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Abstract—In recent years, applying RFID technology to de-
velop an Indoor Positioning System (IPS) has become a hot
research topic. The most prominent advantage of active RFID
IPS comes from its unique identification of different objects
in indoor environment. However, certain drawbacks of existing
RFID IPSs, such as high cost of RFID readers and active tags,
as well as heavy dependence on the density of reference tags to
provide the location based service, largely limit the applications
of active RFID IPS. In order to overcome these drawbacks,
we develop a cost-efficient RFID IPS by using cheaper active
RFID tags, sensors and reader. In addition, one localization
algorithm: integrated Weighted Path Loss (WPL) - Extreme
Learning Machine (ELM) which combines the fast estimation
of WPL and the high localization accuracy of ELM is proposed.
According to the algorithm, an indoor environment is divided
into small zones firstly and an ELM model is developed for each
zone during the offline phase. During the online phase, the WPL
approach is used to determine the zone of the target primarily,
then the ELM model of that zone is deployed to provide the
final estimated location of the target. Based on our experimental
result, this integrated algorithm provides a higher localization
efficiency and accuracy than existing approaches.

I. INTRODUCTION

In recent years, with the widespread usage of mobile
devices and the increasing popularity of social networks, the
demands of Location Based Service (LBS) have increased a
lot in both indoor and outdoor circumstance. GPS can provide
excellent LBS in outdoor environment. However, due to the
lack of line of sight (LoS) transmission channel between the
satellite and the receiver, GPS is not capable of providing
positioning service with sufficient localization accuracy in
indoor environment. Developing an Indoor Positioning System
(IPS) to provide reliable and precision indoor positioning
and navigation becomes a hot research topic recently. It is
worth noticing that a lot of problems, such as multipath
effect of signal reflection from walls and furniture, physical
layout changes of furniture and signal scattering due to large
density of obstacles, make positioning and navigation in indoor

environment much more complicated and challenging than in
outdoor environment.

A number of wireless communication technologies have
been proposed and developed in order to provide indoor po-
sitioning and navigation, including Infrared, Bluetooth, Ultra-
Wideband (UWB), Radio Frequency Identification (RFID) and
Wireless Local Area Network (WLAN) [1] [2]. Compared with
other technologies, RFID technology has several advantages,
such as no requirement of LoS, anti-interference, and the fact
that RFID tags are small and light and most importantly, it can
uniquely identify different objects. It has been widely used in
asset tracking, industrial automation and medical care. The
application of RFID technology in developing IPS has been
studied and explored in recent years.

LANDMARC is one of the earliest and most famous IPSs
by using active RFID tags and RFID readers [3] . In order to
increase accuracy without placing more readers, extra fixed
location reference tags are introduced in LANDMARC to
facilitate location calibration. It is reported that the localization
accuracy of LANDMARC is around 1.5-2m with 50 percent
probability. An enhanced LANDMARC approach has been
proposed in [4]. This improved scheme aims to make the
calculated coordinate of the tracking tags closer to the real
time measurements without extra readers and reference tags.

One drawback of these RFID IPSs is the high cost of
RFID readers and the active RFID tags. In order to overcome
this, we develop a cost-efficient RFID IPS by using cheaper
active RFID tags, sensors and readers in this paper. Unlike
the LANDMARC system, the signal strengths emitted from
RFID tags are picked up by low-cost RFID sensors instead
of RFID readers in our system. Another drawback is that the
localization accuracy of these RFID IPSs largely depends on
the density of reference tags. Too many reference tags may
result in increased RF interferences. In [5], two localization
algorithms: Weighted Path Loss (WPL) and Extreme Learning
Machine (ELM) are proposed to overcome this drawback.



The WPL approach is a centralized model-based localization
algorithm and the ELM approach is a machine learning
fingerprinting localization algorithm.

Based on the experimental results shown in [5], WPL can
provide a faster estimation while ELM can provide a higher
localization accuracy. On the other hand, WPL cannot provide
very high localization accuracy like ELM and the drawback
of ELM is the tedious testing time during the online phase. In
order to integrate the advantages of these two approaches and
overcome the drawbacks of them as well, a novel localization
algorithm: WPL-ELM is proposed in this paper. During the of-
fline phase, an indoor environment is divided into small zones
firstly and an ELM model is developed for each zone during
the offline phase. During the online phase, the WPL approach
is used to determine the zone of the target primarily, then
the ELM model of that zone is deployed to provide the final
estimated location of the target. Based on our experimental
results, WPL-ELM can not only provide higher localization
accuracy, but also perform a more efficient way compared with
existing ones.

The rest of the paper is organized as follows. In Section II,
the background knowledge for this paper is provided. Section
III introduces our RFID IPS and the algorithm formulation of
the proposed localization algorithm. In Section IV, we present
the experimental results and performance evaluation of the
proposed algorithm. The conclusion is given in Section V.

II. BACKGROUND KNOWLEDGE

A. Methodology of WPL
Suppose we have A RFID sensors and B tracking tags. Each

sensor can pick up the signal strengths of all B tracking tags.
In order to calculate the estimated location of each tracking
tag, we define the signal strength of the jth tracking tag
received at the ith sensor as sij , where i ∈ [1, A], j ∈ [1, B].
The real position of the ith sensor is defined as (xi, yi). Based
on the Path Loss Model defined in [4], the signal strength sij
can be expressed as:

sij = PL(dij) = PL0 + 10αlog(dij) (1)

where PL0 is the reference pass loss coefficient and α is the
pass loss exponent. Based on (2), the distance between the
jth tracking tag and the ith sensor can be calculated by:

dij = 10
sij−PL0

10α (2)

The distances between these A RFID sensors and the jth
tracking tag can be expressed as a d vector, given by ~dj =
(d1j , d2j , . . . , dAj)

T . The weighting factor of the ith sensor
with respect to the jth tracking tag is defined as:

wij =

1
dij∑A
i=1

1
dij

(3)

The unknown location coordinate (uj , vj) of the jth tracking
tag is obtained by:

(uj , vj) =

A∑
i=1

wij(xi, yi) (4)

B. Methodology of ELM

ELM is a kind of machine learning algorithm based on
a Single-hidden Layer Feedforward neural Network (SLFN)
architecture. It has been proved to provide good generalization
performance at an extremely fast learning speed [6]. ELM
can be adopted to solve localization problem as a regression
problem. It consists of an offline phase and an online phase.
During the offline phase, some RFID tags are adopted as
reference tags in order to build up an empirical database. P
reference tags will be used and Q historical RSSI samples
will be collected for each tag. Moreover, each RSSI sample
is denoted as ((Xpq, Ypq), RSSpq), p ∈ (1, P ), q ∈ (1, Q).
The vectors RSSpq , p = 1, 2, ..., P , q = 1, 2, ..., Q are the
inputs of the ELM and the corresponding location vectors
(Xpq, Ypq) are the training targets of ELM. The hard-limit
transfer (hardlim) function G(a, b, x) = hardlim(ax + b) is
chosen as the activation function in this paper. The training
process of ELM is introduced in [6]. It can be conducted in
the following three main steps:

Step 1: Randomly assign values to hidden node parameters.
Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate the output weight β by:

β = H†L (5)

where H† is the Moor-Penrose generalized inverse of H.
During the online phase, the only thing we need to do is to

feed the RSS vector which is contained in the RSSI sample
of the tracking tag into the ELM model. The output given by
ELM is the estimated location of the tracking tag.

III. PROPOSED APPROACH

A. System Overview

Our RFID IPS consists of a number of RFID sensors and
tags, a wireless sensor network that enables the communication
between these devices, a RFID reader and a location server.
Unlike the LANDMARC system, the signal strengths emitted
from tags are picked up by RFID sensors instead of RFID
readers in our system, due to the high price of RFID readers.
Both RFID sensors and active RFID tags in our system use
TICC2530 as the wireless module. The battery life of each tag
is around one month. The manufacturing cost of each RFID
sensor is only $15, which is much less than the cost of a typical
RFID reader. The system communication protocol is based on
ZigBee 2.4 GHz. Before system operation, each active RFID
tag is preprogrammed with a unique 4-character ID for the
identification by sensors. The following is a brief operation
procedure of our system.

First of all, RFID tags broadcast their unique ID signal every
second in the indoor environment. Then, RFID sensors pick
up the signal strength of each tag. With external power supply,
these sensors are able to send RSS information of all tracking
tags to the RFID reader continuously through the wireless
sensor network. The RSSI data from all RFID sensors are
received at the RFID reader which is connected to a location
server. In our experiment, one RFID reader is good enough



Fig. 1. Flowchart of Integrated WPL-ELM Approach

to cover a 100m2 indoor environment. After that, the location
server calculates the estimated location of each tracking tag
by using the proposed localization algorithm.

B. Methodology of integrated WPL-ELM

Based on the experimental results in [5], the advantage of
WPL is its faster estimation and relative better localization
accuracy compared with existing model-based localization
algorithms. It usually uses less than 0.2s to test a new RSSI
sample with 1.65m localization accuracy. ELM can provide a
higher localization accuracy, but there is a tradeoff between
the localization accuracy and the testing time. The testing
time increases if a higher localization accuracy is required.
In order to combine the faster estimation of WPL and the
higher localization accuracy of ELM, a novel localization al-
gorithm: WPL-ELM integrating both approaches is proposed.
The process of this proposed localization algorithm is shown
in Figure 1.

During the offline phase, big indoor space is divided into
multiple small zones according to the distribution of the RFID
sensors. Then, an ELM model for each zone is developed.

During the online phase, the WPL approach is used to
determine the zone of the tracking tag primarily in the first
step. After we know the tracking tag is in which zone, the
ELM model of that zone is deployed in the second step to
provide the final estimated location of the target.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

Series of experiments have been conducted to evaluate
the performance of the proposed localization algorithm. The
test-bed is the Postgraduate Room in the Internet of Things

Fig. 2. Placement of RIFD tracking tags, sensors and reader

Laboratory in School of Electrical and Electronic Engineering,
Nanyang Technological University. The size of the test-bed is
approximately 110m2 (6.4m× 17.1m). 14 RFID sensors are
deployed in the room. The positions of these RFID sensors
and the RFID reader are shown in Figure 2. As shown in
Figure 2, the entire room has been divided into three small
zones in order to evaluate the localization performance of the
proposed integrated WPL-ELM approach. Zone 1 contains 7
sensors and 4 tracking tags. Zone 2 contains 8 sensors and 3
tracking tags. There are 5 sensors and 2 tracking tags in Zone
3.

In order to evaluate the performance of the proposed local-
ization algorithms, the distance error is used to measure the
localization accuracy of the system. We define the location
estimation error e to be the distance between the real location
coordinates (x0, y0) and the system estimated location coor-
dinates (x, y), as:

e =
√
(x− x0)2 + (y − y0)2 (6)

Since the WPL approach is adopted as the preliminary
estimation in the integrated WPL-ELM approach and its
localization accuracy depends on the path loss exponent α,
we conduct an experiment and use a curve fitting method to
construct the relationship between RSSI and distance, as:

PL(di) = −52.40− 10× 3.58× log(di) (7)

i.e., the pass loss exponent α is taken as 3.58 and the reference
pass loss coefficient PL0 as -52.40dBm. We assume that α
and PL0 remain unchanged in the entire test period.



During experiment I, as shown Figure 2, 19 reference tags
are distributed in the room. The main purpose of experiment
I is to build up the historical RSSI sample database for ELM
offline training. We keep collecting data of the signal strength
of the 19 reference tags from the 14 RFID sensors for 10
days. We obtain 637000 RSSI samples for each tag in this
experiment. We put these samples with their corresponding
real location coordinates into the ELM training process and
build up the ELM model in each zone for real-time localization
during the online phase.

During experiment II, we keep collecting data of the signal
strength of both 9 tracking tags from the 14 RFID sensors for
5 days. The main purpose of experiment II is to evaluate the
localization accuracy of the integrated WPL-ELM approach.
We obtain 325000 RSSI samples for each tag in this experi-
ment.

We evaluate the performance of WPL-ELM based on the
RSSI samples of 9 tracking tags from the experiment II
database. Since WPL is adopted as the preliminary estimation
of the tracking tag, we first analyze the reliability of WPL in
classifying the tracking tags into the correct zone. Based on
the experimental results, WPL can determine the zone of the
tracking tag with a 97.8% accuracy. With 0.15s fast estimation
and 1.782m localization accuracy of the tracking tag, WPL is
fully capable of providing the correct zone of the tracking tag,
or equally an estimate of its location.

After we get the preliminary location estimation of the
tracking tag (tracking tag is in which zone), ELM is adopted to
provide final estimated location of the target by using the ELM
model of that zone which is developed during the offline phase.
The performance comparison between Back-propagation (BP)
algorithm, support vector machine for regression (SVR) algo-
rithm, ELM and WPL-ELM is shown in Figure 3 and Figure 4.
As shown in Figure 3, the distance error distribution of WPL-
ELM ranges mainly within 2.3m which is the best among the
four approaches.

Table I demonstrates the performance comparison among
the four approaches in terms of the training time, the average
testing time and the average localization accuracy. As observed
in Table I, the overall average localization accuracy of WPL-
ELM is 0.799m, which enhances the precision of localization
accuracy by 62% over BP, 55% over SVR and 33% over ELM
respectively. In addition, the more noteworthy point is that
WPL-ELM greatly reduces both the training time during the
offline phase and the testing time during the online phase as
compared with ELM. The overall training time of WPL-ELM
is 147.089s which saves 41% less time than ELM. The average
testing time of WPL-ELM is 0.432s which is 4.22 times faster
than ELM. Therefore, WPL-ELM can overcome the drawback
of ELM which is the tedious testing time during the online
phase.

In summary, WPL-ELM can provide not only higher lo-
calization accuracy than other approaches, but also a more
efficient location estimation of the target than ELM.

TABLE I
COMPARISON BETWEEN WPL-ELM AND ELM

Approach Training Time (s) Testing Time (s) Accuracy (m)

BP 97200 0.007 2.084
SVR 1402.887 0.013 1.769
ELM 248.026 1.825 1.198

WPL-ELM

Zone 1 59.338 0.524 0.763
Zone 2 62.057 0.428 0.901
Zone 3 25.694 0.252 0.719

Overall 147.089 0.432 0.799

Fig. 4. Cumulative percentile of error distance for different methods

V. CONCLUSION

In this paper, we proposed a cost-efficient RFID IPS by us-
ing cheaper active RFID tags, sensors and reader. Furthermore,
considering the fast estimation of WPL and the high localiza-
tion accuracy of ELM, a novel localization algorithm: WPL-
ELM which integrates the advantages of both approaches was
proposed. Based on the experimental results, the training time
and the testing time of WPL-ELM are 1.69 times and 4.22
times faster than ELM. In addition, it improves the precision
of indoor localization by 62% over the BP approach, 55%
over the SVR approach and 33% over the ELM approach
respectively. In conclusion, WPL-ELM can provide a higher
localization accuracy of the target in a more efficient way
than existing approaches. Moreover, it also can greatly reduce
the deployment cost of the entire system because it requires
less number of RFID sensors than WPL to maintain the same
localization accuracy.
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