude that performance model
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sophistication had a larger impact on application performance than did availability of dynamic resource

information.

V.E Scheduling overhead

A scheduler design is practical only if the overhead of the scheduling process is reasonable when
compared to application execution times. In previous sections of this chapter we have used application
iteration time as a performance metric and have therefore not investigated the overheads introduced
by the scheduler itself. In this section we describe results that quantify scheduler overhead. Recall
that our scheduler design consists of two distinct activities: the collection of Grid resource information
(described in Section III.C) and the search for candidate schedules (described in Section III.B). We
examine the cost of each of these activities as well as the total cost of scheduling. To quantify the cost
of Grid information collection under different information source scenarios, we include test scenarios in
which information is retrieved from the GrADS NWS, the GrADS MDS, the local NWS nameserver,
and the local MDS cache; each of these collection mechanisms is described in Section V.A.

Note that the cost of scheduling is not fixed; instead, it is dependent on a wide variety of factors
including, for example, problem run configuration, the selected testbed, the target application, the
complexity of the chosen performance model and maper, and variable load on the GrADS MDS server
and NWS nameserver. For example, the cost of retrieving resource information grows as the number
of resources in the testbed and the cost of retrieving network information grows as the square of the
number of sites in the testbed. For the schedule search procedure, the cost of scheduling increases with
the number of resources and the number of sites (because the number of candidate schedules that must
be considered increases) but it decreases as the amount of information about each resource decreases

(because resource sets with insufficient resource information are pruned from the search space).

V.E.1 Experimental design

Approach

We focus on two representative scenarios which provide a broad picture of scheduling overhead and
also demonstrate the general patterns that would be seen for other configurations. For both scenarios
we use the Jacobi application and the scheduler is configured to use the execution time + memory usage

model (see Section IV.B). The testbed and problem size assumptions for each scenario are as follows.
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e In scenario 1 we target the one-site testbed and use a problem size of N = 4800.
e In scenario 2 we target the three-site testbed and use a problem size of N = 14400.

To examine the cost of retrieving information from a variety of sources, we test each of the following

Grid information source modes for each of scenarios 1 and 2.

e In mode A Grid information is retrieved from the GrADS NWS nameserver and the GrADS MDS

server.

e In mode B Grid information is retrieved from the GrADS NWS nameserver and a local MDS
cache. For these experiments, the local MDS cache contained all needed information (i.e. it was

fully warmed).

e In mode C Grid information is retrieved from the local NWS nameserver and a fully warmed local

MDS cache.

Experimental Procedure

Experiments for each scheduling scenario (i.e. testbed - problem size combination) were performed
independently. For each scenario, we ran the scheduler with each of the three information source modes
in a back-to-back manner; we completed 10 such triplets. For each run, we measured the time required
for the entire scheduling execution (T'otalTime) and the time required for Grid information collection
(CollectTime); we consider the cost for the schedule search (SearchT'ime) to be all scheduling time

that is not spent in information collection: SearchTime = TotalTime — CollectTime.

V.E.2 Results

One-site testbed, N = 4800

In this scenario, the scheduler selects amongst machines in the one-site testbed and the target
problem size is N = 4800. For reference, in our scheduling experiments for this testbed and problem
size, application iteration times were typically between 0.4 seconds and 2 seconds (0.4 seconds for the
dynamic and static mode schedulers, 2 seconds for the basic mode and user scheduling strategies). Since
we ran 100 iterations in those experiments the application’s iterative phase typically took between 40
and 200 seconds.

Figure V.14 presents all 10 repetitions of the experiments performed for this scenario. The lower

chart presents the same dataset as the upper chart, but with an expanded y-axis to provide detail
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Figure V.14: Summary of Grid information collection and schedule search times for the one-site testbed,
N = 4800. The upper graph shows the full y-scale; the lower graph shows the same data set with an

expanded y-scale.
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Mode A | Mode B | Mode C
Collect Time, Average | 186.6 13.8 0.27
Collect Time, StdDev. | 54.5 4.0 0.01
Search Time, Average | 0.021 0.024 0.027
Search Time, StdDev. | 0.003 0.005 0.007
Total Time, Average 186.6 13.8 0.30
Total Time, StdDev. 54.5 4.0 0.01

Table V.15: Scheduling overhead times for the one-site testbed, N = 4800.

of smaller scheduling overheads. The full height of each bar is the total scheduling overhead for that
information collection mode; the lower, darker portion of each bar (visible only in the lower chart) is
the search time and the upper portion of each bar is the cost of Grid information collection. Table V.15
presents summary results over all 10 repetitions for the mean and standard deviation of the collection
times, the schedule search times, and the total scheduling time.

The cost of Grid information collection is clearly the primary scheduling overhead for all three
collection modes. For an application that is expected to run for roughly 40-200 seconds, the cost
of Grid information collection in mode A is prohibitive and, in practice, would likely prevent usage
of this scheduling methodology. The cost is also significant for mode B, but is acceptable given the
performance advantages one could expect to achieve with our scheduling methodology. Notice that
information collection times vary significantly across repetitions for modes A and B; this is probably
due to (1) variations in wide-area network performance between the scheduler and the remote servers
and (2) variations in the load on the servers themselves. Finally, the overhead of information collection
in mode C is very low. Overall, these results indicate that until retrieval times are reduced for the
MDS, local caching of MDS information will be necessary. For this thesis, the information we retrieve
from the MDS changes on the order of weeks or months so local caching is an acceptable solution. Since
Grid information collection times are reasonable for mode B, which includes access to the GrADS NWS
nameserver, we conclude that usage of a remote NWS nameserver is a reasonable information collection
strategy.

The cost of the schedule search process is quite low and it is less than 0.05 seconds for all
three collection modes. This low search time overhead is due to (1) the low computational complexity
of our execution time model and mapping strategy and (2) the extensive search pruning performed
during the search process. Notice that schedule search times do vary somewhat across repetitions and

information retrieval modes; this is likely due to the effect that missing information has on the schedule
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Mode A | Mode B | Mode C
Collect Time, Average | 1087.5 59.6 2.0
Collect Time, StdDev. | 303.3 3.9 0.7
Search Time, Average | 0.8 24 2.5
Search Time, StdDev. | 0.3 0.4 0.3
Total Time, Average 1088.4 62.1 4.5
Total Time, StdDev. 303.3 3.9 0.9

Table V.16: Scheduling overhead times for the three-site testbed, N = 14400.

search procedure; each information collection mechanism can have different information availabilities
and schedule search space pruning is partially based on information availability. When less resource
information is available, the schedule search process can generally be expected to take less time.
Three-site testbed, N = 14400

In this scenario, the scheduler selects amongst machines in the three-site testbed and the target
problem size is N = 14400. For reference, in our scheduling experiments for this testbed and problem
size, the four scheduling strategies typically achieved application iteration times between 1.8 and 11
seconds. Since we ran 100 iterations in those experiments the application’s iterative phase occupied
180 to 1100 seconds.

Figure V.15 and Table V.16 present the results of experiments performed for this scenario. Notice
that all scheduling overheads have increased for this scenario when compared with the one-site scenario.
Both Grid information collection times and schedule search times increased in part because this testbed
contains over three times as many resources and three times as many sites. Also notice that schedule
search times are much lower for mode A than for the other modes; this is because the scheduler was
unable to retrieve some resource characteristics from the GrADS MDS, thus leading to extensive pruning
of the search space. Overall, we see that the overhead for the search process is still quite low but that
the overhead of Grid information collection is prohibitive for mode A. These results substantiate our
earlier claim that usage of a local MDS cache is necessary to provide scheduling with reasonably low

overhead.

V.E.3 Summary

In this section we presented a quantitive evaluation of the overheads associated with our scheduling
methodology. We specifically examined the overhead of Grid information collection and the schedule

search process itself. We found that the cost of the schedule search process is insignificant when
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compared with application execution times. We also showed that the cost of resource information
retrieval is reasonable when the information source is the GrADS NWS, the local NWS, or the local
MDS cache. On the other hand, Grid information collection times are on the same order as application
execution times when the remote GrADS MDS is utilized. Since these overheads are unacceptable and
the information we retrieve from the MDS is relatively static, we conclude that usage of a local MDS

caching mechanism is an appropriate alternative in the current GrADS testbed environment.

V.F Chapter summary

Our primary goal in this chapter was to investigate the impact of our scheduling methodology on
application performance. Since our scheduling methodology is highly dependent on the availability of
an application performance model and mapping strategy, we presented a suite of experiments designed
to specifically test the application-specific execution time model and mapping strategies we developed
in Chapter IV. We concluded that our execution time model provided reasonable prediction accuracy,
and was able to correctly track application performance trends. We also presented experiments that
verified the utility of each of our mapping strategies and showed that, on average, the time balance
mapper provided an application performance advantage when compared to the equal allocation mapper.

After validating our application specific execution time model and mappers, we presented experi-
ments to test our scheduling strategy itself. In these experiments, we demonstrated that our scheduling
methodology provides a significant performance advantage over a more conventional scheduling strat-
egy. We also showed that the scheduler is able to develop adequate schedules despite limited application
or resource information, but that it is also able to take advantage of more sophisticated information to
promote application performance.

The last set of results that we presented tested the overhead associated with the scheduling process
itself. We found that the overheads associated with the schedule search process and Grid information
collection from the GrADS NWS, local NWS, and local MDS cache are reasonable, while the cost of
information retrieval from a remote GrADS MDS server is unacceptable given typical run-times for our
applications. We concluded that usage of a local MDS caching mechanism is an appropriate alternative

for the purposes of this thesis.



Chapter VI

Discussion

In this thesis we propose an adaptive, run-time scheduling methodology designed to promote the
performance of iterative, mesh-based applications in Computational Grid environments. In this chapter
we present a final discussion of the thesis. Specifically, in Section VI.A we summarize the thesis and
reiterate our findings. In Section VI.B we describe related work in the field of application scheduling.

Finally, in Section VI.C we describe possible extensions to our work.

VI.LA  Summary and findings

The scheduling design proposed in this thesis was developed in the context of the larger Grid
Application Development Software project (GrADS). In Chapter II we described the design of the Grid
application development infrastructure, termed GrADSoft, proposed by the GrADS project. We also
presented the specification for the GrADSoft scheduler.

In Chapter III we presented a design for a scheduler framework that satisfies the GrADSoft scheduler
specification and is the first prototype of a scheduler for the GrADSoft infrastructure. Our scheduler
design incorporates an “intelligent” schedule search procedure that considerably prunes the search space
of possible resource groups while ensuring that desirable resource groups are not excluded. The scheduler
utilizes dynamic and static Grid resource information to target schedules to the conditions of Grid
resources at run-time. We also described a number of scheduling policies that enable straightforward
configuration of scheduler behavior. The scheduler framework presented in this chapter is application-
generic; it is designed to be coupled with an application-specific performance model and mapping

strategy.
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In the beginning of Chapter IV we described the general characteristics of iterative, mesh-based
applications. Next, we described two such applications in detail (Jacobi and Game of Life) and pre-
sented a detailed performance analysis of each application. We then developed two application-specific
performance models, a memory usage model and an execution time + memory usage model. We also
detailed two application-specific mapping strategies, an equal allocation mapper and a time balance
mapper.

In Chapter V we presented experiments that demonstrated the efficacy of our scheduling method-
ology for realistic applications, testbeds, and usage scenarios. We took a two-fold validation approach.
First, we presented experiments that demonstrated the prediction accuracy of our execution time model
and the utility of each of our mapping strategies. Second, we defined four reasonable scheduling strate-
gies for our target applications and environments, and then presented experiments that compared the
application performance achieved with each scheduling strategy. We showed that our scheduler de-
sign provided significantly enhanced application performance as compared to a conventional scheduling
strategy. We also demonstrated that our methodology was able to (1) take advantage of sophisticated
application and resource information to promote application performance, and still (2) provide a reason-
able scheduling service when only limited application and resource information was available. Finally,
we presented experiments to examine the overheads associated with the scheduling process itself. We
found that the overhead of our schedule search process was nominal, and that overheads associated with
Grid information collection were, for the most part, also acceptable. We found the overheads associated
with the retrieval of data from a remote MDS to be unacceptable for the needs of run-time application

scheduling; we observed that usage of a local MDS cache was a reasonable solution for our purposes.

VI.B Related work

Many of the strategies utilized by our scheduling design are based upon experience gained in pre-
vious Application-Level Scheduling (AppLeS) efforts [9, 10, 12, 48, 50]. Two of these efforts targeted
structurally similar applications and are therefore particularly relevant [9, 12]. The first focused on
the scheduling of a Jacobi solver for the finite-difference approximation to Poisson’s equation [9]. The
second effort focused on scheduling of a parallel magnetohydrodynamics simulation (PMHD3D), which
is also classified as an iterative, mesh-based application [12]. Each of these efforts demonstrated signifi-
cant improvements in application performance as compared to conventional scheduling efforts. For the

design presented in this thesis, we drew on the experiences gained in these efforts. There are a number
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of novel aspects to the current work.

e Our scheduler design provides a separation of the application-generic scheduling mechanisms from
application-specific performance models and mappers; we expect the scheduler will be more easily

targeted to new applications that the Jacobi and PMHD3D schedulers.

e Our schedule search procedure is based on a more general heuristic that we believe is more likely

to discover all desirable resource sets.

e Our design has been thoroughly tested on both a local-area network of workstations and a het-
erogeneous Computational Grid including wide-area links; each of the previous efforts targeted

resources at a single site.

Another related effort is Prophet, a run-time scheduling system designed for parallel applications
written in the Mentat programming language [53, 52]. This scheduling system is similar to our work in
that it exploits application structure and system resource information to promote application perfor-
mance. Prophet was demonstrated for both SPMD applications and applications based on task-parallel
pipelines; the scheduler design was tested in heterogeneous, local-area environments. If possible, we
would like to compare the performance of our strategies to those of Prophet, though it may be difficult
to find a suitable scenario for comparison that satisfies the requirements of each scheduling strategy.
For example, Prophet requires the target application be written in Mentat and we have not used Mentat
in our efforts.

There are a number of additional scheduling projects that are notable for targeting a variety of
applications or an entire application class [10, 42, 52, 1, 46]. Many of these efforts focus on embarrass-
ingly parallel or master-slave applications which do not have significant communication costs [10, 1, 46].
We describe selected projects that focus on application classes that involve significant communication
costs.

The Prophet scheduling system is also a notable example of a scheduler design that targets a variety
of applications [53, 52]. Prophet requires modification of application source code and has not been tested
in the wide-area. As mentioned earlier, a performance comparison of the two strategies would be quite
interesting.

Another project of interest is the Condor matchmaking system [42]. In the matchmaking system,
users specify the resource requirements of their application to the system, resource providers similarly

specify the capabilities of their resources, and a centralized matchmaker is used to match application
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resource requirements with appropriate resources. This design is quite general and can therefore be
applied to many different types of applications. The matchmaking strategy, while more general that
the scheduler presented in this thesis, differs in that it is primarily a resource discovery mechanism and

is not able to provide detailed schedule development.

VI.C Future work

We plan to extend our work to support other applications and other application classes. For
applications that share the broad application resource requirements described in Chapter III.A, our
design should be directly applicable. We plan to verify this assertion by testing our methodology for
additional applications; for each application, an application-specific performance model and mapping
strategy will be required. To support cases where application performance is heavily dependent on the
selection of several distinct resource groups, our design must be extended. In particular, we will modify
the search procedure to independently search for resources to satisfy each resource group requirement.
In this modification we will need to ensure that resources selected to satisfy one group requirement are
excluded from the search for other group requirements.

Another direction in which our work could be extended involves the type of application information
and models used by our scheduling methodology. For the purposes of this thesis, we designed and built
the application performance models and mapping strategies. However, if Grid application development
is to be accessible to a larger number of users, then we cannot expect such users to provide detailed
performance models and mapping strategies. Recognizing this, other members of the GrADS research
community are investigating the feasibility of compiler generation of application information and per-
formance models [29] as well as the inclusion of such models in Grid-enabled libraries [29, 37]. As this
work matures we are interested in experimenting with the usage of such models for application schedul-
ing. These models may not be equational in form; in this case we will need to extend our methodology

to support additional performance model types.
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