
UC San Diego
Technical Reports

Title
A Modular Framework for Adaptive Scheduling in Grid Application

Permalink
https://escholarship.org/uc/item/6h18n29x

Author
Dail, Holly

Publication Date
2002-01-18
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6h18n29x
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Modular Framework for Adaptive S
heduling in

Grid Appli
ation Development Environments

A thesis submitted in partial satisfa
tion of the

requirements for the degree Master of S
ien
e in

Computer S
ien
e

by

Holly Janine Dail

Committee in 
harge:

Professor Fran
ine Berman, Chair

Professor Jeanne Ferrante

Professor Keith Marzullo

2002



Copyright

Holly Janine Dail, 2002

All rights reserved.



The thesis of Holly Janine Dail is approved:

Chair

University of California, San Diego

2002

iii



To my parents.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedi
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

A
knowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstra
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II Ba
kground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A. GrADSoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

B. GrADSoft s
heduler spe
i�
ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1. Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. S
heduler output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

C. Current status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

D. Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

III S
heduling methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A. S
ope and de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1. S
heduling assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. S
heduling de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B. S
heduler design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1. Sear
h Pro
edure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2. Sear
h methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

C. Grid information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1. Information sour
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2. S
heduler Grid information requirements . . . . . . . . . . . . . . . . . . . . . . . . . 27

D. S
heduling poli
ies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

E. Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

IV Iterative, mesh-based appli
ations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A. Appli
ation 
hara
teristi
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1. Game of Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2. Ja
obi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

B. Appli
ation performan
e modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1. Memory usage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2. Exe
ution time model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

C. Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1. Equal allo
ation mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2. Time balan
e Mapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



D. Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

V Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A. Experimental methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1. Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2. Software requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3. Grid information servi
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4. Timing methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B. Performan
e model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1. Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C. Mapper validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1. Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

D. S
heduler validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1. Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

E. S
heduling overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

1. Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

F. Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

VI Dis
ussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A. Summary and �ndings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

C. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vi



LIST OF TABLES

III.1 Con�gurable s
heduling poli
ies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

IV.1 Summary of Game of Life variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

IV.2 Summary of Ja
obi variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

V.1 Testbed resour
e 
hara
teristi
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

V.2 Predi
tion error summary for Game of Life, one-site testbed . . . . . . . . . . . . . . . 59

V.3 Predi
tion error summary for Game of Life, three-site testbed . . . . . . . . . . . . . . 61

V.4 Predi
tion error summary for Ja
obi, one-site testbed . . . . . . . . . . . . . . . . . . . 63

V.5 Predi
tion error summary for Ja
obi, three-site testbed . . . . . . . . . . . . . . . . . . 63

V.6 Mapper 
omparison for Game of Life, one-site testbed . . . . . . . . . . . . . . . . . . . 68

V.7 Mapper 
omparison for Game of Life, three-site testbed . . . . . . . . . . . . . . . . . . 69

V.8 Mapper 
omparison for Ja
obi, one-site testbed . . . . . . . . . . . . . . . . . . . . . . 72

V.9 Mapper 
omparison for Ja
obi, three-site testbed . . . . . . . . . . . . . . . . . . . . . 72

V.10 Summary degradation from best statisti
s for ea
h s
heduling strategy . . . . . . . . . 82

V.11 S
heduling strategy performan
e, Game of Life, one-site testbed . . . . . . . . . . . . . 83

V.12 S
heduling strategy performan
e, Game of Life, three-site testbed . . . . . . . . . . . . 83

V.13 S
heduling strategy performan
e, Ja
obi, one-site testbed . . . . . . . . . . . . . . . . . 86

V.14 S
heduling strategy performan
e, Ja
obi, three-site testbed . . . . . . . . . . . . . . . . 86

V.15 S
heduling overhead times for the one-site testbed, N = 4800. . . . . . . . . . . . . . . 92

V.16 S
heduling overhead times for the three-site testbed, N = 14400. . . . . . . . . . . . . 93

vii



LIST OF FIGURES

II.1 GrADSoft Ar
hite
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

III.1 Computational Grid example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III.2 S
heduler design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

III.3 S
hedule sear
h pro
edure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

III.4 S
hedule 
omparison without an exe
ution time model . . . . . . . . . . . . . . . . . . 25

IV.1 Game of Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

IV.2 Game of Life appli
ation pseudo-
ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

IV.3 Ja
obi appli
ation pseudo-
ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

IV.4 Game of Life 
ommuni
ation 
ost 
al
ulation. . . . . . . . . . . . . . . . . . . . . . . . 42

IV.5 Binomial tree example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

V.1 Game of Life exe
ution time model validation, one-site testbed . . . . . . . . . . . . . . 57

V.2 Game of Life exe
ution time model validation, three-site testbed . . . . . . . . . . . . . 60

V.3 Ja
obi exe
ution time model validation, one-site testbed . . . . . . . . . . . . . . . . . 62

V.4 Ja
obi exe
ution time model validation, three-site testbed . . . . . . . . . . . . . . . . 64

V.5 Game of Life mapper experiments, three-site, N = 4500 . . . . . . . . . . . . . . . . . . 67

V.6 Ja
obi mapper experiments, one-site, N = 4800 . . . . . . . . . . . . . . . . . . . . . . 71

V.7 Summary of s
heduling strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

V.8 Average ranks for ea
h s
heduling strategy . . . . . . . . . . . . . . . . . . . . . . . . . 79

V.9 Average per
ent degradation from best for ea
h s
heduling strategy . . . . . . . . . . . 79

V.10 Game of Life s
heduling strategy 
omparisons, one-site testbed . . . . . . . . . . . . . . 81

V.11 Game of Life s
heduling strategy 
omparisons, three-site testbed . . . . . . . . . . . . . 84

V.12 Ja
obi s
heduling strategy 
omparisons, one-site testbed . . . . . . . . . . . . . . . . . 85

V.13 Ja
obi s
heduling strategy 
omparisons, three-site testbed . . . . . . . . . . . . . . . . 87

V.14 S
heduling 
ost, one-site testbed, N = 4800 . . . . . . . . . . . . . . . . . . . . . . . . 91

V.15 S
heduling overheads, three-site testbed, N = 14400 . . . . . . . . . . . . . . . . . . . . 94

viii



ACKNOWLEDGEMENTS

This work has provided me with the opportunity to intera
t with and learn from many wonderful

people. I would like to make spe
ial mention of the following people and institutions, without whom

this work would not have been possible.

Fran Berman, my advisor, for her guidan
e and en
ouragement. She has been a wonderful role

model and I have learned mu
h from her.

Henri Casanova, my 
o-advisor, who provided the perfe
t 
ombination of insight, inspiration, and

en
ouragement. He has been ex
eptionally generous.

Jeanne Ferrante and Keith Marzullo, my 
ommittee members, for their guidan
e throughout my

time at UCSD, and for providing insightful feedba
k on the thesis itself.

Alan Su and Shava Smallen for their support when things were most frustrating, willingness to

answer any and all questions, and for 
areful reviews of the thesis.

Otto Sievert and Graziano Obertelli who worked with me on the GrADS proje
t. Our dis
ussions

taught me many things and led to the formulation of this thesis.

Jim Hayes for software engineering advi
e and for developing pra
ti
ally unbreakable software tools

to assist resear
h e�orts su
h as this one and Renata Teixeira for sharing her networking expertise with

me.

All those responsible for maintaining the GrADS testbed environment, on whi
h the experiments in

this thesis were performed. I am espe
ially grateful to the Innovative Computing Laboratory at UTK

for usage of the tor
 ma
hines, the Pablo group at UIUC for usage of the opus and major ma
hines,

Martin Swany for assistan
e with NWS-related questions, and Sridhar Gullapalli for assistan
e with

MDS-related questions.

Finally, I would like to thank all members of the GrADS resear
h 
ommunity. I would espe
ially like

to thank Mark Mazina and John Mellor-Crummey for, among other things, their interest in exploring


ompiler / s
heduler intera
tions. I would also like to thank Ruth Aydt, who has provided many

insightful 
omments at every stage.

This material is based upon work supported by the National S
ien
e Foundation under Grant No.

9975020. Any opinions, �ndings, and 
on
lusions or re
ommendations expressed in this material are

those of the author and do not ne
essarily re
e
t the views of the National S
ien
e Foundation.

ix



ABSTRACT OF THE THESIS

A Modular Framework for Adaptive S
heduling in

Grid Appli
ation Development Environments

by

Holly Janine Dail

Master of S
ien
e in Computer S
ien
e

University of California, San Diego, 2002

Professor Fran
ine Berman, Chair

To a
hieve improved performan
e, appli
ation s
hedulers are typi
ally designed to satisfy the re-

sour
e requirements of spe
i�
 appli
ations. Consequently, appli
ation 
hara
teristi
s and models are

often embedded in the s
heduler itself. Results have shown that this strategy is e�e
tive for a
hieving

improved appli
ation performan
e. However, appli
ation-spe
i�
 s
hedulers may not be easily retar-

geted for other appli
ations. In this thesis, we propose a modular appli
ation s
heduler design that

employs detailed appli
ation performan
e models and mapping strategies that promote appli
ation

performan
e, but does not embed su
h 
omponents within the s
heduler itself.

Our s
heduler is both environment-sensitive and 
on�gurable. To ensure that s
hedules are properly

targeted for 
onditions of the target exe
ution environment at run-time, the s
heduler 
an in
orporate

dynami
 resour
e availability in s
heduling de
isions. The s
heduler also supports a set of 
on�gurable

s
heduling poli
ies that are easily tuned to 
ontrol s
heduler behavior.

We implement a prototype s
heduler and use the 
lass of iterative, mesh-based appli
ations to

test the prototype. We implement two test appli
ations, Ja
obi and the Game of Life, and develop

performan
e models and mapping strategies for ea
h appli
ation. We present experimental results we

obtained by applying our s
heduling methodology to Ja
obi and the Game of Life in Computational

Grid environments. Our testbeds in
luded up to 20 ma
hines organized in 4 
lusters at 3 geographi
ally

distributed sites. In these experiments, our approa
h 
onsistently outperforms 
onventional s
heduling

approa
hes.
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Chapter I

Introdu
tion

With vast improvements in wide-area network performan
e and the pervasiveness of 
ommodity

resour
es, distributed parallel 
omputing 
an bene�t from an in
reasingly ri
h 
omputational platform.

Fo
used development e�orts have been su

essful in targeting important s
ienti�
 appli
ations for dis-

tributed groups of resour
es. The majority of these proje
ts have involved large time investments and

have required extensive support by distributed 
omputing experts.

In re
ent years, several large-s
ale software infrastru
ture proje
ts [18, 25, 34℄ have fo
used on sim-

plifying the usage of distributed, heterogeneous 
omputational platforms, or Computational Grids [19,

20℄. Su
h Grid 
omputing software helps redu
e programmer e�ort, and 
an improve appli
ation per-

forman
e. However, these e�orts generally do not fo
us on the spe
i�
 needs of appli
ations; to a
hieve

a

eptable performan
e on the Grid, users must 
onsider the needs of their appli
ation and adapt

their usage of Grid 
omputing software a

ordingly. For example, in a typi
al appli
ation development

s
enario, users are 
urrently obliged to dis
over available resour
es, sele
t an appli
ation-appropriate

subset of these resour
es, perform staging of binaries on sele
ted ma
hines, and may even need to

perform some appli
ation monitoring to determine if the appli
ation is making progress. For these

reasons, Grid appli
ation development remains a daunting proposition for the majority of users who


ould bene�t from the extensive resour
es o�ered by Computational Grids.

The obvious alternative is to develop software that frees the user of these responsibilities. Appli-


ation s
heduling is one area in whi
h signi�
ant progress has been made towards the simpli�
ation

of appli
ation development for the Grid; see [8℄ for a survey of progress in this area. Appli
ation

s
hedulers typi
ally manage dis
overy of available resour
es, sele
tion of an appli
ation-appropriate

resour
e group, and mapping of appli
ation tasks or data to those resour
es. To e�e
tively provide

1



2

these servi
es, s
hedulers must evaluate the target Grid resour
e environment in terms of the require-

ments of the appli
ation itself. Many proje
ts have su

essfully developed s
heduling strategies for the

Grid [1, 2, 12, 42, 48, 49, 50, 52, 53℄ While these s
hedulers do 
onsider appli
ation requirements, the

majority of su
h e�orts embed appli
ation-spe
i�
 details in the s
heduling software itself; 
omponents

that are 
ommonly embedded in
lude appli
ation-spe
i�
 performan
e models and strategies for map-

ping appli
ation data or tasks to sele
ted resour
es. This strategy 
an result in e�e
tive servi
e for

spe
i�
 appli
ations, but the s
heduler design may not be easily retargeted for other appli
ations.

In this thesis, we present a modular s
heduling framework that allows the s
heduler to utilize de-

tailed appli
ation performan
e models and mapping strategies, but does not embed these 
omponents

in the s
heduler itself. Our approa
h is based on an appli
ation-independent s
heduler framework that

is 
oupled with an appli
ation-spe
i�
 performan
e model and mapping strategy to 
reate a servi
e that

e�e
tively develops s
hedules appropriate to the needs of the target appli
ation. This approa
h provides

a 
exible s
heduler that 
an be easily targeted to a variety of appli
ations. Note that we do not expe
t

to a
hieve the performan
e of a s
heduler that has been highly-tuned for a spe
i�
 appli
ation; instead,

our goal is to provide 
onsistently improved performan
e as 
ompared to 
onventional s
heduling strate-

gies. To develop s
hedules that appropriately utilize available resour
es, the s
heduler 
onsiders the


hara
teristi
s of the target Grid environment. To do this, Grid resour
e 
hara
teristi
s are retrieved

at run-time and automati
ally in
orporated in s
heduling de
isions. We fo
us on the 
lass of itera-

tive, mesh-based appli
ations as a 
hallenging, yet tra
table test 
ase for Grid appli
ation s
heduling.

In parti
ular, this 
lass of appli
ations demonstrates relatively predi
table performan
e, making the

s
heduling problem tra
table, yet these appli
ations typi
ally involve interesting 
ommuni
ation pat-

terns, thus making the s
heduling problem 
hallenging. Furthermore, this 
lass is an important 
lass

of appli
ations for s
ien
e and engineering 
odes. In summary,

In this thesis we propose and prototype a modular, adaptive s
heduling methodology designed

to promote appli
ation performan
e in Computational Grid environments. We use the 
lass

of iterative, mesh-based appli
ations as a test 
ase, and demonstrate the eÆ
a
y of our

s
heduling approa
h in produ
tion Grid environments for realisti
 usage s
enarios.

This work was performed in the 
ontext of the larger Grid appli
ation development framework pro-

posed by the Grid Appli
ation Development Software Proje
t (GrADS) [7℄. The GrADS proje
t seeks

to simplify all aspe
ts of Grid appli
ation development, and is building software designed to provide

an end-to-end appli
ation development system for the Grid. These e�orts provide new 
hallenges and

opportunities for the development of Grid appli
ation s
heduling strategies, and thus is an interest-
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ing framework for this thesis. The s
heduler des
ribed in this thesis is the �rst prototype s
heduling


omponent developed for the GrADS software infrastru
ture.

This thesis is organized as follows. We des
ribe the appli
ation development software ar
hite
ture

proposed by the GrADS proje
t in Chapter II. We also detail the s
heduler spe
i�
ation proposed

as part of this software ar
hite
ture. In Chapter III we present the design of our appli
ation-generi


s
heduling framework. In Chapter IV we des
ribe the 
hara
teristi
s of iterative, mesh-based appli
a-

tions; we then detail two spe
i�
 test appli
ations from this 
lass; and �nally we develop an appli
ation-

spe
i�
 performan
e model and mapping strategy that 
an be paired with our s
heduler framework to

provide s
heduling for our test appli
ations. In Chapter V, we present experimental results we obtained

when applying our s
heduling methodology to real appli
ations and real Computational Grid environ-

ments. Finally, in Chapter VI we des
ribe related work in the �eld of appli
ation s
heduling, 
onsider

dire
tions for interesting future work, and we present �nal 
on
lusions.



Chapter II

Ba
kground

One of the largest roadblo
ks to everyday usage of Computational Grids is the extensive expertise

and development time that must be invested in ea
h appli
ation before a

eptable performan
e 
an be

a
hieved. Development of a distributed, Grid-enabled appli
ation typi
ally requires a 
omplex and time-


onsuming pro
ess of appli
ation 
reation (or modi�
ation), 
ompilation, resour
e dis
overy, sele
tion

of resour
es, staging of binaries and data �les, exe
ution, and post-mortem analysis. When appli
ation

performan
e is 
riti
al, many 
y
les of the development pro
ess may be required.

The Grid Appli
ation Development Software Proje
t (GrADS) [7, 23℄ has proposed an ambitious

alternative: repla
e the dis
rete, user-
ontrolled stages of appli
ation preparation and exe
ution with

an end-to-end software-
ontrolled pro
ess. Our goal is to provide tools that enable the user to fo
us

only on high-level appli
ation design without sa
ri�
ing appli
ation performan
e. Existing Grid mid-

dleware produ
ts [18, 25, 34℄ provide some servi
es required by this system, but are not suÆ
ient.

Thus, a primary goal of the GrADS proje
t is to develop new te
hnologies for Grid appli
ation

development and exe
ution. For example, members of the GrADS proje
t are developing software


omponents to provide

� dis
overy and 
ommuni
ation of Grid resour
e 
hara
teristi
s;

� dis
overy and 
ommuni
ation of appli
ation 
hara
teristi
s and run-time requirements;

� run-time appli
ation monitoring and pro
essing of appli
ation performan
e data; and

� automati
 de
ision pro
esses to provide adaption to appli
ation requirements, Grid 
hara
teristi
s,

and user poli
ies.

4
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These new te
hnologies 
an be used in 
onjun
tion with existing solutions to provide the individual

servi
es needed to simplify appli
ation development for the Grid. However, to enable adaptive and

performan
e-oriented Grid 
omputing, these individual tools must be able to 
ommuni
ate and, more

importantly, 
ollaborate. Therefore, another primary goal of the GrADS proje
t is to develop a unify-

ing system ar
hite
ture that provides the user with a 
omprehensive software solution to appli
ation

preparation and exe
ution.

In Se
tion II.A, we des
ribe GrADSoft, the �rst version of the GrADS system ar
hite
ture. Se
-

tion II.B, details the GrADSoft s
heduler 
omponent spe
i�
ation. In Se
tion II.C we des
ribe the


urrent status of the GrADSoft ar
hite
ture and in Se
tion II.D we summarize the 
hapter.

II.A GrADSoft

Figure II.1 provides a high-level view of the GrADSoft system ar
hite
ture [30℄. The goal in this

system design is to 
learly spe
ify the servi
es provided by ea
h 
omponent as well as the interfa
es

that 
omponents should support. The 
omponent design provides the 
exibility ne
essary to support

a variety of appli
ation preparation and exe
ution s
enarios.
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Figure II.1: GrADSoft Ar
hite
ture.

Sin
e our fo
us in this thesis is on Grid appli
ation s
heduling, we are interested primarily in
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des
ribing the s
heduling 
omponent of GrADSoft. To understand the role played by the GrADSoft

s
heduler, it is useful to understand how all of the 
omponents diagrammed in Figure II.1 might


oordinate to provide a 
ontinuous program preparation and exe
ution system. We therefore des
ribe

one proposed GrADSoft 
omponent intera
tion s
enario. Additional 
omponent details and alternative

s
enarios are des
ribed in [30℄.

As shown in Figure II.1, there are two 
lear subsystems to the GrADSoft ar
hite
ture:

� The Program Preparation System (PPS) handles o�-line appli
ation-development, 
omposition,

and 
ompilation.

� The Program Exe
ution System (PES) provides on-line resour
e dis
overy, s
heduling, binding,

and appli
ation performan
e monitoring.

We dis
uss ea
h of these subsystems in turn.

PPS

To begin the development pro
ess, the user intera
ts with a high-level interfa
e 
alled a problem

solving environment (PSE) to assemble a Grid appli
ation. Our approa
h is to develop a 
olle
tion

of libraries that provide not only the base algorithms, but also information and models that des
ribe

the resour
e requirements and performan
e behavior of ea
h library 
all. The system will support

more general software 
omponents in addition to these spe
ialized libraries; however, use of GrADS

libraries will provide other GrADSoft 
omponents with important appli
ation exe
ution performan
e


lues and is therefore likely to provide a run-time performan
e advantage for the user.

The resulting appli
ation andGrADS libraries are passed to the 
ompiler. The 
ompiler then

performs program analysis and partial 
ompilation, generates appli
ation-wide performan
e models and

mapping strategies, and generates a 
onfigurable obje
t program (COP). The COP en
apsulates

an intermediate representation 
ode (IR 
ode) for the appli
ation, an assembly of appli
ation

behavior models, a mapper, and an appli
ation resour
e requirement spe
ifi
ation (refer to

Se
tion II.B for details on ea
h COP 
omponent). The PPS phase may be performed o�-line and

sometimes need only be 
ompleted on
e per appli
ation; for this reason the COP is a long-lived obje
t

that may be re-used for multiple program exe
ution phases.

PES

When the user de
ides to exe
ute the appli
ation, the appli
ation COP is retrieved and the PES

is invoked by the GrADSoft system. At this stage the s
heduler intera
ts with the Grid run-time

system to determine whi
h resour
es are available and what performan
e 
an be expe
ted of those
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resour
es. The s
heduler then uses the performan
e model and mapper to sele
t an appli
ation-

appropriate resour
e subset and a mapping of the problem data or tasks onto those resour
es. In a

se
ond 
ompilation phase, the binder is invoked to perform a �nal, resour
e-spe
i�
 
ompilation of

the intermediate representation 
ode (re
all that this is one of the 
omponents of the COP).

Next, the exe
utable is laun
hed on the sele
ted Grid resour
es and a real-time monitor is used to

tra
k program performan
e and dete
t violation of performan
e guarantees. Performan
e guarantees

are formalized in a performan
e 
ontra
t.

1

In the 
ase of a performan
e 
ontra
t violation,

either the binder is invoked to re
on�gure the program in the 
urrent exe
ution environment or the

res
heduler is invoked to evaluate alternative resour
e sets. After program exe
ution is 
omplete,

post-mortem performan
e information will be stored in a repository; this information may then be

retrieved by any GrADSoft 
omponent to improve appli
ation results in future runs.

II.B GrADSoft s
heduler spe
i�
ation

The GrADSoft s
enario presented in Se
tion II.A provided a brief overview of a spe
i�
 GrADSoft


omponent intera
tion s
enario. In this se
tion, we des
ribe in greater detail the spe
i�
ation for the

GrADSoft s
heduler. This spe
i�
ation de�nes the servi
e the s
heduler is to provide as well as

the interfa
es it should support; it does not rely on any parti
ular intera
tion s
enario.

The role of the s
heduler is to sele
t Grid resour
es appropriate for a parti
ular problem run,

where problem run is de�ned by the appli
ation itself and by problem 
on�guration parameters su
h

as problem size or input data �le. The s
heduler should transparently provide servi
e for arbitrary

appli
ations and Grid environments. For this reason, 
hara
teristi
s of the appli
ation and Grid envi-

ronment must be available as inputs to the s
heduler. Similarly, the sele
ted s
hedule and asso
iated

information must be 
ommuni
ated in a well-de�ned manner for 
onsumers of the s
heduler output.

II.B.1 Inputs

Sin
e the s
heduling pro
ess is dependent on available appli
ation and environment information,

we des
ribe in greater detail the format of these s
heduler inputs.

1

When the user intera
ts with a PSE to develop their appli
ation, they also spe
ify what their performan
e

expe
tations are. For example, they might spe
ify a 
exible desired turnaround time or a hard deadline for

appli
ation 
ompletion. These spe
i�
ations are used to 
reate a performan
e 
ontra
t, whi
h formally spe
i�es

program performan
e expe
tations. More details are available in [30, 51℄.
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Grid information retrieval is ne
essary in order for the s
heduler to develop s
hedules appro-

priate for the 
urrent Grid environment. Currently, GrADSoft utilizes the popular Grid information ser-

vi
es of the Meta
omputing Dire
tory Servi
e (MDS) [11, 13℄ and the Network Weather Servi
e [57, 58℄.

The NWS and MDS are 
entralized information servers that provide dynami
 and stati
 information

about the 
urrent state of Grid resour
es. Sin
e these interfa
es are well-known standards for Grid

resear
hers, we do not des
ribe them in detail here.

Appli
ation 
hara
teristi
s and models are 
ommuni
ated to the s
heduler by way of the

COP. Re
all that this 
omponent en
apsulates four distin
t sub-
omponents: IR 
ode, mapper, one

or more appli
ation behavior models, and an appli
ation resour
e requirement spe
i�
ation 
alled

an abstra
t appli
ation resour
e and topology model (AART). The IR Code obje
t is

used for �nal program 
ompilation and is not utilized during the s
heduling pro
ess. The other three


omponents are needed by the s
heduler and require further dis
ussion.

Mapper

Given a 
hosen set of 
ompute resour
es, the mapper determines a performan
e-eÆ
ient assignment

of appli
ation tasks and/or data for exe
ution on those resour
es. For example, suppose we have a

mapper developed for master-slave appli
ations and an input list 
onsisting of two fast ma
hines and

two slow ones. Further suppose that we expe
t the master's workload to be quite high for a 
ertain

appli
ation. In this 
ase, an appropriate assignment of tasks might pla
e the master on one of the fast

ma
hines and a slave on ea
h of the three other ma
hines. To provide load-balan
ing, the mapper

might also pla
e extra work on the fastest of the three slaves.

Appli
ation behavior models

This group en
apsulates any models of appli
ation behavior that are required by GrADSoft 
om-

ponents. For s
heduling purposes, the most useful models are those that provide some measure of

desirability for possible resour
e sets and data mappings. There are many types of behavior models

that might be of interest for GrADS in the long-term; for example, models 
ould be equation-based,

simulation-based, or history-based and the desirability metri
 
ould be predi
ted exe
ution time, re-

sour
e usage 
ost, or throughput. In this thesis, we will 
onsider the metri
 of predi
ted exe
ution time

as provided by an equational performan
e model. This is the most 
ommon appli
ation exe
ution

performan
e metri
 for run-time s
hedulers [2, 10, 12, 8, 43, 45, 50, 53℄.

AART Model

This model provides a stru
tured method for spe
i�
ation of appli
ation resour
e requirements.

The need to 
onsider appli
ation resour
e requirements for e�e
tive appli
ation s
heduling on the Grid
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is 
lear [8℄; however, sin
e many Grid appli
ation s
hedulers are designed for a parti
ular appli
ation

or appli
ation-
lass, appli
ation resour
e requirements are often embedded in the s
heduler design

itself [12, 47, 49, 50℄. By 
omparison, a primary GrADSoft design goal is smooth adaptation to a variety

of appli
ations. For these reasons, we have developed the AART to support formal spe
i�
ation of

resour
e requirements to the s
heduler.

The AART model 
onsists of a 
olle
tion of resour
e requirements plus a des
ription of the pro-


essor topology required by the appli
ation. Examples of su
h topologies in
lude a one-to-many 
om-

muni
ation arrangement (star), an all-to-all 
ommuni
ation arrangement (fully-
onne
ted graph), or a

topology where only neighboring pro
essors need to 
ommuni
ate (a mesh). Resour
e requirements are

the me
hanism by whi
h spe
i�
 resour
e needs are spe
i�ed. Examples of resour
e requirements in-


lude the minimum aggregate memory needed for the appli
ation, the minimum a

eptable bandwidth

between any two pro
essors, and required software installations. While requirements su
h as software

are des
riptive, requirements su
h as aggregate memory requirements 
an be spe
i�ed as parametri


models; to be useful these models must be provided with additional information su
h as problem size.

Sin
e appli
ations frequently require more than one type of resour
e, any number of resour
e subsets


an be de�ned in the AART model. In the 
ase that more than one type of resour
e set is de�ned,

resour
e requirements 
an be spe
i�ed that apply to all resour
es needed for the appli
ation, or they


an apply to only a subset of resour
es needed by the appli
ation. In addition, requirements 
an be

applied to a pair of resour
e subsets; for example, if two resour
e subsets were de�ned, A and B, one

might also want to spe
ify a minimum bandwidth for any 
onne
tion between resour
es in subset A

and resour
es in subset B.

Note that the AART model framework itself is designed to be appli
ation generi
 so that it 
an

be useful for a variety of appli
ation types. To instantiate the framework for a spe
i�
 appli
ation, the

appli
ation's resour
e needs are grouped into resour
e subsets and asso
iated resour
e requirements.

To 
larify, we give an example appli
ation and show what the AART spe
i�
ation might be for

this appli
ation. We 
onsider a master-slave appli
ation where the master appli
ation work must be

assigned to a single resour
e but the slave work 
an be assigned to any number of resour
es. Let us

assume that the master requires 1 GB of lo
al memory and a CPU speed of 1000 MHz. Additionally, the

slaves must 
ontain an aggregate memory amount of 3 GB, though it does not matter how the memory

is spread amongst the ma
hines. In this example appli
ation, the only 
ommuni
ation is between the

master and the slaves and more data is sent from the master to the slaves than vi
e versa. Spe
i�
ally,

the appli
ation needs bandwidth 
apability of 10 megabits per se
ond (Mbps) from the master to the
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slaves and 3 Mbps from the slaves to the master.

An AART for this appli
ation would likely spe
ify a \star" 
ommuni
ation topology with the

master at the 
enter of the star. The AART would also likely spe
ify that the appli
ation requires

two distin
t subsets of resour
es, labeled in the AART as Subset 0 for the master and subset 1 for the

slaves. Given the above requirements, the resour
e requirements might be spe
i�ed formally as:

� Subset 0:

{ Number of resour
es = 1

{ Lo
al memory requirement � 1 GB

{ CPU speed � 1000 MHz

� Subset 1:

{ Number of resour
es � 1

{ Aggregate memory requirement � 3 GB

� Subset 0 ! 1:

{ Bandwidth � 10 Mbps

� Subset 1 ! 0:

{ Bandwidth � 3 Mbps

In this example we provided numeri
 spe
i�
ations for resour
e requirements su
h as minimum

available lo
al memory. For some appli
ations the AART may 
ontain su
h values. To ensure system

generality, the AART stru
ture itself must remain independent of any parti
ular problem run or Grid

environment; for this reason, resour
e requirements will typi
ally be spe
i�ed as parametri
 models

that a

ept problem run or resour
e environment 
hara
teristi
s as input.

II.B.2 S
heduler output

On
e the s
heduler has sele
ted a �nal resour
e set and mapping (a s
hedule), this information

is 
ommuni
ated in a well-de�ned manner to other GrADSoft 
omponents. The s
heduler output is


alled a virtual ma
hine. The virtual ma
hine is made up of one or more resour
e obje
ts, a

network obje
t, and a topology des
ription.
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Resour
e An obje
t that represents a physi
al devi
e that 
an be used to perform work.

Network An obje
t that en
apsulates information about ea
h link between members of a given group

of resour
es. Any number of 
hara
teristi
s 
an be atta
hed to ea
h "resour
e to resour
e"

link.

Topology A high-level des
ription of the \appli
ation to resour
e" task or data mapping. For

example, given our master slave example, the topology might spe
ify whi
h resour
e had

been sele
ted for the master and whi
h ones for the slaves.

Virtual ma
hine An obje
t that en
apsulates the sele
ted s
hedule and s
hedule-time Grid 
hara
ter-

isti
s. The virtual ma
hine 
ontains a network, topology, and any number of resour
es.

II.C Current status

The GrADSoft system ar
hite
ture des
ribed in Se
tion II.A is an ongoing design e�ort that is


ontinually evolving as the GrADS proje
t evolves. E�orts are underway to develop ea
h of the new


omponent te
hnologies that will be required to realize the GrADSoft design [7, 23, 51, 3, 29, 56, 37℄.

While the individual GrADSoft 
omponents su
h as the 
ompiler and the performan
e monitor

are fundamental to the su

ess of the GrADSoft system, these 
omponents must be able to intera
t and


oordinate information 
ow and de
ision pro
edures. To this end, there is also an e�ort to prototype

a unifying software system to provide the ne
essary information 
ow and 
oordination for individual

GrADSoft 
omponents. At the time of this writing, this system, 
alled the GrADSoft Prototype,

in
ludes over ten thousand lines of integrated C++ 
ode [24℄. Initial prototypes are 
omplete for all of

the PPS / PES interfa
es.

II.D Chapter summary

In this 
hapter we have des
ribed GrADSoft, a modular software ar
hite
ture for Grid appli
ation

development and exe
ution. We also detailed the basi
 fun
tionalities and interfa
es that should be

provided by a GrADSoft s
heduler.

The GrADSoft ar
hite
ture introdu
es new 
hallenges and opportunities for the development of

Grid appli
ation s
heduling strategies. This thesis proposes a s
heduler design that utilizes and extends

the GrADS framework to provide an adaptive s
heduling servi
e for Computational Grid environments.
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As part of this work, we developed a prototype s
heduler that is integrated into the 
urrent

GrADSoft prototype. The su

ess of this design in validation experiments demonstrates the eÆ
a
y of

the GrADS goals. Furthermore, this design is the �rst instantiation of a major GrADSoft 
omponent

and is therefore an important proof of 
on
ept for the GrADSoft framework itself.



Chapter III

S
heduling methodology

In the previous 
hapter we presented the GrADSoft ar
hite
ture and des
ribed the spe
i�
ation for

the GrADSoft s
heduler. In this 
hapter, we present an adaptive s
heduling methodology that is the

�rst instantiation of the GrADSoft s
heduler spe
i�
ation. Key 
hallenges of this environment and the

approa
h taken by our methodology are as follows.

� The s
heduler should gra
efully adapt to a variety of appli
ations. We have designed a highly

modular framework that 
an be easily instantiated for spe
i�
 appli
ations.

� The quality and quantity of Grid information varies widely and somewhat unpredi
tably over

time and from testbed to testbed. Our approa
h is to provide best-e�ort servi
e by adapting to

information availability. That is, while the s
heduler will likely provide the best servi
e when

Grid information is highly available, it should 
ontinue to fun
tion when information availability

is lower.

� Similarly, the quality and quantity of appli
ation information and models in GrADSoft will vary

widely from appli
ation to appli
ation. Our goal is again best-e�ort; that is we seek to provide

s
heduling servi
e that is 
ommensurate with available information.

We begin in Se
tion III.A with the s
ope of the s
heduler design and de�nitions of key 
on
epts

needed in the rest of the 
hapter. In Se
tion III.B we des
ribe the s
heduler design, in Se
tion III.C we

des
ribe the 
olle
tion and usage of Grid information by the s
heduler, and in Se
tion III.D we detail

the di�erent s
heduling poli
ies supported by the s
heduler. Finally, Se
tion III.E provides a 
hapter

summary.

13
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III.A S
ope and de�nitions

III.A.1 S
heduling assumptions

Our methodology is based on a number of assumptions about the target s
heduling s
enario and

environment. Most importantly, the s
heduler is designed to support the GrADSoft ar
hite
ture and

to utilize the GrADS Computational Grid environment. Additionally, the methodology is based on a

number of assumptions about the target s
heduling s
enario, appli
ation model, and Grid environment.

We des
ribe ea
h of these assumptions below.

S
heduling s
enario

We assume that the s
heduler will be 
alled just before run-time, and that the 
hosen resour
e set

will be utilized for the entire problem run. Our methodology is adaptive to the dynami
 
onditions

of the Grid at run-time; however, it is not adaptive in the sense that the s
hedule is modi�ed during

appli
ation exe
ution to adapt to 
hanging Grid 
onditions.

Our �rst s
heduling goal is to ensure that hard appli
ation resour
e requirements are met; for

example, for an appli
ation with signi�
ant and in
exible memory requirements, our foremost 
on
ern

would be to ensure that those memory requirements are met by the sele
ted resour
e set. Our se
ond

s
heduling goal is to minimize appli
ation exe
ution time. This 
an be done by optimizing s
hedule

performan
e based on an appli
ation performan
e model. When a performan
e model is not available,

the s
heduler 
an still make progress in s
hedule sele
tion by evaluating the quality of ea
h s
hedule

based on heuristi
 de�nitions of resour
e set desirability.

Appli
ation model

We assume the target appli
ation is parallel and that many problem sizes of interest will require

more than one ma
hine for a

eptable performan
e. We also assume a single program, multiple data

(SPMD) appli
ation model.

Appli
ation resour
e requirements

In Se
tion II.B we introdu
ed the AART model as a formal method for the spe
i�
ation of the

type of resour
e set, or platform, that is likely to be performan
e-eÆ
ient for a parti
ular appli
ation.

Ideally, the GrADSoft s
heduler will handle smoothly any appli
ation by automati
ally parsing the

appli
ation's AART and thereby understanding the appli
ation's resour
e needs. However, to a
hieve

this ambitious goal, we need to gain experien
e with simpler versions of this problem. For this thesis,

we fo
us on appli
ations that share the following general 
hara
teristi
s.
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i. All pro
esses are able to 
ommuni
ate with all other pro
esses, and the amount of 
ommuni
ation

performed by the appli
ation is signi�
ant. An appropriate resour
e set will therefore provide all-

to-all 
onne
tivity. Resour
e sets 
onne
ted by low-delay networks will provide better performan
e

than those 
onne
ted by high-delay networks and are therefore preferable.

ii. Appli
ation performan
e is sensitive to the aggregate 
omputational and memory 
apa
ity of the

target resour
e set, as well as to the individual 
apa
ities of sele
ted ma
hines.

iii. The de�nition of an appropriate resour
e set for the appli
ation is highly dependent on problem

size, environmental 
hara
teristi
s, and other fa
tors. The sele
tion of an appropriate resour
e

set size is therefore not a simple maximize or minimize fun
tion.

Appli
ation information and models

Re
all that the GrADSoft ar
hite
ture is designed to handle a wide variety of appli
ations; we

envision that appli
ation 
hara
teristi
s and models will often be derived from library annotations,


ompiler analysis, and re
ords of histori
al behavior. Clearly, the sophisti
ation of the resulting appli-


ation information and models will vary greatly; the s
heduler will have to adapt to varying degrees

of sophisti
ation of AARTs, performan
e models, and mappers. We propose a s
heduler design that

supports two types of appli
ation performan
e model.

� Memory usage model: At the 
oarser level, we assume that only an appli
ation memory usage

model is available. Provided with problem run information su
h as problem size, this type of

model returns a predi
tion of the aggregate amount of memory required for the appli
ation. We

fo
us on a memory usage model in part be
ause basi
 
ompiler analysis of appli
ation sour
e 
ode


ould fairly easily produ
e su
h a model. In parti
ular, given some integration, we envision that

su
h a model 
ould be automati
ally produ
ed by the GrADSoft 
ompiler in the near future.

� Exe
ution time + memory usage model: At the more sophisti
ated level, we assume that a

full performan
e model is available. Provided with problem run information, the sele
ted resour
e

set, and a mapping of appli
ation tasks or data onto those resour
es, this type of model returns

the predi
ted exe
ution time in addition to a memory usage predi
tion. We sele
ted this model

as an investigation of how the GrADSoft system 
ould fun
tion in the future. While 
urrent

GrADS PPS te
hnologies are not sophisti
ated enough to automati
ally generate an exe
ution

time model, this topi
 is a primary fo
us of other GrADS resear
hers [7, 29℄.
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Note that we only spe
ify here the type of models that are supported by the s
heduler; the exa
t

implementation of su
h a model is highly appli
ation-dependent and therefore 
an not be embedded

in the s
heduler design. In the next 
hapter, we develop an instantiation of the memory usage and

exe
ution time models for spe
i�
 appli
ations.

Grid environment

In this thesis we target Computational Grids 
onsisting of heterogeneous, distributed networks of

workstations. Workstations may have di�erent pro
essor types and speeds, di�erent amounts of lo
al

memory, or di�erent operating systems. While target workstations may have more than one CPU,

the s
heduler design 
urrently targets only one CPU per resour
e. Targeted networks in
lude both

lo
al-area networks (LANs) and wide-area networks (WANs). Figure III.1 provides an example of a

small Grid of this type.

UTK LAN
83.8 Mbps

UIUC LAN
88.6 Mbps

UCSD LAN
90.8 Mbps

4.4 Mbps

2.7 Mbps

3.0 Mbps

1.5 Mbps

6.0 Mbps

5.9 Mbps

WAN

Figure III.1: A heterogeneous, distributed network of workstations. Network links are labeled with

available bandwidth in megabits per se
ond; these values were 
olle
ted by Network Weather Servi
e

network monitoring sensors on November 1, 2001 at around 5:30 pm.
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III.A.2 S
heduling de�nitions

The following de�nitions are used throughout the rest of this 
hapter to des
ribe our s
heduling

methodology.

Base ma
hine list The s
heduling pro
ess begins with a list of all ma
hines available for the 
urrent

problem run. Available 
an have diverse meanings for di�erent users and appli
ations; in this

thesis we de�ne available as ma
hines on whi
h the user has an a

ount, that are on-line and

a

essible, and that have 
ertain Grid middleware servi
es needed for job laun
hing.

Resour
e pool The resour
e pool in
ludes all of the ma
hines in the base ma
hine list as well as


ompute, storage, and network 
apability 
hara
teristi
s for these ma
hines.

Site A site is a 
olle
tion of well-
onne
ted resour
es and typi
ally 
orresponds to a LAN. In pra
ti
e,

intra-site network delays are lower than inter-site delays. For example, Figure III.1 in
ludes three

distin
t sites: fUCSD, UIUC, UTKg.

Topology-based 
olle
tions A topology-based 
olle
tion is a set of ma
hines sele
ted based on their

lo
ality. Spe
i�
ally, given a set of sites, the 
orresponding topology-based 
olle
tions 
an be

found by taking the power set of the set of sites.

1

For the example given in Figure III.1, there

are seven topology-based 
olle
tions: fUCSD, UIUC, UTK, UCSD [ UIUC, UCSD [ UTK, UIUC

[ UTK, UCSD [ UIUC [ UTKg. While the power set operation is exponential in the number of

sites, Grid users often target a small number of sites.

Candidate resour
e group (CRG) A group of ma
hines that have been identi�ed as a possible

resour
e set for the 
urrent problem run.

S
hedule A list of resour
es and a mapping of data or tasks onto those resour
es.

Candidate s
hedule A parti
ular 
andidate resour
e group and a mapping of data or tasks onto

those resour
es 
onstitute a 
andidate s
hedule.

Final s
hedule During the s
heduling pro
ess a spe
i�
 
andidate s
hedule is eventually sele
ted as

the \best" 
hoi
e, this s
hedule is then sele
ted as the �nal s
hedule. The method by whi
h

s
hedules are 
ompared to �nd the best one will be des
ribed in Se
tion III.B.2.

1

Note that we ex
lude the null set.
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Virtual ma
hine On
e a �nal s
hedule is sele
ted, information about the sele
ted 
ompute resour
es,

network resour
es and data or task mapping is en
apsulated in a virtual ma
hine obje
t.

III.B S
heduler design

The s
heduler design is based on a 
ore s
hedule sear
h framework that supports a variety of

pluggable 
omponents (Figure III.2). A base ma
hine list is input to the Grid Info Colle
tor whi
h

then retrieves 
hara
teristi
s of the ma
hines and of the networks 
onne
ting them. The resulting

resour
e pool is then input to the sear
h pro
edure along with appli
ation 
hara
teristi
s and models

in the COP. The s
heduling poli
ies obje
t allows automati
 
on�guration of a number of s
heduling

behaviors. For example, one supported s
heduling poli
y de�nes whether the s
heduler should in
lude


ross-site s
hedules in the sear
h. By default, the s
heduler 
onsiders 
ross-site solutions, but this

poli
y 
ould be inappropriate for appli
ations that require a shared �le system. After the s
heduler has

sele
ted a �nal s
hedule, the virtual ma
hine is 
reated and returned.

In this se
tion we des
ribe the 
omponents of the s
hedule sear
h pro
edure. In Se
tion III.C we

dis
uss the Grid info 
olle
tor, and in Se
tion III.D we enumerate the s
heduling behaviors whi
h 
an

be 
on�gured via input s
heduling poli
ies.

III.B.1 Sear
h Pro
edure

The s
heduler sear
h pro
edure is at the 
ore of the s
heduling methodology; the pro
edure examines

the set of available resour
es, generates a number of 
andidate s
hedules, evaluates the 
andidate

s
hedules to sele
t a �nal s
hedule, and 
ommuni
ates the sear
h results. The pro
edure takes as input

the resour
e pool, the COP, and the s
heduling poli
ies. It outputs the sele
ted s
hedule in the form

of a virtual ma
hine. To �nd reasonable 
andidate s
hedules, the sear
h pro
edure identi�es 
andidate

resour
e groups (CRGs) and generates a s
hedule for ea
h. The �nal s
hedule is the best of these


andidate s
hedules. In Se
tion III.B.2 we detail many of the individual 
omponents of this pro
ess.

In this se
tion, we examine only the pro
ess of generating 
andidate resour
e groups (CRGs) from the

resour
e pool.

To guarantee that the optimal CRG will be identi�ed, an exhaustive sear
h over all possible unique

resour
e 
ombinations would be required. However, as we demonstrate momentarily, the 
ost of su
h

a sear
h is prohibitive. First, note that from the perspe
tive of the s
heduler, permutations of the

same resour
e group do not 
onstitute unique CRGs. A performan
e eÆ
ient resour
e ordering or
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Grid Info
Collector

Base Resource
List

COP

Perf
Model

Mapper

AART

Search
Procedure

Virtual
Machine

ResourceI
+ Mapping

Resource II
+ Mapping

Resource III
+ Mapping

Topology

Scheduling
Policies

Figure III.2: S
heduler design.
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topology is identi�ed during the mapping pro
ess and is independent of initial resour
e ordering; thus,

permutations typi
ally result in equivalent s
hedules. For an exhaustive sear
h, all subsets of size one

to the size of the entire resour
e set must be in
luded in the sear
h. For a resour
e pool of size n, the

number of distin
t CRGs that must be in
luded is:

numCRGs =

n

X

k=1

n!

k!(n� k)!

(III.1)

For example, to perform a s
hedule sear
h in a resour
e set of 30 ma
hines would require evaluation

of

P

30

k=0

30!

k!(30�k)!

� 10

9

CRGs. For even a reasonably sized resour
e pool and/or when the mapping

pro
ess is time intensive the enormous size of the sear
h spa
e makes an exhaustive sear
h simply

infeasible.

The sear
h pro
edure must therefore in
orporate extensive pruning of the sear
h spa
e while en-

suring that the optimal or near-optimal CRGs are not ex
luded from the sear
h. Sin
e performan
e

models 
annot be used until a 
andidate CRG has been identi�ed, these models 
annot be used to

prune the spa
e of possible CRGs. Re
all that we address only appli
ations that share 
ertain broad

resour
e requirements (see Se
tion III.A). Our sear
h approa
h is to prune resour
e groups that are

unlikely to satisfy these requirements. The goal of the sear
h is to ensure that the �nal list of 
andidate

CRGs in
ludes those CRGs whi
h are likely to be performan
e eÆ
ient platforms for the appli
ation.

Pseudo-
ode for the s
hedule sear
h pro
edure is given in Figure III.3. In ea
h for loop we re�ne

the list of target CRGs based on a di�erent resour
e set 
hara
teristi
: 
onne
tivity in the outer-most

loop, 
omputational and memory 
apa
ity of individual ma
hines in the se
ond loop, and sele
tion of

an appropriate resour
e set size in the inner-most loop.

In the outer-most loop, we identify resour
e groups that are likely to be more tightly-
oupled.

We do this by expli
itly de�ning 
olle
tions of resour
es based on site topology in the FindSites and

ComputeSiteCombos method 
alls. We dis
uss in detail our implementation of the FindSites and

ComputeSiteCombos method 
alls in Se
tion III.B.2; however, it is worth mentioning here why these

resour
e groups are likely to provide better 
onne
tivity than other possible resour
e subsets. Sin
e

intra-site network delays are typi
ally lower than inter-site delays, it is 
lear that resour
es within one

site are likely to be more tightly-
oupled that resour
es from multiple sites. However, it is also true

that resour
e groups formed by 
ombining the resour
es of individual sites are likely to exhibit better


onne
tivity 
hara
teristi
s than randomly sele
ted resour
e groups of the same size. The primary
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Algorithm : S
heduleSear
h(resour
ePool)

sites FindSites(resour
ePool)

topologyColle
tions ComputeSiteCombos(sites)

for ea
h 
olle
tion (topologyColle
tions)

for ea
h fo
us (
omputation;memory; dual)

for targetSize 1 to size(
olle
tion)

CRG FindBest(
olle
tion; fo
us; targetSize)


urrS
hed GenerateS
hedule(CRG)

if S
heduleCompare(
urrS
hed; bestS
hed) == FirstIsBetter

bestS
hed 
urrS
hed

return (bestS
hedule)

Figure III.3: S
hedule sear
h pro
edure. We dis
uss the overall sear
h design in Se
tion III.B.1 and the

implementation of individual method 
alls in Se
tion III.B.2

advantage posed by resour
e groups formed in this way is that su
h a resour
e group will typi
ally span

less sites than randomly sele
ted resour
e groups 
ontaining the same number of resour
es.

In the middle loop of the sear
h pro
edure we seek to lo
ate resour
es that exhibit high lo
al memory

and 
omputational 
apa
ities. Sin
e we 
annot know in advan
e whi
h aspe
t will be more important

for appli
ation performan
e, we de�ne three di�erent sear
h fo
i : the 
omputation fo
us emphasizes

the 
omputational 
apa
ity of ma
hines, the memory fo
us emphasizes the lo
al memory 
apa
ity of

ma
hines, and the dual fo
us pla
es equal weight on ea
h fa
tor. The sear
h for ma
hines that satisfy

these fo
i o

urs in the FindBest method 
all; the implementation of this method 
all is dis
ussed in

Se
tion III.B.2.

Finally, in the inner-most loop of our sear
h pro
edure, we fo
us on the sele
tion of an appropriately-

sized resour
e group. It is diÆ
ult to determine what an appropriate resour
e set size will be for

an appli
ation sin
e it depends on appli
ation 
hara
teristi
s as well as resour
e 
hara
teristi
s. For

example, for appli
ations with substantial 
omputation and 
ommuni
ation, there is no way to know a

priori whether a smaller, better 
onne
ted resour
e group or a larger, poorly 
onne
ted resour
e group

will be more performan
e-eÆ
ient. Rather than attempt su
h a predi
tion, we in
lude all resour
e set

sizes in the sear
h spa
e. In this way, the sele
tion of an appropriate resour
e set size is the responsibility
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of the S
heduleCompare method 
all; when an exe
ution time model is available, S
heduleCompare 
an

use this model to determine whi
h CRG is most appropriate for appli
ation needs (see Se
tion III.B.2

for details). Note that an exhaustive sear
h at this level of the pro
edure is only feasible due to the

extensive pruning performed at the �rst two levels.

This nested set of re�nement methods greatly redu
es the sear
h spa
e of CRGs. To demonstrate

this we develop an upper bound on the number of CRGs 
onsidered by the sear
h heuristi
.

Assuming we have s sites in the resour
e set under 
onsideration, the pro
ess of de�ning site 
ombi-

nations 
reates 2

s

topology-based 
olle
tions.

2

We 
onsider three resour
e orderings for ea
h 
olle
tion

(
omputation, memory, and dual). Given these 3 � 2

s

ordered 
olle
tions, we exhaustively sear
h all

possible subset sizes for ea
h. Sin
e the number of resour
es in ea
h site, and therefore in ea
h topology-

based 
olle
tion, is dependent on the 
hara
teristi
s of ea
h Grid environment, we 
an not predi
t a

priori the number of resour
es in ea
h of the 3 � 2

s

ordered 
olle
tions. Instead, we develop an upper

bound by assuming ea
h 
olle
tion is of size n, the size of the entire resour
e pool. For ea
h ordered


olle
tion, we assume n distin
t subsets will be in
luded. The upper bound on the total number of

CRGs identi�ed by the sear
h pro
edure is therefore 3n2

s

. In 
ontrast to an exhaustive sear
h of the

resour
e set spa
e, the algorithmi
 
omplexity of our heuristi
 is exponential in the number of sites,

not the number of 
omputational resour
es. In the vast majority of s
enarios, the number of sites is

mu
h smaller than the number of resour
es so that our heuristi
 
an be expe
ted to signi�
antly redu
e

sear
h 
ost.

Consider again the example presented earlier of 30 ma
hines arranged in 3 sites with 10 ma
hines

in ea
h site. Re
all that the exhaustive sear
h pro
edure produ
es 10

9

CRGs for this topology. The

upper bound on the number of CRGs produ
ed by our sear
h pro
edure is 3 � 30 � 8 = 720; a dire
t


al
ulation of the number of CRGs generated for this s
enario reveals that only 360 are generated.

III.B.2 Sear
h methods

We now des
ribe the algorithms used for ea
h method 
all in Figure III.3. We dis
uss the methods

in order of their usage in the s
hedule sear
h pro
edure.

The FindSites method takes the list of available ma
hines and organizes the ma
hines into disjoint

subsets su
h that the network delays within ea
h subset are lower than the network delays between

subsets. As a �rst approximation, our FindSites implementation utilizes a heuristi
 based on the ma-

2

In fa
t, we ex
lude the null-set leaving 2

s

� 1 su
h 
olle
tions.
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hine domain names. Domain names are typi
ally assigned to organizations and organizations are often

geographi
ally 
entralized. Additionally, the networks within an organization typi
ally exhibit lower

delays than networks between organizations. While these generalities are not true of every organization,

they do hold for the GrADS Computational Grid environment and also for most Computational Grids

we know of. Based on these assumptions, we group ma
hines into a single site if they share the same

domain name and into di�erent sites if they have di�erent domain names. Previous work in web 
lient


lustering [31℄ and 
ontent routing [26℄ have also utilized this heuristi
 approa
h to group ma
hines in a

similar way. Note that the method fails to distinguish hierar
hies of ma
hines within the same domain

name. More sophisti
ated methods of network topology dis
overy exist [44, 36℄ and 
an be used to

improve the ability of the FindSites method to dis
over true network topologies.

The ComputeSiteCombos method 
all takes as input the list of sites dis
overed via FindSites

and builds a list of all possible topology-based 
olle
tions. We ex
lude the null set so there are 2

s

� 1

su
h 
olle
tions for a set of s sites.

The FindBest method takes as input a list of ma
hines (
olle
tion), a ma
hine type fo
us (fo
us),

and a target resour
e set size (targetSize) and returns the best targetSize ma
hines from the 
olle
tion

based on a ma
hine preferen
e of fo
us. For example, suppose the input 
olle
tion 
ontained two fast

ma
hines and two slow ma
hines, that the fo
us is 
omputation, and that the targetSize is three. In

this 
ase, the returned CRG will 
ontain the two fast ma
hines and the faster of the two slow ma
hines.

The GenerateS
hedule method 
all takes as input a list of ma
hines and returns a s
hedule for

those ma
hines. Re
all that a s
hedule 
onsists of a list of ma
hines and a data or task mapping onto

those ma
hines. Sin
e the mapping pro
ess is appli
ation-spe
i�
, GenerateS
hedule retrieves and uses

the mapper from the COP. Note that due to 
onstraints su
h as lo
al ma
hine memory 
apa
ities it is

not always possible to �nd a feasible mapping; when this o

urs, GenerateS
hedule fails and the sear
h

for 
andidate CRGs 
ontinues. In the next 
hapter we present an example of an appli
ation-spe
i�


mapping strategy that 
lari�es the 
on
ept of GenerateS
hedule and the mapper.

The S
heduleCompare method takes as input two 
andidate s
hedules and returns FirstIsBetter

if the �rst s
hedule is better than the se
ond and returns Se
ondIsBetter otherwise. Re
all from

Se
tion III.A that we are investigating two sophisti
ation levels for appli
ation information and models:

a memory usage model and an exe
ution time + memory usage model. The S
heduleCompare method

uses di�erent 
omparison metri
s, des
ribed below, depending on whi
h type of model is available.

Memory usage model without an exe
ution time model

When only a memory usage model is available, a series of heuristi
s are used to 
ompare 
andidate



24

s
hedules. These heuristi
s are designed to evaluate how well the given s
hedules satisfy the broad

appli
ation resour
e requirements de�ned in Se
tion III.A. Figure III.4 provides an overview of the

series of s
hedule 
omparisons used to sele
t the better of two s
hedules.

Exe
ution time model + memory usage model

When an exe
ution time is available in addition to the memory usage model, S
heduleCompare

uses the model to 
al
ulate a predi
ted exe
ution time for ea
h s
hedule. An obvious and straight-

forward approa
h is to sele
t the s
hedule with the minimum predi
ted exe
ution time and return it.

A drawba
k to this absolute best sele
tion methodology is that the sele
ted s
hedule sometimes tar-

gets many more resour
es than are ne
essary to a
hieve a

eptable performan
e. For example, many

appli
ations have poor speedup at larger resour
e set sizes; in these 
ases the performan
e advantage

of adding more resour
es 
an be almost zero, yet an absolute best sele
tion methodology will sele
t

larger and larger resour
e sets until performan
e a
tually degrades. In a shared-resour
e setting su
h

as a Computational Grid, a better 
hoi
e that balan
es the performan
e of individual appli
ations with

overall system throughput is to target a smaller number of resour
es that provide a similar performan
e

level. Performan
e 
ontra
ts, introdu
ed in Chapter II, provide a formal spe
i�
ation of a

eptable

appli
ation performan
e levels; su
h a 
ontra
t 
ould be used to determine what target resour
e set

sizes will provide a

eptable appli
ation performan
e. Unfortunately, sin
e performan
e 
ontra
ts are

still under development, we 
ould not easily experiment with this 
on
ept.

As an alternative strategy that does not require spe
i�
ation of an absolute performan
e require-

ment, we introdu
e a performan
e improvement threshold. In a shared-resour
e environment su
h as

the Grid, 
onservative resour
e usage should be en
ouraged to improve the overall system throughput;

therefore when a smaller resour
e set provides equivalent performan
e to a larger set, a \good 
itizen"

approa
h would target the smaller set. Sin
e ea
h user may have a personal de�nition of equivalent,

we provide the threshold as a tunable s
heduler option. We in
orporate this strategy at the inner-most

loop of the s
heduler sear
h pro
edure (Figure III.3); the loop is exe
uted on
e to �nd the absolute

best target resour
e set size and is then exe
uted a se
ond time to �nd the smallest resour
e set that

provides a predi
ted exe
ution time within the 
on�gurable performan
e improvement threshold.

III.C Grid information

Computational Grids are highly dynami
 environments where 
ompute and network resour
e avail-

ability 
an be unstable. When resour
e performan
e patterns are not well understood, appli
ation
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Do we have more complete resource 
info for one of the schedules? 

Yes, S2Yes, S1

Equivalent

Return
Second

Is Better

Return
First
Is Better

Is effective bandwidth higher 
for one of the schedules?

(BW = min BW of any link in the schedule)

Yes, S1

Equivalent

Does one schedule require
fewer resources?

Yes, S2

Is effective computational capacity 
higher for one of the schedules?

(power = min comp. capacity of any 
resource in the schedule)

Equivalent

Yes, S1 Yes, S2

Yes, S1 Yes, S2

Equivalent

ScheduleCompare(s1,s2)

Figure III.4: S
hedule 
omparison methodology when a memory usage model is available but an exe-


ution time model is not.
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performan
e su�ers. To avoid these problems, a s
heduler should make de
isions based on up-to-date

information about the 
urrent Grid environment. Unfortunately, 
urrently available Grid informa-

tion sour
es 
an be periodi
ally unstable or altogether unavailable, thereby pre
luding the use of any

s
heduler that depends solely on that information sour
e. Our goal is to provide best-e�ort servi
e by

supporting ba
kup sour
es, when possible, for ea
h type of information required by the s
heduler.

The Grid Information Colle
tor is the s
heduler 
omponent responsible for the 
olle
tion of resour
e

and network information for s
heduling. In III.C.1 we dis
uss several Grid information sour
es that 
an

be utilized by the Grid Information Colle
tor. In III.C.2 we des
ribe the types of information required

by our s
heduling strategy and identify whi
h information sour
es 
an be used to satisfy ea
h of these

requirements.

III.C.1 Information sour
es

There are a variety of Grid information 
olle
tion and dissemination me
hanisms and ea
h Com-

putational Grid varies somewhat in its information infrastru
ture. We provide an overview here of

two of the most widely utilized systems, the Meta
omputing Dire
tory Servi
e (MDS) [13, 11℄ and the

Network Weather Servi
e (NWS) [57, 58℄. See Se
tion V.A for the 
on�guration and usage of these two

systems in the GrADS Computational Grid.

The MDS is a 
exible Grid information management system that is used to 
olle
t and publish

system 
on�guration, 
apability, and status information. Essentially, any non-sensitive information that


an be retrieved from an operating system 
ould be published in the MDS for retrieval by distributed


lients. Grid 
hara
teristi
s that 
an typi
ally be retrieved from the MDS in
lude

� the set of potentially available resour
es;

� ma
hine 
hara
teristi
s su
h as operating system, pro
essor type, pro
essor speed, number of

CPUs available, and physi
al memory size; and

� software availability and installation lo
ation.

The NWS is a distributed monitoring system designed to tra
k 
urrent resour
e and network


onditions [57, 58℄. In addition to providing near real-time estimates of deliverable performan
e, the

system supports very short-term (10 se
onds ahead) fore
asting of future availability. The system

supports monitoring of the following system 
hara
teristi
s:

� availableCpu: the fra
tion of CPU available to a newly-started pro
ess,
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� 
urrentCpu: the fra
tion of CPU available to a pro
ess that is already running,

� freeMemory : the amount of spa
e unused in memory,

� freeDisk : the amount of spa
e unused on disk,

� 
onne
tTimeT
p: the amount of time required to establish a TCP 
onne
tion to a remote host,

� bandwidthT
p: the speed with whi
h data 
an be sent to a remote host, and

� laten
yT
p: the amount of time required to transmit an empty TCP message to a remote host.

III.C.2 S
heduler Grid information requirements

There are several types of Grid information required for the s
heduling pro
ess: a list of ma
hines

available for the run, lo
al 
omputational and memory 
apa
ity estimates for ea
h resour
e, and 
on-

ne
tivity estimates for the networks between resour
es. Wherever possible we support all available

types of information.

The base ma
hine list is a list of the ma
hines to be 
onsidered in the s
heduling pro
ess and is

the most important information requirement. On some testbeds a list of all ma
hines in the testbed 
an

be retrieved from an MDS, but unfortunately this list typi
ally in
ludes ma
hines on whi
h the user does

not have a

ounts. The 
urrently deployed MDS te
hnology provides no support for se
ure publishing

of a

ount information, whi
h is generally too sensitive to publish in an inse
ure way. However, se
ure

MDS me
hanisms are 
urrently in the beta stage and should be available in the near-term. Until

that te
hnology is available, we obtain the list of available ma
hines from the user dire
tly.

Lo
al memory 
apa
ity information is utilized by the s
heduler in two ways. First, the infor-

mation is used by the FindBest method 
all to sort ma
hines when the fo
us parameter is memory

or dual. Se
ond, most reasonable mappers will require lo
al 
apa
ity information to ensure that the

lo
al appli
ation requirements do not ex
eed lo
al 
apa
ities. The s
heduler supports usage of either

total physi
al memory values, whi
h 
an be retrieved from the MDS, or free memory values, whi
h 
an

be retrieved from the NWS. In future dis
ussions we abbreviate these information types by TOTAL

and FREE, respe
tively. Note that only ma
hines for whi
h lo
al memory information is available are

in
luded in the �nal s
hedule.

Lo
al 
omputational 
apa
ity information is also utilized by the s
heduler in two ways. As

with lo
al memory, the FindBest method uses 
omputational 
apa
ity information to sort ma
hines
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Component Parameter Options Default

Grid Info Colle
tor usergrid fMACHINE LISTg no default

memType FREE, TOTAL FREE


ompType AVAIL, MHZ, AVAIL MHZ AVAIL MHZ

nwsDataType LAST VALUE, PRED PRED

Sear
h Pro
edure perfModel MEMORY, EX TIME EX TIME

resConserve [0.0, 1) 0.05


rossSiteOK YES, NO YES

Table III.1: Con�gurable s
heduling poli
ies.

when the fo
us parameter is 
omputation or dual. In addition, many mappers and performan
e models

will in
orporate performan
e predi
tions requiring 
omputational 
apa
ity estimates. The s
heduler

supports usage of three information types: pro
essor speed (available from the MDS), available CPU

estimates (available from the NWS), or available pro
essor speed (
omputed by the Grid Information

Colle
tor as a multipli
ative 
ombination of available CPU and pro
essor speed). Re
all that the

s
heduler design 
urrently only targets one CPU per resour
e; NWS CPU availability values 
an be

well over 100% for multi-pro
essor resour
es so we therefore 
ap all NWS CPU availability estimates

at 100%. Hereafter we abbreviate these three information types by MHZ, AVAIL, and AVAIL MHZ.

Network performan
e information is used primarily by the s
heduler to provide input to the

mapper and performan
e model. For example, many mappers will in
orporate performan
e predi
tions

that require network 
hara
teristi
s. The s
heduler supports usage of bandwidth and laten
y data,

both of whi
h are available from the NWS. In future dis
ussions, these will be abbreviated as BAND

and LAT.

III.D S
heduling poli
ies

In this 
hapter we have dis
ussed many 
on�gurable s
heduler 
hara
teristi
s. For ea
h of these


hara
teristi
s a default value is de�ned; to support 
exibility in s
heduler usage the s
heduler also

supports the spe
i�
ation of alternative 
on�gurations via the s
heduling poli
ies s
heduler input. A

summary of s
heduler 
on�guration 
hara
teristi
s, available options, and default values is given in

Table III.1.

Only one of the s
heduling poli
ies must be spe
i�ed: the user must provide a list of Grid resour
es

on whi
h he or she has an a

ount, hereafter 
alled usergrid. As the se
urity of Grid information servi
es

improves this requirement will be lifted.
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III.E Chapter summary

In this 
hapter we have des
ribed a modular, adaptable s
heduler design that 
an be applied to many

types of appli
ations. This s
heduler must be paired with an appli
ation-spe
i�
 performan
e model

and mapper. In the next 
hapter we develop these important 
omponents for a spe
i�
 appli
ation


lass.



Chapter IV

Iterative, mesh-based appli
ations

In Chapter III we des
ribed an adaptable s
heduling framework that, when 
ombined with an

appli
ation-spe
i�
 performan
e model and mapper, provides automati
 mat
hing of appli
ation re-

quirements with available Grid resour
es. In this 
hapter we des
ribe two spe
i�
 appli
ations and

detail an implementation of the mapper and performan
e model for ea
h. The performan
e models,

mappers, and appli
ations themselves will be used in the next 
hapter to demonstrate our s
heduling

methodology in validation experiments.

For our test appli
ations we have 
hosen two examples from the 
lass of iterative, mesh-based

appli
ations. In Se
tion IV.A, we des
ribe the 
hara
teristi
s of this appli
ation 
lass and detail the

test appli
ations. Se
tion IV.B des
ribes our performan
e model design, and Se
tion IV.C des
ribes

our mapper design. Finally, in Se
tion IV.D we provide a 
hapter summary.

IV.A Appli
ation 
hara
teristi
s

The 
lass of iterative, mesh-based appli
ations is 
riti
al to many �elds of s
ien
e and engineering,

in
luding for instan
e parti
le simulations, partial di�erential equation solvers, and 
ir
uit simula-

tions [21℄. We have 
hosen to fo
us on appli
ations in this 
lass both be
ause the 
lass is important

and be
ause this 
lass typi
ally exhibits relatively predi
table performan
e.

Iterative appli
ations are 
hara
terized by a single sequen
e of operations that is repeated many

times over the 
ourse of exe
ution. Many iterative appli
ations 
an be 
lassi�ed as loosely syn
hronous,

meaning that in ea
h iteration the parti
ipating pro
essors are syn
hronized in some way before 
on-

tinuing to the next iteration [21℄. We fo
us on loosely syn
hronous iterative appli
ations where the

30
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data domain 
an be represented by a one, two, or three-dimensional mesh. We also assume that the

workload per iteration and the workload per unit of the data mesh are both 
onstant (traditionally

labeled a regular iterative model).

Many iterative, mesh-based appli
ations are dis
rete approximations to 
ontinuous spa
e-time prob-

lems; examples in
lude binary 
ellular automatons [14℄, atmospheri
 simulations [15℄, and heat transfer

in a solid. For these appli
ations, ea
h iteration represents a small, �xed period of time and the

data mesh represents the physi
al spa
e for the problem. Linear system solvers are another appli
a-

tion domain with many iterative, mesh-based solutions [6℄; examples in
lude Gauss-Seidel, Su

essive

Over-relaxation, and Conjugate Gradient.

We fo
us on two of these appli
ations for development and testing purposes: Game of Life and

Ja
obi. We have sele
ted these appli
ations as our initial test 
ases be
ause they are well-known,

straightforward to des
ribe, and share many performan
e 
hara
teristi
s with other iterative, mesh-

based appli
ations. We implemented ea
h test appli
ation as a SPMD-style 
omputation using C and

the Message Passing Interfa
e (MPI) [38℄. Traditionally, MPI programs are restri
ted to groups of

ma
hines that share a �le system and have similar ar
hite
tures. However, the MPICH implementation

of MPI [27, 28℄ provides support for exe
ution of unmodi�ed MPI programs a
ross heterogeneous

ar
hite
tures and wide-area networks; spe
i�
ally, this support is provided through a Globus-enabled

version of MPICH 
alled MPICH-G [16, 17℄. We use MPICH-G for ea
h of our appli
ations to allow

experimentation a
ross Computational Grids.

IV.A.1 Game of Life

Conway's Game of Life is a well-known binary 
ellular automaton whereby �xed rules are applied to

determine a next generation of 
ells based on the state of the 
urrent generation [14℄. A two-dimensional

mesh of pixels is used to represent the environment, ea
h pixel represents a 
ell, and values of 0 and 1

indi
ate a dead and living 
ell, respe
tively. In ea
h iteration, the state of every 
ell is updated based

on the 
urrent status of the 
ell itself and of its eight nearest neighbors (a 9-point sten
il); a dead 
ell

with exa
tly three live neighbors 
omes alive and living 
ells survive only if they have two or three

living neighbors.

Game of Life is a straightforward appli
ation to implement in parallel be
ause the update of ea
h

pixel depends only on the values of the 
ell's immediate neighbors. Data 
an be partitioned in numerous

ways in
luding blo
k, blo
k-
y
li
, row-based strip, and 
olumn-based strip. Ea
h pro
essor manages a
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portion of the array and de�nes a 1-pixel wide set of ghost-
ells along data grid edges. Ea
h iteration


onsists of a 
omputational phase in whi
h ea
h pro
essor updates their portion of the data array and a


ommuni
ation phase in whi
h ea
h pro
essor re-initializes their ghost 
ell data with information from

its neighbors.

N

N

Parallel
Mapping

N

np-1 Pp-1

n0

n1 P1

P0

Ghost Cell Exchange

Boundary Cells

Generation Data

Ghost Cells

9-pt update stencil

Legend

1

2

3

12
3

Figure IV.1: Game of Life appli
ation stru
ture.

Key features of our Game of Life implementation are diagrammed in Figure IV.1, a listing of vari-

ables and their de�nitions is given in Table IV.1, and pseudo-
ode for the iterative portion of our

implementation is presented in Figure IV.2. We sele
ted a row-based strip data partitioning strategy

be
ause this strategy typi
ally exhibits lower 
ommuni
ation 
osts than other partitioning s
hemes, an

important 
onsideration for Grid 
omputing. To allow experimentation with load-balan
ing work allo-


ation strategies, we in
orporated support for irregularly-sized data partitions. The ghost 
ell ex
hange

phase is implemented with non-blo
king sends (MPI Isend), non-blo
king re
eives (MPI Ire
v), and �nal

wait method 
alls to ensure the return of all 
ommuni
ation 
alls (MPI Wait). Our implementation does

not in
lude termination dete
tion, and it exe
utes for a 
on�gurable, but �xed number of iterations.
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Algorithm : GameOfLife(pro
ID; p;N; nLo
al; numIts)

de�ne DEAD 0; ALIV E 1

de�ne FIRST ID 0; LAST ID p� 1

// Arrays must in
lude spa
e for boundary and ghost 
ells

lo
al 
urrGen[nLo
al+ 2℄[N ℄; nextGen[nLo
al+ 2℄[N ℄


urrGen GetInitialGeneration(i; nLo
al)

for k  0 to numIts� 1

// COMPUTATION PHASE

// We ex
lude boundary values from update

// i.e. row 0, row nLo
al+1, 
ol 0, and 
ol N+1

for r  1 to nLo
al

for 
 1 to N


ount 
urrGen[r � 1℄[
� 1℄ + 
urrGen[r � 1℄[
℄ +


urrGen[r � 1℄[
+ 1℄ + 
urrGen[r℄[
� 1℄ +


urrGen[r℄[
+ 1℄ + 
urrGen[r + 1℄[
 � 1℄ +


urrGen[r + 1℄[
℄ + 
urrGen[r + 1℄[
 + 1℄

if 
urrGen[r℄[
℄ == ALIV E and 
ount 2 f2; 3g

nextGen[r℄[
℄ = ALIV E

else if 
urrGen[r; 
℄ == ALIV E

nextGen[r℄[
℄ = DEAD

else if 
urrGen[r; 
℄ == DEAD and 
ount == 3

nextGen[r℄[
℄ = ALIV E

else

nextGen[r℄[
℄ = DEAD

// COMMUNICATION PHASE

if pro
ID 6= FIRST ID

// Re-initialize ghost 
ell data with lower-indexed pro


Asyn
Send(nextGen[1℄[:℄; pro
ID � 1)

Asyn
Re
v(nextGen[0℄[:℄; pro
ID � 1)

WaitAll()

if pro
ID 6= LAST ID

// Re-initialize ghost 
ell data with higher-indexed pro


Asyn
Send(nextGen[nLo
al℄[:℄; pro
ID + 1)

Asyn
Re
v(nextGen[nLo
al + 1℄[:℄; pro
ID + 1)

WaitAll()

// Swap data array pointers [no mem 
opy℄

SwapDataP trs(
urrGen; nextGen)

return (
urrGen)

Figure IV.2: Game of Life appli
ation pseudo-
ode.
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Name Type De�nition

p int total number of pro
essors

P

i

NA pro
essor i where 0 � i < p

N int number of rows & 
olumns in the global data matrix

n

i

int number of rows in the lo
al data matrix of P

i

numIts int total number of iterations to perform

pro
ID int MPI pro
essor ID where 0 � pro
ID < p

FIRST ID int ID of the top-most pro
essor (usually 0)

LAST ID int ID of the bottom-most pro
essor (usually p� 1)


urrGen int[ ℄[ ℄ 2-dim matrix for initial data in ea
h iteration

nextGen int[ ℄[ ℄ 2-dim matrix for result data in ea
h iteration

Table IV.1: Summary of variables used in Game of Life des
ription.

IV.A.2 Ja
obi

The Ja
obi method is a simple algorithm for the solution of a system of linear equations by itera-

tion [6, 41℄. Ja
obi is often explained in the 
ontext of solving Lapla
e's equation. We instead des
ribe

the general linear system solver version; note that the Ja
obi method involves more 
ommuni
ation for

this 
ase than in the solution to Lapla
e's equation (whi
h requires only neighbor-based 
ommuni
a-

tion). A linear system of equations 
an be represented as ax = b where a is a square N x N matrix of


oeÆ
ients, x = (x

0

; x

1

; :::; x

r

; :::; x

N�1

)

T

is a ve
tor of unknowns, and b = (b

0

; b

1

; :::; b

r

; :::; b

N�1

)

T

is a

ve
tor 
ontaining the 
onstant 
oeÆ
ients. To avoid 
onfusion with the notation we use for pro
essors

(P

i

), in this dis
ussion we use r as a shorthand for row number and 
 as a shorthand for 
olumn num-

ber. The method begins with an initial guess for the solution ve
tor x

0

and in ea
h iteration su

essive

approximations x

k

, k = 1; 2; :::; numIts � 1 to the solution are 
al
ulated. The value of x

r

in iteration

number k + 1 is given by:

x

k+1

r

=

1

a

rr

(b

r

�

X


6=r

a

r


x

k




) (IV.1)

This solution method is guaranteed to 
onverge only if the system is diagonally dominant. That is,


onvergen
e is guaranteed if:

8r 2 f0 : N � 1g; ja

rr

j >

X


6=r

ja

r


j (IV.2)
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Name Type De�nition

p int total number of pro
essors

P

i

NA pro
essor i where 0 � i < p

N int number of rows (unknowns) in the ve
tor x

n

i

int number of rows of x assigned to P

i

numIts int total number of iterations to perform

lo
alA double[ ℄[ ℄ 2-dim matrix with n

i

xN sized lo
al portion of a

lo
alB double[ ℄ ve
tor with n

i

sized lo
al portion of b

r0 int global lo
ation of the �rst row of this pro
's unknowns


urrX double[ ℄ initial values for x in ea
h iteration

nextX double[ ℄ result values for x in ea
h iteration

lo
alX double[ ℄ result values for lo
al portion of x

distan
e double a metri
 for 
onvergen
e dete
tion

Table IV.2: Summary of variables used in Ja
obi des
ription.

We have 
hosen Ja
obi be
ause it is straightforward to des
ribe and shares many performan
e 
hara
-

teristi
s with other, more popular algorithms.

An eÆ
ient parallel data de
omposition for the Ja
obi method is to assign a portion of the un-

knowns to ea
h pro
essor. The ve
tor x is then de
omposed into an assignment of work (map =

(n

0

; n

1

; :::; n

i

; :::; n

p�1

)) to pro
essors (pro
List = (P

0

; P

1

; :::; P

i

; :::; P

p�1

)). Ea
h pro
essor need only

store a re
tangular sub-matrix of a of size n

i

x N . Ea
h iteration begins with every pro
essor 
omput-

ing new results for their n

i

-sized portion of the unknowns. Next, ea
h pro
essor must distribute their

updated portion of x to every other pro
essor so that at the end of the 
ommuni
ation phase every

pro
essor has a fully updated x ve
tor. The �nal phase in ea
h iteration is a termination dete
tion

phase. The method is stationary, meaning that the matrix a is �xed throughout the appli
ation; for

this reason, ea
h pro
essor need only know the values in its sub-matrix of a. The Ja
obi method does

not require ghost 
ells or updates for the matrix a.

Pseudo-
ode for our implementation of the Ja
obi method is given in Figure IV.3, and Table IV.2

provides de�nitions for variables referen
ed in the pseudo-
ode.

IV.B Appli
ation performan
e modeling

As dis
ussed in Chapter III, the s
heduler is dependent on the availability of a performan
e model in

the form of either a memory usage model or an exe
ution time + memory usage model. In this se
tion

we develop an instantiation of ea
h of these performan
e models for our test appli
ations, Ja
obi and
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Algorithm : Ja
obi(lo
alA; lo
alB; p;N; nLo
al; r0; numIts)

lo
al 
urrX[N ℄; nextX[N ℄; lo
alX[nLo
al℄

lo
al distan
e

// Initialize 
urrX with b values


urrX[r0 : r0 + nLo
al℄ bLo
al

for i 0 to p� 1

Broad
ast(
urrX; i)

for k  0 to numIts� 1

// COMPUTATION PHASE

for r  0 to nLo
al � 1

lo
alX[r℄ lo
alB[r℄

for 
 0 to N � 1

if 
 6= r + r0

lo
alX[r℄ lo
alX[r℄� lo
alA[r℄[
℄ � 
urrX[r + r0℄

lo
alX[r℄ lo
alX[r℄ = lo
alA[r℄[r + r0℄

// COMMUNICATION PHASE

nextX[r0 : r0 + nLo
al℄ lo
alX

for i 0 to p� 1

Broad
ast(nextX; i)

// TERMINATION DETECTION

// Appli
ation runs for fixed numIts, but we in
lude

// 
ode to ensure realisti
 performan
e results

distan
e 0

for r  0 to N � 1

distan
e distan
e+ (nextX[r℄� 
urrX[r℄)

2

distan
e 

p

distan
e

// Swap data pointers [no mem 
opy℄

SwapDataP trs(
urrX; nextX)

return (
urrX)

Figure IV.3: Ja
obi appli
ation pseudo-
ode.
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the Game of Life.

IV.B.1 Memory usage model

When the a
tive, lo
al data set of an appli
ation does not �t in the physi
al memory of ea
h

parti
ipating pro
essor, appli
ation progress 
an grind nearly to a halt due to paging of memory to

disk. Sin
e the performan
e e�e
ts of memory usage 
an be quite severe, it is very important that

s
hedulers not allo
ate more work to ea
h pro
essor than will �t in lo
al memory. However, it is

diÆ
ult to predi
t the performan
e e�e
ts of appli
ation memory usage. For these reasons, we do

not in
lude memory usage as part of a performan
e metri
, but rather as a s
hedule 
onstraint : for a

s
hedule to be 
onsidered feasible the work allo
ated to every pro
essor must be predi
ted to �t within

the lo
al memory 
apa
ity of that pro
essor.

Based on examination of data stru
tures allo
ated in ea
h appli
ation, we predi
t the memUnit

bytes of storage that will be allo
ated per pixel of the data mesh. The aggregate memory requirement,

aggMemReq, is then dependent on the problem size, memUnit, and on d, the number of dimensions

in the data mesh. In megabytes, the aggregate memory requirement 
an be written:

aggMemReq =

memUnit �N

d

2

2

0

: (IV.3)

To predi
t an appli
ation memory requirement for pro
essor P

i

, we in
orporate the size of the lo
al

data partition, n

i

:

memReq

i

=

memUnit � n

i

�N

d�1

2

2

0

: (IV.4)

Re
all that data for lo
al pro
essor memory availability, mem

i

, 
an be supplied by total physi
al

memory values from the MDS or free memory values from the NWS. Theoreti
ally, a simple 
omparison

of memReq

i

to mem

i

should be suÆ
ient to determine if the appli
ation's memory requirements are

satis�ed by a ma
hine's lo
al memory. In pra
ti
e, a 
lose mat
h of the two fa
tors provides an overly

\tight" �t and the appli
ation's memory demand will frequently ex
eed lo
al memory 
apa
ity. There

are several reasons for this e�e
t:

� While most memory allo
ation by these appli
ations is for the data arrays, every appli
ation

requires some additional stati
 memory allo
ation. These memory requirements are not 
onsidered

expli
itly in our memory usage model.
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� The operating system and other ba
kground pro
esses require a signi�
ant portion of the avail-

able physi
al memory. When mem

i

is based on total physi
al memory, this 
ontention is not


onsidered.

� All of our target ma
hines are time-shared. If we run a job that requires all of the lo
al memory,

then when another user runs even a small job our job will be swapped out to disk.

To avoid this problem, we propose an alternative: a given work allo
ation should only be 
onsidered

feasible if ea
h pro
essor provides some additional memory over the amount spe
i�ed by the memory

usage model. We in
orporate a tunable parameter in the memory usage model 
alled the memFa
tor ;

this fa
tor spe
i�es the per
entage of additional memory that should be available on ea
h pro
essor

and in aggregate. The user of the model must sele
t a value that provides a reasonable tradeo� given

the target resour
e set; lower values will improve the 
han
e of �nding a reasonable resour
e set while

higher values will redu
e the 
han
e of the appli
ation's resour
e demands ex
eeding the 
apa
ity of the

targeted resour
es. Based on early experimental results and memory usage ben
hmarks, we identi�ed

20% as a value that provides a reasonable tradeo� for the GrADS Computational Grid environment;

for all experimental studies presented in Chapter V the memory usage model is 
on�gured with this

value.

To fully instantiate this memory model, we need to determine appropriate memUnit and d pa-

rameters for ea
h test appli
ation. In the Game of Life appli
ation, a two-dimensional integer array

of size n

i

x N is allo
ated for both the 
urrGen matrix and the nextGen matrix. For all dis
ussions

in this thesis we assume that four bytes of storage are required for ea
h integer and eight bytes of

storage are required for ea
h double; while this assumption is a

urate for all ma
hines 
urrently in

the GrADS testbed, to a

urately handle a broader variety of ar
hite
tures the storage requirements

should be treated as inputs to the memory model. Overall, the Game of Life parameters are d = 2

and memUnit = 2 ints=pixel � 4 bytes=int = 8 bytes=pixel. For the Ja
obi method, the primary

data allo
ation for ea
h pro
essor is the 2-dimensional array of doubles of size n

i

x N for the lo
al


omponent of a. Ea
h pro
essor also allo
ates a size N ve
tor for 
urrX and nextX and a size n

i

ve
tor for lo
alX and lo
alB. Sin
e the size of these ve
tors will be mu
h smaller than the a ma-

trix, we fo
us only on the matrix memory allo
ation. Therefore, for the Ja
obi method, d = 2 and

memUnit = 1 double=pixel � 8 bytes=int = 8 bytes=pixel.
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IV.B.2 Exe
ution time model

Iterative, mesh-based appli
ations share a number of 
hara
teristi
s that enable relatively straight-

forward performan
e modeling. Re
all that we assume a regular, syn
hronous iteration model. This

model allows us to make a number of additional assumptions:

1. The iterative phase dominates exe
ution time.

2. The 
omputational 
ost per iteration is 
onstant for ea
h pro
essor.

3. The progress of the slowest ma
hine de�nes the progress of all parti
ipating ma
hines.

Based on these assumptions, the exe
ution time of the appli
ation will be proportional to the appli
ation

iteration time. Furthermore, due to the syn
hronization of pro
essors in ea
h iteration, the appli
ation

iteration time will be equal to the time of the slowest parti
ipating pro
essor. If we represent the

predi
ted iteration time on pro
essor i as itT ime

i

and the overall predi
ted appli
ation iteration time

as itT ime

app

this metri
 
an be formalized as:

itT ime

app

= maxfitT ime

0

; itT ime

1

; :::; itT ime

p�1

g: (IV.5)

Sin
e iteration time is independent of the number of iterations performed it is slightly simpler to model

and dis
uss than exe
ution time; for this reason, we 
ompare s
hedules based on the following s
hedule

evaluation metri
: the most desirable s
hedule is the s
hedule with the lowest predi
ted iteration time.

Note that for a s
hedule to be 
onsidered feasible, it must still satisfy the memory usage model s
hedule


onstraint.

For iterative, mesh-based appli
ations, iteration time is typi
ally dominated by one or more phases.

For example, the Game of Life is dominated by a 
omputation phase (updating the value of ea
h 
ell)

and a 
ommuni
ation phase (sharing of ghost 
ells with neighbors). For ea
h of our test appli
ations,

these phases are serialized for ea
h pro
essor (i.e. we have not implemented overlap of 
ommuni
ation

and 
omputation). We 
an therefore model the iteration time on pro
essor i (itT ime

i

), as a 
ombination

of that pro
essor's 
omputation time (
ompT ime

i

) and 
ommuni
ation time (
ommTime

i

):

itT ime

i

= 
ompT ime

i

+ 
ommTime

i

: (IV.6)
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Sin
e we assume a regular iterative appli
ation model, we 
an expe
t that iteration time is relatively


onstant during appli
ation exe
ution. Furthermore, sin
e we assume that exe
ution time is dominated

by the iterative phase, the full exe
ution time is proportional to the iteration time.

Note that our implementation of Ja
obi in
ludes a termination dete
tion phase, but this phase

involves only 
omputation and thus 
an be in
luded dire
tly in the 
ompT ime

i

model. In the following

paragraphs we des
ribe a model for the 
omputation time and 
ommuni
ation time for ea
h pro
essor.

Unless otherwise noted, the units of time are se
onds.

Computation

The 
omputation phase for our test appli
ations primarily 
onsists of the pixel update pro
ess in ea
h

iteration. For the Ja
obi implementation, the termination dete
tion phase is purely 
omputational and

so we 
onsider it part of the 
omputation phase as well.

As we did in the memory model, we introdu
e a base unit of 
omputation: 
ompUnit. The


ompUnit is the number of pro
essor 
y
les performed by the appli
ation per pixel of the mesh per

iteration. Re
all that the 
omputational 
apa
ity of a pro
essor, 
omp

i

, 
an be represented by the CPU

speed (MHZ) or by the available CPU speed (AVAILMHZ), ea
h of whi
h has units of 10

6


y
les per

se
ond. The 
omputation time per iteration on pro
essor i 
an then be modeled as


ompT ime

i

=


ompUnit � n

i

�N

d�1

10

6

� 
omp

i

: (IV.7)

To fully instantiate this model we need to determine an appropriate 
ompUnit value for ea
h

test appli
ation. Unfortunately, obtaining an a

urate 
ount of the number of 
y
les required for

a 
ode segment is non-trivial. One simple method is to examine the sour
e 
ode and manually 
ount

operations; this method typi
ally over-predi
ts operation 
ounts be
ause it does not a

ount for 
ompiler

optimizations or the e�e
t of 
a
hing. Another option is to base the operations 
ount estimate on

assembly 
ode; this method a

ounts for 
ompiler optimizations but is also ina

urate be
ause (1) it

assumes the pro
essor is able to sustain a �xed rate in 
y
les per operation throughout exe
ution and

(2) it fails to identify variations in operation 
ounts by ar
hite
ture. We instead utilize an empiri
al

approa
h to determine a 
ompUnit value for ea
h appli
ation. We sele
ted a range of problem sizes

and ran the 
omputational portion of the appli
ation on ea
h pro
essor 
on�guration in
luded in our

testbed. These tests were run in unloaded 
onditions and 100 iterations were performed per run. We


al
ulate an average iteration time, itT imeAv, and use the pro
essor speed (MHZ) to 
onvert to 
y
les

per pixel per iteration: 
ompUnit =MHZ � itT imeAv � 10

6

. Finally, for ea
h appli
ation we average
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the 
ompUnit values determined for ea
h problem size and generate a �nal appli
ation 
ompUnit value.

For the pro
essor 
on�gurations targeted in this thesis, the 
ompUnit values determined in this manner

were relatively similar; for example, the Game of Life ben
hmarks resulted in average 
ompUnit values

ranging from 68.7 to 74.8. We therefore sele
ted a single value and used it in all experiments; for the

Game of Life we sele
ted 
ompUnit = 72, and for Ja
obi we sele
ted 
ompUnit = 36. For a testbed

with greater pro
essor 
on�guration heterogeneity, the s
heduler should utilize a di�erent value for ea
h

pro
essor 
on�guration.

Communi
ation

In this se
tion we des
ribe a model of the 
ommuni
ation behavior for the Game of Life and Ja
obi.

Our model is based primarily on the 
ost of message transfers; we do not model additional overheads

su
h as syn
hronization.

The Game of Life 
ommuni
ation phase 
onsists of a swap of ghost 
ells between pro
essors. For

all pro
essors ex
ept the lowest indexed pro
essor in the data de
omposition (i.e. P

0

), a message is

sent to and re
eived from the i � 1 pro
essor. Similarly, for all pro
essors ex
ept the highest indexed

pro
essor in the data de
omposition (i.e. P

p�1

), a message is sent to and re
eived from the i+1 pro
essor

(see Figure IV.1). These messages ea
h in
lude N pixels of information, ea
h pixel is represented by an

integer, and we assume ea
h integer requires four bytes of storage. The size of ea
h message, msgSize,

is therefore 4 �N . Sin
e our Game of Life implementation uses non-blo
king sends and re
eives, all of

the messages in ea
h iteration 
ould theoreti
ally be overlapped. In pra
ti
e, however, pro
essors 
an

not simultaneously parti
ipate in four message transfers at on
e without a redu
tion in performan
e for

ea
h message and, more importantly, pro
essors do not rea
h the 
ommuni
ation phase of ea
h iteration

at the same moment. As an initial approximation, we assume that messages with a parti
ular neighbor


an be overlapped, but that 
ommuni
ation with di�erent neighbors o

urs in distin
t phases whi
h

are serialized. Sin
e we assume that 
ommuni
ations with a parti
ular neighbor 
an be overlapped, we

assume that the 
ost of ea
h su
h 
ommuni
ation is determined by the maximum predi
ted delay of

the two involved message transfers. Note that while these messages are between the same two hosts,

the delay of ea
h message must be determined independently be
ause network performan
e for sending

and re
eiving to and from the same host 
an be asymmetri
. If we represent the time to send a message

from pro
essor a to pro
essor b as msgT ime

a;b

, then the 
ommuni
ation 
ost for ea
h pro
essor 
an be


al
ulated as shown in Figure IV.4.

In the Ja
obi 
ommuni
ation phase, ea
h pro
essor broad
asts their n

i

sized portion of the ve
tor

x to every other pro
essor. For MPICH, the MPI implementation used in this thesis, a broad
ast is
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Algorithm : Cal
ulateCommGOL(pro
ID; p)

de�ne FIRST ID 0

de�ne LAST ID p� 1


ommTime

i

= 0

if pro
ID 6= FIRST ID


ommTime

i

= max(msgT ime

i;i�1

;msgT ime

i�1;i

)

if pro
ID 6= LAST ID


ommTime

i

+ = max(msgT ime

i;i+1

;msgT ime

i+1;i

)

return (
ommTime

i

)

Figure IV.4: Game of Life 
ommuni
ation 
ost 
al
ulation.


omposed of individual MPI Send and MPI Re
v 
alls. The broad
ast begins at the root node (the

root is whi
hever pro
essor is the initiator of the broad
ast), and is sent to all other pro
essors via a

binomial tree [5℄. The binomial tree broad
ast stru
ture is designed to minimize the number of serialized

messages that must pro
eed before the broad
ast is 
omplete; theoreti
ally at most log

2

(p) messages

are serialized in ea
h broad
ast. Figure IV.5 illustrates a binomial tree broad
ast stru
ture for seven

pro
essors with P

0

as the root node.

Sin
e there are p broad
asts per iteration we assume that p� log

2

(p) messages are sent per iteration.

Due to the (possibly) irregular data partitions, ea
h pro
essor's broad
ast 
ould be of a di�erent size.

Additionally, sin
e the root node will be di�erent for ea
h broad
ast in an iteration, the 
onne
tions

involved in the broad
ast will vary from broad
ast to broad
ast. One modeling approa
h is presented

in [5℄; in this work the authors propose dire
tly 
al
ulating the 
ost of ea
h path in the binomial

broad
ast tree to determine the longest path, whi
h is then taken to be the predi
ted broad
ast time.

This methodology has not been tested on heterogeneous, wide-area resour
es sets and it does not address

many fa
tors that 
an impa
t broad
ast time (e.g. wait times, message overlaps, network 
ontention).

As a �rst approa
h, we de
ided to use a more eÆ
ient and simpler 
ommuni
ation model. We 
al
ulate

an average message 
ost, msgT ime

avg

, and then approximate the 
ommuni
ation 
ost as:


ommTime

i

= p � log

2

(p) �msgT ime

avg

: (IV.8)
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Proc 0
[000]

Proc 6
[111]

Proc 5
[110]

Proc 4
[100]

Proc 3
[011]

Proc 2
[010]

Proc 1
[001]

Time 2

Time 2

Time 2

Time 1

Time 0

Time 1

Figure IV.5: Example of a binomial tree as used in the MPICH broad
ast implementation. Cir
les

represent pro
essors and arrows represent messages. Pro
essor IDs are also listed in binary to illustrate

the way in whi
h the tree is built.
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To develop a value for msgT ime

avg

, we �rst assume messages will all 
ontain an average number of

mesh pixels, N=p. Ea
h pixel 
ontains a double and we assume that ea
h double requires eight bytes of

storage; therefore, we assume all messages will be of size 8N=p. We also assume that within the sele
ted

resour
e set, the usage of any pro
essor to pro
essor link is equally likely. Then, we individually 
al
ulate

the 
ost of sending a size 8N=p message from ea
h pro
essor to every other pro
essor and, �nally, we

take the average. We believe that this methodology provides a good tradeo� between model 
omplexity

and model a

ura
y.

It still remains to develop a model for the 
ost of sending a message between two pro
essors.

Suppose the startup time for sending a message from a to b is �

a;b

and the available network bandwidth

is given by �

a;b

. A 
ommon and simple model for the time to send a message from a to b is

msgT ime

a;b

= �

a;b

+msgSize=�

a;b

: (IV.9)

In our target environment, the GrADS Computational Grid, near real-time measurements are provided

by the Network Weather Servi
e (NWS) for network laten
y (�) and bandwidth (�). We dis
uss

the 
on�guration of this measurement infrastru
ture in Se
tion V.A; in essen
e, network performan
e

measurements and predi
tions are based on the 
ost of transferring a �xed amount of data in a TCP/IP


ommuni
ation stream [55℄. Note that these measurements in
lude the overhead ne
essary to initiate

a TCP/IP 
ommuni
ation stream, whi
h 
an be signi�
ant [55℄. In initial ben
hmarking experiments

we tested the predi
tion a

ura
y of the above message time model parameterized by NWS network

performan
e predi
tions. In these experiments we observed that the message-passing 
osts experien
ed

by our test appli
ations were signi�
antly lower than those predi
ted by the model for msgT ime

a;b

. We

also experimented with other message time models, and found that a bandwidth only model provided

better message time predi
tion a

ura
y. We therefore sele
ted the bandwidth only model and the

revised message time model is:

msgT ime

0

a;b

= msgSize=�

a;b

: (IV.10)

IV.C Mapper

The fun
tion of the mapper is to determine an appropriate mapping of work onto pro
essors for

a given 
andidate resour
e group, or CRG. For our test appli
ations, the resulting map 
onsists of an
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allo
ation of mesh rows n

0

; n

1

; :::; n

p�1

to pro
essors P

0

; P

1

; :::; P

p�1

. In order to �nd su
h a mapping,

two distin
t subproblems must be solved: what topologi
al arrangement of pro
essors should be

used (e.g. whi
h physi
al pro
essor should be assigned to logi
al pro
essor position P

0

) and what

allo
ation of work to those pro
essors is appropriate (e.g. exa
tly how many rows of the data mesh

should be assigned to pro
ess P

0

).

Our primary goal in �nding a topologi
al arrangement of pro
essors is to order the pro
essors

su
h that 
ommuni
ation 
osts are minimized. There are a variety of ways to solve this problem. It is

possible to perform an exhaustive sear
h and try ea
h pro
essor arrangement (using an exe
ution time

model, when available, to sele
t the best one), but sin
e the mapper is 
alled frequently we do not wish

to in
ur the large 
ost of su
h a sear
h pro
ess. We instead opted for a simple and 
omputationally

inexpensive methodology: we group resour
es by site and then arrange pro
essors in the topology su
h

that ma
hines from the same site are pla
ed next to ea
h other. For an appli
ation su
h as Game

of Life that involves primarily neighbor-based 
ommuni
ation, this topologi
al arrangement tends to

redu
e the number of messages transferred over the wide-area when 
ompared to a random pro
essor

arrangement. A simple improvement to this approa
h whi
h we have not implemented would arrange

the sites based on network delays in order to avoid the use of poorly performing links.

Our primary goal in �nding an allo
ation of work onto pro
essors is to ensure appli
ation resour
e-

requirements are met. A se
ondary goal is to redu
e appli
ation exe
ution time by evenly balan
ing

the workload on ea
h pro
essor. Determination of an appli
ation-appropriate work allo
ation is highly

dependent on appli
ation performan
e 
hara
teristi
s. Sin
e our s
heduler design supports two levels of

appli
ation performan
e models, we have designed two work-allo
ation strategies that take advantage

of available information in ea
h performan
e modeling 
ontext. The equal allo
ation mapper utilizes the

appli
ation information available in the memory usage model 
ontext; the time-balan
e mapper utilizes

the appli
ation information available in the exe
ution time + memory usage model 
ontext.

IV.C.1 Equal allo
ation mapper

When only memory usage appli
ation information is available, a sophisti
ated mapping strategy


annot be employed. Our equal allo
ation mapping strategy is to simply allo
ate work to pro
essors

uniformly. Ea
h pro
essor is assigned n

i

= N=p rows of the mesh and the total number of pixels

assigned to ea
h pro
essor is n

i

� N . To ensure that appli
ation resour
e requirements are met, the

mapper veri�es that lo
al memory availability is suÆ
ient to support appli
ation memory requirements;
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in the 
ase that lo
al memory 
apa
ities are not suÆ
ient for appli
ation needs, the mapper simply

returns with failure to �nd a map. In the s
heduling 
ontext des
ribed in Chapter III, the 
urrent CRG

is removed from the list of 
andidate CRGs and the sear
h pro
ess 
ontinues.

Note that not every problem size will evenly de
ompose on every resour
e set size. In the 
ase that

the target appli
ation supports unequal partitions, we simply ensure that partitions are as similar as

possible, but do not require exa
tly equal partitions; this is the approa
h taken for our test appli
ations.

In the 
ase that the target appli
ation does not support unequal work partitions, 
andidate CRGs are

restri
ted to those resour
e sets for whi
h work 
an be divided into identi
ally-sized partitions.

IV.C.2 Time balan
e Mapper

When an appli
ation exe
ution time model is available, it is possible to utilize more performan
e-

eÆ
ient mapping strategies. Our approa
h is to formalize important resour
e requirements and perfor-

man
e 
onsiderations as a series of 
onstraints. Work-allo
ation 
an then be framed as a 
onstrained

optimization problem. A solution 
onsists of an allo
ation of work onto resour
es; the goal of the op-

timization problem is to �nd a work-allo
ation that minimizes appli
ation iteration time. Re
all that

for this appli
ation 
lass, iteration time is determined by the slowest pro
essor. A work allo
ation that

perfe
tly balan
es load among parti
ipating pro
essors assigns less work to slower pro
essors and more

work to faster pro
essors in a way that minimizes overall iteration time.

The variables in this 
onstrained optimization problem 
onstitute the mapping of rows to pro
essors.

Sin
e ea
h of the variables is 
onstrained to an integer value, the system of 
onstraints 
an be framed as

an integer programming problem [54℄. Unfortunately, the integer programming problem is NP-
omplete,

rendering the solution 
omputationally expensive to 
ompute. During the s
heduling pro
ess, a mapping

is 
al
ulated for ea
h 
andidate resour
e group; sin
e the s
heduler 
onsiders a relatively large number

of CRGs (see Se
tion III.B), a 
omputationally expensive mapper will result in high overheads for

s
heduling. A mu
h more eÆ
ient alternative is provided by linear programming solvers [54℄; in this


ase the solution is real-valued and 
an only provide an approximate solution for an integer problem.

However, even for small iterative, mesh-based appli
ations of interest for the Grid, the maximum

error that 
an be 
aused by the usage of a real-valued solution is quite small. For example, 
onsider

a Ja
obi problem size of 1000 x 1000, whi
h very easily runs on a single pro
essor. Suppose this

problem is de
omposed on 2 pro
essors. In this 
ase, the maximum error that 
an be introdu
ed by

using a real-valued solution is 1=1000, or 0.1%. Sin
e the introdu
ed error is small and the solver
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eÆ
ien
y is mu
h higher, we frame the mapping problem as a linear programming problem. Many

linear programming solvers are freely available [33℄; we sele
ted the lp solve pa
kage [35℄, a freely

available linear programming solver whi
h is based on the simplex method.

The problem formulation begins with the spe
i�
ation of an obje
tive fun
tion. For this problem,

an ideal obje
tive fun
tion is the iteration time of the slowest pro
essor. Unfortunately, there is no way

to spe
ify this obje
tive in a linear formulation. Instead, our formulation minimizes the 
omputation

time on the �rst pro
essor in the topology, P

0

, and utilizes a series of 
onstraints to ensure load-balan
e

among pro
essors (we will dis
uss these 
onstraints momentarily). We use the exe
ution time model to

formally spe
ify the obje
tive fun
tion:

minimize(

N

d�1

� 
ompUnit


omp

0

� n

0

): (IV.11)

The se
ond 
omponent of problem formulation is a spe
i�
ation of bounds on the variables. In this


ase, ea
h pro
essor must be assigned a non-negative amount of work not to ex
eed the total problem

size, N . Formally:

8i 2 f0 : p� 1g; 0 � n

i

� N: (IV.12)

The rest of the problem formulation 
onsists of a series of 
onstraints. Unlike some pa
kages,

the lp solve pa
kage supports spe
i�
ation of 
onstraints as equalities or inequalities. We therefore

formalize ea
h 
onstraint in whi
hever format is the most natural. First, the total amount of work

allo
ated must be equal to the total number of rows, N :

p�1

X

i=0

n

i

= N: (IV.13)

Next, we use the spe
i�
ation of memory requirements from the memory usage model to ensure that

the data allo
ated to ea
h pro
essor �ts within that pro
essor's lo
al memory:

8i 2 f0 : p� 1g; N

d�1

�memUnit � n

i

� mem

i

: (IV.14)
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Finally, we need to formally spe
ify that pro
essor iteration times should be balan
ed. To do this,

one 
an sele
t a referen
e pro
essor and spe
ify that the iteration time on every other pro
essor must be

equal to the iteration time on the referen
e pro
essor. Sin
e the obje
tive fun
tion involves minimizing


omputation time on pro
essor 0 we sele
t P

0

as the referen
e pro
essor; the 
onstraints 
an then be

written: 8i 2 f1 : p � 1g; jitT ime

i

� itT ime

0

j = 0. When lo
al memory 
apa
ities are suÆ
ient,

this 
onstraint spe
i�
ation will result in a perfe
tly balan
ed mapping. However, when lo
al memory


apa
ities are more limited, the solver may fail to �nd a solution. In some of these 
ases, lo
al memory

availabilities are suÆ
ient to support appli
ation requirements, but only if the data mapping is not

perfe
tly balan
ed. Clearly, an unbalan
ed solution is preferable to no solution at all; we therefore

introdu
e a relaxation fa
tor, R in the time balan
ing 
onstraints. The revised 
onstraints spe
ify that

the iteration time on every pro
essor must be within some relaxation fa
tor of the iteration time on P

0

:

8i 2 f1 : p�1g; jitT ime

i

� itT ime

0

j � R� itT ime

0

. To spe
ify this 
onstraint in a linear form, we again

refer to the full performan
e model. Re
all that 
ommuni
ation requirements are independent of the

data mapping for our test appli
ations; 
ommuni
ation 
osts 
an therefore be spe
i�ed as a 
onstant

and moved to the right hand side of the linear 
onstraint spe
i�
ation. Sin
e absolute values 
an not

be spe
i�ed in a linear formulation, we use two inequalities. The formal 
onstraint spe
i�
ation is:

8i 2 f1 : p� 1g; � (1 +R) � 
ompT ime

0

+ 
ompT ime

i

� (1 +R) � 
ommTime

0

� 
ommTime

i

(IV.15)

8i 2 f1 : p� 1g;(1�R) � 
ompT ime

0

� 
ompT ime

i

� (�1 +R) � 
ommTime

0

+ 
ommTime

i

(IV.16)

Sin
e the optimal mapping solution is found for an R fa
tor of zero, we �rst formulate the problem

with R = 0 and use lp solve to try to �nd a solution. If a solution is found, the mapping is returned.

When a perfe
tly balan
ed solution is not found, we want to �nd the mapping that satis�es lo
al

memory requirements while providing the best possible load-balan
e. To �nd this mapping we have to

�nd the minimum R fa
tor for whi
h a solution is possible. We utilize a binary sear
h method that

begins with a minimum value of R = 0 and a 
on�gurable maximum value (for this thesis we use a

maximum of 10). If a solution is impossible for the maximum R value, the mapper returns with failure

to �nd a map. If a solution is found, a binary sear
h is used to sear
h for a R value that is 
lose to

optimal. The sear
h ends when the di�eren
e between two su

essive R fa
tors in the sear
h is smaller

than some toleran
e (for this thesis we use a toleran
e of 0.01).
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IV.D Chapter summary

This 
hapter has fo
used on the general 
hara
teristi
s of iterative, mesh-based appli
ations and

on the spe
i�
s of two appli
ations from this 
lass, the Ja
obi method and the Game of Life. We

des
ribed in detail our implementation of ea
h of these appli
ations, and dis
ussed the performan
e

impa
ts of our implementation 
hoi
es. We also presented an appli
ation-spe
i�
 performan
e model

design for memory usage predi
tion and exe
ution time predi
tion. Finally, we des
ribed the fun
tion

of the mapper and presented our implementation of an equal allo
ation mapper and a time balan
e

mapper.

In the next 
hapter we present experimental results demonstrating the eÆ
a
y of our performan
e

model and mapper designs as well as the s
heduling methodology itself.



Chapter V

Experiments

In this 
hapter, we des
ribe experimental results we obtained when applying our methodology

in realisti
 s
heduling runs of Ja
obi and the Game of Life. Our validation approa
h is two-fold.

First, we present a suite of experiments that test the appli
ation-spe
i�
 exe
ution time model and

mapping strategies we developed in Chapter IV. Se
ond, we present a suite of experiments designed to

dire
tly test our s
heduling methodology itself. This two-phase approa
h is useful be
ause we expe
t

the performan
e of the s
heduling methodology to be highly dependent on the type of appli
ation

performan
e model and mapping strategy provided to it. It is therefore useful to understand the

performan
e impa
t of ea
h appli
ation-spe
i�
 
omponent before examining s
heduler performan
e

results.

This 
hapter is organized as follows. In Se
tion V.A we des
ribe the ar
hite
ture and software


on�gurations of the resour
es used in our validation experiments. We also des
ribe the 
on�guration

of the Grid information servi
es used to obtain information about these resour
es. In Se
tion V.B, we

present validation results for the appli
ation-spe
i�
 performan
e models developed in Se
tion IV.B.

Likewise, in Se
tion V.C, we present validation results for the mapping strategies developed in Se
-

tion IV.C. Se
tion V.D des
ribes experimental results we obtained when applying our methodology in

realisti
 s
heduling runs of our two test appli
ations. Se
tion V.E explores the 
osts in
urred in the

pro
ess of s
heduling. Finally, in Se
tion V.F we summarize our �ndings.

50
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Cir
us Tor
 Opus Major


luster 
luster 
luster 
luster

(UCSD) (UTK) (UIUC) (UIUC)

Size 6 8 4 6

Domain u
sd.edu 
s.utk.edu 
s.uiu
.edu 
s.uiu
.edu

Names dralion tor
1, tor
2 opus13-m amajor

mystere tor
3, tor
4 opus14-m bmajor

soleil tor
5, tor
6 opus15-m 
major

quidam tor
7, tor
8 opus16-m fmajor

saltimban
o gmajor

nouba hmajor

CPU 450 MHz PIII 550 MHz PIII 450 MHz PII 266 PII

dralion

nouba

400 MHz PII

others

CPU Count 1 2 1 1

Memory 256 MB 512 MB 256 MB 128 MB

OS Debian Red Hat Red Hat Red Hat

Linux Linux Linux Linux

Kernel 2.2.19 2.2.15 SMP 2.2.16 2.2.19

Network 100 Mbps 100 Mbps 100 Mbps 100 Mbps

shared swit
hed swit
hed shared

ethernet ethernet ethernet ethernet

Table V.1: Summary of testbed resour
e 
hara
teristi
s.

V.A Experimental methodology

V.A.1 Testbeds

At the date of this writing, there are approximately 40 ma
hines in the GrADS testbed; resour
es

in
lude ma
hines lo
ated at Indiana University (IU), University of California at Santa Barbara (UCSB),

University of Tennessee at Knoxville (UTK), Ri
e University (Ri
e), University of Illinois at Urbana-

Champaign (UIUC), and University of California at San Diego (UCSD). For the thesis, we fo
us on a

subset of the GrADS testbed in
luding resour
es at UTK, UIUC, and UCSD. At UIUC the resour
es

that we target are in two distin
t 
lusters; we target a single 
luster at ea
h of the other sites. A snapshot

of the network bandwidth within and between these sites is shown in Figure III.1. Chara
teristi
s of

the targeted testbed resour
es are summarized in Table V.1.

We have sele
ted two target resour
e groups, or testbeds, from this group of ma
hines: a one-

site testbed 
onsisting of the UCSD subset of the target resour
e group and a three-site testbed
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onsisting of all target resour
es. The one-site testbed serves as an example of a small testbed with

relatively homogeneous workstations and a low-delay network. The three-site testbed serves as an

example of a larger testbed with greater resour
e heterogeneity and larger network delays.

V.A.2 Software requirements

Our experimental methodology uses a variety of software pa
kages; we dis
uss in turn those needed

to laun
h and run the appli
ation itself, those needed only by the resour
e on whi
h the s
heduler will

run, and those needed to support Grid information 
olle
tion and dissemination.

In order to laun
h and run the appli
ation, every 
ompute resour
e must be running Globus [22℄

and MPICH-G [39℄ and all of the required sub-pa
kages. All of the resour
es targeted in this thesis are


urrently running Globus V1.1.3 (with threads enabled) and MPICH-G V1.1.2.

The s
heduler itself requires a larger number of pa
kages. The s
heduler is implemented in C++;

we used GNU auto
onf and GNU make to 
on�gure and build the s
heduler. To support the require-

ments of the time balan
e mapper, the lp solve pa
kage [35℄ must be installed; we used version 3.2.

The s
heduler 
ode also uses many building blo
ks from the AppleSeeds library [4℄ and the GrADSoft

prototype [24℄. NWS V2.0 [40℄ is used to query an on-line NWS nameserver for Grid information (we

dis
uss the NWS 
on�guration in the next se
tion). LDAP is used by the s
heduler to query an on-line

MDS server for Grid information.

V.A.3 Grid information servi
es

The NWS resour
e measurement infrastru
ture [40℄ in
ludes measurement sensors on every resour
e

of interest and a 
entralized nameserver that provides a single point of 
onta
t for 
onsumers of NWS

information. Measured resour
e attributes 
an be retrieved dire
tly, or a next step predi
tion 
an

be generated from measurement series [58℄; in all experiments presented in this 
hapter NWS values

are based on a next step predi
tion. The GrADS NWS nameserver is 
urrently running on host

fender.
s.utk.edu. For most testbed ma
hines, measurements of lo
al resour
e 
hara
teristi
s su
h

as available CPU and free memory are 
olle
ted every 10 se
onds. The GrADS NWS infrastru
ture

is also 
on�gured to 
olle
t network performan
e information (e.g. bandwidth and laten
y) between

hosts. To avoid the large number of network measurements required for 
olle
tion of all-to-all values,

network measurements are gathered in a hierar
hi
al fashion. Within ea
h site (e.g. the UCSD Cir
us

ma
hines), measurements are 
olle
ted in an all-to-all manner between all hosts. For wide-area network
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information, a parti
ular workstation is sele
ted at ea
h site to a
t as a site representative; measure-

ments are then 
olle
ted in an all-to-all manner between site representatives. On the GrADS testbed,

network performan
e measurements are based on the transfer of a TCP message of 1 MB in size, and

measurements are repeated every 5 minutes. This measurement frequen
y is relatively low; use of a low

measurement frequen
y is one way to mitigate the intrusiveness of the network measurement te
hnique

and to redu
e interferen
e between network measurements.

For the purposes of this thesis, we also maintained a lo
ally-
ontrolled NWS nameserver and

measurement infrastru
ture. The lo
al NWS nameserver is running on host dralion.u
sd.edu

and is used only for NWS series needed for this thesis. We de
ided to use a lo
ally-
ontrolled NWS

infrastru
ture be
ause we found that we were able to maintain a more 
onsistent level of information

availability. To ensure that our results dire
tly map to the general testbed infrastru
ture, wherever

possible we have 
on�gured the measurement methodology in a similar way to the GrADS infrastru
ture.

In Se
tion V.E we dis
uss the overhead asso
iated with retrieval of information from both the GrADS

NWS nameserver and the lo
ally-
ontrolled nameserver.

To support retrieval of information from the MDS, there are dupli
ate GrADS MDS servers

running at grads.isi.edu, port 3890 and 
astanet.
s.uiu
.edu, port 4444. As we dis
uss later in

this 
hapter (Se
tion V.E), the time required to retrieve information from either of these MDS servers


an be high; additionally, the servers 
an be quite unstable. An up
oming release of the MDS will

likely solve many of these problems. As a short-term workaround, we have implemented a lo
al 
a
hing

me
hanism for MDS data; if MDS 
a
hing is enabled in the s
heduler (this is a 
on�gurable option), then

newly retrieved data values are stored in the lo
al 
a
he �le. With 
a
hing enabled, later information

requests will 
he
k the 
a
he before a

essing the MDS server. Lo
al 
a
hing would be una

eptable

if the information we retrieve were 
hanging frequently; fortunately, the resour
e attributes we retrieve

from the MDS, su
h as pro
essor speed and physi
al memory, 
hange very slowly.

V.A.4 Timing methodology

In the rest of this 
hapter, we present a variety of experimental results, most of whi
h involve

appli
ation performan
e results. For all su
h appli
ation performan
e results, we use a 
onsistent timing

methodology. The MPI fun
tion MPI Wtime is used to re
ord 
urrent time at various 
ode lo
ations.

The resolution of this timing fun
tion (as reported by the MPI fun
tion MPI Wti
k) on the systems we

targeted was 1 �se
. We use MPI Wtime 
alls at the beginning and ending of ea
h iteration to measure
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the time of ea
h iteration. We re
ord the 
omputation and 
ommuni
ation time per iteration in the

same way. In order to ex
lude initial syn
hronization 
osts from average iteration times, the appli
ation

is 
on�gured to run for four iterations before 
olle
ted timings are in
orporated into the average; after

these warmup iterations, the appli
ation exe
utes 100 iterations. At the end of this iterative phase,

ea
h pro
essor 
al
ulates an average iteration time, an average 
omputation time per iteration, and an

average 
ommuni
ation time per iteration. The overall average appli
ation iteration time is given by the

maximum average iteration time reported by any pro
essor. The pro
edure is the same for determining

average appli
ation 
omputation and 
ommuni
ation times. Sin
e pro
essors are syn
hronized at ea
h

iteration, re
orded iteration times are typi
ally very similar. However, 
omputation and 
ommuni
ation

times re
orded on ea
h pro
essor 
an vary widely. The measurement of 
ommuni
ation time is diÆ
ult

be
ause there is no simple way to di�erentiate between time a
tually spent 
ommuni
ating and time

spent waiting for a 
ommuni
ation peer to rea
h the 
ommuni
ation phase. For this reason, we report

timings only for the iteration time and the 
omputation time. The di�eren
e between the iteration time

and 
omputation time 
an be interpreted as the 
ommuni
ation time plus time for overheads su
h as

waiting for 
ommuni
ation peers. Iteration time results do not in
lude the 
osts of s
heduling. Instead,

we address s
heduling laten
y in Se
tion V.E. With the ex
eption of Se
tion V.E, all timings reported

in this 
hapter are in se
onds per iteration.

V.B Performan
e model validation

Our s
heduling methodology depends on a performan
e model to 
ompare 
andidate s
hedules; the

su

ess of the s
heduler in sele
ting performan
e-eÆ
ient s
hedules is therefore dependent on the ability

of the performan
e model to 
orre
tly predi
t appli
ation resour
e usage. Re
all that the s
heduler

design supports two levels of performan
e model: a memory usage model and an exe
ution-time +

memory usage model. The goal of this se
tion is to evaluate the predi
tion 
apability of the appli
ation-

spe
i�
 exe
ution time model that we presented in Se
tion IV.B. While the predi
tion 
apability of the

memory usage model is also important for s
heduler performan
e, we feel that the appli
ation-spe
i�


memory usage model des
ribed in Se
tion IV.B is straightforward. We have performed simple sanity


he
ks on the validity of this model and are 
on�dent that it predi
ts the memory usage of our test

appli
ations well.

1

1

Spe
i�
ally, we 
ompared predi
ted appli
ation memory requirements with a
tual memory usage as reported

by the UNIX 
ommand ps.
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V.B.1 Experimental design

Approa
h

To evaluate the predi
tive 
apability of our exe
ution time model we 
ompare predi
ted performan
e

to a
tual performan
e for a variety of 
onditions. For ea
h su
h 
omparison we (1) sele
t an appli
ation,

testbed, problem size, an exa
t target resour
e set (a ma
hine list), and a data mapping onto the

sele
ted resour
es; (2) use the exe
ution time model to predi
t appli
ation performan
e; and (3) run

the appli
ation and measure a
tual performan
e.

The exe
ution time model supports a variety of 
on�gurations (see Se
tion III.C.2 for details).

For testing purposes we have sele
ted a single model 
on�guration. The sele
ted 
on�guration uses

available pro
essor speed (
ompType = AVAIL MHZ) for the 
omputational 
apa
ity of ea
h ma
hine

and predi
ted values for all NWS information inputs (nwsType = PRED).

Testbeds

We in
lude experiments performed on the one-site and three-site testbeds des
ribed in Se
tion V.A,

with one modi�
ation. For this set of experiments we wanted roughly equal numbers of resour
es from

ea
h site so we did not in
lude the Opus 
luster at UIUC in the three-site testbed.

Experimental pro
edure

For ea
h testbed, we de�ne an experiment series 
onsisting of a reasonable sele
tion of problem

sizes and resour
e set sizes for that testbed. For the one-site testbed, an experiment series 
onsists of

problem sizes of N = f600, 1200, 2400, 4800, 7200, 9600g and resour
e set sizes of p = f1, 2, 3, 4, 5, 6g.

For the three-site testbed, an experiment series 
onsists of problem sizes of N = f630, 1260, 2448, 4500,

7200, 9000g and resour
e set sizes of p = f3, 6, 9, 12, 15, 18g. We sele
ted a di�erent set of problem

sizes for ea
h testbed to in
rease the frequen
y with whi
h the problem size 
ould be de
omposed into

identi
ally sized partitions on the target resour
e set sizes.

To begin ea
h experiment series, we ran the predi
tor and appli
ation for the smallest problem size

on the smallest resour
e set size. We then ran in
reasingly larger resour
e set sizes for that problem size,

and eventually 
ontinued on to the next larger problem size. For ea
h appli
ation-testbed 
ombination

we 
ompleted three repetitions of the experiment series.

Runs of the appli
ation in an experiment series were performed within roughly the same period of

time (e.g. within 4-12 hours) while repetitions of the experiment series were sometimes separated by a

relatively long interval (e.g. 2 weeks). We therefore expe
t the Grid environment to be more similar

within an experiment series than between experiment series. Note that if we exe
uted appli
ation runs
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in an immediately ba
k-to-ba
k fashion, NWS resour
e availability predi
tions would be biased by the

resour
e utilization of the previous run; this bias is due to the fa
t that, as with all measurement

systems, there is a slight delay between 
hanges in a
tual behavior and the re
ording of those 
hanges.

To avoid this undesirable intera
tion we in
luded a three minute sleep phase between appli
ation runs;

we sele
ted three minutes be
ause in pra
ti
e it typi
ally proved suÆ
ient.

The 
on�guration of an appli
ation run requires more than sele
tion of a testbed, appli
ation, prob-

lem size, and resour
e set size; we also needed to sele
t a spe
i�
 resour
e set (a ma
hine list) and a

mapping of work onto those resour
es. Sin
e the goal of these experiments was to evaluate only the

exe
ution time model, we favored a straightforward evaluation environment; we therefore prede�ned the

target resour
e sets and data mappings for ea
h 
on�guration. In Se
tion V.D we des
ribe s
heduling

experiments in whi
h the resour
e set and mapping were determined at run-time. For the one-site

testbed, the 
ompute and network resour
es were fairly homogeneous; we therefore simply sele
ted a

random resour
e ordering and used it for all runs. For the three-site testbed, the resour
es and networks

were more heterogeneous; in this 
ase, for ea
h target resour
e set size we randomly sele
ted an equal

number of resour
es from ea
h site and arranged them by site in the 
ommuni
ation topology. For ex-

ample, for the six-pro
essor, three-site 
ase, the pro
essor arrangement we used was ftor
3.
s.utk.edu,

tor
7.
s.utk.edu, fmajor.
s.uiu
.edu, hmajor.
s.uiu
.edu, dralion.u
sd.edu, soleil.u
sd.edug. For the se-

le
tion of a mapping of work onto the sele
ted resour
es, we again favored a straightforward validation

environment by using the equal allo
ation mapping strategy des
ribed in the previous 
hapter (Se
-

tion IV.C). In Se
tion V.C we des
ribe experiments that 
ompare the performan
e a
hieved with the

equal allo
ation mapper and the time balan
e mapper.

V.B.2 Results

Sin
e the exe
ution time model is di�erent for both appli
ations, we present results for the Game

of Life and Ja
obi separately. Additionally, sin
e the resour
e 
hara
teristi
s of the two target testbeds

are quite di�erent we also present results for ea
h testbed separately. In the following se
tions we

present results for ea
h of the four resulting appli
ation-testbed 
ombinations. Refer to Se
tion V.A.4

for details on the timing methodology used for these experiments.

Game of Life, one-site testbed

Re
all that for the one-site testbed, an experiment series 
onsists of problem sizes of N = f600,

1200, 2400, 4800, 7200, 9600g and resour
e set sizes of p = f1, 2, 3, 4, 5, 6g. Figure V.1 presents
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Figure V.1: Results of exe
ution time model validation experiments for the Game of Life appli
ation

on the one-site testbed, problem sizes of 600, 2400, and 7200.
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results for three of the six problem sizes for the Game of Life experiment series on the one-site testbed;

for the three sizes shown, N = f600,2400,7200g, all repetitions are shown for all target resour
e set

sizes. For ea
h resour
e set size, the three independent repetition results are presented as three pairs of

verti
al bars; ea
h pair of bars represents one exe
ution time predi
tion and appli
ation run pair. The

full left-hand bar represents measured appli
ation iteration time; the darker, lower portion of the bar

(MeasComp) is the measured 
omputation time per iteration; and the lighter, upper portion of the bar

(MeasOther) is the di�eren
e between the average iteration time and the average 
omputation time.

In this set of runs, iteration time is 
learly dominated by 
omputation time; 
omputation is dominant

here be
ause the Game of Life does not involve very 
ostly 
ommuni
ations, and the one-site testbed

provides relatively low-
ost 
ommuni
ation sin
e all messages are transferred a
ross the lo
al area 100

Mbps Ethernet.

The right-hand bar of ea
h bar pair represents predi
ted appli
ation iteration time; the darker, lower

portion of the bar represents the predi
ted 
omputation time and the lighter, upper portion of the bar is

the di�eren
e between the predi
ted iteration time and the predi
ted 
omputation time. A 
omparison

of the overall bar heights for ea
h bar pair indi
ates the predi
tion a

ura
y of the exe
ution time

model. Similarly, a 
omparison of the appli
ation 
omputation time with the predi
ted 
omputation

time indi
ates the predi
tion a

ura
y of our 
omputation time model. Finally, a 
omparison of the

MeasOther time with the PredComm time indi
ates how well the 
ommuni
ation time model (whi
h only

predi
ts the 
ost of message transfer) 
ompares with the appli
ation time spent for message transfers,

syn
hronization, and other overheads.

Noti
e that in Figure V.1 there are no results for a problem size of 7200 and resour
e set sizes

of 1, 2, and 3. We ex
luded appli
ation runs from a series if the physi
al memory availability of the

targeted pro
essors is not large enough to support appli
ation needs; for this testbed, a problem size

of 7200 requires at minimum four pro
essors. One result is striking in this set: the predi
ted iteration

time for N = 7200, p = 4, rep = 1 is more than twi
e as large as the measured iteration time. For

this run, the predi
ted CPU availability retrieved from the NWS was less than 47% for one of the

targeted pro
essors; our methodology therefore predi
ted that the 
omputation time on this pro
essor

would be more than twi
e as long as if the pro
essor were unloaded. The a
tual results indi
ate that

our appli
ation re
eived nearly 100% of the CPU during exe
ution; we hypothesize that either the load


onditions 
hanged during the short time from predi
tion to a
tual run, or the original CPU availability

measurements were ina

urate.

Overall, the results shown in Figure V.1 indi
ate that the predi
tion a

ura
y of our exe
ution time
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600 1200 2400 4800 7200 9000

Attempted Runs 18 18 18 18 18 18

Completed Runs 18 18 18 15 9 3

Median % Error 4.4 4.6 1.5 10.9 13.4 25.1

Mean % Error 6.7 6.7 5.8 15.4 25.2 25.0

StdDev % Error 8.7 5.9 7.1 19.3 35.6 6.1

Table V.2: Summary of exe
ution time model predi
tion errors for the Game of Life on the one-site

testbed.

model is fairly high for this appli
ation-testbed 
ombination. This is not surprising sin
e (1) the target

resour
e set is relatively homogeneous, and (2) the appli
ation is dominated by 
omputation time whi
h

is traditionally easier to model than 
ommuni
ation time. To obtain a more quantitative analysis, we

use the following method to 
al
ulate the relative per
ent predi
tion error for ea
h run:

predError = 100 �

�

�

�

�

predT ime� a
tualT ime

a
tualT ime

�

�

�

�

: (V.1)

In Table V.2, summary results are provided for all six of the tested problem sizes. For ea
h

problem size, the experiment series in
luded six resour
e set sizes and three repetitions; a

ordingly,

the attempted row shows that 18 runs were attempted for ea
h problem size. The 
ompleted row

indi
ates how many of these runs were a
tually 
ompleted. The most 
ommon reason for an in
omplete

run is that the run was simply skipped due to limited memory availability during the experimental

period; for this set of results, all of the in
omplete runs 
an be attributed to this 
ause. More typi
ally,

some number of runs will fail due to other 
auses as well; in
omplete runs 
an usually be attributed to

an o�-line target ma
hine, a 
ommuni
ation time-out in Globus, or insuÆ
ient memory availability on

one or more of the target resour
es. Table V.2 also gives the median, mean, and standard deviation of

all predi
tion error results for ea
h problem size.

In summary, the mean predi
tion error of our exe
ution time model is low for the three smaller

problem sizes (error < 7%) and moderate for the larger problem sizes (error values were between 15%

and 25%).

Game of Life, three-site testbed

For the three-site testbed, ea
h experiment series 
onsists of problem sizes of N = f630, 1260, 2448,

4500, 7200, 9000g and target resour
e set sizes of p = f3, 6, 9, 12, 15, 18g. In Figure V.2 we show

results for problem sizes of N = f630, 4500, 9000g.
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Figure V.2: Results of exe
ution time model validation experiments for the Game of Life appli
ation

on the three-site testbed, problem sizes of 630, 4500, and 9000.
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630 1260 2448 4500 7200 9000

Attempted Runs 18 18 18 18 18 18

Completed Runs 17 17 17 17 15 12

Median % Error 65.0 36.8 15.9 11.3 4.8 7.9

Mean % Error 60.9 34.6 24.3 15.1 7.6 9.0

StdDev % Error 17.8 19.9 32.1 13.5 8.5 8.1

Table V.3: Summary of exe
ution time model predi
tion errors for the Game of Life on the three-site

testbed.

Upon 
omparison of these results with those from the one-site testbed (Figure V.1), two di�eren
es

are immediately obvious: 
ommuni
ation 
osts are higher for the three-site testbed, and the model

predi
tion a

ura
y is lower. The 
omputation time predi
tions are generally fairly a

urate for both sets

of runs; the in
reased predi
tion errors are primarily attributable to 
ommuni
ation time mispredi
tion.

Re
all that the 
ommuni
ation model we use is a bandwidth-only model and noti
e that 
om-

muni
ation time mispredi
tion is most severe for the smallest problem sizes (Figure V.1). For the

transfer of smaller message sizes in the wide-area, 
ommuni
ation 
ost is often dominated by message

laten
y; it is therefore likely that mispredi
tion for smaller problem sizes is attributable to our usage of

a bandwidth-only model. However, in initial tests we found that the bandwidth-only model performed

better in general than a model in
luding both laten
y and bandwidth (see Se
tion IV.B). Regardless,

for the purposes of 
omparing 
andidate s
hedules, the most important 
hara
teristi
 of a model is

that it 
orre
tly tra
k trends in appli
ation performan
e. While the 
ommuni
ation model is not par-

ti
ularly a

urate, it does su

essfully tra
k 
hanging network performan
e; for example, for all target

resour
e set sizes run for a problem size of N = 4500 the network bandwidth during repetition one was

signi�
antly higher than the bandwidth during repetition two. The 
ommuni
ation model 
orre
tly

predi
ts in
reased 
ommuni
ation 
osts for repetition two.

Table V.3 summarizes predi
tion error statisti
s for all problem sizes. On average, the mean model

predi
tion error is mu
h higher for the smaller sizes than for the larger sizes (e.g. 60% for N = 630

versus 9% for N = 9000, respe
tively). Overall, average predi
tion errors are moderate for the Game

of Life on the three-site testbed.

Ja
obi, one-site testbed

Figure V.3 shows the results of the Ja
obi experiment series for problem sizes of N = f600, 2400,

7200g using the one-site testbed. Comparison of Figure V.3 with Figure V.1 reveals that even in the

more tightly-
oupled one-site testbed, 
ommuni
ation 
osts are signi�
ant for the Ja
obi appli
ation,
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Figure V.3: Results of exe
ution time model validation experiments for the Ja
obi appli
ation on the

one-site testbed, problem sizes of 600, 2400, and 7200.
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600 1200 2400 4800 7200 9000

Attempted Runs 18 18 18 18 18 18

Completed Runs 18 18 18 15 9 3

Median % Error 11.5 6.5 9.1 2.7 16.6 14.4

Mean % Error 17.0 12.5 11.1 9.4 15.3 16.3

StdDev % Error 14.6 20.2 9.7 12.1 11.0 13.1

Table V.4: Summary of exe
ution time model predi
tion errors for Ja
obi on the one-site testbed.

630 1260 2448 4500 7200 9000

Attempted Runs 18 18 18 18 18 18

Completed Runs 17 13 18 16 13 10

Median % Error 74.9 52.8 36.5 31.7 18.0 16.5

Mean % Error 72.2 52.2 44.6 33.4 25.6 25.8

StdDev % Error 11.5 7.8 37.6 17.4 18.7 19.8

Table V.5: Summary of exe
ution time model predi
tion errors for Ja
obi on the three-site testbed.

whi
h was not the 
ase for the Game of Life. Re
all that in our exe
ution time model development

(Se
tion IV.B) we predi
ted that Ja
obi would involve about half as mu
h 
omputation per iteration

as the Game of Life, but that Ja
obi's 
ommuni
ation requirements would be mu
h higher. Another

noti
eable di�eren
e between Figure V.3 and Figure V.1 is that the 
omputation time predi
tion error

seems to be higher for this data series. This degradation in predi
tion a

ura
y 
ould be 
aused by a

number of fa
tors. The two most plausible are as follows.

1. We have in
luded the purely 
omputational termination dete
tion phase in 
omputation time

measurements and predi
tions. However, for Ja
obi the 
omputational 
ost of termination de-

te
tion grows as the size of N while our 
omputation model assumes that all 
omputation time

grows as the size of N

2

.

2. The in
reased 
ommuni
ation a
tivity in Ja
obi might have a�e
ted 
omputation times.

Table V.4 gives summary predi
tion error statisti
s for all problem sizes for Ja
obi on the one-site

testbed. The mean model predi
tion error is generally low for this testbed-appli
ation 
ombination

with values ranging from 9% to 17%.

Ja
obi, three-site testbed

The �nal appli
ation-testbed 
ombination is the Ja
obi appli
ation on the three-site testbed. Ex-

perimental results for problem sizes of N = f630, 4500, 9000g are shown in Figure V.4, and summary

predi
tion error statisti
s are shown in Table V.5. Communi
ation time is 
learly a larger fra
tion
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Figure V.4: Results of exe
ution time model validation experiments for the Ja
obi appli
ation on the

three-site testbed, problem sizes of 630, 4500, and 9000.
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of iteration time for this testbed-appli
ation 
ombination than for the other three. This is to be ex-

pe
ted for two reasons: (1) ea
h Ja
obi iteration in
ludes a 
ommuni
ation-intensive broad
ast phase,

and (2) for this testbed, ea
h of those broad
asts in
ludes a number of high-delay wide-area message

transfers. As was the 
ase for the Game of Life, the 
ommuni
ation model typi
ally under-predi
ts


ommuni
ation time and is espe
ially ina

urate for smaller problem sizes. As dis
ussed for the Game

of Life, this under-predi
tion is likely attributable to our usage of a bandwidth-only model. Noti
e

that the 
ommuni
ation model does 
orre
tly tra
k the in
rease in 
ommuni
ation 
ost with in
reasing

numbers of pro
essors; this trend is espe
ially apparent for repetition 1, problem sizes of 4500 and 9000.

Measured iteration times indi
ate that network performan
e was degraded in repetition 1 as 
ompared

to the other 2 repetitions; the exe
ution time model 
learly distinguishes between these 
onditions and


orre
tly tra
ks the improvement in network performan
e.

V.B.3 Summary

The experiments presented in this se
tion were designed to evaluate the predi
tion a

ura
y of

our exe
ution time model in a wide variety of realisti
 Grid 
onditions and for an array of reasonable

appli
ation 
on�gurations. For the one-site testbed, average performan
e predi
tion errors were less

than 26% for both appli
ations; average predi
tion errors were more typi
ally 5% to 15%. For the

three-site testbed, average performan
e predi
tion errors were less than 75% for both appli
ations; more

typi
ally, average predi
tion errors were 10% to 50%. Given the highly dynami
 nature of realisti
 Grid

environments and the simpli
ity of our exe
ution time model, predi
tion errors in these ranges are not

unreasonable, nor are they unexpe
ted.

V.C Mapper validation

Our 
ore s
hedule sear
h pro
edure, presented in Se
tion III.B.1, is dependent on the availability

of a reasonable mapping strategy for the development of feasible 
andidate s
hedules. The quality of

generated s
hedules, as measured by the resulting appli
ation iteration time, 
an therefore be expe
ted

to be related to the exe
ution time impa
t of the 
hosen mapping strategy.

In Se
tion IV.C we presented two appli
ation-spe
i�
 mapper designs, the equal allo
ation mapper

and the time balan
e mapper. In Se
tion V.B we utilized the equal allo
ation mapper in exe
ution time

model validation experiments. In this se
tion we present experiments that investigate the performan
e


hara
teristi
s of both the equal allo
ation mapper and the time balan
e mapper. We also examine the
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impa
t of mapper 
hoi
e on appli
ation iteration times.

V.C.1 Experimental design

Approa
h

To evaluate the two mapping strategies we 
ompared appli
ation iteration times a
hieved with

ea
h mapper under a variety of realisti
 Grid 
onditions. For ea
h su
h 
omparison we (1) sele
ted an

appli
ation, testbed, problem size, and exa
t target resour
e set (a ma
hine list); (2) used the equal

allo
ation mapping strategy to �nd an equal allo
ation data map; (3) ran the appli
ation with the equal

allo
ation data map on the resour
e set de�ned in step 1; (4) used the time balan
e mapper to �nd a

time balan
e data map; and (5) ran the appli
ation with the load-balan
ed data map on the resour
e

set de�ned in step 1.

Re
all that the mappers support a variety of information inputs (see Se
tion III.D). For testing

purposes, we sele
ted a single set of information inputs. Both mappers require lo
al memory 
apa
ity

information for all targeted resour
es; in these experiments the mappers utilized free memory values

(memType = FREE). The time balan
e mapper also requires lo
al 
omputational 
apa
ity information;

for these tests we sele
ted available pro
essor speed (AVAIL MHZ). Finally, all NWS information inputs

were next step predi
tions (nwsType = PRED).

Testbeds

For these experiments, we targeted the same real testbeds used for the performan
e model validation

experiments.

Experimental pro
edure

To in
lude a variety of problem sizes and target resour
e set sizes in our experiments, we used the

same experiment series de�ned for ea
h testbed in Se
tion V.B. For the one-site testbed, we ex
luded

the one-pro
essor test 
ases sin
e both mappers would develop exa
tly the same mapping, pre
luding

interesting 
omparison. Sin
e the goal of these experiments was to investigate the performan
e impa
t

of the mapping strategies, and not to test resour
e sele
tion, we targeted the same prede�ned resour
e

sets as were used in Se
tion V.B. As before, we in
luded a sleep interval of three minutes between ea
h

appli
ation run. We again performed three repetitions of ea
h experiment series for ea
h appli
ation-

testbed 
ombination.
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V.C.2 Results

Rather than present a large number of experimental runs as in Se
tion V.B, we instead present

summary results and des
ribe in greater detail only the most signi�
ant results. In order to examine

the impa
t of mapper 
hoi
e on appli
ation iteration times, we 
onsider the relative per
ent improvement

of the time balan
e mapper over the equal allo
ation mapper:

per
entImp = 100 �

itT ime

equal

� itT ime

balan
ed

itT ime

equal

: (V.2)

When the time balan
e data map generates a shorter iteration time than the equal allo
ation map,

the per
ent improvement metri
 will be positive; similarly, when appli
ation iteration time is shorter

with the equal allo
ation map than with the time balan
e map, the per
ent improvement metri
 will

be negative.
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Figure V.5: Experimental results for the equal allo
ation and time balan
e mappers for the Game of

Life appli
ation on the three-site testbed, problem size 4500.

Game of Life

Figure V.5 presents results for the Game of Life with a problem size of N = 4500 on the three-site

testbed; results are shown for all target resour
e set sizes and for all three repetitions. This set of results

is representative of the results for the other problem sizes tested. For ea
h bar pair in this �gure, the

left-hand bar represents the appli
ation iteration time a
hieved with the equal allo
ation map, and

the right-hand bar represents the appli
ation iteration time a
hieved with the load-balan
ed map. For

the results presented in this �gure, the time balan
e mapper generally results in better (i.e. shorter)

exe
ution times when 
ompared with the equal allo
ation mapper.
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600 1200 2400 4800 7200 9600

Attempted runs 15 15 15 15 15 15

Completed equal allo
. 13 13 12 7 4 1

Completed time balan
e 13 13 13 11 7 3

Comparable runs 13 13 12 7 3 1

Median % improve 3.6 5.4 9.3 14.2 9.7 -19.1

Mean % improve 8.7 18.8 18.0 21.7 13.3 -19.1

StdDev % improve 10.6 21.8 18.8 18.7 67.7 0

Table V.6: Summary of per
ent improvement of the time balan
e mapper as 
ompared to the equal

allo
ation mapper for Game of Life on the one-site testbed.

The triangles in Figure V.5 mark pla
es where there was either a mapper failure (e.g. the mapper

found that lo
al pro
essor memory 
apa
ities were insuÆ
ient or an appli
ation failure (e.g. a Globus


ommuni
ation error 
aused the appli
ation itself to a
tually fail). For this series of runs, the failure


auses were as follows.

� The equal allo
ation mapper failure at p = 12, rep = 3 was 
aused by an appli
ation failure of

unknown origin.

� In the 
ase of the balan
ed failure at p = 18, rep = 1, one of the target ma
hines was so heavily

loaded that NWS predi
ted CPU availability was zero and the load-balan
ed mapper 
ould not

�nd a valid mapping.

� For p = 18, rep = 3 both mappers failed to �nd a map be
ause memory availability information

was unavailable for one of the target ma
hines (most likely the ma
hine was o�-line).

Note that the last two failures o

urred be
ause the list of target resour
e sets is prede�ned for these

experiments. When the s
heduler is allowed to sele
t target resour
e sets, su
h resour
es are simply

avoided and the mappers will not exhibit this type of failure.

Table V.6 and Table V.7 present summary information for all Game of Life mapper 
omparison

runs on the one-site and three-site testbeds, respe
tively. The �rst row, Attempted runs, indi
ates the

number of attempted appli
ation runs; the Completed equal allo
. and Completed time balan
e rows

indi
ate how many of those runs were su

essfully 
ompleted for ea
h mapper. Re
all that failures


an be related to either a mapper failure or an appli
ation failure. Row Comparable runs re
ords how

many of the attempted runs in
luded a su

essful equal allo
ation mapper run and a su

essful time

balan
e mapper run. We 
an only determine a per
ent improvement metri
 for those runs in whi
h
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630 1260 2448 4500 7200 9000

Attempted runs 18 18 18 18 18 18

Completed equal allo
. 15 17 17 16 12 9

Completed time balan
e 16 16 17 16 16 16

Comparable runs 14 16 17 15 11 8

Median % improve 9.2 14.0 22.0 30.1 31.1 35.6

Mean % improve 15.8 13.6 24.8 26.3 29.1 30.6

StdDev % improve 26.8 13.5 14.6 13.4 18.5 22.3

Table V.7: Summary of per
ent improvement of the time balan
e mapper as 
ompared to the equal

allo
ation mapper for Game of Life on the three-site testbed.

both mappers ran su

essfully; for this reason the statisti
s in the rest of the table are based only on

the number of runs listed in the 
omparable runs row. The last rows of the tables, Median % improve,

Mean % improve, and StdDev % improve, present the median, mean, and standard deviation of the

per
ent improvement of the time balan
e mapper as 
ompared to the equal allo
ation mapper. For the

majority of problem sizes on ea
h testbed, the time balan
e mapper provides a substantial improvement

over the equal allo
ation mapper; the one ex
eption, N = 9600 on the one-site testbed, is based on only

one 
omparable set of mapper runs and the appli
ation happened to perform very badly with the time

balan
e map in this run. Noti
e that the performan
e advantage provided by the time balan
e mapper

is more signi�
ant for the three-site testbed.

For the Game of Life appli
ation there are two primary fa
tors that 
ontribute to the su

ess of the

time balan
e mapper in improving appli
ation exe
ution time: (1) the mapper balan
es 
omputational

load based on the 
omputational 
apa
ities of the targeted resour
es and (2) the mapper overlaps


ommuni
ation on some pro
essors with 
omputation on others. In the following paragraphs we des
ribe

in greater detail how ea
h fa
tor improves appli
ation exe
ution time.

Computational load-balan
ing. The 
omputational speed of the resour
es in ea
h testbed are

heterogeneous and sin
e the resour
es are shared, the load on targeted CPUs 
an be quite di�erent.

When the equal allo
ation mapper is used, the slower or more highly-loaded ma
hines slow the entire


omputation down. When the time balan
e mapper is used, the load is redu
ed on the slower and/or

heavily-loaded ma
hines and in
reased on the faster and/or more lightly-loaded ma
hines. Assuming

that NWS CPU availability predi
tions are a

urate, this load adjustment tends to minimize over-

all appli
ation exe
ution time by assigning appropriate workloads to ea
h pro
essor. Previous work

in appli
ation-spe
i�
 s
hedulers [9, 12℄ has demonstrated similar su

ess with 
omputational load-

balan
ing for iterative, mesh-based appli
ations.
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Overlapping 
ommuni
ation and 
omputation. For the Game of Life, the 
ommuni
ation

phase for ea
h pro
essor involves only 
ommuni
ation with neighboring pro
essors. Re
all that during

the mapping pro
ess we arrange the pro
essor topology to minimize the amount of data sent over

slow, wide-area links; we do this by pla
ing resour
es from the same site adja
ent to ea
h other in

the topology. When a work allo
ation is found for this pro
essor topology, pro
essors in the same

site re
eive 
ontiguous strips of data. Only pro
essors that share a strip edge with a pro
essor from a

remote site must parti
ipate in time-
onsuming wide-area message transfers; we 
all these pro
essors

site edges in the pro
essor topology. Sin
e we use a strip de
omposition, at most two pro
essors

from ea
h site 
an be site edges. Our implementation of the Game of Life 
ommuni
ation phase uses

non-blo
king 
alls; pro
essors that are not side edges 
an therefore 
ontinue 
omputation while site

edge pro
essors are involved in wide-area transfers. The time balan
e mapper 
orre
tly handles this


ommuni
ation heterogeneity by allo
ating less work to site edge pro
essors. For example, the time

balan
e mapper a
hieved a large performan
e improvement over the equal allo
ation mapper for all

three repetitions of p = 3 in Figure V.5. In this 
ase, there are three resour
es, ftor
3.
s.utk.edu,


major.
s.uiu
.edu, quidam.u
sd.edug, and three sites; every pro
essor must therefore parti
ipate in

wide-area 
ommuni
ations. However, 
major.
s.uiu
.edu will spend more time 
ommuni
ating sin
e it

must 
ommuni
ate with both tor
3.
s.utk.edu and quidam.u
sd.edu. The mapper 
orre
tly allo
ates

less work to this resour
e. Consider repetition three, in whi
h the resour
es were assigned roughly 42%,

22%, and 35% of the total work. The middle pro
essor, 
major.
s.uiu
.edu, was allo
ated the least

work due to higher 
ommuni
ation 
osts and the �rst pro
essor, tor
3.
s.utk.edu, was assigned a larger

portion of the work than the third pro
essor, quidam.u
sd.edu, be
ause of di�eren
es in pro
essor speed

(550 MHz versus 400 MHz).

There is another advantage to the time balan
e mapper that is not immediately obvious in the

summary statisti
s: for larger problem sizes, the time balan
e mapper runs are signi�
antly more likely

to 
omplete than the equal allo
ation mapper runs (
ompare the Completed equal allo
. and Completed

time balan
e rows in Tables V.6 and V.7). As shown in Table V.1, the physi
al memory sizes vary widely

for the three-site testbed. Additionally, sin
e resour
es are shared, the free memory available on targeted

resour
es 
an vary widely for both testbeds. The time balan
e mapper 
an adapt to this heterogeneity

by adjusting the load assigned to ea
h pro
essor, thus ensuring appli
ation memory requirements are

met. By 
omparison, the equal allo
ation mapper will fail when any one of the targeted resour
es does

not have the lo
al memory 
apa
ity to handle an equal share of the appli
ation workload.
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Figure V.6: Experimental results for the equal allo
ation and time balan
e mappers for the Ja
obi

appli
ation on the one-site testbed, problem size 4800.

Figure V.6 presents mapper validation results for Ja
obi with a problem size of N = 4800 on the

one-site testbed; results are shown for all three repetitions on all target resour
e set sizes. The relative

performan
e of the two mappers seen in this set of results is fairly representative of the results for other

problem sizes and for the three-set testbed. For most appli
ation runs shown in this graph, appli
ation

performan
e was 
omparable with the equal allo
ation and time balan
e mappers; for some runs the

performan
e was better with the equal allo
ation mapper, although never dramati
ally. Note that in

this set of runs, the number of failures was mu
h lower for the time balan
e mapper than for the equal

allo
ation mapper.

Table V.8 and Table V.9 present summary information for all Ja
obi mapper 
omparison runs on the

one-site and three-site testbeds, respe
tively. For the one-site testbed, use of the time balan
e mapper

generally resulted in a modest degradation of performan
e as 
ompared to use of the equal allo
ation

mapper, but the time balan
e mapper runs were signi�
antly more likely to 
omplete su

essfully.

Suprisingly, the performan
e and 
ompletion patterns were reversed for the three-site testbed: in these

experiments, the time balan
e mapper resulted in a modest performan
e improvement but was less likely

to 
omplete su

essfully. The higher failure rate for the load balan
e mapper is notable, parti
ularly

sin
e the load balan
e mapper typi
ally su

eeds in �nding a suitable data map when the equal allo
ation

mapper 
annot. During these experiments, one or more resour
es were heavily loaded and the NWS

reported memory availability predi
tions of 0%. The load balan
e mapper was unable to �nd a suitable

mapping in whi
h appli
ation memory requirements were met by the target resour
e group and so failed.

When the s
heduler is allowed to sele
t resour
es, dynami
 NWS memory availability predi
tions allow
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600 1200 2400 4800 7200 9600

Attempted runs 15 15 15 15 15 15

Completed equal allo
. 15 15 15 10 4 2

Completed time balan
e 15 15 15 14 10 5

Comparable runs 15 15 15 10 4 2

Median % improve -1.9 -4.5 -6.4 -3.5 13.1 -5.1

Mean % improve -1.2 -7.3 -14.1 -5.3 12.9 -5.1

StdDev % improve 8.7 11.1 29.9 15.4 12.1 17.1

Table V.8: Summary of per
ent improvement of the time balan
e mapper as 
ompared to the equal

allo
ation mapper for Ja
obi on the one-site testbed.

630 1260 2448 4500 7200 9000

Attempted runs 18 18 18 18 18 18

Completed equal allo
. 18 18 16 15 11 10

Completed time balan
e 16 17 13 12 12 15

Comparable runs 16 17 11 10 7 7

Median % improve -1.6 -2.1 4.3 7.7 13.9 11.5

Mean % improve -0.2 5.3 8.8 -10.5 16.3 7.9

StdDev % improve 11.5 23.5 18.2 57.2 9.2 13.9

Table V.9: Summary of per
ent improvement of the time balan
e mapper as 
ompared to the equal

allo
ation mapper for Ja
obi on the three-site testbed.

the s
heduler to avoid heavily loaded ma
hines altogether.

It is also notable that the time balan
e mapper provided more of a performan
e advantage for the

Game of Life than for Ja
obi. Re
all that the time balan
e mapper improved performan
e for the Game

of Life by overlapping 
ommuni
ation on some pro
essors with 
omputation on others and by balan
ing


omputational load on parti
ipating pro
essors. Sin
e our implementation of the Ja
obi 
ommuni
ation

phase uses a series of broad
asts, all pro
essors must parti
ipate in the entire 
ommuni
ation phase, and

the time spent 
ommuni
ating per pro
essor is essentially independent of the work allo
ation. For these

reasons, the time balan
e mapper 
annot improve performan
e by overlapping 
omputation on some

pro
essors with 
ommuni
ation on others. Nonetheless, the mapper should be able to take advantage of


omputational load balan
ing to improve Ja
obi performan
e. An important limitation of this 
apability

is that the 
omputation phase is sometimes a relatively minor portion of appli
ation iteration time (see

Figure V.4); in these 
ases balan
ing 
omputational load a�e
ts only a small portion of the iteration

time. It is surprising that the time balan
e mapper does not provide a signi�
ant performan
e advantage

for the Ja
obi appli
ation in those 
ases where 
omputation time does 
onstitute a signi�
ant portion
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of appli
ation exe
ution time (see Figure V.3).

V.C.3 Summary

In this se
tion we have demonstrated the utility of both the time balan
e and the equal allo
ation

mappers, thereby en
ouraging us to 
onsider both mappers for s
heduling experiments. Additionally,

for the Game of Life we demonstrated that the time balan
e mapper a
hieved a signi�
ant performan
e

advantage as 
ompared to the equal allo
ation mapper; the performan
e advantage was more moderate

for the Ja
obi appli
ation. The time balan
e mapper requires more sophisti
ated appli
ation informa-

tion than the equal allo
ation mapper; the performan
e advantage shown for the time balan
e mapper

therefore demonstrates that we 
an take advantage of more sophisti
ated appli
ation information to

improve appli
ation performan
e. We also found that, overall, the time balan
e mapper found a suitable

data map more often than the equal allo
ation mapper.

V.D S
heduler validation

The fo
us of this thesis is the development of a 
exible, appli
ation-targetable s
heduling method-

ology for Grid environments. In this se
tion we present experiments that explore the eÆ
a
y of our

methodology. In parti
ular, we investigate the following questions.

i. What is the impa
t of our s
heduling methodology on appli
ation exe
ution times as 
ompared

to 
onventional s
heduling approa
hes? We hope that our methodology redu
es exe
ution times.

ii. What is the impa
t of appli
ation information availability on s
heduler performan
e? Spe
i�
ally,

(a) 
an this methodology develop reasonable s
hedules despite limited appli
ation information

and models, and (b) 
an this methodology take advantage of more sophisti
ated information and

models to promote appli
ation performan
e? We hope that the answer to both questions is yes.

iii. How is appli
ation performan
e a�e
ted when dynami
 resour
e information is available to our

s
heduling methodology? Can the methodology develop reasonable s
hedules when only stati


resour
e information is available? We hope that the s
heduler 
an take advantage of dynami


resour
e information, and that it 
an 
ontinue to fun
tion when su
h information is not available.

To investigate these questions we developed four s
heduling strategies that we des
ribe in the next

se
tion. We then studied the performan
e of ea
h strategy in a wide span of usage s
enarios in
luding
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a variety of problem sizes, appli
ations, testbeds, and ambient load 
onditions; the design of these

experiments is also des
ribed in the next se
tion. In Se
tion V.D.2 we des
ribe the results of these

experiments and in Se
tion V.D.3 we summarize our �ndings.

V.D.1 Experimental design

Approa
h

To help us investigate the questions listed above, we developed four s
heduling strategies based on

realisti
 Grid s
heduling s
enarios: user, basi
, stati
, and dynami
. We developed the user strategy to

emulate the s
heduling pro
ess that a typi
al user might employ. The remaining three strategies are

variations of our s
heduling methodology based on resour
e and appli
ation information availability

s
enarios. In the following paragraphs we des
ribe the motivation behind, and the design of, ea
h

s
heduling strategy.

To answer question (i), we needed to 
ompare the performan
e a
hieved with our methodology with

that a
hieved by a 
onventional approa
h. Unfortunately there is no standard Grid s
heduler that is

e�e
tive for the appli
ations and environments that we target. In fa
t, the 
onventional approa
h for the

majority of Grid users is to develop a simple s
heduling strategy based on basi
 information about their

appli
ation's performan
e 
hara
teristi
s and the Grid they wish to run it on. We therefore developed a

user strategy to emulate the de
ision making pro
ess that a user might employ. First, we had to de
ide

what appli
ation performan
e metri
 a user would be likely to employ. For the appli
ations targeted in

this thesis, the easiest appli
ation performan
e metri
 to obtain is an estimate of appli
ation memory

usage; to estimate memory usage one need only �nd the memory allo
ation 
ommands in the appli
ation

and determine how problem size, problem dimensions, and data type will a�e
t appli
ation memory

requirements. We believe that the development of a full appli
ation performan
e model, in
luding

parameterization for the target Grid of interest, would be too large of an investment for most Grid

users. For these reasons, our user strategy predi
ts appli
ation resour
e requirements based solely on

our memory usage model developed in Se
tion IV.B.1. To use this model the user requires a

ess to

memory 
apa
ity information for the resour
es she wishes to target. The memory 
apa
ity of Grid

resour
es is based on physi
al memory sizes; this is a pra
ti
al strategy for users as the information


an be obtained dire
tly by logging in to the ma
hines of interest or by requesting the information

from the resour
e manager (i.e. a systems administrator). Finally, we assume that ea
h Grid user

has a lo
al resour
e set that she preferentially a

esses, typi
ally be
ause she is more familiar with the
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omputational environment or be
ause she is more 
omfortable as a resident on her home resour
es

than as a guest on remote resour
es. The preferential resour
e ordering that is assumed by our user

strategy is fUCSD, UTK, UIUCg.

So how do all of these assumptions 
ombine to form the user s
heduling strategy? Our user strategy

(1) predi
ts appli
ation memory requirements for the appli
ation and problem size of interest; (2) sele
ts

the minimum number of target resour
es that will satisfy appli
ation memory requirements (resour
es

are sele
ted in order from the preferential resour
e ordering); (3) determines an equal, or nearly equal,

allo
ation of work onto the sele
ted resour
es; and (4) runs the target appli
ation with the sele
ted

s
hedule. Note that our user strategy uses the same memFa
tor of 20% that is used by our memory

usage model; in
lusion of this fa
tor emulates the fa
t that most Grid users are aware of the performan
e

problems inherent in allo
ating all of the physi
al memory on a shared resour
e.

In order to answer questions (i), (ii), and (iii), we developed a number of strategies based on the

s
heduling methodology presented in this thesis. First, we wanted to study how our methodology

performed with full appli
ation and Grid resour
e information. In this strategy, 
alled the dynami


strategy, the s
heduler is provided with the full exe
ution time + memory usage model des
ribed in

Se
tion IV.B.2; this model is the more sophisti
ated of the two performan
e models developed for our

test appli
ations. Furthermore, the s
heduler utilizes dynami
 Grid resour
e information, whi
h we


ategorize as a more sophisti
ated level of resour
e information utilization than stati
 information. In

keeping with the availability of sophisti
ated appli
ation information, the s
heduler utilizes the time

balan
e mapper (des
ribed in Se
tion IV.C.2) for the allo
ation of work to pro
essors. In this strategy,

s
hedules are developed at run-time to take advantage of dynami
 resour
e performan
e information.

To address question (ii), we study a strategy in whi
h full Grid resour
e information is available,

but appli
ation information is limited. In this strategy, 
alled the basi
 strategy, our s
heduling

methodology is provided with only the memory usage model, but is given a

ess to dynami
 resour
e

availability information. Sin
e this strategy assumes that appli
ation information is limited, the s
hed-

uler employs the equal allo
ation mapper, des
ribed in Se
tion IV.C.1. Free memory predi
tions are

used in 
onjun
tion with the equal allo
ation mapper to ensure that the appli
ation data is mapped in

a way that does not over
ow lo
al pro
essor memory 
apabilities. Re
all from Se
tion III.B that we


reate 
andidate resour
e groups (CRGs) based in part on three resour
e-oriented sorting fo
i: 
om-

putation, memory, and dual. Predi
tions of dynami
 CPU availability and free memory 
apa
ity are

used by this sorting method to sele
t desirable resour
es. S
hedules are developed at run-time to take

advantage of dynami
 resour
e performan
e information.
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Finally, to address question (iii) we study a strategy in whi
h full appli
ation performan
e infor-

mation is available, but Grid resour
e information is more limited. In this strategy, 
alled the stati


strategy, the s
heduler is provided with the exe
ution time + memory usage model and the time

balan
e mapper, but is provided with only stati
 resour
e information. Spe
i�
ally, the 
omputational


apa
ity of resour
es is given by the full pro
essor speed and the memory 
apa
ity of resour
es is given

by the full physi
al memory; these 
hara
teristi
s are retrieved from the MDS. The NWS provides

the only network performan
e estimates that 
an be retrieved from GrADS information sour
es; the

s
heduler is therefore 
on�gured to utilize NWS bandwidth estimates, but the s
heduler is run o�-line

so that it 
annot take advantage of run-time performan
e estimates.

Figure V.7 summarizes the appli
ation and Grid information usage by ea
h of the four s
heduling

strategies. In addition to the 
on�guration options we detailed above for ea
h of the three variations on

our s
heduler, there are other s
heduler 
on�guration options whi
h we did not vary in these experiments

but whi
h a�e
t s
heduler behavior. In parti
ular, we sele
ted a performan
e improvement threshold

of 5% for these experiments (the threshold is de�ned in Se
tion III.B.2). The predi
ted performan
e

of sele
ted s
hedules will therefore always fall within 5% of the predi
ted performan
e of the best

s
hedule examined. We believe that 5% is a 
onservative estimate of what a typi
al user would de�ne

as equivalent performan
e in Computational Grid environments.

Testbeds

For these experiments, we ran experiments on the one-site and three-site testbeds des
ribed in

Se
tion V.A. Note that, as des
ribed in Se
tion V.A, the three-site testbed in
luded the Opus 
luster

at UIUC.

Experimental pro
edure

The fo
us of these experiments is to 
ompare appli
ation iteration times a
hieved by ea
h s
hedul-

ing strategy in a variety of appli
ation, testbed, problem size, and ambient load 
onditions. For the

basi
 and dynami
 strategies, whi
h utilize dynami
 resour
e information, s
hedule development was

performed at run-time. For the user and stati
 strategies, whi
h utilize only stati
 resour
e information,

s
hedule development was performed o�-line and s
hedules were retrieved at run-time. To 
omplete a

s
heduling strategy 
omparison experiment, the four strategies were run in a ba
k-to-ba
k manner in

the following order: user, basi
, stati
, and dynami
. To avoid ea
h appli
ation run from a�e
ting the

de
isions of the following s
heduling strategy (due to the a�e
t on NWS dynami
 resour
e predi
tions)

we in
luded a three minute sleep between appli
ation runs.

Ea
h s
heduling strategy 
omparison experiment is de�ned by a sele
tion of a test appli
ation, a
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Memory usage
model, dynamic
resource info

Full performance
model, dynamic
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model, static
resource info
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Figure V.7: Summary of user, basi
, stati
, and dynami
 s
heduling strategies. For ea
h strategy we

note the availability of sophisti
ated appli
ation and resour
e information. Bars 
orrespond to the


olors used for ea
h strategy in our s
heduling results graphs.

testbed, and a problem size. We performed these experiments for ea
h of the test appli
ation on ea
h

of the testbeds (four appli
ation-testbed pairs). For ea
h testbed, we sele
ted six test problem sizes to

span a broad range of appli
ation s
enarios. For the one-site testbed we use the same problem sizes

as in the performan
e model and mapper validation experiments, N = f600, 1200, 2400, 4800, 7200,

9600g. For the three-site testbed, we wanted to explore a broader range of problem sizes than we

used for the performan
e model and mapper validation experiments. On this testbed we used N =

f600, 4800, 9600, 14400, 16800, 19200g. We performed experiment series for ea
h appli
ation-testbed


ombination; ea
h experiment series 
onsisted of a s
heduling strategy 
omparison for ea
h problem

size, or 6 
omparison experiments where ea
h 
omparison experiment involved the testing of ea
h of the

4 s
heduling strategies. We 
ompleted 10 repetitions of ea
h experiment series. Overall, we 
ompleted

60 
omparison experiments for ea
h of the 4 appli
ation-testbed s
enarios. Sin
e ea
h of these 240


omparison experiments in
luded the testing of 4 s
heduling strategies, we 
ompleted a total of 960

s
heduling strategy tests.

Performan
e metri
s

To provide a quantitative 
omparison of the appli
ation performan
e a
hieved by ea
h s
heduling

strategy, we utilize two 
omparison metri
s: the rank and the per
ent degradation from best. Both of
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these metri
s are 
ommonly used for the 
omparison of s
heduling strategies [32℄. A rank is an integer

value between 1 and 4 indi
ating the relative performan
e of ea
h strategy in a s
heduling strategy


omparison experiment; the strategy that a
hieved the best appli
ation iteration time was assigned a 1

while the strategy that a
hieved the worst appli
ation exe
ution time was assigned a 4. If a s
heduling

strategy failed to �nd a suitable s
hedule, or the appli
ation itself failed, the worst rank, a 4, was

assigned to that strategy.

To 
al
ulate the per
ent degradation from best we �rst �nd the lowest iteration time a
hieved by

any of the strategies, itT ime

min

. For ea
h s
heduling strategy we then 
al
ulate the per
ent degradation

from best as:

degFromBest = 100 �

itT ime� itT ime

best

itT ime

best

: (V.3)

The strategy whi
h a
hieved the minimum iteration time will be assigned a per
ent degradation from

best value of zero. Note that if we 
ould in
lude an optimal s
heduler in the experiments it would


onsistently a
hieve a 0% degradation from best. When one of the s
heduling strategies failed to

�nd a s
hedule or its 
orresponding appli
ation run failed, that s
heduler was not assigned a per
ent

degradation from best value.

V.D.2 Results

The �rst set of results we present is a summary 
omparison of the appli
ation performan
e a
hieved

by the four s
heduling strategies outlined in the previous se
tion. Later in this se
tion, we present

individual s
heduling strategy 
omparison experiments to highlight sign�
ant points.

To report summary results, we aggregated all 6 problem sizes and 10 repetitions into a single group

of results for ea
h appli
ation-testbed s
enario; for ea
h appli
ation-testbed s
enario we ran a total of

60 s
heduling strategy 
omparison experiments. Figure V.8 presents the average rank assigned to the

s
heduling strategies for ea
h s
enario. For all but one of the s
enarios, the dynami
 strategy a
hieved

the best (i.e. lowest) average rank; the ex
eption was the Ja
obi appli
ation on the three-site testbed

where the stati
 strategy a
hieved a better rank by a slight margin. Compare the sophisti
ation of

available Grid information and appli
ation performan
e models (see Figure V.7) with the average rank

for ea
h s
heduling strategy. Several important points are revealed.

� The two strategies that a
hieved the best average ranks were the stati
 and dynami
 strategies.

These strategies utilize a more sophisti
ated appli
ation performan
e model than the other two
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strategies. This trend demonstrates the importan
e of a

urate appli
ation performan
e models

in developing performan
e-eÆ
ient s
hedules.

� The dynami
 strategy outperformed the stati
 strategy in three out of four appli
ation-testbed

s
enarios, and the basi
 strategy outperformed the user strategy in all four s
enarios. The dynami


and basi
 strategies utilize more sophisti
ated Grid information than the other strategies. This

trend is suggestive of the importan
e of dynami
 Grid information in developing performan
e-

eÆ
ient s
hedules.

� The stati
 strategy 
onsistently outperformed the basi
 strategy. The stati
 strategy utilizes a

more sophisti
ated appli
ation performan
e model, but less sophisti
ated Grid information. For

these experiments, we 
on
lude that availability of an a

urate appli
ation performan
e model

had a more signi�
ant impa
t on the development of performan
e eÆ
ient s
hedules than did the

availability of dynami
 Grid information.

Figure V.9 reports the average per
ent degradation from best for ea
h s
heduling strategy in all

appli
ation-testbed s
enarios and Table V.10 reports summary statisti
s for the same data set. With

one ex
eption, we see the same ordering of the strategies as we saw for average ranks in Figure V.8;

the ex
eption is for the Ja
obi appli
ation on the three-site testbed where the relative ordering of the

dynami
 and stati
 strategies are reversed from Figure V.8 to Figure V.9. While the order of the

strategies is quite similar between the two sets of results, Figure V.9 provides more information about

the performan
e impa
t of ea
h s
heduling strategy.

For example, the average per
ent degradation for the user model is higher for the three-site testbed


ases than for the one-site 
ases. Re
all that our user strategy assumes a parti
ular preferen
e ordering

of target resour
es; this ordering is designed to emulate the preferen
e a user typi
ally shows for

ma
hines in their own administrative domain. Spe
i�
ally, the ordering assumed in our user strategy is

fUCSD, UTK, UIUCg. In reality, the UTK resour
es have the fastest pro
essors and largest memories.

The basi
, stati
, and dynami
 s
heduling strategies automati
ally identify resour
es with the fastest

pro
essor speeds and largest physi
al memories, and, assuming the UTK resour
es are not overly loaded,

often sele
t ma
hines in the UTK set �rst. Sin
e the one-site testbed is more homogeneous than the

three-site testbed, the e�e
t is not as noti
eable.

Summary statisti
s are useful for demonstrating overall trends, but 
an only provide a partial

pi
ture of the behavior of the four s
heduling strategies. In the following se
tions we present a detailed

examination of results for ea
h appli
ation-testbed s
enario.
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Figure V.10: Game of Life iteration times for the user, basi
, stati
, and dynami
 s
heduling strategies.

Experiments targeted the one-site testbed with problem sizes of 600, 2400, and 7200.
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Appli
ation Testbed Statisti
 User Basi
 Stati
 Dynami


Game of Life 1-site Average 240.0 204.4 37.3 5.1

StdDev 152.0 135.6 40.4 12.9

Min 7.7 15.2 0 0

Max 507.7 433.5 156.9 69.3

Game of Life 3-site Average 381.9 219.8 30.8 3.8

StdDev 466.6 268.2 63.3 10.7

Min 45.3 6.6 0 0

Max 2748.0 1109.2 421.8 68.5

Ja
obi 1-site Average 210.3 186.9 17.2 5.7

StdDev 130.6 139.8 28.2 12.6

Min 16.4 7.9 0 0

Max 466.4 487.7 90.5 69.7

Ja
obi 3-site Average 410.3 200.4 61.3 12.7

StdDev 212.7 203.4 145.8 40.6

Min 0 0 0 0

Max 862.9 629.6 739.2 215.1

Table V.10: Summary statisti
s for per
ent degradation from best for ea
h s
heduling strategy over all

appli
ation-testbed s
enarios.

Game of Life

A subset of the s
heduling strategy 
omparison experiments we ran for the Game of Life on the

one-site testbed are shown in Figure V.10; all repetitions are shown for N = f600, 2400, 7200g, three

of the six problem sizes tested for this testbed. For N = 600, performan
e of the user and basi


strategies are relatively similar as are the performan
e of the stati
 and dynami
 strategies; the stati


and dynami
 strategies a
hieved signi�
antly improved performan
e as 
ompared to the user and basi


strategies. These results indi
ate that for this s
enario and problem size, the availability of more

sophisti
ated appli
ation information had a more signi�
ant performan
e impa
t than the availability

of sophisti
ated Grid resour
e information. By 
omparison, for several of the repetitions for N = 7200

(spe
i�
ally repetitions 1, 4, and 5), the basi
 and dynami
 strategies perform signi�
antly better than

the user and stati
 strategies; for these 
omparison runs, the availability of dynami
 Grid information

had a more signi�
ant performan
e impa
t than did more sophisti
ated appli
ation information.

Table V.11 reports the average rank and degradation from best for ea
h s
heduling strategy; results

are reported for ea
h problem size. In ea
h series, 10 repetitions are performed; typi
ally no more than

1 or 2 repetitions per series failed. Failures are o

asionally 
aused by a s
heduling strategy's inability

to satisfy appli
ation memory requirements. More often, the appli
ation itself fails due to an error in

allo
ating memory, an authenti
ation error, or a Globus 
ommuni
ation error. Re
all that ranks are
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User Basi
 Stati
 Dynami


Rank Deg. Rank Deg. Rank Deg. Rank Deg.

N = 600 3.8 326.4% 3.2 286.7% 1.7 31.2% 1.3 3.7%

N = 1200 3.9 309.7% 3.1 277.4% 1.8 35.6% 1.2 11.8%

N = 2400 3.9 296.3% 3.1 251.5% 1.8 49.2% 1.2 5.6%

N = 4800 3.9 308.4% 3.1 273.6% 1.7 23.1% 1.3 2.0%

N = 7200 3.6 126.5% 2.9 59.5% 2.2 41.3% 1.3 3.3%

N = 9600 3.0 54.2% 3.0 63.7% 2.7 44.0% 1.3 4.4%

Table V.11: Average rank and per
ent degradation from best for ea
h s
heduling strategy for the Game

of Life on the one-site testbed.

User Basi
 Stati
 Dynami


Rank Deg. Rank Deg. Rank Deg. Rank Deg.

N = 600 3.8 143.1% 2.6 70.1% 1.8 49.6% 1.8 10.9%

N = 4800 3.8 1036.6% 3.0 660.5% 1.9 31.5% 1.3 2.2%

N = 9600 3.6 454.0% 3.2 325.3% 1.9 44.6% 1.3 1.9%

N = 14400 3.7 352.0% 3.1 134.1% 1.6 23.9% 1.6 0.7%

N = 16800 3.6 131.4% 3.3 89.5% 1.8 21.7% 1.3 4.5%

N = 19200 3.9 141.3% 3.0 44.3% 1.8 16.5% 1.3 3.2%

Table V.12: Average rank and per
ent degradation from best for ea
h s
heduling strategy for the Game

of Life on the three-site testbed.

assigned to failed runs (a failure re
eives the lowest ranking); average ranks are therefore 
omputed

over 10 runs. Per
ent degradation from best values are not 
omputed for failed runs; average values for

degradation from best are therefore averages over su

essful runs only.

In Figure V.11 we present s
heduler 
omparison runs for the Game of Life on the three-site testbed;

three of the six problem sizes tested are shown: N = f600, 9600, 16800g. In these results it is striking

that the relative performan
e of the four s
heduling strategies is quite variable a
ross repetitions and

problem sizes. Nonetheless, the general trend is an improvement in appli
ation performan
e from the

user strategy to the dynami
 strategy. Table V.12 reports average rank and average degradation from

best for all six problem sizes tested for this s
enario.

Ja
obi

In Figure V.12 we present a subset of the s
heduling strategy 
omparison experiments we ran for the

Ja
obi appli
ation on the one-site testbed. As was the 
ase for the results presented in Figure V.10, these

results suggest that the availability of more sophisti
ated Grid information did not have a signi�
ant

performan
e impa
t at the smaller problem sizes. Table V.13 summarizes the average rank and average
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Figure V.11: Game of Life iteration times for the user, basi
, stati
, and dynami
 s
heduling strategies.

Experiments targeted the three-site testbed with problem sizes of 600, 9600, and 16800.
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Figure V.12: Ja
obi iteration times for the user, basi
, stati
, and dynami
 s
heduling strategies.

Experiments targeted the one-site testbed with problem sizes of 600, 2400, and 7200.
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User Basi
 Stati
 Dynami


Rank Deg. Rank Deg. Rank Deg. Rank Deg.

N = 600 3.6 137.5% 3.2 150.5% 1.5 4.8% 1.7 5.0%

N = 1200 3.9 238.6% 3.1 214.9% 1.7 20.9% 1.3 4.9%

N = 2400 3.8 303.2% 3.2 292.3% 1.5 11.8% 1.5 9.4%

N = 4800 3.8 355.7% 3.2 342.1% 1.6 14.2% 1.4 5.0%

N = 7200 3.9 140.5% 2.8 74.1% 1.9 26.3% 1.4 3.9%

N = 9600 3.6 55.5% 3.1 47.3% 1.8 25.0% 1.5 6.1%

Table V.13: Average rank and per
ent degradation from best for ea
h s
heduling strategy for Ja
obi

on the one-site testbed.

User Basi
 Stati
 Dynami


Rank Deg. Rank Deg. Rank Deg. Rank Deg.

N = 600 3.7 249.3% 2.7 159.4% 1.9 100.5% 1.7 23.3%

N = 4800 3.9 706.2% 3.1 577.4% 1.3 17.5% 1.7 5.8%

N = 9600 3.3 238.9% 3.2 174.1% 1.8 16.7% 1.7 16.8%

N = 14400 3.9 441.0% 2.8 93.7% 1.5 22.6% 1.8 8.3%

N = 16800 3.7 401.2% 2.5 26.4% 2.7 204.3% 1.1 0.6%

N = 19200 3.4 | 2.6 188.3% 1.3 0.1% 2.7 22.9%

Table V.14: Average rank and per
ent degradation from best for ea
h s
heduling strategy for Ja
obi

on the three-site testbed.

degradation from best for ea
h s
heduling strategy and ea
h problem size for Ja
obi on the one-site

testbed.

Figure V.13 presents a subset of the s
heduling strategy 
omparison experiments performed for the

Ja
obi appli
ation on the three-site testbed. In this set of experiments, appli
ation performan
e with

the user, basi
, and stati
 strategies was highly variable as 
ompared to the results for the other three

appli
ation-testbed s
enarios. With the ex
eption of the �rst repetition, the dynami
 strategy resulted

in 
onsistent appli
ation iteration times. In Se
tion V.B we demonstrated that a greater fra
tion of

iteration time was typi
ally dedi
ated to 
ommuni
ation for the Ja
obi appli
ation on the three-site

testbed than for any other appli
ation-testbed s
enario. Variations in wide-area network performan
e


ould explain the appli
ation iteration time behavior of the user, basi
, and stati
 strategies. This

explanation would suggest that the dynami
 strategy e�e
tively avoided wide-area links with degraded

performan
e. More experiments are needed to fully substantiate this hypothesis. Table V.14 reports

average rank and average degradation from best values for ea
h s
heduling strategy for Ja
obi on the

three-site testbed.



87

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15
N =600

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

User
Basic
Static
Dynamic

1 2 3 4 5 6 7 8 9 10
0

2

4

6
N =9600

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20
N =16800

It
e

ra
ti
o

n
 T

im
e

 (
s
e

c
)

Repetitions

Figure V.13: Ja
obi iteration times for the user, basi
, stati
, and dynami
 s
heduling strategies.

Experiments targeted the three-site testbed, problem sizes of 600, 9600, and 16800.
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V.D.3 Summary

Our goal in this se
tion was to evaluate the eÆ
a
y of our s
heduling methodology. In parti
ular,

we asked the following three questions in the beginning of the se
tion, repeated here for referen
e.

i. What is the impa
t of our s
heduling methodology on appli
ation exe
ution times as 
ompared

to 
onventional s
heduling approa
hes?

ii. What is the impa
t of appli
ation information availability on s
heduler performan
e? Spe
i�
ally,

(a) 
an this methodology develop reasonable s
hedules despite limited appli
ation information

and models, and (b) 
an this methodology take advantage of more sophisti
ated information and

models to promote appli
ation performan
e?

iii. How is appli
ation performan
e a�e
ted when dynami
 resour
e information is available to our

s
heduling methodology? Can the methodology develop reasonable s
hedules when only stati


resour
e information is available?

To answer question (i), we introdu
ed a user s
heduling strategy and 
ompared its performan
e

to the basi
, stati
, and dynami
 strategies, ea
h of whi
h was based on a di�erent 
on�guration of

our s
heduler design. We presented experimental results showing that the basi
, stati
, and dynami


strategies all 
onsistently outperformed the user strategy.

To answer question (ii), we 
ompared the performan
e of strategies that used our exe
ution time

+ memory usage model (the stati
 and dynami
 strategies) against the performan
e of strategies that

used only the memory usage model (user and basi
 strategies). On average, the stati
 and dynami


strategies outperformed the user and basi
 strategies for all appli
ation-testbed s
enarios, showing that

s
heduler was able to utilize more sophisti
ated appli
ation performan
e models to promote appli
ation

performan
e. The 
onsistent performan
e advantage provided by the basi
 strategy as 
ompared to the

user strategy suggests that our s
heduling methdology is able to develop reasonable s
hedules despite

limited appli
ation information and models.

To answer question (iii), we 
ompared the performan
e of strategies that used dynami
 resour
e

availability information (the basi
 and dynami
 strategies) against strategies that used only stati


resour
e information (the user and stati
 strategies). We found that, on average, the basi
 strategy

outperformed the user strategy and the dynami
 strategy outperformed the stati
 strategy, showing

that availability of dynami
 resour
e availability information improved s
heduler peroforman
e. Sin
e

the stati
 strategy 
onsistently outperformed the basi
 strategy, we 
on
lude that performan
e model
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sophisti
ation had a larger impa
t on appli
ation performan
e than did availability of dynami
 resour
e

information.

V.E S
heduling overhead

A s
heduler design is pra
ti
al only if the overhead of the s
heduling pro
ess is reasonable when


ompared to appli
ation exe
ution times. In previous se
tions of this 
hapter we have used appli
ation

iteration time as a performan
e metri
 and have therefore not investigated the overheads introdu
ed

by the s
heduler itself. In this se
tion we des
ribe results that quantify s
heduler overhead. Re
all

that our s
heduler design 
onsists of two distin
t a
tivities: the 
olle
tion of Grid resour
e information

(des
ribed in Se
tion III.C) and the sear
h for 
andidate s
hedules (des
ribed in Se
tion III.B). We

examine the 
ost of ea
h of these a
tivities as well as the total 
ost of s
heduling. To quantify the 
ost

of Grid information 
olle
tion under di�erent information sour
e s
enarios, we in
lude test s
enarios in

whi
h information is retrieved from the GrADS NWS, the GrADS MDS, the lo
al NWS nameserver,

and the lo
al MDS 
a
he; ea
h of these 
olle
tion me
hanisms is des
ribed in Se
tion V.A.

Note that the 
ost of s
heduling is not �xed; instead, it is dependent on a wide variety of fa
tors

in
luding, for example, problem run 
on�guration, the sele
ted testbed, the target appli
ation, the


omplexity of the 
hosen performan
e model and maper, and variable load on the GrADS MDS server

and NWS nameserver. For example, the 
ost of retrieving resour
e information grows as the number

of resour
es in the testbed and the 
ost of retrieving network information grows as the square of the

number of sites in the testbed. For the s
hedule sear
h pro
edure, the 
ost of s
heduling in
reases with

the number of resour
es and the number of sites (be
ause the number of 
andidate s
hedules that must

be 
onsidered in
reases) but it de
reases as the amount of information about ea
h resour
e de
reases

(be
ause resour
e sets with insuÆ
ient resour
e information are pruned from the sear
h spa
e).

V.E.1 Experimental design

Approa
h

We fo
us on two representative s
enarios whi
h provide a broad pi
ture of s
heduling overhead and

also demonstrate the general patterns that would be seen for other 
on�gurations. For both s
enarios

we use the Ja
obi appli
ation and the s
heduler is 
on�gured to use the exe
ution time + memory usage

model (see Se
tion IV.B). The testbed and problem size assumptions for ea
h s
enario are as follows.
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� In s
enario 1 we target the one-site testbed and use a problem size of N = 4800.

� In s
enario 2 we target the three-site testbed and use a problem size of N = 14400.

To examine the 
ost of retrieving information from a variety of sour
es, we test ea
h of the following

Grid information sour
e modes for ea
h of s
enarios 1 and 2.

� In mode A Grid information is retrieved from the GrADS NWS nameserver and the GrADS MDS

server.

� In mode B Grid information is retrieved from the GrADS NWS nameserver and a lo
al MDS


a
he. For these experiments, the lo
al MDS 
a
he 
ontained all needed information (i.e. it was

fully warmed).

� In mode C Grid information is retrieved from the lo
al NWS nameserver and a fully warmed lo
al

MDS 
a
he.

Experimental Pro
edure

Experiments for ea
h s
heduling s
enario (i.e. testbed - problem size 
ombination) were performed

independently. For ea
h s
enario, we ran the s
heduler with ea
h of the three information sour
e modes

in a ba
k-to-ba
k manner; we 
ompleted 10 su
h triplets. For ea
h run, we measured the time required

for the entire s
heduling exe
ution (TotalT ime) and the time required for Grid information 
olle
tion

(Colle
tT ime); we 
onsider the 
ost for the s
hedule sear
h (Sear
hT ime) to be all s
heduling time

that is not spent in information 
olle
tion: Sear
hT ime = TotalT ime� Colle
tT ime.

V.E.2 Results

One-site testbed, N = 4800

In this s
enario, the s
heduler sele
ts amongst ma
hines in the one-site testbed and the target

problem size is N = 4800. For referen
e, in our s
heduling experiments for this testbed and problem

size, appli
ation iteration times were typi
ally between 0.4 se
onds and 2 se
onds (0.4 se
onds for the

dynami
 and stati
 mode s
hedulers, 2 se
onds for the basi
 mode and user s
heduling strategies). Sin
e

we ran 100 iterations in those experiments the appli
ation's iterative phase typi
ally took between 40

and 200 se
onds.

Figure V.14 presents all 10 repetitions of the experiments performed for this s
enario. The lower


hart presents the same dataset as the upper 
hart, but with an expanded y-axis to provide detail
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Figure V.14: Summary of Grid information 
olle
tion and s
hedule sear
h times for the one-site testbed,

N = 4800. The upper graph shows the full y-s
ale; the lower graph shows the same data set with an

expanded y-s
ale.
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Mode A Mode B Mode C

Colle
t Time, Average 186.6 13.8 0.27

Colle
t Time, StdDev. 54.5 4.0 0.01

Sear
h Time, Average 0.021 0.024 0.027

Sear
h Time, StdDev. 0.003 0.005 0.007

Total Time, Average 186.6 13.8 0.30

Total Time, StdDev. 54.5 4.0 0.01

Table V.15: S
heduling overhead times for the one-site testbed, N = 4800.

of smaller s
heduling overheads. The full height of ea
h bar is the total s
heduling overhead for that

information 
olle
tion mode; the lower, darker portion of ea
h bar (visible only in the lower 
hart) is

the sear
h time and the upper portion of ea
h bar is the 
ost of Grid information 
olle
tion. Table V.15

presents summary results over all 10 repetitions for the mean and standard deviation of the 
olle
tion

times, the s
hedule sear
h times, and the total s
heduling time.

The 
ost of Grid information 
olle
tion is 
learly the primary s
heduling overhead for all three


olle
tion modes. For an appli
ation that is expe
ted to run for roughly 40-200 se
onds, the 
ost

of Grid information 
olle
tion in mode A is prohibitive and, in pra
ti
e, would likely prevent usage

of this s
heduling methodology. The 
ost is also signi�
ant for mode B, but is a

eptable given the

performan
e advantages one 
ould expe
t to a
hieve with our s
heduling methodology. Noti
e that

information 
olle
tion times vary signi�
antly a
ross repetitions for modes A and B; this is probably

due to (1) variations in wide-area network performan
e between the s
heduler and the remote servers

and (2) variations in the load on the servers themselves. Finally, the overhead of information 
olle
tion

in mode C is very low. Overall, these results indi
ate that until retrieval times are redu
ed for the

MDS, lo
al 
a
hing of MDS information will be ne
essary. For this thesis, the information we retrieve

from the MDS 
hanges on the order of weeks or months so lo
al 
a
hing is an a

eptable solution. Sin
e

Grid information 
olle
tion times are reasonable for mode B, whi
h in
ludes a

ess to the GrADS NWS

nameserver, we 
on
lude that usage of a remote NWS nameserver is a reasonable information 
olle
tion

strategy.

The 
ost of the s
hedule sear
h pro
ess is quite low and it is less than 0.05 se
onds for all

three 
olle
tion modes. This low sear
h time overhead is due to (1) the low 
omputational 
omplexity

of our exe
ution time model and mapping strategy and (2) the extensive sear
h pruning performed

during the sear
h pro
ess. Noti
e that s
hedule sear
h times do vary somewhat a
ross repetitions and

information retrieval modes; this is likely due to the e�e
t that missing information has on the s
hedule
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Mode A Mode B Mode C

Colle
t Time, Average 1087.5 59.6 2.0

Colle
t Time, StdDev. 303.3 3.9 0.7

Sear
h Time, Average 0.8 2.4 2.5

Sear
h Time, StdDev. 0.3 0.4 0.3

Total Time, Average 1088.4 62.1 4.5

Total Time, StdDev. 303.3 3.9 0.9

Table V.16: S
heduling overhead times for the three-site testbed, N = 14400.

sear
h pro
edure; ea
h information 
olle
tion me
hanism 
an have di�erent information availabilities

and s
hedule sear
h spa
e pruning is partially based on information availability. When less resour
e

information is available, the s
hedule sear
h pro
ess 
an generally be expe
ted to take less time.

Three-site testbed, N = 14400

In this s
enario, the s
heduler sele
ts amongst ma
hines in the three-site testbed and the target

problem size is N = 14400. For referen
e, in our s
heduling experiments for this testbed and problem

size, the four s
heduling strategies typi
ally a
hieved appli
ation iteration times between 1.8 and 11

se
onds. Sin
e we ran 100 iterations in those experiments the appli
ation's iterative phase o

upied

180 to 1100 se
onds.

Figure V.15 and Table V.16 present the results of experiments performed for this s
enario. Noti
e

that all s
heduling overheads have in
reased for this s
enario when 
ompared with the one-site s
enario.

Both Grid information 
olle
tion times and s
hedule sear
h times in
reased in part be
ause this testbed


ontains over three times as many resour
es and three times as many sites. Also noti
e that s
hedule

sear
h times are mu
h lower for mode A than for the other modes; this is be
ause the s
heduler was

unable to retrieve some resour
e 
hara
teristi
s from the GrADSMDS, thus leading to extensive pruning

of the sear
h spa
e. Overall, we see that the overhead for the sear
h pro
ess is still quite low but that

the overhead of Grid information 
olle
tion is prohibitive for mode A. These results substantiate our

earlier 
laim that usage of a lo
al MDS 
a
he is ne
essary to provide s
heduling with reasonably low

overhead.

V.E.3 Summary

In this se
tion we presented a quantitive evaluation of the overheads asso
iated with our s
heduling

methodology. We spe
i�
ally examined the overhead of Grid information 
olle
tion and the s
hedule

sear
h pro
ess itself. We found that the 
ost of the s
hedule sear
h pro
ess is insigni�
ant when
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hedule sear
h times for the three-site

testbed, N = 14400. The upper graph shows the full y-s
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ale.
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ompared with appli
ation exe
ution times. We also showed that the 
ost of resour
e information

retrieval is reasonable when the information sour
e is the GrADS NWS, the lo
al NWS, or the lo
al

MDS 
a
he. On the other hand, Grid information 
olle
tion times are on the same order as appli
ation

exe
ution times when the remote GrADS MDS is utilized. Sin
e these overheads are una

eptable and

the information we retrieve from the MDS is relatively stati
, we 
on
lude that usage of a lo
al MDS


a
hing me
hanism is an appropriate alternative in the 
urrent GrADS testbed environment.

V.F Chapter summary

Our primary goal in this 
hapter was to investigate the impa
t of our s
heduling methodology on

appli
ation performan
e. Sin
e our s
heduling methodology is highly dependent on the availability of

an appli
ation performan
e model and mapping strategy, we presented a suite of experiments designed

to spe
i�
ally test the appli
ation-spe
i�
 exe
ution time model and mapping strategies we developed

in Chapter IV. We 
on
luded that our exe
ution time model provided reasonable predi
tion a

ura
y,

and was able to 
orre
tly tra
k appli
ation performan
e trends. We also presented experiments that

veri�ed the utility of ea
h of our mapping strategies and showed that, on average, the time balan
e

mapper provided an appli
ation performan
e advantage when 
ompared to the equal allo
ation mapper.

After validating our appli
ation spe
i�
 exe
ution time model and mappers, we presented experi-

ments to test our s
heduling strategy itself. In these experiments, we demonstrated that our s
heduling

methodology provides a signi�
ant performan
e advantage over a more 
onventional s
heduling strat-

egy. We also showed that the s
heduler is able to develop adequate s
hedules despite limited appli
ation

or resour
e information, but that it is also able to take advantage of more sophisti
ated information to

promote appli
ation performan
e.

The last set of results that we presented tested the overhead asso
iated with the s
heduling pro
ess

itself. We found that the overheads asso
iated with the s
hedule sear
h pro
ess and Grid information


olle
tion from the GrADS NWS, lo
al NWS, and lo
al MDS 
a
he are reasonable, while the 
ost of

information retrieval from a remote GrADS MDS server is una

eptable given typi
al run-times for our

appli
ations. We 
on
luded that usage of a lo
al MDS 
a
hing me
hanism is an appropriate alternative

for the purposes of this thesis.



Chapter VI

Dis
ussion

In this thesis we propose an adaptive, run-time s
heduling methodology designed to promote the

performan
e of iterative, mesh-based appli
ations in Computational Grid environments. In this 
hapter

we present a �nal dis
ussion of the thesis. Spe
i�
ally, in Se
tion VI.A we summarize the thesis and

reiterate our �ndings. In Se
tion VI.B we des
ribe related work in the �eld of appli
ation s
heduling.

Finally, in Se
tion VI.C we des
ribe possible extensions to our work.

VI.A Summary and �ndings

The s
heduling design proposed in this thesis was developed in the 
ontext of the larger Grid

Appli
ation Development Software proje
t (GrADS). In Chapter II we des
ribed the design of the Grid

appli
ation development infrastru
ture, termed GrADSoft, proposed by the GrADS proje
t. We also

presented the spe
i�
ation for the GrADSoft s
heduler.

In Chapter III we presented a design for a s
heduler framework that satis�es the GrADSoft s
heduler

spe
i�
ation and is the �rst prototype of a s
heduler for the GrADSoft infrastru
ture. Our s
heduler

design in
orporates an \intelligent" s
hedule sear
h pro
edure that 
onsiderably prunes the sear
h spa
e

of possible resour
e groups while ensuring that desirable resour
e groups are not ex
luded. The s
heduler

utilizes dynami
 and stati
 Grid resour
e information to target s
hedules to the 
onditions of Grid

resour
es at run-time. We also des
ribed a number of s
heduling poli
ies that enable straightforward


on�guration of s
heduler behavior. The s
heduler framework presented in this 
hapter is appli
ation-

generi
; it is designed to be 
oupled with an appli
ation-spe
i�
 performan
e model and mapping

strategy.

96
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In the beginning of Chapter IV we des
ribed the general 
hara
teristi
s of iterative, mesh-based

appli
ations. Next, we des
ribed two su
h appli
ations in detail (Ja
obi and Game of Life) and pre-

sented a detailed performan
e analysis of ea
h appli
ation. We then developed two appli
ation-spe
i�


performan
e models, a memory usage model and an exe
ution time + memory usage model. We also

detailed two appli
ation-spe
i�
 mapping strategies, an equal allo
ation mapper and a time balan
e

mapper.

In Chapter V we presented experiments that demonstrated the eÆ
a
y of our s
heduling method-

ology for realisti
 appli
ations, testbeds, and usage s
enarios. We took a two-fold validation approa
h.

First, we presented experiments that demonstrated the predi
tion a

ura
y of our exe
ution time model

and the utility of ea
h of our mapping strategies. Se
ond, we de�ned four reasonable s
heduling strate-

gies for our target appli
ations and environments, and then presented experiments that 
ompared the

appli
ation performan
e a
hieved with ea
h s
heduling strategy. We showed that our s
heduler de-

sign provided signi�
antly enhan
ed appli
ation performan
e as 
ompared to a 
onventional s
heduling

strategy. We also demonstrated that our methodology was able to (1) take advantage of sophisti
ated

appli
ation and resour
e information to promote appli
ation performan
e, and still (2) provide a reason-

able s
heduling servi
e when only limited appli
ation and resour
e information was available. Finally,

we presented experiments to examine the overheads asso
iated with the s
heduling pro
ess itself. We

found that the overhead of our s
hedule sear
h pro
ess was nominal, and that overheads asso
iated with

Grid information 
olle
tion were, for the most part, also a

eptable. We found the overheads asso
iated

with the retrieval of data from a remote MDS to be una

eptable for the needs of run-time appli
ation

s
heduling; we observed that usage of a lo
al MDS 
a
he was a reasonable solution for our purposes.

VI.B Related work

Many of the strategies utilized by our s
heduling design are based upon experien
e gained in pre-

vious Appli
ation-Level S
heduling (AppLeS) e�orts [9, 10, 12, 48, 50℄. Two of these e�orts targeted

stru
turally similar appli
ations and are therefore parti
ularly relevant [9, 12℄. The �rst fo
used on

the s
heduling of a Ja
obi solver for the �nite-di�eren
e approximation to Poisson's equation [9℄. The

se
ond e�ort fo
used on s
heduling of a parallel magnetohydrodynami
s simulation (PMHD3D), whi
h

is also 
lassi�ed as an iterative, mesh-based appli
ation [12℄. Ea
h of these e�orts demonstrated signi�-


ant improvements in appli
ation performan
e as 
ompared to 
onventional s
heduling e�orts. For the

design presented in this thesis, we drew on the experien
es gained in these e�orts. There are a number
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of novel aspe
ts to the 
urrent work.

� Our s
heduler design provides a separation of the appli
ation-generi
 s
heduling me
hanisms from

appli
ation-spe
i�
 performan
e models and mappers; we expe
t the s
heduler will be more easily

targeted to new appli
ations that the Ja
obi and PMHD3D s
hedulers.

� Our s
hedule sear
h pro
edure is based on a more general heuristi
 that we believe is more likely

to dis
over all desirable resour
e sets.

� Our design has been thoroughly tested on both a lo
al-area network of workstations and a het-

erogeneous Computational Grid in
luding wide-area links; ea
h of the previous e�orts targeted

resour
es at a single site.

Another related e�ort is Prophet, a run-time s
heduling system designed for parallel appli
ations

written in the Mentat programming language [53, 52℄. This s
heduling system is similar to our work in

that it exploits appli
ation stru
ture and system resour
e information to promote appli
ation perfor-

man
e. Prophet was demonstrated for both SPMD appli
ations and appli
ations based on task-parallel

pipelines; the s
heduler design was tested in heterogeneous, lo
al-area environments. If possible, we

would like to 
ompare the performan
e of our strategies to those of Prophet, though it may be diÆ
ult

to �nd a suitable s
enario for 
omparison that satis�es the requirements of ea
h s
heduling strategy.

For example, Prophet requires the target appli
ation be written in Mentat and we have not used Mentat

in our e�orts.

There are a number of additional s
heduling proje
ts that are notable for targeting a variety of

appli
ations or an entire appli
ation 
lass [10, 42, 52, 1, 46℄. Many of these e�orts fo
us on embarrass-

ingly parallel or master-slave appli
ations whi
h do not have signi�
ant 
ommuni
ation 
osts [10, 1, 46℄.

We des
ribe sele
ted proje
ts that fo
us on appli
ation 
lasses that involve signi�
ant 
ommuni
ation


osts.

The Prophet s
heduling system is also a notable example of a s
heduler design that targets a variety

of appli
ations [53, 52℄. Prophet requires modi�
ation of appli
ation sour
e 
ode and has not been tested

in the wide-area. As mentioned earlier, a performan
e 
omparison of the two strategies would be quite

interesting.

Another proje
t of interest is the Condor mat
hmaking system [42℄. In the mat
hmaking system,

users spe
ify the resour
e requirements of their appli
ation to the system, resour
e providers similarly

spe
ify the 
apabilities of their resour
es, and a 
entralized mat
hmaker is used to mat
h appli
ation
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resour
e requirements with appropriate resour
es. This design is quite general and 
an therefore be

applied to many di�erent types of appli
ations. The mat
hmaking strategy, while more general that

the s
heduler presented in this thesis, di�ers in that it is primarily a resour
e dis
overy me
hanism and

is not able to provide detailed s
hedule development.

VI.C Future work

We plan to extend our work to support other appli
ations and other appli
ation 
lasses. For

appli
ations that share the broad appli
ation resour
e requirements des
ribed in Chapter III.A, our

design should be dire
tly appli
able. We plan to verify this assertion by testing our methodology for

additional appli
ations; for ea
h appli
ation, an appli
ation-spe
i�
 performan
e model and mapping

strategy will be required. To support 
ases where appli
ation performan
e is heavily dependent on the

sele
tion of several distin
t resour
e groups, our design must be extended. In parti
ular, we will modify

the sear
h pro
edure to independently sear
h for resour
es to satisfy ea
h resour
e group requirement.

In this modi�
ation we will need to ensure that resour
es sele
ted to satisfy one group requirement are

ex
luded from the sear
h for other group requirements.

Another dire
tion in whi
h our work 
ould be extended involves the type of appli
ation information

and models used by our s
heduling methodology. For the purposes of this thesis, we designed and built

the appli
ation performan
e models and mapping strategies. However, if Grid appli
ation development

is to be a

essible to a larger number of users, then we 
annot expe
t su
h users to provide detailed

performan
e models and mapping strategies. Re
ognizing this, other members of the GrADS resear
h


ommunity are investigating the feasibility of 
ompiler generation of appli
ation information and per-

forman
e models [29℄ as well as the in
lusion of su
h models in Grid-enabled libraries [29, 37℄. As this

work matures we are interested in experimenting with the usage of su
h models for appli
ation s
hedul-

ing. These models may not be equational in form; in this 
ase we will need to extend our methodology

to support additional performan
e model types.
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