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Abstract

This dissertation presents a novel numerical method to study the pulsing behavior
of soft corals. Evidence indicates that the pulsing behavior of soft corals in the
family Xeniidae facilitates photosynthesis of their symbiotic algae. One way to in-
vestigate this complex behavior is through mathematical modeling and numerical
simulations. The immersed boundary method is used to model the interaction of the
coral tentacles with the surrounding fluid. The flow is then coupled with a photo-
synthesis model. Photosynthesis is modeled by advecting and diffusing oxygen, the
byproduct of photosynthesis, where the coral tentacles act as a moving source of
oxygen. This work develops a methodology for solving a system of partial differ-
ential equations with boundary conditions on a moving immersed elastic boundary.
Two-dimensional numerical simulations are presented where the Reynolds and Pé-
clet numbers are varied in the simulations to understand how these parameters affect
the mixing and photosynthesis. The mixing is quantified using both the fluid flow
and oxygen concentration dynamics. The results show that for the biologically rel-
evant Péclet number, the fluid dynamics significantly affect the photosynthesis and
that the biologically relevant Reynolds number is advantageous for mixing and pho-
tosynthesis. The models and methods developed have been contributed to the open-
source software library implementation of the immersed boundary method, IB2d.
A three-dimensional numerical simulations of soft coral pulsing are also presented
using the IBAMR software library. Three-dimensional mixing analysis of the flow is
presented. Further, preliminary results of the three-dimensional corals pulsing with a
background oxygen concentration are presented with the methodology for modeling
the three-dimensional coral tentacles as a sink or source of a concentration.
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Chapter 1

Introduction

Scientists in a variety of different disciplines have long been fascinated with the me-
chanics of moving organisms in fluids such as fish swimming, bird flight, and insect
flight [1]. There is a long history of using the knowledge gained from work with
organisms and applying these to engineering problems. The mechanics of insect
flight has been studied to improve the maneuverability and efficiency of micro-air
vehicle (drone) flight [2]. The swimming efficiency of fish has been well studied and
has been used to design underwater and above water vehicles [3]. Others have in-
vestigated the link between the morphology of aquatic animals and their locomotive
efficiency [4] and the effect on foraging behavior [5], the efficiency of propulsion
in aquatic animals [6], and the role of hydrodynamic drag on flying and swimming
[7]. Experimental studies using digital particle image velocimetry (DPIV) have been
used to measure the external forces of swimming fish [8] and the swimming dynam-
ics and efficiency over the changing morphology and resulting Reynolds number
regime over the lifetime development of squid [9]. The ability to study these dy-
namics analytically and experimentally is limited due to the complexity of these
systems. Instead, computational simulations are used to gain insight into the roles of
the various properties of the system, including length scale, speed, morphology, and
kinematics [4]. The studies mentioned above focused on mechanics relating to lo-
comotion. Studies investigating active motion in sessile organisms are more limited.
This dissertation will focus on the computational simulations of sessile pulsing soft
corals in the family Xeniidae. We develop novel modeling and numerical methods
to investigate the pulsing phenomenon.

Soft corals are known to be more resistant to ocean acidification than stony
corals, which make up the structure of coral reefs [10]. As climate change pro-
gresses, understanding the ecological dynamics of coral reefs is vital. This work
seeks to bring insight into the energy source of soft corals of the family Xeniidae.
The purpose of the pulsing motion was thought to help with food capture. However,
they are rarely found with food in their gastric cavities [11], [12]. These soft corals
are one of the only known sessile animals who move with such an energetically ex-
pensive behavior [13]. Experimental studies have shown increased photosynthesis
in the symbiotic algae of soft corals that are pulsing compared to stationary corals

1



Chapter 1. Introduction 2

[13]. It is believed that the coral’s primary source of energy is through this symbiotic
relationship.

These experimental studies have suggested that photosynthesis is an oxygen-
limited process. Artificially heightened oxygen levels in the fluid tanks resulted in
less photosynthesis by the symbiotic algae [13]. Numerical studies by our collabora-
tors simulating the fluid flow around pulsing soft corals [14], [15] focus on analyzing
the flow itself. The work presented in this dissertation is the first study to examine
the interaction of this fluid flow around the pulsing corals with the photosynthesis of
the symbiotic algae.

We are interested in modeling the photosynthesis of the symbiotic algae on puls-
ing soft corals. There has been extensive work to model different aspects of pho-
tosynthesis in leaves [16]–[19] and algae [20]–[22]. We expect that the fluid flow
generated from the pulsing behavior enhances the photosynthesis of the symbiotic
algae. The role of mixing and fluid flow has been vital for other biological systems.
It has been found that mixing is necessary for efficient photobioreactors for culti-
vating microalgae [23]. Fluid flow and transport of oxygen and carbon dioxide are
essential for photosynthesis of benthic marine autotrophs [24] and in particular reef-
building stony corals [25], [26]. In this work, the photosynthesis of the symbiotic
algae on the tentacles of soft corals, family Xeniidae, is modeled to study the effects
of motion and fluid flow on the rate of photosynthesis.

This mixing in the fluid due to coral pulsing can facilitate byproduct removal and
carbon dioxide access for the symbiotic photosynthetic algae, providing the coral
with additional energy [13]. Understanding this phenomenon required the develop-
ment of fluid simulations coupled with concentration dynamics, which is the primary
goal of this dissertation. Numerous problems in the natural world require an under-
standing of concentration dynamics. Examples include the modeling of pollutants in
urban areas [27], chemicals in marine ecology [28], [29], and contaminants in hydro-
geological systems [30]. This novel methodology can be used to investigate many of
these other applications. It can be used to study photosynthesis on other marine and
terrestrial organisms, heat transfer in organic and inorganic materials, and chemical
reactions occurring on elastic bodies.

The photosynthesis of the symbiotic algae is modeled with an advection-diffusion
equation coupled to an elastic material, the coral tentacle, in a fluid, so the interaction
of fluids, flexible materials, and advection-diffusion is of interest. Both advection
and diffusion have been studied in heat transfer in general fluid-structure interac-
tions such as over a flexible oscillating fin [31] and a lid-driven cavity with a flexible
bottom [32]. However, this work is not simply a fluid-structure interaction; we are
modeling a biological process. There are other cases in which advection and dif-
fusion have been used to understand biological processes. Advection and diffusion
have played roles in different physiological fluid-structure interactions such as mod-
eling oxygen concentrations in blood vessels [33] and cardiovascular hemodynamics
[34]. The advection-diffusion-reaction equations have also been used to model heat
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transfer in biological tissues [35] and chemotaxis in bacteria [36]. In our application,
the corals pulse and generate fluid flow, which affects the dissolved oxygen and car-
bon dioxide in the fluid, so we are interested in the interaction of marine organisms,
fluid flow, and concentrations and how they play a role in complex physiological
and ecological systems. Many prior studies look at the pivotal role of fluid flow
and concentrations on marine organisms. In particular, there has been quite a bit
of work to understand the uptake of materials by organisms. Turbulence has been
known to affect the width of the diffusive layer around small organisms, which can
limit their access to necessary nutrients [37]. Concentration dynamics give an un-
derstanding of the role of fluid dynamics in nutrient transport and feeding [38]–[40]
and reproduction [41], [42]. Using chemical cues to sense and interact with the envi-
ronment is pivotal in organism and ecological survival. Chemosensory, chemotaxis,
and chemoattractants have been well studied [43]–[48]. In this work, we are instead
interested in the expelling of byproducts which has limited study [49], [50].

This dissertation will be presenting work modeling the pulsing behavior of an in-
dividual coral polyp and its effect on the photosynthesis of their symbiotic algae. The
first component of this is modeling the polyp movement and the resulting fluid flow,
which is done using the immersed boundary method [51]. The immersed boundary
method is a front-tracking method that is particularly well suited for elastic-material
fluid interactions, so it has been extensively used to model biomechanical problems.
In particular, it has been used to model cardiovascular systems including human
hearts [52], aortic heart valve dynamics [53], tubular hearts [54]. It has been used
to investigate other aspects of human physiology, such as modeling the cochlea [55]
and sperm motility [56]. Additionally, it has been used to model aquatic animal loco-
motion, such as eels, nematodes, and microorganisms with flagella [57], and jellyfish
movement [58]. The immersed boundary method is commonly used and it has been
well studied numerically, [59]–[63], extended [64]–[66], and analyzed [67], [68].
There are several open-source implementations of the immersed boundary method.
In this dissertation, we will be using and modifying two of these software libraries.
There is a two-dimensional implementation in MATLAB and Python, IB2d[69] and
a three-dimensional implementation in C++, IBAMR, with support for adaptive mesh
refinement and parallelization[70].

In elastic-structure fluid interactions, the moving deforming elastic material cre-
ates a complex boundary condition on the fluid. The immersed boundary method
allows the elastic material to be defined with a Lagrangian frame of reference while
defining the fluid with an Eulerian frame of reference. The different frames of refer-
ence are reconciled using regularized delta functions. These delta functions are used
to enforce a no-slip boundary condition at the fluid-elastic interface. This method
allows for an elegant simplicity, where the elastic material does not have to be de-
fined on the Eulerian grid as in many other numerical methods [71]. Additionally,
the Eulerian fluid grid does not have to be adapted to the Lagrangian elastic mate-
rial coordinates [72]. Given that we seek to model the biological tissue of the coral
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tentacles, moving with a prescribed motion based on kinematic data, the immersed
boundary method was chosen as it is well suited to biomechanical problems.

The second component of this work is modeling photosynthesis coupled with the
fluid flow. To model photosynthesis, we represent a dissolved gas (carbon dioxide
or oxygen) as a concentration in the fluid solved for using the advection-diffusion
equations. The symbiotic algae live on the tentacles of the coral, so as the tenta-
cles move through the fluid, they deplete the carbon dioxide (as a sink) and produce
oxygen (as a source). Thus, modeling a moving boundary as a source and sink of a
concentration is a crucial component of this work and presents the most significant
challenge. In this work, the moving immersed boundary acts as a boundary condition
for the advection-diffusion equations. There are many ways to numerically enforce
a boundary condition of a partial differential equation on a moving deforming inter-
face. Some examples include finite element methods, where the mesh is modified to
fit the deforming boundary condition [73]. Finite volume methods define boundary
conditions using cell fractions [74]. The current framework uses finite differences
with an interface tracking method. This methodology benefits from using a fixed
Cartesian grid without the added complexity of computing body-fitted grids, as in
the finite element method, or cell fractions, as in the finite volume method. The
difficulty of using an interface tracking finite-difference representation is that the
interface does not align with the Cartesian grid. The embedded boundary method
addresses this by using interpolating polynomials to define flux boundary conditions
across interfaces [75]; however, this approach is computationally expensive. We will
be developing a method based on a model for a surfactant that is absorbed and des-
orbed from an interface to a surrounding bulk fluid [76]. In this formulation, the
regularized delta function from the immersed boundary method [51] is used to de-
fine a source or sink of the concentration on the immersed boundary. This approach
has been used to define concentration point sources to model bioconvection of motile
bacteria [77] and cell aggregation relating to constructing biofilms [78]. It is a nat-
ural approach to coupling an advected and diffused quantity with a fluid-structure
interaction solved using the immersed boundary method. This methodology can be
used in other applications where a deforming elastic material produces or absorbs
heat densities or chemical concentrations.

The other main result of this work is the dynamical systems approach to quantify
mixing in the fluid due to the coral tentacle pulsing. We are particularly interested
in mixing due to chaotic advection. Mixing is defined as chaotic when the distance
between two close passive tracers increases exponentially, i.e., the trajectories are
sensitive to initial conditions. The idea of using dynamical systems approaches to
understand the role of mixing and chaotic advection in fluid dynamics problems is
not new [79]–[85]. We are particularly interested in investigating mixing in environ-
mental and biological flows. Mixing has been studied in the natural world in ocean
currents [86], the atmosphere [87], lava flow [88], blood flow [89], and in DNA repli-
cation [90]. We will be applying this methodology to understand the fluid mixing
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around the pulsing soft corals and are particularly interested in using dynamical sys-
tems to understand aquatic organism behavior. Other studies have used these meth-
ods to understand fluid mixing around other aquatic organisms. For example, chaotic
advection was studied around microfluid slugs [91] and plankton distributions [92].
We want to quantify the role of movement in mixing around the corals. The beating
of the flagellum was found to increase mixing and feeding efficiency in sessile mi-
croorganisms [93]. Peng and Dabiri used DPIV data around free-swimming moon
jellyfish to analyze the fluid flow with a dynamical systems approach to gain insight
into their feeding behavior [94]. In this work, we consider the Lagrangian trajec-
tories of passive tracers in computational fluid simulations to gain insight into the
mixing by chaotic advection due to the pulsing behavior of the coral.

To capture the fluid flow characteristics in varying regimes, the Reynolds number,
the ratio of inertial to viscous forces, and the Péclet number, the ratio of advection
to diffusion, are used. The dynamics of fluid flows can be characteristically similar
even in regimes with different parameters including, length scales, speeds, or vis-
cosity. The Reynolds number, Re = L2γ

ν
, is used to characterize the flow, found by

non-dimensionalizing the Navier-Stokes equations. The Reynolds number is defined
using the coral tentacle length, L, pulsation frequency, γ , and kinematic fluid viscos-
ity, ν . The dimensionless Péclet, Pe, number is found by non-dimensionalizing the
advection-diffusion equation of the photosynthesis model. In this work, the Péclet
number, Pe = L2γ

D , is defined using the coral tentacle length, pulsation frequency,
and the diffusion coefficient of oxygen or carbon dioxide in water, D. In different
applications, varying the Reynolds number can give insight into fluid flow behavior
at different length scales, velocities, or fluid viscosities. Different numerical stud-
ies have varied the Reynolds number in canonical fluid dynamics problems such
as lid-driven cavity flow [95], vortex shedding of an oscillating cylinder [96], flow
around an airfoil [97], and turbulent channel flow [98]. Here, we vary the Reynolds
number around the biologically relevant Reynolds number to understand the role
of fluid inertia and viscosity on photosynthesis production and mixing. Varying
the Péclet number will give insight into the dynamics of a concentration being ad-
vected at different speeds, at different length scales, or differing diffusivity. Numer-
ical studies have varied the Péclet number in order to get insight into mixing [99],
swimming speed of phoretic Janus particles [100], and the rising speed of surfactant
coated droplets [101]. Here, we vary the Péclet number to understand the role of
advection and diffusion on photosynthesis production and mixing. By varying both
the Reynolds and Péclet numbers simultaneously, we seek to understand how the
Reynolds number and Péclet number interact in a system where the fluid dynamics
are coupled to a concentration. Simultaneously varying both parameters has been
done in other coupled fluid concentration studies [44], [102], [103]. In this work,
we vary the Reynolds and Péclet numbers to understand how these dimensionless
parameters affect the mixing due to the fluid dynamics around the pulsing soft coral
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and the resulting photosynthesis of their symbiotic algae.
In this dissertation, the modeling and numerical methods for the two-dimensional

study are presented in Chapter 2. The results and analysis for the two-dimensional
study are presented in Chapter 3. A discussion of adding this methodology to the
open-source MATLAB implementation of the software library IB2d is given in
Chapter 4. The three-dimensional methodology and results for velocity simulations
and the corresponding mixing analysis are presented. We will give preliminary work
coupling to the three-dimensional velocity simulations to the concentration dynam-
ics in Chapter 5. The discussion and conclusion of this work are provided in Chapter
6.



Chapter 2

Two-Dimensional Modeling and
Numerical Methods

The first component in this work is to model the fluid-structure interaction of the
pulsing tentacles of the coral polyp. We use the immersed boundary (IB) method to
model this moving elastic body, the coral polyp, and the resulting fluid flow [52].
The IB method allows for the flow to be solved computationally on a uniform Carte-
sian grid around complex, moving, immersed elastic boundaries, described using
Lagrangian coordinates. This method allows for straightforward computations with-
out needing complex moving body-fitted grids.

The main goal of this work is to model photosynthesis coupled to the fluid-
structure interaction of a pulsing coral polyp. To model the photosynthesis of the
symbiotic algae on the coral tentacle, we consider the coral tentacles as a source
of oxygen and a sink of carbon dioxide. In this formulation, only the byproduct of
photosynthesis, oxygen, is tracked since it has been hypothesized that this process is
oxygen-limited [13]. This work has led to a paper that has been submitted [104].

2.1 Mathematical Model

The fluid flow is modeled on a two-dimensional rectangular domain, x = (x1,x2) ∈
Ω. The flow velocity, u(x, t) = (u1,u2), and pressure, p(x, t), are solved using the
Navier-Stokes equations for an incompressible, viscous fluid in a periodic channel
initially at rest,

∂u
∂ t

+u ·∇u+∇p =
1

Re
∇

2u+ f , (2.1)

∇ ·u = 0 . (2.2)

The velocity has homogeneous Dirichlet boundary conditions at the top and bottom
of the domain and periodic boundary conditions at the sides of the domain. The peri-
odic boundary condition is appropriate as these corals live in colonies. The domain is
chosen to be large enough so that the boundary conditions do not significantly affect

7
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the flow dynamics around the coral. The pressure boundary conditions are defined
implicitly with the Navier-Stokes solver, described below.

The dimensionless Reynolds number is defined as Re = L2γ

ν
, where L is the char-

acteristic length, γ is the characteristic frequency, and ν is the kinematic viscosity.
In this study, the characteristic length is the length of a coral polyp tentacle, and the
characteristic frequency is the frequency of coral pulsation. These values are pro-
vided in Table 2.1. The force per area, f (x, t), is the force of the tentacles on the
fluid which couples the fluid flow to the immersed boundary.

TABLE 2.1: Physical parameters of the soft coral Xennidae.

parameter description value units
L tentacle length 0.4070 cm
γ pulsation frequency 0.5286 sec −1

ν kinematic fluid viscosity 0.01 cm2sec−1

D diffusion coefficient 2 ×10−5 cm2sec−1

Re Reynolds number 8.7546 -

Two additional interaction equations couple the elastic boundary, the coral ten-
tacles, and the fluid. The force defined on the fluid, f (x, t), is extrapolated from
the force of the boundary on the fluid, F(s, t), which is defined on the Lagrangian
boundary,

f (x, t) =
∫ `

0
F(s, t)δ (x−X(s, t))ds . (2.3)

Further, the velocity of the immersed boundary is interpolated from the velocity of
the surrounding fluid,

∂X
∂ t

(s, t) =U(s, t) = u(X(s, t)) =
∫

Ω

u(x, t)δ (x−X(s, t))dx . (2.4)

In these equations, the boundary position is given by X(s, t) as a function of the
arclength s defined from 0 to ` and x is the position in the fluid. These equations
enforce a no-slip boundary condition at the tentacles.

The force of the boundary on the fluid prescribes the motion of the pulsing coral.
Tether points prescribe this motion. These points do not interact with the fluid;
instead, they move in a defined way to give the desired pulsing behavior. We compute
the force as,

F(s, t) = κT (XT (s, t)−X(s, t))+κd(UT (s, t)−U(s, t)) (2.5)

for the position of the tether points, XT (s, t), spring constant, κT , velocity of the
tether points, UT , and damping coefficient, κd [66].

The tether point positions, XT (s, t), determine how the corals pulse in the numer-
ical simulations. These positions are determined from experimental data [14]. The
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FIGURE 2.1: This figure shows the 2D model coral at (a) 10%, (b) 30%, (c)
50%, and (d) 80% through a pulse.

experimental data is collected assuming the motion of all eight tentacles is identical,
and each tentacle moves radially. To model the coral movement in two dimensions,
we include two tentacles and assume that the motion of each tentacle is a reflection
of the other, see Fig. 2.1. Fig. 2.1(a) shows the closing phase, (b)-(c) show the
opening phase, and (d) shows the resting phase.

We use laboratory data to find the kinematic motion of the corals. Experimental
videos of pulsing soft corals are used to find the motion of the coral tentacles [14].
Six points are tracked on one tentacle at every frame of five different coral polyps for
five pulses. At each frame, polynomials are fit using the position of the six points.
Then, the coefficients of these polynomials were nondimensionalized and averaged
over the different polyps and pulses. Finally, time-dependent polynomials were fit
to these coefficients. The position of the tether points, XT (s, t) = (XT (s, t),YT (s, t)),
are then given by,

XT (s, t) =C3(t)s3 +C2(t)s2 +C1(t)s+C0(t) (2.6)

YT (s, t) = D3(t)s3 +D2(t)s2 +D1(t)s+D0(t) (2.7)

with the time dependent coefficients Ci(t) and Di(t) for the data a ji and b ji, given by,

Ci(t) = b4it4 +b3it3 +b2it2 +b1it +b0i (2.8)

Di(t) = a4it4 +a3it3 +a2it2 +a1it +a0i . (2.9)

In the collected experimental data, the coefficients have slight discontinuities in
the coral motion and prescribe an initial velocity inconsistent with the assumption
that the fluid is initially at rest. To remedy these issues, an equally spaced sample of
each coefficient is taken, and then a curve is fit through the sample using clamped
splines, enforcing continuity and a zero initial velocity to get consistent initial con-
ditions, as shown in Fig. 2.2 for one coefficient.

The next component in this work is modeling photosynthesis. The concentration
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FIGURE 2.2: Example of coefficient C3(t) from experimental data (blue)
and the smoothed fit used in the modeling (red).

dynamics of the oxygen byproduct are modeled using an advection-diffusion equa-
tion with an additional source term, coupled to the immersed boundary equations,
Eqs. (2.1)-(2.5),

ct +u ·∇c =
1
Pe

∇
2c+

∫
Γ

f̃ (s, t)δ (x−X(s, t))ds . (2.10)

Here, c(x, t) is the oxygen concentration and u(x, t) is the fluid velocity solved for in
Eqs. (2.1)-(2.2). The concentration has no-flux boundary conditions at the top and
bottom of the domain and periodic boundary conditions at the sides of the domain.
The dimensionless Péclet number is defined as Pe = L2γ

D , where the characteristic
length L, frequency γ , and diffusion coefficient D are given in Table 2.1. The last
term in Eq. (2.10) models the tentacle as a source of oxygen, where f̃ (s, t) is the pho-
tosynthesis model chosen. This approach is based on the modeling by Chen and Lai
for surfactants [76]. A similar approach has been used as point sources of concentra-
tion to model bioconvection of motile bacteria [77], and cell aggregation relating to
constructing biofilms [105]. It is a natural approach to coupling an advected and dif-
fused quantity with a fluid-structure interaction solved using the immersed boundary
method.

We choose an oxygen-limited model for photosynthesis,

f̃ (s, t) = κ(1−C(s, t)) , (2.11)

where
C(s, t) =

∫
Ω

c(x, t)δ (x−X(s, t))dx . (2.12)

Here Eq. (2.12) shows the oxygen concentration that has been interpolated onto
the tentacles. It gives a measure of how much oxygen is present locally around the
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tentacles. κ is the absorption rate of oxygen to the tentacles. The amount of pho-
tosynthesis that occurs and the amount of oxygen byproduct produced is dependent
only on the amount of oxygen present locally. Since this model does not depend on
carbon dioxide, there is no need to model and track the carbon dioxide concentration.

We also consider another model to analyze and validate the methodology. The
constant model assumes f̃ (s, t) = κ , where a constant amount of oxygen is produced
at all times. For both models, there is no initial concentration present in the domain.
We also considered a model with no sources or sinks ( f̃ (s, t) = 0) and with an initial
condition of a Gaussian function defined along the tentacles. It was found that the
dynamics of this system did not capture the photosynthesis dynamics. Chapter 3
presents minimal results of this model. Therefore, the novel modeling introduced
by Eq. (2.10) is necessary to capture the photosynthesis dynamics coupled to the
pulsing motion and fluid flow.

2.2 Numerical Method
First, the numerical discretization of the IB method for the fluid flow is discussed,
and then the discretization of the advection-diffusion equation for the oxygen con-
centration dynamics is presented.

There are three components in discretizing the IB method: discretizing the Navier-
Stokes equations, the immersed boundary, and the interaction equations, which pro-
vide the coupling between the two. A projection method is used to solve the Navier-
Stokes equations, Eqs. (2.1)-(2.2). Projection methods, first developed by Chorin
[106], are a standard finite difference approach to solving the Navier-Stokes equa-
tions. In this work, the rotational form of the incremental pressure-correction method
developed by Timmermans et al. is used [107]. The rotational form avoids prescrib-
ing artificial numerical boundary conditions for the pressure. In a periodic channel,
this method is proven to be second-order convergent for the velocity and pressure
[108] and has been used with other immersed boundary problems [109], [110].

The fluid is discretized on a marker and cell grid [111] with a mesh width h and
time step ∆t. We use standard centered finite differences for the discrete gradient,
∇h, and discrete Laplacian, ∇2

h, operators. The immersed boundary is discretized
with N points separated by ∆s ≈ h

2 which is a necessary numerical constraint [51].
The position of the kth point at time tn, on the boundary curve representing the coral
tentacles is denoted Xn

k and the position of the kth tether point at the same time is
similarly denoted XT

n
k .

Choosing a method to compute the force, f , is non-trivial [112] since the force
is dependent on the tentacle location. Therefore, we chose to handle it explicitly and
solve the fully coupled system by taking two half-time steps. In the first step, the
velocity at times tn and tn−1/2 and the pressure and boundary position at time tn are
used to advance the solution to the system to time tn+1/2.
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First, the velocity Un on the boundary Xn is evaluated using the trapezoidal rule
and a regularized delta function, δh to discretize Eq. (2.4),

Un
k = ∑

i j
un

i jδh(Xn
k− xi j)h

2 (2.13)

where the i j subscripts denote the Cartesian grid points on the fluid grid. The bound-
ary is then advanced a half time step using forward Euler,

Xn+1/2
k = Xn

k +
∆t
2

Un
k .

The force, Fn+1/2 is computed on this boundary, Xn+ 1
2 , using Eq. (2.5),

Fn+1/2
k = κT (XT

n+1/2
k −Xn+1/2

k )+κd

(
XT

n+1/2
k −XT

n−1/2
k

∆t
−Un

k

)
.

and then spread to the fluid grid to evaluate f n+ 1
2 , using the trapezoidal rule for Eq.

(2.3),

f n+1/2
i j =

N−1

∑
k=1

(
Fn+1/2

k δh(X
n+1/2
k − xi j)+Fn+1/2

k+1 δh(X
n+1/2
k+1 − xi j)

)
∆s
2

. (2.14)

Then, the Navier-Stokes equations Eqs. (2.1)-(2.2) are solved at time tn+1/2 for
the fluid velocity un+ 1

2 and pressure pn+ 1
2 using the force f n+ 1

2 . First, a second-order
backwards difference formula is used to advance Eq. (2.1) a half time step for an
intermediate velocity field ũn+1/2 at time tn+1/2 using the velocities, un and un−1/2

at times tn and tn−1/2, respectively, and the pressure at time tn, pn,

1
∆t

(3ũn+1/2−4un +un−1/2)+2(un ·∇h)un− (un−1/2 ·∇h)un−1/2− 1
Re

∇
2
hũn+1/2

+∇h pn = f n+1/2 .

Using the intermediate velocity, ũn+1/2, a Poisson equation is then solved for the
auxiliary function ψn+1/2,

∇
2
hψ

n+1/2 =
3
∆t

∇h · ũn+1/2 ,

with mixed homogeneous Neumann (on the top and bottom of the rectangular do-
main) and periodic (on the sides of the rectangular domain) boundary conditions.
Finally, the auxiliary function, ψn+1/2, is used to update the pressure and velocity at
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time tn+1/2,

pn+1/2 = ψ
n+1/2 + pn− 1

Re
∇h · ũn+1/2 ,

un+1/2 = ũn+1/2− 1
3

∆t∇hψ
n+1/2 .

which enforces the incompressibility condition, Eq. (2.2).
In the second step, the velocity at times tn+1/2 and tn, and pressure and boundary

position at time tn+1/2, evaluated in the first step, are used to advance the solution of
the coupled system to time tn+1 using similar methodology as in the first step. The
boundary velocity Un+ 1

2 on the boundary Xn+ 1
2 is computed using the trapezoidal

rule, similar to Eq. (2.13), using the velocity solved for in the previous step, un+ 1
2 .

The boundary is then advanced a full time step using this velocity, Xn+1 = Xn +

∆tUn+ 1
2 . Finally, the Navier-Stokes equations Eqs. (2.1)-(2.2) are solved at time

tn+1 for fluid velocity un+1 and pressure pn+1 using the force f n+ 1
2 using the same

method as in the first step,

1
∆t

(3ũn+1−4un+1/2 +un)+2(un+1/2 ·∇h)un+1/2− (un ·∇h)un− 1
Re

∇
2
hũn+1

+∇h pn+1/2 = f n+1/2 ,

∇
2
hψ

n+1 =
3
∆t

∇h · ũn+1 ,

pn+1 = ψ
n+1 + pn+1/2− 1

Re
∇h · ũn+1 ,

un+1 = ũn+1− 1
3

∆t∇hψ
n+1 .

Note once again, an auxiliary function ψn+1 has been introduced to enforce the
incompressibility condition.

An analytic delta function would not capture the interaction of the fluid grid
and the boundary in Eqs. (2.13)-(2.14) because the immersed boundary Lagrangian
points do not perfectly align with the Cartesian fluid grid. Therefore a regularized
delta function is used at x = (x1,x2), defined as δh(x) = δh(x1)δh(x2) where δh is a
smooth continuous function with bounded support in the form δh(x) = 1

hφ( x
h). In

this work φ(r) is defined as,

φ(r) =

{
1
4(1+ cos( rπ

2 )) | r | ≤ 2
0 otherwise

.
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This φ(r) is an approximation for the analytically found second order φa(r),

φa(r) =



1
8

(
5+2r−

√
−7−12r−4r2

)
−2≤ r ≤−1

1
8

(
3+2r+

√
1−4r−4r2

)
−1≤ r ≤ 0

1
8

(
3−2r+

√
1+4r−4r2

)
0≤ r ≤ 1

1
8

(
5−2r−

√
−7+12r−4r2

)
1≤ r ≤ 2

0 otherwise

.

We choose to use φ rather than φa because it cuts down computational time. Further
details for this choice of φ(x) are discussed in Peskin 2002 [51].

Once the fluid-structure interaction equations are solved, we use the fluid velocity
and coral tentacle locations to solve for the oxygen concentration. Strang splitting is
used to solve the advection-diffusion equation, Eq. (2.10) [113]. Using Strang split-
ting, the advection and diffusion operators are split so that each may be solved using
different numerical methods. The forcing term in the advection-diffusion equation
involves the concentration dynamics defined on the boundary, and therefore solving
implicitly would be challenging. A similar approach as used to discretize the IB
method is used.

The solution is advanced a half time step in order to find the concentration so-
lution, cn+1/2, using cn to compute f̃ n

k using either the oxygen-limited model, Eq.
(2.11), or the constant model. In the oxygen-limited model, the trapezoidal rule is
used to discretize Eq. (2.12) to evaluate Cn

k . First, a quarter step is taken and the
advection equation is solved using an explicit upwinding method,

c∗ = cn− ∆t
4
(un

1c̃x
n +un

2c̃y
n) .

The discrete derivatives, c̃x and c̃y, are determined using a third-order weighted es-
sentially non-oscillatory (WENO) scheme developed by Lui et. al. [114]. The
WENO scheme takes the weighted average of all possible, depending on the desired
order of accuracy, finite difference stencils as the derivative approximation. The
stencils that result in larger magnitude derivative approximations are given a smaller
weight so that the solution does not propagate spurious oscillations. Then, a half time
step of Crank-Nicolson, an implicit method, is used to solve the diffusion equation
with the source term kept fully explicit,

c∗∗− c∗

∆t
=

1
Pe

∇
2
h(c
∗∗+ c∗)+

N

∑
k=1

f̃ n
k δh(Xn

k− xi j)∆s .
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Then, another quarter time step of the advection equation is used to compute cn+1/2,

cn+1/2 = c∗∗− ∆t
4
(un

1c̃x
∗∗+un

2c̃y
∗∗) .

In the second step, cn+1/2 is used to find f̃ n+1/2
k which is then used to advance

the concentration solution a full time step in a similar manner as in the previous step
to find cn+1,

c∗ = cn− ∆t
2
(un

1c̃x
n +un

2c̃y
n) ,

c∗∗− c∗

2∆t
=

1
Pe

∇
2
h(c
∗∗+ c∗)+

N

∑
k=1

f̃ n+1/2
k δh(X

n+1/2
k − xi j)∆s,

cn+1 = c∗∗− ∆t
2
(un

1c̃x
∗∗+un

2c̃y
∗∗) .

Here, we have presented the coupled system advanced one-time step, solving for
the velocity, pressure, and oxygen concentration. The system is then solved over
multiple time steps until the desired final time is reached.

2.2.1 Convergence Studies
In order to validate the methodology, a convergence study is conducted for a puls-
ing coral at Re = 8 up to final time 0.4, 40% through a pulse on a 3× 3 domain.
The grid sizes used for the fluid grid are h = 0.03, 0.015, 0.0075, and 0.00375. The
number of points to discretize a tentacle is given by N = d2/he. The spring constant
in Eq. (2.5) is dependent on the number of immersed boundary points, defined as
κT = CT

ρL3γ2 N2 and the damping coefficient in Eq. (2.5) is dependent on the spring
constant, κd =Cd

√
κT [66]. For stability, the time step ∆t is dependent on the spring

constant, ∆t = γCt√
κT

[66]. CT , Cd , and Ct are constants that need to be empirically cho-
sen. CT =100 is chosen to be as large as necessary, and Ct = 1/106.4057 is chosen
to be as small as necessary. Cd = 5 is chosen to provide damping to the springs for
stability. The error at mesh width h, for a quantity Qh is approximated as Qh−Qh/2.

The convergence results for the velocity field are shown in Table 2.2. We would

TABLE 2.2: Convergence results for the velocity field. The error and order
of convergence is presented in both the L2 and L∞ norms for both
components of the velocity field, u1 and u2.

h ∆t ||u1h−u1h/2||2 order ||u2h−u2h/2||2 order ||u1h−u1h/2||∞ order ||u2h−u2h/2||∞ order
0.0300 2.50 ×10−6 3.42 ×10−1 - 4.89 ×10−1 - 1.72 ×100 - 1.04 ×100 -
0.0150 1.25 ×10−6 1.63 ×10−1 1.06 1.93 ×10−1 1.34 1.20 ×100 0.52 6.11 ×10−1 1.06
0.0075 6.25 ×10−7 8.09 ×10−2 1.01 8.47 ×10−2 1.19 9.38 ×10−1 0.35 3.44 ×10−1 1.01
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expect above first order in the L2 norm and first order in the L∞ norm for an idealized
case assuming Stokes flow and a closed immersed boundary [68], [115]. However,
in this work, the Navier-Stokes equations are used and coupled to an open immersed
boundary. In prescribing the motion of the coral tentacles, there is a substantial initial
acceleration to allow for accuracy of the coral motion. This initial motion yields sig-
nificant initial errors in the tether points and thus in the fluid, particularly for a coarse
mesh seen in the convergence study. However, as we refine the grid, the method is
converging at approximately the expected order.

A corresponding convergence study is conducted for the concentration dynamics
coupled to the flow up to the final time t = 0.4. The previous study’s velocity fields
and boundary positions are used, so the concentration is solved using the same grid
sizes used for the fluid flow, h = 0.03, 0.015, 0.0075, and 0.00375. The time step,
∆t = h

240 is significantly larger than for the velocity solution. The smaller time step
used for the IB simulations is necessary for the stability of the velocity fields due to
the large spring constant but is not necessary for computing the concentration dy-
namics. The time step chosen satisfies the CFL condition of the advection equation.

The error and the norms are computed as in the velocity convergence study. The
convergence study results for the concentration with Pe = 1 and Pe = 400 are shown
in Table 2.3. As the Péclet number increases, the solutions have sharper gradients at
the tentacles, which slightly degrades the order of convergence observed. However,
one can observe that the solution is converging to first order.

To understand what grid sizes need to be used for the simulations, we also need

TABLE 2.3: Convergence results for the concentration field solved using
the oxygen-limited source term. The error and order of convergence is
presented in both the L2 and L∞ norms for Pe = 1 and Pe = 400.

Pe = 1 Pe = 400
h ∆t ||ch−ch/2||2 order ||ch−ch/2||∞ order ||ch−ch/2||2 order ||ch−ch/2||∞ order
0.0300 1.25 ×10−4 6.30 ×10−4 - 1.07 ×10−3 - 2.62 ×10−2 - 9.87 ×10−2 -
0.0150 6.25 ×10−5 3.34 ×10−4 0.92 7.76 ×10−4 0.46 1.39 ×10−2 0.92 6.19 ×10−2 0.67
0.0075 3.12 ×10−5 6.65 ×10−5 2.33 2.32 ×10−4 1.74 7.26 ×10−3 0.94 4.54 ×10−2 0.45

to consider the relative error. In Table 2.4, the relative error,

|| Qh−Qh/2 ||
|| Qh/2 ||

,

for a quantity Qh approximated at spatial grid h in the L2 and L∞ norm are shown
for Re = 8 and Pe = 1 and 400. The relative L2 error of the velocities are small, 5%
or less at the two most refined meshes. The relative L∞ error is decreasing but still
relatively large for the horizontal velocity. However, this error is localized around
the tentacles. In the simulations shown in Chapter 3, the spatial grid chosen for the
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velocity simulations is the intermediate spatial grid h = 0.015 and a time step of
∆t = 2.666× 10−6. A time step approximately double that of the time step in the
convergence study is chosen, as most of the error is due to the spatial discretization,
and this choice does not significantly modify the results. This time step choice allows
for shorter wall-clock times for the simulations.

The relative errors for the concentration are also presented in Table 2.4. The
L2 and L∞ errors with Pe = 1 is always less than 4%. The concentration dynamics
have much sharper gradients near the tentacles as the Péclet number increases. So
the relative L2 error for Pe = 400 has much larger errors for coarse grids but less
than 6% for the finest mesh. The relative L∞ error similarly has large values for the
coarse grids but decreases for the most refined mesh. In this case, it is clear that we
need to use the most refined mesh for the larger Péclet numbers, so the finest mesh,
h= 0.0075, with a time step of ∆t = 5.3203×10−4 is chosen for all the concentration
simulations. Again, a larger time step is chosen for the simulations since most of the
error is due to spatial discretizations. In order to couple the fluid grid with a coarser
mesh to the finer concentration grid, the velocity is interpolated onto the finer mesh
using a second-order method.

TABLE 2.4: Relative error for the fluid velocity with Re = 8 and
concentration dynamics with Pe = 1 and Pe = 400 using the L2 and L∞

norms. The time steps used to compute the velocity and concentration
simulations are ∆t = h/12000 and ∆t = h/240, respectively.

Re = 8 Pe = 1 Pe = 400 Re = 8 Pe = 1 Pe = 400
h ||u1h−u1h/2 ||2

||u1h ||2

||u2h−u2h/2 ||2
||u2h ||2

||ch−ch/2 ||2
||ch ||2

||ch−ch/2 ||2
||ch ||2

||u1h−u1h/2 ||∞
||u1h ||∞

||u2h−u2h/2 ||∞
||u2h ||∞

||ch−ch/2 ||∞
||ch||∞

||ch−ch/2 ||∞
||ch ||∞

0.0300 0.099 0.075 0.016 0.227 0.429 0.145 0.032 0.312
0.0150 0.050 0.032 0.009 0.113 0.307 0.089 0.023 0.163
0.0075 0.026 0.014 0.002 0.059 0.253 0.051 0.007 0.107



Chapter 3

Two-Dimensional Results

Numerical simulations and analyses were conducted to study the interplay of the
photosynthesis of the symbiotic algae and the fluid flow created by the pulsing soft
corals. Fluid flow results are provided in Section 3.1 and analysis of the fluid mixing
is provided in Section 3.2. We use the periodic steady-state velocity simulations to
quantify the mixing using a dynamical systems approach. The results of the simu-
lations of the pulsing coral coupled with the photosynthesis model are provided in
Section 3.3. We analyze the dynamics in order to understand the role of mixing in
photosynthesis. These results have been included in the paper that has been submit-
ted [104].

3.1 Velocity Simulations
Here, we present simulations of the fluid flow of the pulsing coral. The Reynolds
number is varied in these simulations, Re = 1, 4, 8, 12, and 16, around the bio-
logically relevant Reynolds number, Re ≈ 8. The simulations are run on a 3.75 ×
9 domain. This choice of domain size is discussed below. These simulations are
run until they reach a quasi-steady state and are time-periodic. For Re = 1, 4, and
8, steady-state is achieved by nine pulses, and for Re = 12 and 16, steady-state is
achieved by twenty-four pulses. Snapshots of the velocity field during the ninth
pulse for the Re = 8 simulation are shown in Fig. 3.1.

Average horizontal and vertical velocities on vertical and horizontal lines, respec-
tively, for Re = 1, 8, and 16 at varying distances from the pulsing coral are presented
in Fig. 3.2. Results of the last three pulses of each simulation are presented, de-
noted by the shading. The vertical dashed black lines indicate the change of phase
during each pulse. The first dotted black line in each pulse indicates the transition
from closing to opening, and the second line indicates the transition from opening to
resting. These results show that the flow has reached a periodic steady state. Re = 4
and 12, not presented, have also reached a periodic steady state. These time-periodic
solutions will be analyzed below.

We observe more reversible flow, as expected, for the lower Reynolds numbers.
In Fig. 3.2(b)-(d), the solid blue line presents the average vertical velocity directly

18
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FIGURE 3.1: The fluid flow of a pulsing soft coral at Re = 8 at (a) 10%, (b)
30%, (c) 50%, and (d) 80% of a pulse. The color map shows the
dimensionless vorticity and the vectors give the dimensionless velocity
field in the simulation. Note that these panels only present a subset of the
full domain.

FIGURE 3.2: Average dimensionless velocities along lines at varying
distances from the pulsing coral during the last three pulses of the
simulations for (b,e) Re = 1, (c,f) Re = 8, and (d,g) Re = 16 . (b)-(d) The
average vertical velocities on the horizontal lines shown in (a). (e)-(g) The
average horizontal velocities on the vertical lines shown in (a). The
different colors and line styles correspond to the lines shown in (a).

above the coral. There is less backflow for Re = 8 and 16 than for Re = 1 since these
cases have more inertia in the flow. In Fig. 3.2(b) at Re = 1, the average vertical
velocity two tentacle lengths above the top of the coral (red dashed line) is small
in magnitude and slightly oscillates between positive and negative, mirroring the
behavior directly above the coral. In Fig. 3.2(c)-(d) at Re = 8 and 16, the red dashed
line remains positive, and as the Reynolds number increases, the magnitude of the
positive average velocity increases. Re = 16 is the only case in which the average
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FIGURE 3.3: Average dimensionless vertical velocities over time for
varying domain heights (DH) along the horizontal lines presented in Fig.
3.2(a) at (a) y = 1, (b) y = 3, (c) y = 5, and (d) y = 7 for Re = 1. The domain
width was kept constant at 3.75.

vertical velocity four tentacle lengths above the top of the coral (yellow dotted line)
is noticeably greater than zero. For Re = 8 and 16, there is continuous upward flow
away from the coral, and as the Reynolds number increases, the magnitude of the
upward flow increases. This upward flow is important as the contributions of this
flow to the photosynthesis dynamics are analyzed.

As stated above, to determine the appropriate domain size for the simulations,
the effect of the velocity boundary conditions on the flow results is examined by
conducting a study of varying domain sizes. Both the length and width of the domain
were varied for Re = 1, Figs. 3.3 and 3.4, and for Re = 16, Figs. 3.5 and 3.6, to
make sure that the results presented in Fig. 3.2 were convergent in the domain size.
This domain study uses a coarser resolution than the final simulations to speed up
the computation time. We chose the domain size for the final simulations such that
the consecutive average velocities along the horizontal and vertical lines shown in
Fig. 3.2(a) were not qualitatively different. The average horizontal velocities along
vertical lines in domains with varying widths are shown in Figs. 3.4 and 3.6. The
behavior is qualitatively similar, and therefore a domain width of 3.75 is chosen.
We show simulations on domains with varying heights in Figs. 3.3 and 3.5. One
can observe that the average velocities are converging in an oscillatory fashion for
the three largest domains, i.e., the distance between consecutively larger domains
is getting smaller, so a domain height of 9 is chosen. In Fig. 3.5(c)-(d), there are
some different dynamics than those observed in Fig. 3.2(d), but this inaccuracy is
attributed to the coarse mesh used.

3.2 Mixing Analysis
Next, we quantify how the fluid flow contributes to transport away from the coral
tentacles as we vary the Reynolds number. Flow trajectories are used to build a
Poincaré Map. This tool is commonly used in dynamical systems to characterize
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FIGURE 3.4: Average dimensionless horizontal velocities over time
varying domain widths (DW) along the vertical lines presented in Fig.
3.2(a) at (a) x = 1.25, (b) x = 1.5, and (c) x = 1.75 for Re = 1. The domain
height was kept constant at 9.

FIGURE 3.5: Average dimensionless vertical velocities over time for
varying domain heights (DH) along the horizontal lines presented in Fig.
3.2(a) at (a) y = 1, (b) y = 3, (c) y = 5, and (d) y = 7 for Re = 16. The
domain width was kept constant at 3.75

FIGURE 3.6: Average dimensionless horizontal velocities over time
varying domain widths (DW) along the vertical lines presented in Fig.
3.2(a) at (a) x = 1.25, (b) x = 1.5, and (c) x = 1.75 for Re = 1. The domain
height was kept constant at 9.
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the transport and mixing dynamics of fluid flow [116]. The role of fluid inertia and
viscosity is examined by analyzing fluid flows with varying Reynolds numbers.

A Poincaré map tracks the location of the flow trajectories after one period. In
this work, the trajectory locations are tracked at the beginning of every pulse. We
integrate the trajectories using a second-order Runge-Kutta scheme and interpolate
the velocity using a second-order interpolation scheme, commonly used in the IB
method [51].

Stable and unstable invariant manifolds of the Poincaré map are computed. A
fixed point on the separatrix (x = 0) is computed, and a thin horizontal line of points
is initialized at the fixed point to find the stable manifold. The points were mapped
backward in time to compute the stable manifold using second-order Runge Kutta
and a second-order interpolation scheme used in the immersed boundary method
[51]. The tentacles are known to generate an unstable manifold. Points were ini-
tialized along the tentacle. The points were mapped forward in time to compute
the unstable manifold. In computing both the stable and unstable manifold for each
Reynolds number simulation, the number of initialized points and the number of
iterations forwards or backward in time were adjusted empirically.

These manifolds define an interior and exterior region in phase space. The trans-
port and mixing between these regions are controlled by capture and escape lobes,
areas between the stable and unstable manifolds. The fluid can only pass between
these regions by being mapped into or out of these lobes. The invariant manifolds
and lobes of the Poincaré map provide a deeper understanding of how fluid is trans-
ported during one pulse [116].

In Fig. 3.7, the stable and unstable manifolds for Re = 1, 4, 8, 12, and 16 are
presented. Half of the domain is plotted as the dynamics are symmetric across the y-
axis. The interior region is denoted in light and dark green, and the exterior region is
denoted in yellow and white. The quantity of interest is the amount of fluid leaving
and entering the green region near the coral. This quantity gives a metric to the
amount of fluid near the coral polyp replenished over a pulse. A larger amount of
fluid replenished indicates more mixing, while a small amount of fluid indicates less
mixing.

The area of the capture lobe (dark green) is the amount of fluid that has entered
the interior region (dark green and light green) from the exterior region (white and
yellow) during one pulse. The area of the escape lobe (yellow) is the amount of
fluid that has escaped from the interior region. Since the fluid is incompressible, the
capture and escape lobes have approximately (due to numerical error) the same area.
To quantify the amount of fluid replenished in the interior region over one pulse we
compute,

% of the fluid entering interior region =
area of capture lobe

area of interior region
×100 .
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The results for all Reynolds numbers simulated are presented in Table 3.1. As
the Reynolds number increases, the percentage of the fluid entering the interior re-
gion increases, indicating more mixing due to the increased inertia in the flow. Note
that for Re = 12 and 16, there is an overlap in the capture and escape lobes. These
areas are omitted in the calculation, as only the amount of fluid that has escaped and
not re-entered the interior region is of interest. Observe the benefit as the Reynolds
number increases between Re = 1, 4, and 8 compared to Re = 8, 12, and 16. These
results indicate that the biologically relevant Re ≈ 8 is advantageous for mixing, a
result that will be observed in the concentration dynamics in Section 3.3.

TABLE 3.1: Area of interior regions, capture lobes, and percent of fluid
entering the interior region.

Reynolds Area of Area of % of the fluid entering
number interior region capture lobe interior region

1 0.5485 0.0085 1.55
4 0.3790 0.1671 44.09
8 0.3581 0.2515 70.23

12 0.3648 0.2895 79.34
16 0.3816 0.3127 81.95

FIGURE 3.7: Analysis of Poincaré Maps for (a) Re = 1, (b) Re = 4, (c) Re =
8, (d) Re = 12, and (e) Re = 16. Half of the domain is presented. The stable
manifold (red) and unstable manifold (blue) are plotted as well as the
location of the tentacle (black). The interior regions, capture lobes, and
escapes lobe are denoted with different colors.
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3.3 Photosynthesis Simulations
We model the photosynthesis of the symbiotic algae using an advection-diffusion
equation for the oxygen byproduct. Since the pulsing coral flow has reached a quasi-
steady state and has become time-periodic, the last pulse is coupled to the oxygen
concentration dynamics. A more refined grid than used in the velocity simulations is
needed to resolve the oxygen concentration dynamics near the tentacles. During the
final pulse for each Reynolds number, the velocity field is interpolated from a 250 ×
600 grid onto a 500 × 1200 grid. The concentration is simulated for ten pulses, with
no initial concentration in the domain unless otherwise stated. The Péclet number
is varied in the concentration simulations coupled to each flow field. The Péclet
numbers simulated are Pe = 1, 10, 100, 200, and 400 for both the constant and
oxygen-limited photosynthesis models, for a total of 50 simulations. Additionally,
we show some limited results from the Gaussian model, discussed below. For the
oxygen concentration, the boundary conditions on the domain are periodic on the
sides and no flux on the top and bottoms of the domain.

FIGURE 3.8: The concentration dynamics of the oxygen-limited model
with Re = 8 and Pe = 100 at (a) 10 %, (b) 30%, (c) 50%, and (d) 80 %
through the tenth pulse. The vectors give the dimensionless velocity field
and the color map shows the dimensionless oxygen concentration. Note
that this panel only shows a subset of the domain.

In Fig. 3.8, snapshots of the velocity field and oxygen concentration for the oxygen-
limited model for Re = 8 and Pe = 100 are presented during the final pulse. Com-
paring these results to Fig. 3.1, it is clear that the vortices in the fluid flow trap the
concentration and play an essential role in the concentration dynamics.

In Fig. 3.9, the concentration dynamics for Pe = 100 at the end of the tenth
pulse for varying Reynolds numbers and the two photosynthesis models, constant
and oxygen-limited, are shown. For smaller Reynolds numbers, the vortices do not
develop, and the oxygen stays in the vicinity of the coral throughout the simulation,
while for larger Reynolds numbers, the concentration is transported away from the
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FIGURE 3.9: The concentration dynamics at the end of ten pulses for Re =
1, 4, 8, 12, and 16 (from left to right) for Pe = 100. The color map shows
the dimensionless oxygen concentration for each photosynthesis model,
(a)-(e) the constant model and (f)-(j) the oxygen-limited model. The
vectors give the dimensionless velocity field at the final time. Note that
each panel only shows a subset of the domain.

FIGURE 3.10: The concentration dynamics at the end of ten pulses for Re
= 1, 4, 8, 12, and 16 (from left to right) for Pe = 100. The color map shows
the dimensionless oxygen concentration for the Gaussian model. The
vectors give the dimensionless velocity field at the final time. Note that
each panel only shows a subset of the domain.
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FIGURE 3.11: Relative error in the dimensionless total mass of oxygen
versus time for varying Reynolds numbers for (a) Pe = 1, (b) Pe = 100, and
(c) Pe = 400.

coral tentacles. In these cases, the concentration is trapped in the vortices pushed
away from the coral. Since the constant model is not limited, more oxygen is present
in the domain and a larger buildup around the tentacles.

Results where the coral tentacle is not a source of oxygen are shown at the last
pulse in Fig. 3.10. The initial condition is given as:

c(x,0) =
∫ `

0
0.1δ̃ (x−X(s,0))ds

Where δ̃ (r) = e(−(r1)
2/π)e(−(r2)

2/π) for r = (r1,r2). This initial condition gives a
Gaussian type function defined along the coral tentacles; thus, this is called the Gaus-
sian model. One can see that these results do not capture the results observed in Fig.
3.9 since the tentacles are not producing oxygen. Therefore it is necessary to have
models and methods where the coral tentacles are a source of oxygen, The rest of
this chapter will focus on the results from the constant and oxygen-limited models.

The constant model is used for validation for all Reynolds and Péclet numbers
since the total amount of oxygen in the domain over time is known. In Fig. 3.11 the
error over time is shown for varying Reynolds and Péclet numbers. The percent mass
error is the relative mass error, defined in Chapter 2, multiplied by 100, which gives
a percentage rather than a ratio. There is an initial spike in this error since there is
initially very little oxygen in the domain. However, one can see that even in the high
Péclet number and high Reynolds number regimes, the mass error is less than 7%.
Results for Pe = 10 and 200 are not shown here, but the errors fall within the ranges
for the cases shown in Fig. 3.11. Other numerical methods were considered and
tested to discretize the advection term in Eq. (2.10), but large errors were observed
in the total mass and therefore the third-order WENO scheme is chosen as it greatly
improved this result.
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The interesting qualitative results observed above resulted in a more quantita-
tive analysis of the concentration dynamics to understand the interplay between the
Reynolds and Péclet numbers in the two photosynthesis models. We computed sev-
eral different quantities in each simulation: the maximum concentration to analyze
the dynamics of the oxygen around the tentacles, the evaluation of the source term,
and the average concentration in the domain to quantify how much oxygen is being
produced in each parameter regime for the oxygen-limited model, the variance in
the oxygen concentration as a measure of mixing, and the transport across horizon-
tal lines at varying heights to quantify how well the oxygen is transported away in
different parameter regimes.

FIGURE 3.12: The maximum dimensionless concentration in the domain
in the oxygen-limited model for (a) Re = 8 and varying Péclet numbers and
(b) Pe = 100 and varying Reynolds numbers.

FIGURE 3.13: Maximum concentration during the final pulse for varying
Péclet and Reynolds numbers for the (a) constant model and (b)
oxygen-limited model.
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The maximum concentration is a metric of how much oxygen concentration
builds up around the tentacles and thus indicates how well oxygen is transported
away from the tentacles. Less oxygen around the tentacles allows for more photo-
synthesis in the oxygen-limited model. The maximum concentration in the domain
over time is presented in Fig. 3.12 for the oxygen-limited model. In Fig. 3.12(a)
the Reynolds number is fixed as Re = 8 and the Péclet number is varied and in Fig.
3.12(b) the Péclet number is fixed as Pe = 100 and the Reynolds number is varied. In
Fig. 3.12(a), as the Péclet number increases, the maximum concentration does too.
This trend is consistent in time. Since a smaller Péclet number indicates a more dif-
fusive driven flow, the concentration diffuses away from the tentacles more quickly.
For a larger Péclet number, a larger accumulation of concentration is entrained in
the fluid around the tentacles. In Fig. 3.12(b), as the Reynolds number increases,
the maximum concentration decreases. Due to the inertia in the flow, more concen-
tration is transported away from coral tentacles for a larger Reynolds number. The
maximum concentration fluctuates more in time for larger Reynolds numbers due to
the periodic pulsing. Furthermore, the difference between the maximum concentra-
tions is more pronounced in Fig. 3.12(a), indicating that the variations in the Péclet
number contribute more significantly to the transport of oxygen away from the ten-
tacle. These quantities are reaching a quasi-steady state in time and the maximum
concentration during the final pulse is given in Fig. 3.13 for Re = 1, 4, 8, 12, and 16
and Pe = 1, 10, 100, 200, and 400 for the constant and oxygen-limited models. The
trends shown in Fig. 3.12 are reflected in Fig. 3.13 for varying Reynolds and Péclet
numbers for both models, but note that the oxygen produced in the oxygen-limited
model is significantly less. In the higher Péclet regime, there is much more variabil-
ity between Re = 1, 4, and 8, compared to Re = 8, 12, and 16, which indicates that
Re = 8 is advantageous for mixing in the high Péclet regime. Since Re ≈ 8 and Pe
≈ 400 are the biologically relevant parameters, these results suggest that the corals
operate in a desirable mixing regime.

The evaluation of the source term in the oxygen-limited model,

S(t) =
∫

Γ

κ(1−C)δ (x−X(s, t))ds ,

shown in Fig 3.14, is proportional to the amount of photosynthesis occurring by the
symbiotic algae in this model. Similarly, the spatial average of the concentration,
presented in Fig. 3.15, is a measure of the amount of oxygen in the domain,

〈c(t)〉=
∫

Ω
c(x, t)dx∫

Ω
dx

.

Both of these quantities allow one to study which parameters lead to more photosyn-
thesis occurring.
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The evaluation of the source term, Fig. 3.14(a), and the spatial average of concen-
tration, Fig. 3.15(a), over time, is presented for Re = 8 and varying Péclet numbers
for the oxygen-limited model. As the Péclet number increases, the amount of oxy-
gen produced decreases since there is an accumulation of the concentration around
the tentacle, as seen in Fig. 3.12(a), inhibiting the production of more oxygen. The
oscillations of the source term for larger Péclet numbers are also consistent with the
oscillations of the maximum concentration in Fig. 3.12(a), showing that the flow
field is contributing more to the dynamics in the large Péclet number regime. The
evaluation of the source term, Fig. 3.14(b), and the spatial average of concentration,
Fig. 3.15(b), is presented over time for Pe = 100 and varying Reynolds number for
the oxygen-limited model. As the Reynolds number increases, more oxygen is pro-
duced as the inertia in the fluid advects the oxygen away from the tentacles, as seen
in Fig. 3.12(b), allowing more photosynthesis to occur.

FIGURE 3.14: Evaluation of the source term over time in the
oxygen-limited model for (a) Re = 8 and varying Péclet numbers and (b) Pe
= 100 and varying Reynolds numbers. (c) The total dimensionless oxygen
produced during the tenth pulse for varying Péclet and Reynolds numbers.

FIGURE 3.15: Spatial average of the dimensionless concentration in the
domain over time for the oxygen-limited model for (a) Re = 8 and varying
Péclet numbers and (b) Pe = 100 and varying Reynolds numbers. (c)
Spatial and temporal average of the dimensionless concentration in the
domain during the tenth pulse for varying Péclet and Reynolds numbers.

In Fig. 3.14(c), the source term is integrated in time over the tenth pulse for each
Reynolds and Péclet number to evaluate the total amount of oxygen produced during
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the final pulse. The spatial and temporal average of the oxygen concentration in the
domain over the tenth pulse is presented in Fig. 3.15(c). The amount of oxygen
produced and average concentration decreases with increasing Péclet number and
increases with increasing Reynolds number. The difference in the Péclet numbers
affects oxygen production more so than the difference in Reynolds number, which
is consistent with the observation in the maximum oxygen concentration. For small
Péclet numbers, the results are very similar over varying Reynolds numbers, while
for the larger Péclet numbers, the average concentration and oxygen produced are
more dependent on the Reynolds number. In both Fig. 3.14(c) and Fig. 3.15(c), it
is observed that the amount of oxygen produced in the high Péclet number regime
is similar for Re = 8, 12, and 16, and considerably less for Re = 1 and 4, again
indicating that the biologically relevant Reynolds number, Re ≈ 8, is an efficient
choice for photosynthesis when the Péclet number is large. These trends were also
reflected and noted in Fig. 3.12(c).

The next quantity presented and discussed is the concentration variance,

var(c) =
√∫

Ω

(c(x, t)−〈c(t)〉)2dx ,

a measure of how mixed the system is [117]. To be able to compare between models
with varying parameters and different amounts of oxygen present in the domain the
adjusted variance is used,

ad jvar(c) =

√∫
Ω

(
c(x, t)
〈c(t)〉

−1
)2

dx .

Ideal mixing would be when the oxygen is mixed into the domain from the tentacle
to a steady state instantaneously, c(x, t) = 〈c(t)〉 and ad jvar(c) = 0. The adjusted
variance of the concentration gives a measure of how far away the solution is from
this ideal mixing which takes the role of oxygen diffusion into account, unlike the
analysis of the fluid flow conducted above. The temporal average of the concen-
tration variance during the final pulse for all Reynolds and Péclet numbers is given
in Fig. 3.16 for the constant and oxygen-limited models. Smaller Péclet numbers
have lower variance values, suggesting that diffusion is an ideal mixer compared to
advection. For larger Péclet numbers, larger Reynolds numbers have more mixing.
This result is consistent with the previous metrics that indicated more mixing with
larger Reynolds numbers. The benefit from Re = 1 to 4 and Re = 4 to 8 is consid-
erable, but there seems to be less benefit between Re = 8 and 12 and Re = 12 and
16. These larger Reynolds numbers result in more energy being expended. Since
Re ≈ 8 and Pe ≈ 400 are the biologically relevant parameters, these results suggest
that the corals operate in a desirable mixing regime without expending extra energy.
This result indicates that the biologically relevant parameters are also advantageous
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for mixing in addition to photosynthesis. These results are intuitive, Figs. 3.13(b)
and 3.14(c) showed that for small Péclet numbers, less oxygen is built up around
the tentacles resulting in more oxygen production and that in the high Péclet number
limit, larger Reynolds number have less oxygen buildup around the tentacles and
more oxygen production. These results show that the adjusted variance metric cap-
tures the mixing trends through the lens of photosynthesis and oxygen production.

FIGURE 3.16: Temporal average over the last pulse of the dimensionless
adjusted concentration variance in the domain for the (a) constant and (b)
oxygen-limited models.

Another useful way of analyzing the photosynthesis dynamics is quantifying how
far away the oxygen is transported from the coral. This metric will take into account
the role of the fluid flow away from the corals, which is relevant to understanding
coral colony dynamics. The previous results presented focused on the dynamics
closer to the coral polyps, which are more relevant to individual polyps. We con-
sider a box B in the domain that spans the width of the domain, starts at y = yo and
ends at the top of the domain. Then, the amount of oxygen in that box at time t is∫

B c(x, t)dx and the amount of oxygen leaving and entering the box is,∫
B

∇ · (c(x, t)u(x, t))dx =
∫

∂B
(c(x, t)u(x, t)) ·n dS .

Since the sides of the box are periodic boundaries and the top of the box has a no
flux boundary condition, the only part of the box where oxygen enters and exits is
through y = yo. Thus, the amount of oxygen in B at time t is defined as,

cB(yo, t) =
∫ t

0

∫ 1.875

−1.875
c(x,yo, t ′)u2(x,yo, t ′) dx dt ′ ,

since there is no initial oxygen in B. The limits -1.875 and 1.875 show that we
are integrating over the width of the domain. This equation also gives the total net
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amount of oxygen that has passed through the line y = y0 by time t. To compare
between simulations, the percentage of oxygen in B of the total oxygen in the domain
at time t is computed as

%cB(yo, t) =
cB(yo, t)∫

Ω
c(x, t)dx

×100 .

FIGURE 3.17: Percentage oxygen in B over time, given in dimensionless
form, for Re = 8, with varying Péclet numbers for (a) yo = 1, (b) yo = 2,
and (c) yo = 4.

The results presented are for the oxygen-limited model. These quantities were
also computed for the constant model. However, the behavior is similar to the
oxygen-limited results, so they are omitted here. The dynamic results with Re =
8 and varying Péclet numbers are shown in Fig. 3.17 for yo = 1, 2, and 4. For yo =
1, the box starts right above the tips of the coral tentacles when fully contracted, yo
= 2 is one tentacle length above the fully contracted coral polyp, and yo = 4 is three
tentacle lengths above the fully contracted coral polyp. The percentage of oxygen in
the box when yo = 1, Fig. 3.17(a), is smaller for Pe = 1 and stays relatively steady.
This is because the concentration has diffused from the coral, and the upward flow is
not affecting the dynamics. For larger Péclet numbers, the percentage increases with
fluctuations due to the flow and reaches a periodic steady state. These dynamics are
similar in Fig. 3.17(b), the percentage of oxygen in the box when yo = 2. There is a
smaller percentage of oxygen in this box compared to when yo = 1 since the bottom
of the box is farther away from the top of the pulsing coral. In Fig. 3.17(c) there is a
very small percentage of concentration in the domain when yo = 4. In the large Pé-
clet number regime, the concentration does not accumulate directly above the coral.
Rather the concentration is transported away from the coral for these biologically
relevant parameters. Additionally, the dynamics in Fig. 3.17 show that for all Péclet
numbers the majority of the concentration above the coral is between yo = 2 and yo
= 4. The majority of the oxygen is transported within about three tentacle lengths
away from the coral.

A similar analysis for Pe = 100 and varying Reynolds numbers is shown in Fig.
3.18. The percentage in the box when yo = 1 for the varying Reynolds numbers are
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FIGURE 3.18: Percentage dimensionless oxygen in B over time for Pe =
100, with varying Reynolds numbers for (a) yo = 1, (b) yo = 2, and (c)
yo = 4.

shown in Fig. 3.18(a). Reversible flow is present for Re = 1, resulting in very little
net transport away from the coral. As the Reynolds number increases, more oxygen
is transported across yo = 1, with the oscillations corresponding to the coral pulsing.
This behavior is also seen in Fig. 3.18(b), where yo = 2, for Re = 4, 8, 12, and
16. However, as seen in Fig. 3.17, the percentages are smaller since the bottom of
the box is farther away from the coral. For Re = 1, the percentage is close to zero,
showing the lack of transport away from the coral. In Fig. 3.18(c) where yo = 4, the
percentage of oxygen in B is close to zero for Re = 1 and 4. For Re = 8, 12, and 16,
there is an increasing amount of oxygen in B, respectively. This shows that in these
higher inertia regimes that the flow has advected a significant amount of the oxygen
up to three tentacle lengths away from the coral.

FIGURE 3.19: Dimensionless time to non-zero percentage of oxygen in B
when (a) yo = 2, (b) yo = 3, and (c) yo = 4.

In Figs. 3.17 and 3.18 there is a lag time until the percentage of oxygen is no-
ticeably greater than zero when yo = 2 and 4. Although our interest is the long-term
steady-state behavior of the system, computing the time it takes for the percentage
of concentration to be larger than zero shows the time it takes to transport oxygen
away from the coral. In Fig. 3.19, this is shown for yo = 2, 3, and 4 for all Reynolds
and Péclet numbers, with a tolerance of 0.1%. For Re = 1, the oxygen percentage is
never greater than the tolerance showing a lack of oxygen transport away from the
coral. For Re = 4, it takes approximately one to two pulses to exceed the tolerance



Chapter 3. Two-Dimensional Results 34

when yo = 2, four to six pulses when yo = 3, and never exceeds the tolerance for yo =
4. For Re = 8, 12, and 16 the tolerance is exceeded for yo = 2 within the first pulse.
For larger yo, we see shorter lag times for larger Reynolds numbers.

FIGURE 3.20: Total percentage of oxygen in B at the end of the final pulse
when (a) yo = 1, (b) yo = 2, and (c) yo = 4.

The long-term behavior of transport of oxygen away from the tentacles is shown
in Fig. 3.20. The total percentage of oxygen in the box at final time t = 10 is shown
for yo = 1, 2, and 4 for all Reynolds and Péclet numbers. For Re = 1, the percentage
is small when yo = 1, and close to zero when yo = 2 and 4, for all Péclet numbers.
This result is consistent with previous results showing that the mixing in this regime
is limited directly around the coral tentacles. As the Reynolds number increases,
the percentage of oxygen in these boxes increases due to the upward flow observed
in previous results. As the Péclet number increases, the percentage in the boxes
increases for Pe = 1, 10, and 100, but plateaus after Pe =100. This regime is more
advective driven and is more influenced by the upward flow than for smaller Péclet
numbers, which diffuse quickly away from the coral tentacles but are not transported
upward. The advective transport upward rather than diffusive driven radial transport
could be advantageous for coral colonies. The upward transport could result in less
recirculation of oxygen-rich water by neighboring polyps. For the larger biologically
relevant Péclet numbers, there are differences between the results when comparing
the Reynolds numbers and y0 values. For yo = 1, we can see more variability between
Re = 1 and 4, and much less variability between Re = 4, 8, 12, and 16. For yo = 2,
we can see more variability between Re = 1, 4, and 8, and much less variability
between Re = 8, 12, and 16. For yo = 4, we can see more variability between Re =
12 and 16, and much less variability between Re = 1, 4, 8, and 12. This result shows
that Re = 4 is advantageous for transporting oxygen a short distance, but Re = 8 is
advantageous for transporting up to a coral length away, and Re =16 is advantageous
for transporting oxygen up to three coral lengths away. From the previous analysis,
we know that Re = 8 is advantageous for mixing and more photosynthesis, indicating
that transporting oxygen a tentacle length away is enough to facilitate photosynthesis
and prevent fluid recirculation by neighboring polyps.

This chapter shows the pulsing coral fluid flow results coupled to different pho-
tosynthesis models, focusing on the oxygen-limited model. The mixing due to the
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FIGURE 3.21: Dimensionless oxygen concentration for the oxygen-limited
photosynthesis model at the end of ten pulses for (a)-(e) Pe = 100 and (f)-(j)
Pe = 400 for varying Reynolds numbers, (a,e) Re = 1, (b,g) Re = 4, (c,h) Re
= 8, (d,i) Re = 12, and (f,j) Re = 16 overlaid with the corresponding stable
(dashed) and unstable (solid) manifolds. Half of the domain is presented.

flow is examined for varying Reynolds numbers in Section 3.2. The photosynthesis
model is quantitatively analyzed for varying Reynolds and Péclet numbers by ob-
serving the maximum oxygen concentration, the evaluation of the oxygen-limited
source term, the average oxygen concentration in the domain, the adjusted variance
of the oxygen concentration, and the transport of oxygen away from the coral tenta-
cles. We have presented results that have studied the dynamics of a fixed Reynolds
number and varied Péclet number and vice versa. When both numbers are simul-
taneously varied, this is equivalent to varying the Schmidt number Sc = ν

D , the ratio
of fluid viscosity to diffusivity. Fig. 3.22 shows the maximum concentration as
a function of the Schmidt number. One can observe a general trend of increasing
maximum concentration with increasing Schmidt number. Recalling that smaller
Schmidt numbers correspond to oxygen concentration dynamics that are diffusion
driven. We chose to vary the Reynolds and Péclet numbers independently to get a
more in depth understanding of the dynamics. When investigating the interaction
of the Reynolds and Péclet number, we have found advantageous parameter regimes
for mixing, photosynthesis, and oxygen transport by analyzing these results.
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FIGURE 3.22: Maximum dimensionless oxygen concentration as a
function of the Schmidt number. The corresponding Reynolds and Péclet
numbers are denoted with shapes and shading, respectively.

Fig. 3.21 ties together the fluid flow mixing analysis and photosynthesis mod-
eling results. The oxygen concentration after ten pulses for Pe = 100 and 400 and
varying Reynolds numbers are shown overlaid with the corresponding steady and un-
steady manifolds of the fluid flow. The higher Péclet regime best shows agreement
between the Poincaré map manifolds and the oxygen dynamics, as expected. For Re
= 1, most of the oxygen stays within the interior region and is not transported away.
For the larger Reynolds numbers, the oxygen moves out of the interior region to the
escape lobe (which corresponds to vortices in the flow) and into other subsequent
lobes in the domain.

The effect of diffusion and the source term on these dynamics can be observed.
In these results, the Péclet number is constant in (a)-(e) and (f)-(j). However, if the
Péclet number had been defined using the maximum flow velocity, rather than the
pulsing frequency, then (a) and (f) would have a smaller Péclet number than (e) and
(j). In these dynamics, (a) and (f) are more diffusive, so the manifolds do not give as
much information as (e) and (j). The algae produce oxygen on both sides of the ten-
tacle. The oxygen produced from the underside of the tentacle is not in the interior
region, so the oxygen dynamics can only partially be explained by the Poincaré map
lobes. These results show that it is necessary to model the concentration dynamics
to understand how the mixing facilities the photosynthesis of the symbiotic algae.
However, both techniques provide useful and relevant information into the mixing
dynamics of the pulsing soft corals and the photosynthesis of their symbiotic algae.
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3.4 Discussion Of Two-Dimensional Modeling, Numer-
ical Methods, And Results

In this work, a new mathematical model and numerical method is developed in two
dimensions to study the fluid flow of a pulsing soft coral coupled with the photo-
synthesis of symbiotic algae. The fluid flow of the pulsing soft corals is solved for
using the immersed boundary method, and photosynthesis is modeled by solving
an advection-diffusion equation for oxygen, the byproduct of photosynthesis. In-
cluded in the advection-diffusion equations is a source term on the moving tentacles
to model oxygen production by the symbiotic algae. The mixing due to fluid flow is
analyzed using a dynamical systems approach by applying dynamical systems tech-
niques. Photosynthesis and mixing dynamics were quantitatively analyzed using the
maximum oxygen concentration, the evaluation of the oxygen-limited source term,
the average oxygen concentration in the domain, the adjusted variance of the oxygen
concentration, and the transport of oxygen away from the coral tentacles for varying
Reynolds and Péclet numbers. The novelty of this work is including a photosynthesis
model coupled with fluid-structure interaction. This novelty required developing a
method to solve a partial differential equation with a boundary condition on a moving
immersed elastic boundary.

In the analysis of the fluid flow, the larger Reynolds numbers produced more mix-
ing, as expected. The benefit from the larger Reynolds number lessens right around
the biologically relevant Reynolds number, which is determined by the kinematics
of the pulsing coral. The benefit of mixing and oxygen concentration variance with
respect to the energy expended by the coral in the fluid simulations will be included
in the manuscript related to this work [104]. The other primary numerical study
on soft coral flow dynamics around a single coral polyp used Lagrangian Coherent
Structures and Finite-Time Lyapunov exponents to examine mixing [14]. A similar
methodology is presented on PIV flow fields to study the feeding habits of jellyfish
[94]. These methods are useful for qualitative analysis for regions of high or low
mixing in unsteady flow. The methodology presented in this work instead can give
quantitative results for varying Reynolds numbers. This methodology allows for a
quantitative metric for mixing rather than qualitative results.

The next step of this work is to apply this novel methodology in three dimen-
sions, presented in Chapters 5. From prior work, it is already known that the fluid
flow has characteristics that cannot be captured in two dimensions [14].



Chapter 4

Implementation in IB2d

IB2d is an open-source two-dimensional MATLAB and Python implementation of
the immersed boundary method [118]. The user-friendly architecture allows stu-
dents and researchers to bypass the steep learning curve to understand the immersed
boundary method and fluid-structure interaction problems. In addition to the tradi-
tional immersed boundary method, the code has other more advanced capabilities
used in immersed boundary fluid-structure interaction problems, including muscle
models, invariant beams, tracers, and a Boussinesq approximation, and the addition
of a background concentration in the flow [69], [118], [119]. In this chapter, the
methodology implemented in IB2d to have the immersed boundary act as a sink or
source of the concentration is discussed.

The work developed in Chapter 2 is contributed to this open-source code. In
addition to the inclusion of the immersed boundary acting as a source or a sink of
the background concentration, we contributed the capability of solving the advection
component of the advection-diffusion equation using a third-order WENO scheme
[114]. The motion of the coral from Chapter 2 is added into IB2d as an example
that utilizes the new methodology. The challenge in this work is blending the new
methodology into the existing framework.

In the IB2d library, the functions that advance the solution and the problem-
specific applications are separate. The functions that advance the simulation are
found in the IBM BlackBox directory, while the framework for the different ex-
amples is in the Example directory. In the IBM BlackBox directory, the contribu-
tions were the advection-diffusion solver with a sink or source term, the functions
which defined the sinks or sources on the immersed boundary, and the third-order
WENO advection scheme. In the Example directory, two examples were added for
this framework: a standard rubber band that acted as a source or sink for a concen-
tration, used in a convergence study to validate the methodology, and a single coral
polyp with the motion presented in Chapter 2, where the coral tentacles acted as a
source for the concentration. Other collaborators added examples of an appendage
sniffing and heat dissipation on a leaf.

In this chapter Section 4.1 will give the mathematical modeling contributed to
IB2d. Section 4.2 will overview the corresponding numerical methods. Section 4.3
will present the convergence study of the canonical immersed boundary problem, a

38
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rubber band. Section 4.4 will show a simulation with the coral motion from Chapter
2 implemented in IB2d. In Section 4.5 the chapter is summarized and the impact of
this work is discussed. This work has led to a paper that has been submitted [120].

4.1 Mathematical Model

The background concentration, already implemented in IB2d, c(x, t) is governed by
the dimensional advection-diffusion equations

ct +u ·∇c = D∇
2c (4.1)

where u(x, t) = (u1,u2) is the velocity from the fluid-structure interaction, and D is
the diffusion coefficient. The quantities introduced in Chapter 2 and 3 are dimen-
sionless. However, in this chapter, the quantities will be dimensional, as IB2d is a
dimensional code.

IB2d uses the immersed boundary method, which has been discussed in Chapter
2. The contribution to this work is adding the immersed boundary acting as a source
or sink of the concentration, which will be the focus of this chapter. The advection-
diffusion equation, for concentration c(x, t), is then given as,

ct +u ·∇c = D∇
2c+

∫ `

0
f̃ (s, t)δ (x−X(s, t))ds ,

where x denotes Cartesian points in the fluid domain, X(s, t) denotes the Lagrangian
points on the immersed boundary, and f̃ (s, t) is the sink or source model with units
of amount of chemical per length per time defined for arclength 0 ≤ s ≤ ` at time
t. There are three models included in this framework, the first two are presented in
Chapter 2, and the third is a newer implementation,

f̃ (s, t) = κ , (4.2)

f̃ (s, t) = κ(C∞−C(s, t)) , (4.3)

f̃ (s, t) = κC(s, t) , (4.4)

where C(s, t) =
∫

Ω
c(x, t)δ (x−X)dx. The constant κ is an absorption constant when

given a negative value and a desorbtion constant when given a positive value. In
Eq. (4.2) the units of κ are the amount of chemical per length per time, and in Eqs.
(4.3) and (4.4) the units of κ are length per time. C∞ is the saturation limit of the
concentration.

As before in Chapter 2, Eq. (4.2) is referred to as the constant model, where
the boundary produces a constant amount of concentration over time. Eq. (4.3) is
referred to as the limited model. Since C∞ is the saturation limit of the concentration,
in this model, the amount of concentration produced by the boundary is dependent
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on the amount of concentration locally around the immersed boundary. Eq. (4.4)
is referred to as the reaction model. As the boundary moves through the fluid, the
amount of concentration produced or absorbed is directly proportional to the concen-
tration present locally. These models can theoretically be used as a sink or source
by changing the sign of κ depending on the specific application. The limited model
will be used as a source model in this work, and the reaction model will be used as a
sink model.

4.2 Numerical Methods
The original advection-diffusion scheme for Eq. (4.1) implemented in IB2d is fully
explicit and first order. The velocities solved for from the fluid-structure interaction,
u(x, t) = (u1,u2), are used to advect the background concentration c(x, t). The con-
centration, cn+1, at time tn+1 are updated using forward Euler,

cn+1 = cn +∆t
(
−(u1

nc̃n
x +u2

nc̃n
y)+D∇

2
hcn) (4.5)

for time step ∆t. The derivatives c̃x and c̃y are found using a first-order upwind
method using the fluid velocities and concentration at time tn. Here ∇2

h refers to the
standard second order finite-difference Laplacian operator.

This method is now updated to incorporate the immersed boundary as a source
or sink of a concentration and allow for more accuracy in the advective terms. Both
of these have new user-defined inputs. The methodology is updated as,

cn+1 = cn +∆t

(
−(u1

nc̃n
x +u2

nc̃n
y)+D∇

2
hcn +

k=N

∑
k=1

f̃ n
k δh(x−Xn

k)∆s

)
, (4.6)

where c̃n
x and c̃n

y are found using either the first-order upwind method or the third-
order WENO method depending on the user-defined input. Here f̃ n

k is the discrete
analog of the sink or source model. For the three models corresponding to Eqs.
(4.2)-(4.4) they are defined as f̃ n

k = κ , f̃ n
k = κ(C∞−Cn

k ), and f̃ n
k = κCn

k , respectively.
Recall in the limited and reaction model C(s, t) is the local concentration interpolated
onto the boundary. Numerically, this is discretized using the trapezoid rule,

Cn
k = ∑

i j
cn

i jδh(xi j−Xn
k)∆x∆y

Making these additions led to further modifications in the IB2d library. The
source or sink term in Eq. (4.6) is analogous to the force spreading interaction equa-
tion in the IB method, ∫ `

o
f̃ (s, t)δ (x−X(s, t))ds .
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The original implementation discretized this equation as,

k=N

∑
k=1

f̃ n
k δh(x−Xn

k)∆s , (4.7)

assuming a closed boundary. If f̃ (s, t) = κ is constant and there is no initial con-
centration in the domain then we expect the total mass in the domain at time t to
be, ∫ t

0

∫ `

0
κδ (x−X(s, t ′))dsdt ′ = κ

∫ t

0
L(t ′)dt ′ .

Where L(t) is the length of the curve at time t. However, in practice, Eq. (4.7) is
only valid for an immersed boundary with a fixed length. This condition is due to the
assumption that the distance between points is fixed at ∆s. For small deformations,
this is a good approximation. If this method is used for applications that resulted in
large deformations in the immersed boundary, there would be issues in the conserva-
tion of total mass. A more robust method is desired for IB2d. Therefore, we added
a different discretization for Eq. (4.7),

N−1

∑
k=1

1
2
( f̃ n

k δh(x−Xn
k)+ f̃ n

k+1δh(x−Xn
k+1)) || X

n
k+1−Xn

k ||2 (4.8)

for open curves and

N

∑
k=1

1
2
( f̃ n

k δh(x−Xn
k)+ f̃ n

k+1δh(x−Xn
k+1)) || X

n
k+1−Xn

k ||2 (4.9)

for closed curves, where XN+1 = X1. This new discretization is implemented for the
force spreading interaction equation in the immersed boundary method and for the
source or sink term in Eq. (4.6). This work was developed jointly with collabora-
tors Shilpa Khatri, Laura Miller, and Nicholas Battista, and implementation for the
discretization in IB2d was implemented by Khatri and Battista.

4.3 Convergence
In order to validate the methodology implemented in IB2d, a convergence study is
conducted on a canonical immersed boundary example, a Hookean rubber band. The
initial configuration of the rubber band is an ellipse given by,

X1 = 0.5+acos(s)

X2 = 0.5+bsin(s)
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for 0 ≤ s ≤ 2π , with a = 0.4, and b = 0.2. The fluid flow is solved on an [0,1] ×
[0,1] domain with periodic boundary conditions and is initially at rest.

The fluid grid is discretized with Nx = 32, 64, 128, 256, and 512 points and
grid size h = 1

Nx . The number of points to discretize the rubber band are given
by N = d4π

√
abNxe. The time step corresponding to gridsize h is ∆t = h

62.5 and
the simulation is run until final time t = 2. The Hookean spring constants for the
immersed boundary were set to ks = 105

642 Nx2.
The errors in the convergence studies are computed in the same way as in Sec-

tion 2.2.1, where the error at mesh width h, for a quantity Qh is approximated as
Qh−Qh/2. The computation of the mass in the domain is computed differently to
take the new methodology into account. The exact mass in the domain at time t when
using the constant model is given by,

M(t) =
∫ t

0

∫ `

0
κδ (x−X(s, t ′))dsdt ′ = κ

∫ t

0
L(t ′)dt ′ .

When the length of the immersed boundary is fixed, L(t) = L, this integral simplifies
to M(t) = κL. However, when the length of the immersed boundary varies in time
the total mass is given by.

M(t) = κ

∫ t

0
L(t ′)dt ′ ,

which is approximated using the trapezoidal rule.
The convergence results for the concentration when using the constant source

model and the upwind scheme for the advective terms with D = 10−2 m2s−1 and
κ = 0.1 mol m−1s−1 are given in Table 4.1. The convergence results when using the
WENO scheme instead are given in Table 4.2. The concentration initial condition is
c(x,0) = 0 mol m−2. Fig. 4.1 shows snapshots of this simulation at the most refined
grid, Nx = 512. One can see that the convergence study results are similar between
the two methods and are approaching first order as expected. However, there is a
clear benefit of the WENO method in the total mass error. The WENO method
gives an order of magnitude improvement in mass error compared to the upwind
method. Given these results, convergence results for the two additional models will
be presented when using the WENO scheme for the advection term.

The convergence results for the concentration when using the limited source
model and the WENO scheme for the advective terms with D = 10−2 m2s−1, C∞ =
1 mol m−2, and κ = 0.1 ms−1 are given in Table 4.3. The concentration initial con-
dition is c(x,0) = 0 mol m−2. Fig 4.2 shows snapshots of this simulation at the most
refined grid, Nx = 512. Notice that since the total mass in the domain for this case
is unknown, the error for the total mass is computed using the grid refinement as for
the concentration error.

The convergence results for the concentration when using the reaction sink model
and the WENO scheme for the advective terms with D = 10−2 m2s−1 and κ =
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FIGURE 4.1: Snapshots of rubber band simulation with the constant source
model and diffusion coefficient D = 10−2 m2s−1 and desorption coefficient
κ = 0.1 mol m−1s−1 using the WENO advection scheme at (a) t = 0.05 s,
(b) t = 0.1 s, (c) t = 0.5 s, and (d) t = 2 s. The vectors give the velocity
field and the color map shows the concentration.

TABLE 4.1: Convergence results for the concentration field solved using a
first-order upwind advection scheme with the constant source model and
D = 10−2 m2s−1 and desorption coefficient κ = 0.1 mol m−1s−1 at
t = 2 s. The error and order of convergence is presented in both the L2 and
L∞ norms and for the total mass error.

h ∆t ||ch−ch/2||2 order ||ch−ch/2||∞ order |∫
Ω

chdx−
∫

Ω
cdx| order

1/32 5.00 ×10−4 7.46 ×10−2 - 2.10 ×10−1 - 2.83 ×10−2 -
1/64 2.50 ×10−4 3.38 ×10−2 1.14 9.45 ×10−2 1.15 1.57 ×10−2 0.85
1/128 1.25 ×10−4 2.22 ×10−2 0.60 6.75 ×10−2 0.48 8.53 ×10−3 0.88
1/256 6.25 ×10−5 1.30 ×10−2 0.78 3.93 ×10−2 0.78 4.51 ×10−3 0.92

TABLE 4.2: Convergence results for the concentration field solved using a
third-order WENO advection scheme with the constant source model and
D = 10−2 m2s−1 and desorption coefficient κ = 0.1 mol m−1s−1 at
t = 2 s. The error and order of convergence is presented in both the L2 and
L∞ norms and for the total mass error.

h ∆t ||ch−ch/2||2 order ||ch−ch/2||∞ order |∫
Ω

chdx−
∫

Ω
cdx| order

1/32 5.00 ×10−4 7.67 ×10−2 - 1.93 ×10−1 - 1.33 ×10−4 -
1/64 2.50 ×10−4 3.39 ×10−2 1.18 8.92 ×10−2 1.12 1.46 ×10−3 -3.45
1/128 1.25 ×10−4 2.21 ×10−2 0.62 6.27 ×10−2 0.51 6.90 ×10−4 1.08
1/256 6.25 ×10−5 1.28 ×10−2 0.79 3.65 ×10−2 0.78 3.10 ×10−4 1.15

−0.1 ms−2 are given in Table 4.4. The concentration initial condition is c(x,0) =
1 mol m−2. Fig 4.3 shows snapshots of this simulation at the most refined grid, Nx
= 512. Notice that since the total mass in the domain for this case is also unknown,
the error for the total mass is computed using the grid refinements, as before with
the limited source term.

One can see from Tables 4.2, 4.3, and 4.4 that as the grid is refined, the solution
is approaching first order, and the error in the total mass is approaching first order or
better, which validates the methodology.
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FIGURE 4.2: Snapshots of rubber band simulation with the limited source
model and diffusion coefficient D = 10−2 m2s−1, saturation limit
C∞ = 1 mol m−2, and desorption coefficient κ = 0.1 ms−1 using the
WENO advection scheme at (a) t = 0.05 s, (b) t = 0.1 s, (c) t = 0.5 s, and
(d) t = 2 s. The vectors give the velocity field and the color map shows the
concentration.

TABLE 4.3: Convergence results for the concentration field solved using a
third-order WENO advection scheme with the the limited source model and
D = 10−2 m2s−1 and desorption coefficient κ = 0.1 ms−1 at t = 2 s. The
error and order of convergence is presented in both the L2 and L∞ norms
and for the total mass error.

h ∆t ||ch−ch/2||2 order ||ch−ch/2||∞ order |∫
Ω

chdx−
∫

Ω
ch/2dx| order

1/32 5.00 ×10−4 7.67 ×10−2 - 1.93 ×10−1 - 4.12 ×10−3 -
1/64 2.50 ×10−4 3.39 ×10−2 1.18 8.92 ×10−2 1.12 4.54 ×10−3 -0.14
1/128 1.25 ×10−4 2.21 ×10−2 0.62 6.27 ×10−2 0.51 3.19 ×10−3 0.51
1/256 6.25 ×10−5 1.28 ×10−2 0.79 3.65 ×10−2 0.78 1.96 ×10−3 0.70

4.4 Coral Simulations
In the IB2d library, we have included an example of a pulsing coral and the photo-
synthesis of the symbiotic algae based on the work presented in Chapters 2 and 3.
Photosynthesis is modeled by tracking its byproduct, dissolved oxygen. The motion
of the tentacles is prescribed using tether points as in Eq. (2.5) with f̃d = 0, meaning
no damping, and the concentration of dissolved oxygen is produced from the tenta-
cles using Eq. (4.3). The physical and numerical parameters for this example are
given in Table 4.5, simulating a single coral polyp pulsing in water. The length of
a coral tentacle is 0.4070 cm and the polyp length is 0.9198 cm in a 2.0 × 5.0 cm2

box. The coral pulse is composed of a contraction, expansion, and resting period.
The Reynolds number is defined using the tentacle length and pulsation frequency
as Re = ρL2γ/µ = 8.7546 and the Péclet number is set to Pe = L2γ/D = 100. These
dimensionless parameters correspond to the simulations presented in Chapter 3.

Snapshots for the coral simulation are given in Fig. 4.4 during the tenth and
final pulse. Notice the similarities with Fig. 3.8 in Chapter 3. Once again, the
concentration is getting trapped in the vortices and advected away from the tentacles.
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FIGURE 4.3: Snapshots of rubber band simulation with the reaction sink
model and diffusion coefficient D = 10−2 m2s−1 and absorption coefficient
κ =−0.1 ms−2 using the WENO advection scheme at (a) t = 0.05 s, (b)
t = 0.1 s, (c) t = 0.5 s, and (d) t = 2 s. The vectors give the velocity field
and the color map shows the concentration.

TABLE 4.4: Convergence results for the concentration field solved using a
third-order WENO advection scheme with the reaction sink model and
D = 10−2 m2s−1 and absorption coefficient κ =−0.1 ms−2 at t = 2 s.
The error and order of convergence is presented in both the L2 and L∞

norms and for the total mass error.

h ∆t ||ch−ch/2||2 order ||ch−ch/2||∞ order |∫
Ω

chdx−
∫

Ω
ch/2dx| order

1/32 5.00 ×10−4 4.76 ×10−2 - 1.02 ×10−1 - 1.01 ×10−2 -
1/64 2.50 ×10−4 2.09 ×10−2 1.19 4.55 ×10−2 1.17 3.67 ×10−3 1.46
1/128 1.25 ×10−4 1.28 ×10−2 0.70 3.03 ×10−2 0.59 9.29 ×10−4 1.98
1/256 6.25 ×10−5 7.18 ×10−3 0.84 1.60 ×10−2 0.92 7.12 ×10−5 3.71

TABLE 4.5: Numerical and physical parameters for the example of pulsing
corals.
Parameter Value Units
Domain size 2.0 × 5.0 cm2

Tentacle length (L) 0.4070 cm
Fluid density (ρ) 1 g cm−3

Fluid viscosity (µ) 0.01 g cm−1s−1

Pulsation Frequency (γ) 0.5286 s−1

Diffusivity (D) 8.7546 ×10−4 cm2s−1

Saturation limit (C∞) 1 ×10−6mol cm−3

Desorbtion coefficient (κ) 0.0215 cm s−1

Time step (∆t) 0.00025 s
Spatial step (h) 1/256 cm
Target stiffness (ktarg) 5×106 g cm s−2

Also, observe that the maximum concentration is similar in magnitude.
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FIGURE 4.4: Snapshots of the coral simulation example included in IB2d
with the limited source model at approximately (a) 10%, (b) 30%, (c) 50%,
and (d) 80% through the tenth pulse. The vectors give the velocity field and
the color map shows the concentration.

4.5 Summary and Impact
This chapter has discussed the generalization of the modeling, numerical methods,
and applications from Chapters 2 and 3 implemented in the open-source code IB2d.
Due to this work, students and researchers will be able to use the methodology we
have developed for a moving boundary acting as a source or sink of a concentra-
tion coupled to fluid flow for various two-dimensional applications allowing them to
bypass the steep learning curve to understanding and implementing the methodol-
ogy. This implementation will allow for a quicker turnaround for advances in two-
dimensional applications. It will also allow for an easier transition to advanced topics
and applications for student researchers. The new methodology and implementations
are discussed in the submitted paper, along with a few example problems. We con-
tributed the coral example we have discussed above; other examples contributed by
other authors are flow past a flapping plate used to model heat dissipation on a leaf
and flow past moving cylinders used to model a sniffing process.



Chapter 5

Three-Dimensional Simulations

The next goal of this work is to extend the modeling and analysis done in two di-
mensions and apply it to three-dimensional simulations of the pulsing soft corals. In
the full three-dimensional coral model, there are eight tentacles. As the coral pulses,
the fluid is replenished through the gaps between tentacles, rather than from fluid
above the coral resulting in a continuous upward jet. It was found that full three-
dimensional studies were necessary to capture the full dynamics of the fluid flow
around pulsing corals [14].

The three-dimensional simulations are conducted using the immersed bound-
ary finite element (IBFE) software library [53]. The IBFE library is part of the
IBAMR software package [65]. It allows for a hybrid finite-difference finite-element
method, where the fluid flow is solved using the finite-difference method. The im-
mersed boundary is represented using a finite-element (FE) mesh. Using the FE
representation for the immersed boundary in the simulations results in a less re-
strictive time step. The library also has support for adaptive mesh refinement and
parallelization. This dissertation will focus on the formulation of the immersed
boundary finite-element method rather than the high-performance computing aspect
of this software. Additional details can be found in the original paper introducing
IBAMR, the three-dimensional adaptive mesh, and parallelizable implementation of
the immersed boundary method [70]. Collaborator Laura Miller set up the three-
dimensional coral simulations, and the code was adapted for the MERCED comput-
ing cluster by collaborator Gabrielle Hobson. In this work, there are two goals: (1)
to gain insight into the mixing in three dimensions and (2) to incorporate the photo-
synthesis model coupled with the fluid flow by having the immersed boundary points
act as a sink or source of the oxygen concentration.

We present the IBFE formulation in Section 5.1. The coral kinematics imple-
mented are discussed in Section 5.2. We present the concentration modeling and
corresponding numerical methods in Section 5.3. This section will include a brief
survey of the existing framework in IBAMR and IBFE as well as the numerical meth-
ods needed to add the immersed boundary finite element mesh as a source or sink
of a concentration. The mixing methodology and results are given in Section 5.4.
In Section 5.5 we will present the preliminary simulations where the coral polyp is

47



Chapter 5. Three-Dimensional Simulations 48

coupled to a background concentration. The chapter summary is given in Section
5.6.

5.1 IBFE Formulation
The IBFE formulation is given in three dimensions with a three-dimensional solid
immersed boundary rather than an infinitely thin elastic material. As in two dimen-
sions, the fluid flow is modeled by the Navier-Stokes equations,

ρ

(
∂u
∂ t

+u ·∇u
)
+∇p = µ∇

2u+ f , (5.1)

∇ ·u = 0 , (5.2)

where u = (u1,u2,u3) is the velocity, p is the pressure, f = ( f1, f2, f3) is the external
body force, x = (x1,x2,x3) is the Eulerian cartesian spatial grid, and t is time. We
also have the parameters ρ , the fluid density, and µ , the fluid viscosity. As in Chapter
4, quantities in this chapter are all dimensional.

FIGURE 5.1: Schematic of the reference configuration X of the immersed
boundary mapped to the current configuration at time t, χ(X , t)

.

The Lagrangian structure is defined using its reference configuration

X = (X1,X2,X3) ∈ S ,

where S is the domain of the Lagrangian structure. The reference configuration in
this work is defined when there is zero elastic energy. It is used to define the elastic
energy of the current configuration. The position of the points at time t in the current
configuration is given by χ(X , t), shown in Fig. 5.1. For this formulation, the first
Piola Kirchoff (PK1) stress tensor is used to compute the elastic force, which is
preferable for large deformations. Details are provided below.
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Consider a line element dX as a perturbation of X in the reference configuration.
Then the perturbation in the current configuration is at time t,

dχ = χ(X +dX , t)−χ(X , t) ,

as illustrated in Fig. 5.1. Then one can define,

dχ = FdX ,

where F(X , t) =
∂ χ

∂X is the deformation gradient tensor [121].
For a volume dV in the reference configuration, the corresponding volume in

the current configuration dv can be related by dv = JdV , where the Jacobian J =
det(F). For incompressible materials J = 1. A surface element in the reference
configuration dS with a unit normal N and the corresponding surface element in the
current configuration ds with unit normal n, shown in Fig. 5.2, can be related as

nds = JF−T NdS , (5.3)

called Nanson’s formula [121].
In order to understand the PK1 tensor, we will relate it to the Cauchy stress

tensor σ . The force acting on a surface element ds in the current configuration is
d f ∗ = σnds with unit normal n. The PK1 tensor, P, is similarly defined in the
reference configuration as, d f ∗ = PNdS where dS is the corresponding surface in
the reference configuration with normal N, illustrated in Fig. 5.2. Thus,

PNdS = σnds

relates the Cauchy and PK1 stress tensors [121]. Using Eq. (5.3),

PNdS = JσF−T NdS . (5.4)

Since this is true for arbitrary dS then Eq. (5.4) reduces to

P= JσF−T , (5.5)

defining in terms of the Cauchy stress tensor σ . The PK1 stress tensor defined in
Eq. (5.5) is a general form. The specific stress tensor used for the coral simulations
describes a passive elastic neo-Hookean material model,

P= ηtot(F−F−T ) , (5.6)

where ηtot is the elastic modulus of the material. This model is used to describe the
coral tentacle elasticity [15].
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FIGURE 5.2: Schematic of a volume and surface element of reference
configuration dV and dS, respectively, with normal N and volume and
surface element of current configuration dv and ds, respectively, with
normal n.

In the current configuration, the immersed boundary interaction equations are
given as,

f (x, t) =
∫

S
F(X , t)δ (x−χ(X , t))dX , (5.7)

∂ χ(X , t)

∂ t
=U(X , t) =

∫
Ω

u(x, t)δ (x−χ(X , t))dx . (5.8)

As before F(X , t) is the force of the boundary on the fluid defined in Lagrangian
coordinates and f (x, t) is the force of the boundary on the fluid defined in Eulerian
coordinates. U(X , t) is the velocity of the immersed boundary. The force in Eq. (5.7)
is defined as,

F(X , t) = F targ +Felast

Where F targ is the target force which prescribes the motion of the coral tentacles in
the current configuration,

F targ = κT

(
χ

T
(X , t)−χ(X , t)

)
. (5.9)

Here, χ
T
(X , t) prescribes the configuration and κT is the spring constant. Felast is

the force due to the elasticity of the material defined using the PK1 tensor P given in
Eq. (5.6), ∫

S
Felast ·G(X)dX =−

∫
S
P(X , t) : ∇xGdX . (5.10)

This definition is given in weak form for a test function G [65].
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5.1.1 Numerical Implementation
To solve for the velocity and pressure, u(x, t) and p(x, t), the Navier-Stokes equations
Eqs. (5.1) and (5.2), are discretized using finite differences on an adaptive Cartesian
mesh with a staggered grid, see Fig. 5.3. The velocities are defined on the cell faces,

(ub)i−n, j−m,k−l

for b = 1,2,3. For each b, the corresponding values of n, m, and l are shown in Fig.
5.3. The pressure is defined on the cell centers, pi−1/2, j−1/2,k−1/2, similar to what
was presented for the MAC grid in two dimensions, discussed in Chapter 2.

FIGURE 5.3: Three-dimensional staggered grid used to solve the
Navier-Stokes equations in IBAMR. The cell node is given in black, the
locations of the velocities are given in red, and the location of the pressure
is given in blue.

The Lagrangian structure is discretized using a finite element representation. The
nodes of the mesh are denoted as

{Xl}M
l=1

for nodes l = 1, . . . ,M. The positions of the nodes of the Lagrangian mesh are given
as {χ

l
(t)}M

l=1. An example is given in Fig. 5.4. The finite element basis functions
are defined as {G(X)}M

l=1. Using these definitions, the discretion of χ(X , t) is given
as

χ
∆s
(X , t) =

M

∑
l=1

χ
l
(t)Gl(X) ,

for Lagrangian grid size ∆s. Notice here that we are summing over the FE nodes
χl(t). The discretized deformation gradient F is approximated as,

F∆s(X , t) =
∂ χ

∆s
∂X

(X , t) =
M

∑
l=1

χ
l
(t)

∂Gl
∂X

(X) .



Chapter 5. Three-Dimensional Simulations 52

FIGURE 5.4: Schematic of a finite element mesh. Finite element nodes are
given in red.

Notice here that we are summing over the FE nodes χl(t). Additionally the force,
F(X , t), is approximated as,

F∆s(X , t) =
M

∑
l=1

F l(t)Gl(X) .

Recalling that F l = (Felast)l +(F targ)l is defined on FE node l. To find (F targ)l we
discretize Eq. (5.9),

(F targ)l = κT

(
(χ

T
)

l
−χ

l

)
.

To find (Felast)l we solve the discretized form of Eq. (5.10),

M

∑
l=1

(∫
S

Gl(X)Gm(X)dX
)

Felast∆s =−
∫

S
P∆s(X , t)∇X Gm(X)dX

for each m = 1, ..., M. The integrals are approximated with Gaussian quadrature.
The force spreading given in Eq. (5.7) is discretized as,

( fb)i−n, j−m,k−l = ∑
Se

∫
S

Fb(X , t)δh(xi−n, j−m,k−l−χ(X , t))dX (5.11)

for b,n,m, l defined in Fig. 5.3 and finite elements Se. The integrals are approximated
using Gaussian quadrature. Note that we can define an operator S such that f (x, t) =
S(χ(·, t))F(X , t), where the operator S is implicitly defined using Eq. 5.11 where
Gaussian Quadrature is used.

The velocity interpolation given in Eq. (5.8) is instead defined using a velocity-
restriction operator V(χ(·, t)) in order to find the correct motion of the Lagrangian
mesh

∂ χ

∂ t
= V(χ(·, t))u(x, t)
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The velocity-restriction operator is necessary to define
∂ χ

∂ t in this way since the com-
ponents of U cannot generally be expressed as linear combinations of the finite-
element basis functions . In order to define V the discrete power identity is enforced,

(F ,Vu)x = (SF ,u)x . (5.12)

The Lagrangian operator (·, ·)x is defined as (A,B)x = [A]T M [B] for arbitrary vectors
A and B and the entries of M are given by

∫
S Gl(X)Gm(X)dX . The [·] notation

indicates the vector of discretized values. The Eulerian inner product (·, ·)x is defined
as (a,b)x = [a]T [b]h2 for arbitrary vectors a and b. Thus Eq. 5.12 is discretized as,

[F ]T [M] [V] [u] = ([S] [F ])T [u]h2

and the velocity-restriction operator is defined as

V=M−1ST h2 .

Note that Vu is an approximation of

Ub = ∑
i jk
(ub)i−n, j−m,k−lδh(xi−n, j−m,k−l−χ(X , t))h2

where Ub refers to the velocity interpolated on to the immersed boundary points and
b,n,m, l are defined in Fig. 5.3.

5.2 Coral Kinematics
In Chapter 2, we used specific interpolating polynomials to describe the coral ten-
tacles’ kinematic motion in two dimensions. In three dimensions, the kinematics
have been significantly simplified as described in Samson et al. [15]. We present
kinematics in Fig. 5.9 for three dimensions, assuming the motion is planar for each
of the eight tentacles. The kinematics give the position of the target point positions,
χ

T
(X , t), in Eq (5.9). The tangent angle of the tentacle relative to the horizontal axis

is given by,

θ(s, t) = A(1− es/β (t)) ,

for the dimensionless arclength 0 ≤ s ≤ 1, prefactor A = 1.9, and β (t) is a function
dependent the time,

β (t) =

βo +(βm−βo)
(

t
tc

)2
0≤ t ≤ tc

βm +(βo−βm)
(

t−tc
t f−tc

)2
tc ≤ t ≤ t f
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for the time of a pulse, t f = 1.6167, the contraction time, tc = 0.7333, and parameters

FIGURE 5.5: (a) Values of β (t) corresponding to the closing phase for
t < tc and the opening phase for t > tc. (b) Coral kinematics in red showing
θ(s, t).

βo = 0.2 and βm = 0.4. The prefactor A gives the approximate angle at the tip of the
tentacles during the contraction. β (t) is a periodic time dependent function that
controls the opening and closing phases of the coral. β (t) is shown in Fig. 5.5(a)
and θ in relation to the coral tentacle is given in Fig. 5.5(b), . The coral kinematics
are shown in Fig 5.6 in two dimensions. The closing phase is shown in Fig 5.6(a) in
blue and the opening phase is shown in Fig 5.6(b) in red. The finite-element coral in
the three-dimensional simulations in the initial position is shown in Fig 5.6(c).

(a) (b) (c)

FIGURE 5.6: Coral kinematics in the (a) closing phase and (b) opening
phase shown in 2D. (c) The finite-element coral in the three-dimensional
simulations in the initial position.
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5.3 Concentration Modeling
IBAMR and IBFE have the capability for three-dimensional advection-diffusion-
reaction equations coupled to the fluid flow solved from the fluid-structure interac-
tion equations. The three-dimensional advection-diffusion-reaction equations are,

ct +u ·∇c = D∇
2c+ r (5.13)

The concentration is given by c(x, t), u(x, t) = (u1,u2,u3) is the velocity from the
fluid-structure interaction, and D is the diffusion coefficient. The user-defined reac-
tion function is r(x, t). In order to have the immersed boundary as the sink or source
of the concentration, the defined reaction term needs to be linked to the immersed
boundary. Currently, it is only possible to define the reaction term as a function of x
and t. Since it is known that the fluid dynamics of the full three-dimensional simula-
tions have characteristics not captured in the two-dimensional simulations [14], we
expect to see differences in the concentration dynamics presented in this chapter in
comparison to the concentration dynamics presented in Chapter 3.

The goal of this work is to modify the reaction function to allow for the coral
tentacles to act as a source or sink on the concentration,

r(x, t) =
∫

∂S
f̃ (χ(X , t))δ (x−χ(X , t))dA(X) , (5.14)

where as before, the current location of the Lagrangian structure at time t is given as
χ(X , t) with reference configuration X . Note here that only the points on the surface
of the immersed boundary are considered as sources of oxygen, since the boundary is
now a three-dimensional structure rather than an infinitely thin surface. The source
or sink model is described as f̃ (χ(X , t)). As a first choice, we will consider the
constant model, f̃ (χ(X , t)) = κ .

5.3.1 Numerical Methods
In the IBAMR framework, there are multiple different options for various numerical
schemes. Rather than an exhaustive survey of all of them, we will instead focus on
the methods used for the coral simulations, which are based on code developed by
collaborators [15].

The current discretization of Eq. (5.13) in IBAMR is in two steps. The concen-
tration, velocity, and reaction term at the nth time step is given as cn, un, and rn,
respectively. The first step updates cn from time tn to tn+1/2, using un and rn,

cn+ 1
2 = cn +

2
∆t

(
−un · ∇̃hcn +

D
2

∇
2
h

(
cn+ 1

2 + cn
)
+ rn

)
. (5.15)
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The second step updates cn from time tn to tn+1, using un+1/2, cn+1/2, and rn+1/2,

cn+1 = cn +
1
∆t

(
−un+ 1

2 · ∇̃hcn+ 1
2 +

D
2

∇
2
h
(
cn+1 + cn)+ rn+ 1

2

)
, (5.16)

where ∇2
h is the standard centered second-order finite difference Laplacian operator

and the values un and un+1/2 come from the solving Eqs. (5.1) and (5.2). The
advective term, un · ∇̃hcn is defined using a piece-wise parabolic method (PPM), a
high-resolution implementation of the Godunov method [122]. The reaction term rn

and rn+1/2 are defined by the user as a function. The corresponding linear equations
are solved using an iterative Krylov solver.

Recalling that we have a three-dimensional Lagrangian mesh, discretized using
a finite element representation, shown in Figs. 5.4 and 5.6. The nodes of the mesh
are denoted as {Xl}M

l=1 for nodes l = 1, . . . ,M and the positions of the nodes of the
Lagrangian mesh are given as {χ

l
(t)}M

l=1.
For each element Se ∈ ∂S, Eq. (5.14) is discretized as,

ri, j,k = ∑
Se∈∂S

∫
∂S

f̃∆s(X , t)δh(xi, j,k−χ(X , t))dA(X) , (5.17)

where the integral is solved using Gaussian quadrature as before with the force
spreading function, Eq. (5.7). As before, the integral is defined only on the sur-
face of the immersed boundary ∂S. The discrete source or sink model, f̃ is defined
using the finite element basis functions,

f̃∆s(X , t) =
M

∑
l=1

f̃l(t)Gl(X) .

5.3.2 Proposed Implementation in IBAMR
Although the work discussed in the previous subsection has not yet been fully im-
plemented, we have investigated the current source code to find the best way to
implement the methodology. In IBAMR, the software that handles the advection-
diffusion-reaction equations, the Navier-Stokes solver, and the immersed boundary
finite-element (IBFE) representation are all in separate classes. The advection-
diffusion-reaction classes are linked to the classes used to solve the Navier-Stokes
equations since the fluid velocity is needed in the advection term. The classes used
to solve the Navier-Stokes equations and the classes used for the IBFE method are
linked since both are coupled through the immersed boundary interaction equations.
However, the classes that use the IBFE method and the advection-diffusion-reaction
classes are not linked, and this has presented the largest challenge. The current plan
defines the source or sink term in the IBFE classes and then sends the source or sink
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(a) (b) (c)

FIGURE 5.7: Snapshots of three-dimensional coral simulation during the
tenth pulse at (a) t = 14.8s, (b) t = 15.0s, and (c) t = 16.3s. The vectors
show the velocity fields and the red shows the vorticity magnitude contours.

term to the advection-diffusion-reaction solver. This will be completed in the same
manner as to how the other classes are linked.

5.4 Three-Dimensional Mixing Analysis
The methods and intuition developed in Chapter 3 are now being implemented to
study the three-dimensional flow fields. The challenge is now there is an addi-
tional dimension to consider, so the Poincaré map manifolds are surfaces rather than
curves.

Here the three-dimensional coral simulation is conducted on a square domain
of−0.0496 m≤ x≤ 0.0496 m, −0.0496 m≤ z≤ 0.0496 m, and−0.0070432 m≤
y≤ 0.0921568 m, with coral stem centered at the origin. The spatial mesh is adaptive
with three levels. The finest mesh is h f ine = 0.00992/512 = 0.00019375m. The time
step is chosen to be ∆t = 0.0001s. The physical and numerical parameters are given
in Table 5.1.

TABLE 5.1: Numerical and physical parameters for three-dimensional
pulsing corals.

Parameter Value Units
Domain size 0.0992 × 0.0992 × 0.0992 m3

tentacle length (L) 0.0055 m
Fluid density (ρ) 1029 kg m−3

Fluid viscosity (µ) 0.00108 N s m−2

Pulsation Frequency (γ) 0.61854 s−1

Time step (∆t) 0.0001 s

The simulations are run for ten pulses up to t = 16.32867 s. The characteristic
length in this problem is the length of a coral tentacle, L, the characteristic frequency
is the frequency of the pulsation, γ , given in Table 5.1. These parameters correspond
to a Reynolds number of Re = ρL2γ

µ
≈ 17.8. Snapshots of the three-dimensional
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coral simulation during the tenth pulse are shown in Fig. 5.7. The coral motion,
fluid velocity field, and vorticity are shown. A continuous upward jet is present
above the coral throughout the pulse [14].

FIGURE 5.8: Visualization of slices. The blue line indicates the slice down
the center of of the tentacle, and the red line indicates the slice down the
center of the tentacle gap.

Since the flow field simulations are parallelized, using adaptive mesh refinement,
the velocity data must be exported to a manageable format to post-process and an-
alyze. When interpolating the data to a uniform grid, it was challenging to ensure
the incompressibility of the flow. The solution is building the Poincaré Maps using
VisIt, an open-source visualization software developed by Lawrence Livermore Na-
tional Laboratory [123]. VisIt allows for direct access to the format of the output of
the simulations, SAMRAI files.

The Poincaré maps are built using the Integral Curve operator. Massless tracers
are seeded into desirable locations and advected forward or backward in time using
an Adams-Bashforth scheme over the final pulse in the simulation. A Python script
is used, which takes the new locations of these massless tracers after being advected
over one pulse as the new seed locations to be advected in time and looped over
multiple pulses.

We begin by using two-dimensional slices of the data to gain intuition into the
three-dimensional mixing dynamics. We analyze slices through the center of the
tentacle gap and the center of a tentacle, shown in Fig. 5.8. Due to numerical error,
the tracers would sometimes be advected off of these planes. In these cases, the
tracers were projected back to the plane at the end of each pulse.

5.4.1 Mixing Results
Approximately 150 points were seeded randomly into each slice, and they were ad-
vected forward over 127 pulses to create a Poincaré section, shown in Fig. 5.9.
The Poincaré section of the slice through the center of the tentacle, given in blue in
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FIGURE 5.9: Poincaré sections for a slice (a) down the center of the
tentacle and (b) down the center of the gap between the tentacles, as shown
in Fig. 5.8. The x-axis is the radius away from the center of the coral stem,
and the y-axis is the vertical component of the domain. In (a) the location
of the coral tentacles and stem are given in blue. The red numbers denote
different areas that contain fixed points.

Fig. 5.8, is shown in Fig. 5.9(a), with the coral stem and tentacle location shown
in blue. The Poincaré section of the slice through the center of the gap between
tentacles, given in red in Fig. 5.8, is shown in Fig. 5.9(b). The red numbers indi-
cate areas where fixed points are being located. The area marked by 2 behaves like
a hyperbolic fixed point that generates invariant manifolds. The areas marked by
1, 3, and 4 behave like stable and unstable spiral fixed points or invariant tori. In
the two-dimensional simulations, there would be no sinks or sources as the velocity
field is divergence-free. In these three-dimensional simulations, the velocity field is
divergence-free, but the two-dimensional slices are not.

Recall that chaotic advection is indicated by a sensitivity to initial conditions.
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That means that the distance between two points that are initially close together in-
creases exponentially. However, in this system, we can qualitatively see that there
is not very much chaos. For the biologically relevant Reynolds number in the two-
dimensional system, there is much more chaos. We anticipate that the more quan-
titative analysis of the three-dimensional mixing will result in different results from
the two-dimensional mixing.

5.5 Three-Dimensional Concentration Results
The implementation of the methodology described in Section 5.3 is currently in
progress. Here, we present simulations of a background concentration coupled to
the three-dimensional simulation of a soft coral presented in Section 5.4 shown in
Fig. 5.7. The fluid parameters given in Table 5.1 are used in these simulations.

The initial condition of the concentration is a Gaussian function centered on the
coral stem,

c(x,0) = e(−10−4x2
1−10−7x2

2−10−4x2
3) .

Two diffusion coefficients are used, D = 10−6 m2s−1 and D = 10−8 m2s−1. The
corresponding Péclet number are Pe = L2γ

D ≈ 18.7 and 1871 for D = 10−6 m2s−1

and D = 10−8 m2s−1, respectively.
Snapshots of the coral simulation are given in Fig. 5.10 for D = 10−6 m2s−1

and in Fig. 5.11 for D = 10−8 m2s−1. In Fig. 5.10, the coral advects the oxygen
concentration up, but diffusion dominates oxygen concentration dynamics due to the
smaller Péclet number. However, in Fig. 5.11, one can see that the concentration
dynamics are more dependent on the flow field due to the larger Péclet number.
In 5.11(f), one can see oxygen gets advected away by the upward jet away from
the coral. This work simulates the coral moving and mixing the fluid with an initial
large buildup of oxygen around the tentacles. However, this does not take the oxygen
being produced by the symbiotic algae on the tentacles into account. In order to get a
deeper understanding of the photosynthesis dynamics, we need to couple the oxygen
concentration with a sink or source located on the immersed boundary.

5.6 Summary
In this chapter, we have presented three-dimensional coral simulations using IBFE.
We have included a discussion of the implementation of IBFE and how we pre-
scribe the coral motion based on work done by collaborators [15]. Additionally,
we overviewed the existing methodology in IBAMR to couple a fluid-structure in-
teraction to a background concentration using an advection-diffusion-reaction equa-
tion. We have proposed a numerical methodology that would allow for the three-
dimensional finite element mesh to be a sink or source of concentration using IBFE
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(a) (b) (c)

(d) (e) (f)

FIGURE 5.10: Snapshots of three-dimensional coral simulations with a
background concentration shown for D = 10−6 m2s−1 with blue color map
and velocity vectors shown with grey arrows at (a) t = 0.5 s, (b) t = 1.0 s,
(c) t = 1.6 s, (d) t = 2.6 s, (e) t = 4.85 s, and (d) t = 16.3 s.

(a) (b) (c)

(d) (e) (f)

FIGURE 5.11: Snapshots of three-dimensional coral simulations with a
background concentration for D = 10−8 m2s−1 shown with blue color map
and velocity vectors shown with grey arrows at (a) t = 0.5 s, (b) t = 1.0 s,
(c) t = 1.6 s, (d) t = 2.6 s, (e) t = 4.85 s, and (d) t = 16.3 s.
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and discussed the best way to implement this. Additionally, we presented some
preliminary work looking at Poincaré sections on two-dimensional slices of the
three-dimensional simulations. We also presented preliminary work with three-
dimensional coral simulations coupled to a background concentration.
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Conclusions and Future Work

In this dissertation, mathematical models, numerical methods, and simulations of
pulsing soft corals and photosynthesis of their symbiotic algae are presented.

The modeling and numerical methods for a two-dimensional coral are presented
in Chapter 2 and include a novel methodology to model photosynthesis, where the
coral tentacles act as a source of the photosynthesis by-product, oxygen. The nu-
merical methodology included a discussion of the immersed boundary method used
to solve the fluid-structure interaction of the coral tentacle pulsing. We also dis-
cussed how the fluid-structure interaction is coupled to the photosynthesis model. In
the photosynthesis model, we track the oxygen concentration in the fluid governed
by the advection-diffusion equation. The numerical methods include a third-order
WENO scheme for the advective terms and Crank-Nicolson for the diffusive term.
The source term defined at the coral tentacle location was handled explicitly using a
second-order Runge-Kutta method. The methodology was validated by conducting
a convergence study of the fluid velocity and oxygen concentration dynamics. This
study informed which spatial grid sizes were necessary for the numerical simulations
and results presented.

The two-dimensional coral results are given in Chapter 3. Using the simulated
velocity fields, we implement a dynamical systems approach using Poincaré maps
to quantify mixing due to chaotic advection. The use of Poincaré maps in this work
has been instrumental in understanding the fluid flow and quantifying the mixing.
By analyzing the invariant manifolds presented, we were able to quantify how much
fluid is replenished near the coral over one pulse. Additionally we used the oxy-
gen concentration dynamics to evaluate the photosynthesis in different regimes. To
investigate the coupled role of fluid inertia and diffusivity on photosynthesis dynam-
ics, we simultaneously vary the Reynolds and Péclet numbers. We look at the role
of these parameters on the maximum concentration, the evaluation of the source
term, the average concentration in the domain, the concentration variance, and the
flux across lines at varying heights away from the coral. The metrics used to ana-
lyze the photosynthesis dynamics in two dimensions showed increased mixing and
more oxygen production for smaller Péclet numbers. In this regime, the oxygen
concentration diffuses away from the tentacles and allows for more mixing and less
buildup of oxygen concentration around the tentacles. These results were similar for

63
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all simulated Reynolds numbers. However, the biologically relevant Péclet number
for dissolved oxygen in water is large, O(100)−O(1000) and in this regime, fluid
flow plays a significant role. Smaller Reynolds numbers resulted in less mixing and
photosynthesis due to more reversible flow, while the increased inertia of the larger
Reynolds number allowed for more mixing and more photosynthesis. This benefit of
the larger Reynolds number was not uniform. For Reynolds numbers larger than Re
= 8, the benefit was considerably less. This behavior indicates that the biologically
relevant Reynolds number, Re ≈ 8, is advantageous for mixing and photosynthesis
in a larger Péclet regime, suggesting that these corals expend the minimal energy
required to gain the most benefit.

The role of fluid flow and diffusion in capture mechanisms of appendages, such
as feeding or olfaction, has been well-studied [43]–[45], [124], [125]. It is widely
accepted that although the appendages bring the materials close to the desired loca-
tion, the actual capture is dominated by the diffusion dynamics [124]. In this work,
rather than capturing material, the coral is expelling a by-product. One expects these
dynamics to be similar, where diffusion dominates the dynamics near the tentacle.
After the diffusion has transported the oxygen a short distance away from the tenta-
cle, the fluid can transport oxygen farther away from the coral. Instead, in Fig. 3.21
we observe that the fluid dynamics do affect the concentration close to the tentacles.
As the Reynolds number increases, the width of the oxygen buildup around the ten-
tacle decreases. The increased inertia in the fluid flow removes oxygen by thinning
the width of the accumulated oxygen around the tentacle. Thus both advective and
diffusive forces can be significant in the dynamics close to appendages.

A significant component of this work is contributing the methods developed in
Chapter 2 to open-source libraries so that other researchers and students can use
these tools. We have discussed the implementation in the software library IB2d in
Chapter 4, which will allow students and researchers to use these methods on two-
dimensional applications. In this chapter, the methodology is presented generalizing
the methods developed in Chapter 2, where the immersed boundary acts as a source
or a sink of a concentration. In addition to contributing this methodology, the third-
order WENO scheme for the advective terms in the advection-diffusion equation
was introduced for better mass conservation in larger Péclet number regimes. Ad-
ditionally, this work additionally led to a more robust implementation of the force-
spreading operator used in the immersed boundary method component of the li-
brary. The results presented include a convergence study of a canonical immersed
boundary example to validate the methodology and an example modeling a two-
dimensional coral with photosynthesis. Additionally, collaborators used the method-
ology to model heat transfer over a flapping leaf and a sniffing process.

Chapter 5 introduces the three-dimensional coral simulations using the software
library IBAMR. We first present the relevant modeling and numerical methods for the
fluid-structure interaction when using the IBFE method. Next, the existing modeling
and numerical methods present in IBAMR to couple the fluid-structure interaction
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with the advection-diffusion-reaction equations are discussed. The modeling and
numerical methods to discretize the immersed boundary using a finite element mesh
acting as a sink or source of a concentration are proposed. We then discuss using
Poincaré maps on two-dimensional slices of the three-dimensional simulations to
understand the mixing in three dimensions. We present Poincaré sections to gain
insight into the location of fixed points and qualitatively look at the mixing. We
found that there was much more chaotic mixing in the two-dimensional simulations
compared to the three-dimensional simulations. Further study of these dynamics
will be completed in future work. Preliminary simulations are presented with the
fluid-structure interaction coupled to a background oxygen concentration in two dif-
ferent Péclet number regimes to begin studying the photosynthesis dynamics in three
dimensions.

The models, methods, and analysis provided in this dissertation can be used in
scientific, industrial, and engineering applications where a pumping, pulsing, or stir-
ring mechanism facilitates mixing. They can also be used to analyze photosynthesis,
mass transfer, and heat transfer in other biological systems. These methods can also
be used to understand feeding, sniffing, chemotaxis, and waste removal in biological
organisms.
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[33] Q. Fang, S. Sakadžić, L. Ruvinskaya, A. Devor, A. M. Dale, and D. A. Boas,
“Oxygen advection and diffusion in a three dimensional vascular anatomical
network”, Optics express, vol. 16, no. 22, pp. 17 530–17 541, 2008.

[34] S. R. Lynch, N. Nama, Z. Xu, C. J. Arthurs, O. Sahni, and C. A. Figueroa,
“Numerical considerations for advection-diffusion problems in cardiovascu-
lar hemodynamics”, International Journal for Numerical Methods in Biomed-
ical Engineering, vol. 36, no. 9, e3378, 2020.

[35] A.-R. Khaled and K. Vafai, “The role of porous media in modeling flow and
heat transfer in biological tissues”, International Journal of Heat and Mass
Transfer, vol. 46, no. 26, pp. 4989–5003, 2003.

[36] Y. Deleuze, C.-Y. Chiang, M. Thiriet, and T. W. Sheu, “Numerical study
of plume patterns in a chemotaxis–diffusion–convection coupling system”,
Computers & Fluids, vol. 126, pp. 58–70, 2016.

[37] J. R. N. Lazier and K. H. Mann, “Turbulence and the diffusive layers around
small organisms”, en, Deep Sea Research Part A. Oceanographic Research
Papers, vol. 36, no. 11, pp. 1721–1733, Nov. 1989.

[38] S. Michelin and E. Lauga, “Optimal feeding is optimal swimming for all
péclet numbers”, Physics of Fluids, vol. 23, no. 10, p. 101 901, 2011.

[39] H. U. Riisgård and P. S. Larsen, “Particle capture mechanisms in suspension-
feeding invertebrates”, en, Marine Ecology Progress Series, vol. 418, pp. 255–
293, Nov. 2010.

[40] S. Van Wassenbergh and P. Aerts, “Rapid pivot feeding in pipefish: Flow
effects on prey and evaluation of simple dynamic modelling via computa-
tional fluid dynamics”, Journal of The Royal Society Interface, vol. 5, no. 28,
pp. 1291–1301, Nov. 2008.

[41] S. D. Olson, “Fluid dynamic model of invertebrate sperm chemotactic motil-
ity with varying calcium inputs”, en, Journal of Biomechanics, Special Issue:
Biofluid Mechanics, vol. 46, no. 2, pp. 329–337, Jan. 2013.

[42] A. Kiselev and L. Ryzhik, “Biomixing by chemotaxis and enhancement of
biological reactions”, Communications in Partial Differential Equations, vol. 37,
no. 2, pp. 298–318, 2012.

[43] L. Waldrop, M. Reidenbach, and M. Koehl, “Flexibility of crab chemosen-
sory sensilla enables flicking antennules to sniff”, Biological Bulletin, vol. 229,
pp. 185–198, Oct. 2015.

[44] L. D. Waldrop, L. A. Miller, and S. Khatri, “A tale of two antennules: The
performance of crab odour-capture organs in air and water”, Journal of The
Royal Society Interface, vol. 13, no. 125, p. 20 160 615, Dec. 2016.



Bibliography 70

[45] L. D. Waldrop, Y. He, and S. Khatri, “What can computational modeling
tell us about the diversity of odor-capture structures in the pancrustacea?”,
Journal of Chemical Ecology, vol. 44, 1084–1100, 2018.

[46] M. J. Weissburg, “The fluid dynamical context of chemosensory behavior”,
The Biological Bulletin, vol. 198, no. 2, pp. 188–202, 2000.

[47] R. Stocker and J. R. Seymour, “Ecology and Physics of Bacterial Chemotaxis
in the Ocean”, en, Microbiology and Molecular Biology Reviews, vol. 76,
no. 4, pp. 792–812, Dec. 2012.

[48] S. JR., S. R., A. T., and S. R., “Chemoattraction to dimethylsulfoniopropi-
onate throughout the marine microbial food web.”, Science (New York, N.Y.),
vol. 329, pp. 342–5, 2010.

[49] P. N. Dudley, R. Bonazza, T. T. Jones, J. Wyneken, and W. P. Porter, “Leatherbacks
swimming in silico: Modeling and verifying their momentum and heat bal-
ance using computational fluid dynamics”, PLOS ONE, vol. 9, no. 10, pp. 1–
14, Oct. 2014.

[50] M. M. Hossain and A. E. Staples, “Passive vortical flows enhance mass
transport in the interior of a coral colony”, Physics of Fluids, vol. 31, no. 6,
p. 061 701, 2019.

[51] C. S. Peskin, “The immersed boundary method”, Acta Numerica, vol. 11,
pp. 479–517, 2002.

[52] ——, “Flow patterns around heart valves: A numerical method”, Journal of
Computational Physics, vol. 10, no. 2, pp. 252–271, 1972.

[53] B. E. Griffith and X. Luo, “Hybrid finite difference/finite element immersed
boundary method”, International journal for numerical methods in biomed-
ical engineering, vol. 33, no. 12, 2017.

[54] A. Baird, L. Waldrop, and L. Miller, “Neuromechanical pumping: Bound-
ary flexibility and traveling depolarization waves drive flow within valve-
less, tubular hearts”, Japan Journal of Industrial and Applied Mathematics,
vol. 32, no. 3, pp. 829–846, 2015.

[55] R. P. Beyer, “A computational model of the cochlea using the immersed
boundary method”, J. Comput. Phys., vol. 98, pp. 145–162, 1992.

[56] L. J. Fauci and A. McDonald, “Sperm motility in the presence of bound-
aries”, Bulletin of Mathematical Biology, vol. 57, no. 5, pp. 679–699, 1984.

[57] L. J. Fauci and C. S. Peskin, “A computational model of aquatic animal”,
Journal of Computational Physics, vol. 77, pp. 85–108, 1988.

[58] G. Herschlag and L. Miller, “Reynolds number limits for jet propulsion:
A numerical study of simplified jellyfish”, Journal of Theoretical Biology,
vol. 285, pp. 84–95, 2011.



Bibliography 71

[59] C. Tu and C. S. Peskin, “Stability and instability in the computation of flows
with moving immersed boundaries: a comparison of three methods”, SIAM
Journal on Scientific and Statistical Computing, vol. 13, no. 6, pp. 1361–
1376, 1992.

[60] D. Goldstein, R. Handler, and L. Sirovich, Modeling a no-slip flow boundary
with an external force field, 1993.

[61] M. C. Lai and C. S. Peskin, “An immersed boundary method with formal
second-order accuracy and reduced numerical viscosity”, Journal of Com-
putational Physics, vol. 160, no. 2, pp. 705–719, 2000.

[62] J. M. Teran and C. S. Peskin, “Tether force constraints in Stokes flow by
the immersed boundary method on a periodic domain”, SIAM Journal on
Scientific Computing, vol. 31, no. 5, pp. 3404–3416, 2009.

[63] K. Y. Chen, K. A. Feng, Y. Kim, and M. C. Lai, “A note on pressure accuracy
in immersed boundary method for Stokes flow”, Journal of Computational
Physics, vol. 230, no. 12, pp. 4377–4383, 2011.

[64] Y. Bao, A. Donev, B. E. Griffith, D. M. McQueen, and C. S. Peskin, “An
immersed boundary method with divergence-free velocity interpolation and
force spreading”, Journal of Computational Physics, vol. 347, pp. 183–206,
2017.

[65] B. E. Griffith, “On the volume conservation of the immersed boundary method”,
Communications in Computational Physics, vol. 12, no. 2, pp. 401–432,
2012.

[66] Y. Kim and C. S. Peskin, “Penalty immersed boundary method for an elastic
boundary with mass”, Physics of Fluids, vol. 19, no. 5, p. 053 103, 2007.

[67] Y. Liu and Y. Mori, “Properties of discrete delta functions and local con-
vergence of the immersed boundary method”, SIAM Journal on Numerical
Analysis, vol. 50, no. 6, pp. 2986–3015, 2012.

[68] Y Mori, “Convergence proof of the velocity field for a stokes flow immersed
boundary method”, Communications of Pure and Applied Mathematics, vol. 61,
no. 9, pp. 1213–1263, 2007.

[69] N. A. Battista, A. J. Baird, and L. A. Miller, “A mathematical model and
MATLAB code for muscle-fluid-structure simulations”, Integrative and Com-
parative Biology, vol. 55, no. 5, pp. 901–911, 2015.

[70] B. E. Griffith, R. D. Hornung, D. M. McQueen, and C. S. Peskin, “An
adaptive, formally second order accurate version of the immersed bound-
ary method”, Journal of Computational Physics, vol. 223, no. 1, pp. 10–49,
2007.



Bibliography 72

[71] S. Osher and J. A. Sethian, “Fronts propagating with curvature-dependent
speed: Algorithms based on hamilton-jacobi formulations”, Journal of com-
putational physics, vol. 79, no. 1, pp. 12–49, 1988.

[72] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, and J. Zhu, The finite element
method. McGraw-hill London, 1977, vol. 3.
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