UC Irvine
Faculty Publications

Title

Quantification of the upstream-to-downstream influence in the Muskingum method and
implications for speedup in parallel computations of river flow

Permalink
https://escholarship.org/uc/item/6gv9t32d
Journal

Water Resources Research, 49(5)

ISSN
00431397

Authors

David, Cedric H
Yang, Zong-Liang
Famiglietti, James S

Publication Date
2013-05-01

DOI
10.1002/wrcr.20250

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.orag/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/6gv9t32c
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

WATER RESOURCES RESEARCH, VOL. 49, 2783-2800, doi:10.1002/wrcr.20250, 2013

Quantification of the upstream-to-downstream influence in the
Muskingum method and implications for speedup in parallel
computations of river flow

Cédric H. David,"? Zong-Liang Yang,' and James S. Famiglietti>
Received 24 July 2012; revised 8 April 2013; accepted 11 April 2013 ; published 28 May 2013.

[1] The mathematical formulation of the Muskingum method, like that of many numerical
schemes used for river routing, requires that all upstream river reaches be updated prior to
updating the flow rate of any given reach. Due to this topological constraint, such numerical
schemes have traditionally been solved in an upstream-to-downstream manner which
imposes inherent limitations on the speedup that can be achieved in a parallel computing
environment because each computing core has to wait for completion of all cores
addressing upstream subbasins prior to starting its own subbasin. The research presented in
this paper quantifies the exact influence among river reaches during the update step of the
Muskingum method and shows that the influence decreases with increasing distance
between two reaches until it becomes too small to be accounted for by floating-point
arithmetic. A formal definition of the minimal distance from which the relative influence
becomes numerically inexistent—the radius of influence—is presented. Based on this
distance, expressed as a number of river reaches, a new estimate of the maximum
theoretical speedup that can be achieved by the Muskingum method or by similar numerical
schemes is presented and implies large potential gains in computing time when domains are
much larger than the radius of influence. An application to the approximately 180,000 river

reaches of the Upper Mississippi River Basin at a 15 min time step over 2004 shows a
radius of influence on the order of 150 river reaches. The speedup obtained for this
application is much higher than previously thought possible but also much lower than could
be attained, suggesting that further investigations are necessary.
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1. Introduction

[2] Over the past decade, parallel computers have
become increasingly accessible to scientists, and their use
for studying water resources is progressively becoming
common. Generally, parallel computing is used to address
problems larger than could otherwise be tackled in which
case scalability is of concern; or it is used to solve prob-
lems of constant size but in less time in which case speedup
is studied. Many aspects of the terrestrial water cycle—
such as the surface and subsurface water balances—have
already benefitted from parallel computing, and the reader
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is referred to Vivoni et al. [2011] or David et al. [2011b]
for a more detailed general overview of parallel computing
in terrestrial hydrology. Few studies, however, focus on the
use of parallel computing for river flow modeling and on
related specific speedup issues as done in this paper. One
way to leverage parallel computing for river routing is to
assign disconnected river basins to different computing
cores, therefore requiring no time-consuming intercore
communication, but this ensues in load imbalance, and per-
formance becomes limited by the largest river basins [e.g.,
Larson et al., 2007]. Hence, the study of parallel computing
methods applied to river modeling within large basins is of
interest. The main challenge of such an endeavor is that riv-
ers flow mostly from upstream to downstream; therefore,
one may have to account for network connectivity and
direction of flow when assigning tasks to different comput-
ing cores, depending on the type of numerical scheme used
for river routing. These schemes generally update a given
river reach based on a combination of some or all of the
terms corresponding to the same reach at previous time
step, the upstream reaches at previous time step, and the
upstream reaches at update time step. The simplest numeri-
cal schemes—referred to as type 1 here—update a given
river reach based on the same reach at previous time step
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and on the upstream reaches at previous time step and
hence allow computations to be updated all at once [e.g.,
Larson et al., 2007; von Bloh et al., 2010]. In contrast,
more accurate numerical schemes—referred to as type 2
here—update a given reach based on the same reach at pre-
vious time step and on upstream reaches at both the previ-
ous and the updated time step and hence require that
computations be carried from upstream to downstream in
order [e.g., Li et al., 2011]. Both type 1 and type 2 numeri-
cal schemes necessitate information concerning those river
reaches that are located directly upstream of a given reach,
but at the previous time step for type 1, and at the previous
and update time steps for type 2. The differentiation made
here therefore only reflects on if the terms corresponding to
the upstream reaches at update time step are used (type 2)
or are not (type 1). The maximum theoretical speedup of
type 1 schemes is ideal, i.e., the computing time decreases
by a factor exactly equal to the number of computing cores.
In the case of type 2 schemes, however, the estimates of
maximum theoretical speedup have traditionally accounted
for the necessity to wait for prior upstream updates and are
therefore much lower that the speedup of type 1 schemes.
Larson et al. [2007] used a type 1 scheme on disconnected
basins which resulted in load imbalance. von Bloh et al.
[2010] also used a type 1 scheme but split computations of
each separate basin into a few processing cores to balance
computing loads and accounted for necessary communications
at subbasin boundaries. Li et al. [2011] used a type 2 scheme
in which the subbasin that each processing core addresses
changes at each time step in an upstream-to-downstream

sequence. In that case, careful algorithms for choosing the
ordering of computations [e.g., Li et al., 2010; Veitzer and
Gupta, 2001] can help maximize parallel performance, but
speedup is traditionally assumed to be limited by river net-
work topology. David et al. [2011b] also used a type 2
scheme but virtually avoided sequential upstream-to-down-
stream computations through the use of an iterative solver
on multiple computing cores and showed better speedup
results than was predicted by existing theory. David et al.
[2011b] proposed that such speedup may be explained by
flow waves not being fast enough to propagate through the
entire domain within any given time step but failed to pro-
vide a proof.

[3] The purpose of this paper is to quantify the exact
upstream-to-downstream influence among river reaches
during the update between two consecutive time steps of
the Muskingum method. We put the magnitude of this
influence in the perspective of precision in computer opera-
tions and present a new estimate of the maximum theoreti-
cal speedup that can be obtained when performing river
routing computations that follow a numerical scheme in
which the update of any given river reach requires prior
update of all directly upstream reaches.

[4] This paper first provides a theoretical approach, fol-
lowed by a small theoretical example. A practical applica-
tion focusing on the Upper Mississippi River Basin over
the year 2004 at a 15 min time step and using approxi-
mately 180,000 river reaches (Figure 1) is then presented.
Finally, practical results, discussion, and conclusions are
given.

Legend

United States

NHDPIus river reaches with
known network connectivity
USGS Gauges with full daily
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Figure 1.

The Upper Mississippi River Basin is the domain of this study. All NHDPIus river reaches

and USGS gauges used are shown, as well as the specific river reaches used in Figures 7 and 8.
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2. Theoretical Approach

2.1. Muskingum Method as a Linear System of
Equations

[5] The Muskingum method [McCarthy, 1938] is a river
routing scheme in which flow waves propagate in a river
reach j during the computing time step At as a function of
a temporal parameter k; and of a dimensionless parameter
x; following equation (1).

=0, (Qr i+ an+ )
+Cy - (OP 0+ Q) + 6, 00),

where ¢ is time and At is strictly pos1t1ve The variable Q 1P
is the flow entering reach j and coming from upstream river
reaches. The formulation of the Muskingum method given
in equation (1) includes the inflow of water Q¢ coming from
outside of the river network into a given reach J (e.g., lateral
inflow from runoff and river/aquifer exchanges) and added
upstream. Such inclusion of 07 in the Muskingum method
as un upstream contribution is in effect identical to
approaches using time-averaged lateral inflow [National
Environment Research Council, 1975; Ponce, 1986] or
time-varying lateral inflow [O’Donnell, 1985; Orlandini
and Rosso, 1998]. These previous approaches only differ by
the time at which Of is specified in equation (1), i.c., 05 (1)
as done here, O¢(# —1— At) as in Orlandini and Rosso [1998]
or both as in d’Donnell [1985]. In this study, is com-
puted by a land surface model and is assumed to %e slowly
time-varying; the impact of the time at which O is speci-
fied is hence small. The variable Q; is the flow exiting reach
7 and therefore represents the flow at the node downstream
of a given river reach j, although it is loosely referred to
here as the flow at reach j in order to simplify the wording.
The parameters Gy, Gy, and (5, are constant parameters
computed using equation (2).

Oi(t+ Atr)
(1)

C A2k C, - Dt2tk-x
Uk (T=x)+ A2 Tk (1—x) + A2
k- (1 =) = Ar/2

& = (—x) + A2

2)

[6] One should note that the sum Cy, + Gy, + C5, always
leads to a value of one. With the Musklngum method
updating the flow in any given river reach necessitates
access to the updated flow in river reaches that are located
directly upstream as can be seen from the first element of
the right-hand side in equation (1). For this reason, solving
the Muskingum method using computers has traditionally
been done sequentially from upstream to downstream on
one unique computing core.

[7] Adapting equation (1) using a matrix notation, David
et al. [2011b] showed that the Muskingum method can be
adapted to equation (3), which can be solved in parallel by
splitting the vectors and matrices on multiple computing
cores and allowing for intercore communication.

(I-Cy-

N)- Q¢+ Af) = C; - Q°(t) + C2 - [N - Q(r) + Q°(¢)]

+C3-Q(1),
(3)

where the bold notation is used for vectors and square mat-
rices which are all of size m, the total number of river
reaches in a river network. The matrix I is the identity ma-
trix; Cy, C,, and Cj are diagonal matrices in which diago-
nal elements are Cy, 5, and Cj,, respectively; N is the
network matrix in which—assuming a maximum of one
downstream river reach being allowed for each river
reach—a value of one is used at row i and column j if reach
j flows into reach i and zero is used elsewhere. The vector
Q (respectively, Q°) is made of the corresponding elements
Q; (respectively, Qe) The partial temporal uniformity of
07 simplifies the river routing model formulation, limits
the quantity of input data, facilitates the coupling with land
surface models, and is a valid assumption if such informa-
tion is made available less often that the river routing time
step as in this study. One should note that equation (1)
allows for solving “all river reaches, one time step after
another” or for solving “all time steps, one river reach after
another,” whereas equation (3) is limited to the former. By
combining all elements on the right-hand side of equation
(3) into a single vector b, the following equation is
obtained:
(I—-Cy-N)-Q(t+ Ar) =b(r). (4)
[8] Solving for the unknown Q(z + At) in equation (4)
can be done by providing the highly sparse matrix I — Cj -
N and the right-hand side b(#) to a linear system solver.
Equations (3) and (4) are valid regardless of the ordering of
N. However, N can be made strictly lower triangular—i.e.,
all elements on and above the diagonal are zero—by order-
ing the river reaches in an upstream-to-downstream manner
which will be assumed in the following. More information
on the derivation of this matrix-based Muskingum method
can be found in David et al. [2011Db].

2.2.

[9] The matrix C; being a diagonal matrix, and N being
a strictly lower triangular matrix, the product C; - N is
strictly lower triangular (see Appendix A) and I — C; - N is
a lower unit triangular matrix (i.e., a lower triangular ma-
trix for which all diagonal elements have a value of one).
The determinant of a triangular matrix is the product of its
diagonal elements; therefore, det(I — C;y - N) = 1 which is
not null, and hence, the inverse of I — C; - N exists and is
unique. This is not surprising because the Muskingum
method can be solved explicitly from upstream to down-
stream, as done traditionally.

[10] The characteristic polynomial Py_¢, n(y) of I — Cy -
N is defined by

Inversion of This Linear System of Equations

PI—CyN(y) :det(y-l—(I—Cl N)) (5)

[11] Accounting for Cy - N being strictly lower triangular
and for the determinant of a triangular matrix being the
product of its diagonal elements, equation (5) can be sim-
plified as

Pl*CyN(y) = det((yf
— (1"

1) 1—Cy-N) =det((y — 1))

(6)
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[12] Following the Caley-Hamilton theorem, I — C; - N
satisfies its own characteristic polynomial :

Pic,n(I—Cy-N) =0, (7)

where 0 is the null matrix. Substituting equation (7) into

equation (6) leads to

PI*CI-N(I —Cy- N) = (*l)m . (C] . N)m =0« (C] . N)m =0.
(8)

[13] Taking equation (8) into account, one can then show
that

—1

Qﬁi
p=1

(G 'N)p> -I-Ci-N)=1, )

where p is an integer. The unique inverse of I — C; - N has
therefore been determined. This inverse can be seen as the
Muskingum operator M, which like I — C; - N, is a unit
lower triangular matrix:

p=m—1

M=(I-C;-N)"' = <I+ > (CI.N)”>. (10)
p=1

[14] Finally, the linear system of equation (4) can be

inverted as shown in equation (11).
Q(t+ At) =M - b(1). (11)

[15] Despite being presented here for time-invariant
Muskingum parameters, one should expect similar results
if C; varied with time in which case the linear system ma-
trix I — C; - N and the Muskingum operator M should be
updated at every time step, although such is beyond the
scope of this study.

[16] Albeit being lower triangular, M is much denser
than its highly sparse inverse I — Cj - N. Therefore, for
computer performance purposes, a river routing scheme
should solve equation (4) using a linear system solver
rather than solving equation (11) directly. However, despite
its high associated computational cost, M can be used to
quantify the exact relative influence among river reaches
and is therefore useful in the context of this study.

2.3. Concerning the Precision That Can Be Expected
From the Muskingum Method

[17] The Muskingum method—whether in its traditional
form of equation (1) or in the matrix-based form of equa-
tion (4)—is a linear system of equations in which the ma-
trix I — C;y - N and the right-hand side b(¢) are given and
the unknown Q(7 + At) is to be determined. The properties
of this linear system are properties of the linear equations
to be solved (i.e., the physical problem being considered)
and not of the mathematics used to solve them. One such
property is the relationship linking small relative variations
of I — C; - N and of b(¢) to those of Q(¢ 4+ Af¢). The corre-
sponding inherent stability (or instability) of the linear sys-
tem is generally referred to as its condition (or ill

condition) and measured by a quantity called the condition
number x defined by

RI—C-N) = [I-Ci N[ - [0-C - NV, (12)
where |||| is a norm. The paper by Turing [1948] and the
book by Wilkinson [1963] have both been helpful to the
authors in understanding the inception of the condition
number, and the reader is referred to these for additional in-
formation. However, we found that the formulation of the
relationship linking small relative variations of I — Cy - N,
b(¢) and Q(¢ + At) to the condition number is more clearly
presented in Higham [1990] than in these earlier studies
and is hence better suited here. The formulation of Higham
[1990] is

Ab A(I-C;-N

b __AQ-C N
bl =" =GN
|AQl| _ 2+ Kk(I-Ci-N)
[QI = T=c- sl € N’

(13)

where ¢ is a small real number, and the same norm type is
used in equations (12) and (13) for both vectors and matri-
ces. The numerical value of the condition number therefore
depends on the linear system being considered as well as
on the norm being used. In the case of the 2-norm, equation
(12) can be expressed as

Omax

Ky, (= Cy-N) = (14)

Omin

where opnin and omax are, respectively, the minimum and
maximum singular values of I — Cy - N. The determination
of the exact singular values for I — C; - N is nontrivial and
outside of the scope of this study. However, a well-estab-
lished scientific library is used in section 5 to estimate the
singular values and hence the condition number, therefore
providing an estimate of the bounds relating relative varia-
tions of I — Cy - N, b(¢), and Q(7 + A¢).

[18] Variations of I — Cy - N and b(7) are to be expected
among various computer models. For example, the value of
b(¢) is prone to small relative variations depending on the
ordering of the floating-point operations used for its com-
putation. Computing b(#) using b(z) = C; - Q%(r) + C; -
N-Q(r) + Q°(1)] + C3 - Q(¢) or using b(r) = [C; + C] -
Q°(t) + C2-N-Q(f) + C3 - Q(¢) would not lead to the
exact same results in a floating-point environment (see sec-
tion 2.7), despite these two expressions being mathemati-
cally equivalent. Therefore, the exact floating-point value
of b(#) will differ from one computer model to another.
Such differences are also bound to exist for I — C; - N. The
resulting relative differences in the values of I — C; - N
and b(¢) will generate relative differences in Q(# + A¢) of
a magnitude linked to the condition number of the Muskin-
gum method. Consequently, one should not hope to achieve
better accuracy in the computation of Q(# + A¢) than that
allowed by equation (13). Such differences are not only
expected, they are also unavoidable.

[19] In addition to these precision issues which are inher-
ent to the physical problem represented by the Muskingum
method, one should also expect small variations in the
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values computed for Q(z + A¢) from the various mathe-
matical ways of solving the linear system, i.e., directly with
equation (1) or equation (11); or using a linear system
solver with equation (4). Such matters are also discussed in
general terms in Turing [1948] and Wilkinson [1963]. How-
ever, variations in Q(¢ 4+ At) resulting from the mathemat-
ics of resolution that are of the same order of magnitude as
those due to small variations of the linear system matrix or
of the right-hand side can therefore be deemed acceptable.

2.4. Calculation of the Muskingum Operator on
Computers

[20] In river networks with m river reaches, computing
the elements of M based on equation (10) necessitates on
the order of (m + 1) - m/2 multiplications of matrices of
size m. In large river networks—e.g., m on the order of
100,000—equation (10) would therefore be highly compu-
tationally demanding, and an alternate method is prefera-
ble. The matrix I — Cy - N being the inverse of M, their
product is the unit matrix, which can be expended in the
following equality :

M=1I+(C;-N)-M. (15)

[21] By definition of sums and products of matrices,
applying equation (15) for each element [M](i,j) of M
gives

v(i.j) € [1 mﬁ

(i) = 8. + 3 (IC1 N (16)

g=1

) - M(g./)),

where 6(i, ) is the Kronecker function which has a value of
one if 7 and j are equal, and zero otherwise. The quantity ¢
is an integer representing all river reaches, and
[C; - N](i,q) is the element of C; - N located at row i and
column ¢g. Accounting for a maximum of one downstream
river reach per given reach and for related consequences on
the properties of N, C; - N, and their powers, equation (16)
leads to (detailed derivation given in Appendix A):

v(i,j) € [1,m]?,
Vp € NT,[N](i,)) = 0 <= [M](i,j) = 6(i,))
Ip € N, [NP](i,)) # 0 <= 3r € [1,m], M](i,j) = 6(i,))
+ Gy, - [N](3,7) - [M](r.)),

(17)

where Nt represents all positive integers, 3 is the mathe-
matical symbol for existence, ! is used for uniqueness, and
<= 1is for material equivalence. The integer quantity r is
therefore the unique river reach (if it exists) that is located
directly upstream of reach i and that is also located p
reaches downstream of river reach j. Physically, equation
(17) means that if a river reach i is located directly down-
stream of a reach » which is itself somewhere downstream
of a reach j, then one can compute [M](i,/) as a function of
[M](r,j). Also, [M](i,) is null if reach i is not anywhere
downstream of reach j which makes sense because flow
only goes downstream in the Muskingum method. One can
therefore travel downstream through the river network to

determine the elements of M. Equation (17) is much more
computationally manageable than equation (10) and is used
herein to determine the elements of M.

2.5. Magnitude of Elements in the Muskingum
Operator

[22] By mathematical induction, equation (17) leads to

v(i.j) € [Lnﬂ ,

M](i.j) = 6Gi.j) + Co, ] € (18)

1eQ)(iy)

where (i, /) represents the ensemble of river reaches / that
are both strictly upstream of river reach i and strictly down-
stream of river reach j. The computation of M from equa-
tion (18) involves the product of elements Cj, and their
magnitude is therefore of importance. According to Cunge
[1969], the Muskingum method is stable for x; € [0,0.5],
regardless of the strictly positive value of Az, which associ-
ated to equation (2) allows to derive the following
inequalities:

Vj € [1,m]Vk; > 0,Vx; € [0,0.5]
At)2 — k- x; ki
Cj= =1 - ! <1
Vo k- (1—x) + Ar/2 k- (1—x) +Ar/2
At i
EEEAR At + k- (1 —2x;

ki (1—x;) + At/2 k- (1—x;) + Ar/2 ’

(19)
which can also be expressed as

Vi € [1,m],Vk; > 0,¥x; € [0,0.5]
—1<C1/-< 1. (20)

[23] Therefore, being the product of elements Cy,, the
subdiagonal elements of [M](i,j) are all bounded by the
interval | — 1, 1], i.e., the strict interval between —1 and 1
that excludes both —1 and 1. The parameter C,, approaches
unity for flow waves of infinite celerity, i.e., infinitesimally
small values of k; with regard to the modeling time step A,
but such is usually avoided by picking a time step smaller
than k;. Additionally, each element [M](i,j) becomes
increasingly closer to zero as a reach i downstream of a
given reach j becomes increasingly distant from it.

2.6. Quantification of Upstream-to-Downstream
Influence in the Muskingum Method

[24] By definition of the matrix-vector product, equation
(11) can be expressed as

v(i,j) € [1,m]’
Oi(t+ At) =M

[1>m )

[25] The vector b(¢) is by definition a combination of the
inflow N - Q(¢) from upstream, of the inflow Q°(¢) from
outside of the river network, and of the outflow Q(¢); all
defined at the previous time step ¢. Therefore, equation (21)
shows that the contribution from each reach j at the previ-
ous time ¢ to the updated flow Q;(¢ + At) at reach i can be

2787



DAVID ET AL.: UPSTREAM-TO-DOWNSTREAM INFLUENCE IN THE MUSKINGUM METHOD

seen in the product [M](i, ]) bj(1). Additionally, one can
show (detailed derivation given in Appendix B) that the
contribution from each reach j at the updated time 7 4+ At
to the updated flow Q;(¢ + A¢) at a different reach i can be
seen in the product [M](i,/) - Q;(t + At). Given that the
magnitude of the elements in the Muskingum operator
decreases with distance between river reaches, one can
therefore wonder how far does the update need be
accounted for.

2.7. Radii of Influence

[26] Given ¢ the bound for the relative error when a real
number is rounded to its closest floating-point number (i.e.,
the machine epsilon), the precision that can be expected
from the floating-point addition & of two floating-point
numbers y and z is [Goldberg, 1991]

Y(y,z) € F, (22)
(+z2)-(1—-2¢) <yBz< (y+2z)- (14 2¢),

where F designates all floating-point numbers. The approx-
imation of floating-point additions can also be expressed as

Y(y,z) € F?,
£ _ (23)

ol <5 bl =Dz =y.

[27] Applying equation (23) to the contribution from
each reach j to each reach 7 during the update step, one can
conclude that if |[[M](i,j) - Q;(t + Ar)| is always smaller
than 0.5 - ¢ - |Q;(¢ + At)|, then from a floating-point arith-
metic perspective, the river reach j has never an influence
on the update of river reach i. Therefore, the river reaches i
and j could be computed independently, and such would be
true for both equations (11) and (4). Since the elements
[M](i,) become increasingly closer to zero as the distance
between reaches i and j increases, the independence of
reaches i and j is bound to happen starting at a large-
enough distance which will be here referred to as the radius

of influence. A radius of downstream influence Rdown can
be defined as

vj € [1,m],Vt
Ir e N* N [0 R‘?"Wﬂ] IN'|(i,j) = 1 <= Vi € [1,m],

M](i,)) - Qj(t + Ar)] >— |0i(t + Ar).

(24)

[28] The radius of downstream influence Rf”wn is defined
here as an integer for each river reach, but one could also
think of other definitions where Rd‘)Wn varies not only in
space but also in time. Physically, th1s means that the influ-
ence that any river reach further away than Rd"“’n down-
stream from reach j is smaller than can be accounted for by
floating-point arithmetic. Similarly, one can define a radius
of upstream influence :

Vi e [1,m],Vt
0, "], IN](i u) =l<=Vvjell,n],

Ire NN
IM](i.)) - Q;(t + Ar)| > 5 0:(t + A1)

(25)

[29] Rd"wn therefore allows lookmg downstream at what
river reaches are influenced by a given reach, and R;”
allows looking upstream at what river reaches have 1nﬂu-
ence on a given reach. One should note that the values of
both [M](i, /) and O;(f + At) need be accounted for in com-
puting the radii of influence since instantaneous values of
O;(t+ At) can be of greater magnitude than that of
0;(t + Af)—e.g., when a flow wave is propagating—even
if such is not true for their respective temporal averages.

2.8.

[30] Most studies looking at parallel speedup of river
flow computations using a simple upstream-to-downstream
river routing scheme of type 2 as done here assume that the
update of any river reach cannot be done prior to the update
of all of its upstream river reaches [e.g., Li et al., 2011].
Under such an assumption, the maximum theoretical
speedup S (N) that can be reached when assigning N sub-
basins to N different computing cores while keeping loads
balanced is

Implications for Parallel Computing

Si(N) = (26)

N
ﬁh’
where Np, is the largest number of subbasins (i.e., comput-
ing cores) crossed—out of all possible paths going from
upstream to downstream—in the entire river network.

[31] Based on the work presented in this paper, using
subbasins that are longer than the radii of influence and
accounting for the corresponding independence of river
reaches, one can therefore compute each subbasin entirely
in two iterations and guarantee that the downstream-most
elements are computed exactly in the first iteration while
others are still inexact, and be assured that a second itera-
tion is sufficient to update all other elements of each subba-
sin. Such an approach can allow reaching the following
maximum theoretical speedup:

$H(N) = (27)

N
5

[32] One should note here that equation (27) assumes
that each core computes all its corresponding elements
twice—as done in this study—which is not necessary, and
therefore, S»(N) could be higher. Alternatively, one could
update all elements in a first iteration, again knowing that
only the downstream-most river reaches are exactly com-
puted, and limit the second iteration to those reaches that
were inexact, i.e., those located within a distance of RI™™ —
1 downstream of the connections between subbasins. The in-
teger quantity R"" can be picked, for example, as the maxi-
mum value of all R%"  In doing so, one could expect the
following ideal maximum theoretical speedup:

N

S3(N) = 1+ (Rdown _

TV (28)

[33] In the case where the radius of influence or the
number of subbasins are much smaller than the total num-
ber of river reaches in the entire domain, i.e.,
(R%™ —1)-N/m << 1, S5 becomes close to ideal. As a
consequence, if the modeling domain allows for more than
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two consecutive subbasins that are large enough with
regard to the radii of influence, the maximum theoretical
speedup of equations (27) and (28) can be much higher
than that of equation (26).

3. Theoretical Example

[34] Figure 2 shows an example river network made out
of 12 river reaches. The corresponding network and linear
system matrices are given by equations (29) and (30),
respectively, in sparse format (only the nonzero values are
shown here and saved by the computer program):

(29)

I-C-N=

[35] The Muskingum operator being much denser, only
the first column is shown here, for clarity:

1

Cy,
Cy, - Cy,

C,-Cy, -Gy
C,-C, -G, -Cy,

C,-Ci,-C-Cy,-Cyy
Ci, - Ciy - Gy - Gy - Gy - Gy

_C13 . C14 . Cls . C17 : C19 ’ C110 : Cllz J

= River reach

Sub-basin =1

Figure 2. A river network made out of 12 river reaches
and 7 nodes split into four subbasins and used as a theoreti-
cal example.

[36] One can see that the last element of the first column
is the product of seven elements C 1, and is likely to be of
small magnitude given the bounds of ), themselves.

[37] Applying the traditional Muskingum method to river
reach j = 7 and substituting into the same equation applied
toj = 9 lead to

Oy (1 +At) =

S o

(32)

[38] One should note here that if Qg(z + At) were to be
substituted by its value as a function of bs(¢), the same
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multiplying scalar [M](9,6) = [(Cy - N)*](9,6) = C, - C},
would appear before bg(¢) as it does before Q¢(f + Atf) in
equation (32); as was previously demonstrated in section
2.6. Assuming a radius of downstream influence of two for
all river reaches, any given river reach only has accounta-
ble influence on the updated flow rates for itself and for the
immediate downstream reach. Consequently, the value of
C, - Cy, - Q¢(t + At) can always be neglected with regard
to the value of Qy(t + At). Therefore, one could compute
an estimate Qo of Qo using
O (t + Af) = bo(£) + Cy, - bo(t) + Cy, - Os(t + Ar).  (33)
[39] Such an estimate would actually be exactly correct
from a floating-point arithmetic perspective, and therefore,
one would not need to wait for Qg(¢ + At) to be computed
in order to compute Qy(#+ At). Hence, if subbasins are
constructed larger than the radius of downstream influence,
then the downstream-most element—at the least—can be
computed exactly without accounting for the inflow from
upstream subbasins, and new computing algorithms can be
developed.
[40] Figure 3 shows three ways of solving the Muskin-
gum method if splitting the entire river network in the four

subbasins of same size that are shown in Figure 2, and Fig-
ure 4 shows the corresponding time sequences. In both of
Figures 3 and 4, method (a) corresponds to the traditional
Muskingum method, method (b) corresponds to an iterative
linear system solver, and method (c) is raised as a potential
new way to solve the Muskingum method.

[41] The maximum theoretical speedup for the tradi-
tional method of Figures 3a and 4a is S)(4) = 4/4 = 1.00,
i.e., no speedup.

[42] Another way of solving the Muskingum method is
to start computing everywhere at the same time and to
allow for two iterations as shown in Figures 3b and 4b.
Using core 3 as an example, a first iteration gives

{Q7(f+Af) b7(t) +0
Og(t+ At) = bg(t) : ;
Oy (t + At) = bo(t) + Cy, - Q7 (t + At) + C, - Og (t + At)

(34)

where Qj(t + Atr) is used for a temporary update of
O;(t + At). Notice that Qg(r + At) = 0 is used in equation
(34) for the computation of Q7(¢+ At) because its real
value has not yet been computed by core 1. A second itera-
tion gives

ra-nl) 8 :79‘7(?;3:)"{(:)"7"WW""""WWZQTA?)W};{{fW"""""""" b))
L (1+A1) =4 : :(5 t+A1)=h, (1) O, (t+Ar)=h, (1) |
loar-si0vc.aueansc aom) |[amroniee aussns g _laearaine aese agn
 (1+A1) =b, (1) + 0, (1 +Ar) Ll [eeran= ET) 77777777777777777 0, (1+a1)=b, '})Tci O(r+a) | :
 (1+A8)=by (1) N RXTE BN ) (14 A1) =b, (1) |
(1 +80)=b, (1)+C, -0, (1+80)+C, -0, (1 +Ar) i Q(H—Ar) b (1)+C QJ(r+Ar)+C Q (r+Af) O, (1+4r)=b,(1)+C, O, (r+A1)+C, O (r+Ar) i
(0, (t+80)=b, (1)+0, (t+60) | (o, fJA'{)_'B_(:_)IE)'_”_ (o (+a)=b(0)+C, O () |
O, (r+Ar)=b,(1) : : O, (r+1)=b,(1) O (t+Ar)=b(r) :
0, (r+a1)=b, (.')+C Q,{{+A1]+C QK(F+A.'): i O, (t1+A1)=b,(1)+C, O (erA"]JrCu"Q\a(-'*A’) O, (t+Ar)=b,(1)+C, -0, (1+A1)+C, - O, (1 +Ar) i
[0 (r+Ar)= b“,(f)+Q.,(.'+Ar) li[on(+an=s,+0  [Q.(+A)=h()+ G (t+A)
(1480 =5, (1) [10u6an=s,0) W (+80) =, ()
2 (r+Az)= 2 (1)+C, -0 (1+A0)+C,_ -0, (1+Ar) | : O, (1+88) =y, (1)+C, -0y (1+A1)+C, -0, (r+40) | (1+80)=by, (1)+C, -0, (1+ A1)+ C -0, (r+4r)
\ R B T J
(oGeaiene T )
0, (1+81)=h, (1) !
O, (1+Ar)=b,(1)+C, - O (t+Ar)+C, -Q, (1 +Ar1

.| Processing core 4
Al

|
|
|
|
I
|
:
MO (r+ar)=b
|
|
|
}
I
|
|
]
|
I

a) Traditional method

; : O, (1+A1) =, (1) +0
b) Iterative method :Q“(l-ﬁ-m):f:”(r)
c) Potential method i\g:( (1)

' Qd(r+m) b, [.')+U -

O, (1+Ar)=b,(1)+C, -Qj(r+A:)+C,ﬂ -0 (t+At)

Figure 3. Three ways of solving the Muskingum method. Each processing core addresses the corre-
sponding subbasin in the river network of Figure 2. Methods (a) and (b) are used in this paper, and (c) is

not.
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a) Traditional method

b) lterative method

c¢) Potential method

. — -

/7~

D D

1 1 10 1 10
2 2 11 2 5 8 11
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7 1 10 Le 1[7 ][]
5 1
@ 12
E
— 7
8
10
1
12
v

S AN

Processing core

Update complete for river reach i

Update incomplete for river reach i

Figure 4. Time sequence corresponding to the three ways of solving the Muskingum method presented
in Figure 3. Each processing core addresses the corresponding subbasin in the river network of Figure 2.
Methods (a) and (b) are used in this paper, and (c) is not.

Os(t+ At) = bg(t
Qg(f + Al‘) = bg(t) + Cy, - Q7(f + Al‘) +Cy, - Qg(f + At)
(35)

—

{ O7(t+ At) = by (1) + Cy, - Os (¢ + A1)

[43] The values of Qy(t+ At) and of Qg(t+ At) are
exactly the same in equations (34) and (35), because with a
radius of downstream influence of two, Cj, - Cy, -
Qg (t + At) is too small to be accounted for by computer
operations. This method allows obtaining a maximum theo-
retical speedup of S»(4) = 4/2 = 2.00.

[44] Finally, the method of Figures 3c and 4c could be
used to update everywhere in a first iteration knowing that
the upstream-most elements in each subbasin are inexact,
and finish the update of these upstream elements in a
second iteration which would lead to S3(4) =4/
(I+(2-1)-4/12) =3.00.

[45] Accounting for the relative upstream-to-downstream
influence between river reaches when solving the Muskingum
method can therefore double or even triple the maximum the-
oretical speedup for this particular example. The value of two
picked here for the radius of downstream influence is smaller
than the values obtained in the practical application presented
later, for clarity, but the same concept applies.

4. Practical Application

[46] The Upper Mississippi River Basin is used here as a
test bed for the theoretical approach presented in section 2.

The enhanced version of the National Hydrography Dataset
(NHDPlus) [U.S. Environmental Protection Agency and
U.S. Geological Survey, 2010] provides all river reaches of
this large network as well as the corresponding contribut-
ing catchments. Runoff data from the second phase of the
North  American Land Data Assimilation System
(NLDAS?2) [Xia et al., 2012a, 2012b] are used here to esti-
mate the inflow of water from surface and subsurface into
the river network. The computations of river flow using
the Muskingum method are performed with the Routing
Application for Parallel computatlon of Discharge
(RAPID) [David et al., 2011b], and Muskingum parame-
ters are optimized based on gauge observations from the
U.S. Geological Survey (USGS). Our analysis focuses on
days from 1 January to 31 December 2004, and all tools
used are briefly described in this section.

4.1.
Basin

NHDPIlus Description of Upper Mississippi River

[47] The Upper Mississippi River Basin is available as
NHDPlus Region 07 (Figure 1) and has 191,646 river
reaches of which 182,240 have known network connectiv-
ity and are used in this study. These 182,240 river reaches
vary in size from 0.001 to 27.353 km (median: 1.64 km,
mean: 1.87 km, standard deviation 1.64 km). The total ba-
sin area of 491,777.837 km? is divided into 180,787 con-
tributing catchments, each corresponding to a unique river
reach with known network connectivity. The smallest of
the river reaches with known network connectivity do not
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have an associated contributing catchment. The contribut-
ing catchments vary in size from 0.001 to 318.91 km? (me-
dian: 1.58 km? mean: 2.72 km?, standard deviation 4.63
km?).

4.2. Inflow of Surface and Subsurface Water Into
NHDPIlus River Reaches

[48] NLDAS2 [Xia et al., 2012a, 2012b] offers hourly
land surface data from four land surface models from 1979
to current times and on a 1/8 degree grid. Out of the four
NLDAS2 land models, only the Variable Infiltration
Capacity (VIC) model originally developed by Liang et al.
[1994], and now in its version 4.0.5 was used in this study.
Three-hourly inflows of water into NHDPlus river reaches
were estimated from the sum of VIC surface and subsur-
face runoff by means of the conceptual translation between
the gridded NLDAS2 environment and the vector-based
NHDPIlus catchments that is described by David et al.
[2013] and that uses catchment centroids.

4.3. Flow Observations on NHDPIlus Rivers

[49] Flow observations are needed in this study for opti-
mization of river routing parameters and for comparisons
between computations and observations. Here we use the
gauges of the USGS National Water Information System
(NWIS) of which the exact location on the NHDPlus river
network is available as part of the NHDPlus deployment. A
total of 1277 NWIS gauges exist in the NHDPlus descrip-
tion of the Upper Mississippi River Basin but only 1251 are
located on river reaches with known network connectivity.
Out of these 1251 gauges, only 419 have full daily record
from 1 January to 31 December 2004. Each of these 419
gauges is located on a unique NHDPlus river reach, except
for four which are located on two river reaches (two sta-
tions per reach). The comparisons between computed and
observed flow are done here using the flow at the outlet of
reaches that are host to a gauge, and hence only the most
downstream gauge was retained in case of duplicates.
Therefore, daily data from 417 USGS gauges are used in this
study. The selection and downloading of data were performed
using HydroExcel (http://his.cuahsi.org/hydroexcel.html) and
HydroGET (http://his.cuahsi.org/hydroget.html).

4.4. Routing Application for Parallel Computation of
Discharge

[s0] The RAPID [David et al., 2011b] is a river routing
model. Given surface and groundwater inflow to rivers, this
model can compute the flow and volume of water every-
where in river networks made out of many thousands of
reaches. The design of RAPID allows it to be adapted to
any river network, if given basic connectivity information
as is the case in NHDPlus. Computations in RAPID can be
performed using the traditional Muskingum method of
equation (1) and accounting for surface/groundwater
inflow or with the matrix-based Muskingum method of
equation (3). RAPID also has an automated parameter
estimation procedure that allows finding optimal model
parameters based on available gauge measurements. This
model uses the Fortran programming language along
with the Portable, Extensible Toolkit for Scientific Com-
putation (PETSc) [Balay et al., 1997, 2010, 2012] and
the Toolkit for Advanced Optimization [Mclnnes et al.,
2011] and can be run on personal computers, as well as

on massively parallel supercomputers. The model code
for RAPID as well as related documents and animations
can be found at http://www.ucchm.org/david/rapid.htm.
Calculations in RAPID are performed using double-pre-
cision floating points.

[51] As in David et al. [2011b, 2013], a river routing
time step of Az =900 s is used. This time step should
properly capture the flow dynamics at least for river
reaches that are 0.9 km long or longer (i.e., more than two
thirds of river reaches in this study) if flow wave celerities

are c =1 m/s or slower, as in this paper.
5. Results
5.1. Calibration of RAPID

[52] In this study, the optimization of the Muskingum pa-
rameters k; (time) and x; follows the simple approach of
David et al. [2011b] using a squared-error cost function ¢,
computed using all 417 available gauges over 1 January to
30 December 2004. This procedure leads to the following
values:

V) € [1,182240]
L

k = 0.3087 -

X =0.0652-0.1,

(36)

where L; is the length of each river reach j, c® = 1km/h is
a constant flow wave celerity, and £; is expressed in sec-
onds. The value of the flow wave celerity ¢ = ¢°/0.3087 =
0.90 m/s obtained here for the Upper Mississippi River
Basin is close to ¢ = 0.78 m/s that was presented by David
et al. [2013] for the Texas Gulf Coast Hydrologic Region;
a domain of similar size but with smaller rivers. Figure 5
shows an example hydrograph obtained for the most down-
stream gauge of the Upper Mississippi River Basin. The
more advanced optimization methods presented by David
et al. [2011a, 2013] could be used here to improve the
match between observed and computed hydrographs. How-
ever, such is beyond the goal of this paper, and the simple
parameters of equation (36) will be used for the analysis in
this study.

5.2. Computation of the Muskingum Operator and
Quantification of the Upstream-to-Downstream
Influence

[s3] The values of the elements C, for the Upper Missis-
sippi River Basin are computed based on equations (2) and
(36). Figure 6 shows the probability density function and
the cumulative distribution function of C), for the entire
study area. As expected, the elements C;, are bounded by
the interval | — 1, 1[. In this particular case, no negative
values are obtained for Cy, because x; is small.

[54] Equation (17) was then used to compute the Musk-
ingum operator M. One should note here that storing the
values of the Muskingum operator in a file requires saving
182240% double-precision floating points, each necessitat-
ing 8 B, which represents 247 GB; i.e., the equivalent of
approximately 60 years of three-hourly river flow data for
the same domain. Allowing for a maximum of three poten-
tial upstream river reaches for each river reach as done in
NHDPlus, the sparse linear system matrix I — Cq - N only
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Figure 5. Comparison of observed and modeled daily hydrographs for the Mississippi River at Thebes, IL.

necessitates a maximum of 182240 - (3 4 1) floats which
represents only 5 MB. It is therefore much easier to use I —
C; - N for river routing on computers than it is to use M
not only because M is much denser and hence requires a
higher number of computations, but also because of its
associated higher memory needs. Because of the large size
of M, only the part corresponding to all 3916 river reaches
located upstream of the Mississippi River at Brainerd, MN,
is shown here for clarity of the graphics (Figure 7). As
expected, the magnitude of M gets smaller as one moves
away from the main diagonal, which confirms that the rela-
tive upstream-to-downstream influence decreases with the
distance between river reaches.

5.3. Radii of Influence

[s5] Figure 8 shows all river reaches located upstream of
the Mississippi River at Brainerd, MN, as well as those
river reaches that have accountable influence on and from
the Mississippi River at Aitkin, MN. Equation (24) was
used to select all river reaches for which the influence from
Aitkin is large enough to be accounted for by a computer
model, and 24 river reaches match this criterion; so
Rdwn  — 24, Equation (25) was used to select all the river
reaches that have a large-enough influence on Aitkin, and a
total of 472 river reaches match this other criterion but

100 4

include many branches upstream of Aitkin and therefore
provide an upper estimate for Ry, . . The number of river
reaches for which floating-point arithmetic allows account-
ing for the relative influence among river reaches is there-
fore much smaller than the domain size in this study.

[s6] Equation (24) was then used to compute the radius
of downstream influence for the entire domain, and values
are shown in Figure 9. Values of Rf”wn range between 0
and 155 and have an average of 36 which is again much
smaller than the domain size. The spatial repartition of
R;.i"wn does not seem to particularly match any topological
network structure, which can be explained by the depend-
ence of Q;(t+ At) on inflow of water from surface and
subsurface. Similar values are found for the radii of influ-
ence when replacing Q;(t + At) by b;(¢) in equations (24)
and (25), although these results are not shown here.

[57] One should note that the computations of both radii
of influence are made here using the worst-case scenario,
i.e., the maximum absolute value of Q;(f+ At) and the
minimum absolute value of Q;(f + At) over the entire dura-
tion of study, both evaluated at the 15 min time step. The
radii of influence reported here are therefore safe overesti-
mates since the ratio of Q;(r+ Ar) over Qi(r+ At) is
always smaller—at any time during the simulation—than if
computed based on their respective maximum and
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" 70 4 7 rd
8 g, | - = Cumulative distribution function ’
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Figure 6. Probability density function and cumulative distribution function for all diagonal elements
OfCI.
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Figure 7. Shape of the Muskingum operator for all 3916 river reaches located upstream of the Missis-

sippi River at Brainerd, MN, and shown in Figure 1.

minimum as done here. The value of ¢=273~x
1.11 x 107! corresponding to double-precision floating-
point operations was used.

5.4. Speedup of Parallel Computations

[58] Similar to David et al. [2011b], RAPID was run
with various computing methods all using the same input
data and the same routing parameters; the corresponding
computation times were compared among themselves (Fig-
ure 10). The traditional Muskingum method can be directly
compared with a noniterative matrix-based Muskingum
method and performed similarly; but the two methods can
only be applied to a unique processing core when all river
reaches of the domain are fully interconnected as is the
case in the Upper Mississippi River Basin. However, an
iterative matrix-based Muskingum method can be used on
one or several processing cores by splitting the domain in
subbasins and assigning each subbasin to a different proc-
essing core, as shown in Figure 11. The domain decomposi-
tion used here is the same as David et al. [2011b] and uses
a native NHDPlus field informing on the relative upstream/
downstream position of river reaches. Despite an initial
overhead brought by the iterative matrix-based Muskingum
method (Figure 10)—mainly due to the time required to
compute an initial residual error in order to provide the
linear system solver with a convergence criterion—the

computation time quickly decreases with the number of
processing cores before being limited by intercore commu-
nication and increased number of iterations at 32 cores.

[59] The experimental speedup between the iterative ma-
trix-based Muskingum method applied on 16 cores and the
traditional Muskingum method is S(16) = 250/72 = 3.46
which is higher than S;(16) = 16/13 = 1.23 but also much
lower than S(16) = 16/2 = 8.00 or than S3(16) = 16/
(1+(155—-1)16/182240) = 15.79. The real quantities
S2(N) and S5(N) therefore give a new upper limit on what
can be achieved for parallel computing of river flow with
the Muskingum method depending on how the equations
are solved. The computations of the iterative matrix-based
Muskingum method converge in less than two iterations for
all runs with 16 cores or less, so the domain decomposition
used can be considered large enough with regard to the
radii of influence. At 32 cores, an additional iteration is
needed, suggesting that the domain decomposition is not
any more appropriate. Detailed explanations on the differ-
ences between the methods used here can be found in
David et al. [2011Db].

5.5. Magnitude of Differences in Results Obtained
Among Computing Methods

[60] David et al. [2011b] reported exact match—on a
byte-to-byte basis—of all output files among computing
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Figure 8. All 3916 river reaches located upstream of the Mississippi River at Brainerd, MN, as well as
those river reaches that have accountable influence on and from the Mississippi River at Aitkin, MN.
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Figure 10. Computation time with various ways to solve the Muskingum method.

methods tested. However, despite computations being per-
formed using double-precision floating-point operations,
the outputs of David et al. [2011b] were saved using sin-
gle-precision floating points. In this study, comparisons
among computing methods are made using double-preci-
sion output files in order to provide a more in-depth
description of differences. The various three-hourly outputs
from RAPID corresponding to each computation method of

N

;E 0 12525 500 Kilometers
| N N T SN N IS TR N |

Figure 10 were compared among themselves for each
three-hourly average in order to quantify the differences
among flow rates obtained in all methods. Results of these
comparisons are presented in Table 1. The use of three-
hourly outputs as opposed to computations at the 15 min
routing time step is a simplification but one can argue that
such high-resolution computations are generally not created
by computer models anyway. With one unique computing

N
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8 processing cores

Figure 11.

16 processing cores

Domain decomposition for 8 and 16 processing cores, and longest distance path of the

Upper Mississippi River Basin. Different colors correspond to different computing cores (adapted from

David et al. [2011D]).
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Table 1. Differences in Results Among Computing Methods Used

Method 1 Method 2 Maximum Value of Rela- ~ Maximum Value of Abso-
tive Difference in the lute Difference in Flow
Flow Rate Vector Using Rate Between Method 1
the 2-Norm Between and Method 2 for Any
Number of Number of Method 1 and Method 2 River Reach and for Any
Processing Processing  for any 3-Hourly Average  3-Hourly Average During
Method Name Cores Used Method Name Cores Used ~ During Entire Simulation Entire Simulation (m*/s)
Traditional Muskingum 1 Matrix-based Muskingum 1 1.04E—15 3.27E—11
Traditional Muskingum 1 Iterative matrix-based Muskingum 1 1.04E—15 3.27E—11
Traditional Muskingum 1 Iterative matrix-based Muskingum 2 1.14E—15 291E—-11
Traditional Muskingum 1 Iterative matrix-based Muskingum 4 9.98E—16 2.36E—-11
Traditional Muskingum 1 Iterative matrix-based Muskingum 8 1.05E—15 2.55E—-11
Traditional Muskingum 1 Iterative matrix-based Muskingum 16 1.10E—15 2.73E—-11
Traditional Muskingum 1 Iterative matrix-based Muskingum 32 9.58E—16 2.55E—-11
Matrix-based Muskingum 1 Iterative matrix-based Muskingum 1 0.00E+00 0.00E4-00
Matrix-based Muskingum 1 Iterative matrix-based Muskingum 2 1.21E—15 3.64E—11
Matrix-based Muskingum 1 Iterative matrix-based Muskingum 4 1.34E—15 3.27E—11
Matrix-based Muskingum 1 Iterative matrix-based Muskingum 8 1.15E—15 346E—11
Matrix-based Muskingum 1 Iterative matrix-based Muskingum 16 1.21E-15 4.00E—11
Matrix-based Muskingum 1 Iterative matrix-based Muskingum 32 1.08E—15 3.27E—11

core, differences exist between the computations of the tra-
ditional Muskingum method represented by equation (1)
and those of the matrix-based Muskingum method repre-
sented by equation (4), and their relative magnitudes have a
maximum of 1.04 x 107!, Such differences are independ-
ent of an assumption concerning the radius of influence
since a unique computing core is used. These dissimilarities
can therefore be attributed to two different numerical ways
of solving the same linear system. Also on one unique com-
puting core, no differences exist between the matrix-based
Muskingum method and the iterative matrix-based Muskin-
gum method, as expected. Using multiple computing cores,
differences in computations of the iterative matrix-based
Muskingum method exist, and their relative magnitudes
have a maximum of 1.34 x 1013, Two iterations of the lin-
ear system solver being sufficient (for all simulations using
between 2 and 16 processing cores), the corresponding sub-
basins can be considered large enough with regard to the ra-
dius of influence, and such differences are again independent
of assumptions based on the radius of influence. These differ-
ences can therefore also be attributed to diverse numerical
ways of solving the same linear system when using multiple
processing cores. The reader is here again referred to David
et al. [2011b] for further explanations on the differences
between the computing methods used here. In any case, com-
parisons among all methods tested show that the maximum
relative difference for any three-hourly average is
maxy; (|AQ|,/|IQl,) = 1.34 x 107"°, and the maximum
absolute differences for any three-hourly average and any
river reach is maxy,y; ([AQ](j)) = 4.00 x 10~"'m3/s.

[61] The precision that can be expected from the Musk-
ingum method can be estimated by means of its condition
number x(I — Cy-N) following equation (13). In this
study, the Scalable Library for Eigenvalue Problem Com-
putations (SLEPc) [Hernandez et al., 2005] was used to
estimate x(I — Cq - N) with the Muskingum parameters k;
and x; of equation (36). The results obtained by SLEPc are

g,
KHHZ (I — Cl . N) =0 ~

Omin

(37)

[62] With relative errors in ||b||, and ||[I — Cy - NJ|, on
the order of ¢ and using double-precision floating-point
operations, one should therefore deem relative differences
in flow rate computations on the order of 2-k-
e/(1—k-e)m2x 1131 x .11 x 1071%/(1 = 11.31 x 1.11
x10716) ~2.52 x 107!% as acceptable in this study. The
maximum relative difference observed among all experi-
ments performed in this study (see Table 1) can therefore
be deemed acceptable. Additionally, the maximum abso-
lute differences among flow rates at any river reach and
any three-hourly average are on the order of 10~ ''m?3/s
and are hence much smaller than can be expected from the
precision of river flow observations or attained by current
modeling frameworks.

6. Discussion

[63] The study presented in this paper was motivated by
results presented by David et al. [2011b] for which the par-
allel speedup was much higher than predicted by existing
theory, suggesting that the speedup theory for parallel com-
puting of river flow should be revised. Through the inver-
sion of a large matrix, we are able to quantify the worst-
case (largest) relative contribution of a given river reach on
the updated flow rate of any other reach between two con-
secutive time steps of the Muskingum method. We show
that such contribution is smaller than can be accounted for
by floating-point arithmetic if the reaches are far-enough
away from each other. Therefore, even if they are mathe-
matically related—albeit by an infinitesimally small
amount—these river reaches become independent from a
computer modeling perspective. The minimum distance for
which the relative influence between reaches becomes in-
significant—the radius of influence—is defined and quanti-
fied here. It is important to note that we are not suggesting
that river reaches located further away than the radius of
downstream influence from a given river reach do not ever
feel the influence of this given reach. Given enough time,
water will flow from a given river reach to any of its down-
stream reaches; unless it is removed from the river network
by evaporation, infiltration, or human withdrawals which
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are beyond the purpose of the modeling addressed in this
study. However, between two consecutive time steps, a
given river reach has no accountable influence on far down-
stream elements in a floating-point environment. Therefore,
in effect, flow waves are not fast enough to travel through
an entire modeling domain within one time step if the do-
main is large enough. Such was not previously considered
and explains why parallel speedup can be attained that is
much higher than previously predicted. To our knowledge,
the new upper limits for parallel speedup presented here
have not been shown earlier. In order to achieve such
speedup, one has to make sure that the subbasins assigned
to different computing cores are large enough with regard
to the radii of influence, and it would therefore be interest-
ing to study network decomposition techniques such as
those of Veitzer and Gupta [2001] or Li et al. [2011] but
including a limitations of subbasin sizes based on the radii
of influence. However, the computations of radii of influ-
ence presented here have challenges because these radii
depend on the model time step, model parameters (them-
selves related to spatial/temporal resolution and to flow
wave celerities which partly depend on landscape geome-
try) but also on the magnitude of water inflow into each
river reach. Additionally, such computations can become
very demanding as larger domains are addressed.

[64] Lastly, the parallel performance shown here is much
lower than the new estimate of maximum parallel speedup—
despite large-enough subbasins for almost all experiments—
which suggests that other limitations currently exist. Such
limitations deserve further investigations which could focus
on current parallel computing technology, programming
methods used, etc.

7. Conclusions

[65] Many river routing methods use a numerical scheme
in which updating the flow rate for a given river reach
depends on the updated flow rate of the reaches that are
located directly upstream. By construction, such numerical
schemes generate constraints on the ordering of computa-
tions and have therefore traditionally been solved by using
an upstream-to-downstream approach. The maximum
speedup that such an approach can attain in a parallel com-
puting environment has previously been estimated and is
based on the intuitive assumption that one has to wait for
the update of all upstream river reaches to be performed
prior to updating a given reach. The work presented here
uses one of these numerical schemes—the Muskingum
method—and quantifies the relative influence among river
reaches during the update of flow rates between two con-
secutive time steps. This influence can be quantified exactly
using linear algebra and is shown to be null from a floating-
point arithmetic perspective, given that two river reaches
are located far-enough away from each other with regard to
a distance referred to here as the radius of influence. This
rather counterintuitive finding can be explained because the
relative  upstream-to-downstream influence  becomes
increasingly smaller with distance, so small that it becomes
insignificant in the addition performed by a computer.
Physically, this means that flow waves are not fast enough
to cross a large modeling domain within one unique time
step. Therefore, one does not really have to wait for all

upstream elements to be updated prior to updating a given
river reach. Based on this finding a new maximum theoreti-
cal speedup for parallel computation of river flow is pre-
sented. The application of the proposed theoretical
framework to the 182,240 river reaches of the Upper Mis-
sissippi River Basin over the year 2004 at a 15 min routing
time step allows the estimation of the radius of influence on
the order of 150 computing elements (river reaches), i.e.,
about three orders of magnitude smaller than the domain
size which suggests large potential gains in computing
times. The value found here for the radius of influence
depends on the model time step, the spatial resolution of
the river network, the local flow wave celerities and corre-
sponding model parameters, and the magnitude of water
inflow in our study domain, but the theoretical approach
presented can be adapted to other applications. Also, de-
spite the use of a domain decomposition where subbasins
assigned to different computing cores are large enough
when compared to the radii of influence, the speedup of the
application presented remains far from the new upper limit
developed in this study. The reasons for this less-than-opti-
mal speedup remain to be determined, but we show an exper-
imental speedup that is already much higher than what was
previously considered an upper limit. As we address river
modeling experiments of ever-increasing computing sizes,
increases in the upper limits of parallel speedup such as the
one presented here are likely to have valuable impacts.
Finally, the work presented in this paper could be adapted to
other river routing methods in which the updated flow rate
depends on the prior update of upstream (and/or downstream)
elements, and similar results are to be expected.

Appendix A

[66] A few properties of (Cq - N)? are used in this paper
that allow simplifying the computation of M and are pre-
sented here. With regard to the relative sparseness of N”
and (Cl . N)p,

V(i,j) € [1,m]*,¥p € N*, (AD)
[N7](i.j) = 0 = [(C1 - N)"](i.j) =0,
where [N?](i,) is the element located at row i and column j
of N”, and a similar notation is used for (C; - N)”. Equation
(A1) is a direct consequence of C; being a diagonal matrix
and means that if an element of N” is null, the correspond-
ing element of (Cy-N)” is also null. Equation (Al) can
also be used to prove that if N is a strictly lower triangular
matrix, the product Cy - N is also strictly lower triangular.
[67] If each river reach is only allowed to flow into a
unique downstream river reach, the sparseness of N is also
limited by

vj € [1,m],

i e [1,m], NJ(i,j) # 0 = T € [1L,m],[N](i,j) £0. A%

[68] Associating the definition of the matrix product N” -
N to equation (A2) leads to

Vj € [1,m],Yp € N¥,
Ji € [1,m], [N""1](i,j) # 0 = 3g € [1,m],

[N (i) = IN)(i,q) - [N](4.)).-

(A3)

2798



DAVID ET AL.: UPSTREAM-TO-DOWNSTREAM INFLUENCE IN THE MUSKINGUM METHOD

[60] By mathematical induction, one can use equation
(A3) to prove that

vj € [1,m],Vp € N*, (A4)
Ji € [1,m], [NP](i,j) # 0 = 3 € [1,m], [N?](i,)) # 0.

[70] Therefore, if it exists, a nonnull element in a column
of N? is unique. In other words, the potential river reach i
in which reach j flows into after p routing time steps is
unique.

[71] From the definition of the matrix product N - N, a
direct consequence of equation (A4) is

Vi € [1,m],Vp € N*, A5
5i€ Ll W)G) £ 0= (W) =0 A
[72] Using the definition of the matrix product N°~! . N

and equation (AS5), a proof by contradiction allows to show

that

W€ [1,m).¥p € N, 6
5i € L], W)Gj) # 0= W ]@j) =0, A9
[73] By mathematical induction, one can use equations

(A5) and (A6) to show that

vj € [1,m],¥p € N*t, (A7)
i € [1m], [N°)(i,7) # 0 = Tp € [1,m], [N?](G.)) # 0.

[74] Therefore, the number of routing time steps p neces-
sary for a river reach j to flow into a potential reach i is
unique. Combining equations (A4) and (A7) gives

vj e [1,m], , ,
3@,p) € [L,m]", [N?](i,j) # 0 = 3!(i,p) € [1,m]", [N"](i,j) # 0.
(A8)

[75] Despite the numerous steps involved in proving
equation (AS), its physical meaning is intuitive: if a river
reach j to flow into a reach i after p routing time steps, it
does not flow into reach i after any other number of time
steps, and it does not flow into any other reach in the p rout-
ing time steps. Combining equation (Al) with equation
(A8) gives

vj e [l,m],
3(i,p) € [L,m]*, [(C1 -NY)(i,j) # 0 = I(i.p) € [1,m],
[(C1-NY(i,)) # 0.

(A9)
[76] Finally, using equation (A9) in equation (10),
vj e [1,m],
3i € [1,m] {j}, [M](i.j) # 0 = 3(i,p) € [1,m]’, (AL0)

[M](i.j) = [(C1 - N)"|(i.j) # O
M](.)j) = 1.

[77] Equation (A10) allows to go from equations (16) to
(17).

Appendix B
[78] Equation (4) can be reorganized as
Q(t+ Ar) =Cy -N-Q(t + Ar) + b(). (B1)
[79] Injecting equation (B1) into itself p times leads to

—1

{(Cr-N)"-b(1)}.

(B2)

Q(t+ At) = (Cy -N) - Q(r + Ap) +P:

p=

)

=}

[s0] Equation (B2) allows virtually separating the contri-
butions to the updated outflow Q(z + A¢) in two terms. The
first term of the right-hand side corresponds to the contribu-
tion of those river reaches located further away than p
reaches upstream and is expressed in the form of the
updated outflow Q(z + A¢). The second term of the right-
hand side corresponds to those river reaches located within
a distance of p reaches upstream and is expressed in the
form of the combination of previous flows b(¢). One should
note that starting at p = m, equation (B2) actually becomes
equation (11), hence showing an alternate derivation for
the inverse matrix. Applying equation (B2) at the river
reach level leads to

0.1+ A = S ([ - NPI) - 0 + A0

Jj=1

=0 j=1

p=p_L (j=m
+) {Z{[(Cl -NYJ(0.) -bj(t+At)}}-
(B3)

[81] One can use equation (B3) to look at the contribu-
tion from reach j to reach i during the update time step.
This contribution to Q;(¢f + Atf) comes separately from
Oi(t+ At) and from b;(t). However, for given river
reaches 7 and j, equation (A9) states that if it exists, a non-
null [(Cq-N)?](i,j) exists only for a unique p being the
number of river reaches separating i and j. Therefore, the
contribution from reach j to reach i during the update time
step cannot come from Q;(# + At) and from b;(¢) at the
same time. Applying equation (B3) to p and to p + 1 allows
demonstrating that the same scalar [(Cy - N)”](i,/) appears
as a multiplier of Q;(t + At) and b;(t), respectively, when
i # j. Remembering that [(C; - N)”|(i,i) = 0 as shown in
equation (A1), and accounting for equation (A10), the con-
tribution from Q;(t+ Af) to Q:i(t+ Af) is therefore
M —1)(i.j) - Q;(t + At). Hence, [M](i,j) can be used to
study both the contribution from reach j to a different reach
i based on previous flows using b;(f) and during the update
time step using Q;(f + At).
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